1 /*
2 	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 	<http://rt2x00.serialmonkey.com>
4 
5 	This program is free software; you can redistribute it and/or modify
6 	it under the terms of the GNU General Public License as published by
7 	the Free Software Foundation; either version 2 of the License, or
8 	(at your option) any later version.
9 
10 	This program is distributed in the hope that it will be useful,
11 	but WITHOUT ANY WARRANTY; without even the implied warranty of
12 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 	GNU General Public License for more details.
14 
15 	You should have received a copy of the GNU General Public License
16 	along with this program; if not, write to the
17 	Free Software Foundation, Inc.,
18 	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 /*
22 	Module: rt2500pci
23 	Abstract: rt2500pci device specific routines.
24 	Supported chipsets: RT2560.
25  */
26 
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34 #include <linux/slab.h>
35 
36 #include "rt2x00.h"
37 #include "rt2x00pci.h"
38 #include "rt2500pci.h"
39 
40 /*
41  * Register access.
42  * All access to the CSR registers will go through the methods
43  * rt2x00pci_register_read and rt2x00pci_register_write.
44  * BBP and RF register require indirect register access,
45  * and use the CSR registers BBPCSR and RFCSR to achieve this.
46  * These indirect registers work with busy bits,
47  * and we will try maximal REGISTER_BUSY_COUNT times to access
48  * the register while taking a REGISTER_BUSY_DELAY us delay
49  * between each attampt. When the busy bit is still set at that time,
50  * the access attempt is considered to have failed,
51  * and we will print an error.
52  */
53 #define WAIT_FOR_BBP(__dev, __reg) \
54 	rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
55 #define WAIT_FOR_RF(__dev, __reg) \
56 	rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
57 
rt2500pci_bbp_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,const u8 value)58 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
59 				const unsigned int word, const u8 value)
60 {
61 	u32 reg;
62 
63 	mutex_lock(&rt2x00dev->csr_mutex);
64 
65 	/*
66 	 * Wait until the BBP becomes available, afterwards we
67 	 * can safely write the new data into the register.
68 	 */
69 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
70 		reg = 0;
71 		rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
72 		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
73 		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
74 		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
75 
76 		rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
77 	}
78 
79 	mutex_unlock(&rt2x00dev->csr_mutex);
80 }
81 
rt2500pci_bbp_read(struct rt2x00_dev * rt2x00dev,const unsigned int word,u8 * value)82 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
83 			       const unsigned int word, u8 *value)
84 {
85 	u32 reg;
86 
87 	mutex_lock(&rt2x00dev->csr_mutex);
88 
89 	/*
90 	 * Wait until the BBP becomes available, afterwards we
91 	 * can safely write the read request into the register.
92 	 * After the data has been written, we wait until hardware
93 	 * returns the correct value, if at any time the register
94 	 * doesn't become available in time, reg will be 0xffffffff
95 	 * which means we return 0xff to the caller.
96 	 */
97 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
98 		reg = 0;
99 		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
100 		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
101 		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
102 
103 		rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
104 
105 		WAIT_FOR_BBP(rt2x00dev, &reg);
106 	}
107 
108 	*value = rt2x00_get_field32(reg, BBPCSR_VALUE);
109 
110 	mutex_unlock(&rt2x00dev->csr_mutex);
111 }
112 
rt2500pci_rf_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,const u32 value)113 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
114 			       const unsigned int word, const u32 value)
115 {
116 	u32 reg;
117 
118 	mutex_lock(&rt2x00dev->csr_mutex);
119 
120 	/*
121 	 * Wait until the RF becomes available, afterwards we
122 	 * can safely write the new data into the register.
123 	 */
124 	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
125 		reg = 0;
126 		rt2x00_set_field32(&reg, RFCSR_VALUE, value);
127 		rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
128 		rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
129 		rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
130 
131 		rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
132 		rt2x00_rf_write(rt2x00dev, word, value);
133 	}
134 
135 	mutex_unlock(&rt2x00dev->csr_mutex);
136 }
137 
rt2500pci_eepromregister_read(struct eeprom_93cx6 * eeprom)138 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
139 {
140 	struct rt2x00_dev *rt2x00dev = eeprom->data;
141 	u32 reg;
142 
143 	rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
144 
145 	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
146 	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
147 	eeprom->reg_data_clock =
148 	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
149 	eeprom->reg_chip_select =
150 	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
151 }
152 
rt2500pci_eepromregister_write(struct eeprom_93cx6 * eeprom)153 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
154 {
155 	struct rt2x00_dev *rt2x00dev = eeprom->data;
156 	u32 reg = 0;
157 
158 	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
159 	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
160 	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
161 			   !!eeprom->reg_data_clock);
162 	rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
163 			   !!eeprom->reg_chip_select);
164 
165 	rt2x00pci_register_write(rt2x00dev, CSR21, reg);
166 }
167 
168 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
169 static const struct rt2x00debug rt2500pci_rt2x00debug = {
170 	.owner	= THIS_MODULE,
171 	.csr	= {
172 		.read		= rt2x00pci_register_read,
173 		.write		= rt2x00pci_register_write,
174 		.flags		= RT2X00DEBUGFS_OFFSET,
175 		.word_base	= CSR_REG_BASE,
176 		.word_size	= sizeof(u32),
177 		.word_count	= CSR_REG_SIZE / sizeof(u32),
178 	},
179 	.eeprom	= {
180 		.read		= rt2x00_eeprom_read,
181 		.write		= rt2x00_eeprom_write,
182 		.word_base	= EEPROM_BASE,
183 		.word_size	= sizeof(u16),
184 		.word_count	= EEPROM_SIZE / sizeof(u16),
185 	},
186 	.bbp	= {
187 		.read		= rt2500pci_bbp_read,
188 		.write		= rt2500pci_bbp_write,
189 		.word_base	= BBP_BASE,
190 		.word_size	= sizeof(u8),
191 		.word_count	= BBP_SIZE / sizeof(u8),
192 	},
193 	.rf	= {
194 		.read		= rt2x00_rf_read,
195 		.write		= rt2500pci_rf_write,
196 		.word_base	= RF_BASE,
197 		.word_size	= sizeof(u32),
198 		.word_count	= RF_SIZE / sizeof(u32),
199 	},
200 };
201 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
202 
rt2500pci_rfkill_poll(struct rt2x00_dev * rt2x00dev)203 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
204 {
205 	u32 reg;
206 
207 	rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
208 	return rt2x00_get_field32(reg, GPIOCSR_BIT0);
209 }
210 
211 #ifdef CONFIG_RT2X00_LIB_LEDS
rt2500pci_brightness_set(struct led_classdev * led_cdev,enum led_brightness brightness)212 static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
213 				     enum led_brightness brightness)
214 {
215 	struct rt2x00_led *led =
216 	    container_of(led_cdev, struct rt2x00_led, led_dev);
217 	unsigned int enabled = brightness != LED_OFF;
218 	u32 reg;
219 
220 	rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
221 
222 	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
223 		rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
224 	else if (led->type == LED_TYPE_ACTIVITY)
225 		rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
226 
227 	rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
228 }
229 
rt2500pci_blink_set(struct led_classdev * led_cdev,unsigned long * delay_on,unsigned long * delay_off)230 static int rt2500pci_blink_set(struct led_classdev *led_cdev,
231 			       unsigned long *delay_on,
232 			       unsigned long *delay_off)
233 {
234 	struct rt2x00_led *led =
235 	    container_of(led_cdev, struct rt2x00_led, led_dev);
236 	u32 reg;
237 
238 	rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
239 	rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
240 	rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
241 	rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
242 
243 	return 0;
244 }
245 
rt2500pci_init_led(struct rt2x00_dev * rt2x00dev,struct rt2x00_led * led,enum led_type type)246 static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
247 			       struct rt2x00_led *led,
248 			       enum led_type type)
249 {
250 	led->rt2x00dev = rt2x00dev;
251 	led->type = type;
252 	led->led_dev.brightness_set = rt2500pci_brightness_set;
253 	led->led_dev.blink_set = rt2500pci_blink_set;
254 	led->flags = LED_INITIALIZED;
255 }
256 #endif /* CONFIG_RT2X00_LIB_LEDS */
257 
258 /*
259  * Configuration handlers.
