1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
8
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
13
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
20
21 Contact Information:
22 Intel Linux Wireless <ilw@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
28
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <j@w1.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
43
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then refers to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
106
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
110
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
114
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
118
119 The flow of data on the TX side is as follows:
120
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124 The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169
170 #define IPW2100_VERSION "git-1.2.2"
171
172 #define DRV_NAME "ipw2100"
173 #define DRV_VERSION IPW2100_VERSION
174 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
176
177 static struct pm_qos_request ipw2100_pm_qos_req;
178
179 /* Debugging stuff */
180 #ifdef CONFIG_IPW2100_DEBUG
181 #define IPW2100_RX_DEBUG /* Reception debugging */
182 #endif
183
184 MODULE_DESCRIPTION(DRV_DESCRIPTION);
185 MODULE_VERSION(DRV_VERSION);
186 MODULE_AUTHOR(DRV_COPYRIGHT);
187 MODULE_LICENSE("GPL");
188
189 static int debug = 0;
190 static int network_mode = 0;
191 static int channel = 0;
192 static int associate = 0;
193 static int disable = 0;
194 #ifdef CONFIG_PM
195 static struct ipw2100_fw ipw2100_firmware;
196 #endif
197
198 #include <linux/moduleparam.h>
199 module_param(debug, int, 0444);
200 module_param_named(mode, network_mode, int, 0444);
201 module_param(channel, int, 0444);
202 module_param(associate, int, 0444);
203 module_param(disable, int, 0444);
204
205 MODULE_PARM_DESC(debug, "debug level");
206 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
207 MODULE_PARM_DESC(channel, "channel");
208 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
209 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
210
211 static u32 ipw2100_debug_level = IPW_DL_NONE;
212
213 #ifdef CONFIG_IPW2100_DEBUG
214 #define IPW_DEBUG(level, message...) \
215 do { \
216 if (ipw2100_debug_level & (level)) { \
217 printk(KERN_DEBUG "ipw2100: %c %s ", \
218 in_interrupt() ? 'I' : 'U', __func__); \
219 printk(message); \
220 } \
221 } while (0)
222 #else
223 #define IPW_DEBUG(level, message...) do {} while (0)
224 #endif /* CONFIG_IPW2100_DEBUG */
225
226 #ifdef CONFIG_IPW2100_DEBUG
227 static const char *command_types[] = {
228 "undefined",
229 "unused", /* HOST_ATTENTION */
230 "HOST_COMPLETE",
231 "unused", /* SLEEP */
232 "unused", /* HOST_POWER_DOWN */
233 "unused",
234 "SYSTEM_CONFIG",
235 "unused", /* SET_IMR */
236 "SSID",
237 "MANDATORY_BSSID",
238 "AUTHENTICATION_TYPE",
239 "ADAPTER_ADDRESS",
240 "PORT_TYPE",
241 "INTERNATIONAL_MODE",
242 "CHANNEL",
243 "RTS_THRESHOLD",
244 "FRAG_THRESHOLD",
245 "POWER_MODE",
246 "TX_RATES",
247 "BASIC_TX_RATES",
248 "WEP_KEY_INFO",
249 "unused",
250 "unused",
251 "unused",
252 "unused",
253 "WEP_KEY_INDEX",
254 "WEP_FLAGS",
255 "ADD_MULTICAST",
256 "CLEAR_ALL_MULTICAST",
257 "BEACON_INTERVAL",
258 "ATIM_WINDOW",
259 "CLEAR_STATISTICS",
260 "undefined",
261 "undefined",
262 "undefined",
263 "undefined",
264 "TX_POWER_INDEX",
265 "undefined",
266 "undefined",
267 "undefined",
268 "undefined",
269 "undefined",
270 "undefined",
271 "BROADCAST_SCAN",
272 "CARD_DISABLE",
273 "PREFERRED_BSSID",
274 "SET_SCAN_OPTIONS",
275 "SCAN_DWELL_TIME",
276 "SWEEP_TABLE",
277 "AP_OR_STATION_TABLE",
278 "GROUP_ORDINALS",
279 "SHORT_RETRY_LIMIT",
280 "LONG_RETRY_LIMIT",
281 "unused", /* SAVE_CALIBRATION */
282 "unused", /* RESTORE_CALIBRATION */
283 "undefined",
284 "undefined",
285 "undefined",
286 "HOST_PRE_POWER_DOWN",
287 "unused", /* HOST_INTERRUPT_COALESCING */
288 "undefined",
289 "CARD_DISABLE_PHY_OFF",
290 "MSDU_TX_RATES",
291 "undefined",
292 "SET_STATION_STAT_BITS",
293 "CLEAR_STATIONS_STAT_BITS",
294 "LEAP_ROGUE_MODE",
295 "SET_SECURITY_INFORMATION",
296 "DISASSOCIATION_BSSID",
297 "SET_WPA_ASS_IE"
298 };
299 #endif
300
301 #define WEXT_USECHANNELS 1
302
303 static const long ipw2100_frequencies[] = {
304 2412, 2417, 2422, 2427,
305 2432, 2437, 2442, 2447,
306 2452, 2457, 2462, 2467,
307 2472, 2484
308 };
309
310 #define FREQ_COUNT ARRAY_SIZE(ipw2100_frequencies)
311
312 static const long ipw2100_rates_11b[] = {
313 1000000,
314 2000000,
315 5500000,
316 11000000
317 };
318
319 static struct ieee80211_rate ipw2100_bg_rates[] = {
320 { .bitrate = 10 },
321 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
322 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
323 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
324 };
325
326 #define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
327
328 /* Pre-decl until we get the code solid and then we can clean it up */
329 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
330 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
331 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
332
333 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
334 static void ipw2100_queues_free(struct ipw2100_priv *priv);
335 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
336
337 static int ipw2100_fw_download(struct ipw2100_priv *priv,
338 struct ipw2100_fw *fw);
339 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
340 struct ipw2100_fw *fw);
341 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
342 size_t max);
343 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
344 size_t max);
345 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
346 struct ipw2100_fw *fw);
347 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
348 struct ipw2100_fw *fw);
349 static void ipw2100_wx_event_work(struct work_struct *work);
350 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
351 static struct iw_handler_def ipw2100_wx_handler_def;
352
read_register(struct net_device * dev,u32 reg,u32 * val)353 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
354 {
355 *val = readl((void __iomem *)(dev->base_addr + reg));
356 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
357 }
358
write_register(struct net_device * dev,u32 reg,u32 val)359 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
360 {
361 writel(val, (void __iomem *)(dev->base_addr + reg));
362 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
363 }
364
read_register_word(struct net_device * dev,u32 reg,u16 * val)365 static inline void read_register_word(struct net_device *dev, u32 reg,
366 u16 * val)
367 {
368 *val = readw((void __iomem *)(dev->base_addr + reg));
369 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
370 }
371
read_register_byte(struct net_device * dev,u32 reg,u8 * val)372 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
373 {
374 *val = readb((void __iomem *)(dev->base_addr + reg));
375 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
write_register_word(struct net_device * dev,u32 reg,u16 val)378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380 writew(val, (void __iomem *)(dev->base_addr + reg));
381 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
382 }
383
write_register_byte(struct net_device * dev,u32 reg,u8 val)384 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
385 {
386 writeb(val, (void __iomem *)(dev->base_addr + reg));
387 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
388 }
389
read_nic_dword(struct net_device * dev,u32 addr,u32 * val)390 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
391 {
392 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
393 addr & IPW_REG_INDIRECT_ADDR_MASK);
394 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
395 }
396
write_nic_dword(struct net_device * dev,u32 addr,u32 val)397 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
398 {
399 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
400 addr & IPW_REG_INDIRECT_ADDR_MASK);
401 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
402 }
403
read_nic_word(struct net_device * dev,u32 addr,u16 * val)404 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
405 {
406 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
407 addr & IPW_REG_INDIRECT_ADDR_MASK);
408 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
409 }
410
write_nic_word(struct net_device * dev,u32 addr,u16 val)411 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
412 {
413 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
414 addr & IPW_REG_INDIRECT_ADDR_MASK);
415 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
416 }
417
read_nic_byte(struct net_device * dev,u32 addr,u8 * val)418 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
419 {
420 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
421 addr & IPW_REG_INDIRECT_ADDR_MASK);
422 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
423 }
424
write_nic_byte(struct net_device * dev,u32 addr,u8 val)425 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
426 {
427 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
428 addr & IPW_REG_INDIRECT_ADDR_MASK);
429 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
430 }
431
write_nic_auto_inc_address(struct net_device * dev,u32 addr)432 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
433 {
434 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
435 addr & IPW_REG_INDIRECT_ADDR_MASK);
436 }
437
write_nic_dword_auto_inc(struct net_device * dev,u32 val)438 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
439 {
440 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
441 }
442
write_nic_memory(struct net_device * dev,u32 addr,u32 len,const u8 * buf)443 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
444 const u8 * buf)
445 {
446 u32 aligned_addr;
447 u32 aligned_len;
448 u32 dif_len;
449 u32 i;
450
451 /* read first nibble byte by byte */
452 aligned_addr = addr & (~0x3);
453 dif_len = addr - aligned_addr;
454 if (dif_len) {
455 /* Start reading at aligned_addr + dif_len */
456 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
457 aligned_addr);
458 for (i = dif_len; i < 4; i++, buf++)
459 write_register_byte(dev,
460 IPW_REG_INDIRECT_ACCESS_DATA + i,
461 *buf);
462
463 len -= dif_len;
464 aligned_addr += 4;
465 }
466
467 /* read DWs through autoincrement registers */
468 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
