1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22  * USA
23  *
24  * The full GNU General Public License is included in this distribution
25  * in the file called LICENSE.GPL.
26  *
27  * Contact Information:
28  *  Intel Linux Wireless <ilw@linux.intel.com>
29  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30  *
31  * BSD LICENSE
32  *
33  * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  *
40  *  * Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  *  * Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in
44  *    the documentation and/or other materials provided with the
45  *    distribution.
46  *  * Neither the name Intel Corporation nor the names of its
47  *    contributors may be used to endorse or promote products derived
48  *    from this software without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61  *****************************************************************************/
62 
63 #include <linux/slab.h>
64 #include <net/mac80211.h>
65 
66 #include "common.h"
67 #include "4965.h"
68 
69 /*****************************************************************************
70  * INIT calibrations framework
71  *****************************************************************************/
72 
73 struct stats_general_data {
74 	u32 beacon_silence_rssi_a;
75 	u32 beacon_silence_rssi_b;
76 	u32 beacon_silence_rssi_c;
77 	u32 beacon_energy_a;
78 	u32 beacon_energy_b;
79 	u32 beacon_energy_c;
80 };
81 
82 void
il4965_calib_free_results(struct il_priv * il)83 il4965_calib_free_results(struct il_priv *il)
84 {
85 	int i;
86 
87 	for (i = 0; i < IL_CALIB_MAX; i++) {
88 		kfree(il->calib_results[i].buf);
89 		il->calib_results[i].buf = NULL;
90 		il->calib_results[i].buf_len = 0;
91 	}
92 }
93 
94 /*****************************************************************************
95  * RUNTIME calibrations framework
96  *****************************************************************************/
97 
98 /* "false alarms" are signals that our DSP tries to lock onto,
99  *   but then determines that they are either noise, or transmissions
100  *   from a distant wireless network (also "noise", really) that get
101  *   "stepped on" by stronger transmissions within our own network.
102  * This algorithm attempts to set a sensitivity level that is high
103  *   enough to receive all of our own network traffic, but not so
104  *   high that our DSP gets too busy trying to lock onto non-network
105  *   activity/noise. */
106 static int
il4965_sens_energy_cck(struct il_priv * il,u32 norm_fa,u32 rx_enable_time,struct stats_general_data * rx_info)107 il4965_sens_energy_cck(struct il_priv *il, u32 norm_fa, u32 rx_enable_time,
108 		       struct stats_general_data *rx_info)
109 {
110 	u32 max_nrg_cck = 0;
111 	int i = 0;
112 	u8 max_silence_rssi = 0;
113 	u32 silence_ref = 0;
114 	u8 silence_rssi_a = 0;
115 	u8 silence_rssi_b = 0;
116 	u8 silence_rssi_c = 0;
117 	u32 val;
118 
119 	/* "false_alarms" values below are cross-multiplications to assess the
120 	 *   numbers of false alarms within the measured period of actual Rx
121 	 *   (Rx is off when we're txing), vs the min/max expected false alarms
122 	 *   (some should be expected if rx is sensitive enough) in a
123 	 *   hypothetical listening period of 200 time units (TU), 204.8 msec:
124 	 *
125 	 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
126 	 *
127 	 * */
128 	u32 false_alarms = norm_fa * 200 * 1024;
129 	u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
130 	u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
131 	struct il_sensitivity_data *data = NULL;
132 	const struct il_sensitivity_ranges *ranges = il->hw_params.sens;
133 
134 	data = &(il->sensitivity_data);
135 
136 	data->nrg_auto_corr_silence_diff = 0;
137 
138 	/* Find max silence rssi among all 3 receivers.
139 	 * This is background noise, which may include transmissions from other
140 	 *    networks, measured during silence before our network's beacon */
141 	silence_rssi_a =
142 	    (u8) ((rx_info->beacon_silence_rssi_a & ALL_BAND_FILTER) >> 8);
143 	silence_rssi_b =
144 	    (u8) ((rx_info->beacon_silence_rssi_b & ALL_BAND_FILTER) >> 8);
145 	silence_rssi_c =
146 	    (u8) ((rx_info->beacon_silence_rssi_c & ALL_BAND_FILTER) >> 8);
147 
148 	val = max(silence_rssi_b, silence_rssi_c);
149 	max_silence_rssi = max(silence_rssi_a, (u8) val);
150 
151 	/* Store silence rssi in 20-beacon history table */
152 	data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
153 	data->nrg_silence_idx++;
154 	if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
155 		data->nrg_silence_idx = 0;
156 
157 	/* Find max silence rssi across 20 beacon history */
158 	for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
159 		val = data->nrg_silence_rssi[i];
160 		silence_ref = max(silence_ref, val);
161 	}
162 	D_CALIB("silence a %u, b %u, c %u, 20-bcn max %u\n", silence_rssi_a,
163 		silence_rssi_b, silence_rssi_c, silence_ref);
164 
165 	/* Find max rx energy (min value!) among all 3 receivers,
166 	 *   measured during beacon frame.
