1 /******************************************************************************
2  *
3  * Copyright(c) 2003 - 2011 Intel Corporation. All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called LICENSE.
20  *
21  * Contact Information:
22  *  Intel Linux Wireless <ilw@linux.intel.com>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  *****************************************************************************/
26 
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/init.h>
30 #include <linux/pci.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/delay.h>
33 #include <linux/sched.h>
34 #include <linux/skbuff.h>
35 #include <linux/netdevice.h>
36 #include <net/mac80211.h>
37 #include <linux/etherdevice.h>
38 #include <asm/unaligned.h>
39 
40 #include "common.h"
41 #include "4965.h"
42 
43 /**
44  * il_verify_inst_sparse - verify runtime uCode image in card vs. host,
45  *   using sample data 100 bytes apart.  If these sample points are good,
46  *   it's a pretty good bet that everything between them is good, too.
47  */
48 static int
il4965_verify_inst_sparse(struct il_priv * il,__le32 * image,u32 len)49 il4965_verify_inst_sparse(struct il_priv *il, __le32 * image, u32 len)
50 {
51 	u32 val;
52 	int ret = 0;
53 	u32 errcnt = 0;
54 	u32 i;
55 
56 	D_INFO("ucode inst image size is %u\n", len);
57 
58 	for (i = 0; i < len; i += 100, image += 100 / sizeof(u32)) {
59 		/* read data comes through single port, auto-incr addr */
60 		/* NOTE: Use the debugless read so we don't flood kernel log
61 		 * if IL_DL_IO is set */
62 		il_wr(il, HBUS_TARG_MEM_RADDR, i + IL4965_RTC_INST_LOWER_BOUND);
63 		val = _il_rd(il, HBUS_TARG_MEM_RDAT);
64 		if (val != le32_to_cpu(*image)) {
65 			ret = -EIO;
66 			errcnt++;
67 			if (errcnt >= 3)
68 				break;
69 		}
70 	}
71 
72 	return ret;
73 }
74 
75 /**
76  * il4965_verify_inst_full - verify runtime uCode image in card vs. host,
77  *     looking at all data.
78  */
79 static int
il4965_verify_inst_full(struct il_priv * il,__le32 * image,u32 len)80 il4965_verify_inst_full(struct il_priv *il, __le32 * image, u32 len)
81 {
82 	u32 val;
83 	u32 save_len = len;
84 	int ret = 0;
85 	u32 errcnt;
86 
87 	D_INFO("ucode inst image size is %u\n", len);
88 
89 	il_wr(il, HBUS_TARG_MEM_RADDR, IL4965_RTC_INST_LOWER_BOUND);
90 
91 	errcnt = 0;
92 	for (; len > 0; len -= sizeof(u32), image++) {
93 		/* read data comes through single port, auto-incr addr */
94 		/* NOTE: Use the debugless read so we don't flood kernel log
95 		 * if IL_DL_IO is set */
96 		val = _il_rd(il, HBUS_TARG_MEM_RDAT);
97 		if (val != le32_to_cpu(*image)) {
98 			IL_ERR("uCode INST section is invalid at "
99 			       "offset 0x%x, is 0x%x, s/b 0x%x\n",
100 			       save_len - len, val, le32_to_cpu(*image));
101 			ret = -EIO;
102 			errcnt++;
103 			if (errcnt >= 20)
104 				break;
105 		}
106 	}
107 
108 	if (!errcnt)
109 		D_INFO("ucode image in INSTRUCTION memory is good\n");
110 
111 	return ret;
112 }
113 
114 /**
115  * il4965_verify_ucode - determine which instruction image is in SRAM,
116  *    and verify its contents
117  */
118 int
il4965_verify_ucode(struct il_priv * il)119 il4965_verify_ucode(struct il_priv *il)
120 {
121 	__le32 *image;
122 	u32 len;
123 	int ret;
124 
125 	/* Try bootstrap */
126 	image = (__le32 *) il->ucode_boot.v_addr;
127 	len = il->ucode_boot.len;
128 	ret = il4965_verify_inst_sparse(il, image, len);
129 	if (!ret) {
130 		D_INFO("Bootstrap uCode is good in inst SRAM\n");
131 		return 0;
132 	}
133 
134 	/* Try initialize */
135 	image = (__le32 *) il->ucode_init.v_addr;
136 	len = il->ucode_init.len;
137 	ret = il4965_verify_inst_sparse(il, image, len);
138 	if (!ret) {
139 		D_INFO("Initialize uCode is good in inst SRAM\n");
140 		return 0;
141 	}
142 
143 	/* Try runtime/protocol */
144 	image = (__le32 *) il->ucode_code.v_addr;
145 	len = il->ucode_code.len;
146 	ret = il4965_verify_inst_sparse(il, image, len);
147 	if (!ret) {
148 		D_INFO("Runtime uCode is good in inst SRAM\n");
149 		return 0;
150 	}
151 
152 	IL_ERR("NO VALID UCODE IMAGE IN INSTRUCTION SRAM!!\n");
153 
154 	/* Since nothing seems to match, show first several data entries in
155 	 * instruction SRAM, so maybe visual inspection will give a clue.
156 	 * Selection of bootstrap image (vs. other images) is arbitrary. */
157 	image = (__le32 *) il->ucode_boot.v_addr;
158 	len = il->ucode_boot.len;
159 	ret = il4965_verify_inst_full(il, image, len);
160 
161 	return ret;
162 }
163 
164 /******************************************************************************
165  *
166  * EEPROM related functions
167  *
168 ******************************************************************************/
169 
170 /*
171  * The device's EEPROM semaphore prevents conflicts between driver and uCode
172  * when accessing the EEPROM; each access is a series of pulses to/from the
173  * EEPROM chip, not a single event, so even reads could conflict if they
174  * weren't arbitrated by the semaphore.
175  */
176 int
il4965_eeprom_acquire_semaphore(struct il_priv * il)177 il4965_eeprom_acquire_semaphore(struct il_priv *il)
178 {
179 	u16 count;
180 	int ret;
181 
182 	for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) {
183 		/* Request semaphore */
184 		il_set_bit(il, CSR_HW_IF_CONFIG_REG,
185 			   CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
186 
187 		/* See if we got it */
188 		ret =
189 		    _il_poll_bit(il, CSR_HW_IF_CONFIG_REG,
190 				 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
191 				 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
192 				 EEPROM_SEM_TIMEOUT);
193 		if (ret >= 0)
194 			return ret;
195 	}
196 
197 	return ret;
198 }
199 
200 void
il4965_eeprom_release_semaphore(struct il_priv * il)201 il4965_eeprom_release_semaphore(struct il_priv *il)
202 {
203 	il_clear_bit(il, CSR_HW_IF_CONFIG_REG,
204 		     CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
205 
206 }
207 
208 int
il4965_eeprom_check_version(struct il_priv * il)209 il4965_eeprom_check_version(struct il_priv *il)
210 {
211 	u16 eeprom_ver;
212 	u16 calib_ver;
213 
214 	eeprom_ver = il_eeprom_query16(il, EEPROM_VERSION);
215 	calib_ver = il_eeprom_query16(il, EEPROM_4965_CALIB_VERSION_OFFSET);
216 
217 	if (eeprom_ver < il->cfg->eeprom_ver ||
218 	    calib_ver < il->cfg->eeprom_calib_ver)
219 		goto err;
220 
221 	IL_INFO("device EEPROM VER=0x%x, CALIB=0x%x\n", eeprom_ver, calib_ver);
222 
223 	return 0;
224 err:
225 	IL_ERR("Unsupported (too old) EEPROM VER=0x%x < 0x%x "
226 	       "CALIB=0x%x < 0x%x\n", eeprom_ver, il->cfg->eeprom_ver,
227 	       calib_ver, il->cfg->eeprom_calib_ver);
228 	return -EINVAL;
229 
230 }
231 
232 void
il4965_eeprom_get_mac(const struct il_priv * il,u8 * mac)233 il4965_eeprom_get_mac(const struct il_priv *il, u8 * mac)
234 {
235 	const u8 *addr = il_eeprom_query_addr(il,
236 					      EEPROM_MAC_ADDRESS);
237 	memcpy(mac, addr, ETH_ALEN);
238 }
239 
240 /* Send led command */
241 static int
il4965_send_led_cmd(struct il_priv * il,struct il_led_cmd * led_cmd)242 il4965_send_led_cmd(struct il_priv *il, struct il_led_cmd *led_cmd)
243 {
244 	struct il_host_cmd cmd = {
245 		.id = C_LEDS,
246 		.len = sizeof(struct il_led_cmd),
247 		.data = led_cmd,
248 		.flags = CMD_ASYNC,
249 		.callback = NULL,
250 	};
251 	u32 reg;
252 
253 	reg = _il_rd(il, CSR_LED_REG);
254 	if (reg != (reg & CSR_LED_BSM_CTRL_MSK))
255 		_il_wr(il, CSR_LED_REG, reg & CSR_LED_BSM_CTRL_MSK);
256 
257 	return il_send_cmd(il, &cmd);
258 }
259 
260 /* Set led register off */
261 void
il4965_led_enable(struct il_priv * il)262 il4965_led_enable(struct il_priv *il)
263 {
264 	_il_wr(il, CSR_LED_REG, CSR_LED_REG_TRUN_ON);
265 }
266 
267 const struct il_led_ops il4965_led_ops = {
268 	.cmd = il4965_send_led_cmd,
269 };
270 
271 static int il4965_send_tx_power(struct il_priv *il);
272 static int il4965_hw_get_temperature(struct il_priv *il);
273 
274 /* Highest firmware API version supported */
275 #define IL4965_UCODE_API_MAX 2
276 
277 /* Lowest firmware API version supported */
278 #define IL4965_UCODE_API_MIN 2
279 
280 #define IL4965_FW_PRE "iwlwifi-4965-"
281 #define _IL4965_MODULE_FIRMWARE(api) IL4965_FW_PRE #api ".ucode"
282 #define IL4965_MODULE_FIRMWARE(api) _IL4965_MODULE_FIRMWARE(api)
283 
284 /* check contents of special bootstrap uCode SRAM */
285 static int
il4965_verify_bsm(struct il_priv * il)286 il4965_verify_bsm(struct il_priv *il)
287 {
288 	__le32 *image = il->ucode_boot.v_addr;
289 	u32 len = il->ucode_boot.len;
290 	u32 reg;
291 	u32 val;
292 
293 	D_INFO("Begin verify bsm\n");
294 
295 	/* verify BSM SRAM contents */
296 	val = il_rd_prph(il, BSM_WR_DWCOUNT_REG);
297 	for (reg = BSM_SRAM_LOWER_BOUND; reg < BSM_SRAM_LOWER_BOUND + len;
298 	     reg += sizeof(u32), image++) {
299 		val = il_rd_prph(il, reg);
300 		if (val != le32_to_cpu(*image)) {
301 			IL_ERR("BSM uCode verification failed at "
302 			       "addr 0x%08X+%u (of %u), is 0x%x, s/b 0x%x\n",
303 			       BSM_SRAM_LOWER_BOUND, reg - BSM_SRAM_LOWER_BOUND,
304 			       len, val, le32_to_cpu(*image));
305 			return -EIO;
306 		}
307 	}
308 
309 	D_INFO("BSM bootstrap uCode image OK\n");
310 
311 	return 0;
312 }
313 
314 /**
315  * il4965_load_bsm - Load bootstrap instructions
316  *
317  * BSM operation:
318  *
319  * The Bootstrap State Machine (BSM) stores a short bootstrap uCode program
320  * in special SRAM that does not power down during RFKILL.  When powering back
321  * up after power-saving sleeps (or during initial uCode load), the BSM loads
322  * the bootstrap program into the on-board processor, and starts it.
323  *
324  * The bootstrap program loads (via DMA) instructions and data for a new
325  * program from host DRAM locations indicated by the host driver in the
326  * BSM_DRAM_* registers.  Once the new program is loaded, it starts
327  * automatically.
328  *
329  * When initializing the NIC, the host driver points the BSM to the
330  * "initialize" uCode image.  This uCode sets up some internal data, then
331  * notifies host via "initialize alive" that it is complete.
332  *
333  * The host then replaces the BSM_DRAM_* pointer values to point to the
334  * normal runtime uCode instructions and a backup uCode data cache buffer
335  * (filled initially with starting data values for the on-board processor),
336  * then triggers the "initialize" uCode to load and launch the runtime uCode,
337  * which begins normal operation.
338  *
339  * When doing a power-save shutdown, runtime uCode saves data SRAM into
340  * the backup data cache in DRAM before SRAM is powered down.
341  *
342  * When powering back up, the BSM loads the bootstrap program.  This reloads
343  * the runtime uCode instructions and the backup data cache into SRAM,
344  * and re-launches the runtime uCode from where it left off.