469 aligned_len = len & (~0x3);
470 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
471 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
472
473 /* copy the last nibble */
474 dif_len = len - aligned_len;
475 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
476 for (i = 0; i < dif_len; i++, buf++)
477 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
478 *buf);
479 }
480
read_nic_memory(struct net_device * dev,u32 addr,u32 len,u8 * buf)481 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
482 u8 * buf)
483 {
484 u32 aligned_addr;
485 u32 aligned_len;
486 u32 dif_len;
487 u32 i;
488
489 /* read first nibble byte by byte */
490 aligned_addr = addr & (~0x3);
491 dif_len = addr - aligned_addr;
492 if (dif_len) {
493 /* Start reading at aligned_addr + dif_len */
494 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
495 aligned_addr);
496 for (i = dif_len; i < 4; i++, buf++)
497 read_register_byte(dev,
498 IPW_REG_INDIRECT_ACCESS_DATA + i,
499 buf);
500
501 len -= dif_len;
502 aligned_addr += 4;
503 }
504
505 /* read DWs through autoincrement registers */
506 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
507 aligned_len = len & (~0x3);
508 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
509 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
510
511 /* copy the last nibble */
512 dif_len = len - aligned_len;
513 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
514 for (i = 0; i < dif_len; i++, buf++)
515 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
516 }
517
ipw2100_hw_is_adapter_in_system(struct net_device * dev)518 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
519 {
520 return (dev->base_addr &&
521 (readl
522 ((void __iomem *)(dev->base_addr +
523 IPW_REG_DOA_DEBUG_AREA_START))
524 == IPW_DATA_DOA_DEBUG_VALUE));
525 }
526
ipw2100_get_ordinal(struct ipw2100_priv * priv,u32 ord,void * val,u32 * len)527 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
528 void *val, u32 * len)
529 {
530 struct ipw2100_ordinals *ordinals = &priv->ordinals;
531 u32 addr;
532 u32 field_info;
533 u16 field_len;
534 u16 field_count;
535 u32 total_length;
536
537 if (ordinals->table1_addr == 0) {
538 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
539 "before they have been loaded.\n");
540 return -EINVAL;
541 }
542
543 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
544 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
545 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
546
547 printk(KERN_WARNING DRV_NAME
548 ": ordinal buffer length too small, need %zd\n",
549 IPW_ORD_TAB_1_ENTRY_SIZE);
550
551 return -EINVAL;
552 }
553
554 read_nic_dword(priv->net_dev,
555 ordinals->table1_addr + (ord << 2), &addr);
556 read_nic_dword(priv->net_dev, addr, val);
557
558 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
559
560 return 0;
561 }
562
563 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
564
565 ord -= IPW_START_ORD_TAB_2;
566
567 /* get the address of statistic */
568 read_nic_dword(priv->net_dev,
569 ordinals->table2_addr + (ord << 3), &addr);
570
571 /* get the second DW of statistics ;
572 * two 16-bit words - first is length, second is count */
573 read_nic_dword(priv->net_dev,
574 ordinals->table2_addr + (ord << 3) + sizeof(u32),
575 &field_info);
576
577 /* get each entry length */
578 field_len = *((u16 *) & field_info);
579
580 /* get number of entries */
581 field_count = *(((u16 *) & field_info) + 1);
582
583 /* abort if no enough memory */
584 total_length = field_len * field_count;
585 if (total_length > *len) {
586 *len = total_length;
587 return -EINVAL;
588 }
589
590 *len = total_length;
591 if (!total_length)
592 return 0;
593
594 /* read the ordinal data from the SRAM */
595 read_nic_memory(priv->net_dev, addr, total_length, val);
596
597 return 0;
598 }
599
600 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
601 "in table 2\n", ord);
602
603 return -EINVAL;
604 }
605
ipw2100_set_ordinal(struct ipw2100_priv * priv,u32 ord,u32 * val,u32 * len)606 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
607 u32 * len)
608 {
609 struct ipw2100_ordinals *ordinals = &priv->ordinals;
610 u32 addr;
611
612 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
613 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
614 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
615 IPW_DEBUG_INFO("wrong size\n");
616 return -EINVAL;
617 }
618
619 read_nic_dword(priv->net_dev,
620 ordinals->table1_addr + (ord << 2), &addr);
621
622 write_nic_dword(priv->net_dev, addr, *val);
623
624 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
625
626 return 0;
627 }
628
629 IPW_DEBUG_INFO("wrong table\n");
630 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
631 return -EINVAL;
632
633 return -EINVAL;
634 }
635
snprint_line(char * buf,size_t count,const u8 * data,u32 len,u32 ofs)636 static char *snprint_line(char *buf, size_t count,
637 const u8 * data, u32 len, u32 ofs)
638 {
639 int out, i, j, l;
640 char c;
641
642 out = snprintf(buf, count, "%08X", ofs);
643
644 for (l = 0, i = 0; i < 2; i++) {
645 out += snprintf(buf + out, count - out, " ");
646 for (j = 0; j < 8 && l < len; j++, l++)
647 out += snprintf(buf + out, count - out, "%02X ",
648 data[(i * 8 + j)]);
649 for (; j < 8; j++)
650 out += snprintf(buf + out, count - out, " ");
651 }
652
653 out += snprintf(buf + out, count - out, " ");
654 for (l = 0, i = 0; i < 2; i++) {
655 out += snprintf(buf + out, count - out, " ");
656 for (j = 0; j < 8 && l < len; j++, l++) {
657 c = data[(i * 8 + j)];
658 if (!isascii(c) || !isprint(c))
659 c = '.';
660
661 out += snprintf(buf + out, count - out, "%c", c);
662 }
663
664 for (; j < 8; j++)
665 out += snprintf(buf + out, count - out, " ");
666 }
667
668 return buf;
669 }
670
printk_buf(int level,const u8 * data,u32 len)671 static void printk_buf(int level, const u8 * data, u32 len)
672 {
673 char line[81];
674 u32 ofs = 0;
675 if (!(ipw2100_debug_level & level))
676 return;
677
678 while (len) {
679 printk(KERN_DEBUG "%s\n",
680 snprint_line(line, sizeof(line), &data[ofs],
681 min(len, 16U), ofs));
682 ofs += 16;
683 len -= min(len, 16U);
684 }
685 }
686
687 #define MAX_RESET_BACKOFF 10
688
schedule_reset(struct ipw2100_priv * priv)689 static void schedule_reset(struct ipw2100_priv *priv)
690 {
691 unsigned long now = get_seconds();
692
693 /* If we haven't received a reset request within the backoff period,
694 * then we can reset the backoff interval so this reset occurs
695 * immediately */
696 if (priv->reset_backoff &&
697 (now - priv->last_reset > priv->reset_backoff))
698 priv->reset_backoff = 0;
699
700 priv->last_reset = get_seconds();
701
702 if (!(priv->status & STATUS_RESET_PENDING)) {
703 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
704 priv->net_dev->name, priv->reset_backoff);
705 netif_carrier_off(priv->net_dev);
706 netif_stop_queue(priv->net_dev);
707 priv->status |= STATUS_RESET_PENDING;
708 if (priv->reset_backoff)
709 schedule_delayed_work(&priv->reset_work,
710 priv->reset_backoff * HZ);
711 else
712 schedule_delayed_work(&priv->reset_work, 0);
713
714 if (priv->reset_backoff < MAX_RESET_BACKOFF)
715 priv->reset_backoff++;
716
717 wake_up_interruptible(&priv->wait_command_queue);
718 } else
719 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
720 priv->net_dev->name);
721
722 }
723
724 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
ipw2100_hw_send_command(struct ipw2100_priv * priv,struct host_command * cmd)725 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
726 struct host_command *cmd)
727 {
728 struct list_head *element;
729 struct ipw2100_tx_packet *packet;
730 unsigned long flags;
731 int err = 0;
732
733 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
734 command_types[cmd->host_command], cmd->host_command,
735 cmd->host_command_length);
736 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
737 cmd->host_command_length);
738
739 spin_lock_irqsave(&priv->low_lock, flags);
740
741 if (priv->fatal_error) {
742 IPW_DEBUG_INFO
743 ("Attempt to send command while hardware in fatal error condition.\n");
744 err = -EIO;
745 goto fail_unlock;
746 }
747
748 if (!(priv->status & STATUS_RUNNING)) {
749 IPW_DEBUG_INFO
750 ("Attempt to send command while hardware is not running.\n");
751 err = -EIO;
752 goto fail_unlock;
753 }
754
755 if (priv->status & STATUS_CMD_ACTIVE) {
756 IPW_DEBUG_INFO
757 ("Attempt to send command while another command is pending.\n");
758 err = -EBUSY;
759 goto fail_unlock;
760 }
761
762 if (list_empty(&priv->msg_free_list)) {
763 IPW_DEBUG_INFO("no available msg buffers\n");
764 goto fail_unlock;
765 }
766
767 priv->status |= STATUS_CMD_ACTIVE;
768 priv->messages_sent++;
769
770 element = priv->msg_free_list.next;
771
772 packet = list_entry(element, struct ipw2100_tx_packet, list);
773 packet->jiffy_start = jiffies;
774
775 /* initialize the firmware command packet */
776 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
777 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
778 packet->info.c_struct.cmd->host_command_len_reg =
779 cmd->host_command_length;
780 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
781
782 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
783 cmd->host_command_parameters,
784 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
785
786 list_del(element);
787 DEC_STAT(&priv->msg_free_stat);
788
789 list_add_tail(element, &priv->msg_pend_list);
790 INC_STAT(&priv->msg_pend_stat);
791
792 ipw2100_tx_send_commands(priv);
793 ipw2100_tx_send_data(priv);
794
795 spin_unlock_irqrestore(&priv->low_lock, flags);
796
797 /*
798 * We must wait for this command to complete before another
799 * command can be sent... but if we wait more than 3 seconds
800 * then there is a problem.
801 */
802
803 err =
804 wait_event_interruptible_timeout(priv->wait_command_queue,
805 !(priv->
806 status & STATUS_CMD_ACTIVE),
807 HOST_COMPLETE_TIMEOUT);
808
809 if (err == 0) {
810 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
811 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
812 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
813 priv->status &= ~STATUS_CMD_ACTIVE;
814 schedule_reset(priv);
815 return -EIO;
816 }
817
818 if (priv->fatal_error) {
819 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
820 priv->net_dev->name);
821 return -EIO;
822 }
823
824 /* !!!!! HACK TEST !!!!!
