1 /*
2 	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 	<http://rt2x00.serialmonkey.com>
4 
5 	This program is free software; you can redistribute it and/or modify
6 	it under the terms of the GNU General Public License as published by
7 	the Free Software Foundation; either version 2 of the License, or
8 	(at your option) any later version.
9 
10 	This program is distributed in the hope that it will be useful,
11 	but WITHOUT ANY WARRANTY; without even the implied warranty of
12 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 	GNU General Public License for more details.
14 
15 	You should have received a copy of the GNU General Public License
16 	along with this program; if not, write to the
17 	Free Software Foundation, Inc.,
18 	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 /*
22 	Module: rt2400pci
23 	Abstract: rt2400pci device specific routines.
24 	Supported chipsets: RT2460.
25  */
26 
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34 #include <linux/slab.h>
35 
36 #include "rt2x00.h"
37 #include "rt2x00pci.h"
38 #include "rt2400pci.h"
39 
40 /*
41  * Register access.
42  * All access to the CSR registers will go through the methods
43  * rt2x00pci_register_read and rt2x00pci_register_write.
44  * BBP and RF register require indirect register access,
45  * and use the CSR registers BBPCSR and RFCSR to achieve this.
46  * These indirect registers work with busy bits,
47  * and we will try maximal REGISTER_BUSY_COUNT times to access
48  * the register while taking a REGISTER_BUSY_DELAY us delay
49  * between each attempt. When the busy bit is still set at that time,
50  * the access attempt is considered to have failed,
51  * and we will print an error.
52  */
53 #define WAIT_FOR_BBP(__dev, __reg) \
54 	rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
55 #define WAIT_FOR_RF(__dev, __reg) \
56 	rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
57 
rt2400pci_bbp_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,const u8 value)58 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
59 				const unsigned int word, const u8 value)
60 {
61 	u32 reg;
62 
63 	mutex_lock(&rt2x00dev->csr_mutex);
64 
65 	/*
66 	 * Wait until the BBP becomes available, afterwards we
67 	 * can safely write the new data into the register.
68 	 */
69 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
70 		reg = 0;
71 		rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
72 		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
73 		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
74 		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
75 
76 		rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
77 	}
78 
79 	mutex_unlock(&rt2x00dev->csr_mutex);
80 }
81 
rt2400pci_bbp_read(struct rt2x00_dev * rt2x00dev,const unsigned int word,u8 * value)82 static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
83 			       const unsigned int word, u8 *value)
84 {
85 	u32 reg;
86 
87 	mutex_lock(&rt2x00dev->csr_mutex);
88 
89 	/*
90 	 * Wait until the BBP becomes available, afterwards we
91 	 * can safely write the read request into the register.
92 	 * After the data has been written, we wait until hardware
93 	 * returns the correct value, if at any time the register
94 	 * doesn't become available in time, reg will be 0xffffffff
95 	 * which means we return 0xff to the caller.
96 	 */
97 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
98 		reg = 0;
99 		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
100 		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
101 		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
102 
103 		rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
104 
105 		WAIT_FOR_BBP(rt2x00dev, &reg);
106 	}
107 
108 	*value = rt2x00_get_field32(reg, BBPCSR_VALUE);
109 
110 	mutex_unlock(&rt2x00dev->csr_mutex);
111 }
112 
rt2400pci_rf_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,const u32 value)113 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
114 			       const unsigned int word, const u32 value)
115 {
116 	u32 reg;
117 
118 	mutex_lock(&rt2x00dev->csr_mutex);
119 
120 	/*
121 	 * Wait until the RF becomes available, afterwards we
122 	 * can safely write the new data into the register.
123 	 */
124 	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
125 		reg = 0;
126 		rt2x00_set_field32(&reg, RFCSR_VALUE, value);
127 		rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
128 		rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
129 		rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
130 
131 		rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
132 		rt2x00_rf_write(rt2x00dev, word, value);
133 	}
134 
135 	mutex_unlock(&rt2x00dev->csr_mutex);
136 }
137 
rt2400pci_eepromregister_read(struct eeprom_93cx6 * eeprom)138 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
139 {
140 	struct rt2x00_dev *rt2x00dev = eeprom->data;
141 	u32 reg;
142 
143 	rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
144 
145 	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
146 	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
147 	eeprom->reg_data_clock =
148 	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
149 	eeprom->reg_chip_select =
150 	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
151 }
152 
rt2400pci_eepromregister_write(struct eeprom_93cx6 * eeprom)153 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
154 {
155 	struct rt2x00_dev *rt2x00dev = eeprom->data;
156 	u32 reg = 0;
157 
158 	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
159 	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
160 	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
161 			   !!eeprom->reg_data_clock);
162 	rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
163 			   !!eeprom->reg_chip_select);
164 
165 	rt2x00pci_register_write(rt2x00dev, CSR21, reg);
166 }
167 
168 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
169 static const struct rt2x00debug rt2400pci_rt2x00debug = {
170 	.owner	= THIS_MODULE,
171 	.csr	= {
172 		.read		= rt2x00pci_register_read,
173 		.write		= rt2x00pci_register_write,
174 		.flags		= RT2X00DEBUGFS_OFFSET,
175 		.word_base	= CSR_REG_BASE,
176 		.word_size	= sizeof(u32),
177 		.word_count	= CSR_REG_SIZE / sizeof(u32),
178 	},
179 	.eeprom	= {
180 		.read		= rt2x00_eeprom_read,
181 		.write		= rt2x00_eeprom_write,
182 		.word_base	= EEPROM_BASE,
183 		.word_size	= sizeof(u16),
184 		.word_count	= EEPROM_SIZE / sizeof(u16),
185 	},
186 	.bbp	= {
187 		.read		= rt2400pci_bbp_read,
188 		.write		= rt2400pci_bbp_write,
189 		.word_base	= BBP_BASE,
190 		.word_size	= sizeof(u8),
191 		.word_count	= BBP_SIZE / sizeof(u8),
192 	},
193 	.rf	= {
194 		.read		= rt2x00_rf_read,
195 		.write		= rt2400pci_rf_write,
196 		.word_base	= RF_BASE,
197 		.word_size	= sizeof(u32),
198 		.word_count	= RF_SIZE / sizeof(u32),
199 	},
200 };
201 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
202 
rt2400pci_rfkill_poll(struct rt2x00_dev * rt2x00dev)203 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
204 {
205 	u32 reg;
206 
207 	rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
208 	return rt2x00_get_field32(reg, GPIOCSR_BIT0);
209 }
210 
211 #ifdef CONFIG_RT2X00_LIB_LEDS
rt2400pci_brightness_set(struct led_classdev * led_cdev,enum led_brightness brightness)212 static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
213 				     enum led_brightness brightness)
214 {
215 	struct rt2x00_led *led =
216 	    container_of(led_cdev, struct rt2x00_led, led_dev);
217 	unsigned int enabled = brightness != LED_OFF;
218 	u32 reg;
219 
220 	rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
221 
222 	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
223 		rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
224 	else if (led->type == LED_TYPE_ACTIVITY)
225 		rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
226 
227 	rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
228 }
229 
rt2400pci_blink_set(struct led_classdev * led_cdev,unsigned long * delay_on,unsigned long * delay_off)230 static int rt2400pci_blink_set(struct led_classdev *led_cdev,
231 			       unsigned long *delay_on,
232 			       unsigned long *delay_off)
233 {
234 	struct rt2x00_led *led =
235 	    container_of(led_cdev, struct rt2x00_led, led_dev);
236 	u32 reg;
237 
238 	rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
239 	rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
240 	rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
241 	rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
242 
243 	return 0;
244 }
245 
rt2400pci_init_led(struct rt2x00_dev * rt2x00dev,struct rt2x00_led * led,enum led_type type)246 static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
247 			       struct rt2x00_led *led,
248 			       enum led_type type)
249 {
250 	led->rt2x00dev = rt2x00dev;
251 	led->type = type;
252 	led->led_dev.brightness_set = rt2400pci_brightness_set;
253 	led->led_dev.blink_set = rt2400pci_blink_set;
254 	led->flags = LED_INITIALIZED;
255 }
256 #endif /* CONFIG_RT2X00_LIB_LEDS */
257 
258 /*
259  * Configuration handlers.
