1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22  * USA
23  *
24  * The full GNU General Public License is included in this distribution
25  * in the file called LICENSE.GPL.
26  *
27  * Contact Information:
28  *  Intel Linux Wireless <ilw@linux.intel.com>
29  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30  *
31  * BSD LICENSE
32  *
33  * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  *
40  *  * Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  *  * Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in
44  *    the documentation and/or other materials provided with the
45  *    distribution.
46  *  * Neither the name Intel Corporation nor the names of its
47  *    contributors may be used to endorse or promote products derived
48  *    from this software without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61  *****************************************************************************/
62 
63 #include <linux/slab.h>
64 #include <net/mac80211.h>
65 
66 #include "iwl-dev.h"
67 #include "iwl-core.h"
68 #include "iwl-agn-calib.h"
69 #include "iwl-trans.h"
70 #include "iwl-agn.h"
71 
72 /*****************************************************************************
73  * INIT calibrations framework
74  *****************************************************************************/
75 
76 struct statistics_general_data {
77 	u32 beacon_silence_rssi_a;
78 	u32 beacon_silence_rssi_b;
79 	u32 beacon_silence_rssi_c;
80 	u32 beacon_energy_a;
81 	u32 beacon_energy_b;
82 	u32 beacon_energy_c;
83 };
84 
iwl_send_calib_results(struct iwl_trans * trans)85 int iwl_send_calib_results(struct iwl_trans *trans)
86 {
87 	struct iwl_host_cmd hcmd = {
88 		.id = REPLY_PHY_CALIBRATION_CMD,
89 		.flags = CMD_SYNC,
90 	};
91 	struct iwl_calib_result *res;
92 
93 	list_for_each_entry(res, &trans->calib_results, list) {
94 		int ret;
95 
96 		hcmd.len[0] = res->cmd_len;
97 		hcmd.data[0] = &res->hdr;
98 		hcmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY;
99 		ret = iwl_trans_send_cmd(trans, &hcmd);
100 		if (ret) {
101 			IWL_ERR(trans, "Error %d on calib cmd %d\n",
102 				ret, res->hdr.op_code);
103 			return ret;
104 		}
105 	}
106 
107 	return 0;
108 }
109 
iwl_calib_set(struct iwl_trans * trans,const struct iwl_calib_hdr * cmd,int len)110 int iwl_calib_set(struct iwl_trans *trans,
111 		  const struct iwl_calib_hdr *cmd, int len)
112 {
113 	struct iwl_calib_result *res, *tmp;
114 
115 	res = kmalloc(sizeof(*res) + len - sizeof(struct iwl_calib_hdr),
116 		      GFP_ATOMIC);
117 	if (!res)
118 		return -ENOMEM;
119 	memcpy(&res->hdr, cmd, len);
120 	res->cmd_len = len;
121 
122 	list_for_each_entry(tmp, &trans->calib_results, list) {
123 		if (tmp->hdr.op_code == res->hdr.op_code) {
124 			list_replace(&tmp->list, &res->list);
125 			kfree(tmp);
126 			return 0;
127 		}
128 	}
129 
130 	/* wasn't in list already */
131 	list_add_tail(&res->list, &trans->calib_results);
132 
133 	return 0;
134 }
135 
iwl_calib_free_results(struct iwl_trans * trans)136 void iwl_calib_free_results(struct iwl_trans *trans)
137 {
138 	struct iwl_calib_result *res, *tmp;
139 
140 	list_for_each_entry_safe(res, tmp, &trans->calib_results, list) {
141 		list_del(&res->list);
142 		kfree(res);
143 	}
144 }
145 
146 /*****************************************************************************
147  * RUNTIME calibrations framework
148  *****************************************************************************/
149 
150 /* "false alarms" are signals that our DSP tries to lock onto,
151  *   but then determines that they are either noise, or transmissions
152  *   from a distant wireless network (also "noise", really) that get
153  *   "stepped on" by stronger transmissions within our own network.
154  * This algorithm attempts to set a sensitivity level that is high
155  *   enough to receive all of our own network traffic, but not so
156  *   high that our DSP gets too busy trying to lock onto non-network
157  *   activity/noise. */
iwl_sens_energy_cck(struct iwl_priv * priv,u32 norm_fa,u32 rx_enable_time,struct statistics_general_data * rx_info)158 static int iwl_sens_energy_cck(struct iwl_priv *priv,
159 				   u32 norm_fa,
160 				   u32 rx_enable_time,
161 				   struct statistics_general_data *rx_info)
162 {
163 	u32 max_nrg_cck = 0;
164 	int i = 0;
165 	u8 max_silence_rssi = 0;
166 	u32 silence_ref = 0;
167 	u8 silence_rssi_a = 0;
168 	u8 silence_rssi_b = 0;
169 	u8 silence_rssi_c = 0;
170 	u32 val;
171 
172 	/* "false_alarms" values below are cross-multiplications to assess the
173 	 *   numbers of false alarms within the measured period of actual Rx
174 	 *   (Rx is off when we're txing), vs the min/max expected false alarms
175 	 *   (some should be expected if rx is sensitive enough) in a
176 	 *   hypothetical listening period of 200 time units (TU), 204.8 msec:
177 	 *
178 	 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
179 	 *
180 	 * */
181 	u32 false_alarms = norm_fa * 200 * 1024;
182 	u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
183 	u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
184 	struct iwl_sensitivity_data *data = NULL;
185 	const struct iwl_sensitivity_ranges *ranges = hw_params(priv).sens;
186 
187 	data = &(priv->sensitivity_data);
188 
189 	data->nrg_auto_corr_silence_diff = 0;
190 
191 	/* Find max silence rssi among all 3 receivers.