167 	 * Save it in 10-beacon history table. */
168 	i = data->nrg_energy_idx;
169 	val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
170 	data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
171 
172 	data->nrg_energy_idx++;
173 	if (data->nrg_energy_idx >= 10)
174 		data->nrg_energy_idx = 0;
175 
176 	/* Find min rx energy (max value) across 10 beacon history.
177 	 * This is the minimum signal level that we want to receive well.
178 	 * Add backoff (margin so we don't miss slightly lower energy frames).
179 	 * This establishes an upper bound (min value) for energy threshold. */
180 	max_nrg_cck = data->nrg_value[0];
181 	for (i = 1; i < 10; i++)
182 		max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
183 	max_nrg_cck += 6;
184 
185 	D_CALIB("rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
186 		rx_info->beacon_energy_a, rx_info->beacon_energy_b,
187 		rx_info->beacon_energy_c, max_nrg_cck - 6);
188 
189 	/* Count number of consecutive beacons with fewer-than-desired
190 	 *   false alarms. */
191 	if (false_alarms < min_false_alarms)
192 		data->num_in_cck_no_fa++;
193 	else
194 		data->num_in_cck_no_fa = 0;
195 	D_CALIB("consecutive bcns with few false alarms = %u\n",
196 		data->num_in_cck_no_fa);
197 
198 	/* If we got too many false alarms this time, reduce sensitivity */
199 	if (false_alarms > max_false_alarms &&
200 	    data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK) {
201 		D_CALIB("norm FA %u > max FA %u\n", false_alarms,
202 			max_false_alarms);
203 		D_CALIB("... reducing sensitivity\n");
204 		data->nrg_curr_state = IL_FA_TOO_MANY;
205 		/* Store for "fewer than desired" on later beacon */
206 		data->nrg_silence_ref = silence_ref;
207 
208 		/* increase energy threshold (reduce nrg value)
209 		 *   to decrease sensitivity */
210 		data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
211 		/* Else if we got fewer than desired, increase sensitivity */
212 	} else if (false_alarms < min_false_alarms) {
213 		data->nrg_curr_state = IL_FA_TOO_FEW;
214 
215 		/* Compare silence level with silence level for most recent
216 		 *   healthy number or too many false alarms */
217 		data->nrg_auto_corr_silence_diff =
218 		    (s32) data->nrg_silence_ref - (s32) silence_ref;
219 
220 		D_CALIB("norm FA %u < min FA %u, silence diff %d\n",
221 			false_alarms, min_false_alarms,
222 			data->nrg_auto_corr_silence_diff);
223 
224 		/* Increase value to increase sensitivity, but only if:
225 		 * 1a) previous beacon did *not* have *too many* false alarms
226 		 * 1b) AND there's a significant difference in Rx levels
227 		 *      from a previous beacon with too many, or healthy # FAs
228 		 * OR 2) We've seen a lot of beacons (100) with too few
229 		 *       false alarms */
230 		if (data->nrg_prev_state != IL_FA_TOO_MANY &&
231 		    (data->nrg_auto_corr_silence_diff > NRG_DIFF ||
232 		     data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA)) {
233 
234 			D_CALIB("... increasing sensitivity\n");
235 			/* Increase nrg value to increase sensitivity */
236 			val = data->nrg_th_cck + NRG_STEP_CCK;
237 			data->nrg_th_cck = min((u32) ranges->min_nrg_cck, val);
238 		} else {
239 			D_CALIB("... but not changing sensitivity\n");
240 		}
241 
242 		/* Else we got a healthy number of false alarms, keep status quo */
243 	} else {
244 		D_CALIB(" FA in safe zone\n");
245 		data->nrg_curr_state = IL_FA_GOOD_RANGE;
246 
247 		/* Store for use in "fewer than desired" with later beacon */
248 		data->nrg_silence_ref = silence_ref;
249 
250 		/* If previous beacon had too many false alarms,
251 		 *   give it some extra margin by reducing sensitivity again
252 		 *   (but don't go below measured energy of desired Rx) */
253 		if (IL_FA_TOO_MANY == data->nrg_prev_state) {
254 			D_CALIB("... increasing margin\n");
255 			if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
256 				data->nrg_th_cck -= NRG_MARGIN;
257 			else
258 				data->nrg_th_cck = max_nrg_cck;
259 		}
260 	}
261 
262 	/* Make sure the energy threshold does not go above the measured
263 	 * energy of the desired Rx signals (reduced by backoff margin),
264 	 * or else we might start missing Rx frames.
265 	 * Lower value is higher energy, so we use max()!