260  */
rt2400pci_config_filter(struct rt2x00_dev * rt2x00dev,const unsigned int filter_flags)261 static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
262 				    const unsigned int filter_flags)
263 {
264 	u32 reg;
265 
266 	/*
267 	 * Start configuration steps.
268 	 * Note that the version error will always be dropped
269 	 * since there is no filter for it at this time.
270 	 */
271 	rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
272 	rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
273 			   !(filter_flags & FIF_FCSFAIL));
274 	rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
275 			   !(filter_flags & FIF_PLCPFAIL));
276 	rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
277 			   !(filter_flags & FIF_CONTROL));
278 	rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
279 			   !(filter_flags & FIF_PROMISC_IN_BSS));
280 	rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
281 			   !(filter_flags & FIF_PROMISC_IN_BSS) &&
282 			   !rt2x00dev->intf_ap_count);
283 	rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
284 	rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
285 }
286 
rt2400pci_config_intf(struct rt2x00_dev * rt2x00dev,struct rt2x00_intf * intf,struct rt2x00intf_conf * conf,const unsigned int flags)287 static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
288 				  struct rt2x00_intf *intf,
289 				  struct rt2x00intf_conf *conf,
290 				  const unsigned int flags)
291 {
292 	unsigned int bcn_preload;
293 	u32 reg;
294 
295 	if (flags & CONFIG_UPDATE_TYPE) {
296 		/*
297 		 * Enable beacon config
298 		 */
299 		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
300 		rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
301 		rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
302 		rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
303 
304 		/*
305 		 * Enable synchronisation.
306 		 */
307 		rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
308 		rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
309 		rt2x00pci_register_write(rt2x00dev, CSR14, reg);
310 	}
311 
312 	if (flags & CONFIG_UPDATE_MAC)
313 		rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
314 					      conf->mac, sizeof(conf->mac));
315 
316 	if (flags & CONFIG_UPDATE_BSSID)
317 		rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
318 					      conf->bssid, sizeof(conf->bssid));
319 }
320 
rt2400pci_config_erp(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_erp * erp,u32 changed)321 static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
322 				 struct rt2x00lib_erp *erp,
323 				 u32 changed)
324 {
325 	int preamble_mask;
326 	u32 reg;
327 
328 	/*
329 	 * When short preamble is enabled, we should set bit 0x08
330 	 */
331 	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
332 		preamble_mask = erp->short_preamble << 3;
333 
334 		rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
335 		rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x1ff);
336 		rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0x13a);
337 		rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
338 		rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
339 		rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
340 
341 		rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
342 		rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
343 		rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
344 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
345 				   GET_DURATION(ACK_SIZE, 10));
346 		rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
347 
348 		rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
349 		rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
350 		rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
351 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
352 				   GET_DURATION(ACK_SIZE, 20));
353 		rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
354 
355 		rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
356 		rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
357 		rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
358 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
359 				   GET_DURATION(ACK_SIZE, 55));
360 		rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
361 
362 		rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
363 		rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
364 		rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
365 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
366 				   GET_DURATION(ACK_SIZE, 110));
367 		rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
368 	}
369 
370 	if (changed & BSS_CHANGED_BASIC_RATES)
371 		rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
372 
373 	if (changed & BSS_CHANGED_ERP_SLOT) {
374 		rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
375 		rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
376 		rt2x00pci_register_write(rt2x00dev, CSR11, reg);
377 
378 		rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
379 		rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
380 		rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
381 		rt2x00pci_register_write(rt2x00dev, CSR18, reg);
382 
383 		rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
384 		rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
385 		rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
386 		rt2x00pci_register_write(rt2x00dev, CSR19, reg);
387 	}
388 
389 	if (changed & BSS_CHANGED_BEACON_INT) {
390 		rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
391 		rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
392 				   erp->beacon_int * 16);
393 		rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
394 				   erp->beacon_int * 16);
395 		rt2x00pci_register_write(rt2x00dev, CSR12, reg);
396 	}
397 }
398 
rt2400pci_config_ant(struct rt2x00_dev * rt2x00dev,struct antenna_setup * ant)399 static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
400 				 struct antenna_setup *ant)
401 {
402 	u8 r1;
403 	u8 r4;
404 
405 	/*
406 	 * We should never come here because rt2x00lib is supposed
407 	 * to catch this and send us the correct antenna explicitely.
408 	 */
409 	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
410 	       ant->tx == ANTENNA_SW_DIVERSITY);
411 
412 	rt2400pci_bbp_read(rt2x00dev, 4, &r4);
413 	rt2400pci_bbp_read(rt2x00dev, 1, &r1);
414 
415 	/*
416 	 * Configure the TX antenna.
417 	 */
418 	switch (ant->tx) {
419 	case ANTENNA_HW_DIVERSITY:
420 		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
421 		break;
422 	case ANTENNA_A:
423 		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
424 		break;
425 	case ANTENNA_B:
426 	default:
427 		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
428 		break;
429 	}
430 
431 	/*
432 	 * Configure the RX antenna.
433 	 */
434 	switch (ant->rx) {
435 	case ANTENNA_HW_DIVERSITY:
436 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
437 		break;
438 	case ANTENNA_A:
439 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
440 		break;
441 	case ANTENNA_B:
442 	default:
443 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
444 		break;
445 	}
446 
447 	rt2400pci_bbp_write(rt2x00dev, 4, r4);
448 	rt2400pci_bbp_write(rt2x00dev, 1, r1);
449 }
450 
rt2400pci_config_channel(struct rt2x00_dev * rt2x00dev,struct rf_channel * rf)451 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
452 				     struct rf_channel *rf)
453 {
454 	/*
455 	 * Switch on tuning bits.
456 	 */
457 	rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
458 	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
459 
460 	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
461 	rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
462 	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
463 
464 	/*
465 	 * RF2420 chipset don't need any additional actions.
466 	 */
467 	if (rt2x00_rf(rt2x00dev, RF2420))
468 		return;
469 
470 	/*
471 	 * For the RT2421 chipsets we need to write an invalid
472 	 * reference clock rate to activate auto_tune.
