1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22  * USA
23  *
24  * The full GNU General Public License is included in this distribution
25  * in the file called LICENSE.GPL.
26  *
27  * Contact Information:
28  *  Intel Linux Wireless <ilw@linux.intel.com>
29  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30  *
31  * BSD LICENSE
32  *
33  * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  *
40  *  * Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  *  * Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in
44  *    the documentation and/or other materials provided with the
45  *    distribution.
46  *  * Neither the name Intel Corporation nor the names of its
47  *    contributors may be used to endorse or promote products derived
48  *    from this software without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61  *
62  *****************************************************************************/
63 /*
64  * Please use this file (iwl-commands.h) only for uCode API definitions.
65  * Please use iwl-xxxx-hw.h for hardware-related definitions.
66  * Please use iwl-dev.h for driver implementation definitions.
67  */
68 
69 #ifndef __iwl_commands_h__
70 #define __iwl_commands_h__
71 
72 #include <linux/etherdevice.h>
73 #include <linux/ieee80211.h>
74 
75 struct iwl_priv;
76 
77 /* uCode version contains 4 values: Major/Minor/API/Serial */
78 #define IWL_UCODE_MAJOR(ver)	(((ver) & 0xFF000000) >> 24)
79 #define IWL_UCODE_MINOR(ver)	(((ver) & 0x00FF0000) >> 16)
80 #define IWL_UCODE_API(ver)	(((ver) & 0x0000FF00) >> 8)
81 #define IWL_UCODE_SERIAL(ver)	((ver) & 0x000000FF)
82 
83 
84 /* Tx rates */
85 #define IWL_CCK_RATES	4
86 #define IWL_OFDM_RATES	8
87 #define IWL_MAX_RATES	(IWL_CCK_RATES + IWL_OFDM_RATES)
88 
89 enum {
90 	REPLY_ALIVE = 0x1,
91 	REPLY_ERROR = 0x2,
92 	REPLY_ECHO = 0x3,		/* test command */
93 
94 	/* RXON and QOS commands */
95 	REPLY_RXON = 0x10,
96 	REPLY_RXON_ASSOC = 0x11,
97 	REPLY_QOS_PARAM = 0x13,
98 	REPLY_RXON_TIMING = 0x14,
99 
100 	/* Multi-Station support */
101 	REPLY_ADD_STA = 0x18,
102 	REPLY_REMOVE_STA = 0x19,
103 	REPLY_REMOVE_ALL_STA = 0x1a,	/* not used */
104 	REPLY_TXFIFO_FLUSH = 0x1e,
105 
106 	/* Security */
107 	REPLY_WEPKEY = 0x20,
108 
109 	/* RX, TX, LEDs */
110 	REPLY_TX = 0x1c,
111 	REPLY_LEDS_CMD = 0x48,
112 	REPLY_TX_LINK_QUALITY_CMD = 0x4e,
113 
114 	/* WiMAX coexistence */
115 	COEX_PRIORITY_TABLE_CMD = 0x5a,
116 	COEX_MEDIUM_NOTIFICATION = 0x5b,
117 	COEX_EVENT_CMD = 0x5c,
118 
119 	/* Calibration */
120 	TEMPERATURE_NOTIFICATION = 0x62,
121 	CALIBRATION_CFG_CMD = 0x65,
122 	CALIBRATION_RES_NOTIFICATION = 0x66,
123 	CALIBRATION_COMPLETE_NOTIFICATION = 0x67,
124 
125 	/* 802.11h related */
126 	REPLY_QUIET_CMD = 0x71,		/* not used */
127 	REPLY_CHANNEL_SWITCH = 0x72,
128 	CHANNEL_SWITCH_NOTIFICATION = 0x73,
129 	REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74,
130 	SPECTRUM_MEASURE_NOTIFICATION = 0x75,
131 
132 	/* Power Management */
133 	POWER_TABLE_CMD = 0x77,
134 	PM_SLEEP_NOTIFICATION = 0x7A,
135 	PM_DEBUG_STATISTIC_NOTIFIC = 0x7B,
136 
137 	/* Scan commands and notifications */
138 	REPLY_SCAN_CMD = 0x80,
139 	REPLY_SCAN_ABORT_CMD = 0x81,
140 	SCAN_START_NOTIFICATION = 0x82,
141 	SCAN_RESULTS_NOTIFICATION = 0x83,
142 	SCAN_COMPLETE_NOTIFICATION = 0x84,
143 
144 	/* IBSS/AP commands */
145 	BEACON_NOTIFICATION = 0x90,
146 	REPLY_TX_BEACON = 0x91,
147 	WHO_IS_AWAKE_NOTIFICATION = 0x94,	/* not used */
148 
149 	/* Miscellaneous commands */
150 	REPLY_TX_POWER_DBM_CMD = 0x95,
151 	QUIET_NOTIFICATION = 0x96,		/* not used */
152 	REPLY_TX_PWR_TABLE_CMD = 0x97,
153 	REPLY_TX_POWER_DBM_CMD_V1 = 0x98,	/* old version of API */
154 	TX_ANT_CONFIGURATION_CMD = 0x98,
155 	MEASURE_ABORT_NOTIFICATION = 0x99,	/* not used */
156 
157 	/* Bluetooth device coexistence config command */
158 	REPLY_BT_CONFIG = 0x9b,
159 
160 	/* Statistics */
161 	REPLY_STATISTICS_CMD = 0x9c,
162 	STATISTICS_NOTIFICATION = 0x9d,
163 
164 	/* RF-KILL commands and notifications */
165 	REPLY_CARD_STATE_CMD = 0xa0,
166 	CARD_STATE_NOTIFICATION = 0xa1,
167 
168 	/* Missed beacons notification */
169 	MISSED_BEACONS_NOTIFICATION = 0xa2,
170 
171 	REPLY_CT_KILL_CONFIG_CMD = 0xa4,
172 	SENSITIVITY_CMD = 0xa8,
173 	REPLY_PHY_CALIBRATION_CMD = 0xb0,
174 	REPLY_RX_PHY_CMD = 0xc0,
175 	REPLY_RX_MPDU_CMD = 0xc1,
176 	REPLY_RX = 0xc3,
177 	REPLY_COMPRESSED_BA = 0xc5,
178 
179 	/* BT Coex */
180 	REPLY_BT_COEX_PRIO_TABLE = 0xcc,
181 	REPLY_BT_COEX_PROT_ENV = 0xcd,
182 	REPLY_BT_COEX_PROFILE_NOTIF = 0xce,
183 
184 	/* PAN commands */
185 	REPLY_WIPAN_PARAMS = 0xb2,
186 	REPLY_WIPAN_RXON = 0xb3,	/* use REPLY_RXON structure */
187 	REPLY_WIPAN_RXON_TIMING = 0xb4,	/* use REPLY_RXON_TIMING structure */
188 	REPLY_WIPAN_RXON_ASSOC = 0xb6,	/* use REPLY_RXON_ASSOC structure */
189 	REPLY_WIPAN_QOS_PARAM = 0xb7,	/* use REPLY_QOS_PARAM structure */
190 	REPLY_WIPAN_WEPKEY = 0xb8,	/* use REPLY_WEPKEY structure */
191 	REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9,
192 	REPLY_WIPAN_NOA_NOTIFICATION = 0xbc,
193 	REPLY_WIPAN_DEACTIVATION_COMPLETE = 0xbd,
194 
195 	REPLY_WOWLAN_PATTERNS = 0xe0,
196 	REPLY_WOWLAN_WAKEUP_FILTER = 0xe1,
197 	REPLY_WOWLAN_TSC_RSC_PARAMS = 0xe2,
198 	REPLY_WOWLAN_TKIP_PARAMS = 0xe3,
199 	REPLY_WOWLAN_KEK_KCK_MATERIAL = 0xe4,
200 	REPLY_WOWLAN_GET_STATUS = 0xe5,
201 	REPLY_D3_CONFIG = 0xd3,
202 
203 	REPLY_MAX = 0xff
204 };
205 
206 /******************************************************************************
207  * (0)
208  * Commonly used structures and definitions:
209  * Command header, rate_n_flags, txpower
210  *
211  *****************************************************************************/
212 
213 /* iwl_cmd_header flags value */
214 #define IWL_CMD_FAILED_MSK 0x40
215 
216 #define SEQ_TO_QUEUE(s)	(((s) >> 8) & 0x1f)
217 #define QUEUE_TO_SEQ(q)	(((q) & 0x1f) << 8)
218 #define SEQ_TO_INDEX(s)	((s) & 0xff)
219 #define INDEX_TO_SEQ(i)	((i) & 0xff)
220 #define SEQ_RX_FRAME	cpu_to_le16(0x8000)
221 
222 /**
223  * struct iwl_cmd_header
224  *
225  * This header format appears in the beginning of each command sent from the
226  * driver, and each response/notification received from uCode.
227  */
228 struct iwl_cmd_header {
229 	u8 cmd;		/* Command ID:  REPLY_RXON, etc. */
230 	u8 flags;	/* 0:5 reserved, 6 abort, 7 internal */
231 	/*
232 	 * The driver sets up the sequence number to values of its choosing.
233 	 * uCode does not use this value, but passes it back to the driver
234 	 * when sending the response to each driver-originated command, so
235 	 * the driver can match the response to the command.  Since the values
236 	 * don't get used by uCode, the driver may set up an arbitrary format.
237 	 *
238 	 * There is one exception:  uCode sets bit 15 when it originates
239 	 * the response/notification, i.e. when the response/notification
240 	 * is not a direct response to a command sent by the driver.  For
241 	 * example, uCode issues REPLY_RX when it sends a received frame
242 	 * to the driver; it is not a direct response to any driver command.
243 	 *
244 	 * The Linux driver uses the following format:
245 	 *
246 	 *  0:7		tfd index - position within TX queue
247 	 *  8:12	TX queue id
248 	 *  13:14	reserved
249 	 *  15		unsolicited RX or uCode-originated notification
250 	 */
251 	__le16 sequence;
252 
253 	/* command or response/notification data follows immediately */
254 	u8 data[0];
255 } __packed;
256 
257 
258 /**
259  * iwlagn rate_n_flags bit fields
260  *
261  * rate_n_flags format is used in following iwlagn commands:
262  *  REPLY_RX (response only)
263  *  REPLY_RX_MPDU (response only)
264  *  REPLY_TX (both command and response)
265  *  REPLY_TX_LINK_QUALITY_CMD
266  *
267  * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
268  *  2-0:  0)   6 Mbps
269  *        1)  12 Mbps
270  *        2)  18 Mbps
271  *        3)  24 Mbps
272  *        4)  36 Mbps
273  *        5)  48 Mbps
274  *        6)  54 Mbps
275  *        7)  60 Mbps
276  *
277  *  4-3:  0)  Single stream (SISO)
278  *        1)  Dual stream (MIMO)
279  *        2)  Triple stream (MIMO)
280  *
281  *    5:  Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data
282  *
283  * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
284  *  3-0:  0xD)   6 Mbps
285  *        0xF)   9 Mbps
286  *        0x5)  12 Mbps
287  *        0x7)  18 Mbps
288  *        0x9)  24 Mbps
289  *        0xB)  36 Mbps
290  *        0x1)  48 Mbps
291  *        0x3)  54 Mbps
292  *
293  * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
294  *  6-0:   10)  1 Mbps
295  *         20)  2 Mbps
296  *         55)  5.5 Mbps
297  *        110)  11 Mbps
298  */
299 #define RATE_MCS_CODE_MSK 0x7
300 #define RATE_MCS_SPATIAL_POS 3
301 #define RATE_MCS_SPATIAL_MSK 0x18
302 #define RATE_MCS_HT_DUP_POS 5
303 #define RATE_MCS_HT_DUP_MSK 0x20
304 /* Both legacy and HT use bits 7:0 as the CCK/OFDM rate or HT MCS */
305 #define RATE_MCS_RATE_MSK 0xff
306 
307 /* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
308 #define RATE_MCS_FLAGS_POS 8
309 #define RATE_MCS_HT_POS 8
310 #define RATE_MCS_HT_MSK 0x100
311 
312 /* Bit 9: (1) CCK, (0) OFDM.  HT (bit 8) must be "0" for this bit to be valid */
313 #define RATE_MCS_CCK_POS 9
314 #define RATE_MCS_CCK_MSK 0x200
315 
316 /* Bit 10: (1) Use Green Field preamble */
317 #define RATE_MCS_GF_POS 10
318 #define RATE_MCS_GF_MSK 0x400
319 
320 /* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */
321 #define RATE_MCS_HT40_POS 11
322 #define RATE_MCS_HT40_MSK 0x800
323 
324 /* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */
325 #define RATE_MCS_DUP_POS 12
326 #define RATE_MCS_DUP_MSK 0x1000
327 
328 /* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
329 #define RATE_MCS_SGI_POS 13
330 #define RATE_MCS_SGI_MSK 0x2000
331 
332 /**
333  * rate_n_flags Tx antenna masks
334  * 4965 has 2 transmitters
335  * 5100 has 1 transmitter B
336  * 5150 has 1 transmitter A
337  * 5300 has 3 transmitters
338  * 5350 has 3 transmitters
339  * bit14:16
340  */
341 #define RATE_MCS_ANT_POS	14
342 #define RATE_MCS_ANT_A_MSK	0x04000
343 #define RATE_MCS_ANT_B_MSK	0x08000
344 #define RATE_MCS_ANT_C_MSK	0x10000
345 #define RATE_MCS_ANT_AB_MSK	(RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK)
346 #define RATE_MCS_ANT_ABC_MSK	(RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK)
347 #define RATE_ANT_NUM 3
348 
349 #define POWER_TABLE_NUM_ENTRIES			33
350 #define POWER_TABLE_NUM_HT_OFDM_ENTRIES		32
351 #define POWER_TABLE_CCK_ENTRY			32
352 
353 #define IWL_PWR_NUM_HT_OFDM_ENTRIES		24
354 #define IWL_PWR_CCK_ENTRIES			2
355 
356 /**
357  * struct tx_power_dual_stream
358  *
359  * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
360  *
361  * Same format as iwl_tx_power_dual_stream, but __le32
362  */
363 struct tx_power_dual_stream {
364 	__le32 dw;
365 } __packed;
366 
367 /**
368  * Command REPLY_TX_POWER_DBM_CMD = 0x98
369  * struct iwlagn_tx_power_dbm_cmd
370  */
371 #define IWLAGN_TX_POWER_AUTO 0x7f
372 #define IWLAGN_TX_POWER_NO_CLOSED (0x1 << 6)
373 
374 struct iwlagn_tx_power_dbm_cmd {
375 	s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
376 	u8 flags;
377 	s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
378 	u8 reserved;
379 } __packed;
380 
381 /**
382  * Command TX_ANT_CONFIGURATION_CMD = 0x98
383  * This command is used to configure valid Tx antenna.
384  * By default uCode concludes the valid antenna according to the radio flavor.
385  * This command enables the driver to override/modify this conclusion.
386  */
387 struct iwl_tx_ant_config_cmd {
388 	__le32 valid;
389 } __packed;
390 
391 /******************************************************************************
392  * (0a)
393  * Alive and Error Commands & Responses:
394  *
395  *****************************************************************************/
396 
397 #define UCODE_VALID_OK	cpu_to_le32(0x1)
398 
399 /**
400  * REPLY_ALIVE = 0x1 (response only, not a command)
401  *
402  * uCode issues this "alive" notification once the runtime image is ready
403  * to receive commands from the driver.  This is the *second* "alive"
404  * notification that the driver will receive after rebooting uCode;
405  * this "alive" is indicated by subtype field != 9.
406  *
407  * See comments documenting "BSM" (bootstrap state machine).
408  *
409  * This response includes two pointers to structures within the device's
410  * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
411  *
412  * 1)  log_event_table_ptr indicates base of the event log.  This traces
413  *     a 256-entry history of uCode execution within a circular buffer.
414  *     Its header format is:
415  *
416  *	__le32 log_size;     log capacity (in number of entries)
417  *	__le32 type;         (1) timestamp with each entry, (0) no timestamp
418  *	__le32 wraps;        # times uCode has wrapped to top of circular buffer
419  *      __le32 write_index;  next circular buffer entry that uCode would fill
420  *
421  *     The header is followed by the circular buffer of log entries.  Entries
422  *     with timestamps have the following format:
423  *
424  *	__le32 event_id;     range 0 - 1500
425  *	__le32 timestamp;    low 32 bits of TSF (of network, if associated)
426  *	__le32 data;         event_id-specific data value
427  *
428  *     Entries without timestamps contain only event_id and data.
429  *
430  *
431  * 2)  error_event_table_ptr indicates base of the error log.  This contains
432  *     information about any uCode error that occurs.  For agn, the format
433  *     of the error log is defined by struct iwl_error_event_table.
434  *
435  * The Linux driver can print both logs to the system log when a uCode error
436  * occurs.
437  */
438 
439 /*
440  * Note: This structure is read from the device with IO accesses,
441  * and the reading already does the endian conversion. As it is
442  * read with u32-sized accesses, any members with a different size
443  * need to be ordered correctly though!
444  */
445 struct iwl_error_event_table {
446 	u32 valid;		/* (nonzero) valid, (0) log is empty */
447 	u32 error_id;		/* type of error */
448 	u32 pc;			/* program counter */
449 	u32 blink1;		/* branch link */
450 	u32 blink2;		/* branch link */
451 	u32 ilink1;		/* interrupt link */
452 	u32 ilink2;		/* interrupt link */
453 	u32 data1;		/* error-specific data */
454 	u32 data2;		/* error-specific data */
455 	u32 line;		/* source code line of error */
456 	u32 bcon_time;		/* beacon timer */
457 	u32 tsf_low;		/* network timestamp function timer */
458 	u32 tsf_hi;		/* network timestamp function timer */
459 	u32 gp1;		/* GP1 timer register */
460 	u32 gp2;		/* GP2 timer register */
461 	u32 gp3;		/* GP3 timer register */
462 	u32 ucode_ver;		/* uCode version */
463 	u32 hw_ver;		/* HW Silicon version */
464 	u32 brd_ver;		/* HW board version */
465 	u32 log_pc;		/* log program counter */
466 	u32 frame_ptr;		/* frame pointer */
467 	u32 stack_ptr;		/* stack pointer */
468 	u32 hcmd;		/* last host command header */
469 	u32 isr0;		/* isr status register LMPM_NIC_ISR0:
470 				 * rxtx_flag */
471 	u32 isr1;		/* isr status register LMPM_NIC_ISR1:
472 				 * host_flag */
473 	u32 isr2;		/* isr status register LMPM_NIC_ISR2:
474 				 * enc_flag */
475 	u32 isr3;		/* isr status register LMPM_NIC_ISR3:
476 				 * time_flag */
477 	u32 isr4;		/* isr status register LMPM_NIC_ISR4:
478 				 * wico interrupt */
479 	u32 isr_pref;		/* isr status register LMPM_NIC_PREF_STAT */
480 	u32 wait_event;		/* wait event() caller address */
481 	u32 l2p_control;	/* L2pControlField */
482 	u32 l2p_duration;	/* L2pDurationField */
483 	u32 l2p_mhvalid;	/* L2pMhValidBits */
484 	u32 l2p_addr_match;	/* L2pAddrMatchStat */
485 	u32 lmpm_pmg_sel;	/* indicate which clocks are turned on
486 				 * (LMPM_PMG_SEL) */
487 	u32 u_timestamp;	/* indicate when the date and time of the
488 				 * compilation */
489 	u32 flow_handler;	/* FH read/write pointers, RX credit */
490 } __packed;
491 
492 struct iwl_alive_resp {
493 	u8 ucode_minor;
494 	u8 ucode_major;
495 	__le16 reserved1;
496 	u8 sw_rev[8];
497 	u8 ver_type;
498 	u8 ver_subtype;			/* not "9" for runtime alive */
499 	__le16 reserved2;
500 	__le32 log_event_table_ptr;	/* SRAM address for event log */
501 	__le32 error_event_table_ptr;	/* SRAM address for error log */
502 	__le32 timestamp;
503 	__le32 is_valid;
504 } __packed;
505 
506 /*
507  * REPLY_ERROR = 0x2 (response only, not a command)
508  */
509 struct iwl_error_resp {
510 	__le32 error_type;
511 	u8 cmd_id;
512 	u8 reserved1;
513 	__le16 bad_cmd_seq_num;
514 	__le32 error_info;
515 	__le64 timestamp;
516 } __packed;
517 
518 /******************************************************************************
519  * (1)
520  * RXON Commands & Responses:
521  *
522  *****************************************************************************/
523 
524 /*
525  * Rx config defines & structure
526  */
527 /* rx_config device types  */
528 enum {
529 	RXON_DEV_TYPE_AP = 1,
530 	RXON_DEV_TYPE_ESS = 3,
531 	RXON_DEV_TYPE_IBSS = 4,
532 	RXON_DEV_TYPE_SNIFFER = 6,
533 	RXON_DEV_TYPE_CP = 7,
534 	RXON_DEV_TYPE_2STA = 8,
535 	RXON_DEV_TYPE_P2P = 9,
536 };
537 
538 
539 #define RXON_RX_CHAIN_DRIVER_FORCE_MSK		cpu_to_le16(0x1 << 0)
540 #define RXON_RX_CHAIN_DRIVER_FORCE_POS		(0)
541 #define RXON_RX_CHAIN_VALID_MSK			cpu_to_le16(0x7 << 1)
542 #define RXON_RX_CHAIN_VALID_POS			(1)
543 #define RXON_RX_CHAIN_FORCE_SEL_MSK		cpu_to_le16(0x7 << 4)
544 #define RXON_RX_CHAIN_FORCE_SEL_POS		(4)
545 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK	cpu_to_le16(0x7 << 7)
546 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS	(7)
547 #define RXON_RX_CHAIN_CNT_MSK			cpu_to_le16(0x3 << 10)
548 #define RXON_RX_CHAIN_CNT_POS			(10)
549 #define RXON_RX_CHAIN_MIMO_CNT_MSK		cpu_to_le16(0x3 << 12)
550 #define RXON_RX_CHAIN_MIMO_CNT_POS		(12)
551 #define RXON_RX_CHAIN_MIMO_FORCE_MSK		cpu_to_le16(0x1 << 14)
552 #define RXON_RX_CHAIN_MIMO_FORCE_POS		(14)
553 
554 /* rx_config flags */
555 /* band & modulation selection */
556 #define RXON_FLG_BAND_24G_MSK           cpu_to_le32(1 << 0)
557 #define RXON_FLG_CCK_MSK                cpu_to_le32(1 << 1)
558 /* auto detection enable */
559 #define RXON_FLG_AUTO_DETECT_MSK        cpu_to_le32(1 << 2)
560 /* TGg protection when tx */
561 #define RXON_FLG_TGG_PROTECT_MSK        cpu_to_le32(1 << 3)
562 /* cck short slot & preamble */
563 #define RXON_FLG_SHORT_SLOT_MSK          cpu_to_le32(1 << 4)
564 #define RXON_FLG_SHORT_PREAMBLE_MSK     cpu_to_le32(1 << 5)
565 /* antenna selection */
566 #define RXON_FLG_DIS_DIV_MSK            cpu_to_le32(1 << 7)
567 #define RXON_FLG_ANT_SEL_MSK            cpu_to_le32(0x0f00)
568 #define RXON_FLG_ANT_A_MSK              cpu_to_le32(1 << 8)
569 #define RXON_FLG_ANT_B_MSK              cpu_to_le32(1 << 9)
570 /* radar detection enable */
571 #define RXON_FLG_RADAR_DETECT_MSK       cpu_to_le32(1 << 12)
572 #define RXON_FLG_TGJ_NARROW_BAND_MSK    cpu_to_le32(1 << 13)
573 /* rx response to host with 8-byte TSF
574 * (according to ON_AIR deassertion) */
575 #define RXON_FLG_TSF2HOST_MSK           cpu_to_le32(1 << 15)
576 
577 
578 /* HT flags */
579 #define RXON_FLG_CTRL_CHANNEL_LOC_POS		(22)
580 #define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK	cpu_to_le32(0x1 << 22)
581 
582 #define RXON_FLG_HT_OPERATING_MODE_POS		(23)
583 
584 #define RXON_FLG_HT_PROT_MSK			cpu_to_le32(0x1 << 23)
585 #define RXON_FLG_HT40_PROT_MSK			cpu_to_le32(0x2 << 23)
586 
587 #define RXON_FLG_CHANNEL_MODE_POS		(25)
588 #define RXON_FLG_CHANNEL_MODE_MSK		cpu_to_le32(0x3 << 25)
589 
590 /* channel mode */
591 enum {
592 	CHANNEL_MODE_LEGACY = 0,
593 	CHANNEL_MODE_PURE_40 = 1,
594 	CHANNEL_MODE_MIXED = 2,
595 	CHANNEL_MODE_RESERVED = 3,
596 };
597 #define RXON_FLG_CHANNEL_MODE_LEGACY	cpu_to_le32(CHANNEL_MODE_LEGACY << RXON_FLG_CHANNEL_MODE_POS)
598 #define RXON_FLG_CHANNEL_MODE_PURE_40	cpu_to_le32(CHANNEL_MODE_PURE_40 << RXON_FLG_CHANNEL_MODE_POS)
599 #define RXON_FLG_CHANNEL_MODE_MIXED	cpu_to_le32(CHANNEL_MODE_MIXED << RXON_FLG_CHANNEL_MODE_POS)
600 
601 /* CTS to self (if spec allows) flag */
602 #define RXON_FLG_SELF_CTS_EN			cpu_to_le32(0x1<<30)
603 
604 /* rx_config filter flags */
605 /* accept all data frames */
606 #define RXON_FILTER_PROMISC_MSK         cpu_to_le32(1 << 0)
607 /* pass control & management to host */
608 #define RXON_FILTER_CTL2HOST_MSK        cpu_to_le32(1 << 1)
609 /* accept multi-cast */
610 #define RXON_FILTER_ACCEPT_GRP_MSK      cpu_to_le32(1 << 2)
611 /* don't decrypt uni-cast frames */
612 #define RXON_FILTER_DIS_DECRYPT_MSK     cpu_to_le32(1 << 3)
613 /* don't decrypt multi-cast frames */
614 #define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4)
615 /* STA is associated */
616 #define RXON_FILTER_ASSOC_MSK           cpu_to_le32(1 << 5)
617 /* transfer to host non bssid beacons in associated state */
618 #define RXON_FILTER_BCON_AWARE_MSK      cpu_to_le32(1 << 6)
619 
620 /**
621  * REPLY_RXON = 0x10 (command, has simple generic response)
622  *
623  * RXON tunes the radio tuner to a service channel, and sets up a number
624  * of parameters that are used primarily for Rx, but also for Tx operations.