345  */
346 static int
il4965_load_bsm(struct il_priv * il)347 il4965_load_bsm(struct il_priv *il)
348 {
349 	__le32 *image = il->ucode_boot.v_addr;
350 	u32 len = il->ucode_boot.len;
351 	dma_addr_t pinst;
352 	dma_addr_t pdata;
353 	u32 inst_len;
354 	u32 data_len;
355 	int i;
356 	u32 done;
357 	u32 reg_offset;
358 	int ret;
359 
360 	D_INFO("Begin load bsm\n");
361 
362 	il->ucode_type = UCODE_RT;
363 
364 	/* make sure bootstrap program is no larger than BSM's SRAM size */
365 	if (len > IL49_MAX_BSM_SIZE)
366 		return -EINVAL;
367 
368 	/* Tell bootstrap uCode where to find the "Initialize" uCode
369 	 *   in host DRAM ... host DRAM physical address bits 35:4 for 4965.
370 	 * NOTE:  il_init_alive_start() will replace these values,
371 	 *        after the "initialize" uCode has run, to point to
372 	 *        runtime/protocol instructions and backup data cache.
373 	 */
374 	pinst = il->ucode_init.p_addr >> 4;
375 	pdata = il->ucode_init_data.p_addr >> 4;
376 	inst_len = il->ucode_init.len;
377 	data_len = il->ucode_init_data.len;
378 
379 	il_wr_prph(il, BSM_DRAM_INST_PTR_REG, pinst);
380 	il_wr_prph(il, BSM_DRAM_DATA_PTR_REG, pdata);
381 	il_wr_prph(il, BSM_DRAM_INST_BYTECOUNT_REG, inst_len);
382 	il_wr_prph(il, BSM_DRAM_DATA_BYTECOUNT_REG, data_len);
383 
384 	/* Fill BSM memory with bootstrap instructions */
385 	for (reg_offset = BSM_SRAM_LOWER_BOUND;
386 	     reg_offset < BSM_SRAM_LOWER_BOUND + len;
387 	     reg_offset += sizeof(u32), image++)
388 		_il_wr_prph(il, reg_offset, le32_to_cpu(*image));
389 
390 	ret = il4965_verify_bsm(il);
391 	if (ret)
392 		return ret;
393 
394 	/* Tell BSM to copy from BSM SRAM into instruction SRAM, when asked */
395 	il_wr_prph(il, BSM_WR_MEM_SRC_REG, 0x0);
396 	il_wr_prph(il, BSM_WR_MEM_DST_REG, IL49_RTC_INST_LOWER_BOUND);
397 	il_wr_prph(il, BSM_WR_DWCOUNT_REG, len / sizeof(u32));
398 
399 	/* Load bootstrap code into instruction SRAM now,
400 	 *   to prepare to load "initialize" uCode */
401 	il_wr_prph(il, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START);
402 
403 	/* Wait for load of bootstrap uCode to finish */
404 	for (i = 0; i < 100; i++) {
405 		done = il_rd_prph(il, BSM_WR_CTRL_REG);
406 		if (!(done & BSM_WR_CTRL_REG_BIT_START))
407 			break;
408 		udelay(10);
409 	}
410 	if (i < 100)
411 		D_INFO("BSM write complete, poll %d iterations\n", i);
412 	else {
413 		IL_ERR("BSM write did not complete!\n");
414 		return -EIO;
415 	}
416 
417 	/* Enable future boot loads whenever power management unit triggers it
418 	 *   (e.g. when powering back up after power-save shutdown) */
419 	il_wr_prph(il, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START_EN);
420 
421 	return 0;
422 }
423 
424 /**
425  * il4965_set_ucode_ptrs - Set uCode address location
426  *
427  * Tell initialization uCode where to find runtime uCode.
428  *
429  * BSM registers initially contain pointers to initialization uCode.
430  * We need to replace them to load runtime uCode inst and data,
431  * and to save runtime data when powering down.
432  */
433 static int
il4965_set_ucode_ptrs(struct il_priv * il)434 il4965_set_ucode_ptrs(struct il_priv *il)
435 {
436 	dma_addr_t pinst;
437 	dma_addr_t pdata;
438 	int ret = 0;
439 
440 	/* bits 35:4 for 4965 */
441 	pinst = il->ucode_code.p_addr >> 4;
442 	pdata = il->ucode_data_backup.p_addr >> 4;
443 
444 	/* Tell bootstrap uCode where to find image to load */
445 	il_wr_prph(il, BSM_DRAM_INST_PTR_REG, pinst);
446 	il_wr_prph(il, BSM_DRAM_DATA_PTR_REG, pdata);
447 	il_wr_prph(il, BSM_DRAM_DATA_BYTECOUNT_REG, il->ucode_data.len);
448 
449 	/* Inst byte count must be last to set up, bit 31 signals uCode
450 	 *   that all new ptr/size info is in place */
451 	il_wr_prph(il, BSM_DRAM_INST_BYTECOUNT_REG,
452 		   il->ucode_code.len | BSM_DRAM_INST_LOAD);
453 	D_INFO("Runtime uCode pointers are set.\n");
454 
455 	return ret;
456 }
457 
458 /**
459  * il4965_init_alive_start - Called after N_ALIVE notification received
460  *
461  * Called after N_ALIVE notification received from "initialize" uCode.
462  *
463  * The 4965 "initialize" ALIVE reply contains calibration data for:
464  *   Voltage, temperature, and MIMO tx gain correction, now stored in il
465  *   (3945 does not contain this data).
466  *
467  * Tell "initialize" uCode to go ahead and load the runtime uCode.
468 */
469 static void
il4965_init_alive_start(struct il_priv * il)470 il4965_init_alive_start(struct il_priv *il)
471 {
472 	/* Bootstrap uCode has loaded initialize uCode ... verify inst image.
473 	 * This is a paranoid check, because we would not have gotten the
474 	 * "initialize" alive if code weren't properly loaded.  */
475 	if (il4965_verify_ucode(il)) {
476 		/* Runtime instruction load was bad;
477 		 * take it all the way back down so we can try again */
478 		D_INFO("Bad \"initialize\" uCode load.\n");
479 		goto restart;
480 	}
481 
482 	/* Calculate temperature */
483 	il->temperature = il4965_hw_get_temperature(il);
484 
485 	/* Send pointers to protocol/runtime uCode image ... init code will
486 	 * load and launch runtime uCode, which will send us another "Alive"
487 	 * notification. */
488 	D_INFO("Initialization Alive received.\n");
489 	if (il4965_set_ucode_ptrs(il)) {
490 		/* Runtime instruction load won't happen;
491 		 * take it all the way back down so we can try again */
492 		D_INFO("Couldn't set up uCode pointers.\n");
493 		goto restart;
494 	}
495 	return;
496 
497 restart:
498 	queue_work(il->workqueue, &il->restart);
499 }
500 
501 static bool
iw4965_is_ht40_channel(__le32 rxon_flags)502 iw4965_is_ht40_channel(__le32 rxon_flags)
503 {
504 	int chan_mod =
505 	    le32_to_cpu(rxon_flags & RXON_FLG_CHANNEL_MODE_MSK) >>
506 	    RXON_FLG_CHANNEL_MODE_POS;
507 	return (chan_mod == CHANNEL_MODE_PURE_40 ||
508 		chan_mod == CHANNEL_MODE_MIXED);
509 }
510 
511 static void
il4965_nic_config(struct il_priv * il)512 il4965_nic_config(struct il_priv *il)
513 {
514 	unsigned long flags;
515 	u16 radio_cfg;
516 
517 	spin_lock_irqsave(&il->lock, flags);
518 
519 	radio_cfg = il_eeprom_query16(il, EEPROM_RADIO_CONFIG);
520 
521 	/* write radio config values to register */
522 	if (EEPROM_RF_CFG_TYPE_MSK(radio_cfg) == EEPROM_4965_RF_CFG_TYPE_MAX)
523 		il_set_bit(il, CSR_HW_IF_CONFIG_REG,
524 			   EEPROM_RF_CFG_TYPE_MSK(radio_cfg) |
525 			   EEPROM_RF_CFG_STEP_MSK(radio_cfg) |
526 			   EEPROM_RF_CFG_DASH_MSK(radio_cfg));
527 
528 	/* set CSR_HW_CONFIG_REG for uCode use */
529 	il_set_bit(il, CSR_HW_IF_CONFIG_REG,
530 		   CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI |
531 		   CSR_HW_IF_CONFIG_REG_BIT_MAC_SI);
532 
533 	il->calib_info =
534 	    (struct il_eeprom_calib_info *)
535 	    il_eeprom_query_addr(il, EEPROM_4965_CALIB_TXPOWER_OFFSET);
536 
537 	spin_unlock_irqrestore(&il->lock, flags);
538 }
539 
540 /* Reset differential Rx gains in NIC to prepare for chain noise calibration.
541  * Called after every association, but this runs only once!
542  *  ... once chain noise is calibrated the first time, it's good forever.  */
543 static void
il4965_chain_noise_reset(struct il_priv * il)544 il4965_chain_noise_reset(struct il_priv *il)
545 {
546 	struct il_chain_noise_data *data = &(il->chain_noise_data);
547 
548 	if (data->state == IL_CHAIN_NOISE_ALIVE && il_is_any_associated(il)) {
549 		struct il_calib_diff_gain_cmd cmd;
550 
551 		/* clear data for chain noise calibration algorithm */
552 		data->chain_noise_a = 0;
553 		data->chain_noise_b = 0;
554 		data->chain_noise_c = 0;
555 		data->chain_signal_a = 0;
556 		data->chain_signal_b = 0;
557 		data->chain_signal_c = 0;
558 		data->beacon_count = 0;
559 
560 		memset(&cmd, 0, sizeof(cmd));
561 		cmd.hdr.op_code = IL_PHY_CALIBRATE_DIFF_GAIN_CMD;
562 		cmd.diff_gain_a = 0;
563 		cmd.diff_gain_b = 0;
564 		cmd.diff_gain_c = 0;
565 		if (il_send_cmd_pdu(il, C_PHY_CALIBRATION, sizeof(cmd), &cmd))
566 			IL_ERR("Could not send C_PHY_CALIBRATION\n");
567 		data->state = IL_CHAIN_NOISE_ACCUMULATE;
568 		D_CALIB("Run chain_noise_calibrate\n");
569 	}
570 }
571 
572 static struct il_sensitivity_ranges il4965_sensitivity = {
573 	.min_nrg_cck = 97,
574 	.max_nrg_cck = 0,	/* not used, set to 0 */
575 
576 	.auto_corr_min_ofdm = 85,
577 	.auto_corr_min_ofdm_mrc = 170,
578 	.auto_corr_min_ofdm_x1 = 105,
579 	.auto_corr_min_ofdm_mrc_x1 = 220,
580 
581 	.auto_corr_max_ofdm = 120,
582 	.auto_corr_max_ofdm_mrc = 210,
583 	.auto_corr_max_ofdm_x1 = 140,
584 	.auto_corr_max_ofdm_mrc_x1 = 270,
585 
586 	.auto_corr_min_cck = 125,
587 	.auto_corr_max_cck = 200,
588 	.auto_corr_min_cck_mrc = 200,
589 	.auto_corr_max_cck_mrc = 400,
590 
591 	.nrg_th_cck = 100,
592 	.nrg_th_ofdm = 100,
593 
594 	.barker_corr_th_min = 190,
595 	.barker_corr_th_min_mrc = 390,
596 	.nrg_th_cca = 62,
597 };
598 
599 static void
il4965_set_ct_threshold(struct il_priv * il)600 il4965_set_ct_threshold(struct il_priv *il)
601 {
602 	/* want Kelvin */
603 	il->hw_params.ct_kill_threshold =
604 	    CELSIUS_TO_KELVIN(CT_KILL_THRESHOLD_LEGACY);
605 }
606 
607 /**
608  * il4965_hw_set_hw_params
609  *
610  * Called when initializing driver
611  */
612 static int
il4965_hw_set_hw_params(struct il_priv * il)613 il4965_hw_set_hw_params(struct il_priv *il)
614 {
615 	if (il->cfg->mod_params->num_of_queues >= IL_MIN_NUM_QUEUES &&
616 	    il->cfg->mod_params->num_of_queues <= IL49_NUM_QUEUES)
617 		il->cfg->base_params->num_of_queues =
618 		    il->cfg->mod_params->num_of_queues;
619 
620 	il->hw_params.max_txq_num = il->cfg->base_params->num_of_queues;
621 	il->hw_params.dma_chnl_num = FH49_TCSR_CHNL_NUM;
622 	il->hw_params.scd_bc_tbls_size =
623 	    il->cfg->base_params->num_of_queues *
624 	    sizeof(struct il4965_scd_bc_tbl);
625 	il->hw_params.tfd_size = sizeof(struct il_tfd);
626 	il->hw_params.max_stations = IL4965_STATION_COUNT;
627 	il->ctx.bcast_sta_id = IL4965_BROADCAST_ID;
628 	il->hw_params.max_data_size = IL49_RTC_DATA_SIZE;
629 	il->hw_params.max_inst_size = IL49_RTC_INST_SIZE;
630 	il->hw_params.max_bsm_size = BSM_SRAM_SIZE;
631 	il->hw_params.ht40_channel = BIT(IEEE80211_BAND_5GHZ);
632 
633 	il->hw_params.rx_wrt_ptr_reg = FH49_RSCSR_CHNL0_WPTR;
634 
635 	il->hw_params.tx_chains_num = il4965_num_of_ant(il->cfg->valid_tx_ant);
636 	il->hw_params.rx_chains_num = il4965_num_of_ant(il->cfg->valid_rx_ant);
637 	il->hw_params.valid_tx_ant = il->cfg->valid_tx_ant;
638 	il->hw_params.valid_rx_ant = il->cfg->valid_rx_ant;
639 
640 	il4965_set_ct_threshold(il);
641 
642 	il->hw_params.sens = &il4965_sensitivity;
643 	il->hw_params.beacon_time_tsf_bits = IL4965_EXT_BEACON_TIME_POS;
644 
645 	return 0;
646 }
647 
648 static s32
il4965_math_div_round(s32 num,s32 denom,s32 * res)649 il4965_math_div_round(s32 num, s32 denom, s32 * res)
650 {
651 	s32 sign = 1;
652 
653 	if (num < 0) {
654 		sign = -sign;
655 		num = -num;
656 	}
657 	if (denom < 0) {
658 		sign = -sign;
659 		denom = -denom;
660 	}
661 	*res = 1;
662 	*res = ((num * 2 + denom) / (denom * 2)) * sign;
663 
664 	return 1;
665 }
666 
667 /**
668  * il4965_get_voltage_compensation - Power supply voltage comp for txpower
669  *
670  * Determines power supply voltage compensation for txpower calculations.