260  */
rt2500pci_config_filter(struct rt2x00_dev * rt2x00dev,const unsigned int filter_flags)261 static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
262 				    const unsigned int filter_flags)
263 {
264 	u32 reg;
265 
266 	/*
267 	 * Start configuration steps.
268 	 * Note that the version error will always be dropped
269 	 * and broadcast frames will always be accepted since
270 	 * there is no filter for it at this time.
271 	 */
272 	rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
273 	rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
274 			   !(filter_flags & FIF_FCSFAIL));
275 	rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
276 			   !(filter_flags & FIF_PLCPFAIL));
277 	rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
278 			   !(filter_flags & FIF_CONTROL));
279 	rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
280 			   !(filter_flags & FIF_PROMISC_IN_BSS));
281 	rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
282 			   !(filter_flags & FIF_PROMISC_IN_BSS) &&
283 			   !rt2x00dev->intf_ap_count);
284 	rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
285 	rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
286 			   !(filter_flags & FIF_ALLMULTI));
287 	rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
288 	rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
289 }
290 
rt2500pci_config_intf(struct rt2x00_dev * rt2x00dev,struct rt2x00_intf * intf,struct rt2x00intf_conf * conf,const unsigned int flags)291 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
292 				  struct rt2x00_intf *intf,
293 				  struct rt2x00intf_conf *conf,
294 				  const unsigned int flags)
295 {
296 	struct data_queue *queue = rt2x00dev->bcn;
297 	unsigned int bcn_preload;
298 	u32 reg;
299 
300 	if (flags & CONFIG_UPDATE_TYPE) {
301 		/*
302 		 * Enable beacon config
303 		 */
304 		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
305 		rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
306 		rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
307 		rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
308 		rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
309 
310 		/*
311 		 * Enable synchronisation.
312 		 */
313 		rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
314 		rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
315 		rt2x00pci_register_write(rt2x00dev, CSR14, reg);
316 	}
317 
318 	if (flags & CONFIG_UPDATE_MAC)
319 		rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
320 					      conf->mac, sizeof(conf->mac));
321 
322 	if (flags & CONFIG_UPDATE_BSSID)
323 		rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
324 					      conf->bssid, sizeof(conf->bssid));
325 }
326 
rt2500pci_config_erp(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_erp * erp,u32 changed)327 static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
328 				 struct rt2x00lib_erp *erp,
329 				 u32 changed)
330 {
331 	int preamble_mask;
332 	u32 reg;
333 
334 	/*
335 	 * When short preamble is enabled, we should set bit 0x08
336 	 */
337 	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
338 		preamble_mask = erp->short_preamble << 3;
339 
340 		rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
341 		rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
342 		rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
343 		rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
344 		rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
345 		rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
346 
347 		rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
348 		rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
349 		rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
350 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
351 				   GET_DURATION(ACK_SIZE, 10));
352 		rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
353 
354 		rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
355 		rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
356 		rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
357 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
358 				   GET_DURATION(ACK_SIZE, 20));
359 		rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
360 
361 		rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
362 		rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
363 		rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
364 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
365 				   GET_DURATION(ACK_SIZE, 55));
366 		rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
367 
368 		rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
369 		rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
370 		rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
371 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
372 				   GET_DURATION(ACK_SIZE, 110));
373 		rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
374 	}
375 
376 	if (changed & BSS_CHANGED_BASIC_RATES)
377 		rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
378 
379 	if (changed & BSS_CHANGED_ERP_SLOT) {
380 		rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
381 		rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
382 		rt2x00pci_register_write(rt2x00dev, CSR11, reg);
383 
384 		rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
385 		rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
386 		rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
387 		rt2x00pci_register_write(rt2x00dev, CSR18, reg);
388 
389 		rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
390 		rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
391 		rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
392 		rt2x00pci_register_write(rt2x00dev, CSR19, reg);
393 	}
394 
395 	if (changed & BSS_CHANGED_BEACON_INT) {
396 		rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
397 		rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
398 				   erp->beacon_int * 16);
399 		rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
400 				   erp->beacon_int * 16);
401 		rt2x00pci_register_write(rt2x00dev, CSR12, reg);
402 	}
403 
404 }
405 
rt2500pci_config_ant(struct rt2x00_dev * rt2x00dev,struct antenna_setup * ant)406 static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
407 				 struct antenna_setup *ant)
408 {
409 	u32 reg;
410 	u8 r14;
411 	u8 r2;
412 
413 	/*
414 	 * We should never come here because rt2x00lib is supposed
415 	 * to catch this and send us the correct antenna explicitely.
416 	 */
417 	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
418 	       ant->tx == ANTENNA_SW_DIVERSITY);
419 
420 	rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
421 	rt2500pci_bbp_read(rt2x00dev, 14, &r14);
422 	rt2500pci_bbp_read(rt2x00dev, 2, &r2);
423 
424 	/*
425 	 * Configure the TX antenna.
426 	 */
427 	switch (ant->tx) {
428 	case ANTENNA_A:
429 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
430 		rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
431 		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
432 		break;
433 	case ANTENNA_B:
434 	default:
435 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
436 		rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
437 		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
438 		break;
439 	}
440 
441 	/*
442 	 * Configure the RX antenna.
443 	 */
444 	switch (ant->rx) {
445 	case ANTENNA_A:
446 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
447 		break;
448 	case ANTENNA_B:
449 	default:
450 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
451 		break;
452 	}
453 
454 	/*
455 	 * RT2525E and RT5222 need to flip TX I/Q
456 	 */
457 	if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
458 		rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
459 		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
460 		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
461 
462 		/*
463 		 * RT2525E does not need RX I/Q Flip.
464 		 */
465 		if (rt2x00_rf(rt2x00dev, RF2525E))
466 			rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
467 	} else {
468 		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
469 		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
470 	}
471 
472 	rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
473 	rt2500pci_bbp_write(rt2x00dev, 14, r14);
474 	rt2500pci_bbp_write(rt2x00dev, 2, r2);
475 }
476 
rt2500pci_config_channel(struct rt2x00_dev * rt2x00dev,struct rf_channel * rf,const int txpower)477 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
478 				     struct rf_channel *rf, const int txpower)
479 {
480 	u8 r70;
481 
482 	/*
483 	 * Set TXpower.
484 	 */
485 	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
486 
487 	/*
488 	 * Switch on tuning bits.
489 	 * For RT2523 devices we do not need to update the R1 register.
490 	 */
491 	if (!rt2x00_rf(rt2x00dev, RF2523))
492 		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
493 	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
494 
495 	/*
496 	 * For RT2525 we should first set the channel to half band higher.
497 	 */
498 	if (rt2x00_rf(rt2x00dev, RF2525)) {
499 		static const u32 vals[] = {
500 			0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
501 			0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
502 			0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
503 			0x00080d2e, 0x00080d3a
504 		};
505 
506 		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
507 		rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
508 		rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
509 		if (rf->rf4)
510 			rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
511 	}
512 
513 	rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
514 	rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
515 	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
516 	if (rf->rf4)
517 		rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
518 
519 	/*
520 	 * Channel 14 requires the Japan filter bit to be set.
521 	 */
522 	r70 = 0x46;
523 	rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
524 	rt2500pci_bbp_write(rt2x00dev, 70, r70);
525 
526 	msleep(1);
527 
528 	/*
529 	 * Switch off tuning bits.