266 	 */
267 	data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
268 	D_CALIB("new nrg_th_cck %u\n", data->nrg_th_cck);
269 
270 	data->nrg_prev_state = data->nrg_curr_state;
271 
272 	/* Auto-correlation CCK algorithm */
273 	if (false_alarms > min_false_alarms) {
274 
275 		/* increase auto_corr values to decrease sensitivity
276 		 * so the DSP won't be disturbed by the noise
277 		 */
278 		if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
279 			data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
280 		else {
281 			val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
282 			data->auto_corr_cck =
283 			    min((u32) ranges->auto_corr_max_cck, val);
284 		}
285 		val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
286 		data->auto_corr_cck_mrc =
287 		    min((u32) ranges->auto_corr_max_cck_mrc, val);
288 	} else if (false_alarms < min_false_alarms &&
289 		   (data->nrg_auto_corr_silence_diff > NRG_DIFF ||
290 		    data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA)) {
291 
292 		/* Decrease auto_corr values to increase sensitivity */
293 		val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
294 		data->auto_corr_cck = max((u32) ranges->auto_corr_min_cck, val);
295 		val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
296 		data->auto_corr_cck_mrc =
297 		    max((u32) ranges->auto_corr_min_cck_mrc, val);
298 	}
299 
300 	return 0;
301 }
302 
303 static int
il4965_sens_auto_corr_ofdm(struct il_priv * il,u32 norm_fa,u32 rx_enable_time)304 il4965_sens_auto_corr_ofdm(struct il_priv *il, u32 norm_fa, u32 rx_enable_time)
305 {
306 	u32 val;
307 	u32 false_alarms = norm_fa * 200 * 1024;
308 	u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
309 	u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
310 	struct il_sensitivity_data *data = NULL;
311 	const struct il_sensitivity_ranges *ranges = il->hw_params.sens;
312 
313 	data = &(il->sensitivity_data);
314 
315 	/* If we got too many false alarms this time, reduce sensitivity */
316 	if (false_alarms > max_false_alarms) {
317 
318 		D_CALIB("norm FA %u > max FA %u)\n", false_alarms,
319 			max_false_alarms);
320 
321 		val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
322 		data->auto_corr_ofdm =
323 		    min((u32) ranges->auto_corr_max_ofdm, val);
324 
325 		val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
326 		data->auto_corr_ofdm_mrc =
327 		    min((u32) ranges->auto_corr_max_ofdm_mrc, val);
328 
329 		val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
330 		data->auto_corr_ofdm_x1 =
331 		    min((u32) ranges->auto_corr_max_ofdm_x1, val);
332 
333 		val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
334 		data->auto_corr_ofdm_mrc_x1 =
335 		    min((u32) ranges->auto_corr_max_ofdm_mrc_x1, val);
336 	}
337 
338 	/* Else if we got fewer than desired, increase sensitivity */
339 	else if (false_alarms < min_false_alarms) {
340 
341 		D_CALIB("norm FA %u < min FA %u\n", false_alarms,
342 			min_false_alarms);
343 
344 		val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
345 		data->auto_corr_ofdm =
346 		    max((u32) ranges->auto_corr_min_ofdm, val);
347 
348 		val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
349 		data->auto_corr_ofdm_mrc =
350 		    max((u32) ranges->auto_corr_min_ofdm_mrc, val);
351 
352 		val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
353 		data->auto_corr_ofdm_x1 =
354 		    max((u32) ranges->auto_corr_min_ofdm_x1, val);
355 
356 		val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
357 		data->auto_corr_ofdm_mrc_x1 =
358 		    max((u32) ranges->auto_corr_min_ofdm_mrc_x1, val);
359 	} else {
360 		D_CALIB("min FA %u < norm FA %u < max FA %u OK\n",
361 			min_false_alarms, false_alarms, max_false_alarms);
362 	}
363 	return 0;
364 }
365 
366 static void
il4965_prepare_legacy_sensitivity_tbl(struct il_priv * il,struct il_sensitivity_data * data,__le16 * tbl)367 il4965_prepare_legacy_sensitivity_tbl(struct il_priv *il,
368 				      struct il_sensitivity_data *data,
369 				      __le16 *tbl)
370 {
371 	tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_IDX] =
372 	    cpu_to_le16((u16) data->auto_corr_ofdm);