473 	 * After that we set the value back to the correct channel.
474 	 */
475 	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
476 	rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
477 	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
478 
479 	msleep(1);
480 
481 	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
482 	rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
483 	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
484 
485 	msleep(1);
486 
487 	/*
488 	 * Switch off tuning bits.
489 	 */
490 	rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
491 	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
492 
493 	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
494 	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
495 
496 	/*
497 	 * Clear false CRC during channel switch.
498 	 */
499 	rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
500 }
501 
rt2400pci_config_txpower(struct rt2x00_dev * rt2x00dev,int txpower)502 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
503 {
504 	rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
505 }
506 
rt2400pci_config_retry_limit(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_conf * libconf)507 static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
508 					 struct rt2x00lib_conf *libconf)
509 {
510 	u32 reg;
511 
512 	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
513 	rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
514 			   libconf->conf->long_frame_max_tx_count);
515 	rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
516 			   libconf->conf->short_frame_max_tx_count);
517 	rt2x00pci_register_write(rt2x00dev, CSR11, reg);
518 }
519 
rt2400pci_config_ps(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_conf * libconf)520 static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
521 				struct rt2x00lib_conf *libconf)
522 {
523 	enum dev_state state =
524 	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
525 		STATE_SLEEP : STATE_AWAKE;
526 	u32 reg;
527 
528 	if (state == STATE_SLEEP) {
529 		rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
530 		rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
531 				   (rt2x00dev->beacon_int - 20) * 16);
532 		rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
533 				   libconf->conf->listen_interval - 1);
534 
535 		/* We must first disable autowake before it can be enabled */
536 		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
537 		rt2x00pci_register_write(rt2x00dev, CSR20, reg);
538 
539 		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
540 		rt2x00pci_register_write(rt2x00dev, CSR20, reg);
541 	} else {
542 		rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
543 		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
544 		rt2x00pci_register_write(rt2x00dev, CSR20, reg);
545 	}
546 
547 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
548 }
549 
rt2400pci_config(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_conf * libconf,const unsigned int flags)550 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
551 			     struct rt2x00lib_conf *libconf,
552 			     const unsigned int flags)
553 {
554 	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
555 		rt2400pci_config_channel(rt2x00dev, &libconf->rf);
556 	if (flags & IEEE80211_CONF_CHANGE_POWER)
557 		rt2400pci_config_txpower(rt2x00dev,
558 					 libconf->conf->power_level);
559 	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
560 		rt2400pci_config_retry_limit(rt2x00dev, libconf);
561 	if (flags & IEEE80211_CONF_CHANGE_PS)
562 		rt2400pci_config_ps(rt2x00dev, libconf);
563 }
564 
rt2400pci_config_cw(struct rt2x00_dev * rt2x00dev,const int cw_min,const int cw_max)565 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
566 				const int cw_min, const int cw_max)
567 {
568 	u32 reg;
569 
570 	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
571 	rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
572 	rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
573 	rt2x00pci_register_write(rt2x00dev, CSR11, reg);
574 }
575 
576 /*
577  * Link tuning
578  */
rt2400pci_link_stats(struct rt2x00_dev * rt2x00dev,struct link_qual * qual)579 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
580 				 struct link_qual *qual)
581 {
582 	u32 reg;
583 	u8 bbp;
584 
585 	/*
586 	 * Update FCS error count from register.
587 	 */
588 	rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
589 	qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
590 
591 	/*
592 	 * Update False CCA count from register.
593 	 */
594 	rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
595 	qual->false_cca = bbp;
596 }
597 
rt2400pci_set_vgc(struct rt2x00_dev * rt2x00dev,struct link_qual * qual,u8 vgc_level)598 static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
599 				     struct link_qual *qual, u8 vgc_level)
600 {
601 	if (qual->vgc_level_reg != vgc_level) {
602 		rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
603 		qual->vgc_level = vgc_level;
604 		qual->vgc_level_reg = vgc_level;
605 	}
606 }
607 
rt2400pci_reset_tuner(struct rt2x00_dev * rt2x00dev,struct link_qual * qual)608 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
609 				  struct link_qual *qual)
610 {
611 	rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
612 }
613 
rt2400pci_link_tuner(struct rt2x00_dev * rt2x00dev,struct link_qual * qual,const u32 count)614 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
615 				 struct link_qual *qual, const u32 count)
616 {
617 	/*
618 	 * The link tuner should not run longer then 60 seconds,
619 	 * and should run once every 2 seconds.
620 	 */
621 	if (count > 60 || !(count & 1))
622 		return;
623 
624 	/*
625 	 * Base r13 link tuning on the false cca count.
626 	 */
627 	if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
628 		rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
629 	else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
630 		rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
631 }
632 
633 /*
634  * Queue handlers.
635  */
rt2400pci_start_queue(struct data_queue * queue)636 static void rt2400pci_start_queue(struct data_queue *queue)
637 {
638 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
639 	u32 reg;
640 
641 	switch (queue->qid) {
642 	case QID_RX:
643 		rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
644 		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
645 		rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
646 		break;
647 	case QID_BEACON:
648 		rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
649 		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
650 		rt2x00_set_field32(&reg, CSR14_TBCN, 1);
651 		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
652 		rt2x00pci_register_write(rt2x00dev, CSR14, reg);
653 		break;
654 	default:
655 		break;
656 	}
657 }
658 
rt2400pci_kick_queue(struct data_queue * queue)659 static void rt2400pci_kick_queue(struct data_queue *queue)
660 {
661 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
662 	u32 reg;
663 
664 	switch (queue->qid) {
665 	case QID_AC_VO:
666 		rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
667 		rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
668 		rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
669 		break;
670 	case QID_AC_VI:
671 		rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
672 		rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
673 		rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
674 		break;
675 	case QID_ATIM:
676 		rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
677 		rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
678 		rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
679 		break;
680 	default:
681 		break;
682 	}
683 }
684 
rt2400pci_stop_queue(struct data_queue * queue)685 static void rt2400pci_stop_queue(struct data_queue *queue)
686 {
687 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
688 	u32 reg;
689 
690 	switch (queue->qid) {
691 	case QID_AC_VO:
692 	case QID_AC_VI:
693 	case QID_ATIM:
694 		rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
695 		rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
696 		rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
697 		break;
698 	case QID_RX:
699 		rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
700 		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
701 		rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
702 		break;
703 	case QID_BEACON:
704 		rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
705 		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
706 		rt2x00_set_field32(&reg, CSR14_TBCN, 0);
707 		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
708 		rt2x00pci_register_write(rt2x00dev, CSR14, reg);
709 
710 		/*
711 		 * Wait for possibly running tbtt tasklets.
712 		 */
713 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
714 		break;
715 	default:
716 		break;
717 	}
718 }
719 
720 /*
721  * Initialization functions.