825 * When lots of debug trace statements are enabled, the driver
826 * doesn't seem to have as many firmware restart cycles...
827 *
828 * As a test, we're sticking in a 1/100s delay here */
829 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
830
831 return 0;
832
833 fail_unlock:
834 spin_unlock_irqrestore(&priv->low_lock, flags);
835
836 return err;
837 }
838
839 /*
840 * Verify the values and data access of the hardware
841 * No locks needed or used. No functions called.
842 */
ipw2100_verify(struct ipw2100_priv * priv)843 static int ipw2100_verify(struct ipw2100_priv *priv)
844 {
845 u32 data1, data2;
846 u32 address;
847
848 u32 val1 = 0x76543210;
849 u32 val2 = 0xFEDCBA98;
850
851 /* Domain 0 check - all values should be DOA_DEBUG */
852 for (address = IPW_REG_DOA_DEBUG_AREA_START;
853 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
854 read_register(priv->net_dev, address, &data1);
855 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
856 return -EIO;
857 }
858
859 /* Domain 1 check - use arbitrary read/write compare */
860 for (address = 0; address < 5; address++) {
861 /* The memory area is not used now */
862 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
863 val1);
864 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
865 val2);
866 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867 &data1);
868 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869 &data2);
870 if (val1 == data1 && val2 == data2)
871 return 0;
872 }
873
874 return -EIO;
875 }
876
877 /*
878 *
879 * Loop until the CARD_DISABLED bit is the same value as the
880 * supplied parameter
881 *
882 * TODO: See if it would be more efficient to do a wait/wake
883 * cycle and have the completion event trigger the wakeup
884 *
885 */
886 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
ipw2100_wait_for_card_state(struct ipw2100_priv * priv,int state)887 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
888 {
889 int i;
890 u32 card_state;
891 u32 len = sizeof(card_state);
892 int err;
893
894 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
895 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
896 &card_state, &len);
897 if (err) {
898 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
899 "failed.\n");
900 return 0;
901 }
902
903 /* We'll break out if either the HW state says it is
904 * in the state we want, or if HOST_COMPLETE command
905 * finishes */
906 if ((card_state == state) ||
907 ((priv->status & STATUS_ENABLED) ?
908 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
909 if (state == IPW_HW_STATE_ENABLED)
910 priv->status |= STATUS_ENABLED;
911 else
912 priv->status &= ~STATUS_ENABLED;
913
914 return 0;
915 }
916
917 udelay(50);
918 }
919
920 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
921 state ? "DISABLED" : "ENABLED");
922 return -EIO;
923 }
924
925 /*********************************************************************
926 Procedure : sw_reset_and_clock
927 Purpose : Asserts s/w reset, asserts clock initialization
928 and waits for clock stabilization
929 ********************************************************************/
sw_reset_and_clock(struct ipw2100_priv * priv)930 static int sw_reset_and_clock(struct ipw2100_priv *priv)
931 {
932 int i;
933 u32 r;
934
935 // assert s/w reset
936 write_register(priv->net_dev, IPW_REG_RESET_REG,
937 IPW_AUX_HOST_RESET_REG_SW_RESET);
938
939 // wait for clock stabilization
940 for (i = 0; i < 1000; i++) {
941 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
942
943 // check clock ready bit
944 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
945 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
946 break;
947 }
948
949 if (i == 1000)
950 return -EIO; // TODO: better error value
951
952 /* set "initialization complete" bit to move adapter to
953 * D0 state */
954 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
955 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
956
957 /* wait for clock stabilization */
958 for (i = 0; i < 10000; i++) {
959 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
960
961 /* check clock ready bit */
962 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
963 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
964 break;
965 }
966
967 if (i == 10000)
968 return -EIO; /* TODO: better error value */
969
970 /* set D0 standby bit */
971 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
972 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
973 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
974
975 return 0;
976 }
977
978 /*********************************************************************
979 Procedure : ipw2100_download_firmware
980 Purpose : Initiaze adapter after power on.
981 The sequence is:
982 1. assert s/w reset first!
983 2. awake clocks & wait for clock stabilization
984 3. hold ARC (don't ask me why...)
985 4. load Dino ucode and reset/clock init again
986 5. zero-out shared mem
987 6. download f/w
988 *******************************************************************/
ipw2100_download_firmware(struct ipw2100_priv * priv)989 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
990 {
991 u32 address;
992 int err;
993
994 #ifndef CONFIG_PM
995 /* Fetch the firmware and microcode */
996 struct ipw2100_fw ipw2100_firmware;
997 #endif
998
999 if (priv->fatal_error) {
1000 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1001 "fatal error %d. Interface must be brought down.\n",
1002 priv->net_dev->name, priv->fatal_error);
1003 return -EINVAL;
1004 }
1005 #ifdef CONFIG_PM
1006 if (!ipw2100_firmware.version) {
1007 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1008 if (err) {
1009 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1010 priv->net_dev->name, err);
1011 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1012 goto fail;
1013 }
1014 }
1015 #else
1016 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1017 if (err) {
1018 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1019 priv->net_dev->name, err);
1020 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1021 goto fail;
1022 }
1023 #endif
1024 priv->firmware_version = ipw2100_firmware.version;
1025
1026 /* s/w reset and clock stabilization */
1027 err = sw_reset_and_clock(priv);
1028 if (err) {
1029 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1030 priv->net_dev->name, err);
1031 goto fail;
1032 }
1033
1034 err = ipw2100_verify(priv);
1035 if (err) {
1036 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1037 priv->net_dev->name, err);
1038 goto fail;
1039 }
1040
1041 /* Hold ARC */
1042 write_nic_dword(priv->net_dev,
1043 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1044
1045 /* allow ARC to run */
1046 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1047
1048 /* load microcode */
1049 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1050 if (err) {
1051 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1052 priv->net_dev->name, err);
1053 goto fail;
1054 }
1055
1056 /* release ARC */
1057 write_nic_dword(priv->net_dev,
1058 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1059
1060 /* s/w reset and clock stabilization (again!!!) */
1061 err = sw_reset_and_clock(priv);
1062 if (err) {
1063 printk(KERN_ERR DRV_NAME
1064 ": %s: sw_reset_and_clock failed: %d\n",
1065 priv->net_dev->name, err);
1066 goto fail;
1067 }
1068
1069 /* load f/w */
1070 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1071 if (err) {
1072 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1073 priv->net_dev->name, err);
1074 goto fail;
1075 }
1076 #ifndef CONFIG_PM
1077 /*
1078 * When the .resume method of the driver is called, the other
1079 * part of the system, i.e. the ide driver could still stay in
1080 * the suspend stage. This prevents us from loading the firmware
1081 * from the disk. --YZ
1082 */
1083
1084 /* free any storage allocated for firmware image */
1085 ipw2100_release_firmware(priv, &ipw2100_firmware);
1086 #endif
1087
1088 /* zero out Domain 1 area indirectly (Si requirement) */
1089 for (address = IPW_HOST_FW_SHARED_AREA0;
1090 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1091 write_nic_dword(priv->net_dev, address, 0);
1092 for (address = IPW_HOST_FW_SHARED_AREA1;
1093 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1094 write_nic_dword(priv->net_dev, address, 0);
1095 for (address = IPW_HOST_FW_SHARED_AREA2;
1096 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1097 write_nic_dword(priv->net_dev, address, 0);
1098 for (address = IPW_HOST_FW_SHARED_AREA3;
1099 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1100 write_nic_dword(priv->net_dev, address, 0);
1101 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1102 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1103 write_nic_dword(priv->net_dev, address, 0);
1104
1105 return 0;
1106
1107 fail:
1108 ipw2100_release_firmware(priv, &ipw2100_firmware);
1109 return err;
1110 }
1111
ipw2100_enable_interrupts(struct ipw2100_priv * priv)1112 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1113 {
1114 if (priv->status & STATUS_INT_ENABLED)
1115 return;
1116 priv->status |= STATUS_INT_ENABLED;
1117 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1118 }
1119
ipw2100_disable_interrupts(struct ipw2100_priv * priv)1120 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1121 {
1122 if (!(priv->status & STATUS_INT_ENABLED))
1123 return;
1124 priv->status &= ~STATUS_INT_ENABLED;
1125 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1126 }
1127
ipw2100_initialize_ordinals(struct ipw2100_priv * priv)1128 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1129 {
1130 struct ipw2100_ordinals *ord = &priv->ordinals;
1131
1132 IPW_DEBUG_INFO("enter\n");
1133
1134 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1135 &ord->table1_addr);
1136
1137 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1138 &ord->table2_addr);
1139
1140 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1141 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1142
1143 ord->table2_size &= 0x0000FFFF;
1144
1145 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1146 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1147 IPW_DEBUG_INFO("exit\n");
1148 }
1149
ipw2100_hw_set_gpio(struct ipw2100_priv * priv)1150 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1151 {
1152 u32 reg = 0;
1153 /*
1154 * Set GPIO 3 writable by FW; GPIO 1 writable
1155 * by driver and enable clock
1156 */
1157 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1158 IPW_BIT_GPIO_LED_OFF);
1159 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1160 }
1161
rf_kill_active(struct ipw2100_priv * priv)1162 static int rf_kill_active(struct ipw2100_priv *priv)
1163 {
1164 #define MAX_RF_KILL_CHECKS 5
1165 #define RF_KILL_CHECK_DELAY 40
1166
1167 unsigned short value = 0;
1168 u32 reg = 0;
1169 int i;
1170
1171 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1172 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1173 priv->status &= ~STATUS_RF_KILL_HW;
1174 return 0;
1175 }
1176
1177 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1178 udelay(RF_KILL_CHECK_DELAY);
1179 read_register(priv->net_dev, IPW_REG_GPIO, ®);
1180 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1181 }
1182
1183 if (value == 0) {
1184 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1185 priv->status |= STATUS_RF_KILL_HW;
1186 } else {
1187 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1188 priv->status &= ~STATUS_RF_KILL_HW;
1189 }
1190
1191 return (value == 0);
1192 }
1193
ipw2100_get_hw_features(struct ipw2100_priv * priv)1194 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1195 {
1196 u32 addr, len;
1197 u32 val;
1198
1199 /*
1200 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1201 */
1202 len = sizeof(addr);
1203 if (ipw2100_get_ordinal
1204 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1205 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1206 __LINE__);
1207 return -EIO;
1208 }
1209
1210 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1211
1212 /*
1213 * EEPROM version is the byte at offset 0xfd in firmware
1214 * We read 4 bytes, then shift out the byte we actually want */
1215 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1216 priv->eeprom_version = (val >> 24) & 0xFF;
1217 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1218
1219 /*
1220 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1221 *
1222 * notice that the EEPROM bit is reverse polarity, i.e.