192 	 * This is background noise, which may include transmissions from other
193 	 *    networks, measured during silence before our network's beacon */
194 	silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
195 			    ALL_BAND_FILTER) >> 8);
196 	silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
197 			    ALL_BAND_FILTER) >> 8);
198 	silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
199 			    ALL_BAND_FILTER) >> 8);
200 
201 	val = max(silence_rssi_b, silence_rssi_c);
202 	max_silence_rssi = max(silence_rssi_a, (u8) val);
203 
204 	/* Store silence rssi in 20-beacon history table */
205 	data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
206 	data->nrg_silence_idx++;
207 	if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
208 		data->nrg_silence_idx = 0;
209 
210 	/* Find max silence rssi across 20 beacon history */
211 	for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
212 		val = data->nrg_silence_rssi[i];
213 		silence_ref = max(silence_ref, val);
214 	}
215 	IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n",
216 			silence_rssi_a, silence_rssi_b, silence_rssi_c,
217 			silence_ref);
218 
219 	/* Find max rx energy (min value!) among all 3 receivers,
220 	 *   measured during beacon frame.
221 	 * Save it in 10-beacon history table. */
222 	i = data->nrg_energy_idx;
223 	val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
224 	data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
225 
226 	data->nrg_energy_idx++;
227 	if (data->nrg_energy_idx >= 10)
228 		data->nrg_energy_idx = 0;
229 
230 	/* Find min rx energy (max value) across 10 beacon history.
231 	 * This is the minimum signal level that we want to receive well.
232 	 * Add backoff (margin so we don't miss slightly lower energy frames).
233 	 * This establishes an upper bound (min value) for energy threshold. */
234 	max_nrg_cck = data->nrg_value[0];
235 	for (i = 1; i < 10; i++)
236 		max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
237 	max_nrg_cck += 6;
238 
239 	IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
240 			rx_info->beacon_energy_a, rx_info->beacon_energy_b,
241 			rx_info->beacon_energy_c, max_nrg_cck - 6);
242 
243 	/* Count number of consecutive beacons with fewer-than-desired
244 	 *   false alarms. */
245 	if (false_alarms < min_false_alarms)
246 		data->num_in_cck_no_fa++;
247 	else
248 		data->num_in_cck_no_fa = 0;
249 	IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n",
250 			data->num_in_cck_no_fa);
251 
252 	/* If we got too many false alarms this time, reduce sensitivity */
253 	if ((false_alarms > max_false_alarms) &&
254 		(data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
255 		IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n",
256 		     false_alarms, max_false_alarms);
257 		IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n");
258 		data->nrg_curr_state = IWL_FA_TOO_MANY;
259 		/* Store for "fewer than desired" on later beacon */
260 		data->nrg_silence_ref = silence_ref;
261 
262 		/* increase energy threshold (reduce nrg value)
263 		 *   to decrease sensitivity */
264 		data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
265 	/* Else if we got fewer than desired, increase sensitivity */
266 	} else if (false_alarms < min_false_alarms) {
267 		data->nrg_curr_state = IWL_FA_TOO_FEW;
268 
269 		/* Compare silence level with silence level for most recent
270 		 *   healthy number or too many false alarms */
271 		data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
272 						   (s32)silence_ref;
273 
274 		IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n",
275 			 false_alarms, min_false_alarms,
276 			 data->nrg_auto_corr_silence_diff);
277 
278 		/* Increase value to increase sensitivity, but only if:
279 		 * 1a) previous beacon did *not* have *too many* false alarms
280 		 * 1b) AND there's a significant difference in Rx levels
281 		 *      from a previous beacon with too many, or healthy # FAs
282 		 * OR 2) We've seen a lot of beacons (100) with too few
283 		 *       false alarms */
284 		if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
285 			((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
286 			(data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
287 
288 			IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n");
289 			/* Increase nrg value to increase sensitivity */
290 			val = data->nrg_th_cck + NRG_STEP_CCK;
291 			data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
292 		} else {
293 			IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n");
294 		}
295 
296 	/* Else we got a healthy number of false alarms, keep status quo */
297 	} else {
298 		IWL_DEBUG_CALIB(priv, " FA in safe zone\n");
299 		data->nrg_curr_state = IWL_FA_GOOD_RANGE;
300 
301 		/* Store for use in "fewer than desired" with later beacon */
302 		data->nrg_silence_ref = silence_ref;
303 
304 		/* If previous beacon had too many false alarms,
305 		 *   give it some extra margin by reducing sensitivity again
306 		 *   (but don't go below measured energy of desired Rx) */
307 		if (IWL_FA_TOO_MANY == data->nrg_prev_state) {
308 			IWL_DEBUG_CALIB(priv, "... increasing margin\n");
309 			if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
310 				data->nrg_th_cck -= NRG_MARGIN;
311 			else
312 				data->nrg_th_cck = max_nrg_cck;
313 		}
314 	}
315 
316 	/* Make sure the energy threshold does not go above the measured
317 	 * energy of the desired Rx signals (reduced by backoff margin),
318 	 * or else we might start missing Rx frames.