671  * Returns number of 1/2-dB steps to subtract from gain table idx,
672  * to compensate for difference between power supply voltage during
673  * factory measurements, vs. current power supply voltage.
674  *
675  * Voltage indication is higher for lower voltage.
676  * Lower voltage requires more gain (lower gain table idx).
677  */
678 static s32
il4965_get_voltage_compensation(s32 eeprom_voltage,s32 current_voltage)679 il4965_get_voltage_compensation(s32 eeprom_voltage, s32 current_voltage)
680 {
681 	s32 comp = 0;
682 
683 	if (TX_POWER_IL_ILLEGAL_VOLTAGE == eeprom_voltage ||
684 	    TX_POWER_IL_ILLEGAL_VOLTAGE == current_voltage)
685 		return 0;
686 
687 	il4965_math_div_round(current_voltage - eeprom_voltage,
688 			      TX_POWER_IL_VOLTAGE_CODES_PER_03V, &comp);
689 
690 	if (current_voltage > eeprom_voltage)
691 		comp *= 2;
692 	if ((comp < -2) || (comp > 2))
693 		comp = 0;
694 
695 	return comp;
696 }
697 
698 static s32
il4965_get_tx_atten_grp(u16 channel)699 il4965_get_tx_atten_grp(u16 channel)
700 {
701 	if (channel >= CALIB_IL_TX_ATTEN_GR5_FCH &&
702 	    channel <= CALIB_IL_TX_ATTEN_GR5_LCH)
703 		return CALIB_CH_GROUP_5;
704 
705 	if (channel >= CALIB_IL_TX_ATTEN_GR1_FCH &&
706 	    channel <= CALIB_IL_TX_ATTEN_GR1_LCH)
707 		return CALIB_CH_GROUP_1;
708 
709 	if (channel >= CALIB_IL_TX_ATTEN_GR2_FCH &&
710 	    channel <= CALIB_IL_TX_ATTEN_GR2_LCH)
711 		return CALIB_CH_GROUP_2;
712 
713 	if (channel >= CALIB_IL_TX_ATTEN_GR3_FCH &&
714 	    channel <= CALIB_IL_TX_ATTEN_GR3_LCH)
715 		return CALIB_CH_GROUP_3;
716 
717 	if (channel >= CALIB_IL_TX_ATTEN_GR4_FCH &&
718 	    channel <= CALIB_IL_TX_ATTEN_GR4_LCH)
719 		return CALIB_CH_GROUP_4;
720 
721 	return -EINVAL;
722 }
723 
724 static u32
il4965_get_sub_band(const struct il_priv * il,u32 channel)725 il4965_get_sub_band(const struct il_priv *il, u32 channel)
726 {
727 	s32 b = -1;
728 
729 	for (b = 0; b < EEPROM_TX_POWER_BANDS; b++) {
730 		if (il->calib_info->band_info[b].ch_from == 0)
731 			continue;
732 
733 		if (channel >= il->calib_info->band_info[b].ch_from &&
734 		    channel <= il->calib_info->band_info[b].ch_to)
735 			break;
736 	}
737 
738 	return b;
739 }
740 
741 static s32
il4965_interpolate_value(s32 x,s32 x1,s32 y1,s32 x2,s32 y2)742 il4965_interpolate_value(s32 x, s32 x1, s32 y1, s32 x2, s32 y2)
743 {
744 	s32 val;
745 
746 	if (x2 == x1)
747 		return y1;
748 	else {
749 		il4965_math_div_round((x2 - x) * (y1 - y2), (x2 - x1), &val);
750 		return val + y2;
751 	}
752 }
753 
754 /**
755  * il4965_interpolate_chan - Interpolate factory measurements for one channel
756  *
757  * Interpolates factory measurements from the two sample channels within a
758  * sub-band, to apply to channel of interest.  Interpolation is proportional to
759  * differences in channel frequencies, which is proportional to differences
760  * in channel number.
761  */
762 static int
il4965_interpolate_chan(struct il_priv * il,u32 channel,struct il_eeprom_calib_ch_info * chan_info)763 il4965_interpolate_chan(struct il_priv *il, u32 channel,
764 			struct il_eeprom_calib_ch_info *chan_info)
765 {
766 	s32 s = -1;
767 	u32 c;
768 	u32 m;
769 	const struct il_eeprom_calib_measure *m1;
770 	const struct il_eeprom_calib_measure *m2;
771 	struct il_eeprom_calib_measure *omeas;
772 	u32 ch_i1;
773 	u32 ch_i2;
774 
775 	s = il4965_get_sub_band(il, channel);
776 	if (s >= EEPROM_TX_POWER_BANDS) {
777 		IL_ERR("Tx Power can not find channel %d\n", channel);
778 		return -1;
779 	}
780 
781 	ch_i1 = il->calib_info->band_info[s].ch1.ch_num;
782 	ch_i2 = il->calib_info->band_info[s].ch2.ch_num;
783 	chan_info->ch_num = (u8) channel;
784 
785 	D_TXPOWER("channel %d subband %d factory cal ch %d & %d\n", channel, s,
786 		  ch_i1, ch_i2);
787 
788 	for (c = 0; c < EEPROM_TX_POWER_TX_CHAINS; c++) {
789 		for (m = 0; m < EEPROM_TX_POWER_MEASUREMENTS; m++) {
790 			m1 = &(il->calib_info->band_info[s].ch1.
791 			       measurements[c][m]);
792 			m2 = &(il->calib_info->band_info[s].ch2.
793 			       measurements[c][m]);
794 			omeas = &(chan_info->measurements[c][m]);
795 
796 			omeas->actual_pow =
797 			    (u8) il4965_interpolate_value(channel, ch_i1,
798 							  m1->actual_pow, ch_i2,
799 							  m2->actual_pow);
800 			omeas->gain_idx =
801 			    (u8) il4965_interpolate_value(channel, ch_i1,
802 							  m1->gain_idx, ch_i2,
803 							  m2->gain_idx);
804 			omeas->temperature =
805 			    (u8) il4965_interpolate_value(channel, ch_i1,
806 							  m1->temperature,
807 							  ch_i2,
808 							  m2->temperature);
809 			omeas->pa_det =
810 			    (s8) il4965_interpolate_value(channel, ch_i1,
811 							  m1->pa_det, ch_i2,
812 							  m2->pa_det);
813 
814 			D_TXPOWER("chain %d meas %d AP1=%d AP2=%d AP=%d\n", c,
815 				  m, m1->actual_pow, m2->actual_pow,
816 				  omeas->actual_pow);
817 			D_TXPOWER("chain %d meas %d NI1=%d NI2=%d NI=%d\n", c,
818 				  m, m1->gain_idx, m2->gain_idx,
819 				  omeas->gain_idx);
820 			D_TXPOWER("chain %d meas %d PA1=%d PA2=%d PA=%d\n", c,
821 				  m, m1->pa_det, m2->pa_det, omeas->pa_det);
822 			D_TXPOWER("chain %d meas %d  T1=%d  T2=%d  T=%d\n", c,
823 				  m, m1->temperature, m2->temperature,
824 				  omeas->temperature);
825 		}
826 	}
827 
828 	return 0;
829 }
830 
831 /* bit-rate-dependent table to prevent Tx distortion, in half-dB units,
832  * for OFDM 6, 12, 18, 24, 36, 48, 54, 60 MBit, and CCK all rates. */
833 static s32 back_off_table[] = {
834 	10, 10, 10, 10, 10, 15, 17, 20,	/* OFDM SISO 20 MHz */
835 	10, 10, 10, 10, 10, 15, 17, 20,	/* OFDM MIMO 20 MHz */
836 	10, 10, 10, 10, 10, 15, 17, 20,	/* OFDM SISO 40 MHz */
837 	10, 10, 10, 10, 10, 15, 17, 20,	/* OFDM MIMO 40 MHz */
838 	10			/* CCK */
839 };
840 
841 /* Thermal compensation values for txpower for various frequency ranges ...
842  *   ratios from 3:1 to 4.5:1 of degrees (Celsius) per half-dB gain adjust */
843 static struct il4965_txpower_comp_entry {
844 	s32 degrees_per_05db_a;
845 	s32 degrees_per_05db_a_denom;
846 } tx_power_cmp_tble[CALIB_CH_GROUP_MAX] = {
847 	{
848 	9, 2},			/* group 0 5.2, ch  34-43 */
849 	{
850 	4, 1},			/* group 1 5.2, ch  44-70 */
851 	{
852 	4, 1},			/* group 2 5.2, ch  71-124 */
853 	{
854 	4, 1},			/* group 3 5.2, ch 125-200 */
855 	{
856 	3, 1}			/* group 4 2.4, ch   all */
857 };
858 
859 static s32
get_min_power_idx(s32 rate_power_idx,u32 band)860 get_min_power_idx(s32 rate_power_idx, u32 band)
861 {
862 	if (!band) {
863 		if ((rate_power_idx & 7) <= 4)
864 			return MIN_TX_GAIN_IDX_52GHZ_EXT;
865 	}
866 	return MIN_TX_GAIN_IDX;
867 }
868 
869 struct gain_entry {
870 	u8 dsp;
871 	u8 radio;
872 };
873 
874 static const struct gain_entry gain_table[2][108] = {
875 	/* 5.2GHz power gain idx table */
876 	{
877 	 {123, 0x3F},		/* highest txpower */
878 	 {117, 0x3F},
879 	 {110, 0x3F},
880 	 {104, 0x3F},
881 	 {98, 0x3F},
882 	 {110, 0x3E},
883 	 {104, 0x3E},
884 	 {98, 0x3E},
885 	 {110, 0x3D},
886 	 {104, 0x3D},
887 	 {98, 0x3D},
888 	 {110, 0x3C},
889 	 {104, 0x3C},
890 	 {98, 0x3C},
891 	 {110, 0x3B},
892 	 {104, 0x3B},
893 	 {98, 0x3B},
894 	 {110, 0x3A},
895 	 {104, 0x3A},
896 	 {98, 0x3A},
897 	 {110, 0x39},
898 	 {104, 0x39},
899 	 {98, 0x39},
900 	 {110, 0x38},
901 	 {104, 0x38},
902 	 {98, 0x38},
903 	 {110, 0x37},
904 	 {104, 0x37},
905 	 {98, 0x37},
906 	 {110, 0x36},
907 	 {104, 0x36},
908 	 {98, 0x36},
909 	 {110, 0x35},
910 	 {104, 0x35},
911 	 {98, 0x35},
912 	 {110, 0x34},
913 	 {104, 0x34},
914 	 {98, 0x34},
915 	 {110, 0x33},
916 	 {104, 0x33},
917 	 {98, 0x33},
918 	 {110, 0x32},
919 	 {104, 0x32},
920 	 {98, 0x32},
921 	 {110, 0x31},
922 	 {104, 0x31},
923 	 {98, 0x31},
924 	 {110, 0x30},
925 	 {104, 0x30},
926 	 {98, 0x30},
927 	 {110, 0x25},
928 	 {104, 0x25},
929 	 {98, 0x25},
930 	 {110, 0x24},
931 	 {104, 0x24},
932 	 {98, 0x24},
933 	 {110, 0x23},
934 	 {104, 0x23},
935 	 {98, 0x23},
936 	 {110, 0x22},
937 	 {104, 0x18},
938 	 {98, 0x18},
939 	 {110, 0x17},
940 	 {104, 0x17},
941 	 {98, 0x17},
942 	 {110, 0x16},
943 	 {104, 0x16},
944 	 {98, 0x16},
945 	 {110, 0x15},
946 	 {104, 0x15},
947 	 {98, 0x15},
948 	 {110, 0x14},
949 	 {104, 0x14},
950 	 {98, 0x14},
951 	 {110, 0x13},
952 	 {104, 0x13},
953 	 {98, 0x13},
954 	 {110, 0x12},
955 	 {104, 0x08},
956 	 {98, 0x08},
957 	 {110, 0x07},
958 	 {104, 0x07},
959 	 {98, 0x07},
960 	 {110, 0x06},
961 	 {104, 0x06},
962 	 {98, 0x06},
963 	 {110, 0x05},
964 	 {104, 0x05},
965 	 {98, 0x05},
966 	 {110, 0x04},
967 	 {104, 0x04},
968 	 {98, 0x04},
969 	 {110, 0x03},
970 	 {104, 0x03},
971 	 {98, 0x03},
972 	 {110, 0x02},
973 	 {104, 0x02},
974 	 {98, 0x02},
975 	 {110, 0x01},
976 	 {104, 0x01},
977 	 {98, 0x01},
978 	 {110, 0x00},
979 	 {104, 0x00},
980 	 {98, 0x00},
981 	 {93, 0x00},