722  */
rt2400pci_get_entry_state(struct queue_entry * entry)723 static bool rt2400pci_get_entry_state(struct queue_entry *entry)
724 {
725 	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
726 	u32 word;
727 
728 	if (entry->queue->qid == QID_RX) {
729 		rt2x00_desc_read(entry_priv->desc, 0, &word);
730 
731 		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
732 	} else {
733 		rt2x00_desc_read(entry_priv->desc, 0, &word);
734 
735 		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
736 		        rt2x00_get_field32(word, TXD_W0_VALID));
737 	}
738 }
739 
rt2400pci_clear_entry(struct queue_entry * entry)740 static void rt2400pci_clear_entry(struct queue_entry *entry)
741 {
742 	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
743 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
744 	u32 word;
745 
746 	if (entry->queue->qid == QID_RX) {
747 		rt2x00_desc_read(entry_priv->desc, 2, &word);
748 		rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
749 		rt2x00_desc_write(entry_priv->desc, 2, word);
750 
751 		rt2x00_desc_read(entry_priv->desc, 1, &word);
752 		rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
753 		rt2x00_desc_write(entry_priv->desc, 1, word);
754 
755 		rt2x00_desc_read(entry_priv->desc, 0, &word);
756 		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
757 		rt2x00_desc_write(entry_priv->desc, 0, word);
758 	} else {
759 		rt2x00_desc_read(entry_priv->desc, 0, &word);
760 		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
761 		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
762 		rt2x00_desc_write(entry_priv->desc, 0, word);
763 	}
764 }
765 
rt2400pci_init_queues(struct rt2x00_dev * rt2x00dev)766 static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
767 {
768 	struct queue_entry_priv_pci *entry_priv;
769 	u32 reg;
770 
771 	/*
772 	 * Initialize registers.
773 	 */
774 	rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
775 	rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
776 	rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
777 	rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
778 	rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
779 	rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
780 
781 	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
782 	rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
783 	rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
784 			   entry_priv->desc_dma);
785 	rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
786 
787 	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
788 	rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
789 	rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
790 			   entry_priv->desc_dma);
791 	rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
792 
793 	entry_priv = rt2x00dev->atim->entries[0].priv_data;
794 	rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
795 	rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
796 			   entry_priv->desc_dma);
797 	rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
798 
799 	entry_priv = rt2x00dev->bcn->entries[0].priv_data;
800 	rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
801 	rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
802 			   entry_priv->desc_dma);
803 	rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
804 
805 	rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
806 	rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
807 	rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
808 	rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
809 
810 	entry_priv = rt2x00dev->rx->entries[0].priv_data;
811 	rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
812 	rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
813 			   entry_priv->desc_dma);
814 	rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
815 
816 	return 0;
817 }
818 
rt2400pci_init_registers(struct rt2x00_dev * rt2x00dev)819 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
820 {
821 	u32 reg;
822 
823 	rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
824 	rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
825 	rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
826 	rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
827 
828 	rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
829 	rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
830 	rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
831 	rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
832 	rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
833 
834 	rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
835 	rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
836 			   (rt2x00dev->rx->data_size / 128));
837 	rt2x00pci_register_write(rt2x00dev, CSR9, reg);
838 
839 	rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
840 	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
841 	rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
842 	rt2x00_set_field32(&reg, CSR14_TBCN, 0);
843 	rt2x00_set_field32(&reg, CSR14_TCFP, 0);
844 	rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
845 	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
846 	rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
847 	rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
848 	rt2x00pci_register_write(rt2x00dev, CSR14, reg);
849 
850 	rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
851 
852 	rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
853 	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
854 	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
855 	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
856 	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
857 	rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
858 
859 	rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
860 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
861 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
862 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
863 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
864 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
865 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
866 	rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
867 
868 	rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
869 
870 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
871 		return -EBUSY;
872 
873 	rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
874 	rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
875 
876 	rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
877 	rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
878 	rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
879 
880 	rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
881 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
882 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
883 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
884 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
885 	rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
886 
887 	rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
888 	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
889 	rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
890 	rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
891 	rt2x00pci_register_write(rt2x00dev, CSR1, reg);
892 
893 	rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
894 	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
895 	rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
896 	rt2x00pci_register_write(rt2x00dev, CSR1, reg);
897 
898 	/*
899 	 * We must clear the FCS and FIFO error count.
900 	 * These registers are cleared on read,
901 	 * so we may pass a useless variable to store the value.
902 	 */
903 	rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
904 	rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
905 
906 	return 0;
907 }
908 
rt2400pci_wait_bbp_ready(struct rt2x00_dev * rt2x00dev)909 static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
910 {
911 	unsigned int i;
912 	u8 value;
913 
914 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
915 		rt2400pci_bbp_read(rt2x00dev, 0, &value);
916 		if ((value != 0xff) && (value != 0x00))
917 			return 0;
918 		udelay(REGISTER_BUSY_DELAY);
919 	}
920 
921 	ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
922 	return -EACCES;
923 }
924 
rt2400pci_init_bbp(struct rt2x00_dev * rt2x00dev)925 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
926 {
927 	unsigned int i;
928 	u16 eeprom;
929 	u8 reg_id;
930 	u8 value;
931 
932 	if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
933 		return -EACCES;
934 
935 	rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
936 	rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
937 	rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
938 	rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
939 	rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
940 	rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
941 	rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
942 	rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
943 	rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
944 	rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
945 	rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
946 	rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
947 	rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
948 	rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
949 
950 	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
951 		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
952 
953 		if (eeprom != 0xffff && eeprom != 0x0000) {
954 			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
955 			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
956 			rt2400pci_bbp_write(rt2x00dev, reg_id, value);
957 		}
958 	}
959 
960 	return 0;
961 }
962 
963 /*
964  * Device state switch handlers.
965  */
rt2400pci_toggle_irq(struct rt2x00_dev * rt2x00dev,enum dev_state state)966 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
967 				 enum dev_state state)
968 {
969 	int mask = (state == STATE_RADIO_IRQ_OFF);
970 	u32 reg;
971 	unsigned long flags;
972 
973 	/*
974 	 * When interrupts are being enabled, the interrupt registers
975 	 * should clear the register to assure a clean state.
976 	 */
977 	if (state == STATE_RADIO_IRQ_ON) {
978 		rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
979 		rt2x00pci_register_write(rt2x00dev, CSR7, reg);
980 	}
981 
982 	/*
983 	 * Only toggle the interrupts bits we are going to use.
984 	 * Non-checked interrupt bits are disabled by default.
985 	 */
986 	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
987 
988 	rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
989 	rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
990 	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
991 	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
992 	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
993 	rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
994 	rt2x00pci_register_write(rt2x00dev, CSR8, reg);
995 
996 	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
997 
998 	if (state == STATE_RADIO_IRQ_OFF) {
999 		/*
1000 		 * Ensure that all tasklets are finished before
1001 		 * disabling the interrupts.
1002 		 */
1003 		tasklet_kill(&rt2x00dev->txstatus_tasklet);
1004 		tasklet_kill(&rt2x00dev->rxdone_tasklet);
1005 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
1006 	}
1007 }
1008 
rt2400pci_enable_radio(struct rt2x00_dev * rt2x00dev)1009 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1010 {
1011 	/*
1012 	 * Initialize all registers.