530 	 * For RT2523 devices we do not need to update the R1 register.
531 	 */
532 	if (!rt2x00_rf(rt2x00dev, RF2523)) {
533 		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
534 		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
535 	}
536 
537 	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
538 	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
539 
540 	/*
541 	 * Clear false CRC during channel switch.
542 	 */
543 	rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
544 }
545 
rt2500pci_config_txpower(struct rt2x00_dev * rt2x00dev,const int txpower)546 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
547 				     const int txpower)
548 {
549 	u32 rf3;
550 
551 	rt2x00_rf_read(rt2x00dev, 3, &rf3);
552 	rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
553 	rt2500pci_rf_write(rt2x00dev, 3, rf3);
554 }
555 
rt2500pci_config_retry_limit(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_conf * libconf)556 static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
557 					 struct rt2x00lib_conf *libconf)
558 {
559 	u32 reg;
560 
561 	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
562 	rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
563 			   libconf->conf->long_frame_max_tx_count);
564 	rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
565 			   libconf->conf->short_frame_max_tx_count);
566 	rt2x00pci_register_write(rt2x00dev, CSR11, reg);
567 }
568 
rt2500pci_config_ps(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_conf * libconf)569 static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
570 				struct rt2x00lib_conf *libconf)
571 {
572 	enum dev_state state =
573 	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
574 		STATE_SLEEP : STATE_AWAKE;
575 	u32 reg;
576 
577 	if (state == STATE_SLEEP) {
578 		rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
579 		rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
580 				   (rt2x00dev->beacon_int - 20) * 16);
581 		rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
582 				   libconf->conf->listen_interval - 1);
583 
584 		/* We must first disable autowake before it can be enabled */
585 		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
586 		rt2x00pci_register_write(rt2x00dev, CSR20, reg);
587 
588 		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
589 		rt2x00pci_register_write(rt2x00dev, CSR20, reg);
590 	} else {
591 		rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
592 		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
593 		rt2x00pci_register_write(rt2x00dev, CSR20, reg);
594 	}
595 
596 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
597 }
598 
rt2500pci_config(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_conf * libconf,const unsigned int flags)599 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
600 			     struct rt2x00lib_conf *libconf,
601 			     const unsigned int flags)
602 {
603 	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
604 		rt2500pci_config_channel(rt2x00dev, &libconf->rf,
605 					 libconf->conf->power_level);
606 	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
607 	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
608 		rt2500pci_config_txpower(rt2x00dev,
609 					 libconf->conf->power_level);
610 	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
611 		rt2500pci_config_retry_limit(rt2x00dev, libconf);
612 	if (flags & IEEE80211_CONF_CHANGE_PS)
613 		rt2500pci_config_ps(rt2x00dev, libconf);
614 }
615 
616 /*
617  * Link tuning
618  */
rt2500pci_link_stats(struct rt2x00_dev * rt2x00dev,struct link_qual * qual)619 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
620 				 struct link_qual *qual)
621 {
622 	u32 reg;
623 
624 	/*
625 	 * Update FCS error count from register.
626 	 */
627 	rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
628 	qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
629 
630 	/*
631 	 * Update False CCA count from register.
632 	 */
633 	rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
634 	qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
635 }
636 
rt2500pci_set_vgc(struct rt2x00_dev * rt2x00dev,struct link_qual * qual,u8 vgc_level)637 static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
638 				     struct link_qual *qual, u8 vgc_level)
639 {
640 	if (qual->vgc_level_reg != vgc_level) {
641 		rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
642 		qual->vgc_level = vgc_level;
643 		qual->vgc_level_reg = vgc_level;
644 	}
645 }
646 
rt2500pci_reset_tuner(struct rt2x00_dev * rt2x00dev,struct link_qual * qual)647 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
648 				  struct link_qual *qual)
649 {
650 	rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
651 }
652 
rt2500pci_link_tuner(struct rt2x00_dev * rt2x00dev,struct link_qual * qual,const u32 count)653 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
654 				 struct link_qual *qual, const u32 count)
655 {
656 	/*
657 	 * To prevent collisions with MAC ASIC on chipsets
658 	 * up to version C the link tuning should halt after 20
659 	 * seconds while being associated.
660 	 */
661 	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
662 	    rt2x00dev->intf_associated && count > 20)
663 		return;
664 
665 	/*
666 	 * Chipset versions C and lower should directly continue
667 	 * to the dynamic CCA tuning. Chipset version D and higher
668 	 * should go straight to dynamic CCA tuning when they
669 	 * are not associated.
670 	 */
671 	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
672 	    !rt2x00dev->intf_associated)
673 		goto dynamic_cca_tune;
674 
675 	/*
676 	 * A too low RSSI will cause too much false CCA which will
677 	 * then corrupt the R17 tuning. To remidy this the tuning should
678 	 * be stopped (While making sure the R17 value will not exceed limits)
679 	 */
680 	if (qual->rssi < -80 && count > 20) {
681 		if (qual->vgc_level_reg >= 0x41)
682 			rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
683 		return;
684 	}
685 
686 	/*
687 	 * Special big-R17 for short distance
688 	 */
689 	if (qual->rssi >= -58) {
690 		rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
691 		return;
692 	}
693 
694 	/*
695 	 * Special mid-R17 for middle distance
696 	 */
697 	if (qual->rssi >= -74) {
698 		rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
699 		return;
700 	}
701 
702 	/*
703 	 * Leave short or middle distance condition, restore r17
704 	 * to the dynamic tuning range.
705 	 */
706 	if (qual->vgc_level_reg >= 0x41) {
707 		rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
708 		return;
709 	}
710 
711 dynamic_cca_tune:
712 
713 	/*
714 	 * R17 is inside the dynamic tuning range,
715 	 * start tuning the link based on the false cca counter.
716 	 */
717 	if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
718 		rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
719 	else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
720 		rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
721 }
722 
723 /*
724  * Queue handlers.
725  */
rt2500pci_start_queue(struct data_queue * queue)726 static void rt2500pci_start_queue(struct data_queue *queue)
727 {
728 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
729 	u32 reg;
730 
731 	switch (queue->qid) {
732 	case QID_RX:
733 		rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
734 		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
735 		rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
736 		break;
737 	case QID_BEACON:
738 		rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
739 		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
740 		rt2x00_set_field32(&reg, CSR14_TBCN, 1);
741 		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
742 		rt2x00pci_register_write(rt2x00dev, CSR14, reg);
743 		break;
744 	default:
745 		break;
746 	}
747 }
748 
rt2500pci_kick_queue(struct data_queue * queue)749 static void rt2500pci_kick_queue(struct data_queue *queue)
750 {
751 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
752 	u32 reg;
753 
754 	switch (queue->qid) {
755 	case QID_AC_VO:
756 		rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
757 		rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
758 		rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
759 		break;
760 	case QID_AC_VI:
761 		rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
762 		rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
763 		rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
764 		break;
765 	case QID_ATIM:
766 		rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
767 		rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
768 		rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
769 		break;
770 	default:
771 		break;
772 	}
773 }
774 
rt2500pci_stop_queue(struct data_queue * queue)775 static void rt2500pci_stop_queue(struct data_queue *queue)
776 {
777 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
778 	u32 reg;
779 
780 	switch (queue->qid) {
781 	case QID_AC_VO:
782 	case QID_AC_VI:
783 	case QID_ATIM:
784 		rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
785 		rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
786 		rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
787 		break;
788 	case QID_RX:
789 		rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
790 		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
791 		rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
792 		break;
793 	case QID_BEACON:
794 		rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
795 		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
796 		rt2x00_set_field32(&reg, CSR14_TBCN, 0);
797 		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
798 		rt2x00pci_register_write(rt2x00dev, CSR14, reg);
799 
800 		/*
801 		 * Wait for possibly running tbtt tasklets.