373 	tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_IDX] =
374 	    cpu_to_le16((u16) data->auto_corr_ofdm_mrc);
375 	tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_IDX] =
376 	    cpu_to_le16((u16) data->auto_corr_ofdm_x1);
377 	tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_IDX] =
378 	    cpu_to_le16((u16) data->auto_corr_ofdm_mrc_x1);
379 
380 	tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_IDX] =
381 	    cpu_to_le16((u16) data->auto_corr_cck);
382 	tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_IDX] =
383 	    cpu_to_le16((u16) data->auto_corr_cck_mrc);
384 
385 	tbl[HD_MIN_ENERGY_CCK_DET_IDX] = cpu_to_le16((u16) data->nrg_th_cck);
386 	tbl[HD_MIN_ENERGY_OFDM_DET_IDX] = cpu_to_le16((u16) data->nrg_th_ofdm);
387 
388 	tbl[HD_BARKER_CORR_TH_ADD_MIN_IDX] =
389 	    cpu_to_le16(data->barker_corr_th_min);
390 	tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_IDX] =
391 	    cpu_to_le16(data->barker_corr_th_min_mrc);
392 	tbl[HD_OFDM_ENERGY_TH_IN_IDX] = cpu_to_le16(data->nrg_th_cca);
393 
394 	D_CALIB("ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
395 		data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
396 		data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
397 		data->nrg_th_ofdm);
398 
399 	D_CALIB("cck: ac %u mrc %u thresh %u\n", data->auto_corr_cck,
400 		data->auto_corr_cck_mrc, data->nrg_th_cck);
401 }
402 
403 /* Prepare a C_SENSITIVITY, send to uCode if values have changed */
404 static int
il4965_sensitivity_write(struct il_priv * il)405 il4965_sensitivity_write(struct il_priv *il)
406 {
407 	struct il_sensitivity_cmd cmd;
408 	struct il_sensitivity_data *data = NULL;
409 	struct il_host_cmd cmd_out = {
410 		.id = C_SENSITIVITY,
411 		.len = sizeof(struct il_sensitivity_cmd),
412 		.flags = CMD_ASYNC,
413 		.data = &cmd,
414 	};
415 
416 	data = &(il->sensitivity_data);
417 
418 	memset(&cmd, 0, sizeof(cmd));
419 
420 	il4965_prepare_legacy_sensitivity_tbl(il, data, &cmd.table[0]);
421 
422 	/* Update uCode's "work" table, and copy it to DSP */
423 	cmd.control = C_SENSITIVITY_CONTROL_WORK_TBL;
424 
425 	/* Don't send command to uCode if nothing has changed */
426 	if (!memcmp
427 	    (&cmd.table[0], &(il->sensitivity_tbl[0]),
428 	     sizeof(u16) * HD_TBL_SIZE)) {
429 		D_CALIB("No change in C_SENSITIVITY\n");
430 		return 0;
431 	}
432 
433 	/* Copy table for comparison next time */
434 	memcpy(&(il->sensitivity_tbl[0]), &(cmd.table[0]),
435 	       sizeof(u16) * HD_TBL_SIZE);
436 
437 	return il_send_cmd(il, &cmd_out);
438 }
439 
440 void
il4965_init_sensitivity(struct il_priv * il)441 il4965_init_sensitivity(struct il_priv *il)
442 {
443 	int ret = 0;
444 	int i;
445 	struct il_sensitivity_data *data = NULL;
446 	const struct il_sensitivity_ranges *ranges = il->hw_params.sens;
447 
448 	if (il->disable_sens_cal)
449 		return;
450 
451 	D_CALIB("Start il4965_init_sensitivity\n");
452 
453 	/* Clear driver's sensitivity algo data */
454 	data = &(il->sensitivity_data);
455 
456 	if (ranges == NULL)
457 		return;
458 
459 	memset(data, 0, sizeof(struct il_sensitivity_data));
460 
461 	data->num_in_cck_no_fa = 0;
462 	data->nrg_curr_state = IL_FA_TOO_MANY;
463 	data->nrg_prev_state = IL_FA_TOO_MANY;
464 	data->nrg_silence_ref = 0;
465 	data->nrg_silence_idx = 0;
466 	data->nrg_energy_idx = 0;
467 
468 	for (i = 0; i < 10; i++)
469 		data->nrg_value[i] = 0;
470 
471 	for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
472 		data->nrg_silence_rssi[i] = 0;
473 
474 	data->auto_corr_ofdm = ranges->auto_corr_min_ofdm;
475 	data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
476 	data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1;
477 	data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
478 	data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
479 	data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
480 	data->nrg_th_cck = ranges->nrg_th_cck;
481 	data->nrg_th_ofdm = ranges->nrg_th_ofdm;
482 	data->barker_corr_th_min = ranges->barker_corr_th_min;
483 	data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
484 	data->nrg_th_cca = ranges->nrg_th_cca;
485 
486 	data->last_bad_plcp_cnt_ofdm = 0;