625  *
626  * NOTE:  When tuning to a new channel, driver must set the
627  *        RXON_FILTER_ASSOC_MSK to 0.  This will clear station-dependent
628  *        info within the device, including the station tables, tx retry
629  *        rate tables, and txpower tables.  Driver must build a new station
630  *        table and txpower table before transmitting anything on the RXON
631  *        channel.
632  *
633  * NOTE:  All RXONs wipe clean the internal txpower table.  Driver must
634  *        issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10),
635  *        regardless of whether RXON_FILTER_ASSOC_MSK is set.
636  */
637 
638 struct iwl_rxon_cmd {
639 	u8 node_addr[6];
640 	__le16 reserved1;
641 	u8 bssid_addr[6];
642 	__le16 reserved2;
643 	u8 wlap_bssid_addr[6];
644 	__le16 reserved3;
645 	u8 dev_type;
646 	u8 air_propagation;
647 	__le16 rx_chain;
648 	u8 ofdm_basic_rates;
649 	u8 cck_basic_rates;
650 	__le16 assoc_id;
651 	__le32 flags;
652 	__le32 filter_flags;
653 	__le16 channel;
654 	u8 ofdm_ht_single_stream_basic_rates;
655 	u8 ofdm_ht_dual_stream_basic_rates;
656 	u8 ofdm_ht_triple_stream_basic_rates;
657 	u8 reserved5;
658 	__le16 acquisition_data;
659 	__le16 reserved6;
660 } __packed;
661 
662 /*
663  * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response)
664  */
665 struct iwl_rxon_assoc_cmd {
666 	__le32 flags;
667 	__le32 filter_flags;
668 	u8 ofdm_basic_rates;
669 	u8 cck_basic_rates;
670 	__le16 reserved1;
671 	u8 ofdm_ht_single_stream_basic_rates;
672 	u8 ofdm_ht_dual_stream_basic_rates;
673 	u8 ofdm_ht_triple_stream_basic_rates;
674 	u8 reserved2;
675 	__le16 rx_chain_select_flags;
676 	__le16 acquisition_data;
677 	__le32 reserved3;
678 } __packed;
679 
680 #define IWL_CONN_MAX_LISTEN_INTERVAL	10
681 #define IWL_MAX_UCODE_BEACON_INTERVAL	4 /* 4096 */
682 
683 /*
684  * REPLY_RXON_TIMING = 0x14 (command, has simple generic response)
685  */
686 struct iwl_rxon_time_cmd {
687 	__le64 timestamp;
688 	__le16 beacon_interval;
689 	__le16 atim_window;
690 	__le32 beacon_init_val;
691 	__le16 listen_interval;
692 	u8 dtim_period;
693 	u8 delta_cp_bss_tbtts;
694 } __packed;
695 
696 /*
697  * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
698  */
699 /**
700  * struct iwl5000_channel_switch_cmd
701  * @band: 0- 5.2GHz, 1- 2.4GHz
702  * @expect_beacon: 0- resume transmits after channel switch
703  *		   1- wait for beacon to resume transmits
704  * @channel: new channel number
705  * @rxon_flags: Rx on flags
706  * @rxon_filter_flags: filtering parameters
707  * @switch_time: switch time in extended beacon format
708  * @reserved: reserved bytes
709  */
710 struct iwl5000_channel_switch_cmd {
711 	u8 band;
712 	u8 expect_beacon;
713 	__le16 channel;
714 	__le32 rxon_flags;
715 	__le32 rxon_filter_flags;
716 	__le32 switch_time;
717 	__le32 reserved[2][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
718 } __packed;
719 
720 /**
721  * struct iwl6000_channel_switch_cmd
722  * @band: 0- 5.2GHz, 1- 2.4GHz
723  * @expect_beacon: 0- resume transmits after channel switch
724  *		   1- wait for beacon to resume transmits
725  * @channel: new channel number
726  * @rxon_flags: Rx on flags
727  * @rxon_filter_flags: filtering parameters
728  * @switch_time: switch time in extended beacon format
729  * @reserved: reserved bytes
730  */
731 struct iwl6000_channel_switch_cmd {
732 	u8 band;
733 	u8 expect_beacon;
734 	__le16 channel;
735 	__le32 rxon_flags;
736 	__le32 rxon_filter_flags;
737 	__le32 switch_time;
738 	__le32 reserved[3][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
739 } __packed;
740 
741 /*
742  * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command)
743  */
744 struct iwl_csa_notification {
745 	__le16 band;
746 	__le16 channel;
747 	__le32 status;		/* 0 - OK, 1 - fail */
748 } __packed;
749 
750 /******************************************************************************
751  * (2)
752  * Quality-of-Service (QOS) Commands & Responses:
753  *
754  *****************************************************************************/
755 
756 /**
757  * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM
758  * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd
759  *
760  * @cw_min: Contention window, start value in numbers of slots.
761  *          Should be a power-of-2, minus 1.  Device's default is 0x0f.
762  * @cw_max: Contention window, max value in numbers of slots.
763  *          Should be a power-of-2, minus 1.  Device's default is 0x3f.
764  * @aifsn:  Number of slots in Arbitration Interframe Space (before
765  *          performing random backoff timing prior to Tx).  Device default 1.
766  * @edca_txop:  Length of Tx opportunity, in uSecs.  Device default is 0.
767  *
768  * Device will automatically increase contention window by (2*CW) + 1 for each
769  * transmission retry.  Device uses cw_max as a bit mask, ANDed with new CW
770  * value, to cap the CW value.
771  */
772 struct iwl_ac_qos {
773 	__le16 cw_min;
774 	__le16 cw_max;
775 	u8 aifsn;
776 	u8 reserved1;
777 	__le16 edca_txop;
778 } __packed;
779 
780 /* QoS flags defines */
781 #define QOS_PARAM_FLG_UPDATE_EDCA_MSK	cpu_to_le32(0x01)
782 #define QOS_PARAM_FLG_TGN_MSK		cpu_to_le32(0x02)
783 #define QOS_PARAM_FLG_TXOP_TYPE_MSK	cpu_to_le32(0x10)
784 
785 /* Number of Access Categories (AC) (EDCA), queues 0..3 */
786 #define AC_NUM                4
787 
788 /*
789  * REPLY_QOS_PARAM = 0x13 (command, has simple generic response)
790  *
791  * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
792  * 0: Background, 1: Best Effort, 2: Video, 3: Voice.
793  */
794 struct iwl_qosparam_cmd {
795 	__le32 qos_flags;
796 	struct iwl_ac_qos ac[AC_NUM];
797 } __packed;
798 
799 /******************************************************************************
800  * (3)
801  * Add/Modify Stations Commands & Responses:
802  *
803  *****************************************************************************/
804 /*
805  * Multi station support
806  */
807 
808 /* Special, dedicated locations within device's station table */
809 #define	IWL_AP_ID		0
810 #define	IWL_AP_ID_PAN		1
811 #define	IWL_STA_ID		2
812 #define IWLAGN_PAN_BCAST_ID	14
813 #define IWLAGN_BROADCAST_ID	15
814 #define	IWLAGN_STATION_COUNT	16
815 
816 #define	IWL_INVALID_STATION 	255
817 #define IWL_MAX_TID_COUNT	8
818 #define IWL_TID_NON_QOS IWL_MAX_TID_COUNT
819 
820 #define STA_FLG_TX_RATE_MSK		cpu_to_le32(1 << 2)
821 #define STA_FLG_PWR_SAVE_MSK		cpu_to_le32(1 << 8)
822 #define STA_FLG_PAN_STATION		cpu_to_le32(1 << 13)
823 #define STA_FLG_RTS_MIMO_PROT_MSK	cpu_to_le32(1 << 17)
824 #define STA_FLG_AGG_MPDU_8US_MSK	cpu_to_le32(1 << 18)
825 #define STA_FLG_MAX_AGG_SIZE_POS	(19)
826 #define STA_FLG_MAX_AGG_SIZE_MSK	cpu_to_le32(3 << 19)
827 #define STA_FLG_HT40_EN_MSK		cpu_to_le32(1 << 21)
828 #define STA_FLG_MIMO_DIS_MSK		cpu_to_le32(1 << 22)
829 #define STA_FLG_AGG_MPDU_DENSITY_POS	(23)
830 #define STA_FLG_AGG_MPDU_DENSITY_MSK	cpu_to_le32(7 << 23)
831 
832 /* Use in mode field.  1: modify existing entry, 0: add new station entry */
833 #define STA_CONTROL_MODIFY_MSK		0x01
834 
835 /* key flags __le16*/
836 #define STA_KEY_FLG_ENCRYPT_MSK	cpu_to_le16(0x0007)
837 #define STA_KEY_FLG_NO_ENC	cpu_to_le16(0x0000)
838 #define STA_KEY_FLG_WEP		cpu_to_le16(0x0001)
839 #define STA_KEY_FLG_CCMP	cpu_to_le16(0x0002)
840 #define STA_KEY_FLG_TKIP	cpu_to_le16(0x0003)
841 
842 #define STA_KEY_FLG_KEYID_POS	8
843 #define STA_KEY_FLG_INVALID 	cpu_to_le16(0x0800)
844 /* wep key is either from global key (0) or from station info array (1) */
845 #define STA_KEY_FLG_MAP_KEY_MSK	cpu_to_le16(0x0008)
846 
847 /* wep key in STA: 5-bytes (0) or 13-bytes (1) */
848 #define STA_KEY_FLG_KEY_SIZE_MSK     cpu_to_le16(0x1000)
849 #define STA_KEY_MULTICAST_MSK        cpu_to_le16(0x4000)
850 #define STA_KEY_MAX_NUM		8
851 #define STA_KEY_MAX_NUM_PAN	16
852 /* must not match WEP_INVALID_OFFSET */
853 #define IWLAGN_HW_KEY_DEFAULT	0xfe
854 
855 /* Flags indicate whether to modify vs. don't change various station params */
856 #define	STA_MODIFY_KEY_MASK		0x01
857 #define	STA_MODIFY_TID_DISABLE_TX	0x02
858 #define	STA_MODIFY_TX_RATE_MSK		0x04
859 #define STA_MODIFY_ADDBA_TID_MSK	0x08
860 #define STA_MODIFY_DELBA_TID_MSK	0x10
861 #define STA_MODIFY_SLEEP_TX_COUNT_MSK	0x20
862 
863 /* Receiver address (actually, Rx station's index into station table),
864  * combined with Traffic ID (QOS priority), in format used by Tx Scheduler */
865 #define BUILD_RAxTID(sta_id, tid)	(((sta_id) << 4) + (tid))
866 
867 /* agn */
868 struct iwl_keyinfo {
869 	__le16 key_flags;
870 	u8 tkip_rx_tsc_byte2;	/* TSC[2] for key mix ph1 detection */
871 	u8 reserved1;
872 	__le16 tkip_rx_ttak[5];	/* 10-byte unicast TKIP TTAK */
873 	u8 key_offset;
874 	u8 reserved2;
875 	u8 key[16];		/* 16-byte unicast decryption key */
876 	__le64 tx_secur_seq_cnt;
877 	__le64 hw_tkip_mic_rx_key;
878 	__le64 hw_tkip_mic_tx_key;
879 } __packed;
880 
881 /**
882  * struct sta_id_modify
883  * @addr[ETH_ALEN]: station's MAC address
884  * @sta_id: index of station in uCode's station table
885  * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
886  *
887  * Driver selects unused table index when adding new station,
888  * or the index to a pre-existing station entry when modifying that station.
889  * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP).
890  *
891  * modify_mask flags select which parameters to modify vs. leave alone.
892  */
893 struct sta_id_modify {
894 	u8 addr[ETH_ALEN];
895 	__le16 reserved1;
896 	u8 sta_id;
897 	u8 modify_mask;
898 	__le16 reserved2;
899 } __packed;
900 
901 /*
902  * REPLY_ADD_STA = 0x18 (command)
903  *
904  * The device contains an internal table of per-station information,
905  * with info on security keys, aggregation parameters, and Tx rates for
906  * initial Tx attempt and any retries (agn devices uses
907  * REPLY_TX_LINK_QUALITY_CMD,
908  *
909  * REPLY_ADD_STA sets up the table entry for one station, either creating
910  * a new entry, or modifying a pre-existing one.
911  *
912  * NOTE:  RXON command (without "associated" bit set) wipes the station table
913  *        clean.  Moving into RF_KILL state does this also.  Driver must set up
914  *        new station table before transmitting anything on the RXON channel
915  *        (except active scans or active measurements; those commands carry
916  *        their own txpower/rate setup data).
917  *
918  *        When getting started on a new channel, driver must set up the
919  *        IWL_BROADCAST_ID entry (last entry in the table).  For a client
920  *        station in a BSS, once an AP is selected, driver sets up the AP STA
921  *        in the IWL_AP_ID entry (1st entry in the table).  BROADCAST and AP
922  *        are all that are needed for a BSS client station.  If the device is
923  *        used as AP, or in an IBSS network, driver must set up station table
924  *        entries for all STAs in network, starting with index IWL_STA_ID.
925  */
926 
927 struct iwl_addsta_cmd {
928 	u8 mode;		/* 1: modify existing, 0: add new station */
929 	u8 reserved[3];
930 	struct sta_id_modify sta;
931 	struct iwl_keyinfo key;
932 	__le32 station_flags;		/* STA_FLG_* */
933 	__le32 station_flags_msk;	/* STA_FLG_* */
934 
935 	/* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
936 	 * corresponding to bit (e.g. bit 5 controls TID 5).
937 	 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
938 	__le16 tid_disable_tx;
939 	__le16 legacy_reserved;
940 
941 	/* TID for which to add block-ack support.
942 	 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
943 	u8 add_immediate_ba_tid;
944 
945 	/* TID for which to remove block-ack support.
946 	 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
947 	u8 remove_immediate_ba_tid;
948 
949 	/* Starting Sequence Number for added block-ack support.
950 	 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
951 	__le16 add_immediate_ba_ssn;
952 
953 	/*
954 	 * Number of packets OK to transmit to station even though
955 	 * it is asleep -- used to synchronise PS-poll and u-APSD
956 	 * responses while ucode keeps track of STA sleep state.
957 	 */
958 	__le16 sleep_tx_count;
959 
960 	__le16 reserved2;
961 } __packed;
962 
963 
964 #define ADD_STA_SUCCESS_MSK		0x1
965 #define ADD_STA_NO_ROOM_IN_TABLE	0x2
966 #define ADD_STA_NO_BLOCK_ACK_RESOURCE	0x4
967 #define ADD_STA_MODIFY_NON_EXIST_STA	0x8
968 /*
969  * REPLY_ADD_STA = 0x18 (response)
970  */
971 struct iwl_add_sta_resp {
972 	u8 status;	/* ADD_STA_* */
973 } __packed;
974 
975 #define REM_STA_SUCCESS_MSK              0x1
976 /*
977  *  REPLY_REM_STA = 0x19 (response)
978  */
979 struct iwl_rem_sta_resp {
980 	u8 status;
981 } __packed;
982 
983 /*
984  *  REPLY_REM_STA = 0x19 (command)
985  */
986 struct iwl_rem_sta_cmd {
987 	u8 num_sta;     /* number of removed stations */
988 	u8 reserved[3];
989 	u8 addr[ETH_ALEN]; /* MAC addr of the first station */
990 	u8 reserved2[2];
991 } __packed;
992 
993 
994 /* WiFi queues mask */
995 #define IWL_SCD_BK_MSK			cpu_to_le32(BIT(0))
996 #define IWL_SCD_BE_MSK			cpu_to_le32(BIT(1))
997 #define IWL_SCD_VI_MSK			cpu_to_le32(BIT(2))
998 #define IWL_SCD_VO_MSK			cpu_to_le32(BIT(3))
999 #define IWL_SCD_MGMT_MSK		cpu_to_le32(BIT(3))
1000 
1001 /* PAN queues mask */
1002 #define IWL_PAN_SCD_BK_MSK		cpu_to_le32(BIT(4))
1003 #define IWL_PAN_SCD_BE_MSK		cpu_to_le32(BIT(5))
1004 #define IWL_PAN_SCD_VI_MSK		cpu_to_le32(BIT(6))
1005 #define IWL_PAN_SCD_VO_MSK		cpu_to_le32(BIT(7))
1006 #define IWL_PAN_SCD_MGMT_MSK		cpu_to_le32(BIT(7))
1007 #define IWL_PAN_SCD_MULTICAST_MSK	cpu_to_le32(BIT(8))
1008 
1009 #define IWL_AGG_TX_QUEUE_MSK		cpu_to_le32(0xffc00)
1010 
1011 #define IWL_DROP_SINGLE		0
1012 #define IWL_DROP_ALL		(BIT(IWL_RXON_CTX_BSS) | BIT(IWL_RXON_CTX_PAN))
1013 
1014 /*
1015  * REPLY_TXFIFO_FLUSH = 0x1e(command and response)
1016  *
1017  * When using full FIFO flush this command checks the scheduler HW block WR/RD
1018  * pointers to check if all the frames were transferred by DMA into the
1019  * relevant TX FIFO queue. Only when the DMA is finished and the queue is
1020  * empty the command can finish.
1021  * This command is used to flush the TXFIFO from transmit commands, it may
1022  * operate on single or multiple queues, the command queue can't be flushed by
1023  * this command. The command response is returned when all the queue flush
1024  * operations are done. Each TX command flushed return response with the FLUSH
1025  * status set in the TX response status. When FIFO flush operation is used,
1026  * the flush operation ends when both the scheduler DMA done and TXFIFO empty
1027  * are set.
1028  *
1029  * @fifo_control: bit mask for which queues to flush
1030  * @flush_control: flush controls
1031  *	0: Dump single MSDU
1032  *	1: Dump multiple MSDU according to PS, INVALID STA, TTL, TID disable.