982 	 {88, 0x00},
983 	 {83, 0x00},
984 	 {78, 0x00},
985 	 },
986 	/* 2.4GHz power gain idx table */
987 	{
988 	 {110, 0x3f},		/* highest txpower */
989 	 {104, 0x3f},
990 	 {98, 0x3f},
991 	 {110, 0x3e},
992 	 {104, 0x3e},
993 	 {98, 0x3e},
994 	 {110, 0x3d},
995 	 {104, 0x3d},
996 	 {98, 0x3d},
997 	 {110, 0x3c},
998 	 {104, 0x3c},
999 	 {98, 0x3c},
1000 	 {110, 0x3b},
1001 	 {104, 0x3b},
1002 	 {98, 0x3b},
1003 	 {110, 0x3a},
1004 	 {104, 0x3a},
1005 	 {98, 0x3a},
1006 	 {110, 0x39},
1007 	 {104, 0x39},
1008 	 {98, 0x39},
1009 	 {110, 0x38},
1010 	 {104, 0x38},
1011 	 {98, 0x38},
1012 	 {110, 0x37},
1013 	 {104, 0x37},
1014 	 {98, 0x37},
1015 	 {110, 0x36},
1016 	 {104, 0x36},
1017 	 {98, 0x36},
1018 	 {110, 0x35},
1019 	 {104, 0x35},
1020 	 {98, 0x35},
1021 	 {110, 0x34},
1022 	 {104, 0x34},
1023 	 {98, 0x34},
1024 	 {110, 0x33},
1025 	 {104, 0x33},
1026 	 {98, 0x33},
1027 	 {110, 0x32},
1028 	 {104, 0x32},
1029 	 {98, 0x32},
1030 	 {110, 0x31},
1031 	 {104, 0x31},
1032 	 {98, 0x31},
1033 	 {110, 0x30},
1034 	 {104, 0x30},
1035 	 {98, 0x30},
1036 	 {110, 0x6},
1037 	 {104, 0x6},
1038 	 {98, 0x6},
1039 	 {110, 0x5},
1040 	 {104, 0x5},
1041 	 {98, 0x5},
1042 	 {110, 0x4},
1043 	 {104, 0x4},
1044 	 {98, 0x4},
1045 	 {110, 0x3},
1046 	 {104, 0x3},
1047 	 {98, 0x3},
1048 	 {110, 0x2},
1049 	 {104, 0x2},
1050 	 {98, 0x2},
1051 	 {110, 0x1},
1052 	 {104, 0x1},
1053 	 {98, 0x1},
1054 	 {110, 0x0},
1055 	 {104, 0x0},
1056 	 {98, 0x0},
1057 	 {97, 0},
1058 	 {96, 0},
1059 	 {95, 0},
1060 	 {94, 0},
1061 	 {93, 0},
1062 	 {92, 0},
1063 	 {91, 0},
1064 	 {90, 0},
1065 	 {89, 0},
1066 	 {88, 0},
1067 	 {87, 0},
1068 	 {86, 0},
1069 	 {85, 0},
1070 	 {84, 0},
1071 	 {83, 0},
1072 	 {82, 0},
1073 	 {81, 0},
1074 	 {80, 0},
1075 	 {79, 0},
1076 	 {78, 0},
1077 	 {77, 0},
1078 	 {76, 0},
1079 	 {75, 0},
1080 	 {74, 0},
1081 	 {73, 0},
1082 	 {72, 0},
1083 	 {71, 0},
1084 	 {70, 0},
1085 	 {69, 0},
1086 	 {68, 0},
1087 	 {67, 0},
1088 	 {66, 0},
1089 	 {65, 0},
1090 	 {64, 0},
1091 	 {63, 0},
1092 	 {62, 0},
1093 	 {61, 0},
1094 	 {60, 0},
1095 	 {59, 0},
1096 	 }
1097 };
1098 
1099 static int
il4965_fill_txpower_tbl(struct il_priv * il,u8 band,u16 channel,u8 is_ht40,u8 ctrl_chan_high,struct il4965_tx_power_db * tx_power_tbl)1100 il4965_fill_txpower_tbl(struct il_priv *il, u8 band, u16 channel, u8 is_ht40,
1101 			u8 ctrl_chan_high,
1102 			struct il4965_tx_power_db *tx_power_tbl)
1103 {
1104 	u8 saturation_power;
1105 	s32 target_power;
1106 	s32 user_target_power;
1107 	s32 power_limit;
1108 	s32 current_temp;
1109 	s32 reg_limit;
1110 	s32 current_regulatory;
1111 	s32 txatten_grp = CALIB_CH_GROUP_MAX;
1112 	int i;
1113 	int c;
1114 	const struct il_channel_info *ch_info = NULL;
1115 	struct il_eeprom_calib_ch_info ch_eeprom_info;
1116 	const struct il_eeprom_calib_measure *measurement;
1117 	s16 voltage;
1118 	s32 init_voltage;
1119 	s32 voltage_compensation;
1120 	s32 degrees_per_05db_num;
1121 	s32 degrees_per_05db_denom;
1122 	s32 factory_temp;
1123 	s32 temperature_comp[2];
1124 	s32 factory_gain_idx[2];
1125 	s32 factory_actual_pwr[2];
1126 	s32 power_idx;
1127 
1128 	/* tx_power_user_lmt is in dBm, convert to half-dBm (half-dB units
1129 	 *   are used for idxing into txpower table) */
1130 	user_target_power = 2 * il->tx_power_user_lmt;
1131 
1132 	/* Get current (RXON) channel, band, width */
1133 	D_TXPOWER("chan %d band %d is_ht40 %d\n", channel, band, is_ht40);
1134 
1135 	ch_info = il_get_channel_info(il, il->band, channel);
1136 
1137 	if (!il_is_channel_valid(ch_info))
1138 		return -EINVAL;
1139 
1140 	/* get txatten group, used to select 1) thermal txpower adjustment
1141 	 *   and 2) mimo txpower balance between Tx chains. */
1142 	txatten_grp = il4965_get_tx_atten_grp(channel);
1143 	if (txatten_grp < 0) {
1144 		IL_ERR("Can't find txatten group for channel %d.\n", channel);
1145 		return txatten_grp;
1146 	}
1147 
1148 	D_TXPOWER("channel %d belongs to txatten group %d\n", channel,
1149 		  txatten_grp);
1150 
1151 	if (is_ht40) {
1152 		if (ctrl_chan_high)
1153 			channel -= 2;
1154 		else
1155 			channel += 2;
1156 	}
1157 
1158 	/* hardware txpower limits ...
1159 	 * saturation (clipping distortion) txpowers are in half-dBm */
1160 	if (band)
1161 		saturation_power = il->calib_info->saturation_power24;
1162 	else
1163 		saturation_power = il->calib_info->saturation_power52;
1164 
1165 	if (saturation_power < IL_TX_POWER_SATURATION_MIN ||
1166 	    saturation_power > IL_TX_POWER_SATURATION_MAX) {
1167 		if (band)
1168 			saturation_power = IL_TX_POWER_DEFAULT_SATURATION_24;
1169 		else
1170 			saturation_power = IL_TX_POWER_DEFAULT_SATURATION_52;
1171 	}
1172 
1173 	/* regulatory txpower limits ... reg_limit values are in half-dBm,
1174 	 *   max_power_avg values are in dBm, convert * 2 */
1175 	if (is_ht40)
1176 		reg_limit = ch_info->ht40_max_power_avg * 2;
1177 	else
1178 		reg_limit = ch_info->max_power_avg * 2;
1179 
1180 	if ((reg_limit < IL_TX_POWER_REGULATORY_MIN) ||
1181 	    (reg_limit > IL_TX_POWER_REGULATORY_MAX)) {
1182 		if (band)
1183 			reg_limit = IL_TX_POWER_DEFAULT_REGULATORY_24;
1184 		else
1185 			reg_limit = IL_TX_POWER_DEFAULT_REGULATORY_52;
1186 	}
1187 
1188 	/* Interpolate txpower calibration values for this channel,
1189 	 *   based on factory calibration tests on spaced channels. */
1190 	il4965_interpolate_chan(il, channel, &ch_eeprom_info);
1191 
1192 	/* calculate tx gain adjustment based on power supply voltage */
1193 	voltage = le16_to_cpu(il->calib_info->voltage);
1194 	init_voltage = (s32) le32_to_cpu(il->card_alive_init.voltage);
1195 	voltage_compensation =
1196 	    il4965_get_voltage_compensation(voltage, init_voltage);
1197 
1198 	D_TXPOWER("curr volt %d eeprom volt %d volt comp %d\n", init_voltage,
1199 		  voltage, voltage_compensation);
1200 
1201 	/* get current temperature (Celsius) */
1202 	current_temp = max(il->temperature, IL_TX_POWER_TEMPERATURE_MIN);
1203 	current_temp = min(il->temperature, IL_TX_POWER_TEMPERATURE_MAX);
1204 	current_temp = KELVIN_TO_CELSIUS(current_temp);
1205 
1206 	/* select thermal txpower adjustment params, based on channel group
1207 	 *   (same frequency group used for mimo txatten adjustment) */
1208 	degrees_per_05db_num =
1209 	    tx_power_cmp_tble[txatten_grp].degrees_per_05db_a;
1210 	degrees_per_05db_denom =
1211 	    tx_power_cmp_tble[txatten_grp].degrees_per_05db_a_denom;
1212 
1213 	/* get per-chain txpower values from factory measurements */
1214 	for (c = 0; c < 2; c++) {
1215 		measurement = &ch_eeprom_info.measurements[c][1];
1216 
1217 		/* txgain adjustment (in half-dB steps) based on difference
1218 		 *   between factory and current temperature */
1219 		factory_temp = measurement->temperature;
1220 		il4965_math_div_round((current_temp -
1221 				       factory_temp) * degrees_per_05db_denom,
1222 				      degrees_per_05db_num,
1223 				      &temperature_comp[c]);
1224 
1225 		factory_gain_idx[c] = measurement->gain_idx;
1226 		factory_actual_pwr[c] = measurement->actual_pow;
1227 
1228 		D_TXPOWER("chain = %d\n", c);
1229 		D_TXPOWER("fctry tmp %d, " "curr tmp %d, comp %d steps\n",
1230 			  factory_temp, current_temp, temperature_comp[c]);
1231 
1232 		D_TXPOWER("fctry idx %d, fctry pwr %d\n", factory_gain_idx[c],
1233 			  factory_actual_pwr[c]);
1234 	}
1235 
1236 	/* for each of 33 bit-rates (including 1 for CCK) */
1237 	for (i = 0; i < POWER_TBL_NUM_ENTRIES; i++) {
1238 		u8 is_mimo_rate;
1239 		union il4965_tx_power_dual_stream tx_power;
1240 
1241 		/* for mimo, reduce each chain's txpower by half
1242 		 * (3dB, 6 steps), so total output power is regulatory
1243 		 * compliant. */
1244 		if (i & 0x8) {
1245 			current_regulatory =
1246 			    reg_limit -
1247 			    IL_TX_POWER_MIMO_REGULATORY_COMPENSATION;
1248 			is_mimo_rate = 1;
1249 		} else {
1250 			current_regulatory = reg_limit;
1251 			is_mimo_rate = 0;
1252 		}
1253 
1254 		/* find txpower limit, either hardware or regulatory */
1255 		power_limit = saturation_power - back_off_table[i];
1256 		if (power_limit > current_regulatory)
1257 			power_limit = current_regulatory;
1258 
1259 		/* reduce user's txpower request if necessary
1260 		 * for this rate on this channel */
1261 		target_power = user_target_power;
1262 		if (target_power > power_limit)
1263 			target_power = power_limit;
1264 
1265 		D_TXPOWER("rate %d sat %d reg %d usr %d tgt %d\n", i,
1266 			  saturation_power - back_off_table[i],
1267 			  current_regulatory, user_target_power, target_power);
1268 
1269 		/* for each of 2 Tx chains (radio transmitters) */
1270 		for (c = 0; c < 2; c++) {
1271 			s32 atten_value;
1272 
1273 			if (is_mimo_rate)
1274 				atten_value =
1275 				    (s32) le32_to_cpu(il->card_alive_init.