319 	 * Lower value is higher energy, so we use max()!
320 	 */
321 	data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
322 	IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck);
323 
324 	data->nrg_prev_state = data->nrg_curr_state;
325 
326 	/* Auto-correlation CCK algorithm */
327 	if (false_alarms > min_false_alarms) {
328 
329 		/* increase auto_corr values to decrease sensitivity
330 		 * so the DSP won't be disturbed by the noise
331 		 */
332 		if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
333 			data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
334 		else {
335 			val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
336 			data->auto_corr_cck =
337 				min((u32)ranges->auto_corr_max_cck, val);
338 		}
339 		val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
340 		data->auto_corr_cck_mrc =
341 			min((u32)ranges->auto_corr_max_cck_mrc, val);
342 	} else if ((false_alarms < min_false_alarms) &&
343 	   ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
344 	   (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
345 
346 		/* Decrease auto_corr values to increase sensitivity */
347 		val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
348 		data->auto_corr_cck =
349 			max((u32)ranges->auto_corr_min_cck, val);
350 		val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
351 		data->auto_corr_cck_mrc =
352 			max((u32)ranges->auto_corr_min_cck_mrc, val);
353 	}
354 
355 	return 0;
356 }
357 
358 
iwl_sens_auto_corr_ofdm(struct iwl_priv * priv,u32 norm_fa,u32 rx_enable_time)359 static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
360 				       u32 norm_fa,
361 				       u32 rx_enable_time)
362 {
363 	u32 val;
364 	u32 false_alarms = norm_fa * 200 * 1024;
365 	u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
366 	u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
367 	struct iwl_sensitivity_data *data = NULL;
368 	const struct iwl_sensitivity_ranges *ranges = hw_params(priv).sens;
369 
370 	data = &(priv->sensitivity_data);
371 
372 	/* If we got too many false alarms this time, reduce sensitivity */
373 	if (false_alarms > max_false_alarms) {
374 
375 		IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n",
376 			     false_alarms, max_false_alarms);
377 
378 		val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
379 		data->auto_corr_ofdm =
380 			min((u32)ranges->auto_corr_max_ofdm, val);
381 
382 		val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
383 		data->auto_corr_ofdm_mrc =
384 			min((u32)ranges->auto_corr_max_ofdm_mrc, val);
385 
386 		val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
387 		data->auto_corr_ofdm_x1 =
388 			min((u32)ranges->auto_corr_max_ofdm_x1, val);
389 
390 		val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
391 		data->auto_corr_ofdm_mrc_x1 =
392 			min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
393 	}
394 
395 	/* Else if we got fewer than desired, increase sensitivity */
396 	else if (false_alarms < min_false_alarms) {
397 
398 		IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n",
399 			     false_alarms, min_false_alarms);
400 
401 		val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
402 		data->auto_corr_ofdm =
403 			max((u32)ranges->auto_corr_min_ofdm, val);
404 
405 		val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
406 		data->auto_corr_ofdm_mrc =
407 			max((u32)ranges->auto_corr_min_ofdm_mrc, val);
408 
409 		val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
410 		data->auto_corr_ofdm_x1 =
411 			max((u32)ranges->auto_corr_min_ofdm_x1, val);
412 
413 		val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
414 		data->auto_corr_ofdm_mrc_x1 =
415 			max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
416 	} else {
417 		IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n",
418 			 min_false_alarms, false_alarms, max_false_alarms);
419 	}
420 	return 0;
421 }
422 
iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv * priv,struct iwl_sensitivity_data * data,__le16 * tbl)423 static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv,
424 				struct iwl_sensitivity_data *data,
425 				__le16 *tbl)
426 {
427 	tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
428 				cpu_to_le16((u16)data->auto_corr_ofdm);
429 	tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
430 				cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
431 	tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
432 				cpu_to_le16((u16)data->auto_corr_ofdm_x1);
433 	tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
434 				cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
435 
436 	tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
437 				cpu_to_le16((u16)data->auto_corr_cck);
438 	tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
439 				cpu_to_le16((u16)data->auto_corr_cck_mrc);
440 
441 	tbl[HD_MIN_ENERGY_CCK_DET_INDEX] =
442 				cpu_to_le16((u16)data->nrg_th_cck);
443 	tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] =
444 				cpu_to_le16((u16)data->nrg_th_ofdm);
445 
446 	tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
447 				cpu_to_le16(data->barker_corr_th_min);
448 	tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
449 				cpu_to_le16(data->barker_corr_th_min_mrc);
450 	tbl[HD_OFDM_ENERGY_TH_IN_INDEX] =
451 				cpu_to_le16(data->nrg_th_cca);
452 
453 	IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
454 			data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
455 			data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
456 			data->nrg_th_ofdm);
457 
458 	IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n",
459 			data->auto_corr_cck, data->auto_corr_cck_mrc,
460 			data->nrg_th_cck);
461 }
462 