1223 * bit = 0 signifies HW RF kill switch is supported
1224 * bit = 1 signifies HW RF kill switch is NOT supported
1225 */
1226 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1227 if (!((val >> 24) & 0x01))
1228 priv->hw_features |= HW_FEATURE_RFKILL;
1229
1230 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1231 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1232
1233 return 0;
1234 }
1235
1236 /*
1237 * Start firmware execution after power on and intialization
1238 * The sequence is:
1239 * 1. Release ARC
1240 * 2. Wait for f/w initialization completes;
1241 */
ipw2100_start_adapter(struct ipw2100_priv * priv)1242 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1243 {
1244 int i;
1245 u32 inta, inta_mask, gpio;
1246
1247 IPW_DEBUG_INFO("enter\n");
1248
1249 if (priv->status & STATUS_RUNNING)
1250 return 0;
1251
1252 /*
1253 * Initialize the hw - drive adapter to DO state by setting
1254 * init_done bit. Wait for clk_ready bit and Download
1255 * fw & dino ucode
1256 */
1257 if (ipw2100_download_firmware(priv)) {
1258 printk(KERN_ERR DRV_NAME
1259 ": %s: Failed to power on the adapter.\n",
1260 priv->net_dev->name);
1261 return -EIO;
1262 }
1263
1264 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1265 * in the firmware RBD and TBD ring queue */
1266 ipw2100_queues_initialize(priv);
1267
1268 ipw2100_hw_set_gpio(priv);
1269
1270 /* TODO -- Look at disabling interrupts here to make sure none
1271 * get fired during FW initialization */
1272
1273 /* Release ARC - clear reset bit */
1274 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1275
1276 /* wait for f/w intialization complete */
1277 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1278 i = 5000;
1279 do {
1280 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1281 /* Todo... wait for sync command ... */
1282
1283 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1284
1285 /* check "init done" bit */
1286 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1287 /* reset "init done" bit */
1288 write_register(priv->net_dev, IPW_REG_INTA,
1289 IPW2100_INTA_FW_INIT_DONE);
1290 break;
1291 }
1292
1293 /* check error conditions : we check these after the firmware
1294 * check so that if there is an error, the interrupt handler
1295 * will see it and the adapter will be reset */
1296 if (inta &
1297 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1298 /* clear error conditions */
1299 write_register(priv->net_dev, IPW_REG_INTA,
1300 IPW2100_INTA_FATAL_ERROR |
1301 IPW2100_INTA_PARITY_ERROR);
1302 }
1303 } while (--i);
1304
1305 /* Clear out any pending INTAs since we aren't supposed to have
1306 * interrupts enabled at this point... */
1307 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1308 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1309 inta &= IPW_INTERRUPT_MASK;
1310 /* Clear out any pending interrupts */
1311 if (inta & inta_mask)
1312 write_register(priv->net_dev, IPW_REG_INTA, inta);
1313
1314 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1315 i ? "SUCCESS" : "FAILED");
1316
1317 if (!i) {
1318 printk(KERN_WARNING DRV_NAME
1319 ": %s: Firmware did not initialize.\n",
1320 priv->net_dev->name);
1321 return -EIO;
1322 }
1323
1324 /* allow firmware to write to GPIO1 & GPIO3 */
1325 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1326
1327 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1328
1329 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1330
1331 /* Ready to receive commands */
1332 priv->status |= STATUS_RUNNING;
1333
1334 /* The adapter has been reset; we are not associated */
1335 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1336
1337 IPW_DEBUG_INFO("exit\n");
1338
1339 return 0;
1340 }
1341
ipw2100_reset_fatalerror(struct ipw2100_priv * priv)1342 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1343 {
1344 if (!priv->fatal_error)
1345 return;
1346
1347 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1348 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1349 priv->fatal_error = 0;
1350 }
1351
1352 /* NOTE: Our interrupt is disabled when this method is called */
ipw2100_power_cycle_adapter(struct ipw2100_priv * priv)1353 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1354 {
1355 u32 reg;
1356 int i;
1357
1358 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1359
1360 ipw2100_hw_set_gpio(priv);
1361
1362 /* Step 1. Stop Master Assert */
1363 write_register(priv->net_dev, IPW_REG_RESET_REG,
1364 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1365
1366 /* Step 2. Wait for stop Master Assert
1367 * (not more than 50us, otherwise ret error */
1368 i = 5;
1369 do {
1370 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1371 read_register(priv->net_dev, IPW_REG_RESET_REG, ®);
1372
1373 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1374 break;
1375 } while (--i);
1376
1377 priv->status &= ~STATUS_RESET_PENDING;
1378
1379 if (!i) {
1380 IPW_DEBUG_INFO
1381 ("exit - waited too long for master assert stop\n");
1382 return -EIO;
1383 }
1384
1385 write_register(priv->net_dev, IPW_REG_RESET_REG,
1386 IPW_AUX_HOST_RESET_REG_SW_RESET);
1387
1388 /* Reset any fatal_error conditions */
1389 ipw2100_reset_fatalerror(priv);
1390
1391 /* At this point, the adapter is now stopped and disabled */
1392 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1393 STATUS_ASSOCIATED | STATUS_ENABLED);
1394
1395 return 0;
1396 }
1397
1398 /*
1399 * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1400 *
1401 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1402 *
1403 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1404 * if STATUS_ASSN_LOST is sent.
1405 */
ipw2100_hw_phy_off(struct ipw2100_priv * priv)1406 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1407 {
1408
1409 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1410
1411 struct host_command cmd = {
1412 .host_command = CARD_DISABLE_PHY_OFF,
1413 .host_command_sequence = 0,
1414 .host_command_length = 0,
1415 };
1416 int err, i;
1417 u32 val1, val2;
1418
1419 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1420
1421 /* Turn off the radio */
1422 err = ipw2100_hw_send_command(priv, &cmd);
1423 if (err)
1424 return err;
1425
1426 for (i = 0; i < 2500; i++) {
1427 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1428 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1429
1430 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1431 (val2 & IPW2100_COMMAND_PHY_OFF))
1432 return 0;
1433
1434 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1435 }
1436
1437 return -EIO;
1438 }
1439
ipw2100_enable_adapter(struct ipw2100_priv * priv)1440 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1441 {
1442 struct host_command cmd = {
1443 .host_command = HOST_COMPLETE,
1444 .host_command_sequence = 0,
1445 .host_command_length = 0
1446 };
1447 int err = 0;
1448
1449 IPW_DEBUG_HC("HOST_COMPLETE\n");
1450
1451 if (priv->status & STATUS_ENABLED)
1452 return 0;
1453
1454 mutex_lock(&priv->adapter_mutex);
1455
1456 if (rf_kill_active(priv)) {
1457 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1458 goto fail_up;
1459 }
1460
1461 err = ipw2100_hw_send_command(priv, &cmd);
1462 if (err) {
1463 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1464 goto fail_up;
1465 }
1466
1467 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1468 if (err) {
1469 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1470 priv->net_dev->name);
1471 goto fail_up;
1472 }
1473
1474 if (priv->stop_hang_check) {
1475 priv->stop_hang_check = 0;
1476 schedule_delayed_work(&priv->hang_check, HZ / 2);
1477 }
1478
1479 fail_up:
1480 mutex_unlock(&priv->adapter_mutex);
1481 return err;
1482 }
1483
ipw2100_hw_stop_adapter(struct ipw2100_priv * priv)1484 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1485 {
1486 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1487
1488 struct host_command cmd = {
1489 .host_command = HOST_PRE_POWER_DOWN,
1490 .host_command_sequence = 0,
1491 .host_command_length = 0,
1492 };
1493 int err, i;
1494 u32 reg;
1495
1496 if (!(priv->status & STATUS_RUNNING))
1497 return 0;
1498
1499 priv->status |= STATUS_STOPPING;
1500
1501 /* We can only shut down the card if the firmware is operational. So,
1502 * if we haven't reset since a fatal_error, then we can not send the
1503 * shutdown commands. */
1504 if (!priv->fatal_error) {
1505 /* First, make sure the adapter is enabled so that the PHY_OFF
1506 * command can shut it down */
1507 ipw2100_enable_adapter(priv);
1508
1509 err = ipw2100_hw_phy_off(priv);
1510 if (err)
1511 printk(KERN_WARNING DRV_NAME
1512 ": Error disabling radio %d\n", err);
1513
1514 /*
1515 * If in D0-standby mode going directly to D3 may cause a
1516 * PCI bus violation. Therefore we must change out of the D0
1517 * state.
1518 *
1519 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1520 * hardware from going into standby mode and will transition
1521 * out of D0-standby if it is already in that state.
1522 *
1523 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1524 * driver upon completion. Once received, the driver can
1525 * proceed to the D3 state.
1526 *
1527 * Prepare for power down command to fw. This command would
1528 * take HW out of D0-standby and prepare it for D3 state.