1033  *	2: Dump all FIFO
1034  */
1035 struct iwl_txfifo_flush_cmd {
1036 	__le32 fifo_control;
1037 	__le16 flush_control;
1038 	__le16 reserved;
1039 } __packed;
1040 
1041 /*
1042  * REPLY_WEP_KEY = 0x20
1043  */
1044 struct iwl_wep_key {
1045 	u8 key_index;
1046 	u8 key_offset;
1047 	u8 reserved1[2];
1048 	u8 key_size;
1049 	u8 reserved2[3];
1050 	u8 key[16];
1051 } __packed;
1052 
1053 struct iwl_wep_cmd {
1054 	u8 num_keys;
1055 	u8 global_key_type;
1056 	u8 flags;
1057 	u8 reserved;
1058 	struct iwl_wep_key key[0];
1059 } __packed;
1060 
1061 #define WEP_KEY_WEP_TYPE 1
1062 #define WEP_KEYS_MAX 4
1063 #define WEP_INVALID_OFFSET 0xff
1064 #define WEP_KEY_LEN_64 5
1065 #define WEP_KEY_LEN_128 13
1066 
1067 /******************************************************************************
1068  * (4)
1069  * Rx Responses:
1070  *
1071  *****************************************************************************/
1072 
1073 #define RX_RES_STATUS_NO_CRC32_ERROR	cpu_to_le32(1 << 0)
1074 #define RX_RES_STATUS_NO_RXE_OVERFLOW	cpu_to_le32(1 << 1)
1075 
1076 #define RX_RES_PHY_FLAGS_BAND_24_MSK	cpu_to_le16(1 << 0)
1077 #define RX_RES_PHY_FLAGS_MOD_CCK_MSK		cpu_to_le16(1 << 1)
1078 #define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK	cpu_to_le16(1 << 2)
1079 #define RX_RES_PHY_FLAGS_NARROW_BAND_MSK	cpu_to_le16(1 << 3)
1080 #define RX_RES_PHY_FLAGS_ANTENNA_MSK		0xf0
1081 #define RX_RES_PHY_FLAGS_ANTENNA_POS		4
1082 
1083 #define RX_RES_STATUS_SEC_TYPE_MSK	(0x7 << 8)
1084 #define RX_RES_STATUS_SEC_TYPE_NONE	(0x0 << 8)
1085 #define RX_RES_STATUS_SEC_TYPE_WEP	(0x1 << 8)
1086 #define RX_RES_STATUS_SEC_TYPE_CCMP	(0x2 << 8)
1087 #define RX_RES_STATUS_SEC_TYPE_TKIP	(0x3 << 8)
1088 #define	RX_RES_STATUS_SEC_TYPE_ERR	(0x7 << 8)
1089 
1090 #define RX_RES_STATUS_STATION_FOUND	(1<<6)
1091 #define RX_RES_STATUS_NO_STATION_INFO_MISMATCH	(1<<7)
1092 
1093 #define RX_RES_STATUS_DECRYPT_TYPE_MSK	(0x3 << 11)
1094 #define RX_RES_STATUS_NOT_DECRYPT	(0x0 << 11)
1095 #define RX_RES_STATUS_DECRYPT_OK	(0x3 << 11)
1096 #define RX_RES_STATUS_BAD_ICV_MIC	(0x1 << 11)
1097 #define RX_RES_STATUS_BAD_KEY_TTAK	(0x2 << 11)
1098 
1099 #define RX_MPDU_RES_STATUS_ICV_OK	(0x20)
1100 #define RX_MPDU_RES_STATUS_MIC_OK	(0x40)
1101 #define RX_MPDU_RES_STATUS_TTAK_OK	(1 << 7)
1102 #define RX_MPDU_RES_STATUS_DEC_DONE_MSK	(0x800)
1103 
1104 
1105 #define IWLAGN_RX_RES_PHY_CNT 8
1106 #define IWLAGN_RX_RES_AGC_IDX     1
1107 #define IWLAGN_RX_RES_RSSI_AB_IDX 2
1108 #define IWLAGN_RX_RES_RSSI_C_IDX  3
1109 #define IWLAGN_OFDM_AGC_MSK 0xfe00
1110 #define IWLAGN_OFDM_AGC_BIT_POS 9
1111 #define IWLAGN_OFDM_RSSI_INBAND_A_BITMSK 0x00ff
1112 #define IWLAGN_OFDM_RSSI_ALLBAND_A_BITMSK 0xff00
1113 #define IWLAGN_OFDM_RSSI_A_BIT_POS 0
1114 #define IWLAGN_OFDM_RSSI_INBAND_B_BITMSK 0xff0000
1115 #define IWLAGN_OFDM_RSSI_ALLBAND_B_BITMSK 0xff000000
1116 #define IWLAGN_OFDM_RSSI_B_BIT_POS 16
1117 #define IWLAGN_OFDM_RSSI_INBAND_C_BITMSK 0x00ff
1118 #define IWLAGN_OFDM_RSSI_ALLBAND_C_BITMSK 0xff00
1119 #define IWLAGN_OFDM_RSSI_C_BIT_POS 0
1120 
1121 struct iwlagn_non_cfg_phy {
1122 	__le32 non_cfg_phy[IWLAGN_RX_RES_PHY_CNT];  /* up to 8 phy entries */
1123 } __packed;
1124 
1125 
1126 /*
1127  * REPLY_RX = 0xc3 (response only, not a command)
1128  * Used only for legacy (non 11n) frames.
1129  */
1130 struct iwl_rx_phy_res {
1131 	u8 non_cfg_phy_cnt;     /* non configurable DSP phy data byte count */
1132 	u8 cfg_phy_cnt;		/* configurable DSP phy data byte count */
1133 	u8 stat_id;		/* configurable DSP phy data set ID */
1134 	u8 reserved1;
1135 	__le64 timestamp;	/* TSF at on air rise */
1136 	__le32 beacon_time_stamp; /* beacon at on-air rise */
1137 	__le16 phy_flags;	/* general phy flags: band, modulation, ... */
1138 	__le16 channel;		/* channel number */
1139 	u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */
1140 	__le32 rate_n_flags;	/* RATE_MCS_* */
1141 	__le16 byte_count;	/* frame's byte-count */
1142 	__le16 frame_time;	/* frame's time on the air */
1143 } __packed;
1144 
1145 struct iwl_rx_mpdu_res_start {
1146 	__le16 byte_count;
1147 	__le16 reserved;
1148 } __packed;
1149 
1150 
1151 /******************************************************************************
1152  * (5)
1153  * Tx Commands & Responses:
1154  *
1155  * Driver must place each REPLY_TX command into one of the prioritized Tx
1156  * queues in host DRAM, shared between driver and device (see comments for
1157  * SCD registers and Tx/Rx Queues).  When the device's Tx scheduler and uCode
1158  * are preparing to transmit, the device pulls the Tx command over the PCI
1159  * bus via one of the device's Tx DMA channels, to fill an internal FIFO
1160  * from which data will be transmitted.
1161  *
1162  * uCode handles all timing and protocol related to control frames
1163  * (RTS/CTS/ACK), based on flags in the Tx command.  uCode and Tx scheduler
1164  * handle reception of block-acks; uCode updates the host driver via
1165  * REPLY_COMPRESSED_BA.
1166  *
1167  * uCode handles retrying Tx when an ACK is expected but not received.
1168  * This includes trying lower data rates than the one requested in the Tx
1169  * command, as set up by the REPLY_TX_LINK_QUALITY_CMD (agn).
1170  *
1171  * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD.
1172  * This command must be executed after every RXON command, before Tx can occur.
1173  *****************************************************************************/
1174 
1175 /* REPLY_TX Tx flags field */
1176 
1177 /*
1178  * 1: Use RTS/CTS protocol or CTS-to-self if spec allows it
1179  * before this frame. if CTS-to-self required check
1180  * RXON_FLG_SELF_CTS_EN status.
1181  */
1182 #define TX_CMD_FLG_PROT_REQUIRE_MSK cpu_to_le32(1 << 0)
1183 
1184 /* 1: Expect ACK from receiving station
1185  * 0: Don't expect ACK (MAC header's duration field s/b 0)
1186  * Set this for unicast frames, but not broadcast/multicast. */
1187 #define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3)
1188 
1189 /* For agn devices:
1190  * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD).
1191  *    Tx command's initial_rate_index indicates first rate to try;
1192  *    uCode walks through table for additional Tx attempts.
1193  * 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
1194  *    This rate will be used for all Tx attempts; it will not be scaled. */
1195 #define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4)
1196 
1197 /* 1: Expect immediate block-ack.
1198  * Set when Txing a block-ack request frame.  Also set TX_CMD_FLG_ACK_MSK. */
1199 #define TX_CMD_FLG_IMM_BA_RSP_MASK  cpu_to_le32(1 << 6)
1200 
1201 /* Tx antenna selection field; reserved (0) for agn devices. */
1202 #define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00)
1203 
1204 /* 1: Ignore Bluetooth priority for this frame.
1205  * 0: Delay Tx until Bluetooth device is done (normal usage). */
1206 #define TX_CMD_FLG_IGNORE_BT cpu_to_le32(1 << 12)
1207 
1208 /* 1: uCode overrides sequence control field in MAC header.
1209  * 0: Driver provides sequence control field in MAC header.
1210  * Set this for management frames, non-QOS data frames, non-unicast frames,
1211  * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */
1212 #define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13)
1213 
1214 /* 1: This frame is non-last MPDU; more fragments are coming.
1215  * 0: Last fragment, or not using fragmentation. */
1216 #define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14)
1217 
1218 /* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
1219  * 0: No TSF required in outgoing frame.
1220  * Set this for transmitting beacons and probe responses. */
1221 #define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16)
1222 
1223 /* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
1224  *    alignment of frame's payload data field.
1225  * 0: No pad
1226  * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
1227  * field (but not both).  Driver must align frame data (i.e. data following
1228  * MAC header) to DWORD boundary. */
1229 #define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20)
1230 
1231 /* accelerate aggregation support
1232  * 0 - no CCMP encryption; 1 - CCMP encryption */
1233 #define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22)
1234 
1235 /* HCCA-AP - disable duration overwriting. */
1236 #define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25)
1237 
1238 
1239 /*
1240  * TX command security control
1241  */
1242 #define TX_CMD_SEC_WEP  	0x01
1243 #define TX_CMD_SEC_CCM  	0x02
1244 #define TX_CMD_SEC_TKIP		0x03
1245 #define TX_CMD_SEC_MSK		0x03
1246 #define TX_CMD_SEC_SHIFT	6
1247 #define TX_CMD_SEC_KEY128	0x08
1248 
1249 /*
1250  * security overhead sizes
1251  */
1252 #define WEP_IV_LEN 4
1253 #define WEP_ICV_LEN 4
1254 #define CCMP_MIC_LEN 8
1255 #define TKIP_ICV_LEN 4
1256 
1257 /*
1258  * REPLY_TX = 0x1c (command)
1259  */
1260 
1261 /*
1262  * 4965 uCode updates these Tx attempt count values in host DRAM.
1263  * Used for managing Tx retries when expecting block-acks.
1264  * Driver should set these fields to 0.
1265  */
1266 struct iwl_dram_scratch {
1267 	u8 try_cnt;		/* Tx attempts */
1268 	u8 bt_kill_cnt;		/* Tx attempts blocked by Bluetooth device */
1269 	__le16 reserved;
1270 } __packed;
1271 
1272 struct iwl_tx_cmd {
1273 	/*
1274 	 * MPDU byte count:
1275 	 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
1276 	 * + 8 byte IV for CCM or TKIP (not used for WEP)
1277 	 * + Data payload
1278 	 * + 8-byte MIC (not used for CCM/WEP)
1279 	 * NOTE:  Does not include Tx command bytes, post-MAC pad bytes,
1280 	 *        MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
1281 	 * Range: 14-2342 bytes.
1282 	 */
1283 	__le16 len;
1284 
1285 	/*
1286 	 * MPDU or MSDU byte count for next frame.
1287 	 * Used for fragmentation and bursting, but not 11n aggregation.
1288 	 * Same as "len", but for next frame.  Set to 0 if not applicable.
1289 	 */
1290 	__le16 next_frame_len;
1291 
1292 	__le32 tx_flags;	/* TX_CMD_FLG_* */
1293 
1294 	/* uCode may modify this field of the Tx command (in host DRAM!).
1295 	 * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */
1296 	struct iwl_dram_scratch scratch;
1297 
1298 	/* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */
1299 	__le32 rate_n_flags;	/* RATE_MCS_* */
1300 
1301 	/* Index of destination station in uCode's station table */
1302 	u8 sta_id;
1303 
1304 	/* Type of security encryption:  CCM or TKIP */
1305 	u8 sec_ctl;		/* TX_CMD_SEC_* */
1306 
1307 	/*
1308 	 * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial
1309 	 * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set.  Normally "0" for
1310 	 * data frames, this field may be used to selectively reduce initial
1311 	 * rate (via non-0 value) for special frames (e.g. management), while
1312 	 * still supporting rate scaling for all frames.
1313 	 */
1314 	u8 initial_rate_index;
1315 	u8 reserved;
1316 	u8 key[16];
1317 	__le16 next_frame_flags;
1318 	__le16 reserved2;
1319 	union {
1320 		__le32 life_time;
1321 		__le32 attempt;
1322 	} stop_time;
1323 
1324 	/* Host DRAM physical address pointer to "scratch" in this command.
1325 	 * Must be dword aligned.  "0" in dram_lsb_ptr disables usage. */
1326 	__le32 dram_lsb_ptr;
1327 	u8 dram_msb_ptr;
1328 
1329 	u8 rts_retry_limit;	/*byte 50 */
1330 	u8 data_retry_limit;	/*byte 51 */
1331 	u8 tid_tspec;
1332 	union {
1333 		__le16 pm_frame_timeout;
1334 		__le16 attempt_duration;
1335 	} timeout;
1336 
1337 	/*
1338 	 * Duration of EDCA burst Tx Opportunity, in 32-usec units.
1339 	 * Set this if txop time is not specified by HCCA protocol (e.g. by AP).
1340 	 */
1341 	__le16 driver_txop;
1342 
1343 	/*
1344 	 * MAC header goes here, followed by 2 bytes padding if MAC header
1345 	 * length is 26 or 30 bytes, followed by payload data
1346 	 */
1347 	u8 payload[0];
1348 	struct ieee80211_hdr hdr[0];
1349 } __packed;
1350 
1351 /*
1352  * TX command response is sent after *agn* transmission attempts.
1353  *
1354  * both postpone and abort status are expected behavior from uCode. there is
1355  * no special operation required from driver; except for RFKILL_FLUSH,
1356  * which required tx flush host command to flush all the tx frames in queues
1357  */
1358 enum {
1359 	TX_STATUS_SUCCESS = 0x01,
1360 	TX_STATUS_DIRECT_DONE = 0x02,
1361 	/* postpone TX */
1362 	TX_STATUS_POSTPONE_DELAY = 0x40,
1363 	TX_STATUS_POSTPONE_FEW_BYTES = 0x41,
1364 	TX_STATUS_POSTPONE_BT_PRIO = 0x42,
1365 	TX_STATUS_POSTPONE_QUIET_PERIOD = 0x43,
1366 	TX_STATUS_POSTPONE_CALC_TTAK = 0x44,
1367 	/* abort TX */
1368 	TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY = 0x81,
1369 	TX_STATUS_FAIL_SHORT_LIMIT = 0x82,
1370 	TX_STATUS_FAIL_LONG_LIMIT = 0x83,
1371 	TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
1372 	TX_STATUS_FAIL_DRAIN_FLOW = 0x85,
1373 	TX_STATUS_FAIL_RFKILL_FLUSH = 0x86,
1374 	TX_STATUS_FAIL_LIFE_EXPIRE = 0x87,
1375 	TX_STATUS_FAIL_DEST_PS = 0x88,
1376 	TX_STATUS_FAIL_HOST_ABORTED = 0x89,
1377 	TX_STATUS_FAIL_BT_RETRY = 0x8a,
1378 	TX_STATUS_FAIL_STA_INVALID = 0x8b,
1379 	TX_STATUS_FAIL_FRAG_DROPPED = 0x8c,
1380 	TX_STATUS_FAIL_TID_DISABLE = 0x8d,
1381 	TX_STATUS_FAIL_FIFO_FLUSHED = 0x8e,
1382 	TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
1383 	TX_STATUS_FAIL_PASSIVE_NO_RX = 0x90,
1384 	TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
1385 };
1386 
1387 #define	TX_PACKET_MODE_REGULAR		0x0000
1388 #define	TX_PACKET_MODE_BURST_SEQ	0x0100
1389 #define	TX_PACKET_MODE_BURST_FIRST	0x0200
1390 
1391 enum {
1392 	TX_POWER_PA_NOT_ACTIVE = 0x0,
1393 };
1394 
1395 enum {
1396 	TX_STATUS_MSK = 0x000000ff,		/* bits 0:7 */
1397 	TX_STATUS_DELAY_MSK = 0x00000040,
1398 	TX_STATUS_ABORT_MSK = 0x00000080,
1399 	TX_PACKET_MODE_MSK = 0x0000ff00,	/* bits 8:15 */
1400 	TX_FIFO_NUMBER_MSK = 0x00070000,	/* bits 16:18 */
1401 	TX_RESERVED = 0x00780000,		/* bits 19:22 */
1402 	TX_POWER_PA_DETECT_MSK = 0x7f800000,	/* bits 23:30 */
1403 	TX_ABORT_REQUIRED_MSK = 0x80000000,	/* bits 31:31 */
1404 };
1405 
1406 /* *******************************
1407  * TX aggregation status
1408  ******************************* */
1409 
1410 enum {
1411 	AGG_TX_STATE_TRANSMITTED = 0x00,
1412 	AGG_TX_STATE_UNDERRUN_MSK = 0x01,
1413 	AGG_TX_STATE_BT_PRIO_MSK = 0x02,
1414 	AGG_TX_STATE_FEW_BYTES_MSK = 0x04,
1415 	AGG_TX_STATE_ABORT_MSK = 0x08,
1416 	AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10,
1417 	AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20,
1418 	AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40,
1419 	AGG_TX_STATE_SCD_QUERY_MSK = 0x80,
1420 	AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100,
1421 	AGG_TX_STATE_RESPONSE_MSK = 0x1ff,
1422 	AGG_TX_STATE_DUMP_TX_MSK = 0x200,
1423 	AGG_TX_STATE_DELAY_TX_MSK = 0x400
1424 };
1425 
1426 #define AGG_TX_STATUS_MSK	0x00000fff	/* bits 0:11 */
1427 #define AGG_TX_TRY_MSK		0x0000f000	/* bits 12:15 */
1428 
1429 #define AGG_TX_STATE_LAST_SENT_MSK  (AGG_TX_STATE_LAST_SENT_TTL_MSK | \
1430 				     AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \
1431 				     AGG_TX_STATE_LAST_SENT_BT_KILL_MSK)
1432 
1433 /* # tx attempts for first frame in aggregation */
1434 #define AGG_TX_STATE_TRY_CNT_POS 12
1435 #define AGG_TX_STATE_TRY_CNT_MSK 0xf000
1436 
1437 /* Command ID and sequence number of Tx command for this frame */
1438 #define AGG_TX_STATE_SEQ_NUM_POS 16
1439 #define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000
1440 
1441 /*
1442  * REPLY_TX = 0x1c (response)
1443  *
1444  * This response may be in one of two slightly different formats, indicated
1445  * by the frame_count field:
1446  *
1447  * 1)  No aggregation (frame_count == 1).  This reports Tx results for
1448  *     a single frame.  Multiple attempts, at various bit rates, may have
1449  *     been made for this frame.
1450  *
1451  * 2)  Aggregation (frame_count > 1).  This reports Tx results for
1452  *     2 or more frames that used block-acknowledge.  All frames were
1453  *     transmitted at same rate.  Rate scaling may have been used if first
1454  *     frame in this new agg block failed in previous agg block(s).
1455  *
1456  *     Note that, for aggregation, ACK (block-ack) status is not delivered here;
1457  *     block-ack has not been received by the time the agn device records
1458  *     this status.
1459  *     This status relates to reasons the tx might have been blocked or aborted
1460  *     within the sending station (this agn device), rather than whether it was
1461  *     received successfully by the destination station.
1462  */
1463 struct agg_tx_status {
1464 	__le16 status;
1465 	__le16 sequence;
1466 } __packed;
1467 
1468 /*
1469  * definitions for initial rate index field
1470  * bits [3:0] initial rate index
1471  * bits [6:4] rate table color, used for the initial rate
1472  * bit-7 invalid rate indication
1473  *   i.e. rate was not chosen from rate table
1474  *   or rate table color was changed during frame retries
1475  * refer tlc rate info
1476  */
1477 
1478 #define IWL50_TX_RES_INIT_RATE_INDEX_POS	0
1479 #define IWL50_TX_RES_INIT_RATE_INDEX_MSK	0x0f
1480 #define IWL50_TX_RES_RATE_TABLE_COLOR_POS	4
1481 #define IWL50_TX_RES_RATE_TABLE_COLOR_MSK	0x70
1482 #define IWL50_TX_RES_INV_RATE_INDEX_MSK	0x80
1483 
1484 /* refer to ra_tid */
1485 #define IWLAGN_TX_RES_TID_POS	0
1486 #define IWLAGN_TX_RES_TID_MSK	0x0f
1487 #define IWLAGN_TX_RES_RA_POS	4
1488 #define IWLAGN_TX_RES_RA_MSK	0xf0
1489 
1490 struct iwlagn_tx_resp {
1491 	u8 frame_count;		/* 1 no aggregation, >1 aggregation */
1492 	u8 bt_kill_count;	/* # blocked by bluetooth (unused for agg) */
1493 	u8 failure_rts;		/* # failures due to unsuccessful RTS */
1494 	u8 failure_frame;	/* # failures due to no ACK (unused for agg) */
1495 
1496 	/* For non-agg:  Rate at which frame was successful.
1497 	 * For agg:  Rate at which all frames were transmitted. */
1498 	__le32 rate_n_flags;	/* RATE_MCS_*  */
1499 
1500 	/* For non-agg:  RTS + CTS + frame tx attempts time + ACK.
1501 	 * For agg:  RTS + CTS + aggregation tx time + block-ack time. */
1502 	__le16 wireless_media_time;	/* uSecs */
1503 
1504 	u8 pa_status;		/* RF power amplifier measurement (not used) */
1505 	u8 pa_integ_res_a[3];
1506 	u8 pa_integ_res_b[3];
1507 	u8 pa_integ_res_C[3];
1508 
1509 	__le32 tfd_info;
1510 	__le16 seq_ctl;
1511 	__le16 byte_cnt;
1512 	u8 tlc_info;
1513 	u8 ra_tid;		/* tid (0:3), sta_id (4:7) */
1514 	__le16 frame_ctrl;
1515 	/*
1516 	 * For non-agg:  frame status TX_STATUS_*
1517 	 * For agg:  status of 1st frame, AGG_TX_STATE_*; other frame status
1518 	 *           fields follow this one, up to frame_count.
1519 	 *           Bit fields:
1520 	 *           11- 0:  AGG_TX_STATE_* status code
1521 	 *           15-12:  Retry count for 1st frame in aggregation (retries
1522 	 *                   occur if tx failed for this frame when it was a
1523 	 *                   member of a previous aggregation block).  If rate
1524 	 *                   scaling is used, retry count indicates the rate
1525 	 *                   table entry used for all frames in the new agg.
1526 	 *           31-16:  Sequence # for this frame's Tx cmd (not SSN!)