1013 	 */
1014 	if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
1015 		     rt2400pci_init_registers(rt2x00dev) ||
1016 		     rt2400pci_init_bbp(rt2x00dev)))
1017 		return -EIO;
1018 
1019 	return 0;
1020 }
1021 
rt2400pci_disable_radio(struct rt2x00_dev * rt2x00dev)1022 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1023 {
1024 	/*
1025 	 * Disable power
1026 	 */
1027 	rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1028 }
1029 
rt2400pci_set_state(struct rt2x00_dev * rt2x00dev,enum dev_state state)1030 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
1031 			       enum dev_state state)
1032 {
1033 	u32 reg, reg2;
1034 	unsigned int i;
1035 	char put_to_sleep;
1036 	char bbp_state;
1037 	char rf_state;
1038 
1039 	put_to_sleep = (state != STATE_AWAKE);
1040 
1041 	rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1042 	rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1043 	rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1044 	rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1045 	rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1046 	rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1047 
1048 	/*
1049 	 * Device is not guaranteed to be in the requested state yet.
1050 	 * We must wait until the register indicates that the
1051 	 * device has entered the correct state.
1052 	 */
1053 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1054 		rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg2);
1055 		bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1056 		rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1057 		if (bbp_state == state && rf_state == state)
1058 			return 0;
1059 		rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1060 		msleep(10);
1061 	}
1062 
1063 	return -EBUSY;
1064 }
1065 
rt2400pci_set_device_state(struct rt2x00_dev * rt2x00dev,enum dev_state state)1066 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1067 				      enum dev_state state)
1068 {
1069 	int retval = 0;
1070 
1071 	switch (state) {
1072 	case STATE_RADIO_ON:
1073 		retval = rt2400pci_enable_radio(rt2x00dev);
1074 		break;
1075 	case STATE_RADIO_OFF:
1076 		rt2400pci_disable_radio(rt2x00dev);
1077 		break;
1078 	case STATE_RADIO_IRQ_ON:
1079 	case STATE_RADIO_IRQ_OFF:
1080 		rt2400pci_toggle_irq(rt2x00dev, state);
1081 		break;
1082 	case STATE_DEEP_SLEEP:
1083 	case STATE_SLEEP:
1084 	case STATE_STANDBY:
1085 	case STATE_AWAKE:
1086 		retval = rt2400pci_set_state(rt2x00dev, state);
1087 		break;
1088 	default:
1089 		retval = -ENOTSUPP;
1090 		break;
1091 	}
1092 
1093 	if (unlikely(retval))
1094 		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1095 		      state, retval);
1096 
1097 	return retval;
1098 }
1099 
1100 /*
1101  * TX descriptor initialization
1102  */
rt2400pci_write_tx_desc(struct queue_entry * entry,struct txentry_desc * txdesc)1103 static void rt2400pci_write_tx_desc(struct queue_entry *entry,
1104 				    struct txentry_desc *txdesc)
1105 {
1106 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1107 	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1108 	__le32 *txd = entry_priv->desc;
1109 	u32 word;
1110 
1111 	/*
1112 	 * Start writing the descriptor words.
1113 	 */
1114 	rt2x00_desc_read(txd, 1, &word);
1115 	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1116 	rt2x00_desc_write(txd, 1, word);
1117 
1118 	rt2x00_desc_read(txd, 2, &word);
1119 	rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, txdesc->length);
1120 	rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, txdesc->length);
1121 	rt2x00_desc_write(txd, 2, word);
1122 
1123 	rt2x00_desc_read(txd, 3, &word);
1124 	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1125 	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1126 	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1127 	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1128 	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1129 	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1130 	rt2x00_desc_write(txd, 3, word);
1131 
1132 	rt2x00_desc_read(txd, 4, &word);
1133 	rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW,
1134 			   txdesc->u.plcp.length_low);
1135 	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1136 	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1137 	rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH,
1138 			   txdesc->u.plcp.length_high);
1139 	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1140 	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1141 	rt2x00_desc_write(txd, 4, word);
1142 
1143 	/*
1144 	 * Writing TXD word 0 must the last to prevent a race condition with
1145 	 * the device, whereby the device may take hold of the TXD before we
1146 	 * finished updating it.
1147 	 */
1148 	rt2x00_desc_read(txd, 0, &word);
1149 	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1150 	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1151 	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1152 			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1153 	rt2x00_set_field32(&word, TXD_W0_ACK,
1154 			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1155 	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1156 			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1157 	rt2x00_set_field32(&word, TXD_W0_RTS,
1158 			   test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1159 	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1160 	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1161 			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1162 	rt2x00_desc_write(txd, 0, word);
1163 
1164 	/*
1165 	 * Register descriptor details in skb frame descriptor.
1166 	 */
1167 	skbdesc->desc = txd;
1168 	skbdesc->desc_len = TXD_DESC_SIZE;
1169 }
1170 
1171 /*
1172  * TX data initialization
1173  */
rt2400pci_write_beacon(struct queue_entry * entry,struct txentry_desc * txdesc)1174 static void rt2400pci_write_beacon(struct queue_entry *entry,
1175 				   struct txentry_desc *txdesc)
1176 {
1177 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1178 	u32 reg;
1179 
1180 	/*
1181 	 * Disable beaconing while we are reloading the beacon data,
1182 	 * otherwise we might be sending out invalid data.
1183 	 */
1184 	rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1185 	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1186 	rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1187 
1188 	rt2x00queue_map_txskb(entry);
1189 
1190 	/*
1191 	 * Write the TX descriptor for the beacon.
1192 	 */
1193 	rt2400pci_write_tx_desc(entry, txdesc);
1194 
1195 	/*
1196 	 * Dump beacon to userspace through debugfs.
1197 	 */
1198 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1199 
1200 	/*
1201 	 * Enable beaconing again.
1202 	 */
1203 	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1204 	rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1205 }
1206 
1207 /*
1208  * RX control handlers
1209  */
rt2400pci_fill_rxdone(struct queue_entry * entry,struct rxdone_entry_desc * rxdesc)1210 static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1211 				  struct rxdone_entry_desc *rxdesc)
1212 {
1213 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1214 	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1215 	u32 word0;
1216 	u32 word2;
1217 	u32 word3;
1218 	u32 word4;
1219 	u64 tsf;
1220 	u32 rx_low;
1221 	u32 rx_high;
1222 
1223 	rt2x00_desc_read(entry_priv->desc, 0, &word0);
1224 	rt2x00_desc_read(entry_priv->desc, 2, &word2);
1225 	rt2x00_desc_read(entry_priv->desc, 3, &word3);
1226 	rt2x00_desc_read(entry_priv->desc, 4, &word4);
1227 
1228 	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1229 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1230 	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1231 		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1232 
1233 	/*
1234 	 * We only get the lower 32bits from the timestamp,
1235 	 * to get the full 64bits we must complement it with
1236 	 * the timestamp from get_tsf().
1237 	 * Note that when a wraparound of the lower 32bits
1238 	 * has occurred between the frame arrival and the get_tsf()
1239 	 * call, we must decrease the higher 32bits with 1 to get
1240 	 * to correct value.