1276 						      tx_atten[txatten_grp][c]);
1277 			else
1278 				atten_value = 0;
1279 
1280 			/* calculate idx; higher idx means lower txpower */
1281 			power_idx =
1282 			    (u8) (factory_gain_idx[c] -
1283 				  (target_power - factory_actual_pwr[c]) -
1284 				  temperature_comp[c] - voltage_compensation +
1285 				  atten_value);
1286 
1287 /*			D_TXPOWER("calculated txpower idx %d\n",
1288 						power_idx); */
1289 
1290 			if (power_idx < get_min_power_idx(i, band))
1291 				power_idx = get_min_power_idx(i, band);
1292 
1293 			/* adjust 5 GHz idx to support negative idxes */
1294 			if (!band)
1295 				power_idx += 9;
1296 
1297 			/* CCK, rate 32, reduce txpower for CCK */
1298 			if (i == POWER_TBL_CCK_ENTRY)
1299 				power_idx +=
1300 				    IL_TX_POWER_CCK_COMPENSATION_C_STEP;
1301 
1302 			/* stay within the table! */
1303 			if (power_idx > 107) {
1304 				IL_WARN("txpower idx %d > 107\n", power_idx);
1305 				power_idx = 107;
1306 			}
1307 			if (power_idx < 0) {
1308 				IL_WARN("txpower idx %d < 0\n", power_idx);
1309 				power_idx = 0;
1310 			}
1311 
1312 			/* fill txpower command for this rate/chain */
1313 			tx_power.s.radio_tx_gain[c] =
1314 			    gain_table[band][power_idx].radio;
1315 			tx_power.s.dsp_predis_atten[c] =
1316 			    gain_table[band][power_idx].dsp;
1317 
1318 			D_TXPOWER("chain %d mimo %d idx %d "
1319 				  "gain 0x%02x dsp %d\n", c, atten_value,
1320 				  power_idx, tx_power.s.radio_tx_gain[c],
1321 				  tx_power.s.dsp_predis_atten[c]);
1322 		}		/* for each chain */
1323 
1324 		tx_power_tbl->power_tbl[i].dw = cpu_to_le32(tx_power.dw);
1325 
1326 	}			/* for each rate */
1327 
1328 	return 0;
1329 }
1330 
1331 /**
1332  * il4965_send_tx_power - Configure the TXPOWER level user limit
1333  *
1334  * Uses the active RXON for channel, band, and characteristics (ht40, high)
1335  * The power limit is taken from il->tx_power_user_lmt.
1336  */
1337 static int
il4965_send_tx_power(struct il_priv * il)1338 il4965_send_tx_power(struct il_priv *il)
1339 {
1340 	struct il4965_txpowertable_cmd cmd = { 0 };
1341 	int ret;
1342 	u8 band = 0;
1343 	bool is_ht40 = false;
1344 	u8 ctrl_chan_high = 0;
1345 	struct il_rxon_context *ctx = &il->ctx;
1346 
1347 	if (WARN_ONCE
1348 	    (test_bit(S_SCAN_HW, &il->status),
1349 	     "TX Power requested while scanning!\n"))
1350 		return -EAGAIN;
1351 
1352 	band = il->band == IEEE80211_BAND_2GHZ;
1353 
1354 	is_ht40 = iw4965_is_ht40_channel(ctx->active.flags);
1355 
1356 	if (is_ht40 && (ctx->active.flags & RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK))
1357 		ctrl_chan_high = 1;
1358 
1359 	cmd.band = band;
1360 	cmd.channel = ctx->active.channel;
1361 
1362 	ret =
1363 	    il4965_fill_txpower_tbl(il, band, le16_to_cpu(ctx->active.channel),
1364 				    is_ht40, ctrl_chan_high, &cmd.tx_power);
1365 	if (ret)
1366 		goto out;
1367 
1368 	ret = il_send_cmd_pdu(il, C_TX_PWR_TBL, sizeof(cmd), &cmd);
1369 
1370 out:
1371 	return ret;
1372 }
1373 
1374 static int
il4965_send_rxon_assoc(struct il_priv * il,struct il_rxon_context * ctx)1375 il4965_send_rxon_assoc(struct il_priv *il, struct il_rxon_context *ctx)
1376 {
1377 	int ret = 0;
1378 	struct il4965_rxon_assoc_cmd rxon_assoc;
1379 	const struct il_rxon_cmd *rxon1 = &ctx->staging;
1380 	const struct il_rxon_cmd *rxon2 = &ctx->active;
1381 
1382 	if (rxon1->flags == rxon2->flags &&
1383 	    rxon1->filter_flags == rxon2->filter_flags &&
1384 	    rxon1->cck_basic_rates == rxon2->cck_basic_rates &&
1385 	    rxon1->ofdm_ht_single_stream_basic_rates ==
1386 	    rxon2->ofdm_ht_single_stream_basic_rates &&
1387 	    rxon1->ofdm_ht_dual_stream_basic_rates ==
1388 	    rxon2->ofdm_ht_dual_stream_basic_rates &&
1389 	    rxon1->rx_chain == rxon2->rx_chain &&
1390 	    rxon1->ofdm_basic_rates == rxon2->ofdm_basic_rates) {
1391 		D_INFO("Using current RXON_ASSOC.  Not resending.\n");
1392 		return 0;
1393 	}
1394 
1395 	rxon_assoc.flags = ctx->staging.flags;
1396 	rxon_assoc.filter_flags = ctx->staging.filter_flags;
1397 	rxon_assoc.ofdm_basic_rates = ctx->staging.ofdm_basic_rates;
1398 	rxon_assoc.cck_basic_rates = ctx->staging.cck_basic_rates;
1399 	rxon_assoc.reserved = 0;
1400 	rxon_assoc.ofdm_ht_single_stream_basic_rates =
1401 	    ctx->staging.ofdm_ht_single_stream_basic_rates;
1402 	rxon_assoc.ofdm_ht_dual_stream_basic_rates =
1403 	    ctx->staging.ofdm_ht_dual_stream_basic_rates;
1404 	rxon_assoc.rx_chain_select_flags = ctx->staging.rx_chain;
1405 
1406 	ret =
1407 	    il_send_cmd_pdu_async(il, C_RXON_ASSOC, sizeof(rxon_assoc),
1408 				  &rxon_assoc, NULL);
1409 
1410 	return ret;
1411 }
1412 
1413 static int
il4965_commit_rxon(struct il_priv * il,struct il_rxon_context * ctx)1414 il4965_commit_rxon(struct il_priv *il, struct il_rxon_context *ctx)
1415 {
1416 	/* cast away the const for active_rxon in this function */
1417 	struct il_rxon_cmd *active_rxon = (void *)&ctx->active;
1418 	int ret;
1419 	bool new_assoc = !!(ctx->staging.filter_flags & RXON_FILTER_ASSOC_MSK);
1420 
1421 	if (!il_is_alive(il))
1422 		return -EBUSY;
1423 
1424 	if (!ctx->is_active)
1425 		return 0;
1426 
1427 	/* always get timestamp with Rx frame */
1428 	ctx->staging.flags |= RXON_FLG_TSF2HOST_MSK;
1429 
1430 	ret = il_check_rxon_cmd(il, ctx);
1431 	if (ret) {
1432 		IL_ERR("Invalid RXON configuration.  Not committing.\n");
1433 		return -EINVAL;
1434 	}
1435 
1436 	/*
1437 	 * receive commit_rxon request
1438 	 * abort any previous channel switch if still in process
1439 	 */
1440 	if (test_bit(S_CHANNEL_SWITCH_PENDING, &il->status) &&
1441 	    il->switch_channel != ctx->staging.channel) {
1442 		D_11H("abort channel switch on %d\n",
1443 		      le16_to_cpu(il->switch_channel));
1444 		il_chswitch_done(il, false);
1445 	}
1446 
1447 	/* If we don't need to send a full RXON, we can use
1448 	 * il_rxon_assoc_cmd which is used to reconfigure filter
1449 	 * and other flags for the current radio configuration. */
1450 	if (!il_full_rxon_required(il, ctx)) {
1451 		ret = il_send_rxon_assoc(il, ctx);
1452 		if (ret) {
1453 			IL_ERR("Error setting RXON_ASSOC (%d)\n", ret);
1454 			return ret;
1455 		}
1456 
1457 		memcpy(active_rxon, &ctx->staging, sizeof(*active_rxon));
1458 		il_print_rx_config_cmd(il, ctx);
1459 		/*
1460 		 * We do not commit tx power settings while channel changing,
1461 		 * do it now if tx power changed.
1462 		 */
1463 		il_set_tx_power(il, il->tx_power_next, false);
1464 		return 0;
1465 	}
1466 
1467 	/* If we are currently associated and the new config requires
1468 	 * an RXON_ASSOC and the new config wants the associated mask enabled,
1469 	 * we must clear the associated from the active configuration
1470 	 * before we apply the new config */
1471 	if (il_is_associated_ctx(ctx) && new_assoc) {
1472 		D_INFO("Toggling associated bit on current RXON\n");
1473 		active_rxon->filter_flags &= ~RXON_FILTER_ASSOC_MSK;
1474 
1475 		ret =
1476 		    il_send_cmd_pdu(il, ctx->rxon_cmd,
1477 				    sizeof(struct il_rxon_cmd), active_rxon);
1478 
1479 		/* If the mask clearing failed then we set
1480 		 * active_rxon back to what it was previously */
1481 		if (ret) {
1482 			active_rxon->filter_flags |= RXON_FILTER_ASSOC_MSK;
1483 			IL_ERR("Error clearing ASSOC_MSK (%d)\n", ret);
1484 			return ret;
1485 		}
1486 		il_clear_ucode_stations(il, ctx);
1487 		il_restore_stations(il, ctx);
1488 		ret = il4965_restore_default_wep_keys(il, ctx);
1489 		if (ret) {
1490 			IL_ERR("Failed to restore WEP keys (%d)\n", ret);
1491 			return ret;
1492 		}
1493 	}
1494 
1495 	D_INFO("Sending RXON\n" "* with%s RXON_FILTER_ASSOC_MSK\n"
1496 	       "* channel = %d\n" "* bssid = %pM\n", (new_assoc ? "" : "out"),
1497 	       le16_to_cpu(ctx->staging.channel), ctx->staging.bssid_addr);
1498 
1499 	il_set_rxon_hwcrypto(il, ctx, !il->cfg->mod_params->sw_crypto);
1500 
1501 	/* Apply the new configuration
1502 	 * RXON unassoc clears the station table in uCode so restoration of
1503 	 * stations is needed after it (the RXON command) completes
1504 	 */
1505 	if (!new_assoc) {
1506 		ret =
1507 		    il_send_cmd_pdu(il, ctx->rxon_cmd,
1508 				    sizeof(struct il_rxon_cmd), &ctx->staging);
1509 		if (ret) {
1510 			IL_ERR("Error setting new RXON (%d)\n", ret);
1511 			return ret;
1512 		}
1513 		D_INFO("Return from !new_assoc RXON.\n");
1514 		memcpy(active_rxon, &ctx->staging, sizeof(*active_rxon));
1515 		il_clear_ucode_stations(il, ctx);
1516 		il_restore_stations(il, ctx);
1517 		ret = il4965_restore_default_wep_keys(il, ctx);
1518 		if (ret) {
1519 			IL_ERR("Failed to restore WEP keys (%d)\n", ret);
1520 			return ret;
1521 		}
1522 	}
1523 	if (new_assoc) {
1524 		il->start_calib = 0;
1525 		/* Apply the new configuration
1526 		 * RXON assoc doesn't clear the station table in uCode,
1527 		 */
1528 		ret =
1529 		    il_send_cmd_pdu(il, ctx->rxon_cmd,
1530 				    sizeof(struct il_rxon_cmd), &ctx->staging);
1531 		if (ret) {
1532 			IL_ERR("Error setting new RXON (%d)\n", ret);
1533 			return ret;
1534 		}
1535 		memcpy(active_rxon, &ctx->staging, sizeof(*active_rxon));
1536 	}
1537 	il_print_rx_config_cmd(il, ctx);
1538 
1539 	il4965_init_sensitivity(il);
1540 
1541 	/* If we issue a new RXON command which required a tune then we must
1542 	 * send a new TXPOWER command or we won't be able to Tx any frames */
1543 	ret = il_set_tx_power(il, il->tx_power_next, true);
1544 	if (ret) {
1545 		IL_ERR("Error sending TX power (%d)\n", ret);
1546 		return ret;
1547 	}
1548 
1549 	return 0;
1550 }
1551 
1552 static int
il4965_hw_channel_switch(struct il_priv * il,struct ieee80211_channel_switch * ch_switch)1553 il4965_hw_channel_switch(struct il_priv *il,
1554 			 struct ieee80211_channel_switch *ch_switch)
1555 {
1556 	struct il_rxon_context *ctx = &il->ctx;
1557 	int rc;