1527 	 */
1528 	struct agg_tx_status status;	/* TX status (in aggregation -
1529 					 * status of 1st frame) */
1530 } __packed;
1531 /*
1532  * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command)
1533  *
1534  * Reports Block-Acknowledge from recipient station
1535  */
1536 struct iwl_compressed_ba_resp {
1537 	__le32 sta_addr_lo32;
1538 	__le16 sta_addr_hi16;
1539 	__le16 reserved;
1540 
1541 	/* Index of recipient (BA-sending) station in uCode's station table */
1542 	u8 sta_id;
1543 	u8 tid;
1544 	__le16 seq_ctl;
1545 	__le64 bitmap;
1546 	__le16 scd_flow;
1547 	__le16 scd_ssn;
1548 	u8 txed;	/* number of frames sent */
1549 	u8 txed_2_done; /* number of frames acked */
1550 } __packed;
1551 
1552 /*
1553  * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response)
1554  *
1555  */
1556 
1557 /*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
1558 #define  LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK	(1 << 0)
1559 
1560 /* # of EDCA prioritized tx fifos */
1561 #define  LINK_QUAL_AC_NUM AC_NUM
1562 
1563 /* # entries in rate scale table to support Tx retries */
1564 #define  LINK_QUAL_MAX_RETRY_NUM 16
1565 
1566 /* Tx antenna selection values */
1567 #define  LINK_QUAL_ANT_A_MSK (1 << 0)
1568 #define  LINK_QUAL_ANT_B_MSK (1 << 1)
1569 #define  LINK_QUAL_ANT_MSK   (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
1570 
1571 
1572 /**
1573  * struct iwl_link_qual_general_params
1574  *
1575  * Used in REPLY_TX_LINK_QUALITY_CMD
1576  */
1577 struct iwl_link_qual_general_params {
1578 	u8 flags;
1579 
1580 	/* No entries at or above this (driver chosen) index contain MIMO */
1581 	u8 mimo_delimiter;
1582 
1583 	/* Best single antenna to use for single stream (legacy, SISO). */
1584 	u8 single_stream_ant_msk;	/* LINK_QUAL_ANT_* */
1585 
1586 	/* Best antennas to use for MIMO (unused for 4965, assumes both). */
1587 	u8 dual_stream_ant_msk;		/* LINK_QUAL_ANT_* */
1588 
1589 	/*
1590 	 * If driver needs to use different initial rates for different
1591 	 * EDCA QOS access categories (as implemented by tx fifos 0-3),
1592 	 * this table will set that up, by indicating the indexes in the
1593 	 * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start.
1594 	 * Otherwise, driver should set all entries to 0.
1595 	 *
1596 	 * Entry usage:
1597 	 * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice
1598 	 * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3.
1599 	 */
1600 	u8 start_rate_index[LINK_QUAL_AC_NUM];
1601 } __packed;
1602 
1603 #define LINK_QUAL_AGG_TIME_LIMIT_DEF	(4000) /* 4 milliseconds */
1604 #define LINK_QUAL_AGG_TIME_LIMIT_MAX	(8000)
1605 #define LINK_QUAL_AGG_TIME_LIMIT_MIN	(100)
1606 
1607 #define LINK_QUAL_AGG_DISABLE_START_DEF	(3)
1608 #define LINK_QUAL_AGG_DISABLE_START_MAX	(255)
1609 #define LINK_QUAL_AGG_DISABLE_START_MIN	(0)
1610 
1611 #define LINK_QUAL_AGG_FRAME_LIMIT_DEF	(63)
1612 #define LINK_QUAL_AGG_FRAME_LIMIT_MAX	(63)
1613 #define LINK_QUAL_AGG_FRAME_LIMIT_MIN	(0)
1614 
1615 /**
1616  * struct iwl_link_qual_agg_params
1617  *
1618  * Used in REPLY_TX_LINK_QUALITY_CMD
1619  */
1620 struct iwl_link_qual_agg_params {
1621 
1622 	/*
1623 	 *Maximum number of uSec in aggregation.
1624 	 * default set to 4000 (4 milliseconds) if not configured in .cfg
1625 	 */
1626 	__le16 agg_time_limit;
1627 
1628 	/*
1629 	 * Number of Tx retries allowed for a frame, before that frame will
1630 	 * no longer be considered for the start of an aggregation sequence
1631 	 * (scheduler will then try to tx it as single frame).
1632 	 * Driver should set this to 3.
1633 	 */
1634 	u8 agg_dis_start_th;
1635 
1636 	/*
1637 	 * Maximum number of frames in aggregation.
1638 	 * 0 = no limit (default).  1 = no aggregation.
1639 	 * Other values = max # frames in aggregation.
1640 	 */
1641 	u8 agg_frame_cnt_limit;
1642 
1643 	__le32 reserved;
1644 } __packed;
1645 
1646 /*
1647  * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
1648  *
1649  * For agn devices
1650  *
1651  * Each station in the agn device's internal station table has its own table
1652  * of 16
1653  * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
1654  * an ACK is not received.  This command replaces the entire table for
1655  * one station.
1656  *
1657  * NOTE:  Station must already be in agn device's station table.
1658  *	  Use REPLY_ADD_STA.
1659  *
1660  * The rate scaling procedures described below work well.  Of course, other
1661  * procedures are possible, and may work better for particular environments.
1662  *
1663  *
1664  * FILLING THE RATE TABLE
1665  *
1666  * Given a particular initial rate and mode, as determined by the rate
1667  * scaling algorithm described below, the Linux driver uses the following
1668  * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
1669  * Link Quality command:
1670  *
1671  *
1672  * 1)  If using High-throughput (HT) (SISO or MIMO) initial rate:
1673  *     a) Use this same initial rate for first 3 entries.
1674  *     b) Find next lower available rate using same mode (SISO or MIMO),
1675  *        use for next 3 entries.  If no lower rate available, switch to
1676  *        legacy mode (no HT40 channel, no MIMO, no short guard interval).
1677  *     c) If using MIMO, set command's mimo_delimiter to number of entries
1678  *        using MIMO (3 or 6).
1679  *     d) After trying 2 HT rates, switch to legacy mode (no HT40 channel,
1680  *        no MIMO, no short guard interval), at the next lower bit rate
1681  *        (e.g. if second HT bit rate was 54, try 48 legacy), and follow
1682  *        legacy procedure for remaining table entries.
1683  *
1684  * 2)  If using legacy initial rate:
1685  *     a) Use the initial rate for only one entry.
1686  *     b) For each following entry, reduce the rate to next lower available
1687  *        rate, until reaching the lowest available rate.
1688  *     c) When reducing rate, also switch antenna selection.
1689  *     d) Once lowest available rate is reached, repeat this rate until
1690  *        rate table is filled (16 entries), switching antenna each entry.
1691  *
1692  *
1693  * ACCUMULATING HISTORY
1694  *
1695  * The rate scaling algorithm for agn devices, as implemented in Linux driver,
1696  * uses two sets of frame Tx success history:  One for the current/active
1697  * modulation mode, and one for a speculative/search mode that is being
1698  * attempted. If the speculative mode turns out to be more effective (i.e.
1699  * actual transfer rate is better), then the driver continues to use the
1700  * speculative mode as the new current active mode.
1701  *
1702  * Each history set contains, separately for each possible rate, data for a
1703  * sliding window of the 62 most recent tx attempts at that rate.  The data
1704  * includes a shifting bitmap of success(1)/failure(0), and sums of successful
1705  * and attempted frames, from which the driver can additionally calculate a
1706  * success ratio (success / attempted) and number of failures
1707  * (attempted - success), and control the size of the window (attempted).
1708  * The driver uses the bit map to remove successes from the success sum, as
1709  * the oldest tx attempts fall out of the window.
1710  *
1711  * When the agn device makes multiple tx attempts for a given frame, each
1712  * attempt might be at a different rate, and have different modulation
1713  * characteristics (e.g. antenna, fat channel, short guard interval), as set
1714  * up in the rate scaling table in the Link Quality command.  The driver must
1715  * determine which rate table entry was used for each tx attempt, to determine
1716  * which rate-specific history to update, and record only those attempts that
1717  * match the modulation characteristics of the history set.
1718  *
1719  * When using block-ack (aggregation), all frames are transmitted at the same
1720  * rate, since there is no per-attempt acknowledgment from the destination
1721  * station.  The Tx response struct iwl_tx_resp indicates the Tx rate in
1722  * rate_n_flags field.  After receiving a block-ack, the driver can update
1723  * history for the entire block all at once.
1724  *
1725  *
1726  * FINDING BEST STARTING RATE:
1727  *
1728  * When working with a selected initial modulation mode (see below), the
1729  * driver attempts to find a best initial rate.  The initial rate is the
1730  * first entry in the Link Quality command's rate table.
1731  *
1732  * 1)  Calculate actual throughput (success ratio * expected throughput, see
1733  *     table below) for current initial rate.  Do this only if enough frames
1734  *     have been attempted to make the value meaningful:  at least 6 failed
1735  *     tx attempts, or at least 8 successes.  If not enough, don't try rate
1736  *     scaling yet.
1737  *
1738  * 2)  Find available rates adjacent to current initial rate.  Available means:
1739  *     a)  supported by hardware &&
1740  *     b)  supported by association &&
1741  *     c)  within any constraints selected by user
1742  *
1743  * 3)  Gather measured throughputs for adjacent rates.  These might not have
1744  *     enough history to calculate a throughput.  That's okay, we might try
1745  *     using one of them anyway!
1746  *
1747  * 4)  Try decreasing rate if, for current rate:
1748  *     a)  success ratio is < 15% ||
1749  *     b)  lower adjacent rate has better measured throughput ||
1750  *     c)  higher adjacent rate has worse throughput, and lower is unmeasured
1751  *
1752  *     As a sanity check, if decrease was determined above, leave rate
1753  *     unchanged if:
1754  *     a)  lower rate unavailable
1755  *     b)  success ratio at current rate > 85% (very good)
1756  *     c)  current measured throughput is better than expected throughput
1757  *         of lower rate (under perfect 100% tx conditions, see table below)
1758  *
1759  * 5)  Try increasing rate if, for current rate:
1760  *     a)  success ratio is < 15% ||
1761  *     b)  both adjacent rates' throughputs are unmeasured (try it!) ||
1762  *     b)  higher adjacent rate has better measured throughput ||
1763  *     c)  lower adjacent rate has worse throughput, and higher is unmeasured
1764  *
1765  *     As a sanity check, if increase was determined above, leave rate
1766  *     unchanged if:
1767  *     a)  success ratio at current rate < 70%.  This is not particularly
1768  *         good performance; higher rate is sure to have poorer success.
1769  *
1770  * 6)  Re-evaluate the rate after each tx frame.  If working with block-
1771  *     acknowledge, history and statistics may be calculated for the entire
1772  *     block (including prior history that fits within the history windows),
1773  *     before re-evaluation.
1774  *
1775  * FINDING BEST STARTING MODULATION MODE:
1776  *
1777  * After working with a modulation mode for a "while" (and doing rate scaling),
1778  * the driver searches for a new initial mode in an attempt to improve
1779  * throughput.  The "while" is measured by numbers of attempted frames:
1780  *
1781  * For legacy mode, search for new mode after:
1782  *   480 successful frames, or 160 failed frames
1783  * For high-throughput modes (SISO or MIMO), search for new mode after:
1784  *   4500 successful frames, or 400 failed frames
1785  *
1786  * Mode switch possibilities are (3 for each mode):
1787  *
1788  * For legacy:
1789  *   Change antenna, try SISO (if HT association), try MIMO (if HT association)
1790  * For SISO:
1791  *   Change antenna, try MIMO, try shortened guard interval (SGI)
1792  * For MIMO:
1793  *   Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
1794  *
1795  * When trying a new mode, use the same bit rate as the old/current mode when
1796  * trying antenna switches and shortened guard interval.  When switching to
1797  * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
1798  * for which the expected throughput (under perfect conditions) is about the
1799  * same or slightly better than the actual measured throughput delivered by
1800  * the old/current mode.
1801  *
1802  * Actual throughput can be estimated by multiplying the expected throughput
1803  * by the success ratio (successful / attempted tx frames).  Frame size is
1804  * not considered in this calculation; it assumes that frame size will average
1805  * out to be fairly consistent over several samples.  The following are
1806  * metric values for expected throughput assuming 100% success ratio.
1807  * Only G band has support for CCK rates:
1808  *
1809  *           RATE:  1    2    5   11    6   9   12   18   24   36   48   54   60
1810  *
1811  *              G:  7   13   35   58   40  57   72   98  121  154  177  186  186
1812  *              A:  0    0    0    0   40  57   72   98  121  154  177  186  186
1813  *     SISO 20MHz:  0    0    0    0   42  42   76  102  124  159  183  193  202
1814  * SGI SISO 20MHz:  0    0    0    0   46  46   82  110  132  168  192  202  211
1815  *     MIMO 20MHz:  0    0    0    0   74  74  123  155  179  214  236  244  251
1816  * SGI MIMO 20MHz:  0    0    0    0   81  81  131  164  188  222  243  251  257
1817  *     SISO 40MHz:  0    0    0    0   77  77  127  160  184  220  242  250  257
1818  * SGI SISO 40MHz:  0    0    0    0   83  83  135  169  193  229  250  257  264
1819  *     MIMO 40MHz:  0    0    0    0  123 123  182  214  235  264  279  285  289
1820  * SGI MIMO 40MHz:  0    0    0    0  131 131  191  222  242  270  284  289  293
1821  *
1822  * After the new mode has been tried for a short while (minimum of 6 failed
1823  * frames or 8 successful frames), compare success ratio and actual throughput
1824  * estimate of the new mode with the old.  If either is better with the new
1825  * mode, continue to use the new mode.
1826  *
1827  * Continue comparing modes until all 3 possibilities have been tried.
1828  * If moving from legacy to HT, try all 3 possibilities from the new HT
1829  * mode.  After trying all 3, a best mode is found.  Continue to use this mode
1830  * for the longer "while" described above (e.g. 480 successful frames for
1831  * legacy), and then repeat the search process.
1832  *
1833  */
1834 struct iwl_link_quality_cmd {
1835 
1836 	/* Index of destination/recipient station in uCode's station table */
1837 	u8 sta_id;
1838 	u8 reserved1;
1839 	__le16 control;		/* not used */
1840 	struct iwl_link_qual_general_params general_params;
1841 	struct iwl_link_qual_agg_params agg_params;
1842 
1843 	/*
1844 	 * Rate info; when using rate-scaling, Tx command's initial_rate_index
1845 	 * specifies 1st Tx rate attempted, via index into this table.
1846 	 * agn devices works its way through table when retrying Tx.
1847 	 */
1848 	struct {
1849 		__le32 rate_n_flags;	/* RATE_MCS_*, IWL_RATE_* */
1850 	} rs_table[LINK_QUAL_MAX_RETRY_NUM];
1851 	__le32 reserved2;
1852 } __packed;
1853 
1854 /*
1855  * BT configuration enable flags:
1856  *   bit 0 - 1: BT channel announcement enabled
1857  *           0: disable
1858  *   bit 1 - 1: priority of BT device enabled
1859  *           0: disable
1860  *   bit 2 - 1: BT 2 wire support enabled
1861  *           0: disable
1862  */
1863 #define BT_COEX_DISABLE (0x0)
1864 #define BT_ENABLE_CHANNEL_ANNOUNCE BIT(0)
1865 #define BT_ENABLE_PRIORITY	   BIT(1)
1866 #define BT_ENABLE_2_WIRE	   BIT(2)
1867 
1868 #define BT_COEX_DISABLE (0x0)
1869 #define BT_COEX_ENABLE  (BT_ENABLE_CHANNEL_ANNOUNCE | BT_ENABLE_PRIORITY)
1870 
1871 #define BT_LEAD_TIME_MIN (0x0)
1872 #define BT_LEAD_TIME_DEF (0x1E)
1873 #define BT_LEAD_TIME_MAX (0xFF)
1874 
1875 #define BT_MAX_KILL_MIN (0x1)
1876 #define BT_MAX_KILL_DEF (0x5)
1877 #define BT_MAX_KILL_MAX (0xFF)
1878 
1879 #define BT_DURATION_LIMIT_DEF	625
1880 #define BT_DURATION_LIMIT_MAX	1250
1881 #define BT_DURATION_LIMIT_MIN	625
1882 
1883 #define BT_ON_THRESHOLD_DEF	4
1884 #define BT_ON_THRESHOLD_MAX	1000
1885 #define BT_ON_THRESHOLD_MIN	1
1886 
1887 #define BT_FRAG_THRESHOLD_DEF	0
1888 #define BT_FRAG_THRESHOLD_MAX	0
1889 #define BT_FRAG_THRESHOLD_MIN	0
1890 
1891 #define BT_AGG_THRESHOLD_DEF	1200
1892 #define BT_AGG_THRESHOLD_MAX	8000
1893 #define BT_AGG_THRESHOLD_MIN	400
1894 
1895 /*
1896  * REPLY_BT_CONFIG = 0x9b (command, has simple generic response)
1897  *
1898  * agn devices support hardware handshake with Bluetooth device on
1899  * same platform.  Bluetooth device alerts wireless device when it will Tx;
1900  * wireless device can delay or kill its own Tx to accommodate.
1901  */
1902 struct iwl_bt_cmd {
1903 	u8 flags;
1904 	u8 lead_time;
1905 	u8 max_kill;
1906 	u8 reserved;
1907 	__le32 kill_ack_mask;
1908 	__le32 kill_cts_mask;
1909 } __packed;
1910 
1911 #define IWLAGN_BT_FLAG_CHANNEL_INHIBITION	BIT(0)
1912 
1913 #define IWLAGN_BT_FLAG_COEX_MODE_MASK		(BIT(3)|BIT(4)|BIT(5))
1914 #define IWLAGN_BT_FLAG_COEX_MODE_SHIFT		3
1915 #define IWLAGN_BT_FLAG_COEX_MODE_DISABLED	0
1916 #define IWLAGN_BT_FLAG_COEX_MODE_LEGACY_2W	1
1917 #define IWLAGN_BT_FLAG_COEX_MODE_3W		2
1918 #define IWLAGN_BT_FLAG_COEX_MODE_4W		3
1919 
1920 #define IWLAGN_BT_FLAG_UCODE_DEFAULT		BIT(6)
1921 /* Disable Sync PSPoll on SCO/eSCO */
1922 #define IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE	BIT(7)
1923 
1924 #define IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD	-75 /* dBm */
1925 #define IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD	-65 /* dBm */
1926 
1927 #define IWLAGN_BT_PRIO_BOOST_MAX	0xFF
1928 #define IWLAGN_BT_PRIO_BOOST_MIN	0x00
1929 #define IWLAGN_BT_PRIO_BOOST_DEFAULT	0xF0
1930 
1931 #define IWLAGN_BT_MAX_KILL_DEFAULT	5
1932 
1933 #define IWLAGN_BT3_T7_DEFAULT		1
1934 
1935 #define IWLAGN_BT_KILL_ACK_MASK_DEFAULT	cpu_to_le32(0xffff0000)
1936 #define IWLAGN_BT_KILL_CTS_MASK_DEFAULT	cpu_to_le32(0xffff0000)
1937 #define IWLAGN_BT_KILL_ACK_CTS_MASK_SCO	cpu_to_le32(0xffffffff)
1938 
1939 #define IWLAGN_BT3_PRIO_SAMPLE_DEFAULT	2
1940 
1941 #define IWLAGN_BT3_T2_DEFAULT		0xc
1942 
1943 #define IWLAGN_BT_VALID_ENABLE_FLAGS	cpu_to_le16(BIT(0))
1944 #define IWLAGN_BT_VALID_BOOST		cpu_to_le16(BIT(1))
1945 #define IWLAGN_BT_VALID_MAX_KILL	cpu_to_le16(BIT(2))
1946 #define IWLAGN_BT_VALID_3W_TIMERS	cpu_to_le16(BIT(3))
1947 #define IWLAGN_BT_VALID_KILL_ACK_MASK	cpu_to_le16(BIT(4))
1948 #define IWLAGN_BT_VALID_KILL_CTS_MASK	cpu_to_le16(BIT(5))
1949 #define IWLAGN_BT_VALID_BT4_TIMES	cpu_to_le16(BIT(6))
1950 #define IWLAGN_BT_VALID_3W_LUT		cpu_to_le16(BIT(7))
1951 
1952 #define IWLAGN_BT_ALL_VALID_MSK		(IWLAGN_BT_VALID_ENABLE_FLAGS | \
1953 					IWLAGN_BT_VALID_BOOST | \
1954 					IWLAGN_BT_VALID_MAX_KILL | \
1955 					IWLAGN_BT_VALID_3W_TIMERS | \
1956 					IWLAGN_BT_VALID_KILL_ACK_MASK | \
1957 					IWLAGN_BT_VALID_KILL_CTS_MASK | \
1958 					IWLAGN_BT_VALID_BT4_TIMES | \
1959 					IWLAGN_BT_VALID_3W_LUT)
1960 
1961 struct iwl_basic_bt_cmd {
1962 	u8 flags;
1963 	u8 ledtime; /* unused */
1964 	u8 max_kill;
1965 	u8 bt3_timer_t7_value;
1966 	__le32 kill_ack_mask;
1967 	__le32 kill_cts_mask;
1968 	u8 bt3_prio_sample_time;
1969 	u8 bt3_timer_t2_value;
1970 	__le16 bt4_reaction_time; /* unused */
1971 	__le32 bt3_lookup_table[12];
1972 	__le16 bt4_decision_time; /* unused */
1973 	__le16 valid;
1974 };
1975 
1976 struct iwl6000_bt_cmd {
1977 	struct iwl_basic_bt_cmd basic;
1978 	u8 prio_boost;
1979 	/*
1980 	 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1981 	 * if configure the following patterns
1982 	 */
1983 	u8 tx_prio_boost;	/* SW boost of WiFi tx priority */
1984 	__le16 rx_prio_boost;	/* SW boost of WiFi rx priority */
1985 };
1986 
1987 struct iwl2000_bt_cmd {
1988 	struct iwl_basic_bt_cmd basic;
1989 	__le32 prio_boost;
1990 	/*
1991 	 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1992 	 * if configure the following patterns
1993 	 */
1994 	u8 reserved;
1995 	u8 tx_prio_boost;	/* SW boost of WiFi tx priority */
1996 	__le16 rx_prio_boost;	/* SW boost of WiFi rx priority */
1997 };
1998 
1999 #define IWLAGN_BT_SCO_ACTIVE	cpu_to_le32(BIT(0))
2000 
2001 struct iwlagn_bt_sco_cmd {
2002 	__le32 flags;
2003 };
2004 
2005 /******************************************************************************
2006  * (6)
2007  * Spectrum Management (802.11h) Commands, Responses, Notifications:
2008  *
2009  *****************************************************************************/
2010 
2011 /*
2012  * Spectrum Management
2013  */
2014 #define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK         | \
2015 				 RXON_FILTER_CTL2HOST_MSK        | \
2016 				 RXON_FILTER_ACCEPT_GRP_MSK      | \
2017 				 RXON_FILTER_DIS_DECRYPT_MSK     | \
2018 				 RXON_FILTER_DIS_GRP_DECRYPT_MSK | \
2019 				 RXON_FILTER_ASSOC_MSK           | \
2020 				 RXON_FILTER_BCON_AWARE_MSK)
2021 
2022 struct iwl_measure_channel {
2023 	__le32 duration;	/* measurement duration in extended beacon
2024 				 * format */
2025 	u8 channel;		/* channel to measure */
2026 	u8 type;		/* see enum iwl_measure_type */
2027 	__le16 reserved;
2028 } __packed;
2029 
2030 /*
2031  * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command)
2032  */
2033 struct iwl_spectrum_cmd {
2034 	__le16 len;		/* number of bytes starting from token */
2035 	u8 token;		/* token id */
2036 	u8 id;			/* measurement id -- 0 or 1 */
2037 	u8 origin;		/* 0 = TGh, 1 = other, 2 = TGk */
2038 	u8 periodic;		/* 1 = periodic */
2039 	__le16 path_loss_timeout;
2040 	__le32 start_time;	/* start time in extended beacon format */
2041 	__le32 reserved2;
2042 	__le32 flags;		/* rxon flags */
2043 	__le32 filter_flags;	/* rxon filter flags */
2044 	__le16 channel_count;	/* minimum 1, maximum 10 */
2045 	__le16 reserved3;
2046 	struct iwl_measure_channel channels[10];
2047 } __packed;
2048 
2049 /*
2050  * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response)
2051  */
2052 struct iwl_spectrum_resp {
2053 	u8 token;
2054 	u8 id;			/* id of the prior command replaced, or 0xff */
2055 	__le16 status;		/* 0 - command will be handled
2056 				 * 1 - cannot handle (conflicts with another
2057 				 *     measurement) */
2058 } __packed;
2059 
2060 enum iwl_measurement_state {
2061 	IWL_MEASUREMENT_START = 0,
2062 	IWL_MEASUREMENT_STOP = 1,
2063 };
2064 
2065 enum iwl_measurement_status {
2066 	IWL_MEASUREMENT_OK = 0,
2067 	IWL_MEASUREMENT_CONCURRENT = 1,
2068 	IWL_MEASUREMENT_CSA_CONFLICT = 2,
2069 	IWL_MEASUREMENT_TGH_CONFLICT = 3,
2070 	/* 4-5 reserved */
2071 	IWL_MEASUREMENT_STOPPED = 6,
2072 	IWL_MEASUREMENT_TIMEOUT = 7,
2073 	IWL_MEASUREMENT_PERIODIC_FAILED = 8,
2074 };
2075 
2076 #define NUM_ELEMENTS_IN_HISTOGRAM 8
2077 
2078 struct iwl_measurement_histogram {
2079 	__le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM];	/* in 0.8usec counts */
2080 	__le32 cck[NUM_ELEMENTS_IN_HISTOGRAM];	/* in 1usec counts */
2081 } __packed;
2082 
2083 /* clear channel availability counters */
2084 struct iwl_measurement_cca_counters {
2085 	__le32 ofdm;
2086 	__le32 cck;
2087 } __packed;
2088 
2089 enum iwl_measure_type {
2090 	IWL_MEASURE_BASIC = (1 << 0),
2091 	IWL_MEASURE_CHANNEL_LOAD = (1 << 1),
2092 	IWL_MEASURE_HISTOGRAM_RPI = (1 << 2),
2093 	IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3),
2094 	IWL_MEASURE_FRAME = (1 << 4),
2095 	/* bits 5:6 are reserved */
2096 	IWL_MEASURE_IDLE = (1 << 7),
2097 };
2098 
2099 /*
2100  * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command)
2101  */
2102 struct iwl_spectrum_notification {
2103 	u8 id;			/* measurement id -- 0 or 1 */
2104 	u8 token;
2105 	u8 channel_index;	/* index in measurement channel list */
2106 	u8 state;		/* 0 - start, 1 - stop */
2107 	__le32 start_time;	/* lower 32-bits of TSF */
2108 	u8 band;		/* 0 - 5.2GHz, 1 - 2.4GHz */
2109 	u8 channel;
2110 	u8 type;		/* see enum iwl_measurement_type */
2111 	u8 reserved1;
2112 	/* NOTE:  cca_ofdm, cca_cck, basic_type, and histogram are only only
2113 	 * valid if applicable for measurement type requested. */
2114 	__le32 cca_ofdm;	/* cca fraction time in 40Mhz clock periods */
2115 	__le32 cca_cck;		/* cca fraction time in 44Mhz clock periods */
2116 	__le32 cca_time;	/* channel load time in usecs */
2117 	u8 basic_type;		/* 0 - bss, 1 - ofdm preamble, 2 -
2118 				 * unidentified */
2119 	u8 reserved2[3];
2120 	struct iwl_measurement_histogram histogram;
2121 	__le32 stop_time;	/* lower 32-bits of TSF */
2122 	__le32 status;		/* see iwl_measurement_status */
2123 } __packed;
2124 
2125 /******************************************************************************
2126  * (7)
2127  * Power Management Commands, Responses, Notifications:
2128  *
2129  *****************************************************************************/
2130 
2131 /**
2132  * struct iwl_powertable_cmd - Power Table Command
2133  * @flags: See below:
2134  *
2135  * POWER_TABLE_CMD = 0x77 (command, has simple generic response)
2136  *
2137  * PM allow:
2138  *   bit 0 - '0' Driver not allow power management
2139  *           '1' Driver allow PM (use rest of parameters)
2140  *
2141  * uCode send sleep notifications:
2142  *   bit 1 - '0' Don't send sleep notification
2143  *           '1' send sleep notification (SEND_PM_NOTIFICATION)
2144  *
2145  * Sleep over DTIM
2146  *   bit 2 - '0' PM have to walk up every DTIM
2147  *           '1' PM could sleep over DTIM till listen Interval.