487 	data->last_fa_cnt_ofdm = 0;
488 	data->last_bad_plcp_cnt_cck = 0;
489 	data->last_fa_cnt_cck = 0;
490 
491 	ret |= il4965_sensitivity_write(il);
492 	D_CALIB("<<return 0x%X\n", ret);
493 }
494 
495 void
il4965_sensitivity_calibration(struct il_priv * il,void * resp)496 il4965_sensitivity_calibration(struct il_priv *il, void *resp)
497 {
498 	u32 rx_enable_time;
499 	u32 fa_cck;
500 	u32 fa_ofdm;
501 	u32 bad_plcp_cck;
502 	u32 bad_plcp_ofdm;
503 	u32 norm_fa_ofdm;
504 	u32 norm_fa_cck;
505 	struct il_sensitivity_data *data = NULL;
506 	struct stats_rx_non_phy *rx_info;
507 	struct stats_rx_phy *ofdm, *cck;
508 	unsigned long flags;
509 	struct stats_general_data statis;
510 
511 	if (il->disable_sens_cal)
512 		return;
513 
514 	data = &(il->sensitivity_data);
515 
516 	if (!il_is_any_associated(il)) {
517 		D_CALIB("<< - not associated\n");
518 		return;
519 	}
520 
521 	spin_lock_irqsave(&il->lock, flags);
522 
523 	rx_info = &(((struct il_notif_stats *)resp)->rx.general);
524 	ofdm = &(((struct il_notif_stats *)resp)->rx.ofdm);
525 	cck = &(((struct il_notif_stats *)resp)->rx.cck);
526 
527 	if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
528 		D_CALIB("<< invalid data.\n");
529 		spin_unlock_irqrestore(&il->lock, flags);
530 		return;
531 	}
532 
533 	/* Extract Statistics: */
534 	rx_enable_time = le32_to_cpu(rx_info->channel_load);
535 	fa_cck = le32_to_cpu(cck->false_alarm_cnt);
536 	fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
537 	bad_plcp_cck = le32_to_cpu(cck->plcp_err);
538 	bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
539 
540 	statis.beacon_silence_rssi_a =
541 	    le32_to_cpu(rx_info->beacon_silence_rssi_a);
542 	statis.beacon_silence_rssi_b =
543 	    le32_to_cpu(rx_info->beacon_silence_rssi_b);
544 	statis.beacon_silence_rssi_c =
545 	    le32_to_cpu(rx_info->beacon_silence_rssi_c);
546 	statis.beacon_energy_a = le32_to_cpu(rx_info->beacon_energy_a);
547 	statis.beacon_energy_b = le32_to_cpu(rx_info->beacon_energy_b);
548 	statis.beacon_energy_c = le32_to_cpu(rx_info->beacon_energy_c);
549 
550 	spin_unlock_irqrestore(&il->lock, flags);
551 
552 	D_CALIB("rx_enable_time = %u usecs\n", rx_enable_time);
553 
554 	if (!rx_enable_time) {
555 		D_CALIB("<< RX Enable Time == 0!\n");
556 		return;
557 	}
558 
559 	/* These stats increase monotonically, and do not reset
560 	 *   at each beacon.  Calculate difference from last value, or just
561 	 *   use the new stats value if it has reset or wrapped around. */
562 	if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
563 		data->last_bad_plcp_cnt_cck = bad_plcp_cck;
564 	else {
565 		bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
566 		data->last_bad_plcp_cnt_cck += bad_plcp_cck;
567 	}
568 
569 	if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
570 		data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
571 	else {
572 		bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
573 		data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
574 	}
575 
576 	if (data->last_fa_cnt_ofdm > fa_ofdm)
577 		data->last_fa_cnt_ofdm = fa_ofdm;
578 	else {
579 		fa_ofdm -= data->last_fa_cnt_ofdm;
580 		data->last_fa_cnt_ofdm += fa_ofdm;
581 	}
582 
583 	if (data->last_fa_cnt_cck > fa_cck)
584 		data->last_fa_cnt_cck = fa_cck;
585 	else {
586 		fa_cck -= data->last_fa_cnt_cck;
587 		data->last_fa_cnt_cck += fa_cck;
588 	}
589 
590 	/* Total aborted signal locks */
591 	norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
592 	norm_fa_cck = fa_cck + bad_plcp_cck;
593 
594 	D_CALIB("cck: fa %u badp %u  ofdm: fa %u badp %u\n", fa_cck,
595 		bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
596 
597 	il4965_sens_auto_corr_ofdm(il, norm_fa_ofdm, rx_enable_time);
598 	il4965_sens_energy_cck(il, norm_fa_cck, rx_enable_time, &statis);
599 
600 	il4965_sensitivity_write(il);
601 }
602 
603 static inline u8
il4965_find_first_chain(u8 mask)604 il4965_find_first_chain(u8 mask)
605 {
606 	if (mask & ANT_A)
607 		return CHAIN_A;
608 	if (mask & ANT_B)
609 		return CHAIN_B;
610 	return CHAIN_C;
611 }
612 
613 /**
614  * Run disconnected antenna algorithm to find out which antennas are
615  * disconnected.