463 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
iwl_sensitivity_write(struct iwl_priv * priv)464 static int iwl_sensitivity_write(struct iwl_priv *priv)
465 {
466 	struct iwl_sensitivity_cmd cmd;
467 	struct iwl_sensitivity_data *data = NULL;
468 	struct iwl_host_cmd cmd_out = {
469 		.id = SENSITIVITY_CMD,
470 		.len = { sizeof(struct iwl_sensitivity_cmd), },
471 		.flags = CMD_ASYNC,
472 		.data = { &cmd, },
473 	};
474 
475 	data = &(priv->sensitivity_data);
476 
477 	memset(&cmd, 0, sizeof(cmd));
478 
479 	iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]);
480 
481 	/* Update uCode's "work" table, and copy it to DSP */
482 	cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
483 
484 	/* Don't send command to uCode if nothing has changed */
485 	if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
486 		    sizeof(u16)*HD_TABLE_SIZE)) {
487 		IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
488 		return 0;
489 	}
490 
491 	/* Copy table for comparison next time */
492 	memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
493 	       sizeof(u16)*HD_TABLE_SIZE);
494 
495 	return iwl_trans_send_cmd(trans(priv), &cmd_out);
496 }
497 
498 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
iwl_enhance_sensitivity_write(struct iwl_priv * priv)499 static int iwl_enhance_sensitivity_write(struct iwl_priv *priv)
500 {
501 	struct iwl_enhance_sensitivity_cmd cmd;
502 	struct iwl_sensitivity_data *data = NULL;
503 	struct iwl_host_cmd cmd_out = {
504 		.id = SENSITIVITY_CMD,
505 		.len = { sizeof(struct iwl_enhance_sensitivity_cmd), },
506 		.flags = CMD_ASYNC,
507 		.data = { &cmd, },
508 	};
509 
510 	data = &(priv->sensitivity_data);
511 
512 	memset(&cmd, 0, sizeof(cmd));
513 
514 	iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]);
515 
516 	if (cfg(priv)->base_params->hd_v2) {
517 		cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
518 			HD_INA_NON_SQUARE_DET_OFDM_DATA_V2;
519 		cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
520 			HD_INA_NON_SQUARE_DET_CCK_DATA_V2;
521 		cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
522 			HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2;
523 		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
524 			HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
525 		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
526 			HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
527 		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
528 			HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2;
529 		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
530 			HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2;
531 		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
532 			HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
533 		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
534 			HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
535 		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
536 			HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2;
537 		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
538 			HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2;
539 	} else {
540 		cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
541 			HD_INA_NON_SQUARE_DET_OFDM_DATA_V1;
542 		cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
543 			HD_INA_NON_SQUARE_DET_CCK_DATA_V1;
544 		cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
545 			HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1;
546 		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
547 			HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
548 		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
549 			HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
550 		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
551 			HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1;
552 		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
553 			HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1;
554 		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
555 			HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
556 		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
557 			HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
558 		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
559 			HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1;
560 		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
561 			HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1;
562 	}
563 
564 	/* Update uCode's "work" table, and copy it to DSP */
565 	cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
566 
567 	/* Don't send command to uCode if nothing has changed */
568 	if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]),
569 		    sizeof(u16)*HD_TABLE_SIZE) &&
570 	    !memcmp(&cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX],
571 		    &(priv->enhance_sensitivity_tbl[0]),
572 		    sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) {
573 		IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
574 		return 0;
575 	}
576 
577 	/* Copy table for comparison next time */
578 	memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]),
579 	       sizeof(u16)*HD_TABLE_SIZE);
580 	memcpy(&(priv->enhance_sensitivity_tbl[0]),
581 	       &(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]),
582 	       sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES);
583 
584 	return iwl_trans_send_cmd(trans(priv), &cmd_out);
585 }
586 
iwl_init_sensitivity(struct iwl_priv * priv)587 void iwl_init_sensitivity(struct iwl_priv *priv)
588 {
589 	int ret = 0;
590 	int i;
591 	struct iwl_sensitivity_data *data = NULL;
592 	const struct iwl_sensitivity_ranges *ranges = hw_params(priv).sens;
593 
594 	if (priv->disable_sens_cal)
595 		return;