2148  *
2149  * PCI power managed
2150  *   bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1)
2151  *           '1' !(PCI_CFG_LINK_CTRL & 0x1)
2152  *
2153  * Fast PD
2154  *   bit 4 - '1' Put radio to sleep when receiving frame for others
2155  *
2156  * Force sleep Modes
2157  *   bit 31/30- '00' use both mac/xtal sleeps
2158  *              '01' force Mac sleep
2159  *              '10' force xtal sleep
2160  *              '11' Illegal set
2161  *
2162  * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then
2163  * ucode assume sleep over DTIM is allowed and we don't need to wake up
2164  * for every DTIM.
2165  */
2166 #define IWL_POWER_VEC_SIZE 5
2167 
2168 #define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK	cpu_to_le16(BIT(0))
2169 #define IWL_POWER_POWER_SAVE_ENA_MSK		cpu_to_le16(BIT(0))
2170 #define IWL_POWER_POWER_MANAGEMENT_ENA_MSK	cpu_to_le16(BIT(1))
2171 #define IWL_POWER_SLEEP_OVER_DTIM_MSK		cpu_to_le16(BIT(2))
2172 #define IWL_POWER_PCI_PM_MSK			cpu_to_le16(BIT(3))
2173 #define IWL_POWER_FAST_PD			cpu_to_le16(BIT(4))
2174 #define IWL_POWER_BEACON_FILTERING		cpu_to_le16(BIT(5))
2175 #define IWL_POWER_SHADOW_REG_ENA		cpu_to_le16(BIT(6))
2176 #define IWL_POWER_CT_KILL_SET			cpu_to_le16(BIT(7))
2177 #define IWL_POWER_BT_SCO_ENA			cpu_to_le16(BIT(8))
2178 #define IWL_POWER_ADVANCE_PM_ENA_MSK		cpu_to_le16(BIT(9))
2179 
2180 struct iwl_powertable_cmd {
2181 	__le16 flags;
2182 	u8 keep_alive_seconds;
2183 	u8 debug_flags;
2184 	__le32 rx_data_timeout;
2185 	__le32 tx_data_timeout;
2186 	__le32 sleep_interval[IWL_POWER_VEC_SIZE];
2187 	__le32 keep_alive_beacons;
2188 } __packed;
2189 
2190 /*
2191  * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command)
2192  * all devices identical.
2193  */
2194 struct iwl_sleep_notification {
2195 	u8 pm_sleep_mode;
2196 	u8 pm_wakeup_src;
2197 	__le16 reserved;
2198 	__le32 sleep_time;
2199 	__le32 tsf_low;
2200 	__le32 bcon_timer;
2201 } __packed;
2202 
2203 /* Sleep states.  all devices identical. */
2204 enum {
2205 	IWL_PM_NO_SLEEP = 0,
2206 	IWL_PM_SLP_MAC = 1,
2207 	IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2,
2208 	IWL_PM_SLP_FULL_MAC_CARD_STATE = 3,
2209 	IWL_PM_SLP_PHY = 4,
2210 	IWL_PM_SLP_REPENT = 5,
2211 	IWL_PM_WAKEUP_BY_TIMER = 6,
2212 	IWL_PM_WAKEUP_BY_DRIVER = 7,
2213 	IWL_PM_WAKEUP_BY_RFKILL = 8,
2214 	/* 3 reserved */
2215 	IWL_PM_NUM_OF_MODES = 12,
2216 };
2217 
2218 /*
2219  * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response)
2220  */
2221 #define CARD_STATE_CMD_DISABLE 0x00	/* Put card to sleep */
2222 #define CARD_STATE_CMD_ENABLE  0x01	/* Wake up card */
2223 #define CARD_STATE_CMD_HALT    0x02	/* Power down permanently */
2224 struct iwl_card_state_cmd {
2225 	__le32 status;		/* CARD_STATE_CMD_* request new power state */
2226 } __packed;
2227 
2228 /*
2229  * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command)
2230  */
2231 struct iwl_card_state_notif {
2232 	__le32 flags;
2233 } __packed;
2234 
2235 #define HW_CARD_DISABLED   0x01
2236 #define SW_CARD_DISABLED   0x02
2237 #define CT_CARD_DISABLED   0x04
2238 #define RXON_CARD_DISABLED 0x10
2239 
2240 struct iwl_ct_kill_config {
2241 	__le32   reserved;
2242 	__le32   critical_temperature_M;
2243 	__le32   critical_temperature_R;
2244 }  __packed;
2245 
2246 /* 1000, and 6x00 */
2247 struct iwl_ct_kill_throttling_config {
2248 	__le32   critical_temperature_exit;
2249 	__le32   reserved;
2250 	__le32   critical_temperature_enter;
2251 }  __packed;
2252 
2253 /******************************************************************************
2254  * (8)
2255  * Scan Commands, Responses, Notifications:
2256  *
2257  *****************************************************************************/
2258 
2259 #define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0)
2260 #define SCAN_CHANNEL_TYPE_ACTIVE  cpu_to_le32(1)
2261 
2262 /**
2263  * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table
2264  *
2265  * One for each channel in the scan list.
2266  * Each channel can independently select:
2267  * 1)  SSID for directed active scans
2268  * 2)  Txpower setting (for rate specified within Tx command)
2269  * 3)  How long to stay on-channel (behavior may be modified by quiet_time,
2270  *     quiet_plcp_th, good_CRC_th)
2271  *
2272  * To avoid uCode errors, make sure the following are true (see comments
2273  * under struct iwl_scan_cmd about max_out_time and quiet_time):
2274  * 1)  If using passive_dwell (i.e. passive_dwell != 0):
2275  *     active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
2276  * 2)  quiet_time <= active_dwell
2277  * 3)  If restricting off-channel time (i.e. max_out_time !=0):
2278  *     passive_dwell < max_out_time
2279  *     active_dwell < max_out_time
2280  */
2281 
2282 struct iwl_scan_channel {
2283 	/*
2284 	 * type is defined as:
2285 	 * 0:0 1 = active, 0 = passive
2286 	 * 1:20 SSID direct bit map; if a bit is set, then corresponding
2287 	 *     SSID IE is transmitted in probe request.
2288 	 * 21:31 reserved
2289 	 */
2290 	__le32 type;
2291 	__le16 channel;	/* band is selected by iwl_scan_cmd "flags" field */
2292 	u8 tx_gain;		/* gain for analog radio */
2293 	u8 dsp_atten;		/* gain for DSP */
2294 	__le16 active_dwell;	/* in 1024-uSec TU (time units), typ 5-50 */
2295 	__le16 passive_dwell;	/* in 1024-uSec TU (time units), typ 20-500 */
2296 } __packed;
2297 
2298 /* set number of direct probes __le32 type */
2299 #define IWL_SCAN_PROBE_MASK(n) 	cpu_to_le32((BIT(n) | (BIT(n) - BIT(1))))
2300 
2301 /**
2302  * struct iwl_ssid_ie - directed scan network information element
2303  *
2304  * Up to 20 of these may appear in REPLY_SCAN_CMD,
2305  * selected by "type" bit field in struct iwl_scan_channel;
2306  * each channel may select different ssids from among the 20 entries.
2307  * SSID IEs get transmitted in reverse order of entry.
2308  */
2309 struct iwl_ssid_ie {
2310 	u8 id;
2311 	u8 len;
2312 	u8 ssid[32];
2313 } __packed;
2314 
2315 #define PROBE_OPTION_MAX		20
2316 #define TX_CMD_LIFE_TIME_INFINITE	cpu_to_le32(0xFFFFFFFF)
2317 #define IWL_GOOD_CRC_TH_DISABLED	0
2318 #define IWL_GOOD_CRC_TH_DEFAULT		cpu_to_le16(1)
2319 #define IWL_GOOD_CRC_TH_NEVER		cpu_to_le16(0xffff)
2320 #define IWL_MAX_SCAN_SIZE 1024
2321 #define IWL_MAX_CMD_SIZE 4096
2322 
2323 /*
2324  * REPLY_SCAN_CMD = 0x80 (command)
2325  *
2326  * The hardware scan command is very powerful; the driver can set it up to
2327  * maintain (relatively) normal network traffic while doing a scan in the
2328  * background.  The max_out_time and suspend_time control the ratio of how
2329  * long the device stays on an associated network channel ("service channel")
2330  * vs. how long it's away from the service channel, i.e. tuned to other channels
2331  * for scanning.
2332  *
2333  * max_out_time is the max time off-channel (in usec), and suspend_time
2334  * is how long (in "extended beacon" format) that the scan is "suspended"
2335  * after returning to the service channel.  That is, suspend_time is the
2336  * time that we stay on the service channel, doing normal work, between
2337  * scan segments.  The driver may set these parameters differently to support
2338  * scanning when associated vs. not associated, and light vs. heavy traffic
2339  * loads when associated.
2340  *
2341  * After receiving this command, the device's scan engine does the following;
2342  *
2343  * 1)  Sends SCAN_START notification to driver
2344  * 2)  Checks to see if it has time to do scan for one channel
2345  * 3)  Sends NULL packet, with power-save (PS) bit set to 1,
2346  *     to tell AP that we're going off-channel
2347  * 4)  Tunes to first channel in scan list, does active or passive scan
2348  * 5)  Sends SCAN_RESULT notification to driver
2349  * 6)  Checks to see if it has time to do scan on *next* channel in list
2350  * 7)  Repeats 4-6 until it no longer has time to scan the next channel
2351  *     before max_out_time expires
2352  * 8)  Returns to service channel
2353  * 9)  Sends NULL packet with PS=0 to tell AP that we're back
2354  * 10) Stays on service channel until suspend_time expires
2355  * 11) Repeats entire process 2-10 until list is complete
2356  * 12) Sends SCAN_COMPLETE notification
2357  *
2358  * For fast, efficient scans, the scan command also has support for staying on
2359  * a channel for just a short time, if doing active scanning and getting no
2360  * responses to the transmitted probe request.  This time is controlled by
2361  * quiet_time, and the number of received packets below which a channel is
2362  * considered "quiet" is controlled by quiet_plcp_threshold.
2363  *
2364  * For active scanning on channels that have regulatory restrictions against
2365  * blindly transmitting, the scan can listen before transmitting, to make sure
2366  * that there is already legitimate activity on the channel.  If enough
2367  * packets are cleanly received on the channel (controlled by good_CRC_th,
2368  * typical value 1), the scan engine starts transmitting probe requests.
2369  *
2370  * Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
2371  *
2372  * To avoid uCode errors, see timing restrictions described under
2373  * struct iwl_scan_channel.
2374  */
2375 
2376 enum iwl_scan_flags {
2377 	/* BIT(0) currently unused */
2378 	IWL_SCAN_FLAGS_ACTION_FRAME_TX	= BIT(1),
2379 	/* bits 2-7 reserved */
2380 };
2381 
2382 struct iwl_scan_cmd {
2383 	__le16 len;
2384 	u8 scan_flags;		/* scan flags: see enum iwl_scan_flags */
2385 	u8 channel_count;	/* # channels in channel list */
2386 	__le16 quiet_time;	/* dwell only this # millisecs on quiet channel
2387 				 * (only for active scan) */
2388 	__le16 quiet_plcp_th;	/* quiet chnl is < this # pkts (typ. 1) */
2389 	__le16 good_CRC_th;	/* passive -> active promotion threshold */
2390 	__le16 rx_chain;	/* RXON_RX_CHAIN_* */
2391 	__le32 max_out_time;	/* max usec to be away from associated (service)
2392 				 * channel */
2393 	__le32 suspend_time;	/* pause scan this long (in "extended beacon
2394 				 * format") when returning to service chnl:
2395 				 */
2396 	__le32 flags;		/* RXON_FLG_* */
2397 	__le32 filter_flags;	/* RXON_FILTER_* */
2398 
2399 	/* For active scans (set to all-0s for passive scans).
2400 	 * Does not include payload.  Must specify Tx rate; no rate scaling. */
2401 	struct iwl_tx_cmd tx_cmd;
2402 
2403 	/* For directed active scans (set to all-0s otherwise) */
2404 	struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX];
2405 
2406 	/*
2407 	 * Probe request frame, followed by channel list.
2408 	 *
2409 	 * Size of probe request frame is specified by byte count in tx_cmd.
2410 	 * Channel list follows immediately after probe request frame.
2411 	 * Number of channels in list is specified by channel_count.
2412 	 * Each channel in list is of type:
2413 	 *
2414 	 * struct iwl_scan_channel channels[0];
2415 	 *
2416 	 * NOTE:  Only one band of channels can be scanned per pass.  You
2417 	 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
2418 	 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
2419 	 * before requesting another scan.