1558 	u8 band = 0;
1559 	bool is_ht40 = false;
1560 	u8 ctrl_chan_high = 0;
1561 	struct il4965_channel_switch_cmd cmd;
1562 	const struct il_channel_info *ch_info;
1563 	u32 switch_time_in_usec, ucode_switch_time;
1564 	u16 ch;
1565 	u32 tsf_low;
1566 	u8 switch_count;
1567 	u16 beacon_interval = le16_to_cpu(ctx->timing.beacon_interval);
1568 	struct ieee80211_vif *vif = ctx->vif;
1569 	band = il->band == IEEE80211_BAND_2GHZ;
1570 
1571 	is_ht40 = iw4965_is_ht40_channel(ctx->staging.flags);
1572 
1573 	if (is_ht40 && (ctx->staging.flags & RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK))
1574 		ctrl_chan_high = 1;
1575 
1576 	cmd.band = band;
1577 	cmd.expect_beacon = 0;
1578 	ch = ch_switch->channel->hw_value;
1579 	cmd.channel = cpu_to_le16(ch);
1580 	cmd.rxon_flags = ctx->staging.flags;
1581 	cmd.rxon_filter_flags = ctx->staging.filter_flags;
1582 	switch_count = ch_switch->count;
1583 	tsf_low = ch_switch->timestamp & 0x0ffffffff;
1584 	/*
1585 	 * calculate the ucode channel switch time
1586 	 * adding TSF as one of the factor for when to switch
1587 	 */
1588 	if (il->ucode_beacon_time > tsf_low && beacon_interval) {
1589 		if (switch_count >
1590 		    ((il->ucode_beacon_time - tsf_low) / beacon_interval)) {
1591 			switch_count -=
1592 			    (il->ucode_beacon_time - tsf_low) / beacon_interval;
1593 		} else
1594 			switch_count = 0;
1595 	}
1596 	if (switch_count <= 1)
1597 		cmd.switch_time = cpu_to_le32(il->ucode_beacon_time);
1598 	else {
1599 		switch_time_in_usec =
1600 		    vif->bss_conf.beacon_int * switch_count * TIME_UNIT;
1601 		ucode_switch_time =
1602 		    il_usecs_to_beacons(il, switch_time_in_usec,
1603 					beacon_interval);
1604 		cmd.switch_time =
1605 		    il_add_beacon_time(il, il->ucode_beacon_time,
1606 				       ucode_switch_time, beacon_interval);
1607 	}
1608 	D_11H("uCode time for the switch is 0x%x\n", cmd.switch_time);
1609 	ch_info = il_get_channel_info(il, il->band, ch);
1610 	if (ch_info)
1611 		cmd.expect_beacon = il_is_channel_radar(ch_info);
1612 	else {
1613 		IL_ERR("invalid channel switch from %u to %u\n",
1614 		       ctx->active.channel, ch);
1615 		return -EFAULT;
1616 	}
1617 
1618 	rc = il4965_fill_txpower_tbl(il, band, ch, is_ht40, ctrl_chan_high,
1619 				     &cmd.tx_power);
1620 	if (rc) {
1621 		D_11H("error:%d  fill txpower_tbl\n", rc);
1622 		return rc;
1623 	}
1624 
1625 	return il_send_cmd_pdu(il, C_CHANNEL_SWITCH, sizeof(cmd), &cmd);
1626 }
1627 
1628 /**
1629  * il4965_txq_update_byte_cnt_tbl - Set up entry in Tx byte-count array
1630  */
1631 static void
il4965_txq_update_byte_cnt_tbl(struct il_priv * il,struct il_tx_queue * txq,u16 byte_cnt)1632 il4965_txq_update_byte_cnt_tbl(struct il_priv *il, struct il_tx_queue *txq,
1633 			       u16 byte_cnt)
1634 {
1635 	struct il4965_scd_bc_tbl *scd_bc_tbl = il->scd_bc_tbls.addr;
1636 	int txq_id = txq->q.id;
1637 	int write_ptr = txq->q.write_ptr;
1638 	int len = byte_cnt + IL_TX_CRC_SIZE + IL_TX_DELIMITER_SIZE;
1639 	__le16 bc_ent;
1640 
1641 	WARN_ON(len > 0xFFF || write_ptr >= TFD_QUEUE_SIZE_MAX);
1642 
1643 	bc_ent = cpu_to_le16(len & 0xFFF);
1644 	/* Set up byte count within first 256 entries */
1645 	scd_bc_tbl[txq_id].tfd_offset[write_ptr] = bc_ent;
1646 
1647 	/* If within first 64 entries, duplicate at end */
1648 	if (write_ptr < TFD_QUEUE_SIZE_BC_DUP)
1649 		scd_bc_tbl[txq_id].tfd_offset[TFD_QUEUE_SIZE_MAX + write_ptr] =
1650 		    bc_ent;
1651 }
1652 
1653 /**
1654  * il4965_hw_get_temperature - return the calibrated temperature (in Kelvin)
1655  * @stats: Provides the temperature reading from the uCode
1656  *
1657  * A return of <0 indicates bogus data in the stats
1658  */
1659 static int
il4965_hw_get_temperature(struct il_priv * il)1660 il4965_hw_get_temperature(struct il_priv *il)
1661 {
1662 	s32 temperature;
1663 	s32 vt;
1664 	s32 R1, R2, R3;
1665 	u32 R4;
1666 
1667 	if (test_bit(S_TEMPERATURE, &il->status) &&
1668 	    (il->_4965.stats.flag & STATS_REPLY_FLG_HT40_MODE_MSK)) {
1669 		D_TEMP("Running HT40 temperature calibration\n");
1670 		R1 = (s32) le32_to_cpu(il->card_alive_init.therm_r1[1]);
1671 		R2 = (s32) le32_to_cpu(il->card_alive_init.therm_r2[1]);
1672 		R3 = (s32) le32_to_cpu(il->card_alive_init.therm_r3[1]);
1673 		R4 = le32_to_cpu(il->card_alive_init.therm_r4[1]);
1674 	} else {
1675 		D_TEMP("Running temperature calibration\n");
1676 		R1 = (s32) le32_to_cpu(il->card_alive_init.therm_r1[0]);
1677 		R2 = (s32) le32_to_cpu(il->card_alive_init.therm_r2[0]);
1678 		R3 = (s32) le32_to_cpu(il->card_alive_init.therm_r3[0]);
1679 		R4 = le32_to_cpu(il->card_alive_init.therm_r4[0]);
1680 	}
1681 
1682 	/*
1683 	 * Temperature is only 23 bits, so sign extend out to 32.
1684 	 *
1685 	 * NOTE If we haven't received a stats notification yet
1686 	 * with an updated temperature, use R4 provided to us in the
1687 	 * "initialize" ALIVE response.
1688 	 */
1689 	if (!test_bit(S_TEMPERATURE, &il->status))
1690 		vt = sign_extend32(R4, 23);
1691 	else
1692 		vt = sign_extend32(le32_to_cpu
1693 				   (il->_4965.stats.general.common.temperature),
1694 				   23);
1695 
1696 	D_TEMP("Calib values R[1-3]: %d %d %d R4: %d\n", R1, R2, R3, vt);
1697 
1698 	if (R3 == R1) {
1699 		IL_ERR("Calibration conflict R1 == R3\n");
1700 		return -1;
1701 	}
1702 
1703 	/* Calculate temperature in degrees Kelvin, adjust by 97%.
1704 	 * Add offset to center the adjustment around 0 degrees Centigrade. */
1705 	temperature = TEMPERATURE_CALIB_A_VAL * (vt - R2);
1706 	temperature /= (R3 - R1);
1707 	temperature =
1708 	    (temperature * 97) / 100 + TEMPERATURE_CALIB_KELVIN_OFFSET;
1709 
1710 	D_TEMP("Calibrated temperature: %dK, %dC\n", temperature,
1711 	       KELVIN_TO_CELSIUS(temperature));
1712 
1713 	return temperature;
1714 }
1715 
1716 /* Adjust Txpower only if temperature variance is greater than threshold. */
1717 #define IL_TEMPERATURE_THRESHOLD   3
1718 
1719 /**
1720  * il4965_is_temp_calib_needed - determines if new calibration is needed
1721  *
1722  * If the temperature changed has changed sufficiently, then a recalibration
1723  * is needed.
1724  *
1725  * Assumes caller will replace il->last_temperature once calibration
1726  * executed.
1727  */
1728 static int
il4965_is_temp_calib_needed(struct il_priv * il)1729 il4965_is_temp_calib_needed(struct il_priv *il)
1730 {
1731 	int temp_diff;
1732 
1733 	if (!test_bit(S_STATS, &il->status)) {
1734 		D_TEMP("Temperature not updated -- no stats.\n");
1735 		return 0;
1736 	}
1737 
1738 	temp_diff = il->temperature - il->last_temperature;
1739 
1740 	/* get absolute value */
1741 	if (temp_diff < 0) {
1742 		D_POWER("Getting cooler, delta %d\n", temp_diff);
1743 		temp_diff = -temp_diff;
1744 	} else if (temp_diff == 0)
1745 		D_POWER("Temperature unchanged\n");
1746 	else
1747 		D_POWER("Getting warmer, delta %d\n", temp_diff);
1748 
1749 	if (temp_diff < IL_TEMPERATURE_THRESHOLD) {
1750 		D_POWER(" => thermal txpower calib not needed\n");
1751 		return 0;
1752 	}
1753 
1754 	D_POWER(" => thermal txpower calib needed\n");
1755 
1756 	return 1;
1757 }
1758 
1759 static void
il4965_temperature_calib(struct il_priv * il)1760 il4965_temperature_calib(struct il_priv *il)
1761 {
1762 	s32 temp;
1763 
1764 	temp = il4965_hw_get_temperature(il);
1765 	if (IL_TX_POWER_TEMPERATURE_OUT_OF_RANGE(temp))
1766 		return;
1767 
1768 	if (il->temperature != temp) {
1769 		if (il->temperature)
1770 			D_TEMP("Temperature changed " "from %dC to %dC\n",
1771 			       KELVIN_TO_CELSIUS(il->temperature),
1772 			       KELVIN_TO_CELSIUS(temp));
1773 		else
1774 			D_TEMP("Temperature " "initialized to %dC\n",
1775 			       KELVIN_TO_CELSIUS(temp));
1776 	}
1777 
1778 	il->temperature = temp;
1779 	set_bit(S_TEMPERATURE, &il->status);
1780 
1781 	if (!il->disable_tx_power_cal &&
1782 	    unlikely(!test_bit(S_SCANNING, &il->status)) &&
1783 	    il4965_is_temp_calib_needed(il))
1784 		queue_work(il->workqueue, &il->txpower_work);
1785 }
1786 
1787 static u16
il4965_get_hcmd_size(u8 cmd_id,u16 len)1788 il4965_get_hcmd_size(u8 cmd_id, u16 len)
1789 {
1790 	switch (cmd_id) {
1791 	case C_RXON:
1792 		return (u16) sizeof(struct il4965_rxon_cmd);
1793 	default:
1794 		return len;
1795 	}
1796 }
1797 
1798 static u16
il4965_build_addsta_hcmd(const struct il_addsta_cmd * cmd,u8 * data)1799 il4965_build_addsta_hcmd(const struct il_addsta_cmd *cmd, u8 * data)
1800 {
1801 	struct il4965_addsta_cmd *addsta = (struct il4965_addsta_cmd *)data;
1802 	addsta->mode = cmd->mode;
1803 	memcpy(&addsta->sta, &cmd->sta, sizeof(struct sta_id_modify));
1804 	memcpy(&addsta->key, &cmd->key, sizeof(struct il4965_keyinfo));
1805 	addsta->station_flags = cmd->station_flags;
1806 	addsta->station_flags_msk = cmd->station_flags_msk;
1807 	addsta->tid_disable_tx = cmd->tid_disable_tx;
1808 	addsta->add_immediate_ba_tid = cmd->add_immediate_ba_tid;
1809 	addsta->remove_immediate_ba_tid = cmd->remove_immediate_ba_tid;
1810 	addsta->add_immediate_ba_ssn = cmd->add_immediate_ba_ssn;
1811 	addsta->sleep_tx_count = cmd->sleep_tx_count;
1812 	addsta->reserved1 = cpu_to_le16(0);
1813 	addsta->reserved2 = cpu_to_le16(0);
1814 
1815 	return (u16) sizeof(struct il4965_addsta_cmd);
1816 }
1817 
1818 static inline u32
il4965_get_scd_ssn(struct il4965_tx_resp * tx_resp)1819 il4965_get_scd_ssn(struct il4965_tx_resp *tx_resp)
1820 {
1821 	return le32_to_cpup(&tx_resp->u.status + tx_resp->frame_count) & MAX_SN;
1822 }
1823 
1824 static inline u32
il4965_tx_status_to_mac80211(u32 status)1825 il4965_tx_status_to_mac80211(u32 status)
1826 {
1827 	status &= TX_STATUS_MSK;
1828 
1829 	switch (status) {
1830 	case TX_STATUS_SUCCESS:
1831 	case TX_STATUS_DIRECT_DONE:
1832 		return IEEE80211_TX_STAT_ACK;
1833 	case TX_STATUS_FAIL_DEST_PS:
1834 		return IEEE80211_TX_STAT_TX_FILTERED;