616  */
617 static void
il4965_find_disconn_antenna(struct il_priv * il,u32 * average_sig,struct il_chain_noise_data * data)618 il4965_find_disconn_antenna(struct il_priv *il, u32 * average_sig,
619 			    struct il_chain_noise_data *data)
620 {
621 	u32 active_chains = 0;
622 	u32 max_average_sig;
623 	u16 max_average_sig_antenna_i;
624 	u8 num_tx_chains;
625 	u8 first_chain;
626 	u16 i = 0;
627 
628 	average_sig[0] =
629 	    data->chain_signal_a /
630 	    il->cfg->base_params->chain_noise_num_beacons;
631 	average_sig[1] =
632 	    data->chain_signal_b /
633 	    il->cfg->base_params->chain_noise_num_beacons;
634 	average_sig[2] =
635 	    data->chain_signal_c /
636 	    il->cfg->base_params->chain_noise_num_beacons;
637 
638 	if (average_sig[0] >= average_sig[1]) {
639 		max_average_sig = average_sig[0];
640 		max_average_sig_antenna_i = 0;
641 		active_chains = (1 << max_average_sig_antenna_i);
642 	} else {
643 		max_average_sig = average_sig[1];
644 		max_average_sig_antenna_i = 1;
645 		active_chains = (1 << max_average_sig_antenna_i);
646 	}
647 
648 	if (average_sig[2] >= max_average_sig) {
649 		max_average_sig = average_sig[2];
650 		max_average_sig_antenna_i = 2;
651 		active_chains = (1 << max_average_sig_antenna_i);
652 	}
653 
654 	D_CALIB("average_sig: a %d b %d c %d\n", average_sig[0], average_sig[1],
655 		average_sig[2]);
656 	D_CALIB("max_average_sig = %d, antenna %d\n", max_average_sig,
657 		max_average_sig_antenna_i);
658 
659 	/* Compare signal strengths for all 3 receivers. */
660 	for (i = 0; i < NUM_RX_CHAINS; i++) {
661 		if (i != max_average_sig_antenna_i) {
662 			s32 rssi_delta = (max_average_sig - average_sig[i]);
663 
664 			/* If signal is very weak, compared with
665 			 * strongest, mark it as disconnected. */
666 			if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
667 				data->disconn_array[i] = 1;
668 			else
669 				active_chains |= (1 << i);
670 			D_CALIB("i = %d  rssiDelta = %d  "
671 				"disconn_array[i] = %d\n", i, rssi_delta,
672 				data->disconn_array[i]);
673 		}
674 	}
675 
676 	/*
677 	 * The above algorithm sometimes fails when the ucode
678 	 * reports 0 for all chains. It's not clear why that
679 	 * happens to start with, but it is then causing trouble
680 	 * because this can make us enable more chains than the
681 	 * hardware really has.
682 	 *
683 	 * To be safe, simply mask out any chains that we know
684 	 * are not on the device.
685 	 */
686 	active_chains &= il->hw_params.valid_rx_ant;
687 
688 	num_tx_chains = 0;
689 	for (i = 0; i < NUM_RX_CHAINS; i++) {
690 		/* loops on all the bits of
691 		 * il->hw_setting.valid_tx_ant */
692 		u8 ant_msk = (1 << i);
693 		if (!(il->hw_params.valid_tx_ant & ant_msk))
694 			continue;
695 
696 		num_tx_chains++;
697 		if (data->disconn_array[i] == 0)
698 			/* there is a Tx antenna connected */
699 			break;
700 		if (num_tx_chains == il->hw_params.tx_chains_num &&
701 		    data->disconn_array[i]) {
702 			/*
703 			 * If all chains are disconnected
704 			 * connect the first valid tx chain
705 			 */
706 			first_chain =
707 			    il4965_find_first_chain(il->cfg->valid_tx_ant);
708 			data->disconn_array[first_chain] = 0;
709 			active_chains |= BIT(first_chain);
710 			D_CALIB("All Tx chains are disconnected"
711 				"- declare %d as connected\n", first_chain);
712 			break;
713 		}
714 	}
715 
716 	if (active_chains != il->hw_params.valid_rx_ant &&
717 	    active_chains != il->chain_noise_data.active_chains)
718 		D_CALIB("Detected that not all antennas are connected! "