1529 *
1530 * Currently FW does not support event notification for this
1531 * event. Therefore, skip waiting for it. Just wait a fixed
1532 * 100ms
1533 */
1534 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1535
1536 err = ipw2100_hw_send_command(priv, &cmd);
1537 if (err)
1538 printk(KERN_WARNING DRV_NAME ": "
1539 "%s: Power down command failed: Error %d\n",
1540 priv->net_dev->name, err);
1541 else
1542 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1543 }
1544
1545 priv->status &= ~STATUS_ENABLED;
1546
1547 /*
1548 * Set GPIO 3 writable by FW; GPIO 1 writable
1549 * by driver and enable clock
1550 */
1551 ipw2100_hw_set_gpio(priv);
1552
1553 /*
1554 * Power down adapter. Sequence:
1555 * 1. Stop master assert (RESET_REG[9]=1)
1556 * 2. Wait for stop master (RESET_REG[8]==1)
1557 * 3. S/w reset assert (RESET_REG[7] = 1)
1558 */
1559
1560 /* Stop master assert */
1561 write_register(priv->net_dev, IPW_REG_RESET_REG,
1562 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1563
1564 /* wait stop master not more than 50 usec.
1565 * Otherwise return error. */
1566 for (i = 5; i > 0; i--) {
1567 udelay(10);
1568
1569 /* Check master stop bit */
1570 read_register(priv->net_dev, IPW_REG_RESET_REG, ®);
1571
1572 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1573 break;
1574 }
1575
1576 if (i == 0)
1577 printk(KERN_WARNING DRV_NAME
1578 ": %s: Could now power down adapter.\n",
1579 priv->net_dev->name);
1580
1581 /* assert s/w reset */
1582 write_register(priv->net_dev, IPW_REG_RESET_REG,
1583 IPW_AUX_HOST_RESET_REG_SW_RESET);
1584
1585 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1586
1587 return 0;
1588 }
1589
ipw2100_disable_adapter(struct ipw2100_priv * priv)1590 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1591 {
1592 struct host_command cmd = {
1593 .host_command = CARD_DISABLE,
1594 .host_command_sequence = 0,
1595 .host_command_length = 0
1596 };
1597 int err = 0;
1598
1599 IPW_DEBUG_HC("CARD_DISABLE\n");
1600
1601 if (!(priv->status & STATUS_ENABLED))
1602 return 0;
1603
1604 /* Make sure we clear the associated state */
1605 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1606
1607 if (!priv->stop_hang_check) {
1608 priv->stop_hang_check = 1;
1609 cancel_delayed_work(&priv->hang_check);
1610 }
1611
1612 mutex_lock(&priv->adapter_mutex);
1613
1614 err = ipw2100_hw_send_command(priv, &cmd);
1615 if (err) {
1616 printk(KERN_WARNING DRV_NAME
1617 ": exit - failed to send CARD_DISABLE command\n");
1618 goto fail_up;
1619 }
1620
1621 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1622 if (err) {
1623 printk(KERN_WARNING DRV_NAME
1624 ": exit - card failed to change to DISABLED\n");
1625 goto fail_up;
1626 }
1627
1628 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1629
1630 fail_up:
1631 mutex_unlock(&priv->adapter_mutex);
1632 return err;
1633 }
1634
ipw2100_set_scan_options(struct ipw2100_priv * priv)1635 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1636 {
1637 struct host_command cmd = {
1638 .host_command = SET_SCAN_OPTIONS,
1639 .host_command_sequence = 0,
1640 .host_command_length = 8
1641 };
1642 int err;
1643
1644 IPW_DEBUG_INFO("enter\n");
1645
1646 IPW_DEBUG_SCAN("setting scan options\n");
1647
1648 cmd.host_command_parameters[0] = 0;
1649
1650 if (!(priv->config & CFG_ASSOCIATE))
1651 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1652 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1653 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1654 if (priv->config & CFG_PASSIVE_SCAN)
1655 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1656
1657 cmd.host_command_parameters[1] = priv->channel_mask;
1658
1659 err = ipw2100_hw_send_command(priv, &cmd);
1660
1661 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1662 cmd.host_command_parameters[0]);
1663
1664 return err;
1665 }
1666
ipw2100_start_scan(struct ipw2100_priv * priv)1667 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1668 {
1669 struct host_command cmd = {
1670 .host_command = BROADCAST_SCAN,
1671 .host_command_sequence = 0,
1672 .host_command_length = 4
1673 };
1674 int err;
1675
1676 IPW_DEBUG_HC("START_SCAN\n");
1677
1678 cmd.host_command_parameters[0] = 0;
1679
1680 /* No scanning if in monitor mode */
1681 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1682 return 1;
1683
1684 if (priv->status & STATUS_SCANNING) {
1685 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1686 return 0;
1687 }
1688
1689 IPW_DEBUG_INFO("enter\n");
1690
1691 /* Not clearing here; doing so makes iwlist always return nothing...
1692 *
1693 * We should modify the table logic to use aging tables vs. clearing
1694 * the table on each scan start.
1695 */
1696 IPW_DEBUG_SCAN("starting scan\n");
1697
1698 priv->status |= STATUS_SCANNING;
1699 err = ipw2100_hw_send_command(priv, &cmd);
1700 if (err)
1701 priv->status &= ~STATUS_SCANNING;
1702
1703 IPW_DEBUG_INFO("exit\n");
1704
1705 return err;
1706 }
1707
1708 static const struct libipw_geo ipw_geos[] = {
1709 { /* Restricted */
1710 "---",
1711 .bg_channels = 14,
1712 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1713 {2427, 4}, {2432, 5}, {2437, 6},
1714 {2442, 7}, {2447, 8}, {2452, 9},
1715 {2457, 10}, {2462, 11}, {2467, 12},
1716 {2472, 13}, {2484, 14}},
1717 },
1718 };
1719
ipw2100_up(struct ipw2100_priv * priv,int deferred)1720 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1721 {
1722 unsigned long flags;
1723 int rc = 0;
1724 u32 lock;
1725 u32 ord_len = sizeof(lock);
1726
1727 /* Age scan list entries found before suspend */
1728 if (priv->suspend_time) {
1729 libipw_networks_age(priv->ieee, priv->suspend_time);
1730 priv->suspend_time = 0;
1731 }
1732
1733 /* Quiet if manually disabled. */
1734 if (priv->status & STATUS_RF_KILL_SW) {
1735 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1736 "switch\n", priv->net_dev->name);
1737 return 0;
1738 }
1739
1740 /* the ipw2100 hardware really doesn't want power management delays
1741 * longer than 175usec
1742 */
1743 pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1744
1745 /* If the interrupt is enabled, turn it off... */
1746 spin_lock_irqsave(&priv->low_lock, flags);
1747 ipw2100_disable_interrupts(priv);
1748
1749 /* Reset any fatal_error conditions */
1750 ipw2100_reset_fatalerror(priv);
1751 spin_unlock_irqrestore(&priv->low_lock, flags);
1752
1753 if (priv->status & STATUS_POWERED ||
1754 (priv->status & STATUS_RESET_PENDING)) {
1755 /* Power cycle the card ... */
1756 if (ipw2100_power_cycle_adapter(priv)) {
1757 printk(KERN_WARNING DRV_NAME
1758 ": %s: Could not cycle adapter.\n",
1759 priv->net_dev->name);
1760 rc = 1;
1761 goto exit;
1762 }
1763 } else
1764 priv->status |= STATUS_POWERED;
1765
1766 /* Load the firmware, start the clocks, etc. */
1767 if (ipw2100_start_adapter(priv)) {
1768 printk(KERN_ERR DRV_NAME
1769 ": %s: Failed to start the firmware.\n",
1770 priv->net_dev->name);
1771 rc = 1;
1772 goto exit;
1773 }
1774
1775 ipw2100_initialize_ordinals(priv);
1776
1777 /* Determine capabilities of this particular HW configuration */
1778 if (ipw2100_get_hw_features(priv)) {
1779 printk(KERN_ERR DRV_NAME
1780 ": %s: Failed to determine HW features.\n",
1781 priv->net_dev->name);
1782 rc = 1;
1783 goto exit;
1784 }
1785
1786 /* Initialize the geo */
1787 if (libipw_set_geo(priv->ieee, &ipw_geos[0])) {
1788 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1789 return 0;
1790 }
1791 priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1792
1793 lock = LOCK_NONE;
1794 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1795 printk(KERN_ERR DRV_NAME
1796 ": %s: Failed to clear ordinal lock.\n",
1797 priv->net_dev->name);
1798 rc = 1;
1799 goto exit;
1800 }
1801
1802 priv->status &= ~STATUS_SCANNING;
1803
1804 if (rf_kill_active(priv)) {
1805 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1806 priv->net_dev->name);
1807
1808 if (priv->stop_rf_kill) {
1809 priv->stop_rf_kill = 0;
1810 schedule_delayed_work(&priv->rf_kill,
1811 round_jiffies_relative(HZ));
1812 }
1813
1814 deferred = 1;
1815 }
1816
1817 /* Turn on the interrupt so that commands can be processed */
1818 ipw2100_enable_interrupts(priv);
1819
1820 /* Send all of the commands that must be sent prior to
1821 * HOST_COMPLETE */
1822 if (ipw2100_adapter_setup(priv)) {
1823 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1824 priv->net_dev->name);
1825 rc = 1;
1826 goto exit;
1827 }
1828
1829 if (!deferred) {
1830 /* Enable the adapter - sends HOST_COMPLETE */
1831 if (ipw2100_enable_adapter(priv)) {
1832 printk(KERN_ERR DRV_NAME ": "
1833 "%s: failed in call to enable adapter.\n",
1834 priv->net_dev->name);
1835 ipw2100_hw_stop_adapter(priv);
1836 rc = 1;
1837 goto exit;
1838 }
1839
1840 /* Start a scan . . . */
1841 ipw2100_set_scan_options(priv);
1842 ipw2100_start_scan(priv);
1843 }
1844
1845 exit:
1846 return rc;
1847 }
1848
ipw2100_down(struct ipw2100_priv * priv)1849 static void ipw2100_down(struct ipw2100_priv *priv)
1850 {
1851 unsigned long flags;
1852 union iwreq_data wrqu = {
1853 .ap_addr = {
1854 .sa_family = ARPHRD_ETHER}
1855 };
1856 int associated = priv->status & STATUS_ASSOCIATED;
1857
1858 /* Kill the RF switch timer */
1859 if (!priv->stop_rf_kill) {
1860 priv->stop_rf_kill = 1;
1861 cancel_delayed_work(&priv->rf_kill);
1862 }
1863
1864 /* Kill the firmware hang check timer */
1865 if (!priv->stop_hang_check) {
1866 priv->stop_hang_check = 1;
1867 cancel_delayed_work(&priv->hang_check);
1868 }
1869
1870 /* Kill any pending resets */
1871 if (priv->status & STATUS_RESET_PENDING)