596 
597 	IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n");
598 
599 	/* Clear driver's sensitivity algo data */
600 	data = &(priv->sensitivity_data);
601 
602 	if (ranges == NULL)
603 		return;
604 
605 	memset(data, 0, sizeof(struct iwl_sensitivity_data));
606 
607 	data->num_in_cck_no_fa = 0;
608 	data->nrg_curr_state = IWL_FA_TOO_MANY;
609 	data->nrg_prev_state = IWL_FA_TOO_MANY;
610 	data->nrg_silence_ref = 0;
611 	data->nrg_silence_idx = 0;
612 	data->nrg_energy_idx = 0;
613 
614 	for (i = 0; i < 10; i++)
615 		data->nrg_value[i] = 0;
616 
617 	for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
618 		data->nrg_silence_rssi[i] = 0;
619 
620 	data->auto_corr_ofdm =  ranges->auto_corr_min_ofdm;
621 	data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
622 	data->auto_corr_ofdm_x1  = ranges->auto_corr_min_ofdm_x1;
623 	data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
624 	data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
625 	data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
626 	data->nrg_th_cck = ranges->nrg_th_cck;
627 	data->nrg_th_ofdm = ranges->nrg_th_ofdm;
628 	data->barker_corr_th_min = ranges->barker_corr_th_min;
629 	data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
630 	data->nrg_th_cca = ranges->nrg_th_cca;
631 
632 	data->last_bad_plcp_cnt_ofdm = 0;
633 	data->last_fa_cnt_ofdm = 0;
634 	data->last_bad_plcp_cnt_cck = 0;
635 	data->last_fa_cnt_cck = 0;
636 
637 	if (priv->enhance_sensitivity_table)
638 		ret |= iwl_enhance_sensitivity_write(priv);
639 	else
640 		ret |= iwl_sensitivity_write(priv);
641 	IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret);
642 }
643 
iwl_sensitivity_calibration(struct iwl_priv * priv)644 void iwl_sensitivity_calibration(struct iwl_priv *priv)
645 {
646 	u32 rx_enable_time;
647 	u32 fa_cck;
648 	u32 fa_ofdm;
649 	u32 bad_plcp_cck;
650 	u32 bad_plcp_ofdm;
651 	u32 norm_fa_ofdm;
652 	u32 norm_fa_cck;
653 	struct iwl_sensitivity_data *data = NULL;
654 	struct statistics_rx_non_phy *rx_info;
655 	struct statistics_rx_phy *ofdm, *cck;
656 	unsigned long flags;
657 	struct statistics_general_data statis;
658 
659 	if (priv->disable_sens_cal)
660 		return;
661 
662 	data = &(priv->sensitivity_data);
663 
664 	if (!iwl_is_any_associated(priv)) {
665 		IWL_DEBUG_CALIB(priv, "<< - not associated\n");
666 		return;
667 	}
668 
669 	spin_lock_irqsave(&priv->shrd->lock, flags);
670 	rx_info = &priv->statistics.rx_non_phy;
671 	ofdm = &priv->statistics.rx_ofdm;
672 	cck = &priv->statistics.rx_cck;
673 	if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
674 		IWL_DEBUG_CALIB(priv, "<< invalid data.\n");
675 		spin_unlock_irqrestore(&priv->shrd->lock, flags);
676 		return;
677 	}
678 
679 	/* Extract Statistics: */
680 	rx_enable_time = le32_to_cpu(rx_info->channel_load);
681 	fa_cck = le32_to_cpu(cck->false_alarm_cnt);
682 	fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
683 	bad_plcp_cck = le32_to_cpu(cck->plcp_err);
684 	bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
685 
686 	statis.beacon_silence_rssi_a =
687 			le32_to_cpu(rx_info->beacon_silence_rssi_a);
688 	statis.beacon_silence_rssi_b =
689 			le32_to_cpu(rx_info->beacon_silence_rssi_b);
690 	statis.beacon_silence_rssi_c =
691 			le32_to_cpu(rx_info->beacon_silence_rssi_c);
692 	statis.beacon_energy_a =
693 			le32_to_cpu(rx_info->beacon_energy_a);
694 	statis.beacon_energy_b =
695 			le32_to_cpu(rx_info->beacon_energy_b);
696 	statis.beacon_energy_c =
697 			le32_to_cpu(rx_info->beacon_energy_c);
698 
699 	spin_unlock_irqrestore(&priv->shrd->lock, flags);
700 
701 	IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time);
702 
703 	if (!rx_enable_time) {
704 		IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n");
705 		return;
706 	}
707 
708 	/* These statistics increase monotonically, and do not reset
709 	 *   at each beacon.  Calculate difference from last value, or just
710 	 *   use the new statistics value if it has reset or wrapped around. */
711 	if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
712 		data->last_bad_plcp_cnt_cck = bad_plcp_cck;
713 	else {
714 		bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
715 		data->last_bad_plcp_cnt_cck += bad_plcp_cck;
716 	}
717 
718 	if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
719 		data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
720 	else {
721 		bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
722 		data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
723 	}
724 
725 	if (data->last_fa_cnt_ofdm > fa_ofdm)
726 		data->last_fa_cnt_ofdm = fa_ofdm;
727 	else {
728 		fa_ofdm -= data->last_fa_cnt_ofdm;
729 		data->last_fa_cnt_ofdm += fa_ofdm;
730 	}
731 
732 	if (data->last_fa_cnt_cck > fa_cck)
733 		data->last_fa_cnt_cck = fa_cck;
734 	else {
735 		fa_cck -= data->last_fa_cnt_cck;
736 		data->last_fa_cnt_cck += fa_cck;
737 	}
738 
739 	/* Total aborted signal locks */
740 	norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
741 	norm_fa_cck = fa_cck + bad_plcp_cck;
742 
743 	IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u  ofdm: fa %u badp %u\n", fa_cck,
744 			bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
745 
746 	iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
747 	iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
748 	if (priv->enhance_sensitivity_table)
749 		iwl_enhance_sensitivity_write(priv);
750 	else
751 		iwl_sensitivity_write(priv);
752 }
753 
find_first_chain(u8 mask)754 static inline u8 find_first_chain(u8 mask)
755 {
756 	if (mask & ANT_A)
757 		return CHAIN_A;
758 	if (mask & ANT_B)
759 		return CHAIN_B;
760 	return CHAIN_C;
761 }
762 
763 /**
764  * Run disconnected antenna algorithm to find out which antennas are
765  * disconnected.