719 			"Connected: %#x, valid: %#x.\n", active_chains,
720 			il->hw_params.valid_rx_ant);
721 
722 	/* Save for use within RXON, TX, SCAN commands, etc. */
723 	data->active_chains = active_chains;
724 	D_CALIB("active_chains (bitwise) = 0x%x\n", active_chains);
725 }
726 
727 static void
il4965_gain_computation(struct il_priv * il,u32 * average_noise,u16 min_average_noise_antenna_i,u32 min_average_noise,u8 default_chain)728 il4965_gain_computation(struct il_priv *il, u32 * average_noise,
729 			u16 min_average_noise_antenna_i, u32 min_average_noise,
730 			u8 default_chain)
731 {
732 	int i, ret;
733 	struct il_chain_noise_data *data = &il->chain_noise_data;
734 
735 	data->delta_gain_code[min_average_noise_antenna_i] = 0;
736 
737 	for (i = default_chain; i < NUM_RX_CHAINS; i++) {
738 		s32 delta_g = 0;
739 
740 		if (!data->disconn_array[i] &&
741 		    data->delta_gain_code[i] ==
742 		    CHAIN_NOISE_DELTA_GAIN_INIT_VAL) {
743 			delta_g = average_noise[i] - min_average_noise;
744 			data->delta_gain_code[i] = (u8) ((delta_g * 10) / 15);
745 			data->delta_gain_code[i] =
746 			    min(data->delta_gain_code[i],
747 				(u8) CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
748 
749 			data->delta_gain_code[i] =
750 			    (data->delta_gain_code[i] | (1 << 2));
751 		} else {
752 			data->delta_gain_code[i] = 0;
753 		}
754 	}
755 	D_CALIB("delta_gain_codes: a %d b %d c %d\n", data->delta_gain_code[0],
756 		data->delta_gain_code[1], data->delta_gain_code[2]);
757 
758 	/* Differential gain gets sent to uCode only once */
759 	if (!data->radio_write) {
760 		struct il_calib_diff_gain_cmd cmd;
761 		data->radio_write = 1;
762 
763 		memset(&cmd, 0, sizeof(cmd));
764 		cmd.hdr.op_code = IL_PHY_CALIBRATE_DIFF_GAIN_CMD;
765 		cmd.diff_gain_a = data->delta_gain_code[0];
766 		cmd.diff_gain_b = data->delta_gain_code[1];
767 		cmd.diff_gain_c = data->delta_gain_code[2];
768 		ret = il_send_cmd_pdu(il, C_PHY_CALIBRATION, sizeof(cmd), &cmd);
769 		if (ret)
770 			D_CALIB("fail sending cmd " "C_PHY_CALIBRATION\n");
771 
772 		/* TODO we might want recalculate
773 		 * rx_chain in rxon cmd */
774 
775 		/* Mark so we run this algo only once! */
776 		data->state = IL_CHAIN_NOISE_CALIBRATED;
777 	}
778 }
779 
780 /*
781  * Accumulate 16 beacons of signal and noise stats for each of
782  *   3 receivers/antennas/rx-chains, then figure out:
783  * 1)  Which antennas are connected.
784  * 2)  Differential rx gain settings to balance the 3 receivers.
785  */
786 void
il4965_chain_noise_calibration(struct il_priv * il,void * stat_resp)787 il4965_chain_noise_calibration(struct il_priv *il, void *stat_resp)
788 {
789 	struct il_chain_noise_data *data = NULL;
790 
791 	u32 chain_noise_a;
792 	u32 chain_noise_b;
793 	u32 chain_noise_c;
794 	u32 chain_sig_a;
795 	u32 chain_sig_b;
796 	u32 chain_sig_c;
797 	u32 average_sig[NUM_RX_CHAINS] = { INITIALIZATION_VALUE };
798 	u32 average_noise[NUM_RX_CHAINS] = { INITIALIZATION_VALUE };
799 	u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
800 	u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
801 	u16 i = 0;
802 	u16 rxon_chnum = INITIALIZATION_VALUE;
803 	u16 stat_chnum = INITIALIZATION_VALUE;
804 	u8 rxon_band24;
805 	u8 stat_band24;
806 	unsigned long flags;
807 	struct stats_rx_non_phy *rx_info;
808 
809 	struct il_rxon_context *ctx = &il->ctx;
810 
811 	if (il->disable_chain_noise_cal)
812 		return;
813 
814 	data = &(il->chain_noise_data);
815 
816 	/*
817 	 * Accumulate just the first "chain_noise_num_beacons" after
818 	 * the first association, then we're done forever.