1872 cancel_delayed_work(&priv->reset_work);
1873
1874 /* Make sure the interrupt is on so that FW commands will be
1875 * processed correctly */
1876 spin_lock_irqsave(&priv->low_lock, flags);
1877 ipw2100_enable_interrupts(priv);
1878 spin_unlock_irqrestore(&priv->low_lock, flags);
1879
1880 if (ipw2100_hw_stop_adapter(priv))
1881 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1882 priv->net_dev->name);
1883
1884 /* Do not disable the interrupt until _after_ we disable
1885 * the adaptor. Otherwise the CARD_DISABLE command will never
1886 * be ack'd by the firmware */
1887 spin_lock_irqsave(&priv->low_lock, flags);
1888 ipw2100_disable_interrupts(priv);
1889 spin_unlock_irqrestore(&priv->low_lock, flags);
1890
1891 pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1892
1893 /* We have to signal any supplicant if we are disassociating */
1894 if (associated)
1895 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1896
1897 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1898 netif_carrier_off(priv->net_dev);
1899 netif_stop_queue(priv->net_dev);
1900 }
1901
1902 /* Called by register_netdev() */
ipw2100_net_init(struct net_device * dev)1903 static int ipw2100_net_init(struct net_device *dev)
1904 {
1905 struct ipw2100_priv *priv = libipw_priv(dev);
1906
1907 return ipw2100_up(priv, 1);
1908 }
1909
ipw2100_wdev_init(struct net_device * dev)1910 static int ipw2100_wdev_init(struct net_device *dev)
1911 {
1912 struct ipw2100_priv *priv = libipw_priv(dev);
1913 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1914 struct wireless_dev *wdev = &priv->ieee->wdev;
1915 int i;
1916
1917 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1918
1919 /* fill-out priv->ieee->bg_band */
1920 if (geo->bg_channels) {
1921 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1922
1923 bg_band->band = IEEE80211_BAND_2GHZ;
1924 bg_band->n_channels = geo->bg_channels;
1925 bg_band->channels = kcalloc(geo->bg_channels,
1926 sizeof(struct ieee80211_channel),
1927 GFP_KERNEL);
1928 if (!bg_band->channels) {
1929 ipw2100_down(priv);
1930 return -ENOMEM;
1931 }
1932 /* translate geo->bg to bg_band.channels */
1933 for (i = 0; i < geo->bg_channels; i++) {
1934 bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1935 bg_band->channels[i].center_freq = geo->bg[i].freq;
1936 bg_band->channels[i].hw_value = geo->bg[i].channel;
1937 bg_band->channels[i].max_power = geo->bg[i].max_power;
1938 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1939 bg_band->channels[i].flags |=
1940 IEEE80211_CHAN_PASSIVE_SCAN;
1941 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1942 bg_band->channels[i].flags |=
1943 IEEE80211_CHAN_NO_IBSS;
1944 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1945 bg_band->channels[i].flags |=
1946 IEEE80211_CHAN_RADAR;
1947 /* No equivalent for LIBIPW_CH_80211H_RULES,
1948 LIBIPW_CH_UNIFORM_SPREADING, or
1949 LIBIPW_CH_B_ONLY... */
1950 }
1951 /* point at bitrate info */
1952 bg_band->bitrates = ipw2100_bg_rates;
1953 bg_band->n_bitrates = RATE_COUNT;
1954
1955 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1956 }
1957
1958 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1959 if (wiphy_register(wdev->wiphy)) {
1960 ipw2100_down(priv);
1961 return -EIO;
1962 }
1963 return 0;
1964 }
1965
ipw2100_reset_adapter(struct work_struct * work)1966 static void ipw2100_reset_adapter(struct work_struct *work)
1967 {
1968 struct ipw2100_priv *priv =
1969 container_of(work, struct ipw2100_priv, reset_work.work);
1970 unsigned long flags;
1971 union iwreq_data wrqu = {
1972 .ap_addr = {
1973 .sa_family = ARPHRD_ETHER}
1974 };
1975 int associated = priv->status & STATUS_ASSOCIATED;
1976
1977 spin_lock_irqsave(&priv->low_lock, flags);
1978 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1979 priv->resets++;
1980 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1981 priv->status |= STATUS_SECURITY_UPDATED;
1982
1983 /* Force a power cycle even if interface hasn't been opened
1984 * yet */
1985 cancel_delayed_work(&priv->reset_work);
1986 priv->status |= STATUS_RESET_PENDING;
1987 spin_unlock_irqrestore(&priv->low_lock, flags);
1988
1989 mutex_lock(&priv->action_mutex);
1990 /* stop timed checks so that they don't interfere with reset */
1991 priv->stop_hang_check = 1;
1992 cancel_delayed_work(&priv->hang_check);
1993
1994 /* We have to signal any supplicant if we are disassociating */
1995 if (associated)
1996 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1997
1998 ipw2100_up(priv, 0);
1999 mutex_unlock(&priv->action_mutex);
2000
2001 }
2002
isr_indicate_associated(struct ipw2100_priv * priv,u32 status)2003 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
2004 {
2005
2006 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2007 int ret;
2008 unsigned int len, essid_len;
2009 char essid[IW_ESSID_MAX_SIZE];
2010 u32 txrate;
2011 u32 chan;
2012 char *txratename;
2013 u8 bssid[ETH_ALEN];
2014 DECLARE_SSID_BUF(ssid);
2015
2016 /*
2017 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2018 * an actual MAC of the AP. Seems like FW sets this
2019 * address too late. Read it later and expose through
2020 * /proc or schedule a later task to query and update
2021 */
2022
2023 essid_len = IW_ESSID_MAX_SIZE;
2024 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2025 essid, &essid_len);
2026 if (ret) {
2027 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2028 __LINE__);
2029 return;
2030 }
2031
2032 len = sizeof(u32);
2033 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2034 if (ret) {
2035 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2036 __LINE__);
2037 return;
2038 }
2039
2040 len = sizeof(u32);
2041 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2042 if (ret) {
2043 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2044 __LINE__);
2045 return;
2046 }
2047 len = ETH_ALEN;
2048 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
2049 if (ret) {
2050 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2051 __LINE__);
2052 return;
2053 }
2054 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2055
2056 switch (txrate) {
2057 case TX_RATE_1_MBIT:
2058 txratename = "1Mbps";
2059 break;
2060 case TX_RATE_2_MBIT:
2061 txratename = "2Mbsp";
2062 break;
2063 case TX_RATE_5_5_MBIT:
2064 txratename = "5.5Mbps";
2065 break;
2066 case TX_RATE_11_MBIT:
2067 txratename = "11Mbps";
2068 break;
2069 default:
2070 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2071 txratename = "unknown rate";
2072 break;
2073 }
2074
2075 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
2076 priv->net_dev->name, print_ssid(ssid, essid, essid_len),
2077 txratename, chan, bssid);
2078
2079 /* now we copy read ssid into dev */
2080 if (!(priv->config & CFG_STATIC_ESSID)) {
2081 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2082 memcpy(priv->essid, essid, priv->essid_len);
2083 }
2084 priv->channel = chan;
2085 memcpy(priv->bssid, bssid, ETH_ALEN);
2086
2087 priv->status |= STATUS_ASSOCIATING;
2088 priv->connect_start = get_seconds();
2089
2090 schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2091 }
2092
ipw2100_set_essid(struct ipw2100_priv * priv,char * essid,int length,int batch_mode)2093 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2094 int length, int batch_mode)
2095 {
2096 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2097 struct host_command cmd = {
2098 .host_command = SSID,
2099 .host_command_sequence = 0,
2100 .host_command_length = ssid_len
2101 };
2102 int err;
2103 DECLARE_SSID_BUF(ssid);
2104
2105 IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2106
2107 if (ssid_len)
2108 memcpy(cmd.host_command_parameters, essid, ssid_len);
2109
2110 if (!batch_mode) {
2111 err = ipw2100_disable_adapter(priv);
2112 if (err)
2113 return err;
2114 }
2115
2116 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2117 * disable auto association -- so we cheat by setting a bogus SSID */
2118 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2119 int i;
2120 u8 *bogus = (u8 *) cmd.host_command_parameters;
2121 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2122 bogus[i] = 0x18 + i;
2123 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2124 }
2125
2126 /* NOTE: We always send the SSID command even if the provided ESSID is
2127 * the same as what we currently think is set. */
2128
2129 err = ipw2100_hw_send_command(priv, &cmd);
2130 if (!err) {
2131 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2132 memcpy(priv->essid, essid, ssid_len);
2133 priv->essid_len = ssid_len;
2134 }
2135
2136 if (!batch_mode) {
2137 if (ipw2100_enable_adapter(priv))
2138 err = -EIO;
2139 }
2140
2141 return err;
2142 }
2143
isr_indicate_association_lost(struct ipw2100_priv * priv,u32 status)2144 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2145 {
2146 DECLARE_SSID_BUF(ssid);
2147
2148 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2149 "disassociated: '%s' %pM\n",
2150 print_ssid(ssid, priv->essid, priv->essid_len),
2151 priv->bssid);
2152
2153 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2154
2155 if (priv->status & STATUS_STOPPING) {
2156 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2157 return;
2158 }
2159
2160 memset(priv->bssid, 0, ETH_ALEN);
2161 memset(priv->ieee->bssid, 0, ETH_ALEN);
2162
2163 netif_carrier_off(priv->net_dev);
2164 netif_stop_queue(priv->net_dev);
2165
2166 if (!(priv->status & STATUS_RUNNING))
2167 return;
2168
2169 if (priv->status & STATUS_SECURITY_UPDATED)
2170 schedule_delayed_work(&priv->security_work, 0);
2171