766  */
iwl_find_disconn_antenna(struct iwl_priv * priv,u32 * average_sig,struct iwl_chain_noise_data * data)767 static void iwl_find_disconn_antenna(struct iwl_priv *priv, u32* average_sig,
768 				     struct iwl_chain_noise_data *data)
769 {
770 	u32 active_chains = 0;
771 	u32 max_average_sig;
772 	u16 max_average_sig_antenna_i;
773 	u8 num_tx_chains;
774 	u8 first_chain;
775 	u16 i = 0;
776 
777 	average_sig[0] = data->chain_signal_a / IWL_CAL_NUM_BEACONS;
778 	average_sig[1] = data->chain_signal_b / IWL_CAL_NUM_BEACONS;
779 	average_sig[2] = data->chain_signal_c / IWL_CAL_NUM_BEACONS;
780 
781 	if (average_sig[0] >= average_sig[1]) {
782 		max_average_sig = average_sig[0];
783 		max_average_sig_antenna_i = 0;
784 		active_chains = (1 << max_average_sig_antenna_i);
785 	} else {
786 		max_average_sig = average_sig[1];
787 		max_average_sig_antenna_i = 1;
788 		active_chains = (1 << max_average_sig_antenna_i);
789 	}
790 
791 	if (average_sig[2] >= max_average_sig) {
792 		max_average_sig = average_sig[2];
793 		max_average_sig_antenna_i = 2;
794 		active_chains = (1 << max_average_sig_antenna_i);
795 	}
796 
797 	IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n",
798 		     average_sig[0], average_sig[1], average_sig[2]);
799 	IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n",
800 		     max_average_sig, max_average_sig_antenna_i);
801 
802 	/* Compare signal strengths for all 3 receivers. */
803 	for (i = 0; i < NUM_RX_CHAINS; i++) {
804 		if (i != max_average_sig_antenna_i) {
805 			s32 rssi_delta = (max_average_sig - average_sig[i]);
806 
807 			/* If signal is very weak, compared with
808 			 * strongest, mark it as disconnected. */
809 			if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
810 				data->disconn_array[i] = 1;
811 			else
812 				active_chains |= (1 << i);
813 			IWL_DEBUG_CALIB(priv, "i = %d  rssiDelta = %d  "
814 			     "disconn_array[i] = %d\n",
815 			     i, rssi_delta, data->disconn_array[i]);
816 		}
817 	}
818 
819 	/*
820 	 * The above algorithm sometimes fails when the ucode
821 	 * reports 0 for all chains. It's not clear why that
822 	 * happens to start with, but it is then causing trouble
823 	 * because this can make us enable more chains than the
824 	 * hardware really has.
825 	 *
826 	 * To be safe, simply mask out any chains that we know
827 	 * are not on the device.