802 		 */
803 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
804 		break;
805 	default:
806 		break;
807 	}
808 }
809 
810 /*
811  * Initialization functions.
812  */
rt2500pci_get_entry_state(struct queue_entry * entry)813 static bool rt2500pci_get_entry_state(struct queue_entry *entry)
814 {
815 	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
816 	u32 word;
817 
818 	if (entry->queue->qid == QID_RX) {
819 		rt2x00_desc_read(entry_priv->desc, 0, &word);
820 
821 		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
822 	} else {
823 		rt2x00_desc_read(entry_priv->desc, 0, &word);
824 
825 		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
826 		        rt2x00_get_field32(word, TXD_W0_VALID));
827 	}
828 }
829 
rt2500pci_clear_entry(struct queue_entry * entry)830 static void rt2500pci_clear_entry(struct queue_entry *entry)
831 {
832 	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
833 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
834 	u32 word;
835 
836 	if (entry->queue->qid == QID_RX) {
837 		rt2x00_desc_read(entry_priv->desc, 1, &word);
838 		rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
839 		rt2x00_desc_write(entry_priv->desc, 1, word);
840 
841 		rt2x00_desc_read(entry_priv->desc, 0, &word);
842 		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
843 		rt2x00_desc_write(entry_priv->desc, 0, word);
844 	} else {
845 		rt2x00_desc_read(entry_priv->desc, 0, &word);
846 		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
847 		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
848 		rt2x00_desc_write(entry_priv->desc, 0, word);
849 	}
850 }
851 
rt2500pci_init_queues(struct rt2x00_dev * rt2x00dev)852 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
853 {
854 	struct queue_entry_priv_pci *entry_priv;
855 	u32 reg;
856 
857 	/*
858 	 * Initialize registers.
859 	 */
860 	rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
861 	rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
862 	rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
863 	rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
864 	rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
865 	rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
866 
867 	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
868 	rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
869 	rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
870 			   entry_priv->desc_dma);
871 	rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
872 
873 	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
874 	rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
875 	rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
876 			   entry_priv->desc_dma);
877 	rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
878 
879 	entry_priv = rt2x00dev->atim->entries[0].priv_data;
880 	rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
881 	rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
882 			   entry_priv->desc_dma);
883 	rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
884 
885 	entry_priv = rt2x00dev->bcn->entries[0].priv_data;
886 	rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
887 	rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
888 			   entry_priv->desc_dma);
889 	rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
890 
891 	rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
892 	rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
893 	rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
894 	rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
895 
896 	entry_priv = rt2x00dev->rx->entries[0].priv_data;
897 	rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
898 	rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
899 			   entry_priv->desc_dma);
900 	rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
901 
902 	return 0;
903 }
904 
rt2500pci_init_registers(struct rt2x00_dev * rt2x00dev)905 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
906 {
907 	u32 reg;
908 
909 	rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
910 	rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
911 	rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
912 	rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
913 
914 	rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
915 	rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
916 	rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
917 	rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
918 	rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
919 
920 	rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
921 	rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
922 			   rt2x00dev->rx->data_size / 128);
923 	rt2x00pci_register_write(rt2x00dev, CSR9, reg);
924 
925 	/*
926 	 * Always use CWmin and CWmax set in descriptor.
927 	 */
928 	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
929 	rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
930 	rt2x00pci_register_write(rt2x00dev, CSR11, reg);
931 
932 	rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
933 	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
934 	rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
935 	rt2x00_set_field32(&reg, CSR14_TBCN, 0);
936 	rt2x00_set_field32(&reg, CSR14_TCFP, 0);
937 	rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
938 	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
939 	rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
940 	rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
941 	rt2x00pci_register_write(rt2x00dev, CSR14, reg);
942 
943 	rt2x00pci_register_write(rt2x00dev, CNT3, 0);
944 
945 	rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
946 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
947 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
948 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
949 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
950 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
951 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
952 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
953 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
954 	rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
955 
956 	rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
957 	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
958 	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
959 	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
960 	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
961 	rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
962 
963 	rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
964 	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
965 	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
966 	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
967 	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
968 	rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
969 
970 	rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
971 	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
972 	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
973 	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
974 	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
975 	rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
976 
977 	rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
978 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
979 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
980 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
981 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
982 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
983 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
984 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
985 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
986 	rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
987 
988 	rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
989 	rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
990 	rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
991 	rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
992 	rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
993 	rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
994 	rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
995 	rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
996 	rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
997 
998 	rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
999 
1000 	rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
1001 	rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
1002 
1003 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1004 		return -EBUSY;
1005 
1006 	rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
1007 	rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
1008 
1009 	rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
1010 	rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
1011 	rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
1012 
1013 	rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
1014 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
1015 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
1016 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
1017 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
1018 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
1019 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
1020 	rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
1021 
1022 	rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
1023 
1024 	rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
1025 
1026 	rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
1027 	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
1028 	rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
1029 	rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
1030 	rt2x00pci_register_write(rt2x00dev, CSR1, reg);
1031 
1032 	rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
1033 	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
1034 	rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
1035 	rt2x00pci_register_write(rt2x00dev, CSR1, reg);
1036 
1037 	/*
1038 	 * We must clear the FCS and FIFO error count.
1039 	 * These registers are cleared on read,
1040 	 * so we may pass a useless variable to store the value.
1041 	 */
1042 	rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
1043 	rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
1044 
1045 	return 0;
1046 }
1047 
rt2500pci_wait_bbp_ready(struct rt2x00_dev * rt2x00dev)1048 static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1049 {
1050 	unsigned int i;
1051 	u8 value;
1052 
1053 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1054 		rt2500pci_bbp_read(rt2x00dev, 0, &value);
1055 		if ((value != 0xff) && (value != 0x00))
1056 			return 0;
1057 		udelay(REGISTER_BUSY_DELAY);
1058 	}
1059 
1060 	ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1061 	return -EACCES;
1062 }
1063 
rt2500pci_init_bbp(struct rt2x00_dev * rt2x00dev)1064 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1065 {
1066 	unsigned int i;
1067 	u16 eeprom;
1068 	u8 reg_id;
1069 	u8 value;
1070 
1071 	if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
1072 		return -EACCES;
1073 
1074 	rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
1075 	rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
1076 	rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
1077 	rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
1078 	rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
1079 	rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
1080 	rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
1081 	rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
1082 	rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
1083 	rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
1084 	rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
1085 	rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
1086 	rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
1087 	rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
1088 	rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
1089 	rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
1090 	rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
1091 	rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
1092 	rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
1093 	rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
1094 	rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
1095 	rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
1096 	rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
1097 	rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
1098 	rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1099 	rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1100 	rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1101 	rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1102 	rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1103 	rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1104 
1105 	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1106 		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1107 
1108 		if (eeprom != 0xffff && eeprom != 0x0000) {
1109 			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1110 			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1111 			rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1112 		}
1113 	}
1114 
1115 	return 0;
1116 }
1117 
1118 /*
1119  * Device state switch handlers.
1120  */
rt2500pci_toggle_irq(struct rt2x00_dev * rt2x00dev,enum dev_state state)1121 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1122 				 enum dev_state state)
1123 {
1124 	int mask = (state == STATE_RADIO_IRQ_OFF);
1125 	u32 reg;
1126 	unsigned long flags;
1127 
1128 	/*
1129 	 * When interrupts are being enabled, the interrupt registers
1130 	 * should clear the register to assure a clean state.
1131 	 */
1132 	if (state == STATE_RADIO_IRQ_ON) {
1133 		rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1134 		rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1135 	}
1136 
1137 	/*
1138 	 * Only toggle the interrupts bits we are going to use.
1139 	 * Non-checked interrupt bits are disabled by default.