2420 	 */
2421 	u8 data[0];
2422 } __packed;
2423 
2424 /* Can abort will notify by complete notification with abort status. */
2425 #define CAN_ABORT_STATUS	cpu_to_le32(0x1)
2426 /* complete notification statuses */
2427 #define ABORT_STATUS            0x2
2428 
2429 /*
2430  * REPLY_SCAN_CMD = 0x80 (response)
2431  */
2432 struct iwl_scanreq_notification {
2433 	__le32 status;		/* 1: okay, 2: cannot fulfill request */
2434 } __packed;
2435 
2436 /*
2437  * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command)
2438  */
2439 struct iwl_scanstart_notification {
2440 	__le32 tsf_low;
2441 	__le32 tsf_high;
2442 	__le32 beacon_timer;
2443 	u8 channel;
2444 	u8 band;
2445 	u8 reserved[2];
2446 	__le32 status;
2447 } __packed;
2448 
2449 #define  SCAN_OWNER_STATUS 0x1
2450 #define  MEASURE_OWNER_STATUS 0x2
2451 
2452 #define IWL_PROBE_STATUS_OK		0
2453 #define IWL_PROBE_STATUS_TX_FAILED	BIT(0)
2454 /* error statuses combined with TX_FAILED */
2455 #define IWL_PROBE_STATUS_FAIL_TTL	BIT(1)
2456 #define IWL_PROBE_STATUS_FAIL_BT	BIT(2)
2457 
2458 #define NUMBER_OF_STATISTICS 1	/* first __le32 is good CRC */
2459 /*
2460  * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command)
2461  */
2462 struct iwl_scanresults_notification {
2463 	u8 channel;
2464 	u8 band;
2465 	u8 probe_status;
2466 	u8 num_probe_not_sent; /* not enough time to send */
2467 	__le32 tsf_low;
2468 	__le32 tsf_high;
2469 	__le32 statistics[NUMBER_OF_STATISTICS];
2470 } __packed;
2471 
2472 /*
2473  * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command)
2474  */
2475 struct iwl_scancomplete_notification {
2476 	u8 scanned_channels;
2477 	u8 status;
2478 	u8 bt_status;	/* BT On/Off status */
2479 	u8 last_channel;
2480 	__le32 tsf_low;
2481 	__le32 tsf_high;
2482 } __packed;
2483 
2484 
2485 /******************************************************************************
2486  * (9)
2487  * IBSS/AP Commands and Notifications:
2488  *
2489  *****************************************************************************/
2490 
2491 enum iwl_ibss_manager {
2492 	IWL_NOT_IBSS_MANAGER = 0,
2493 	IWL_IBSS_MANAGER = 1,
2494 };
2495 
2496 /*
2497  * BEACON_NOTIFICATION = 0x90 (notification only, not a command)
2498  */
2499 
2500 struct iwlagn_beacon_notif {
2501 	struct iwlagn_tx_resp beacon_notify_hdr;
2502 	__le32 low_tsf;
2503 	__le32 high_tsf;
2504 	__le32 ibss_mgr_status;
2505 } __packed;
2506 
2507 /*
2508  * REPLY_TX_BEACON = 0x91 (command, has simple generic response)
2509  */
2510 
2511 struct iwl_tx_beacon_cmd {
2512 	struct iwl_tx_cmd tx;
2513 	__le16 tim_idx;
2514 	u8 tim_size;
2515 	u8 reserved1;
2516 	struct ieee80211_hdr frame[0];	/* beacon frame */
2517 } __packed;
2518 
2519 /******************************************************************************
2520  * (10)
2521  * Statistics Commands and Notifications:
2522  *
2523  *****************************************************************************/
2524 
2525 #define IWL_TEMP_CONVERT 260
2526 
2527 #define SUP_RATE_11A_MAX_NUM_CHANNELS  8
2528 #define SUP_RATE_11B_MAX_NUM_CHANNELS  4
2529 #define SUP_RATE_11G_MAX_NUM_CHANNELS  12
2530 
2531 /* Used for passing to driver number of successes and failures per rate */
2532 struct rate_histogram {
2533 	union {
2534 		__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2535 		__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2536 		__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2537 	} success;
2538 	union {
2539 		__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2540 		__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2541 		__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2542 	} failed;
2543 } __packed;
2544 
2545 /* statistics command response */
2546 
2547 struct statistics_dbg {
2548 	__le32 burst_check;
2549 	__le32 burst_count;
2550 	__le32 wait_for_silence_timeout_cnt;
2551 	__le32 reserved[3];
2552 } __packed;
2553 
2554 struct statistics_rx_phy {
2555 	__le32 ina_cnt;
2556 	__le32 fina_cnt;
2557 	__le32 plcp_err;
2558 	__le32 crc32_err;
2559 	__le32 overrun_err;
2560 	__le32 early_overrun_err;
2561 	__le32 crc32_good;
2562 	__le32 false_alarm_cnt;
2563 	__le32 fina_sync_err_cnt;
2564 	__le32 sfd_timeout;
2565 	__le32 fina_timeout;
2566 	__le32 unresponded_rts;
2567 	__le32 rxe_frame_limit_overrun;
2568 	__le32 sent_ack_cnt;
2569 	__le32 sent_cts_cnt;
2570 	__le32 sent_ba_rsp_cnt;
2571 	__le32 dsp_self_kill;
2572 	__le32 mh_format_err;
2573 	__le32 re_acq_main_rssi_sum;
2574 	__le32 reserved3;
2575 } __packed;
2576 
2577 struct statistics_rx_ht_phy {
2578 	__le32 plcp_err;
2579 	__le32 overrun_err;
2580 	__le32 early_overrun_err;
2581 	__le32 crc32_good;
2582 	__le32 crc32_err;
2583 	__le32 mh_format_err;
2584 	__le32 agg_crc32_good;
2585 	__le32 agg_mpdu_cnt;
2586 	__le32 agg_cnt;
2587 	__le32 unsupport_mcs;
2588 } __packed;
2589 
2590 #define INTERFERENCE_DATA_AVAILABLE      cpu_to_le32(1)
2591 
2592 struct statistics_rx_non_phy {
2593 	__le32 bogus_cts;	/* CTS received when not expecting CTS */
2594 	__le32 bogus_ack;	/* ACK received when not expecting ACK */
2595 	__le32 non_bssid_frames;	/* number of frames with BSSID that
2596 					 * doesn't belong to the STA BSSID */
2597 	__le32 filtered_frames;	/* count frames that were dumped in the
2598 				 * filtering process */
2599 	__le32 non_channel_beacons;	/* beacons with our bss id but not on
2600 					 * our serving channel */
2601 	__le32 channel_beacons;	/* beacons with our bss id and in our
2602 				 * serving channel */
2603 	__le32 num_missed_bcon;	/* number of missed beacons */
2604 	__le32 adc_rx_saturation_time;	/* count in 0.8us units the time the
2605 					 * ADC was in saturation */
2606 	__le32 ina_detection_search_time;/* total time (in 0.8us) searched
2607 					  * for INA */
2608 	__le32 beacon_silence_rssi_a;	/* RSSI silence after beacon frame */
2609 	__le32 beacon_silence_rssi_b;	/* RSSI silence after beacon frame */
2610 	__le32 beacon_silence_rssi_c;	/* RSSI silence after beacon frame */
2611 	__le32 interference_data_flag;	/* flag for interference data
2612 					 * availability. 1 when data is
2613 					 * available. */
2614 	__le32 channel_load;		/* counts RX Enable time in uSec */
2615 	__le32 dsp_false_alarms;	/* DSP false alarm (both OFDM
2616 					 * and CCK) counter */
2617 	__le32 beacon_rssi_a;
2618 	__le32 beacon_rssi_b;
2619 	__le32 beacon_rssi_c;
2620 	__le32 beacon_energy_a;
2621 	__le32 beacon_energy_b;
2622 	__le32 beacon_energy_c;
2623 } __packed;
2624 
2625 struct statistics_rx_non_phy_bt {
2626 	struct statistics_rx_non_phy common;
2627 	/* additional stats for bt */
2628 	__le32 num_bt_kills;
2629 	__le32 reserved[2];
2630 } __packed;
2631 
2632 struct statistics_rx {
2633 	struct statistics_rx_phy ofdm;
2634 	struct statistics_rx_phy cck;
2635 	struct statistics_rx_non_phy general;
2636 	struct statistics_rx_ht_phy ofdm_ht;
2637 } __packed;
2638 
2639 struct statistics_rx_bt {
2640 	struct statistics_rx_phy ofdm;
2641 	struct statistics_rx_phy cck;
2642 	struct statistics_rx_non_phy_bt general;
2643 	struct statistics_rx_ht_phy ofdm_ht;
2644 } __packed;
2645 
2646 /**
2647  * struct statistics_tx_power - current tx power
2648  *
2649  * @ant_a: current tx power on chain a in 1/2 dB step
2650  * @ant_b: current tx power on chain b in 1/2 dB step
2651  * @ant_c: current tx power on chain c in 1/2 dB step
2652  */
2653 struct statistics_tx_power {
2654 	u8 ant_a;
2655 	u8 ant_b;
2656 	u8 ant_c;
2657 	u8 reserved;
2658 } __packed;
2659 
2660 struct statistics_tx_non_phy_agg {
2661 	__le32 ba_timeout;
2662 	__le32 ba_reschedule_frames;
2663 	__le32 scd_query_agg_frame_cnt;
2664 	__le32 scd_query_no_agg;
2665 	__le32 scd_query_agg;
2666 	__le32 scd_query_mismatch;
2667 	__le32 frame_not_ready;
2668 	__le32 underrun;
2669 	__le32 bt_prio_kill;
2670 	__le32 rx_ba_rsp_cnt;
2671 } __packed;
2672 
2673 struct statistics_tx {
2674 	__le32 preamble_cnt;
2675 	__le32 rx_detected_cnt;
2676 	__le32 bt_prio_defer_cnt;
2677 	__le32 bt_prio_kill_cnt;
2678 	__le32 few_bytes_cnt;
2679 	__le32 cts_timeout;
2680 	__le32 ack_timeout;
2681 	__le32 expected_ack_cnt;
2682 	__le32 actual_ack_cnt;
2683 	__le32 dump_msdu_cnt;
2684 	__le32 burst_abort_next_frame_mismatch_cnt;
2685 	__le32 burst_abort_missing_next_frame_cnt;
2686 	__le32 cts_timeout_collision;
2687 	__le32 ack_or_ba_timeout_collision;
2688 	struct statistics_tx_non_phy_agg agg;
2689 	/*
2690 	 * "tx_power" are optional parameters provided by uCode,
2691 	 * 6000 series is the only device provide the information,
2692 	 * Those are reserved fields for all the other devices
2693 	 */
2694 	struct statistics_tx_power tx_power;
2695 	__le32 reserved1;
2696 } __packed;
2697 
2698 
2699 struct statistics_div {
2700 	__le32 tx_on_a;
2701 	__le32 tx_on_b;
2702 	__le32 exec_time;
2703 	__le32 probe_time;
2704 	__le32 reserved1;
2705 	__le32 reserved2;
2706 } __packed;
2707 
2708 struct statistics_general_common {
2709 	__le32 temperature;   /* radio temperature */
2710 	__le32 temperature_m; /* radio voltage */
2711 	struct statistics_dbg dbg;
2712 	__le32 sleep_time;
2713 	__le32 slots_out;
2714 	__le32 slots_idle;
2715 	__le32 ttl_timestamp;
2716 	struct statistics_div div;
2717 	__le32 rx_enable_counter;
2718 	/*
2719 	 * num_of_sos_states:
2720 	 *  count the number of times we have to re-tune
2721 	 *  in order to get out of bad PHY status
2722 	 */
2723 	__le32 num_of_sos_states;
2724 } __packed;
2725 
2726 struct statistics_bt_activity {
2727 	/* Tx statistics */
2728 	__le32 hi_priority_tx_req_cnt;
2729 	__le32 hi_priority_tx_denied_cnt;
2730 	__le32 lo_priority_tx_req_cnt;
2731 	__le32 lo_priority_tx_denied_cnt;
2732 	/* Rx statistics */
2733 	__le32 hi_priority_rx_req_cnt;
2734 	__le32 hi_priority_rx_denied_cnt;
2735 	__le32 lo_priority_rx_req_cnt;
2736 	__le32 lo_priority_rx_denied_cnt;
2737 } __packed;
2738 
2739 struct statistics_general {
2740 	struct statistics_general_common common;
2741 	__le32 reserved2;
2742 	__le32 reserved3;
2743 } __packed;
2744 
2745 struct statistics_general_bt {
2746 	struct statistics_general_common common;
2747 	struct statistics_bt_activity activity;
2748 	__le32 reserved2;
2749 	__le32 reserved3;
2750 } __packed;
2751 
2752 #define UCODE_STATISTICS_CLEAR_MSK		(0x1 << 0)
2753 #define UCODE_STATISTICS_FREQUENCY_MSK		(0x1 << 1)
2754 #define UCODE_STATISTICS_NARROW_BAND_MSK	(0x1 << 2)
2755 
2756 /*
2757  * REPLY_STATISTICS_CMD = 0x9c,
2758  * all devices identical.
2759  *
2760  * This command triggers an immediate response containing uCode statistics.
2761  * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below.
2762  *
2763  * If the CLEAR_STATS configuration flag is set, uCode will clear its
2764  * internal copy of the statistics (counters) after issuing the response.
2765  * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below).
2766  *
2767  * If the DISABLE_NOTIF configuration flag is set, uCode will not issue
2768  * STATISTICS_NOTIFICATIONs after received beacons (see below).  This flag
2769  * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself.
2770  */
2771 #define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1)	/* see above */
2772 #define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */
2773 struct iwl_statistics_cmd {
2774 	__le32 configuration_flags;	/* IWL_STATS_CONF_* */
2775 } __packed;
2776 
2777 /*
2778  * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command)
2779  *
2780  * By default, uCode issues this notification after receiving a beacon
2781  * while associated.  To disable this behavior, set DISABLE_NOTIF flag in the
2782  * REPLY_STATISTICS_CMD 0x9c, above.
2783  *
2784  * Statistics counters continue to increment beacon after beacon, but are
2785  * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD
2786  * 0x9c with CLEAR_STATS bit set (see above).
2787  *
2788  * uCode also issues this notification during scans.  uCode clears statistics
2789  * appropriately so that each notification contains statistics for only the
2790  * one channel that has just been scanned.
2791  */
2792 #define STATISTICS_REPLY_FLG_BAND_24G_MSK         cpu_to_le32(0x2)
2793 #define STATISTICS_REPLY_FLG_HT40_MODE_MSK        cpu_to_le32(0x8)
2794 
2795 struct iwl_notif_statistics {
2796 	__le32 flag;
2797 	struct statistics_rx rx;
2798 	struct statistics_tx tx;
2799 	struct statistics_general general;
2800 } __packed;
2801 
2802 struct iwl_bt_notif_statistics {
2803 	__le32 flag;
2804 	struct statistics_rx_bt rx;
2805 	struct statistics_tx tx;
2806 	struct statistics_general_bt general;
2807 } __packed;
2808 
2809 /*
2810  * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command)
2811  *
2812  * uCode send MISSED_BEACONS_NOTIFICATION to driver when detect beacon missed
2813  * in regardless of how many missed beacons, which mean when driver receive the
2814  * notification, inside the command, it can find all the beacons information
2815  * which include number of total missed beacons, number of consecutive missed
2816  * beacons, number of beacons received and number of beacons expected to
2817  * receive.
2818  *
2819  * If uCode detected consecutive_missed_beacons > 5, it will reset the radio
2820  * in order to bring the radio/PHY back to working state; which has no relation
2821  * to when driver will perform sensitivity calibration.
2822  *
2823  * Driver should set it own missed_beacon_threshold to decide when to perform
2824  * sensitivity calibration based on number of consecutive missed beacons in
2825  * order to improve overall performance, especially in noisy environment.
2826  *
2827  */
2828 
2829 #define IWL_MISSED_BEACON_THRESHOLD_MIN	(1)
2830 #define IWL_MISSED_BEACON_THRESHOLD_DEF	(5)
2831 #define IWL_MISSED_BEACON_THRESHOLD_MAX	IWL_MISSED_BEACON_THRESHOLD_DEF
2832 
2833 struct iwl_missed_beacon_notif {
2834 	__le32 consecutive_missed_beacons;
2835 	__le32 total_missed_becons;
2836 	__le32 num_expected_beacons;
2837 	__le32 num_recvd_beacons;
2838 } __packed;
2839 
2840 
2841 /******************************************************************************
2842  * (11)
2843  * Rx Calibration Commands:
2844  *
2845  * With the uCode used for open source drivers, most Tx calibration (except
2846  * for Tx Power) and most Rx calibration is done by uCode during the
2847  * "initialize" phase of uCode boot.  Driver must calibrate only:
2848  *
2849  * 1)  Tx power (depends on temperature), described elsewhere
2850  * 2)  Receiver gain balance (optimize MIMO, and detect disconnected antennas)
2851  * 3)  Receiver sensitivity (to optimize signal detection)
2852  *
2853  *****************************************************************************/
2854 
2855 /**
2856  * SENSITIVITY_CMD = 0xa8 (command, has simple generic response)
2857  *
2858  * This command sets up the Rx signal detector for a sensitivity level that
2859  * is high enough to lock onto all signals within the associated network,
2860  * but low enough to ignore signals that are below a certain threshold, so as
2861  * not to have too many "false alarms".  False alarms are signals that the
2862  * Rx DSP tries to lock onto, but then discards after determining that they
2863  * are noise.
2864  *
2865  * The optimum number of false alarms is between 5 and 50 per 200 TUs
2866  * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
2867  * time listening, not transmitting).  Driver must adjust sensitivity so that
2868  * the ratio of actual false alarms to actual Rx time falls within this range.
2869  *
2870  * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each
2871  * received beacon.  These provide information to the driver to analyze the
2872  * sensitivity.  Don't analyze statistics that come in from scanning, or any
2873  * other non-associated-network source.  Pertinent statistics include:
2874  *
2875  * From "general" statistics (struct statistics_rx_non_phy):
2876  *
2877  * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
2878  *   Measure of energy of desired signal.  Used for establishing a level
2879  *   below which the device does not detect signals.
2880  *
2881  * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
2882  *   Measure of background noise in silent period after beacon.
2883  *
2884  * channel_load
2885  *   uSecs of actual Rx time during beacon period (varies according to
2886  *   how much time was spent transmitting).
2887  *
2888  * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately:
2889  *
2890  * false_alarm_cnt
2891  *   Signal locks abandoned early (before phy-level header).
2892  *
2893  * plcp_err
2894  *   Signal locks abandoned late (during phy-level header).
2895  *
2896  * NOTE:  Both false_alarm_cnt and plcp_err increment monotonically from
2897  *        beacon to beacon, i.e. each value is an accumulation of all errors
2898  *        before and including the latest beacon.  Values will wrap around to 0
2899  *        after counting up to 2^32 - 1.  Driver must differentiate vs.
2900  *        previous beacon's values to determine # false alarms in the current
2901  *        beacon period.
2902  *
2903  * Total number of false alarms = false_alarms + plcp_errs
2904  *
2905  * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd
2906  * (notice that the start points for OFDM are at or close to settings for
2907  * maximum sensitivity):
2908  *
2909  *                                             START  /  MIN  /  MAX
2910  *   HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX          90   /   85  /  120
2911  *   HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX     170   /  170  /  210
2912  *   HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX         105   /  105  /  140
2913  *   HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX     220   /  220  /  270
2914  *
2915  *   If actual rate of OFDM false alarms (+ plcp_errors) is too high
2916  *   (greater than 50 for each 204.8 msecs listening), reduce sensitivity
2917  *   by *adding* 1 to all 4 of the table entries above, up to the max for
2918  *   each entry.  Conversely, if false alarm rate is too low (less than 5
2919  *   for each 204.8 msecs listening), *subtract* 1 from each entry to
2920  *   increase sensitivity.
2921  *
2922  * For CCK sensitivity, keep track of the following:
2923  *
2924  *   1).  20-beacon history of maximum background noise, indicated by
2925  *        (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
2926  *        3 receivers.  For any given beacon, the "silence reference" is
2927  *        the maximum of last 60 samples (20 beacons * 3 receivers).
2928  *
2929  *   2).  10-beacon history of strongest signal level, as indicated
2930  *        by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
2931  *        i.e. the strength of the signal through the best receiver at the
2932  *        moment.  These measurements are "upside down", with lower values
2933  *        for stronger signals, so max energy will be *minimum* value.
2934  *
2935  *        Then for any given beacon, the driver must determine the *weakest*
2936  *        of the strongest signals; this is the minimum level that needs to be
2937  *        successfully detected, when using the best receiver at the moment.
2938  *        "Max cck energy" is the maximum (higher value means lower energy!)
2939  *        of the last 10 minima.  Once this is determined, driver must add
2940  *        a little margin by adding "6" to it.
2941  *
2942  *   3).  Number of consecutive beacon periods with too few false alarms.
2943  *        Reset this to 0 at the first beacon period that falls within the
2944  *        "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
2945  *
2946  * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd
2947  * (notice that the start points for CCK are at maximum sensitivity):
2948  *
2949  *                                             START  /  MIN  /  MAX
2950  *   HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX         125   /  125  /  200
2951  *   HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX     200   /  200  /  400
2952  *   HD_MIN_ENERGY_CCK_DET_INDEX                100   /    0  /  100
2953  *
2954  *   If actual rate of CCK false alarms (+ plcp_errors) is too high
2955  *   (greater than 50 for each 204.8 msecs listening), method for reducing
2956  *   sensitivity is:
2957  *
2958  *   1)  *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2959  *       up to max 400.
2960  *
2961  *   2)  If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160,
2962  *       sensitivity has been reduced a significant amount; bring it up to
2963  *       a moderate 161.  Otherwise, *add* 3, up to max 200.
2964  *
2965  *   3)  a)  If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160,
2966  *       sensitivity has been reduced only a moderate or small amount;
2967  *       *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX,
2968  *       down to min 0.  Otherwise (if gain has been significantly reduced),
2969  *       don't change the HD_MIN_ENERGY_CCK_DET_INDEX value.
2970  *
2971  *       b)  Save a snapshot of the "silence reference".
2972  *
2973  *   If actual rate of CCK false alarms (+ plcp_errors) is too low
2974  *   (less than 5 for each 204.8 msecs listening), method for increasing
2975  *   sensitivity is used only if:
2976  *
2977  *   1a)  Previous beacon did not have too many false alarms
2978  *   1b)  AND difference between previous "silence reference" and current
2979  *        "silence reference" (prev - current) is 2 or more,
2980  *   OR 2)  100 or more consecutive beacon periods have had rate of
2981  *          less than 5 false alarms per 204.8 milliseconds rx time.
2982  *
2983  *   Method for increasing sensitivity:
2984  *
2985  *   1)  *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX,
2986  *       down to min 125.
2987  *
2988  *   2)  *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2989  *       down to min 200.
2990  *
2991  *   3)  *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100.
2992  *
2993  *   If actual rate of CCK false alarms (+ plcp_errors) is within good range
2994  *   (between 5 and 50 for each 204.8 msecs listening):
2995  *
2996  *   1)  Save a snapshot of the silence reference.
2997  *
2998  *   2)  If previous beacon had too many CCK false alarms (+ plcp_errors),
2999  *       give some extra margin to energy threshold by *subtracting* 8
3000  *       from value in HD_MIN_ENERGY_CCK_DET_INDEX.
3001  *
3002  *   For all cases (too few, too many, good range), make sure that the CCK
3003  *   detection threshold (energy) is below the energy level for robust
3004  *   detection over the past 10 beacon periods, the "Max cck energy".
3005  *   Lower values mean higher energy; this means making sure that the value
3006  *   in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy".
3007  *
3008  */
3009 
3010 /*
3011  * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd)
3012  */
3013 #define HD_TABLE_SIZE  (11)	/* number of entries */
3014 #define HD_MIN_ENERGY_CCK_DET_INDEX                 (0)	/* table indexes */
3015 #define HD_MIN_ENERGY_OFDM_DET_INDEX                (1)
3016 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX          (2)
3017 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX      (3)
3018 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX      (4)
3019 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX          (5)
3020 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX      (6)
3021 #define HD_BARKER_CORR_TH_ADD_MIN_INDEX             (7)
3022 #define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX         (8)
3023 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX          (9)
3024 #define HD_OFDM_ENERGY_TH_IN_INDEX                  (10)
3025 
3026 /*
3027  * Additional table entries in enhance SENSITIVITY_CMD
3028  */
3029 #define HD_INA_NON_SQUARE_DET_OFDM_INDEX		(11)
3030 #define HD_INA_NON_SQUARE_DET_CCK_INDEX			(12)
3031 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX		(13)
3032 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX		(14)
3033 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX	(15)
3034 #define HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX		(16)
3035 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX		(17)
3036 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX		(18)
3037 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX	(19)
3038 #define HD_CCK_NON_SQUARE_DET_SLOPE_INDEX		(20)
3039 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX		(21)
3040 #define HD_RESERVED					(22)
3041 
3042 /* number of entries for enhanced tbl */
3043 #define ENHANCE_HD_TABLE_SIZE  (23)
3044 
3045 /* number of additional entries for enhanced tbl */
3046 #define ENHANCE_HD_TABLE_ENTRIES  (ENHANCE_HD_TABLE_SIZE - HD_TABLE_SIZE)
3047 
3048 #define HD_INA_NON_SQUARE_DET_OFDM_DATA_V1		cpu_to_le16(0)
3049 #define HD_INA_NON_SQUARE_DET_CCK_DATA_V1		cpu_to_le16(0)
3050 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1		cpu_to_le16(0)
3051 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1	cpu_to_le16(668)
3052 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1	cpu_to_le16(4)
3053 #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1		cpu_to_le16(486)
3054 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1	cpu_to_le16(37)
3055 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1		cpu_to_le16(853)
3056 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1	cpu_to_le16(4)
3057 #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1		cpu_to_le16(476)
3058 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1		cpu_to_le16(99)
3059 
3060 #define HD_INA_NON_SQUARE_DET_OFDM_DATA_V2		cpu_to_le16(1)
3061 #define HD_INA_NON_SQUARE_DET_CCK_DATA_V2		cpu_to_le16(1)
3062 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2		cpu_to_le16(1)
3063 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2	cpu_to_le16(600)
3064 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2	cpu_to_le16(40)
3065 #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2		cpu_to_le16(486)
3066 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2	cpu_to_le16(45)
3067 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2		cpu_to_le16(853)
3068 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2	cpu_to_le16(60)
3069 #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2		cpu_to_le16(476)
3070 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2		cpu_to_le16(99)
3071 
3072 
3073 /* Control field in struct iwl_sensitivity_cmd */
3074 #define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE	cpu_to_le16(0)
3075 #define SENSITIVITY_CMD_CONTROL_WORK_TABLE	cpu_to_le16(1)
3076 
3077 /**
3078  * struct iwl_sensitivity_cmd
3079  * @control:  (1) updates working table, (0) updates default table
3080  * @table:  energy threshold values, use HD_* as index into table
3081  *
3082  * Always use "1" in "control" to update uCode's working table and DSP.
3083  */
3084 struct iwl_sensitivity_cmd {
3085 	__le16 control;			/* always use "1" */
3086 	__le16 table[HD_TABLE_SIZE];	/* use HD_* as index */
3087 } __packed;
3088 
3089 /*
3090  *
3091  */
3092 struct iwl_enhance_sensitivity_cmd {
3093 	__le16 control;			/* always use "1" */
3094 	__le16 enhance_table[ENHANCE_HD_TABLE_SIZE];	/* use HD_* as index */
3095 } __packed;
3096 
3097 
3098 /**
3099  * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response)
3100  *
3101  * This command sets the relative gains of agn device's 3 radio receiver chains.
3102  *
3103  * After the first association, driver should accumulate signal and noise
3104  * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20
3105  * beacons from the associated network (don't collect statistics that come
3106  * in from scanning, or any other non-network source).