1835 	default:
1836 		return 0;
1837 	}
1838 }
1839 
1840 static inline bool
il4965_is_tx_success(u32 status)1841 il4965_is_tx_success(u32 status)
1842 {
1843 	status &= TX_STATUS_MSK;
1844 	return (status == TX_STATUS_SUCCESS || status == TX_STATUS_DIRECT_DONE);
1845 }
1846 
1847 /**
1848  * il4965_tx_status_reply_tx - Handle Tx response for frames in aggregation queue
1849  */
1850 static int
il4965_tx_status_reply_tx(struct il_priv * il,struct il_ht_agg * agg,struct il4965_tx_resp * tx_resp,int txq_id,u16 start_idx)1851 il4965_tx_status_reply_tx(struct il_priv *il, struct il_ht_agg *agg,
1852 			  struct il4965_tx_resp *tx_resp, int txq_id,
1853 			  u16 start_idx)
1854 {
1855 	u16 status;
1856 	struct agg_tx_status *frame_status = tx_resp->u.agg_status;
1857 	struct ieee80211_tx_info *info = NULL;
1858 	struct ieee80211_hdr *hdr = NULL;
1859 	u32 rate_n_flags = le32_to_cpu(tx_resp->rate_n_flags);
1860 	int i, sh, idx;
1861 	u16 seq;
1862 	if (agg->wait_for_ba)
1863 		D_TX_REPLY("got tx response w/o block-ack\n");
1864 
1865 	agg->frame_count = tx_resp->frame_count;
1866 	agg->start_idx = start_idx;
1867 	agg->rate_n_flags = rate_n_flags;
1868 	agg->bitmap = 0;
1869 
1870 	/* num frames attempted by Tx command */
1871 	if (agg->frame_count == 1) {
1872 		/* Only one frame was attempted; no block-ack will arrive */
1873 		status = le16_to_cpu(frame_status[0].status);
1874 		idx = start_idx;
1875 
1876 		D_TX_REPLY("FrameCnt = %d, StartIdx=%d idx=%d\n",
1877 			   agg->frame_count, agg->start_idx, idx);
1878 
1879 		info = IEEE80211_SKB_CB(il->txq[txq_id].txb[idx].skb);
1880 		info->status.rates[0].count = tx_resp->failure_frame + 1;
1881 		info->flags &= ~IEEE80211_TX_CTL_AMPDU;
1882 		info->flags |= il4965_tx_status_to_mac80211(status);
1883 		il4965_hwrate_to_tx_control(il, rate_n_flags, info);
1884 
1885 		D_TX_REPLY("1 Frame 0x%x failure :%d\n", status & 0xff,
1886 			   tx_resp->failure_frame);
1887 		D_TX_REPLY("Rate Info rate_n_flags=%x\n", rate_n_flags);
1888 
1889 		agg->wait_for_ba = 0;
1890 	} else {
1891 		/* Two or more frames were attempted; expect block-ack */
1892 		u64 bitmap = 0;
1893 		int start = agg->start_idx;
1894 
1895 		/* Construct bit-map of pending frames within Tx win */
1896 		for (i = 0; i < agg->frame_count; i++) {
1897 			u16 sc;
1898 			status = le16_to_cpu(frame_status[i].status);
1899 			seq = le16_to_cpu(frame_status[i].sequence);
1900 			idx = SEQ_TO_IDX(seq);
1901 			txq_id = SEQ_TO_QUEUE(seq);
1902 
1903 			if (status &
1904 			    (AGG_TX_STATE_FEW_BYTES_MSK |
1905 			     AGG_TX_STATE_ABORT_MSK))
1906 				continue;
1907 
1908 			D_TX_REPLY("FrameCnt = %d, txq_id=%d idx=%d\n",
1909 				   agg->frame_count, txq_id, idx);
1910 
1911 			hdr = il_tx_queue_get_hdr(il, txq_id, idx);
1912 			if (!hdr) {
1913 				IL_ERR("BUG_ON idx doesn't point to valid skb"
1914 				       " idx=%d, txq_id=%d\n", idx, txq_id);
1915 				return -1;
1916 			}
1917 
1918 			sc = le16_to_cpu(hdr->seq_ctrl);
1919 			if (idx != (SEQ_TO_SN(sc) & 0xff)) {
1920 				IL_ERR("BUG_ON idx doesn't match seq control"
1921 				       " idx=%d, seq_idx=%d, seq=%d\n", idx,
1922 				       SEQ_TO_SN(sc), hdr->seq_ctrl);
1923 				return -1;
1924 			}
1925 
1926 			D_TX_REPLY("AGG Frame i=%d idx %d seq=%d\n", i, idx,
1927 				   SEQ_TO_SN(sc));
1928 
1929 			sh = idx - start;
1930 			if (sh > 64) {
1931 				sh = (start - idx) + 0xff;
1932 				bitmap = bitmap << sh;
1933 				sh = 0;
1934 				start = idx;
1935 			} else if (sh < -64)
1936 				sh = 0xff - (start - idx);
1937 			else if (sh < 0) {
1938 				sh = start - idx;
1939 				start = idx;
1940 				bitmap = bitmap << sh;
1941 				sh = 0;
1942 			}
1943 			bitmap |= 1ULL << sh;
1944 			D_TX_REPLY("start=%d bitmap=0x%llx\n", start,
1945 				   (unsigned long long)bitmap);
1946 		}
1947 
1948 		agg->bitmap = bitmap;
1949 		agg->start_idx = start;
1950 		D_TX_REPLY("Frames %d start_idx=%d bitmap=0x%llx\n",
1951 			   agg->frame_count, agg->start_idx,
1952 			   (unsigned long long)agg->bitmap);
1953 
1954 		if (bitmap)
1955 			agg->wait_for_ba = 1;
1956 	}
1957 	return 0;
1958 }
1959 
1960 static u8
il4965_find_station(struct il_priv * il,const u8 * addr)1961 il4965_find_station(struct il_priv *il, const u8 * addr)
1962 {
1963 	int i;
1964 	int start = 0;
1965 	int ret = IL_INVALID_STATION;
1966 	unsigned long flags;
1967 
1968 	if ((il->iw_mode == NL80211_IFTYPE_ADHOC))
1969 		start = IL_STA_ID;
1970 
1971 	if (is_broadcast_ether_addr(addr))
1972 		return il->ctx.bcast_sta_id;
1973 
1974 	spin_lock_irqsave(&il->sta_lock, flags);
1975 	for (i = start; i < il->hw_params.max_stations; i++)
1976 		if (il->stations[i].used &&
1977 		    (!compare_ether_addr(il->stations[i].sta.sta.addr, addr))) {
1978 			ret = i;
1979 			goto out;
1980 		}
1981 
1982 	D_ASSOC("can not find STA %pM total %d\n", addr, il->num_stations);
1983 
1984 out:
1985 	/*
1986 	 * It may be possible that more commands interacting with stations
1987 	 * arrive before we completed processing the adding of
1988 	 * station
1989 	 */
1990 	if (ret != IL_INVALID_STATION &&
1991 	    (!(il->stations[ret].used & IL_STA_UCODE_ACTIVE) ||
1992 	     ((il->stations[ret].used & IL_STA_UCODE_ACTIVE) &&
1993 	      (il->stations[ret].used & IL_STA_UCODE_INPROGRESS)))) {
1994 		IL_ERR("Requested station info for sta %d before ready.\n",
1995 		       ret);
1996 		ret = IL_INVALID_STATION;
1997 	}
1998 	spin_unlock_irqrestore(&il->sta_lock, flags);
1999 	return ret;
2000 }
2001 
2002 static int
il4965_get_ra_sta_id(struct il_priv * il,struct ieee80211_hdr * hdr)2003 il4965_get_ra_sta_id(struct il_priv *il, struct ieee80211_hdr *hdr)
2004 {
2005 	if (il->iw_mode == NL80211_IFTYPE_STATION) {
2006 		return IL_AP_ID;
2007 	} else {
2008 		u8 *da = ieee80211_get_DA(hdr);
2009 		return il4965_find_station(il, da);
2010 	}
2011 }
2012 
2013 /**
2014  * il4965_hdl_tx - Handle standard (non-aggregation) Tx response
2015  */
2016 static void
il4965_hdl_tx(struct il_priv * il,struct il_rx_buf * rxb)2017 il4965_hdl_tx(struct il_priv *il, struct il_rx_buf *rxb)
2018 {
2019 	struct il_rx_pkt *pkt = rxb_addr(rxb);
2020 	u16 sequence = le16_to_cpu(pkt->hdr.sequence);
2021 	int txq_id = SEQ_TO_QUEUE(sequence);
2022 	int idx = SEQ_TO_IDX(sequence);
2023 	struct il_tx_queue *txq = &il->txq[txq_id];
2024 	struct ieee80211_hdr *hdr;
2025 	struct ieee80211_tx_info *info;
2026 	struct il4965_tx_resp *tx_resp = (void *)&pkt->u.raw[0];
2027 	u32 status = le32_to_cpu(tx_resp->u.status);
2028 	int uninitialized_var(tid);
2029 	int sta_id;
2030 	int freed;
2031 	u8 *qc = NULL;
2032 	unsigned long flags;
2033 
2034 	if (idx >= txq->q.n_bd || il_queue_used(&txq->q, idx) == 0) {
2035 		IL_ERR("Read idx for DMA queue txq_id (%d) idx %d "
2036 		       "is out of range [0-%d] %d %d\n", txq_id, idx,
2037 		       txq->q.n_bd, txq->q.write_ptr, txq->q.read_ptr);
2038 		return;
2039 	}
2040 
2041 	txq->time_stamp = jiffies;
2042 	info = IEEE80211_SKB_CB(txq->txb[txq->q.read_ptr].skb);
2043 	memset(&info->status, 0, sizeof(info->status));
2044 
2045 	hdr = il_tx_queue_get_hdr(il, txq_id, idx);
2046 	if (ieee80211_is_data_qos(hdr->frame_control)) {
2047 		qc = ieee80211_get_qos_ctl(hdr);
2048 		tid = qc[0] & 0xf;
2049 	}
2050 
2051 	sta_id = il4965_get_ra_sta_id(il, hdr);
2052 	if (txq->sched_retry && unlikely(sta_id == IL_INVALID_STATION)) {
2053 		IL_ERR("Station not known\n");
2054 		return;
2055 	}
2056 
2057 	spin_lock_irqsave(&il->sta_lock, flags);
2058 	if (txq->sched_retry) {
2059 		const u32 scd_ssn = il4965_get_scd_ssn(tx_resp);
2060 		struct il_ht_agg *agg = NULL;
2061 		WARN_ON(!qc);
2062 
2063 		agg = &il->stations[sta_id].tid[tid].agg;
2064 
2065 		il4965_tx_status_reply_tx(il, agg, tx_resp, txq_id, idx);
2066 
2067 		/* check if BAR is needed */
2068 		if ((tx_resp->frame_count == 1) &&
2069 		    !il4965_is_tx_success(status))
2070 			info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
2071 
2072 		if (txq->q.read_ptr != (scd_ssn & 0xff)) {
2073 			idx = il_queue_dec_wrap(scd_ssn & 0xff, txq->q.n_bd);
2074 			D_TX_REPLY("Retry scheduler reclaim scd_ssn "
2075 				   "%d idx %d\n", scd_ssn, idx);
2076 			freed = il4965_tx_queue_reclaim(il, txq_id, idx);
2077 			if (qc)
2078 				il4965_free_tfds_in_queue(il, sta_id, tid,
2079 							  freed);
2080 
2081 			if (il->mac80211_registered &&
2082 			    il_queue_space(&txq->q) > txq->q.low_mark &&
2083 			    agg->state != IL_EMPTYING_HW_QUEUE_DELBA)
2084 				il_wake_queue(il, txq);
2085 		}
2086 	} else {
2087 		info->status.rates[0].count = tx_resp->failure_frame + 1;
2088 		info->flags |= il4965_tx_status_to_mac80211(status);
2089 		il4965_hwrate_to_tx_control(il,
2090 					    le32_to_cpu(tx_resp->rate_n_flags),
2091 					    info);
2092 
2093 		D_TX_REPLY("TXQ %d status %s (0x%08x) "
2094 			   "rate_n_flags 0x%x retries %d\n", txq_id,
2095 			   il4965_get_tx_fail_reason(status), status,
2096 			   le32_to_cpu(tx_resp->rate_n_flags),
2097 			   tx_resp->failure_frame);
2098 
2099 		freed = il4965_tx_queue_reclaim(il, txq_id, idx);
2100 		if (qc && likely(sta_id != IL_INVALID_STATION))
2101 			il4965_free_tfds_in_queue(il, sta_id, tid, freed);
2102 		else if (sta_id == IL_INVALID_STATION)
2103 			D_TX_REPLY("Station not known\n");
2104 
2105 		if (il->mac80211_registered &&
2106 		    il_queue_space(&txq->q) > txq->q.low_mark)
2107 			il_wake_queue(il, txq);
2108 	}
2109 	if (qc && likely(sta_id != IL_INVALID_STATION))
2110 		il4965_txq_check_empty(il, sta_id, tid, txq_id);
2111 
2112 	il4965_check_abort_status(il, tx_resp->frame_count, status);
2113 
2114 	spin_unlock_irqrestore(&il->sta_lock, flags);
2115 }
2116 
2117 /* Set up 4965-specific Rx frame reply handlers */
2118 static void
il4965_handler_setup(struct il_priv * il)2119 il4965_handler_setup(struct il_priv *il)