1140 	 */
1141 	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1142 
1143 	rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1144 	rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1145 	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1146 	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1147 	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1148 	rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1149 	rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1150 
1151 	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1152 
1153 	if (state == STATE_RADIO_IRQ_OFF) {
1154 		/*
1155 		 * Ensure that all tasklets are finished.
1156 		 */
1157 		tasklet_kill(&rt2x00dev->txstatus_tasklet);
1158 		tasklet_kill(&rt2x00dev->rxdone_tasklet);
1159 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
1160 	}
1161 }
1162 
rt2500pci_enable_radio(struct rt2x00_dev * rt2x00dev)1163 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1164 {
1165 	/*
1166 	 * Initialize all registers.
1167 	 */
1168 	if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1169 		     rt2500pci_init_registers(rt2x00dev) ||
1170 		     rt2500pci_init_bbp(rt2x00dev)))
1171 		return -EIO;
1172 
1173 	return 0;
1174 }
1175 
rt2500pci_disable_radio(struct rt2x00_dev * rt2x00dev)1176 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1177 {
1178 	/*
1179 	 * Disable power
1180 	 */
1181 	rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1182 }
1183 
rt2500pci_set_state(struct rt2x00_dev * rt2x00dev,enum dev_state state)1184 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1185 			       enum dev_state state)
1186 {
1187 	u32 reg, reg2;
1188 	unsigned int i;
1189 	char put_to_sleep;
1190 	char bbp_state;
1191 	char rf_state;
1192 
1193 	put_to_sleep = (state != STATE_AWAKE);
1194 
1195 	rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1196 	rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1197 	rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1198 	rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1199 	rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1200 	rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1201 
1202 	/*
1203 	 * Device is not guaranteed to be in the requested state yet.
1204 	 * We must wait until the register indicates that the
1205 	 * device has entered the correct state.
1206 	 */
1207 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1208 		rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg2);
1209 		bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1210 		rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1211 		if (bbp_state == state && rf_state == state)
1212 			return 0;
1213 		rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1214 		msleep(10);
1215 	}
1216 
1217 	return -EBUSY;
1218 }
1219 
rt2500pci_set_device_state(struct rt2x00_dev * rt2x00dev,enum dev_state state)1220 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1221 				      enum dev_state state)
1222 {
1223 	int retval = 0;
1224 
1225 	switch (state) {
1226 	case STATE_RADIO_ON:
1227 		retval = rt2500pci_enable_radio(rt2x00dev);
1228 		break;
1229 	case STATE_RADIO_OFF:
1230 		rt2500pci_disable_radio(rt2x00dev);
1231 		break;
1232 	case STATE_RADIO_IRQ_ON:
1233 	case STATE_RADIO_IRQ_OFF:
1234 		rt2500pci_toggle_irq(rt2x00dev, state);
1235 		break;
1236 	case STATE_DEEP_SLEEP:
1237 	case STATE_SLEEP:
1238 	case STATE_STANDBY:
1239 	case STATE_AWAKE:
1240 		retval = rt2500pci_set_state(rt2x00dev, state);
1241 		break;
1242 	default:
1243 		retval = -ENOTSUPP;
1244 		break;
1245 	}
1246 
1247 	if (unlikely(retval))
1248 		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1249 		      state, retval);
1250 
1251 	return retval;
1252 }
1253 
1254 /*
1255  * TX descriptor initialization
1256  */
rt2500pci_write_tx_desc(struct queue_entry * entry,struct txentry_desc * txdesc)1257 static void rt2500pci_write_tx_desc(struct queue_entry *entry,
1258 				    struct txentry_desc *txdesc)
1259 {
1260 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1261 	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1262 	__le32 *txd = entry_priv->desc;
1263 	u32 word;
1264 
1265 	/*
1266 	 * Start writing the descriptor words.
1267 	 */
1268 	rt2x00_desc_read(txd, 1, &word);
1269 	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1270 	rt2x00_desc_write(txd, 1, word);
1271 
1272 	rt2x00_desc_read(txd, 2, &word);
1273 	rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1274 	rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
1275 	rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
1276 	rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
1277 	rt2x00_desc_write(txd, 2, word);
1278 
1279 	rt2x00_desc_read(txd, 3, &word);
1280 	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1281 	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1282 	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW,
1283 			   txdesc->u.plcp.length_low);
1284 	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH,
1285 			   txdesc->u.plcp.length_high);
1286 	rt2x00_desc_write(txd, 3, word);
1287 
1288 	rt2x00_desc_read(txd, 10, &word);
1289 	rt2x00_set_field32(&word, TXD_W10_RTS,
1290 			   test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1291 	rt2x00_desc_write(txd, 10, word);
1292 
1293 	/*
1294 	 * Writing TXD word 0 must the last to prevent a race condition with
1295 	 * the device, whereby the device may take hold of the TXD before we
1296 	 * finished updating it.
1297 	 */
1298 	rt2x00_desc_read(txd, 0, &word);
1299 	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1300 	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1301 	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1302 			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1303 	rt2x00_set_field32(&word, TXD_W0_ACK,
1304 			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1305 	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1306 			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1307 	rt2x00_set_field32(&word, TXD_W0_OFDM,
1308 			   (txdesc->rate_mode == RATE_MODE_OFDM));
1309 	rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1310 	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1311 	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1312 			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1313 	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1314 	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1315 	rt2x00_desc_write(txd, 0, word);
1316 
1317 	/*
1318 	 * Register descriptor details in skb frame descriptor.
1319 	 */
1320 	skbdesc->desc = txd;
1321 	skbdesc->desc_len = TXD_DESC_SIZE;
1322 }
1323 
1324 /*
1325  * TX data initialization
1326  */
rt2500pci_write_beacon(struct queue_entry * entry,struct txentry_desc * txdesc)1327 static void rt2500pci_write_beacon(struct queue_entry *entry,
1328 				   struct txentry_desc *txdesc)
1329 {
1330 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1331 	u32 reg;
1332 
1333 	/*
1334 	 * Disable beaconing while we are reloading the beacon data,
1335 	 * otherwise we might be sending out invalid data.
1336 	 */
1337 	rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1338 	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1339 	rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1340 
1341 	rt2x00queue_map_txskb(entry);
1342 
1343 	/*
1344 	 * Write the TX descriptor for the beacon.
1345 	 */
1346 	rt2500pci_write_tx_desc(entry, txdesc);
1347 
1348 	/*
1349 	 * Dump beacon to userspace through debugfs.
1350 	 */
1351 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1352 
1353 	/*
1354 	 * Enable beaconing again.
1355 	 */
1356 	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1357 	rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1358 }
1359 
1360 /*
1361  * RX control handlers
1362  */
rt2500pci_fill_rxdone(struct queue_entry * entry,struct rxdone_entry_desc * rxdesc)1363 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1364 				  struct rxdone_entry_desc *rxdesc)
1365 {
1366 	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1367 	u32 word0;
1368 	u32 word2;
1369 
1370 	rt2x00_desc_read(entry_priv->desc, 0, &word0);
1371 	rt2x00_desc_read(entry_priv->desc, 2, &word2);
1372 
1373 	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1374 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1375 	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1376 		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1377 
1378 	/*
1379 	 * Obtain the status about this packet.
1380 	 * When frame was received with an OFDM bitrate,
1381 	 * the signal is the PLCP value. If it was received with
1382 	 * a CCK bitrate the signal is the rate in 100kbit/s.
1383 	 */
1384 	rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1385 	rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1386 	    entry->queue->rt2x00dev->rssi_offset;
1387 	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1388 
1389 	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1390 		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1391 	else
1392 		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1393 	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1394 		rxdesc->dev_flags |= RXDONE_MY_BSS;
1395 }
1396 
1397 /*
1398  * Interrupt functions.