819 	 */
820 	if (data->state != IL_CHAIN_NOISE_ACCUMULATE) {
821 		if (data->state == IL_CHAIN_NOISE_ALIVE)
822 			D_CALIB("Wait for noise calib reset\n");
823 		return;
824 	}
825 
826 	spin_lock_irqsave(&il->lock, flags);
827 
828 	rx_info = &(((struct il_notif_stats *)stat_resp)->rx.general);
829 
830 	if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
831 		D_CALIB(" << Interference data unavailable\n");
832 		spin_unlock_irqrestore(&il->lock, flags);
833 		return;
834 	}
835 
836 	rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK);
837 	rxon_chnum = le16_to_cpu(ctx->staging.channel);
838 
839 	stat_band24 =
840 	    !!(((struct il_notif_stats *)stat_resp)->
841 	       flag & STATS_REPLY_FLG_BAND_24G_MSK);
842 	stat_chnum =
843 	    le32_to_cpu(((struct il_notif_stats *)stat_resp)->flag) >> 16;
844 
845 	/* Make sure we accumulate data for just the associated channel
846 	 *   (even if scanning). */
847 	if (rxon_chnum != stat_chnum || rxon_band24 != stat_band24) {
848 		D_CALIB("Stats not from chan=%d, band24=%d\n", rxon_chnum,
849 			rxon_band24);
850 		spin_unlock_irqrestore(&il->lock, flags);
851 		return;
852 	}
853 
854 	/*
855 	 *  Accumulate beacon stats values across
856 	 * "chain_noise_num_beacons"
857 	 */
858 	chain_noise_a =
859 	    le32_to_cpu(rx_info->beacon_silence_rssi_a) & IN_BAND_FILTER;
860 	chain_noise_b =
861 	    le32_to_cpu(rx_info->beacon_silence_rssi_b) & IN_BAND_FILTER;
862 	chain_noise_c =
863 	    le32_to_cpu(rx_info->beacon_silence_rssi_c) & IN_BAND_FILTER;
864 
865 	chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
866 	chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
867 	chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
868 
869 	spin_unlock_irqrestore(&il->lock, flags);
870 
871 	data->beacon_count++;
872 
873 	data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
874 	data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
875 	data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
876 
877 	data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
878 	data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
879 	data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
880 
881 	D_CALIB("chan=%d, band24=%d, beacon=%d\n", rxon_chnum, rxon_band24,
882 		data->beacon_count);
883 	D_CALIB("chain_sig: a %d b %d c %d\n", chain_sig_a, chain_sig_b,
884 		chain_sig_c);
885 	D_CALIB("chain_noise: a %d b %d c %d\n", chain_noise_a, chain_noise_b,
886 		chain_noise_c);
887 
888 	/* If this is the "chain_noise_num_beacons", determine:
889 	 * 1)  Disconnected antennas (using signal strengths)
890 	 * 2)  Differential gain (using silence noise) to balance receivers */
891 	if (data->beacon_count != il->cfg->base_params->chain_noise_num_beacons)
892 		return;
893 
894 	/* Analyze signal for disconnected antenna */
895 	il4965_find_disconn_antenna(il, average_sig, data);
896 
897 	/* Analyze noise for rx balance */
898 	average_noise[0] =
899 	    data->chain_noise_a / il->cfg->base_params->chain_noise_num_beacons;
900 	average_noise[1] =
901 	    data->chain_noise_b / il->cfg->base_params->chain_noise_num_beacons;
902 	average_noise[2] =
903 	    data->chain_noise_c / il->cfg->base_params->chain_noise_num_beacons;
904 
905 	for (i = 0; i < NUM_RX_CHAINS; i++) {
906 		if (!data->disconn_array[i] &&
907 		    average_noise[i] <= min_average_noise) {
908 			/* This means that chain i is active and has
909 			 * lower noise values so far: */
910 			min_average_noise = average_noise[i];
911 			min_average_noise_antenna_i = i;
912 		}
913 	}
914 
915 	D_CALIB("average_noise: a %d b %d c %d\n", average_noise[0],
916 		average_noise[1], average_noise[2]);
917 
918 	D_CALIB("min_average_noise = %d, antenna %d\n", min_average_noise,
919 		min_average_noise_antenna_i);
920 
921 	il4965_gain_computation(il, average_noise, min_average_noise_antenna_i,
922 				min_average_noise,
923 				il4965_find_first_chain(il->cfg->valid_rx_ant));
924 
925 	/* Some power changes may have been made during the calibration.
926 	 * Update and commit the RXON
927 	 */
928 	if (il->cfg->ops->lib->update_chain_flags)
929 		il->cfg->ops->lib->update_chain_flags(il);
930 
931 	data->state = IL_CHAIN_NOISE_DONE;
932 	il_power_update_mode(il, false);
933 }
934 
935 void
il4965_reset_run_time_calib(struct il_priv * il)936 il4965_reset_run_time_calib(struct il_priv *il)
937 {
938 	int i;
939 	memset(&(il->sensitivity_data), 0, sizeof(struct il_sensitivity_data));
940 	memset(&(il->chain_noise_data), 0, sizeof(struct il_chain_noise_data));
941 	for (i = 0; i < NUM_RX_CHAINS; i++)
942 		il->chain_noise_data.delta_gain_code[i] =
943 		    CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
944 
945 	/* Ask for stats now, the uCode will send notification
946 	 * periodically after association */
947 	il_send_stats_request(il, CMD_ASYNC, true);
948 }
949