3107  *
3108  * DISCONNECTED ANTENNA:
3109  *
3110  * Driver should determine which antennas are actually connected, by comparing
3111  * average beacon signal levels for the 3 Rx chains.  Accumulate (add) the
3112  * following values over 20 beacons, one accumulator for each of the chains
3113  * a/b/c, from struct statistics_rx_non_phy:
3114  *
3115  * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
3116  *
3117  * Find the strongest signal from among a/b/c.  Compare the other two to the
3118  * strongest.  If any signal is more than 15 dB (times 20, unless you
3119  * divide the accumulated values by 20) below the strongest, the driver
3120  * considers that antenna to be disconnected, and should not try to use that
3121  * antenna/chain for Rx or Tx.  If both A and B seem to be disconnected,
3122  * driver should declare the stronger one as connected, and attempt to use it
3123  * (A and B are the only 2 Tx chains!).
3124  *
3125  *
3126  * RX BALANCE:
3127  *
3128  * Driver should balance the 3 receivers (but just the ones that are connected
3129  * to antennas, see above) for gain, by comparing the average signal levels
3130  * detected during the silence after each beacon (background noise).
3131  * Accumulate (add) the following values over 20 beacons, one accumulator for
3132  * each of the chains a/b/c, from struct statistics_rx_non_phy:
3133  *
3134  * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
3135  *
3136  * Find the weakest background noise level from among a/b/c.  This Rx chain
3137  * will be the reference, with 0 gain adjustment.  Attenuate other channels by
3138  * finding noise difference:
3139  *
3140  * (accum_noise[i] - accum_noise[reference]) / 30
3141  *
3142  * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
3143  * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the
3144  * driver should limit the difference results to a range of 0-3 (0-4.5 dB),
3145  * and set bit 2 to indicate "reduce gain".  The value for the reference
3146  * (weakest) chain should be "0".
3147  *
3148  * diff_gain_[abc] bit fields:
3149  *   2: (1) reduce gain, (0) increase gain
3150  * 1-0: amount of gain, units of 1.5 dB
3151  */
3152 
3153 /* Phy calibration command for series */
3154 /* The default calibrate table size if not specified by firmware */
3155 #define IWL_DEFAULT_STANDARD_PHY_CALIBRATE_TBL_SIZE	18
3156 enum {
3157 	IWL_PHY_CALIBRATE_DC_CMD		= 8,
3158 	IWL_PHY_CALIBRATE_LO_CMD		= 9,
3159 	IWL_PHY_CALIBRATE_TX_IQ_CMD		= 11,
3160 	IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD	= 15,
3161 	IWL_PHY_CALIBRATE_BASE_BAND_CMD		= 16,
3162 	IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD	= 17,
3163 	IWL_PHY_CALIBRATE_TEMP_OFFSET_CMD	= 18,
3164 	IWL_MAX_STANDARD_PHY_CALIBRATE_TBL_SIZE	= 19,
3165 };
3166 
3167 #define IWL_MAX_PHY_CALIBRATE_TBL_SIZE		(253)
3168 
3169 /* This enum defines the bitmap of various calibrations to enable in both
3170  * init ucode and runtime ucode through CALIBRATION_CFG_CMD.
3171  */
3172 enum iwl_ucode_calib_cfg {
3173 	IWL_CALIB_CFG_RX_BB_IDX			= BIT(0),
3174 	IWL_CALIB_CFG_DC_IDX			= BIT(1),
3175 	IWL_CALIB_CFG_LO_IDX			= BIT(2),
3176 	IWL_CALIB_CFG_TX_IQ_IDX			= BIT(3),
3177 	IWL_CALIB_CFG_RX_IQ_IDX			= BIT(4),
3178 	IWL_CALIB_CFG_NOISE_IDX			= BIT(5),
3179 	IWL_CALIB_CFG_CRYSTAL_IDX		= BIT(6),
3180 	IWL_CALIB_CFG_TEMPERATURE_IDX		= BIT(7),
3181 	IWL_CALIB_CFG_PAPD_IDX			= BIT(8),
3182 	IWL_CALIB_CFG_SENSITIVITY_IDX		= BIT(9),
3183 	IWL_CALIB_CFG_TX_PWR_IDX		= BIT(10),
3184 };
3185 
3186 #define IWL_CALIB_INIT_CFG_ALL	cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX |	\
3187 					IWL_CALIB_CFG_DC_IDX |		\
3188 					IWL_CALIB_CFG_LO_IDX |		\
3189 					IWL_CALIB_CFG_TX_IQ_IDX |	\
3190 					IWL_CALIB_CFG_RX_IQ_IDX |	\
3191 					IWL_CALIB_CFG_CRYSTAL_IDX)
3192 
3193 #define IWL_CALIB_RT_CFG_ALL	cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX |	\
3194 					IWL_CALIB_CFG_DC_IDX |		\
3195 					IWL_CALIB_CFG_LO_IDX |		\
3196 					IWL_CALIB_CFG_TX_IQ_IDX |	\
3197 					IWL_CALIB_CFG_RX_IQ_IDX |	\
3198 					IWL_CALIB_CFG_TEMPERATURE_IDX |	\
3199 					IWL_CALIB_CFG_PAPD_IDX |	\
3200 					IWL_CALIB_CFG_TX_PWR_IDX |	\
3201 					IWL_CALIB_CFG_CRYSTAL_IDX)
3202 
3203 #define IWL_CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_MSK	cpu_to_le32(BIT(0))
3204 
3205 struct iwl_calib_cfg_elmnt_s {
3206 	__le32 is_enable;
3207 	__le32 start;
3208 	__le32 send_res;
3209 	__le32 apply_res;
3210 	__le32 reserved;
3211 } __packed;
3212 
3213 struct iwl_calib_cfg_status_s {
3214 	struct iwl_calib_cfg_elmnt_s once;
3215 	struct iwl_calib_cfg_elmnt_s perd;
3216 	__le32 flags;
3217 } __packed;
3218 
3219 struct iwl_calib_cfg_cmd {
3220 	struct iwl_calib_cfg_status_s ucd_calib_cfg;
3221 	struct iwl_calib_cfg_status_s drv_calib_cfg;
3222 	__le32 reserved1;
3223 } __packed;
3224 
3225 struct iwl_calib_hdr {
3226 	u8 op_code;
3227 	u8 first_group;
3228 	u8 groups_num;
3229 	u8 data_valid;
3230 } __packed;
3231 
3232 struct iwl_calib_cmd {
3233 	struct iwl_calib_hdr hdr;
3234 	u8 data[0];
3235 } __packed;
3236 
3237 struct iwl_calib_xtal_freq_cmd {
3238 	struct iwl_calib_hdr hdr;
3239 	u8 cap_pin1;
3240 	u8 cap_pin2;
3241 	u8 pad[2];
3242 } __packed;
3243 
3244 #define DEFAULT_RADIO_SENSOR_OFFSET    cpu_to_le16(2700)
3245 struct iwl_calib_temperature_offset_cmd {
3246 	struct iwl_calib_hdr hdr;
3247 	__le16 radio_sensor_offset;
3248 	__le16 reserved;
3249 } __packed;
3250 
3251 struct iwl_calib_temperature_offset_v2_cmd {
3252 	struct iwl_calib_hdr hdr;
3253 	__le16 radio_sensor_offset_high;
3254 	__le16 radio_sensor_offset_low;
3255 	__le16 burntVoltageRef;
3256 	__le16 reserved;
3257 } __packed;
3258 
3259 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */
3260 struct iwl_calib_chain_noise_reset_cmd {
3261 	struct iwl_calib_hdr hdr;
3262 	u8 data[0];
3263 };
3264 
3265 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */
3266 struct iwl_calib_chain_noise_gain_cmd {
3267 	struct iwl_calib_hdr hdr;
3268 	u8 delta_gain_1;
3269 	u8 delta_gain_2;
3270 	u8 pad[2];
3271 } __packed;
3272 
3273 /******************************************************************************
3274  * (12)
3275  * Miscellaneous Commands:
3276  *
3277  *****************************************************************************/
3278 
3279 /*
3280  * LEDs Command & Response
3281  * REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
3282  *
3283  * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
3284  * this command turns it on or off, or sets up a periodic blinking cycle.
3285  */
3286 struct iwl_led_cmd {
3287 	__le32 interval;	/* "interval" in uSec */
3288 	u8 id;			/* 1: Activity, 2: Link, 3: Tech */
3289 	u8 off;			/* # intervals off while blinking;
3290 				 * "0", with >0 "on" value, turns LED on */
3291 	u8 on;			/* # intervals on while blinking;
3292 				 * "0", regardless of "off", turns LED off */
3293 	u8 reserved;
3294 } __packed;
3295 
3296 /*
3297  * station priority table entries
3298  * also used as potential "events" value for both
3299  * COEX_MEDIUM_NOTIFICATION and COEX_EVENT_CMD
3300  */
3301 
3302 /*
3303  * COEX events entry flag masks
3304  * RP - Requested Priority
3305  * WP - Win Medium Priority: priority assigned when the contention has been won
3306  */
3307 #define COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG        (0x1)
3308 #define COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG        (0x2)
3309 #define COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG  (0x4)
3310 
3311 #define COEX_CU_UNASSOC_IDLE_RP               4
3312 #define COEX_CU_UNASSOC_MANUAL_SCAN_RP        4
3313 #define COEX_CU_UNASSOC_AUTO_SCAN_RP          4
3314 #define COEX_CU_CALIBRATION_RP                4
3315 #define COEX_CU_PERIODIC_CALIBRATION_RP       4
3316 #define COEX_CU_CONNECTION_ESTAB_RP           4
3317 #define COEX_CU_ASSOCIATED_IDLE_RP            4
3318 #define COEX_CU_ASSOC_MANUAL_SCAN_RP          4
3319 #define COEX_CU_ASSOC_AUTO_SCAN_RP            4
3320 #define COEX_CU_ASSOC_ACTIVE_LEVEL_RP         4
3321 #define COEX_CU_RF_ON_RP                      6
3322 #define COEX_CU_RF_OFF_RP                     4
3323 #define COEX_CU_STAND_ALONE_DEBUG_RP          6
3324 #define COEX_CU_IPAN_ASSOC_LEVEL_RP           4
3325 #define COEX_CU_RSRVD1_RP                     4
3326 #define COEX_CU_RSRVD2_RP                     4
3327 
3328 #define COEX_CU_UNASSOC_IDLE_WP               3
3329 #define COEX_CU_UNASSOC_MANUAL_SCAN_WP        3
3330 #define COEX_CU_UNASSOC_AUTO_SCAN_WP          3
3331 #define COEX_CU_CALIBRATION_WP                3
3332 #define COEX_CU_PERIODIC_CALIBRATION_WP       3
3333 #define COEX_CU_CONNECTION_ESTAB_WP           3
3334 #define COEX_CU_ASSOCIATED_IDLE_WP            3
3335 #define COEX_CU_ASSOC_MANUAL_SCAN_WP          3
3336 #define COEX_CU_ASSOC_AUTO_SCAN_WP            3
3337 #define COEX_CU_ASSOC_ACTIVE_LEVEL_WP         3
3338 #define COEX_CU_RF_ON_WP                      3
3339 #define COEX_CU_RF_OFF_WP                     3
3340 #define COEX_CU_STAND_ALONE_DEBUG_WP          6
3341 #define COEX_CU_IPAN_ASSOC_LEVEL_WP           3
3342 #define COEX_CU_RSRVD1_WP                     3
3343 #define COEX_CU_RSRVD2_WP                     3
3344 
3345 #define COEX_UNASSOC_IDLE_FLAGS                     0
3346 #define COEX_UNASSOC_MANUAL_SCAN_FLAGS		\
3347 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3348 	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3349 #define COEX_UNASSOC_AUTO_SCAN_FLAGS		\
3350 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3351 	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3352 #define COEX_CALIBRATION_FLAGS			\
3353 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3354 	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3355 #define COEX_PERIODIC_CALIBRATION_FLAGS             0
3356 /*
3357  * COEX_CONNECTION_ESTAB:
3358  * we need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3359  */
3360 #define COEX_CONNECTION_ESTAB_FLAGS		\
3361 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3362 	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3363 	COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3364 #define COEX_ASSOCIATED_IDLE_FLAGS                  0
3365 #define COEX_ASSOC_MANUAL_SCAN_FLAGS		\
3366 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3367 	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3368 #define COEX_ASSOC_AUTO_SCAN_FLAGS		\
3369 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3370 	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3371 #define COEX_ASSOC_ACTIVE_LEVEL_FLAGS               0
3372 #define COEX_RF_ON_FLAGS                            0
3373 #define COEX_RF_OFF_FLAGS                           0
3374 #define COEX_STAND_ALONE_DEBUG_FLAGS		\
3375 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3376 	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3377 #define COEX_IPAN_ASSOC_LEVEL_FLAGS		\
3378 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3379 	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3380 	 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3381 #define COEX_RSRVD1_FLAGS                           0
3382 #define COEX_RSRVD2_FLAGS                           0
3383 /*
3384  * COEX_CU_RF_ON is the event wrapping all radio ownership.
3385  * We need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3386  */
3387 #define COEX_CU_RF_ON_FLAGS			\
3388 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3389 	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3390 	 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3391 
3392 
3393 enum {
3394 	/* un-association part */
3395 	COEX_UNASSOC_IDLE		= 0,
3396 	COEX_UNASSOC_MANUAL_SCAN	= 1,
3397 	COEX_UNASSOC_AUTO_SCAN		= 2,
3398 	/* calibration */
3399 	COEX_CALIBRATION		= 3,
3400 	COEX_PERIODIC_CALIBRATION	= 4,
3401 	/* connection */
3402 	COEX_CONNECTION_ESTAB		= 5,
3403 	/* association part */
3404 	COEX_ASSOCIATED_IDLE		= 6,
3405 	COEX_ASSOC_MANUAL_SCAN		= 7,
3406 	COEX_ASSOC_AUTO_SCAN		= 8,
3407 	COEX_ASSOC_ACTIVE_LEVEL		= 9,
3408 	/* RF ON/OFF */
3409 	COEX_RF_ON			= 10,
3410 	COEX_RF_OFF			= 11,
3411 	COEX_STAND_ALONE_DEBUG		= 12,
3412 	/* IPAN */
3413 	COEX_IPAN_ASSOC_LEVEL		= 13,
3414 	/* reserved */
3415 	COEX_RSRVD1			= 14,
3416 	COEX_RSRVD2			= 15,
3417 	COEX_NUM_OF_EVENTS		= 16
3418 };
3419 
3420 /*
3421  * Coexistence WIFI/WIMAX  Command
3422  * COEX_PRIORITY_TABLE_CMD = 0x5a
3423  *
3424  */
3425 struct iwl_wimax_coex_event_entry {
3426 	u8 request_prio;
3427 	u8 win_medium_prio;
3428 	u8 reserved;
3429 	u8 flags;
3430 } __packed;
3431 
3432 /* COEX flag masks */
3433 
3434 /* Station table is valid */
3435 #define COEX_FLAGS_STA_TABLE_VALID_MSK      (0x1)
3436 /* UnMask wake up src at unassociated sleep */
3437 #define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK    (0x4)
3438 /* UnMask wake up src at associated sleep */
3439 #define COEX_FLAGS_ASSOC_WA_UNMASK_MSK      (0x8)
3440 /* Enable CoEx feature. */
3441 #define COEX_FLAGS_COEX_ENABLE_MSK          (0x80)
3442 
3443 struct iwl_wimax_coex_cmd {
3444 	u8 flags;
3445 	u8 reserved[3];
3446 	struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS];
3447 } __packed;
3448 
3449 /*
3450  * Coexistence MEDIUM NOTIFICATION
3451  * COEX_MEDIUM_NOTIFICATION = 0x5b
3452  *
3453  * notification from uCode to host to indicate medium changes
3454  *
3455  */
3456 /*
3457  * status field
3458  * bit 0 - 2: medium status
3459  * bit 3: medium change indication
3460  * bit 4 - 31: reserved
3461  */
3462 /* status option values, (0 - 2 bits) */
3463 #define COEX_MEDIUM_BUSY	(0x0) /* radio belongs to WiMAX */
3464 #define COEX_MEDIUM_ACTIVE	(0x1) /* radio belongs to WiFi */
3465 #define COEX_MEDIUM_PRE_RELEASE	(0x2) /* received radio release */
3466 #define COEX_MEDIUM_MSK		(0x7)
3467 
3468 /* send notification status (1 bit) */
3469 #define COEX_MEDIUM_CHANGED	(0x8)
3470 #define COEX_MEDIUM_CHANGED_MSK	(0x8)
3471 #define COEX_MEDIUM_SHIFT	(3)
3472 
3473 struct iwl_coex_medium_notification {
3474 	__le32 status;
3475 	__le32 events;
3476 } __packed;
3477 
3478 /*
3479  * Coexistence EVENT  Command
3480  * COEX_EVENT_CMD = 0x5c
3481  *
3482  * send from host to uCode for coex event request.
3483  */
3484 /* flags options */
3485 #define COEX_EVENT_REQUEST_MSK	(0x1)
3486 
3487 struct iwl_coex_event_cmd {
3488 	u8 flags;
3489 	u8 event;
3490 	__le16 reserved;
3491 } __packed;
3492 
3493 struct iwl_coex_event_resp {
3494 	__le32 status;
3495 } __packed;
3496 
3497 
3498 /******************************************************************************
3499  * Bluetooth Coexistence commands
3500  *
3501  *****************************************************************************/
3502 
3503 /*
3504  * BT Status notification
3505  * REPLY_BT_COEX_PROFILE_NOTIF = 0xce
3506  */
3507 enum iwl_bt_coex_profile_traffic_load {
3508 	IWL_BT_COEX_TRAFFIC_LOAD_NONE = 	0,
3509 	IWL_BT_COEX_TRAFFIC_LOAD_LOW =		1,
3510 	IWL_BT_COEX_TRAFFIC_LOAD_HIGH = 	2,
3511 	IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS =	3,
3512 /*
3513  * There are no more even though below is a u8, the
3514  * indication from the BT device only has two bits.