1399  */
rt2500pci_txdone(struct rt2x00_dev * rt2x00dev,const enum data_queue_qid queue_idx)1400 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1401 			     const enum data_queue_qid queue_idx)
1402 {
1403 	struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1404 	struct queue_entry_priv_pci *entry_priv;
1405 	struct queue_entry *entry;
1406 	struct txdone_entry_desc txdesc;
1407 	u32 word;
1408 
1409 	while (!rt2x00queue_empty(queue)) {
1410 		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1411 		entry_priv = entry->priv_data;
1412 		rt2x00_desc_read(entry_priv->desc, 0, &word);
1413 
1414 		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1415 		    !rt2x00_get_field32(word, TXD_W0_VALID))
1416 			break;
1417 
1418 		/*
1419 		 * Obtain the status about this packet.
1420 		 */
1421 		txdesc.flags = 0;
1422 		switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1423 		case 0: /* Success */
1424 		case 1: /* Success with retry */
1425 			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
1426 			break;
1427 		case 2: /* Failure, excessive retries */
1428 			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1429 			/* Don't break, this is a failed frame! */
1430 		default: /* Failure */
1431 			__set_bit(TXDONE_FAILURE, &txdesc.flags);
1432 		}
1433 		txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1434 
1435 		rt2x00lib_txdone(entry, &txdesc);
1436 	}
1437 }
1438 
rt2500pci_enable_interrupt(struct rt2x00_dev * rt2x00dev,struct rt2x00_field32 irq_field)1439 static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1440 					      struct rt2x00_field32 irq_field)
1441 {
1442 	u32 reg;
1443 
1444 	/*
1445 	 * Enable a single interrupt. The interrupt mask register
1446 	 * access needs locking.
1447 	 */
1448 	spin_lock_irq(&rt2x00dev->irqmask_lock);
1449 
1450 	rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1451 	rt2x00_set_field32(&reg, irq_field, 0);
1452 	rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1453 
1454 	spin_unlock_irq(&rt2x00dev->irqmask_lock);
1455 }
1456 
rt2500pci_txstatus_tasklet(unsigned long data)1457 static void rt2500pci_txstatus_tasklet(unsigned long data)
1458 {
1459 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1460 	u32 reg;
1461 
1462 	/*
1463 	 * Handle all tx queues.
1464 	 */
1465 	rt2500pci_txdone(rt2x00dev, QID_ATIM);
1466 	rt2500pci_txdone(rt2x00dev, QID_AC_VO);
1467 	rt2500pci_txdone(rt2x00dev, QID_AC_VI);
1468 
1469 	/*
1470 	 * Enable all TXDONE interrupts again.
1471 	 */
1472 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
1473 		spin_lock_irq(&rt2x00dev->irqmask_lock);
1474 
1475 		rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1476 		rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
1477 		rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
1478 		rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1479 		rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1480 
1481 		spin_unlock_irq(&rt2x00dev->irqmask_lock);
1482 	}
1483 }
1484 
rt2500pci_tbtt_tasklet(unsigned long data)1485 static void rt2500pci_tbtt_tasklet(unsigned long data)
1486 {
1487 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1488 	rt2x00lib_beacondone(rt2x00dev);
1489 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1490 		rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1491 }
1492 
rt2500pci_rxdone_tasklet(unsigned long data)1493 static void rt2500pci_rxdone_tasklet(unsigned long data)
1494 {
1495 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1496 	if (rt2x00pci_rxdone(rt2x00dev))
1497 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1498 	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1499 		rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1500 }
1501 
rt2500pci_interrupt(int irq,void * dev_instance)1502 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1503 {
1504 	struct rt2x00_dev *rt2x00dev = dev_instance;
1505 	u32 reg, mask;
1506 
1507 	/*
1508 	 * Get the interrupt sources & saved to local variable.
1509 	 * Write register value back to clear pending interrupts.
1510 	 */
1511 	rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1512 	rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1513 
1514 	if (!reg)
1515 		return IRQ_NONE;
1516 
1517 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1518 		return IRQ_HANDLED;
1519 
1520 	mask = reg;
1521 
1522 	/*
1523 	 * Schedule tasklets for interrupt handling.
1524 	 */
1525 	if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1526 		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1527 
1528 	if (rt2x00_get_field32(reg, CSR7_RXDONE))
1529 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1530 
1531 	if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1532 	    rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1533 	    rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1534 		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1535 		/*
1536 		 * Mask out all txdone interrupts.
1537 		 */
1538 		rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1539 		rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1540 		rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1541 	}
1542 
1543 	/*
1544 	 * Disable all interrupts for which a tasklet was scheduled right now,
1545 	 * the tasklet will reenable the appropriate interrupts.
1546 	 */
1547 	spin_lock(&rt2x00dev->irqmask_lock);
1548 
1549 	rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1550 	reg |= mask;
1551 	rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1552 
1553 	spin_unlock(&rt2x00dev->irqmask_lock);
1554 
1555 	return IRQ_HANDLED;
1556 }
1557 
1558 /*
1559  * Device probe functions.
1560  */
rt2500pci_validate_eeprom(struct rt2x00_dev * rt2x00dev)1561 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1562 {
1563 	struct eeprom_93cx6 eeprom;
1564 	u32 reg;
1565 	u16 word;
1566 	u8 *mac;
1567 
1568 	rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1569 
1570 	eeprom.data = rt2x00dev;
1571 	eeprom.register_read = rt2500pci_eepromregister_read;
1572 	eeprom.register_write = rt2500pci_eepromregister_write;
1573 	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1574 	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1575 	eeprom.reg_data_in = 0;
1576 	eeprom.reg_data_out = 0;
1577 	eeprom.reg_data_clock = 0;
1578 	eeprom.reg_chip_select = 0;
1579 
1580 	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1581 			       EEPROM_SIZE / sizeof(u16));
1582 
1583 	/*
1584 	 * Start validation of the data that has been read.
1585 	 */
1586 	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1587 	if (!is_valid_ether_addr(mac)) {
1588 		random_ether_addr(mac);
1589 		EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1590 	}
1591 
1592 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1593 	if (word == 0xffff) {
1594 		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1595 		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1596 				   ANTENNA_SW_DIVERSITY);
1597 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1598 				   ANTENNA_SW_DIVERSITY);
1599 		rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1600 				   LED_MODE_DEFAULT);
1601 		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1602 		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1603 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1604 		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1605 		EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1606 	}
1607 
1608 	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1609 	if (word == 0xffff) {
1610 		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1611 		rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1612 		rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1613 		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1614 		EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1615 	}
1616 
1617 	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1618 	if (word == 0xffff) {
1619 		rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1620 				   DEFAULT_RSSI_OFFSET);
1621 		rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1622 		EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1623 	}
1624 
1625 	return 0;
1626 }
1627 
rt2500pci_init_eeprom(struct rt2x00_dev * rt2x00dev)1628 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1629 {
1630 	u32 reg;
1631 	u16 value;
1632 	u16 eeprom;
1633 
1634 	/*
1635 	 * Read EEPROM word for configuration.
1636 	 */
1637 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1638 
1639 	/*
1640 	 * Identify RF chipset.
1641 	 */
1642 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1643 	rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1644 	rt2x00_set_chip(rt2x00dev, RT2560, value,
1645 			rt2x00_get_field32(reg, CSR0_REVISION));
1646 
1647 	if (!rt2x00_rf(rt2x00dev, RF2522) &&
1648 	    !rt2x00_rf(rt2x00dev, RF2523) &&
1649 	    !rt2x00_rf(rt2x00dev, RF2524) &&
1650 	    !rt2x00_rf(rt2x00dev, RF2525) &&
1651 	    !rt2x00_rf(rt2x00dev, RF2525E) &&
1652 	    !rt2x00_rf(rt2x00dev, RF5222)) {
1653 		ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1654 		return -ENODEV;
1655 	}
1656 
1657 	/*
1658 	 * Identify default antenna configuration.