828 	 */
829 	active_chains &= hw_params(priv).valid_rx_ant;
830 
831 	num_tx_chains = 0;
832 	for (i = 0; i < NUM_RX_CHAINS; i++) {
833 		/* loops on all the bits of
834 		 * priv->hw_setting.valid_tx_ant */
835 		u8 ant_msk = (1 << i);
836 		if (!(hw_params(priv).valid_tx_ant & ant_msk))
837 			continue;
838 
839 		num_tx_chains++;
840 		if (data->disconn_array[i] == 0)
841 			/* there is a Tx antenna connected */
842 			break;
843 		if (num_tx_chains == hw_params(priv).tx_chains_num &&
844 		    data->disconn_array[i]) {
845 			/*
846 			 * If all chains are disconnected
847 			 * connect the first valid tx chain
848 			 */
849 			first_chain =
850 				find_first_chain(cfg(priv)->valid_tx_ant);
851 			data->disconn_array[first_chain] = 0;
852 			active_chains |= BIT(first_chain);
853 			IWL_DEBUG_CALIB(priv,
854 					"All Tx chains are disconnected W/A - declare %d as connected\n",
855 					first_chain);
856 			break;
857 		}
858 	}
859 
860 	if (active_chains != hw_params(priv).valid_rx_ant &&
861 	    active_chains != priv->chain_noise_data.active_chains)
862 		IWL_DEBUG_CALIB(priv,
863 				"Detected that not all antennas are connected! "
864 				"Connected: %#x, valid: %#x.\n",
865 				active_chains,
866 				hw_params(priv).valid_rx_ant);
867 
868 	/* Save for use within RXON, TX, SCAN commands, etc. */
869 	data->active_chains = active_chains;
870 	IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n",
871 			active_chains);
872 }
873 
iwlagn_gain_computation(struct iwl_priv * priv,u32 average_noise[NUM_RX_CHAINS],u16 min_average_noise_antenna_i,u32 min_average_noise,u8 default_chain)874 static void iwlagn_gain_computation(struct iwl_priv *priv,
875 		u32 average_noise[NUM_RX_CHAINS],
876 		u16 min_average_noise_antenna_i,
877 		u32 min_average_noise,
878 		u8 default_chain)
879 {
880 	int i;
881 	s32 delta_g;
882 	struct iwl_chain_noise_data *data = &priv->chain_noise_data;
883 
884 	/*
885 	 * Find Gain Code for the chains based on "default chain"
886 	 */
887 	for (i = default_chain + 1; i < NUM_RX_CHAINS; i++) {
888 		if ((data->disconn_array[i])) {
889 			data->delta_gain_code[i] = 0;
890 			continue;
891 		}
892 
893 		delta_g = (cfg(priv)->base_params->chain_noise_scale *
894 			((s32)average_noise[default_chain] -
895 			(s32)average_noise[i])) / 1500;
896 
897 		/* bound gain by 2 bits value max, 3rd bit is sign */
898 		data->delta_gain_code[i] =
899 			min(abs(delta_g),
900 			(long) CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
901 
902 		if (delta_g < 0)
903 			/*
904 			 * set negative sign ...
905 			 * note to Intel developers:  This is uCode API format,
906 			 *   not the format of any internal device registers.
907 			 *   Do not change this format for e.g. 6050 or similar
908 			 *   devices.  Change format only if more resolution
909 			 *   (i.e. more than 2 bits magnitude) is needed.
910 			 */
911 			data->delta_gain_code[i] |= (1 << 2);
912 	}
913 
914 	IWL_DEBUG_CALIB(priv, "Delta gains: ANT_B = %d  ANT_C = %d\n",
915 			data->delta_gain_code[1], data->delta_gain_code[2]);
916 
917 	if (!data->radio_write) {
918 		struct iwl_calib_chain_noise_gain_cmd cmd;
919 
920 		memset(&cmd, 0, sizeof(cmd));
921 
922 		iwl_set_calib_hdr(&cmd.hdr,
923 			priv->phy_calib_chain_noise_gain_cmd);
924 		cmd.delta_gain_1 = data->delta_gain_code[1];
925 		cmd.delta_gain_2 = data->delta_gain_code[2];
926 		iwl_trans_send_cmd_pdu(trans(priv), REPLY_PHY_CALIBRATION_CMD,
927 			CMD_ASYNC, sizeof(cmd), &cmd);
928 
929 		data->radio_write = 1;
930 		data->state = IWL_CHAIN_NOISE_CALIBRATED;
931 	}
932 }
933 
934 /*
935  * Accumulate 16 beacons of signal and noise statistics for each of
936  *   3 receivers/antennas/rx-chains, then figure out:
937  * 1)  Which antennas are connected.
938  * 2)  Differential rx gain settings to balance the 3 receivers.
939  */
iwl_chain_noise_calibration(struct iwl_priv * priv)940 void iwl_chain_noise_calibration(struct iwl_priv *priv)
941 {
942 	struct iwl_chain_noise_data *data = NULL;
943 
944 	u32 chain_noise_a;
945 	u32 chain_noise_b;
946 	u32 chain_noise_c;
947 	u32 chain_sig_a;
948 	u32 chain_sig_b;
949 	u32 chain_sig_c;
950 	u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
951 	u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
952 	u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
953 	u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
954 	u16 i = 0;
955 	u16 rxon_chnum = INITIALIZATION_VALUE;
956 	u16 stat_chnum = INITIALIZATION_VALUE;
957 	u8 rxon_band24;
958 	u8 stat_band24;
959 	unsigned long flags;
960 	struct statistics_rx_non_phy *rx_info;
961 
962 	/*
963 	 * MULTI-FIXME:
964 	 * When we support multiple interfaces on different channels,
965 	 * this must be modified/fixed.
966 	 */
967 	struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
968 
969 	if (priv->disable_chain_noise_cal)
970 		return;
971 
972 	data = &(priv->chain_noise_data);
973 
974 	/*
975 	 * Accumulate just the first "chain_noise_num_beacons" after
976 	 * the first association, then we're done forever.