2172 schedule_delayed_work(&priv->wx_event_work, 0);
2173 }
2174
isr_indicate_rf_kill(struct ipw2100_priv * priv,u32 status)2175 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2176 {
2177 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2178 priv->net_dev->name);
2179
2180 /* RF_KILL is now enabled (else we wouldn't be here) */
2181 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2182 priv->status |= STATUS_RF_KILL_HW;
2183
2184 /* Make sure the RF Kill check timer is running */
2185 priv->stop_rf_kill = 0;
2186 cancel_delayed_work(&priv->rf_kill);
2187 schedule_delayed_work(&priv->rf_kill, round_jiffies_relative(HZ));
2188 }
2189
send_scan_event(void * data)2190 static void send_scan_event(void *data)
2191 {
2192 struct ipw2100_priv *priv = data;
2193 union iwreq_data wrqu;
2194
2195 wrqu.data.length = 0;
2196 wrqu.data.flags = 0;
2197 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2198 }
2199
ipw2100_scan_event_later(struct work_struct * work)2200 static void ipw2100_scan_event_later(struct work_struct *work)
2201 {
2202 send_scan_event(container_of(work, struct ipw2100_priv,
2203 scan_event_later.work));
2204 }
2205
ipw2100_scan_event_now(struct work_struct * work)2206 static void ipw2100_scan_event_now(struct work_struct *work)
2207 {
2208 send_scan_event(container_of(work, struct ipw2100_priv,
2209 scan_event_now));
2210 }
2211
isr_scan_complete(struct ipw2100_priv * priv,u32 status)2212 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2213 {
2214 IPW_DEBUG_SCAN("scan complete\n");
2215 /* Age the scan results... */
2216 priv->ieee->scans++;
2217 priv->status &= ~STATUS_SCANNING;
2218
2219 /* Only userspace-requested scan completion events go out immediately */
2220 if (!priv->user_requested_scan) {
2221 if (!delayed_work_pending(&priv->scan_event_later))
2222 schedule_delayed_work(&priv->scan_event_later,
2223 round_jiffies_relative(msecs_to_jiffies(4000)));
2224 } else {
2225 priv->user_requested_scan = 0;
2226 cancel_delayed_work(&priv->scan_event_later);
2227 schedule_work(&priv->scan_event_now);
2228 }
2229 }
2230
2231 #ifdef CONFIG_IPW2100_DEBUG
2232 #define IPW2100_HANDLER(v, f) { v, f, # v }
2233 struct ipw2100_status_indicator {
2234 int status;
2235 void (*cb) (struct ipw2100_priv * priv, u32 status);
2236 char *name;
2237 };
2238 #else
2239 #define IPW2100_HANDLER(v, f) { v, f }
2240 struct ipw2100_status_indicator {
2241 int status;
2242 void (*cb) (struct ipw2100_priv * priv, u32 status);
2243 };
2244 #endif /* CONFIG_IPW2100_DEBUG */
2245
isr_indicate_scanning(struct ipw2100_priv * priv,u32 status)2246 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2247 {
2248 IPW_DEBUG_SCAN("Scanning...\n");
2249 priv->status |= STATUS_SCANNING;
2250 }
2251
2252 static const struct ipw2100_status_indicator status_handlers[] = {
2253 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2254 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2255 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2256 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2257 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2258 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2259 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2260 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2261 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2262 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2263 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2264 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2265 IPW2100_HANDLER(-1, NULL)
2266 };
2267
isr_status_change(struct ipw2100_priv * priv,int status)2268 static void isr_status_change(struct ipw2100_priv *priv, int status)
2269 {
2270 int i;
2271
2272 if (status == IPW_STATE_SCANNING &&
2273 priv->status & STATUS_ASSOCIATED &&
2274 !(priv->status & STATUS_SCANNING)) {
2275 IPW_DEBUG_INFO("Scan detected while associated, with "
2276 "no scan request. Restarting firmware.\n");
2277
2278 /* Wake up any sleeping jobs */
2279 schedule_reset(priv);
2280 }
2281
2282 for (i = 0; status_handlers[i].status != -1; i++) {
2283 if (status == status_handlers[i].status) {
2284 IPW_DEBUG_NOTIF("Status change: %s\n",
2285 status_handlers[i].name);
2286 if (status_handlers[i].cb)
2287 status_handlers[i].cb(priv, status);
2288 priv->wstats.status = status;
2289 return;
2290 }
2291 }
2292
2293 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2294 }
2295
isr_rx_complete_command(struct ipw2100_priv * priv,struct ipw2100_cmd_header * cmd)2296 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2297 struct ipw2100_cmd_header *cmd)
2298 {
2299 #ifdef CONFIG_IPW2100_DEBUG
2300 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2301 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2302 command_types[cmd->host_command_reg],
2303 cmd->host_command_reg);
2304 }
2305 #endif
2306 if (cmd->host_command_reg == HOST_COMPLETE)
2307 priv->status |= STATUS_ENABLED;
2308
2309 if (cmd->host_command_reg == CARD_DISABLE)
2310 priv->status &= ~STATUS_ENABLED;
2311
2312 priv->status &= ~STATUS_CMD_ACTIVE;
2313
2314 wake_up_interruptible(&priv->wait_command_queue);
2315 }
2316
2317 #ifdef CONFIG_IPW2100_DEBUG
2318 static const char *frame_types[] = {
2319 "COMMAND_STATUS_VAL",
2320 "STATUS_CHANGE_VAL",
2321 "P80211_DATA_VAL",
2322 "P8023_DATA_VAL",
2323 "HOST_NOTIFICATION_VAL"
2324 };
2325 #endif
2326
ipw2100_alloc_skb(struct ipw2100_priv * priv,struct ipw2100_rx_packet * packet)2327 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2328 struct ipw2100_rx_packet *packet)
2329 {
2330 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2331 if (!packet->skb)
2332 return -ENOMEM;
2333
2334 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2335 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2336 sizeof(struct ipw2100_rx),
2337 PCI_DMA_FROMDEVICE);
2338 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2339 * dma_addr */
2340
2341 return 0;
2342 }
2343
2344 #define SEARCH_ERROR 0xffffffff
2345 #define SEARCH_FAIL 0xfffffffe
2346 #define SEARCH_SUCCESS 0xfffffff0
2347 #define SEARCH_DISCARD 0
2348 #define SEARCH_SNAPSHOT 1
2349
2350 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
ipw2100_snapshot_free(struct ipw2100_priv * priv)2351 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2352 {
2353 int i;
2354 if (!priv->snapshot[0])
2355 return;
2356 for (i = 0; i < 0x30; i++)
2357 kfree(priv->snapshot[i]);
2358 priv->snapshot[0] = NULL;
2359 }
2360
2361 #ifdef IPW2100_DEBUG_C3
ipw2100_snapshot_alloc(struct ipw2100_priv * priv)2362 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2363 {
2364 int i;
2365 if (priv->snapshot[0])
2366 return 1;
2367 for (i = 0; i < 0x30; i++) {
2368 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2369 if (!priv->snapshot[i]) {
2370 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2371 "buffer %d\n", priv->net_dev->name, i);
2372 while (i > 0)
2373 kfree(priv->snapshot[--i]);
2374 priv->snapshot[0] = NULL;
2375 return 0;
2376 }
2377 }
2378
2379 return 1;
2380 }
2381
ipw2100_match_buf(struct ipw2100_priv * priv,u8 * in_buf,size_t len,int mode)2382 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2383 size_t len, int mode)
2384 {
2385 u32 i, j;
2386 u32 tmp;
2387 u8 *s, *d;
2388 u32 ret;
2389
2390 s = in_buf;
2391 if (mode == SEARCH_SNAPSHOT) {
2392 if (!ipw2100_snapshot_alloc(priv))
2393 mode = SEARCH_DISCARD;
2394 }
2395
2396 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2397 read_nic_dword(priv->net_dev, i, &tmp);
2398 if (mode == SEARCH_SNAPSHOT)
2399 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2400 if (ret == SEARCH_FAIL) {
2401 d = (u8 *) & tmp;
2402 for (j = 0; j < 4; j++) {
2403 if (*s != *d) {
2404 s = in_buf;
2405 continue;
2406 }
2407
2408 s++;
2409 d++;
2410
2411 if ((s - in_buf) == len)
2412 ret = (i + j) - len + 1;
2413 }
2414 } else if (mode == SEARCH_DISCARD)
2415 return ret;
2416 }
2417
2418 return ret;
2419 }
2420 #endif
2421
2422 /*
2423 *
2424 * 0) Disconnect the SKB from the firmware (just unmap)
2425 * 1) Pack the ETH header into the SKB
2426 * 2) Pass the SKB to the network stack
2427 *
2428 * When packet is provided by the firmware, it contains the following:
2429 *
2430 * . libipw_hdr
2431 * . libipw_snap_hdr
2432 *
2433 * The size of the constructed ethernet
2434 *
2435 */
2436 #ifdef IPW2100_RX_DEBUG
2437 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2438 #endif
2439
ipw2100_corruption_detected(struct ipw2100_priv * priv,int i)2440 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2441 {
2442 #ifdef IPW2100_DEBUG_C3
2443 struct ipw2100_status *status = &priv->status_queue.drv[i];
2444 u32 match, reg;
2445 int j;
2446 #endif
2447
2448 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2449 i * sizeof(struct ipw2100_status));
2450
2451 #ifdef IPW2100_DEBUG_C3
2452 /* Halt the firmware so we can get a good image */
2453 write_register(priv->net_dev, IPW_REG_RESET_REG,
2454 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2455 j = 5;
2456 do {
2457 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2458 read_register(priv->net_dev, IPW_REG_RESET_REG, ®);
2459
2460 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2461 break;
2462 } while (j--);
2463
2464 match = ipw2100_match_buf(priv, (u8 *) status,
2465 sizeof(struct ipw2100_status),
2466 SEARCH_SNAPSHOT);
2467 if (match < SEARCH_SUCCESS)
2468 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2469 "offset 0x%06X, length %d:\n",
2470 priv->net_dev->name, match,
2471 sizeof(struct ipw2100_status));
2472 else