1659 	 */
1660 	rt2x00dev->default_ant.tx =
1661 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1662 	rt2x00dev->default_ant.rx =
1663 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1664 
1665 	/*
1666 	 * Store led mode, for correct led behaviour.
1667 	 */
1668 #ifdef CONFIG_RT2X00_LIB_LEDS
1669 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1670 
1671 	rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1672 	if (value == LED_MODE_TXRX_ACTIVITY ||
1673 	    value == LED_MODE_DEFAULT ||
1674 	    value == LED_MODE_ASUS)
1675 		rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1676 				   LED_TYPE_ACTIVITY);
1677 #endif /* CONFIG_RT2X00_LIB_LEDS */
1678 
1679 	/*
1680 	 * Detect if this device has an hardware controlled radio.
1681 	 */
1682 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1683 		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1684 
1685 	/*
1686 	 * Check if the BBP tuning should be enabled.
1687 	 */
1688 	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1689 	if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1690 		__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1691 
1692 	/*
1693 	 * Read the RSSI <-> dBm offset information.
1694 	 */
1695 	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1696 	rt2x00dev->rssi_offset =
1697 	    rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1698 
1699 	return 0;
1700 }
1701 
1702 /*
1703  * RF value list for RF2522
1704  * Supports: 2.4 GHz
1705  */
1706 static const struct rf_channel rf_vals_bg_2522[] = {
1707 	{ 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1708 	{ 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1709 	{ 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1710 	{ 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1711 	{ 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1712 	{ 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1713 	{ 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1714 	{ 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1715 	{ 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1716 	{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1717 	{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1718 	{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1719 	{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1720 	{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1721 };
1722 
1723 /*
1724  * RF value list for RF2523
1725  * Supports: 2.4 GHz
1726  */
1727 static const struct rf_channel rf_vals_bg_2523[] = {
1728 	{ 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1729 	{ 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1730 	{ 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1731 	{ 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1732 	{ 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1733 	{ 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1734 	{ 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1735 	{ 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1736 	{ 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1737 	{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1738 	{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1739 	{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1740 	{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1741 	{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1742 };
1743 
1744 /*
1745  * RF value list for RF2524
1746  * Supports: 2.4 GHz
1747  */
1748 static const struct rf_channel rf_vals_bg_2524[] = {
1749 	{ 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1750 	{ 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1751 	{ 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1752 	{ 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1753 	{ 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1754 	{ 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1755 	{ 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1756 	{ 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1757 	{ 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1758 	{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1759 	{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1760 	{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1761 	{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1762 	{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1763 };
1764 
1765 /*
1766  * RF value list for RF2525
1767  * Supports: 2.4 GHz
1768  */
1769 static const struct rf_channel rf_vals_bg_2525[] = {
1770 	{ 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1771 	{ 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1772 	{ 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1773 	{ 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1774 	{ 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1775 	{ 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1776 	{ 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1777 	{ 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1778 	{ 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1779 	{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1780 	{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1781 	{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1782 	{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1783 	{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1784 };
1785 
1786 /*
1787  * RF value list for RF2525e
1788  * Supports: 2.4 GHz
1789  */
1790 static const struct rf_channel rf_vals_bg_2525e[] = {
1791 	{ 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1792 	{ 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1793 	{ 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1794 	{ 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1795 	{ 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1796 	{ 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1797 	{ 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1798 	{ 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1799 	{ 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1800 	{ 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1801 	{ 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1802 	{ 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1803 	{ 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1804 	{ 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1805 };
1806 
1807 /*
1808  * RF value list for RF5222
1809  * Supports: 2.4 GHz & 5.2 GHz
1810  */
1811 static const struct rf_channel rf_vals_5222[] = {
1812 	{ 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1813 	{ 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1814 	{ 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1815 	{ 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1816 	{ 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1817 	{ 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1818 	{ 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1819 	{ 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1820 	{ 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1821 	{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1822 	{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1823 	{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1824 	{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1825 	{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1826 
1827 	/* 802.11 UNI / HyperLan 2 */
1828 	{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1829 	{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1830 	{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1831 	{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1832 	{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1833 	{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1834 	{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1835 	{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1836 
1837 	/* 802.11 HyperLan 2 */
1838 	{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1839 	{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1840 	{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1841 	{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1842 	{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1843 	{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1844 	{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1845 	{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1846 	{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1847 	{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1848 
1849 	/* 802.11 UNII */
1850 	{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1851 	{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1852 	{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1853 	{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1854 	{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1855 };
1856 
rt2500pci_probe_hw_mode(struct rt2x00_dev * rt2x00dev)1857 static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1858 {
1859 	struct hw_mode_spec *spec = &rt2x00dev->spec;
1860 	struct channel_info *info;
1861 	char *tx_power;
1862 	unsigned int i;
1863 
1864 	/*
1865 	 * Initialize all hw fields.
1866 	 */
1867 	rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1868 			       IEEE80211_HW_SIGNAL_DBM |
1869 			       IEEE80211_HW_SUPPORTS_PS |
1870 			       IEEE80211_HW_PS_NULLFUNC_STACK;
1871 
1872 	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1873 	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1874 				rt2x00_eeprom_addr(rt2x00dev,
1875 						   EEPROM_MAC_ADDR_0));
1876 
1877 	/*
1878 	 * Initialize hw_mode information.
1879 	 */
1880 	spec->supported_bands = SUPPORT_BAND_2GHZ;
1881 	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1882 
1883 	if (rt2x00_rf(rt2x00dev, RF2522)) {
1884 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1885 		spec->channels = rf_vals_bg_2522;
1886 	} else if (rt2x00_rf(rt2x00dev, RF2523)) {
1887 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1888 		spec->channels = rf_vals_bg_2523;
1889 	} else if (rt2x00_rf(rt2x00dev, RF2524)) {
1890 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1891 		spec->channels = rf_vals_bg_2524;
1892 	} else if (rt2x00_rf(rt2x00dev, RF2525)) {
1893 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1894 		spec->channels = rf_vals_bg_2525;
1895 	} else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1896 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1897 		spec->channels = rf_vals_bg_2525e;
1898 	} else if (rt2x00_rf(rt2x00dev, RF5222)) {
1899 		spec->supported_bands |= SUPPORT_BAND_5GHZ;
1900 		spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1901 		spec->channels = rf_vals_5222;
1902 	}
1903 
1904 	/*
1905 	 * Create channel information array
1906 	 */
1907 	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1908 	if (!info)
1909 		return -ENOMEM;
1910 
1911 	spec->channels_info = info;
1912 
1913 	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1914 	for (i = 0; i < 14; i++) {
1915 		info[i].max_power = MAX_TXPOWER;
1916 		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1917 	}
1918 
1919 	if (spec->num_channels > 14) {
1920 		for (i = 14; i < spec->num_channels; i++) {
1921 			info[i].max_power = MAX_TXPOWER;
1922 			info[i].default_power1 = DEFAULT_TXPOWER;
1923 		}
1924 	}
1925 
1926 	return 0;
1927 }
1928 
rt2500pci_probe_hw(struct rt2x00_dev * rt2x00dev)1929 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1930 {
1931 	int retval;
1932 
1933 	/*
1934 	 * Allocate eeprom data.
1935 	 */
1936 	retval = rt2500pci_validate_eeprom(rt2x00dev);
1937 	if (retval)
1938 		return retval;
1939 
1940 	retval = rt2500pci_init_eeprom(rt2x00dev);
1941 	if (retval)
1942 		return retval;
1943 
1944 	/*
1945 	 * Initialize hw specifications.
1946 	 */
1947 	retval = rt2500pci_probe_hw_mode(rt2x00dev);
1948 	if (retval)
1949 		return retval;
1950 
1951 	/*
1952 	 * This device requires the atim queue and DMA-mapped skbs.
1953 	 */
1954 	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1955 	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1956 	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1957 
1958 	/*
1959 	 * Set the rssi offset.