977 	 */
978 	if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
979 		if (data->state == IWL_CHAIN_NOISE_ALIVE)
980 			IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n");
981 		return;
982 	}
983 
984 	spin_lock_irqsave(&priv->shrd->lock, flags);
985 
986 	rx_info = &priv->statistics.rx_non_phy;
987 
988 	if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
989 		IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n");
990 		spin_unlock_irqrestore(&priv->shrd->lock, flags);
991 		return;
992 	}
993 
994 	rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK);
995 	rxon_chnum = le16_to_cpu(ctx->staging.channel);
996 	stat_band24 =
997 		!!(priv->statistics.flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
998 	stat_chnum = le32_to_cpu(priv->statistics.flag) >> 16;
999 
1000 	/* Make sure we accumulate data for just the associated channel
1001 	 *   (even if scanning). */
1002 	if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
1003 		IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n",
1004 				rxon_chnum, rxon_band24);
1005 		spin_unlock_irqrestore(&priv->shrd->lock, flags);
1006 		return;
1007 	}
1008 
1009 	/*
1010 	 *  Accumulate beacon statistics values across
1011 	 * "chain_noise_num_beacons"
1012 	 */
1013 	chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
1014 				IN_BAND_FILTER;
1015 	chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
1016 				IN_BAND_FILTER;
1017 	chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
1018 				IN_BAND_FILTER;
1019 
1020 	chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
1021 	chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
1022 	chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
1023 
1024 	spin_unlock_irqrestore(&priv->shrd->lock, flags);
1025 
1026 	data->beacon_count++;
1027 
1028 	data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
1029 	data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
1030 	data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
1031 
1032 	data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
1033 	data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
1034 	data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
1035 
1036 	IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n",
1037 			rxon_chnum, rxon_band24, data->beacon_count);
1038 	IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n",
1039 			chain_sig_a, chain_sig_b, chain_sig_c);
1040 	IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n",
1041 			chain_noise_a, chain_noise_b, chain_noise_c);
1042 
1043 	/* If this is the "chain_noise_num_beacons", determine:
1044 	 * 1)  Disconnected antennas (using signal strengths)
1045 	 * 2)  Differential gain (using silence noise) to balance receivers */
1046 	if (data->beacon_count != IWL_CAL_NUM_BEACONS)
1047 		return;
1048 
1049 	/* Analyze signal for disconnected antenna */
1050 	if (cfg(priv)->bt_params &&
1051 	    cfg(priv)->bt_params->advanced_bt_coexist) {
1052 		/* Disable disconnected antenna algorithm for advanced
1053 		   bt coex, assuming valid antennas are connected */
1054 		data->active_chains = hw_params(priv).valid_rx_ant;
1055 		for (i = 0; i < NUM_RX_CHAINS; i++)
1056 			if (!(data->active_chains & (1<<i)))
1057 				data->disconn_array[i] = 1;
1058 	} else
1059 		iwl_find_disconn_antenna(priv, average_sig, data);
1060 
1061 	/* Analyze noise for rx balance */
1062 	average_noise[0] = data->chain_noise_a / IWL_CAL_NUM_BEACONS;
1063 	average_noise[1] = data->chain_noise_b / IWL_CAL_NUM_BEACONS;
1064 	average_noise[2] = data->chain_noise_c / IWL_CAL_NUM_BEACONS;
1065 
1066 	for (i = 0; i < NUM_RX_CHAINS; i++) {
1067 		if (!(data->disconn_array[i]) &&
1068 		   (average_noise[i] <= min_average_noise)) {
1069 			/* This means that chain i is active and has
1070 			 * lower noise values so far: */
1071 			min_average_noise = average_noise[i];
1072 			min_average_noise_antenna_i = i;
1073 		}
1074 	}
1075 
1076 	IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n",
1077 			average_noise[0], average_noise[1],
1078 			average_noise[2]);
1079 
1080 	IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n",
1081 			min_average_noise, min_average_noise_antenna_i);
1082 
1083 	iwlagn_gain_computation(priv, average_noise,
1084 				min_average_noise_antenna_i, min_average_noise,
1085 				find_first_chain(cfg(priv)->valid_rx_ant));
1086 
1087 	/* Some power changes may have been made during the calibration.
1088 	 * Update and commit the RXON
1089 	 */
1090 	iwl_update_chain_flags(priv);
1091 
1092 	data->state = IWL_CHAIN_NOISE_DONE;
1093 	iwl_power_update_mode(priv, false);
1094 }
1095 
iwl_reset_run_time_calib(struct iwl_priv * priv)1096 void iwl_reset_run_time_calib(struct iwl_priv *priv)
1097 {
1098 	int i;
1099 	memset(&(priv->sensitivity_data), 0,
1100 	       sizeof(struct iwl_sensitivity_data));
1101 	memset(&(priv->chain_noise_data), 0,
1102 	       sizeof(struct iwl_chain_noise_data));
1103 	for (i = 0; i < NUM_RX_CHAINS; i++)
1104 		priv->chain_noise_data.delta_gain_code[i] =
1105 				CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
1106 
1107 	/* Ask for statistics now, the uCode will send notification
1108 	 * periodically after association */
1109 	iwl_send_statistics_request(priv, CMD_ASYNC, true);
1110 }
1111