1241 	 */
1242 	tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw, NULL);
1243 	rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
1244 	rx_high = upper_32_bits(tsf);
1245 
1246 	if ((u32)tsf <= rx_low)
1247 		rx_high--;
1248 
1249 	/*
1250 	 * Obtain the status about this packet.
1251 	 * The signal is the PLCP value, and needs to be stripped
1252 	 * of the preamble bit (0x08).
1253 	 */
1254 	rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1255 	rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1256 	rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
1257 	    entry->queue->rt2x00dev->rssi_offset;
1258 	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1259 
1260 	rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1261 	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1262 		rxdesc->dev_flags |= RXDONE_MY_BSS;
1263 }
1264 
1265 /*
1266  * Interrupt functions.
1267  */
rt2400pci_txdone(struct rt2x00_dev * rt2x00dev,const enum data_queue_qid queue_idx)1268 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1269 			     const enum data_queue_qid queue_idx)
1270 {
1271 	struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1272 	struct queue_entry_priv_pci *entry_priv;
1273 	struct queue_entry *entry;
1274 	struct txdone_entry_desc txdesc;
1275 	u32 word;
1276 
1277 	while (!rt2x00queue_empty(queue)) {
1278 		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1279 		entry_priv = entry->priv_data;
1280 		rt2x00_desc_read(entry_priv->desc, 0, &word);
1281 
1282 		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1283 		    !rt2x00_get_field32(word, TXD_W0_VALID))
1284 			break;
1285 
1286 		/*
1287 		 * Obtain the status about this packet.
1288 		 */
1289 		txdesc.flags = 0;
1290 		switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1291 		case 0: /* Success */
1292 		case 1: /* Success with retry */
1293 			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
1294 			break;
1295 		case 2: /* Failure, excessive retries */
1296 			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1297 			/* Don't break, this is a failed frame! */
1298 		default: /* Failure */
1299 			__set_bit(TXDONE_FAILURE, &txdesc.flags);
1300 		}
1301 		txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1302 
1303 		rt2x00lib_txdone(entry, &txdesc);
1304 	}
1305 }
1306 
rt2400pci_enable_interrupt(struct rt2x00_dev * rt2x00dev,struct rt2x00_field32 irq_field)1307 static inline void rt2400pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1308 					      struct rt2x00_field32 irq_field)
1309 {
1310 	u32 reg;
1311 
1312 	/*
1313 	 * Enable a single interrupt. The interrupt mask register
1314 	 * access needs locking.
1315 	 */
1316 	spin_lock_irq(&rt2x00dev->irqmask_lock);
1317 
1318 	rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1319 	rt2x00_set_field32(&reg, irq_field, 0);
1320 	rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1321 
1322 	spin_unlock_irq(&rt2x00dev->irqmask_lock);
1323 }
1324 
rt2400pci_txstatus_tasklet(unsigned long data)1325 static void rt2400pci_txstatus_tasklet(unsigned long data)
1326 {
1327 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1328 	u32 reg;
1329 
1330 	/*
1331 	 * Handle all tx queues.
1332 	 */
1333 	rt2400pci_txdone(rt2x00dev, QID_ATIM);
1334 	rt2400pci_txdone(rt2x00dev, QID_AC_VO);
1335 	rt2400pci_txdone(rt2x00dev, QID_AC_VI);
1336 
1337 	/*
1338 	 * Enable all TXDONE interrupts again.
1339 	 */
1340 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
1341 		spin_lock_irq(&rt2x00dev->irqmask_lock);
1342 
1343 		rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1344 		rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
1345 		rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
1346 		rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1347 		rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1348 
1349 		spin_unlock_irq(&rt2x00dev->irqmask_lock);
1350 	}
1351 }
1352 
rt2400pci_tbtt_tasklet(unsigned long data)1353 static void rt2400pci_tbtt_tasklet(unsigned long data)
1354 {
1355 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1356 	rt2x00lib_beacondone(rt2x00dev);
1357 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1358 		rt2400pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1359 }
1360 
rt2400pci_rxdone_tasklet(unsigned long data)1361 static void rt2400pci_rxdone_tasklet(unsigned long data)
1362 {
1363 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1364 	if (rt2x00pci_rxdone(rt2x00dev))
1365 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1366 	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1367 		rt2400pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1368 }
1369 
rt2400pci_interrupt(int irq,void * dev_instance)1370 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1371 {
1372 	struct rt2x00_dev *rt2x00dev = dev_instance;
1373 	u32 reg, mask;
1374 
1375 	/*
1376 	 * Get the interrupt sources & saved to local variable.
1377 	 * Write register value back to clear pending interrupts.
1378 	 */
1379 	rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1380 	rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1381 
1382 	if (!reg)
1383 		return IRQ_NONE;
1384 
1385 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1386 		return IRQ_HANDLED;
1387 
1388 	mask = reg;
1389 
1390 	/*
1391 	 * Schedule tasklets for interrupt handling.
1392 	 */
1393 	if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1394 		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1395 
1396 	if (rt2x00_get_field32(reg, CSR7_RXDONE))
1397 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1398 
1399 	if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1400 	    rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1401 	    rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1402 		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1403 		/*
1404 		 * Mask out all txdone interrupts.
1405 		 */
1406 		rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1407 		rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1408 		rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1409 	}
1410 
1411 	/*
1412 	 * Disable all interrupts for which a tasklet was scheduled right now,
1413 	 * the tasklet will reenable the appropriate interrupts.
1414 	 */
1415 	spin_lock(&rt2x00dev->irqmask_lock);
1416 
1417 	rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1418 	reg |= mask;
1419 	rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1420 
1421 	spin_unlock(&rt2x00dev->irqmask_lock);
1422 
1423 
1424 
1425 	return IRQ_HANDLED;
1426 }
1427 
1428 /*
1429  * Device probe functions.
1430  */
rt2400pci_validate_eeprom(struct rt2x00_dev * rt2x00dev)1431 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1432 {
1433 	struct eeprom_93cx6 eeprom;
1434 	u32 reg;
1435 	u16 word;
1436 	u8 *mac;
1437 
1438 	rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1439 
1440 	eeprom.data = rt2x00dev;
1441 	eeprom.register_read = rt2400pci_eepromregister_read;
1442 	eeprom.register_write = rt2400pci_eepromregister_write;
1443 	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1444 	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1445 	eeprom.reg_data_in = 0;
1446 	eeprom.reg_data_out = 0;
1447 	eeprom.reg_data_clock = 0;
1448 	eeprom.reg_chip_select = 0;
1449 
1450 	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1451 			       EEPROM_SIZE / sizeof(u16));
1452 
1453 	/*
1454 	 * Start validation of the data that has been read.
1455 	 */
1456 	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1457 	if (!is_valid_ether_addr(mac)) {
1458 		random_ether_addr(mac);
1459 		EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1460 	}
1461 
1462 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1463 	if (word == 0xffff) {
1464 		ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
1465 		return -EINVAL;
1466 	}
1467 
1468 	return 0;
1469 }
1470 
rt2400pci_init_eeprom(struct rt2x00_dev * rt2x00dev)1471 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1472 {
1473 	u32 reg;
1474 	u16 value;
1475 	u16 eeprom;
1476 
1477 	/*
1478 	 * Read EEPROM word for configuration.