1960 	 */
1961 	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1962 
1963 	return 0;
1964 }
1965 
1966 /*
1967  * IEEE80211 stack callback functions.
1968  */
rt2500pci_get_tsf(struct ieee80211_hw * hw,struct ieee80211_vif * vif)1969 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw,
1970 			     struct ieee80211_vif *vif)
1971 {
1972 	struct rt2x00_dev *rt2x00dev = hw->priv;
1973 	u64 tsf;
1974 	u32 reg;
1975 
1976 	rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1977 	tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1978 	rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1979 	tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1980 
1981 	return tsf;
1982 }
1983 
rt2500pci_tx_last_beacon(struct ieee80211_hw * hw)1984 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1985 {
1986 	struct rt2x00_dev *rt2x00dev = hw->priv;
1987 	u32 reg;
1988 
1989 	rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1990 	return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1991 }
1992 
1993 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1994 	.tx			= rt2x00mac_tx,
1995 	.start			= rt2x00mac_start,
1996 	.stop			= rt2x00mac_stop,
1997 	.add_interface		= rt2x00mac_add_interface,
1998 	.remove_interface	= rt2x00mac_remove_interface,
1999 	.config			= rt2x00mac_config,
2000 	.configure_filter	= rt2x00mac_configure_filter,
2001 	.sw_scan_start		= rt2x00mac_sw_scan_start,
2002 	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
2003 	.get_stats		= rt2x00mac_get_stats,
2004 	.bss_info_changed	= rt2x00mac_bss_info_changed,
2005 	.conf_tx		= rt2x00mac_conf_tx,
2006 	.get_tsf		= rt2500pci_get_tsf,
2007 	.tx_last_beacon		= rt2500pci_tx_last_beacon,
2008 	.rfkill_poll		= rt2x00mac_rfkill_poll,
2009 	.flush			= rt2x00mac_flush,
2010 	.set_antenna		= rt2x00mac_set_antenna,
2011 	.get_antenna		= rt2x00mac_get_antenna,
2012 	.get_ringparam		= rt2x00mac_get_ringparam,
2013 	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
2014 };
2015 
2016 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
2017 	.irq_handler		= rt2500pci_interrupt,
2018 	.txstatus_tasklet	= rt2500pci_txstatus_tasklet,
2019 	.tbtt_tasklet		= rt2500pci_tbtt_tasklet,
2020 	.rxdone_tasklet		= rt2500pci_rxdone_tasklet,
2021 	.probe_hw		= rt2500pci_probe_hw,
2022 	.initialize		= rt2x00pci_initialize,
2023 	.uninitialize		= rt2x00pci_uninitialize,
2024 	.get_entry_state	= rt2500pci_get_entry_state,
2025 	.clear_entry		= rt2500pci_clear_entry,
2026 	.set_device_state	= rt2500pci_set_device_state,
2027 	.rfkill_poll		= rt2500pci_rfkill_poll,
2028 	.link_stats		= rt2500pci_link_stats,
2029 	.reset_tuner		= rt2500pci_reset_tuner,
2030 	.link_tuner		= rt2500pci_link_tuner,
2031 	.start_queue		= rt2500pci_start_queue,
2032 	.kick_queue		= rt2500pci_kick_queue,
2033 	.stop_queue		= rt2500pci_stop_queue,
2034 	.flush_queue		= rt2x00pci_flush_queue,
2035 	.write_tx_desc		= rt2500pci_write_tx_desc,
2036 	.write_beacon		= rt2500pci_write_beacon,
2037 	.fill_rxdone		= rt2500pci_fill_rxdone,
2038 	.config_filter		= rt2500pci_config_filter,
2039 	.config_intf		= rt2500pci_config_intf,
2040 	.config_erp		= rt2500pci_config_erp,
2041 	.config_ant		= rt2500pci_config_ant,
2042 	.config			= rt2500pci_config,
2043 };
2044 
2045 static const struct data_queue_desc rt2500pci_queue_rx = {
2046 	.entry_num		= 32,
2047 	.data_size		= DATA_FRAME_SIZE,
2048 	.desc_size		= RXD_DESC_SIZE,
2049 	.priv_size		= sizeof(struct queue_entry_priv_pci),
2050 };
2051 
2052 static const struct data_queue_desc rt2500pci_queue_tx = {
2053 	.entry_num		= 32,
2054 	.data_size		= DATA_FRAME_SIZE,
2055 	.desc_size		= TXD_DESC_SIZE,
2056 	.priv_size		= sizeof(struct queue_entry_priv_pci),
2057 };
2058 
2059 static const struct data_queue_desc rt2500pci_queue_bcn = {
2060 	.entry_num		= 1,
2061 	.data_size		= MGMT_FRAME_SIZE,
2062 	.desc_size		= TXD_DESC_SIZE,
2063 	.priv_size		= sizeof(struct queue_entry_priv_pci),
2064 };
2065 
2066 static const struct data_queue_desc rt2500pci_queue_atim = {
2067 	.entry_num		= 8,
2068 	.data_size		= DATA_FRAME_SIZE,
2069 	.desc_size		= TXD_DESC_SIZE,
2070 	.priv_size		= sizeof(struct queue_entry_priv_pci),
2071 };
2072 
2073 static const struct rt2x00_ops rt2500pci_ops = {
2074 	.name			= KBUILD_MODNAME,
2075 	.max_sta_intf		= 1,
2076 	.max_ap_intf		= 1,
2077 	.eeprom_size		= EEPROM_SIZE,
2078 	.rf_size		= RF_SIZE,
2079 	.tx_queues		= NUM_TX_QUEUES,
2080 	.extra_tx_headroom	= 0,
2081 	.rx			= &rt2500pci_queue_rx,
2082 	.tx			= &rt2500pci_queue_tx,
2083 	.bcn			= &rt2500pci_queue_bcn,
2084 	.atim			= &rt2500pci_queue_atim,
2085 	.lib			= &rt2500pci_rt2x00_ops,
2086 	.hw			= &rt2500pci_mac80211_ops,
2087 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2088 	.debugfs		= &rt2500pci_rt2x00debug,
2089 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2090 };
2091 
2092 /*
2093  * RT2500pci module information.
2094  */
2095 static DEFINE_PCI_DEVICE_TABLE(rt2500pci_device_table) = {
2096 	{ PCI_DEVICE(0x1814, 0x0201) },
2097 	{ 0, }
2098 };
2099 
2100 MODULE_AUTHOR(DRV_PROJECT);
2101 MODULE_VERSION(DRV_VERSION);
2102 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
2103 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
2104 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
2105 MODULE_LICENSE("GPL");
2106 
rt2500pci_probe(struct pci_dev * pci_dev,const struct pci_device_id * id)2107 static int rt2500pci_probe(struct pci_dev *pci_dev,
2108 			   const struct pci_device_id *id)
2109 {
2110 	return rt2x00pci_probe(pci_dev, &rt2500pci_ops);
2111 }
2112 
2113 static struct pci_driver rt2500pci_driver = {
2114 	.name		= KBUILD_MODNAME,
2115 	.id_table	= rt2500pci_device_table,
2116 	.probe		= rt2500pci_probe,
2117 	.remove		= __devexit_p(rt2x00pci_remove),
2118 	.suspend	= rt2x00pci_suspend,
2119 	.resume		= rt2x00pci_resume,
2120 };
2121 
rt2500pci_init(void)2122 static int __init rt2500pci_init(void)
2123 {
2124 	return pci_register_driver(&rt2500pci_driver);
2125 }
2126 
rt2500pci_exit(void)2127 static void __exit rt2500pci_exit(void)
2128 {
2129 	pci_unregister_driver(&rt2500pci_driver);
2130 }
2131 
2132 module_init(rt2500pci_init);
2133 module_exit(rt2500pci_exit);
2134