3515  */
3516 };
3517 
3518 #define BT_SESSION_ACTIVITY_1_UART_MSG		0x1
3519 #define BT_SESSION_ACTIVITY_2_UART_MSG		0x2
3520 
3521 /* BT UART message - Share Part (BT -> WiFi) */
3522 #define BT_UART_MSG_FRAME1MSGTYPE_POS		(0)
3523 #define BT_UART_MSG_FRAME1MSGTYPE_MSK		\
3524 		(0x7 << BT_UART_MSG_FRAME1MSGTYPE_POS)
3525 #define BT_UART_MSG_FRAME1SSN_POS		(3)
3526 #define BT_UART_MSG_FRAME1SSN_MSK		\
3527 		(0x3 << BT_UART_MSG_FRAME1SSN_POS)
3528 #define BT_UART_MSG_FRAME1UPDATEREQ_POS		(5)
3529 #define BT_UART_MSG_FRAME1UPDATEREQ_MSK		\
3530 		(0x1 << BT_UART_MSG_FRAME1UPDATEREQ_POS)
3531 #define BT_UART_MSG_FRAME1RESERVED_POS		(6)
3532 #define BT_UART_MSG_FRAME1RESERVED_MSK		\
3533 		(0x3 << BT_UART_MSG_FRAME1RESERVED_POS)
3534 
3535 #define BT_UART_MSG_FRAME2OPENCONNECTIONS_POS	(0)
3536 #define BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK	\
3537 		(0x3 << BT_UART_MSG_FRAME2OPENCONNECTIONS_POS)
3538 #define BT_UART_MSG_FRAME2TRAFFICLOAD_POS	(2)
3539 #define BT_UART_MSG_FRAME2TRAFFICLOAD_MSK	\
3540 		(0x3 << BT_UART_MSG_FRAME2TRAFFICLOAD_POS)
3541 #define BT_UART_MSG_FRAME2CHLSEQN_POS		(4)
3542 #define BT_UART_MSG_FRAME2CHLSEQN_MSK		\
3543 		(0x1 << BT_UART_MSG_FRAME2CHLSEQN_POS)
3544 #define BT_UART_MSG_FRAME2INBAND_POS		(5)
3545 #define BT_UART_MSG_FRAME2INBAND_MSK		\
3546 		(0x1 << BT_UART_MSG_FRAME2INBAND_POS)
3547 #define BT_UART_MSG_FRAME2RESERVED_POS		(6)
3548 #define BT_UART_MSG_FRAME2RESERVED_MSK		\
3549 		(0x3 << BT_UART_MSG_FRAME2RESERVED_POS)
3550 
3551 #define BT_UART_MSG_FRAME3SCOESCO_POS		(0)
3552 #define BT_UART_MSG_FRAME3SCOESCO_MSK		\
3553 		(0x1 << BT_UART_MSG_FRAME3SCOESCO_POS)
3554 #define BT_UART_MSG_FRAME3SNIFF_POS		(1)
3555 #define BT_UART_MSG_FRAME3SNIFF_MSK		\
3556 		(0x1 << BT_UART_MSG_FRAME3SNIFF_POS)
3557 #define BT_UART_MSG_FRAME3A2DP_POS		(2)
3558 #define BT_UART_MSG_FRAME3A2DP_MSK		\
3559 		(0x1 << BT_UART_MSG_FRAME3A2DP_POS)
3560 #define BT_UART_MSG_FRAME3ACL_POS		(3)
3561 #define BT_UART_MSG_FRAME3ACL_MSK		\
3562 		(0x1 << BT_UART_MSG_FRAME3ACL_POS)
3563 #define BT_UART_MSG_FRAME3MASTER_POS		(4)
3564 #define BT_UART_MSG_FRAME3MASTER_MSK		\
3565 		(0x1 << BT_UART_MSG_FRAME3MASTER_POS)
3566 #define BT_UART_MSG_FRAME3OBEX_POS		(5)
3567 #define BT_UART_MSG_FRAME3OBEX_MSK		\
3568 		(0x1 << BT_UART_MSG_FRAME3OBEX_POS)
3569 #define BT_UART_MSG_FRAME3RESERVED_POS		(6)
3570 #define BT_UART_MSG_FRAME3RESERVED_MSK		\
3571 		(0x3 << BT_UART_MSG_FRAME3RESERVED_POS)
3572 
3573 #define BT_UART_MSG_FRAME4IDLEDURATION_POS	(0)
3574 #define BT_UART_MSG_FRAME4IDLEDURATION_MSK	\
3575 		(0x3F << BT_UART_MSG_FRAME4IDLEDURATION_POS)
3576 #define BT_UART_MSG_FRAME4RESERVED_POS		(6)
3577 #define BT_UART_MSG_FRAME4RESERVED_MSK		\
3578 		(0x3 << BT_UART_MSG_FRAME4RESERVED_POS)
3579 
3580 #define BT_UART_MSG_FRAME5TXACTIVITY_POS	(0)
3581 #define BT_UART_MSG_FRAME5TXACTIVITY_MSK	\
3582 		(0x3 << BT_UART_MSG_FRAME5TXACTIVITY_POS)
3583 #define BT_UART_MSG_FRAME5RXACTIVITY_POS	(2)
3584 #define BT_UART_MSG_FRAME5RXACTIVITY_MSK	\
3585 		(0x3 << BT_UART_MSG_FRAME5RXACTIVITY_POS)
3586 #define BT_UART_MSG_FRAME5ESCORETRANSMIT_POS	(4)
3587 #define BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK	\
3588 		(0x3 << BT_UART_MSG_FRAME5ESCORETRANSMIT_POS)
3589 #define BT_UART_MSG_FRAME5RESERVED_POS		(6)
3590 #define BT_UART_MSG_FRAME5RESERVED_MSK		\
3591 		(0x3 << BT_UART_MSG_FRAME5RESERVED_POS)
3592 
3593 #define BT_UART_MSG_FRAME6SNIFFINTERVAL_POS	(0)
3594 #define BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK	\
3595 		(0x1F << BT_UART_MSG_FRAME6SNIFFINTERVAL_POS)
3596 #define BT_UART_MSG_FRAME6DISCOVERABLE_POS	(5)
3597 #define BT_UART_MSG_FRAME6DISCOVERABLE_MSK	\
3598 		(0x1 << BT_UART_MSG_FRAME6DISCOVERABLE_POS)
3599 #define BT_UART_MSG_FRAME6RESERVED_POS		(6)
3600 #define BT_UART_MSG_FRAME6RESERVED_MSK		\
3601 		(0x3 << BT_UART_MSG_FRAME6RESERVED_POS)
3602 
3603 #define BT_UART_MSG_FRAME7SNIFFACTIVITY_POS	(0)
3604 #define BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK	\
3605 		(0x7 << BT_UART_MSG_FRAME7SNIFFACTIVITY_POS)
3606 #define BT_UART_MSG_FRAME7PAGE_POS		(3)
3607 #define BT_UART_MSG_FRAME7PAGE_MSK		\
3608 		(0x1 << BT_UART_MSG_FRAME7PAGE_POS)
3609 #define BT_UART_MSG_FRAME7INQUIRY_POS		(4)
3610 #define BT_UART_MSG_FRAME7INQUIRY_MSK		\
3611 		(0x1 << BT_UART_MSG_FRAME7INQUIRY_POS)
3612 #define BT_UART_MSG_FRAME7CONNECTABLE_POS	(5)
3613 #define BT_UART_MSG_FRAME7CONNECTABLE_MSK	\
3614 		(0x1 << BT_UART_MSG_FRAME7CONNECTABLE_POS)
3615 #define BT_UART_MSG_FRAME7RESERVED_POS		(6)
3616 #define BT_UART_MSG_FRAME7RESERVED_MSK		\
3617 		(0x3 << BT_UART_MSG_FRAME7RESERVED_POS)
3618 
3619 /* BT Session Activity 2 UART message (BT -> WiFi) */
3620 #define BT_UART_MSG_2_FRAME1RESERVED1_POS	(5)
3621 #define BT_UART_MSG_2_FRAME1RESERVED1_MSK	\
3622 		(0x1<<BT_UART_MSG_2_FRAME1RESERVED1_POS)
3623 #define BT_UART_MSG_2_FRAME1RESERVED2_POS	(6)
3624 #define BT_UART_MSG_2_FRAME1RESERVED2_MSK	\
3625 		(0x3<<BT_UART_MSG_2_FRAME1RESERVED2_POS)
3626 
3627 #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS	(0)
3628 #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_MSK	\
3629 		(0x3F<<BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS)
3630 #define BT_UART_MSG_2_FRAME2RESERVED_POS	(6)
3631 #define BT_UART_MSG_2_FRAME2RESERVED_MSK	\
3632 		(0x3<<BT_UART_MSG_2_FRAME2RESERVED_POS)
3633 
3634 #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS	(0)
3635 #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_MSK	\
3636 		(0xF<<BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS)
3637 #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS	(4)
3638 #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_MSK	\
3639 		(0x1<<BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS)
3640 #define BT_UART_MSG_2_FRAME3LEMASTER_POS	(5)
3641 #define BT_UART_MSG_2_FRAME3LEMASTER_MSK	\
3642 		(0x1<<BT_UART_MSG_2_FRAME3LEMASTER_POS)
3643 #define BT_UART_MSG_2_FRAME3RESERVED_POS	(6)
3644 #define BT_UART_MSG_2_FRAME3RESERVED_MSK	\
3645 		(0x3<<BT_UART_MSG_2_FRAME3RESERVED_POS)
3646 
3647 #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS	(0)
3648 #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_MSK	\
3649 		(0xF<<BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS)
3650 #define BT_UART_MSG_2_FRAME4NUMLECONN_POS	(4)
3651 #define BT_UART_MSG_2_FRAME4NUMLECONN_MSK	\
3652 		(0x3<<BT_UART_MSG_2_FRAME4NUMLECONN_POS)
3653 #define BT_UART_MSG_2_FRAME4RESERVED_POS	(6)
3654 #define BT_UART_MSG_2_FRAME4RESERVED_MSK	\
3655 		(0x3<<BT_UART_MSG_2_FRAME4RESERVED_POS)
3656 
3657 #define BT_UART_MSG_2_FRAME5BTMINRSSI_POS	(0)
3658 #define BT_UART_MSG_2_FRAME5BTMINRSSI_MSK	\
3659 		(0xF<<BT_UART_MSG_2_FRAME5BTMINRSSI_POS)
3660 #define BT_UART_MSG_2_FRAME5LESCANINITMODE_POS	(4)
3661 #define BT_UART_MSG_2_FRAME5LESCANINITMODE_MSK	\
3662 		(0x1<<BT_UART_MSG_2_FRAME5LESCANINITMODE_POS)
3663 #define BT_UART_MSG_2_FRAME5LEADVERMODE_POS	(5)
3664 #define BT_UART_MSG_2_FRAME5LEADVERMODE_MSK	\
3665 		(0x1<<BT_UART_MSG_2_FRAME5LEADVERMODE_POS)
3666 #define BT_UART_MSG_2_FRAME5RESERVED_POS	(6)
3667 #define BT_UART_MSG_2_FRAME5RESERVED_MSK	\
3668 		(0x3<<BT_UART_MSG_2_FRAME5RESERVED_POS)
3669 
3670 #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS	(0)
3671 #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_MSK	\
3672 		(0x1F<<BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS)
3673 #define BT_UART_MSG_2_FRAME6RFU_POS		(5)
3674 #define BT_UART_MSG_2_FRAME6RFU_MSK		\
3675 		(0x1<<BT_UART_MSG_2_FRAME6RFU_POS)
3676 #define BT_UART_MSG_2_FRAME6RESERVED_POS	(6)
3677 #define BT_UART_MSG_2_FRAME6RESERVED_MSK	\
3678 		(0x3<<BT_UART_MSG_2_FRAME6RESERVED_POS)
3679 
3680 #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS	(0)
3681 #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_MSK	\
3682 		(0x7<<BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS)
3683 #define BT_UART_MSG_2_FRAME7LEPROFILE1_POS	(3)
3684 #define BT_UART_MSG_2_FRAME7LEPROFILE1_MSK	\
3685 		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILE1_POS)
3686 #define BT_UART_MSG_2_FRAME7LEPROFILE2_POS	(4)
3687 #define BT_UART_MSG_2_FRAME7LEPROFILE2_MSK	\
3688 		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILE2_POS)
3689 #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS	(5)
3690 #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_MSK	\
3691 		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS)
3692 #define BT_UART_MSG_2_FRAME7RESERVED_POS	(6)
3693 #define BT_UART_MSG_2_FRAME7RESERVED_MSK	\
3694 		(0x3<<BT_UART_MSG_2_FRAME7RESERVED_POS)
3695 
3696 
3697 struct iwl_bt_uart_msg {
3698 	u8 header;
3699 	u8 frame1;
3700 	u8 frame2;
3701 	u8 frame3;
3702 	u8 frame4;
3703 	u8 frame5;
3704 	u8 frame6;
3705 	u8 frame7;
3706 } __attribute__((packed));
3707 
3708 struct iwl_bt_coex_profile_notif {
3709 	struct iwl_bt_uart_msg last_bt_uart_msg;
3710 	u8 bt_status; /* 0 - off, 1 - on */
3711 	u8 bt_traffic_load; /* 0 .. 3? */
3712 	u8 bt_ci_compliance; /* 0 - not complied, 1 - complied */
3713 	u8 reserved;
3714 } __attribute__((packed));
3715 
3716 #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_POS	0
3717 #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_MSK	0x1
3718 #define IWL_BT_COEX_PRIO_TBL_PRIO_POS		1
3719 #define IWL_BT_COEX_PRIO_TBL_PRIO_MASK		0x0e
3720 #define IWL_BT_COEX_PRIO_TBL_RESERVED_POS	4
3721 #define IWL_BT_COEX_PRIO_TBL_RESERVED_MASK	0xf0
3722 #define IWL_BT_COEX_PRIO_TBL_PRIO_SHIFT		1
3723 
3724 /*
3725  * BT Coexistence Priority table
3726  * REPLY_BT_COEX_PRIO_TABLE = 0xcc
3727  */
3728 enum bt_coex_prio_table_events {
3729 	BT_COEX_PRIO_TBL_EVT_INIT_CALIB1 = 0,
3730 	BT_COEX_PRIO_TBL_EVT_INIT_CALIB2 = 1,
3731 	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW1 = 2,
3732 	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW2 = 3, /* DC calib */
3733 	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH1 = 4,
3734 	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH2 = 5,
3735 	BT_COEX_PRIO_TBL_EVT_DTIM = 6,
3736 	BT_COEX_PRIO_TBL_EVT_SCAN52 = 7,
3737 	BT_COEX_PRIO_TBL_EVT_SCAN24 = 8,
3738 	BT_COEX_PRIO_TBL_EVT_RESERVED0 = 9,
3739 	BT_COEX_PRIO_TBL_EVT_RESERVED1 = 10,
3740 	BT_COEX_PRIO_TBL_EVT_RESERVED2 = 11,
3741 	BT_COEX_PRIO_TBL_EVT_RESERVED3 = 12,
3742 	BT_COEX_PRIO_TBL_EVT_RESERVED4 = 13,
3743 	BT_COEX_PRIO_TBL_EVT_RESERVED5 = 14,
3744 	BT_COEX_PRIO_TBL_EVT_RESERVED6 = 15,
3745 	/* BT_COEX_PRIO_TBL_EVT_MAX should always be last */
3746 	BT_COEX_PRIO_TBL_EVT_MAX,
3747 };
3748 
3749 enum bt_coex_prio_table_priorities {
3750 	BT_COEX_PRIO_TBL_DISABLED = 0,
3751 	BT_COEX_PRIO_TBL_PRIO_LOW = 1,
3752 	BT_COEX_PRIO_TBL_PRIO_HIGH = 2,
3753 	BT_COEX_PRIO_TBL_PRIO_BYPASS = 3,
3754 	BT_COEX_PRIO_TBL_PRIO_COEX_OFF = 4,
3755 	BT_COEX_PRIO_TBL_PRIO_COEX_ON = 5,
3756 	BT_COEX_PRIO_TBL_PRIO_RSRVD1 = 6,
3757 	BT_COEX_PRIO_TBL_PRIO_RSRVD2 = 7,
3758 	BT_COEX_PRIO_TBL_MAX,
3759 };
3760 
3761 struct iwl_bt_coex_prio_table_cmd {
3762 	u8 prio_tbl[BT_COEX_PRIO_TBL_EVT_MAX];
3763 } __attribute__((packed));
3764 
3765 #define IWL_BT_COEX_ENV_CLOSE	0
3766 #define IWL_BT_COEX_ENV_OPEN	1
3767 /*
3768  * BT Protection Envelope
3769  * REPLY_BT_COEX_PROT_ENV = 0xcd
3770  */
3771 struct iwl_bt_coex_prot_env_cmd {
3772 	u8 action; /* 0 = closed, 1 = open */
3773 	u8 type; /* 0 .. 15 */
3774 	u8 reserved[2];
3775 } __attribute__((packed));
3776 
3777 /*
3778  * REPLY_D3_CONFIG
3779  */
3780 enum iwlagn_d3_wakeup_filters {
3781 	IWLAGN_D3_WAKEUP_RFKILL		= BIT(0),
3782 	IWLAGN_D3_WAKEUP_SYSASSERT	= BIT(1),
3783 };
3784 
3785 struct iwlagn_d3_config_cmd {
3786 	__le32 min_sleep_time;
3787 	__le32 wakeup_flags;
3788 } __packed;
3789 
3790 /*
3791  * REPLY_WOWLAN_PATTERNS
3792  */
3793 #define IWLAGN_WOWLAN_MIN_PATTERN_LEN	16
3794 #define IWLAGN_WOWLAN_MAX_PATTERN_LEN	128
3795 
3796 struct iwlagn_wowlan_pattern {
3797 	u8 mask[IWLAGN_WOWLAN_MAX_PATTERN_LEN / 8];
3798 	u8 pattern[IWLAGN_WOWLAN_MAX_PATTERN_LEN];
3799 	u8 mask_size;
3800 	u8 pattern_size;
3801 	__le16 reserved;
3802 } __packed;
3803 
3804 #define IWLAGN_WOWLAN_MAX_PATTERNS	20
3805 
3806 struct iwlagn_wowlan_patterns_cmd {
3807 	__le32 n_patterns;
3808 	struct iwlagn_wowlan_pattern patterns[];
3809 } __packed;
3810 
3811 /*
3812  * REPLY_WOWLAN_WAKEUP_FILTER
3813  */
3814 enum iwlagn_wowlan_wakeup_filters {
3815 	IWLAGN_WOWLAN_WAKEUP_MAGIC_PACKET	= BIT(0),
3816 	IWLAGN_WOWLAN_WAKEUP_PATTERN_MATCH	= BIT(1),
3817 	IWLAGN_WOWLAN_WAKEUP_BEACON_MISS	= BIT(2),
3818 	IWLAGN_WOWLAN_WAKEUP_LINK_CHANGE	= BIT(3),
3819 	IWLAGN_WOWLAN_WAKEUP_GTK_REKEY_FAIL	= BIT(4),
3820 	IWLAGN_WOWLAN_WAKEUP_EAP_IDENT_REQ	= BIT(5),
3821 	IWLAGN_WOWLAN_WAKEUP_4WAY_HANDSHAKE	= BIT(6),
3822 	IWLAGN_WOWLAN_WAKEUP_ALWAYS		= BIT(7),
3823 	IWLAGN_WOWLAN_WAKEUP_ENABLE_NET_DETECT	= BIT(8),
3824 };
3825 
3826 struct iwlagn_wowlan_wakeup_filter_cmd {
3827 	__le32 enabled;
3828 	__le16 non_qos_seq;
3829 	__le16 reserved;
3830 	__le16 qos_seq[8];
3831 };
3832 
3833 /*
3834  * REPLY_WOWLAN_TSC_RSC_PARAMS
3835  */
3836 #define IWLAGN_NUM_RSC	16
3837 
3838 struct tkip_sc {
3839 	__le16 iv16;
3840 	__le16 pad;
3841 	__le32 iv32;
3842 } __packed;
3843 
3844 struct iwlagn_tkip_rsc_tsc {
3845 	struct tkip_sc unicast_rsc[IWLAGN_NUM_RSC];
3846 	struct tkip_sc multicast_rsc[IWLAGN_NUM_RSC];
3847 	struct tkip_sc tsc;
3848 } __packed;
3849 
3850 struct aes_sc {
3851 	__le64 pn;
3852 } __packed;
3853 
3854 struct iwlagn_aes_rsc_tsc {
3855 	struct aes_sc unicast_rsc[IWLAGN_NUM_RSC];
3856 	struct aes_sc multicast_rsc[IWLAGN_NUM_RSC];
3857 	struct aes_sc tsc;
3858 } __packed;
3859 
3860 union iwlagn_all_tsc_rsc {
3861 	struct iwlagn_tkip_rsc_tsc tkip;
3862 	struct iwlagn_aes_rsc_tsc aes;
3863 };
3864 
3865 struct iwlagn_wowlan_rsc_tsc_params_cmd {
3866 	union iwlagn_all_tsc_rsc all_tsc_rsc;
3867 } __packed;
3868 
3869 /*
3870  * REPLY_WOWLAN_TKIP_PARAMS
3871  */
3872 #define IWLAGN_MIC_KEY_SIZE	8
3873 #define IWLAGN_P1K_SIZE		5
3874 struct iwlagn_mic_keys {
3875 	u8 tx[IWLAGN_MIC_KEY_SIZE];
3876 	u8 rx_unicast[IWLAGN_MIC_KEY_SIZE];
3877 	u8 rx_mcast[IWLAGN_MIC_KEY_SIZE];
3878 } __packed;
3879 
3880 struct iwlagn_p1k_cache {
3881 	__le16 p1k[IWLAGN_P1K_SIZE];
3882 } __packed;
3883 
3884 #define IWLAGN_NUM_RX_P1K_CACHE	2
3885 
3886 struct iwlagn_wowlan_tkip_params_cmd {
3887 	struct iwlagn_mic_keys mic_keys;
3888 	struct iwlagn_p1k_cache tx;
3889 	struct iwlagn_p1k_cache rx_uni[IWLAGN_NUM_RX_P1K_CACHE];
3890 	struct iwlagn_p1k_cache rx_multi[IWLAGN_NUM_RX_P1K_CACHE];
3891 } __packed;
3892 
3893 /*
3894  * REPLY_WOWLAN_KEK_KCK_MATERIAL
3895  */
3896 
3897 #define IWLAGN_KCK_MAX_SIZE	32
3898 #define IWLAGN_KEK_MAX_SIZE	32
3899 
3900 struct iwlagn_wowlan_kek_kck_material_cmd {
3901 	u8	kck[IWLAGN_KCK_MAX_SIZE];
3902 	u8	kek[IWLAGN_KEK_MAX_SIZE];
3903 	__le16	kck_len;
3904 	__le16	kek_len;
3905 	__le64	replay_ctr;
3906 } __packed;
3907 
3908 /******************************************************************************
3909  * (13)
3910  * Union of all expected notifications/responses:
3911  *
3912  *****************************************************************************/
3913 #define FH_RSCSR_FRAME_SIZE_MSK	(0x00003FFF)	/* bits 0-13 */
3914 
3915 struct iwl_rx_packet {
3916 	/*
3917 	 * The first 4 bytes of the RX frame header contain both the RX frame
3918 	 * size and some flags.
3919 	 * Bit fields:
3920 	 * 31:    flag flush RB request
3921 	 * 30:    flag ignore TC (terminal counter) request
3922 	 * 29:    flag fast IRQ request
3923 	 * 28-14: Reserved
3924 	 * 13-00: RX frame size
3925 	 */
3926 	__le32 len_n_flags;
3927 	struct iwl_cmd_header hdr;
3928 	union {
3929 		struct iwl_alive_resp alive_frame;
3930 		struct iwl_spectrum_notification spectrum_notif;
3931 		struct iwl_csa_notification csa_notif;
3932 		struct iwl_error_resp err_resp;
3933 		struct iwl_card_state_notif card_state_notif;
3934 		struct iwl_add_sta_resp add_sta;
3935 		struct iwl_rem_sta_resp rem_sta;
3936 		struct iwl_sleep_notification sleep_notif;
3937 		struct iwl_spectrum_resp spectrum;
3938 		struct iwl_notif_statistics stats;
3939 		struct iwl_bt_notif_statistics stats_bt;
3940 		struct iwl_compressed_ba_resp compressed_ba;
3941 		struct iwl_missed_beacon_notif missed_beacon;
3942 		struct iwl_coex_medium_notification coex_medium_notif;
3943 		struct iwl_coex_event_resp coex_event;
3944 		struct iwl_bt_coex_profile_notif bt_coex_profile_notif;
3945 		__le32 status;
3946 		u8 raw[0];
3947 	} u;
3948 } __packed;
3949 
3950 int iwl_agn_check_rxon_cmd(struct iwl_priv *priv);
3951 
3952 /*
3953  * REPLY_WIPAN_PARAMS = 0xb2 (Commands and Notification)
3954  */
3955 
3956 /*
3957  * Minimum slot time in TU
3958  */
3959 #define IWL_MIN_SLOT_TIME	20
3960 
3961 /**
3962  * struct iwl_wipan_slot
3963  * @width: Time in TU
3964  * @type:
3965  *   0 - BSS
3966  *   1 - PAN
3967  */
3968 struct iwl_wipan_slot {
3969 	__le16 width;
3970 	u8 type;
3971 	u8 reserved;
3972 } __packed;
3973 
3974 #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_CTS		BIT(1)	/* reserved */
3975 #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_QUIET	BIT(2)	/* reserved */
3976 #define IWL_WIPAN_PARAMS_FLG_SLOTTED_MODE		BIT(3)	/* reserved */
3977 #define IWL_WIPAN_PARAMS_FLG_FILTER_BEACON_NOTIF	BIT(4)
3978 #define IWL_WIPAN_PARAMS_FLG_FULL_SLOTTED_MODE		BIT(5)
3979 
3980 /**
3981  * struct iwl_wipan_params_cmd
3982  * @flags:
3983  *   bit0: reserved
3984  *   bit1: CP leave channel with CTS
3985  *   bit2: CP leave channel qith Quiet
3986  *   bit3: slotted mode
3987  *     1 - work in slotted mode
3988  *     0 - work in non slotted mode
3989  *   bit4: filter beacon notification
3990  *   bit5: full tx slotted mode. if this flag is set,
3991  *         uCode will perform leaving channel methods in context switch
3992  *         also when working in same channel mode
3993  * @num_slots: 1 - 10
3994  */
3995 struct iwl_wipan_params_cmd {
3996 	__le16 flags;
3997 	u8 reserved;
3998 	u8 num_slots;
3999 	struct iwl_wipan_slot slots[10];
4000 } __packed;
4001 
4002 /*
4003  * REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9
4004  *
4005  * TODO: Figure out what this is used for,
4006  *	 it can only switch between 2.4 GHz
4007  *	 channels!!
4008  */
4009 
4010 struct iwl_wipan_p2p_channel_switch_cmd {
4011 	__le16 channel;
4012 	__le16 reserved;
4013 };
4014 
4015 /*
4016  * REPLY_WIPAN_NOA_NOTIFICATION = 0xbc
4017  *
4018  * This is used by the device to notify us of the
4019  * NoA schedule it determined so we can forward it
4020  * to userspace for inclusion in probe responses.
4021  *
4022  * In beacons, the NoA schedule is simply appended
4023  * to the frame we give the device.
4024  */
4025 
4026 struct iwl_wipan_noa_descriptor {
4027 	u8 count;
4028 	__le32 duration;
4029 	__le32 interval;
4030 	__le32 starttime;
4031 } __packed;
4032 
4033 struct iwl_wipan_noa_attribute {
4034 	u8 id;
4035 	__le16 length;
4036 	u8 index;
4037 	u8 ct_window;
4038 	struct iwl_wipan_noa_descriptor descr0, descr1;
4039 	u8 reserved;
4040 } __packed;
4041 
4042 struct iwl_wipan_noa_notification {
4043 	u32 noa_active;
4044 	struct iwl_wipan_noa_attribute noa_attribute;
4045 } __packed;
4046 
4047 #endif				/* __iwl_commands_h__ */
4048