1479 	 */
1480 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1481 
1482 	/*
1483 	 * Identify RF chipset.
1484 	 */
1485 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1486 	rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1487 	rt2x00_set_chip(rt2x00dev, RT2460, value,
1488 			rt2x00_get_field32(reg, CSR0_REVISION));
1489 
1490 	if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) {
1491 		ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1492 		return -ENODEV;
1493 	}
1494 
1495 	/*
1496 	 * Identify default antenna configuration.
1497 	 */
1498 	rt2x00dev->default_ant.tx =
1499 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1500 	rt2x00dev->default_ant.rx =
1501 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1502 
1503 	/*
1504 	 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1505 	 * I am not 100% sure about this, but the legacy drivers do not
1506 	 * indicate antenna swapping in software is required when
1507 	 * diversity is enabled.
1508 	 */
1509 	if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1510 		rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1511 	if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1512 		rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1513 
1514 	/*
1515 	 * Store led mode, for correct led behaviour.
1516 	 */
1517 #ifdef CONFIG_RT2X00_LIB_LEDS
1518 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1519 
1520 	rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1521 	if (value == LED_MODE_TXRX_ACTIVITY ||
1522 	    value == LED_MODE_DEFAULT ||
1523 	    value == LED_MODE_ASUS)
1524 		rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1525 				   LED_TYPE_ACTIVITY);
1526 #endif /* CONFIG_RT2X00_LIB_LEDS */
1527 
1528 	/*
1529 	 * Detect if this device has an hardware controlled radio.
1530 	 */
1531 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1532 		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1533 
1534 	/*
1535 	 * Check if the BBP tuning should be enabled.
1536 	 */
1537 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1538 		__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1539 
1540 	return 0;
1541 }
1542 
1543 /*
1544  * RF value list for RF2420 & RF2421
1545  * Supports: 2.4 GHz
1546  */
1547 static const struct rf_channel rf_vals_b[] = {
1548 	{ 1,  0x00022058, 0x000c1fda, 0x00000101, 0 },
1549 	{ 2,  0x00022058, 0x000c1fee, 0x00000101, 0 },
1550 	{ 3,  0x00022058, 0x000c2002, 0x00000101, 0 },
1551 	{ 4,  0x00022058, 0x000c2016, 0x00000101, 0 },
1552 	{ 5,  0x00022058, 0x000c202a, 0x00000101, 0 },
1553 	{ 6,  0x00022058, 0x000c203e, 0x00000101, 0 },
1554 	{ 7,  0x00022058, 0x000c2052, 0x00000101, 0 },
1555 	{ 8,  0x00022058, 0x000c2066, 0x00000101, 0 },
1556 	{ 9,  0x00022058, 0x000c207a, 0x00000101, 0 },
1557 	{ 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1558 	{ 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1559 	{ 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1560 	{ 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1561 	{ 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1562 };
1563 
rt2400pci_probe_hw_mode(struct rt2x00_dev * rt2x00dev)1564 static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1565 {
1566 	struct hw_mode_spec *spec = &rt2x00dev->spec;
1567 	struct channel_info *info;
1568 	char *tx_power;
1569 	unsigned int i;
1570 
1571 	/*
1572 	 * Initialize all hw fields.
1573 	 */
1574 	rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1575 			       IEEE80211_HW_SIGNAL_DBM |
1576 			       IEEE80211_HW_SUPPORTS_PS |
1577 			       IEEE80211_HW_PS_NULLFUNC_STACK;
1578 
1579 	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1580 	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1581 				rt2x00_eeprom_addr(rt2x00dev,
1582 						   EEPROM_MAC_ADDR_0));
1583 
1584 	/*
1585 	 * Initialize hw_mode information.
1586 	 */
1587 	spec->supported_bands = SUPPORT_BAND_2GHZ;
1588 	spec->supported_rates = SUPPORT_RATE_CCK;
1589 
1590 	spec->num_channels = ARRAY_SIZE(rf_vals_b);
1591 	spec->channels = rf_vals_b;
1592 
1593 	/*
1594 	 * Create channel information array
1595 	 */
1596 	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1597 	if (!info)
1598 		return -ENOMEM;
1599 
1600 	spec->channels_info = info;
1601 
1602 	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1603 	for (i = 0; i < 14; i++) {
1604 		info[i].max_power = TXPOWER_FROM_DEV(MAX_TXPOWER);
1605 		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1606 	}
1607 
1608 	return 0;
1609 }
1610 
rt2400pci_probe_hw(struct rt2x00_dev * rt2x00dev)1611 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1612 {
1613 	int retval;
1614 
1615 	/*
1616 	 * Allocate eeprom data.
1617 	 */
1618 	retval = rt2400pci_validate_eeprom(rt2x00dev);
1619 	if (retval)
1620 		return retval;
1621 
1622 	retval = rt2400pci_init_eeprom(rt2x00dev);
1623 	if (retval)
1624 		return retval;
1625 
1626 	/*
1627 	 * Initialize hw specifications.
1628 	 */
1629 	retval = rt2400pci_probe_hw_mode(rt2x00dev);
1630 	if (retval)
1631 		return retval;
1632 
1633 	/*
1634 	 * This device requires the atim queue and DMA-mapped skbs.
1635 	 */
1636 	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1637 	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1638 	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1639 
1640 	/*
1641 	 * Set the rssi offset.
1642 	 */
1643 	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1644 
1645 	return 0;
1646 }
1647 
1648 /*
1649  * IEEE80211 stack callback functions.
1650  */
rt2400pci_conf_tx(struct ieee80211_hw * hw,struct ieee80211_vif * vif,u16 queue,const struct ieee80211_tx_queue_params * params)1651 static int rt2400pci_conf_tx(struct ieee80211_hw *hw,
1652 			     struct ieee80211_vif *vif, u16 queue,
1653 			     const struct ieee80211_tx_queue_params *params)
1654 {
1655 	struct rt2x00_dev *rt2x00dev = hw->priv;
1656 
1657 	/*
1658 	 * We don't support variating cw_min and cw_max variables
1659 	 * per queue. So by default we only configure the TX queue,
1660 	 * and ignore all other configurations.
1661 	 */
1662 	if (queue != 0)
1663 		return -EINVAL;
1664 
1665 	if (rt2x00mac_conf_tx(hw, vif, queue, params))
1666 		return -EINVAL;
1667 
1668 	/*
1669 	 * Write configuration to register.