2120 {
2121 	/* Legacy Rx frames */
2122 	il->handlers[N_RX] = il4965_hdl_rx;
2123 	/* Tx response */
2124 	il->handlers[C_TX] = il4965_hdl_tx;
2125 }
2126 
2127 static struct il_hcmd_ops il4965_hcmd = {
2128 	.rxon_assoc = il4965_send_rxon_assoc,
2129 	.commit_rxon = il4965_commit_rxon,
2130 	.set_rxon_chain = il4965_set_rxon_chain,
2131 };
2132 
2133 static void
il4965_post_scan(struct il_priv * il)2134 il4965_post_scan(struct il_priv *il)
2135 {
2136 	struct il_rxon_context *ctx = &il->ctx;
2137 
2138 	/*
2139 	 * Since setting the RXON may have been deferred while
2140 	 * performing the scan, fire one off if needed
2141 	 */
2142 	if (memcmp(&ctx->staging, &ctx->active, sizeof(ctx->staging)))
2143 		il_commit_rxon(il, ctx);
2144 }
2145 
2146 static void
il4965_post_associate(struct il_priv * il)2147 il4965_post_associate(struct il_priv *il)
2148 {
2149 	struct il_rxon_context *ctx = &il->ctx;
2150 	struct ieee80211_vif *vif = ctx->vif;
2151 	struct ieee80211_conf *conf = NULL;
2152 	int ret = 0;
2153 
2154 	if (!vif || !il->is_open)
2155 		return;
2156 
2157 	if (test_bit(S_EXIT_PENDING, &il->status))
2158 		return;
2159 
2160 	il_scan_cancel_timeout(il, 200);
2161 
2162 	conf = &il->hw->conf;
2163 
2164 	ctx->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK;
2165 	il_commit_rxon(il, ctx);
2166 
2167 	ret = il_send_rxon_timing(il, ctx);
2168 	if (ret)
2169 		IL_WARN("RXON timing - " "Attempting to continue.\n");
2170 
2171 	ctx->staging.filter_flags |= RXON_FILTER_ASSOC_MSK;
2172 
2173 	il_set_rxon_ht(il, &il->current_ht_config);
2174 
2175 	if (il->cfg->ops->hcmd->set_rxon_chain)
2176 		il->cfg->ops->hcmd->set_rxon_chain(il, ctx);
2177 
2178 	ctx->staging.assoc_id = cpu_to_le16(vif->bss_conf.aid);
2179 
2180 	D_ASSOC("assoc id %d beacon interval %d\n", vif->bss_conf.aid,
2181 		vif->bss_conf.beacon_int);
2182 
2183 	if (vif->bss_conf.use_short_preamble)
2184 		ctx->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
2185 	else
2186 		ctx->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK;
2187 
2188 	if (ctx->staging.flags & RXON_FLG_BAND_24G_MSK) {
2189 		if (vif->bss_conf.use_short_slot)
2190 			ctx->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
2191 		else
2192 			ctx->staging.flags &= ~RXON_FLG_SHORT_SLOT_MSK;
2193 	}
2194 
2195 	il_commit_rxon(il, ctx);
2196 
2197 	D_ASSOC("Associated as %d to: %pM\n", vif->bss_conf.aid,
2198 		ctx->active.bssid_addr);
2199 
2200 	switch (vif->type) {
2201 	case NL80211_IFTYPE_STATION:
2202 		break;
2203 	case NL80211_IFTYPE_ADHOC:
2204 		il4965_send_beacon_cmd(il);
2205 		break;
2206 	default:
2207 		IL_ERR("%s Should not be called in %d mode\n", __func__,
2208 		       vif->type);
2209 		break;
2210 	}
2211 
2212 	/* the chain noise calibration will enabled PM upon completion
2213 	 * If chain noise has already been run, then we need to enable
2214 	 * power management here */
2215 	if (il->chain_noise_data.state == IL_CHAIN_NOISE_DONE)
2216 		il_power_update_mode(il, false);
2217 
2218 	/* Enable Rx differential gain and sensitivity calibrations */
2219 	il4965_chain_noise_reset(il);
2220 	il->start_calib = 1;
2221 }
2222 
2223 static void
il4965_config_ap(struct il_priv * il)2224 il4965_config_ap(struct il_priv *il)
2225 {
2226 	struct il_rxon_context *ctx = &il->ctx;
2227 	struct ieee80211_vif *vif = ctx->vif;
2228 	int ret = 0;
2229 
2230 	lockdep_assert_held(&il->mutex);
2231 
2232 	if (test_bit(S_EXIT_PENDING, &il->status))
2233 		return;
2234 
2235 	/* The following should be done only at AP bring up */
2236 	if (!il_is_associated_ctx(ctx)) {
2237 
2238 		/* RXON - unassoc (to set timing command) */
2239 		ctx->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK;
2240 		il_commit_rxon(il, ctx);
2241 
2242 		/* RXON Timing */
2243 		ret = il_send_rxon_timing(il, ctx);
2244 		if (ret)
2245 			IL_WARN("RXON timing failed - "
2246 				"Attempting to continue.\n");
2247 
2248 		/* AP has all antennas */
2249 		il->chain_noise_data.active_chains = il->hw_params.valid_rx_ant;
2250 		il_set_rxon_ht(il, &il->current_ht_config);
2251 		if (il->cfg->ops->hcmd->set_rxon_chain)
2252 			il->cfg->ops->hcmd->set_rxon_chain(il, ctx);
2253 
2254 		ctx->staging.assoc_id = 0;
2255 
2256 		if (vif->bss_conf.use_short_preamble)
2257 			ctx->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
2258 		else
2259 			ctx->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK;
2260 
2261 		if (ctx->staging.flags & RXON_FLG_BAND_24G_MSK) {
2262 			if (vif->bss_conf.use_short_slot)
2263 				ctx->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
2264 			else
2265 				ctx->staging.flags &= ~RXON_FLG_SHORT_SLOT_MSK;
2266 		}
2267 		/* need to send beacon cmd before committing assoc RXON! */
2268 		il4965_send_beacon_cmd(il);
2269 		/* restore RXON assoc */
2270 		ctx->staging.filter_flags |= RXON_FILTER_ASSOC_MSK;
2271 		il_commit_rxon(il, ctx);
2272 	}
2273 	il4965_send_beacon_cmd(il);
2274 }
2275 
2276 static struct il_hcmd_utils_ops il4965_hcmd_utils = {
2277 	.get_hcmd_size = il4965_get_hcmd_size,
2278 	.build_addsta_hcmd = il4965_build_addsta_hcmd,
2279 	.request_scan = il4965_request_scan,
2280 	.post_scan = il4965_post_scan,
2281 };
2282 
2283 static struct il_lib_ops il4965_lib = {
2284 	.set_hw_params = il4965_hw_set_hw_params,
2285 	.txq_update_byte_cnt_tbl = il4965_txq_update_byte_cnt_tbl,
2286 	.txq_attach_buf_to_tfd = il4965_hw_txq_attach_buf_to_tfd,
2287 	.txq_free_tfd = il4965_hw_txq_free_tfd,
2288 	.txq_init = il4965_hw_tx_queue_init,
2289 	.handler_setup = il4965_handler_setup,
2290 	.is_valid_rtc_data_addr = il4965_hw_valid_rtc_data_addr,
2291 	.init_alive_start = il4965_init_alive_start,
2292 	.load_ucode = il4965_load_bsm,
2293 	.dump_nic_error_log = il4965_dump_nic_error_log,
2294 	.dump_fh = il4965_dump_fh,
2295 	.set_channel_switch = il4965_hw_channel_switch,
2296 	.apm_ops = {
2297 		    .init = il_apm_init,
2298 		    .config = il4965_nic_config,
2299 		    },
2300 	.eeprom_ops = {
2301 		       .regulatory_bands = {
2302 					    EEPROM_REGULATORY_BAND_1_CHANNELS,
2303 					    EEPROM_REGULATORY_BAND_2_CHANNELS,
2304 					    EEPROM_REGULATORY_BAND_3_CHANNELS,
2305 					    EEPROM_REGULATORY_BAND_4_CHANNELS,
2306 					    EEPROM_REGULATORY_BAND_5_CHANNELS,
2307 					    EEPROM_4965_REGULATORY_BAND_24_HT40_CHANNELS,
2308 					    EEPROM_4965_REGULATORY_BAND_52_HT40_CHANNELS},
2309 		       .acquire_semaphore = il4965_eeprom_acquire_semaphore,
2310 		       .release_semaphore = il4965_eeprom_release_semaphore,
2311 		       },
2312 	.send_tx_power = il4965_send_tx_power,
2313 	.update_chain_flags = il4965_update_chain_flags,
2314 	.temp_ops = {
2315 		     .temperature = il4965_temperature_calib,
2316 		     },
2317 #ifdef CONFIG_IWLEGACY_DEBUGFS
2318 	.debugfs_ops = {
2319 			.rx_stats_read = il4965_ucode_rx_stats_read,
2320 			.tx_stats_read = il4965_ucode_tx_stats_read,
2321 			.general_stats_read = il4965_ucode_general_stats_read,
2322 			},
2323 #endif
2324 };
2325 
2326 static const struct il_legacy_ops il4965_legacy_ops = {
2327 	.post_associate = il4965_post_associate,
2328 	.config_ap = il4965_config_ap,
2329 	.manage_ibss_station = il4965_manage_ibss_station,
2330 	.update_bcast_stations = il4965_update_bcast_stations,
2331 };
2332 
2333 struct ieee80211_ops il4965_hw_ops = {
2334 	.tx = il4965_mac_tx,
2335 	.start = il4965_mac_start,
2336 	.stop = il4965_mac_stop,
2337 	.add_interface = il_mac_add_interface,
2338 	.remove_interface = il_mac_remove_interface,
2339 	.change_interface = il_mac_change_interface,
2340 	.config = il_mac_config,
2341 	.configure_filter = il4965_configure_filter,
2342 	.set_key = il4965_mac_set_key,
2343 	.update_tkip_key = il4965_mac_update_tkip_key,
2344 	.conf_tx = il_mac_conf_tx,
2345 	.reset_tsf = il_mac_reset_tsf,
2346 	.bss_info_changed = il_mac_bss_info_changed,
2347 	.ampdu_action = il4965_mac_ampdu_action,
2348 	.hw_scan = il_mac_hw_scan,
2349 	.sta_add = il4965_mac_sta_add,
2350 	.sta_remove = il_mac_sta_remove,
2351 	.channel_switch = il4965_mac_channel_switch,
2352 	.tx_last_beacon = il_mac_tx_last_beacon,
2353 };
2354 
2355 static const struct il_ops il4965_ops = {
2356 	.lib = &il4965_lib,
2357 	.hcmd = &il4965_hcmd,
2358 	.utils = &il4965_hcmd_utils,
2359 	.led = &il4965_led_ops,
2360 	.legacy = &il4965_legacy_ops,
2361 	.ieee80211_ops = &il4965_hw_ops,
2362 };
2363 
2364 static struct il_base_params il4965_base_params = {
2365 	.eeprom_size = IL4965_EEPROM_IMG_SIZE,
2366 	.num_of_queues = IL49_NUM_QUEUES,
2367 	.num_of_ampdu_queues = IL49_NUM_AMPDU_QUEUES,
2368 	.pll_cfg_val = 0,
2369 	.set_l0s = true,
2370 	.use_bsm = true,
2371 	.led_compensation = 61,
2372 	.chain_noise_num_beacons = IL4965_CAL_NUM_BEACONS,
2373 	.wd_timeout = IL_DEF_WD_TIMEOUT,
2374 	.temperature_kelvin = true,
2375 	.ucode_tracing = true,
2376 	.sensitivity_calib_by_driver = true,
2377 	.chain_noise_calib_by_driver = true,
2378 };
2379 
2380 struct il_cfg il4965_cfg = {
2381 	.name = "Intel(R) Wireless WiFi Link 4965AGN",
2382 	.fw_name_pre = IL4965_FW_PRE,
2383 	.ucode_api_max = IL4965_UCODE_API_MAX,
2384 	.ucode_api_min = IL4965_UCODE_API_MIN,
2385 	.sku = IL_SKU_A | IL_SKU_G | IL_SKU_N,
2386 	.valid_tx_ant = ANT_AB,
2387 	.valid_rx_ant = ANT_ABC,
2388 	.eeprom_ver = EEPROM_4965_EEPROM_VERSION,
2389 	.eeprom_calib_ver = EEPROM_4965_TX_POWER_VERSION,
2390 	.ops = &il4965_ops,
2391 	.mod_params = &il4965_mod_params,
2392 	.base_params = &il4965_base_params,
2393 	.led_mode = IL_LED_BLINK,
2394 	/*
2395 	 * Force use of chains B and C for scan RX on 5 GHz band
2396 	 * because the device has off-channel reception on chain A.
2397 	 */
2398 	.scan_rx_antennas[IEEE80211_BAND_5GHZ] = ANT_BC,
2399 };
2400 
2401 /* Module firmware */
2402 MODULE_FIRMWARE(IL4965_MODULE_FIRMWARE(IL4965_UCODE_API_MAX));
2403