1670 	 */
1671 	rt2400pci_config_cw(rt2x00dev,
1672 			    rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1673 
1674 	return 0;
1675 }
1676 
rt2400pci_get_tsf(struct ieee80211_hw * hw,struct ieee80211_vif * vif)1677 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw,
1678 			     struct ieee80211_vif *vif)
1679 {
1680 	struct rt2x00_dev *rt2x00dev = hw->priv;
1681 	u64 tsf;
1682 	u32 reg;
1683 
1684 	rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1685 	tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1686 	rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1687 	tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1688 
1689 	return tsf;
1690 }
1691 
rt2400pci_tx_last_beacon(struct ieee80211_hw * hw)1692 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1693 {
1694 	struct rt2x00_dev *rt2x00dev = hw->priv;
1695 	u32 reg;
1696 
1697 	rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1698 	return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1699 }
1700 
1701 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1702 	.tx			= rt2x00mac_tx,
1703 	.start			= rt2x00mac_start,
1704 	.stop			= rt2x00mac_stop,
1705 	.add_interface		= rt2x00mac_add_interface,
1706 	.remove_interface	= rt2x00mac_remove_interface,
1707 	.config			= rt2x00mac_config,
1708 	.configure_filter	= rt2x00mac_configure_filter,
1709 	.sw_scan_start		= rt2x00mac_sw_scan_start,
1710 	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
1711 	.get_stats		= rt2x00mac_get_stats,
1712 	.bss_info_changed	= rt2x00mac_bss_info_changed,
1713 	.conf_tx		= rt2400pci_conf_tx,
1714 	.get_tsf		= rt2400pci_get_tsf,
1715 	.tx_last_beacon		= rt2400pci_tx_last_beacon,
1716 	.rfkill_poll		= rt2x00mac_rfkill_poll,
1717 	.flush			= rt2x00mac_flush,
1718 	.set_antenna		= rt2x00mac_set_antenna,
1719 	.get_antenna		= rt2x00mac_get_antenna,
1720 	.get_ringparam		= rt2x00mac_get_ringparam,
1721 	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
1722 };
1723 
1724 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1725 	.irq_handler		= rt2400pci_interrupt,
1726 	.txstatus_tasklet	= rt2400pci_txstatus_tasklet,
1727 	.tbtt_tasklet		= rt2400pci_tbtt_tasklet,
1728 	.rxdone_tasklet		= rt2400pci_rxdone_tasklet,
1729 	.probe_hw		= rt2400pci_probe_hw,
1730 	.initialize		= rt2x00pci_initialize,
1731 	.uninitialize		= rt2x00pci_uninitialize,
1732 	.get_entry_state	= rt2400pci_get_entry_state,
1733 	.clear_entry		= rt2400pci_clear_entry,
1734 	.set_device_state	= rt2400pci_set_device_state,
1735 	.rfkill_poll		= rt2400pci_rfkill_poll,
1736 	.link_stats		= rt2400pci_link_stats,
1737 	.reset_tuner		= rt2400pci_reset_tuner,
1738 	.link_tuner		= rt2400pci_link_tuner,
1739 	.start_queue		= rt2400pci_start_queue,
1740 	.kick_queue		= rt2400pci_kick_queue,
1741 	.stop_queue		= rt2400pci_stop_queue,
1742 	.flush_queue		= rt2x00pci_flush_queue,
1743 	.write_tx_desc		= rt2400pci_write_tx_desc,
1744 	.write_beacon		= rt2400pci_write_beacon,
1745 	.fill_rxdone		= rt2400pci_fill_rxdone,
1746 	.config_filter		= rt2400pci_config_filter,
1747 	.config_intf		= rt2400pci_config_intf,
1748 	.config_erp		= rt2400pci_config_erp,
1749 	.config_ant		= rt2400pci_config_ant,
1750 	.config			= rt2400pci_config,
1751 };
1752 
1753 static const struct data_queue_desc rt2400pci_queue_rx = {
1754 	.entry_num		= 24,
1755 	.data_size		= DATA_FRAME_SIZE,
1756 	.desc_size		= RXD_DESC_SIZE,
1757 	.priv_size		= sizeof(struct queue_entry_priv_pci),
1758 };
1759 
1760 static const struct data_queue_desc rt2400pci_queue_tx = {
1761 	.entry_num		= 24,
1762 	.data_size		= DATA_FRAME_SIZE,
1763 	.desc_size		= TXD_DESC_SIZE,
1764 	.priv_size		= sizeof(struct queue_entry_priv_pci),
1765 };
1766 
1767 static const struct data_queue_desc rt2400pci_queue_bcn = {
1768 	.entry_num		= 1,
1769 	.data_size		= MGMT_FRAME_SIZE,
1770 	.desc_size		= TXD_DESC_SIZE,
1771 	.priv_size		= sizeof(struct queue_entry_priv_pci),
1772 };
1773 
1774 static const struct data_queue_desc rt2400pci_queue_atim = {
1775 	.entry_num		= 8,
1776 	.data_size		= DATA_FRAME_SIZE,
1777 	.desc_size		= TXD_DESC_SIZE,
1778 	.priv_size		= sizeof(struct queue_entry_priv_pci),
1779 };
1780 
1781 static const struct rt2x00_ops rt2400pci_ops = {
1782 	.name			= KBUILD_MODNAME,
1783 	.max_sta_intf		= 1,
1784 	.max_ap_intf		= 1,
1785 	.eeprom_size		= EEPROM_SIZE,
1786 	.rf_size		= RF_SIZE,
1787 	.tx_queues		= NUM_TX_QUEUES,
1788 	.extra_tx_headroom	= 0,
1789 	.rx			= &rt2400pci_queue_rx,
1790 	.tx			= &rt2400pci_queue_tx,
1791 	.bcn			= &rt2400pci_queue_bcn,
1792 	.atim			= &rt2400pci_queue_atim,
1793 	.lib			= &rt2400pci_rt2x00_ops,
1794 	.hw			= &rt2400pci_mac80211_ops,
1795 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1796 	.debugfs		= &rt2400pci_rt2x00debug,
1797 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1798 };
1799 
1800 /*
1801  * RT2400pci module information.
1802  */
1803 static DEFINE_PCI_DEVICE_TABLE(rt2400pci_device_table) = {
1804 	{ PCI_DEVICE(0x1814, 0x0101) },
1805 	{ 0, }
1806 };
1807 
1808 
1809 MODULE_AUTHOR(DRV_PROJECT);
1810 MODULE_VERSION(DRV_VERSION);
1811 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1812 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1813 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1814 MODULE_LICENSE("GPL");
1815 
rt2400pci_probe(struct pci_dev * pci_dev,const struct pci_device_id * id)1816 static int rt2400pci_probe(struct pci_dev *pci_dev,
1817 			   const struct pci_device_id *id)
1818 {
1819 	return rt2x00pci_probe(pci_dev, &rt2400pci_ops);
1820 }
1821 
1822 static struct pci_driver rt2400pci_driver = {
1823 	.name		= KBUILD_MODNAME,
1824 	.id_table	= rt2400pci_device_table,
1825 	.probe		= rt2400pci_probe,
1826 	.remove		= __devexit_p(rt2x00pci_remove),
1827 	.suspend	= rt2x00pci_suspend,
1828 	.resume		= rt2x00pci_resume,
1829 };
1830 
rt2400pci_init(void)1831 static int __init rt2400pci_init(void)
1832 {
1833 	return pci_register_driver(&rt2400pci_driver);
1834 }
1835 
rt2400pci_exit(void)1836 static void __exit rt2400pci_exit(void)
1837 {
1838 	pci_unregister_driver(&rt2400pci_driver);
1839 }
1840 
1841 module_init(rt2400pci_init);
1842 module_exit(rt2400pci_exit);
1843