2473 IPW_DEBUG_INFO("%s: No DMA status match in "
2474 "Firmware.\n", priv->net_dev->name);
2475
2476 printk_buf((u8 *) priv->status_queue.drv,
2477 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2478 #endif
2479
2480 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2481 priv->net_dev->stats.rx_errors++;
2482 schedule_reset(priv);
2483 }
2484
isr_rx(struct ipw2100_priv * priv,int i,struct libipw_rx_stats * stats)2485 static void isr_rx(struct ipw2100_priv *priv, int i,
2486 struct libipw_rx_stats *stats)
2487 {
2488 struct net_device *dev = priv->net_dev;
2489 struct ipw2100_status *status = &priv->status_queue.drv[i];
2490 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2491
2492 IPW_DEBUG_RX("Handler...\n");
2493
2494 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2495 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2496 " Dropping.\n",
2497 dev->name,
2498 status->frame_size, skb_tailroom(packet->skb));
2499 dev->stats.rx_errors++;
2500 return;
2501 }
2502
2503 if (unlikely(!netif_running(dev))) {
2504 dev->stats.rx_errors++;
2505 priv->wstats.discard.misc++;
2506 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2507 return;
2508 }
2509
2510 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2511 !(priv->status & STATUS_ASSOCIATED))) {
2512 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2513 priv->wstats.discard.misc++;
2514 return;
2515 }
2516
2517 pci_unmap_single(priv->pci_dev,
2518 packet->dma_addr,
2519 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2520
2521 skb_put(packet->skb, status->frame_size);
2522
2523 #ifdef IPW2100_RX_DEBUG
2524 /* Make a copy of the frame so we can dump it to the logs if
2525 * libipw_rx fails */
2526 skb_copy_from_linear_data(packet->skb, packet_data,
2527 min_t(u32, status->frame_size,
2528 IPW_RX_NIC_BUFFER_LENGTH));
2529 #endif
2530
2531 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2532 #ifdef IPW2100_RX_DEBUG
2533 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2534 dev->name);
2535 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2536 #endif
2537 dev->stats.rx_errors++;
2538
2539 /* libipw_rx failed, so it didn't free the SKB */
2540 dev_kfree_skb_any(packet->skb);
2541 packet->skb = NULL;
2542 }
2543
2544 /* We need to allocate a new SKB and attach it to the RDB. */
2545 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2546 printk(KERN_WARNING DRV_NAME ": "
2547 "%s: Unable to allocate SKB onto RBD ring - disabling "
2548 "adapter.\n", dev->name);
2549 /* TODO: schedule adapter shutdown */
2550 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2551 }
2552
2553 /* Update the RDB entry */
2554 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2555 }
2556
2557 #ifdef CONFIG_IPW2100_MONITOR
2558
isr_rx_monitor(struct ipw2100_priv * priv,int i,struct libipw_rx_stats * stats)2559 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2560 struct libipw_rx_stats *stats)
2561 {
2562 struct net_device *dev = priv->net_dev;
2563 struct ipw2100_status *status = &priv->status_queue.drv[i];
2564 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2565
2566 /* Magic struct that slots into the radiotap header -- no reason
2567 * to build this manually element by element, we can write it much
2568 * more efficiently than we can parse it. ORDER MATTERS HERE */
2569 struct ipw_rt_hdr {
2570 struct ieee80211_radiotap_header rt_hdr;
2571 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2572 } *ipw_rt;
2573
2574 IPW_DEBUG_RX("Handler...\n");
2575
2576 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2577 sizeof(struct ipw_rt_hdr))) {
2578 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2579 " Dropping.\n",
2580 dev->name,
2581 status->frame_size,
2582 skb_tailroom(packet->skb));
2583 dev->stats.rx_errors++;
2584 return;
2585 }
2586
2587 if (unlikely(!netif_running(dev))) {
2588 dev->stats.rx_errors++;
2589 priv->wstats.discard.misc++;
2590 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2591 return;
2592 }
2593
2594 if (unlikely(priv->config & CFG_CRC_CHECK &&
2595 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2596 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2597 dev->stats.rx_errors++;
2598 return;
2599 }
2600
2601 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2602 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2603 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2604 packet->skb->data, status->frame_size);
2605
2606 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2607
2608 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2609 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2610 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2611
2612 ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2613
2614 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2615
2616 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2617
2618 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2619 dev->stats.rx_errors++;
2620
2621 /* libipw_rx failed, so it didn't free the SKB */
2622 dev_kfree_skb_any(packet->skb);
2623 packet->skb = NULL;
2624 }
2625
2626 /* We need to allocate a new SKB and attach it to the RDB. */
2627 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2628 IPW_DEBUG_WARNING(
2629 "%s: Unable to allocate SKB onto RBD ring - disabling "
2630 "adapter.\n", dev->name);
2631 /* TODO: schedule adapter shutdown */
2632 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2633 }
2634
2635 /* Update the RDB entry */
2636 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2637 }
2638
2639 #endif
2640
ipw2100_corruption_check(struct ipw2100_priv * priv,int i)2641 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2642 {
2643 struct ipw2100_status *status = &priv->status_queue.drv[i];
2644 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2645 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2646
2647 switch (frame_type) {
2648 case COMMAND_STATUS_VAL:
2649 return (status->frame_size != sizeof(u->rx_data.command));
2650 case STATUS_CHANGE_VAL:
2651 return (status->frame_size != sizeof(u->rx_data.status));
2652 case HOST_NOTIFICATION_VAL:
2653 return (status->frame_size < sizeof(u->rx_data.notification));
2654 case P80211_DATA_VAL:
2655 case P8023_DATA_VAL:
2656 #ifdef CONFIG_IPW2100_MONITOR
2657 return 0;
2658 #else
2659 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2660 case IEEE80211_FTYPE_MGMT:
2661 case IEEE80211_FTYPE_CTL:
2662 return 0;
2663 case IEEE80211_FTYPE_DATA:
2664 return (status->frame_size >
2665 IPW_MAX_802_11_PAYLOAD_LENGTH);
2666 }
2667 #endif
2668 }
2669
2670 return 1;
2671 }
2672
2673 /*
2674 * ipw2100 interrupts are disabled at this point, and the ISR
2675 * is the only code that calls this method. So, we do not need
2676 * to play with any locks.
2677 *
2678 * RX Queue works as follows:
2679 *
2680 * Read index - firmware places packet in entry identified by the
2681 * Read index and advances Read index. In this manner,
2682 * Read index will always point to the next packet to
2683 * be filled--but not yet valid.
2684 *
2685 * Write index - driver fills this entry with an unused RBD entry.
2686 * This entry has not filled by the firmware yet.
2687 *
2688 * In between the W and R indexes are the RBDs that have been received
2689 * but not yet processed.
2690 *
2691 * The process of handling packets will start at WRITE + 1 and advance
2692 * until it reaches the READ index.
2693 *
2694 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2695 *
2696 */
__ipw2100_rx_process(struct ipw2100_priv * priv)2697 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2698 {
2699 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2700 struct ipw2100_status_queue *sq = &priv->status_queue;
2701 struct ipw2100_rx_packet *packet;
2702 u16 frame_type;
2703 u32 r, w, i, s;
2704 struct ipw2100_rx *u;
2705 struct libipw_rx_stats stats = {
2706 .mac_time = jiffies,
2707 };
2708
2709 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2710 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2711
2712 if (r >= rxq->entries) {
2713 IPW_DEBUG_RX("exit - bad read index\n");
2714 return;
2715 }
2716
2717 i = (rxq->next + 1) % rxq->entries;
2718 s = i;
2719 while (i != r) {
2720 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2721 r, rxq->next, i); */
2722
2723 packet = &priv->rx_buffers[i];
2724
2725 /* Sync the DMA for the RX buffer so CPU is sure to get
2726 * the correct values */
2727 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2728 sizeof(struct ipw2100_rx),
2729 PCI_DMA_FROMDEVICE);
2730
2731 if (unlikely(ipw2100_corruption_check(priv, i))) {
2732 ipw2100_corruption_detected(priv, i);
2733 goto increment;
2734 }
2735
2736 u = packet->rxp;
2737 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2738 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2739 stats.len = sq->drv[i].frame_size;
2740
2741 stats.mask = 0;
2742 if (stats.rssi != 0)
2743 stats.mask |= LIBIPW_STATMASK_RSSI;
2744 stats.freq = LIBIPW_24GHZ_BAND;
2745
2746 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2747 priv->net_dev->name, frame_types[frame_type],
2748 stats.len);
2749
2750 switch (frame_type) {
2751 case COMMAND_STATUS_VAL:
2752 /* Reset Rx watchdog */
2753 isr_rx_complete_command(priv, &u->rx_data.command);
2754 break;
2755
2756 case STATUS_CHANGE_VAL:
2757 isr_status_change(priv, u->rx_data.status);
2758 break;
2759
2760 case P80211_DATA_VAL:
2761 case P8023_DATA_VAL:
2762 #ifdef CONFIG_IPW2100_MONITOR
2763 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2764 isr_rx_monitor(priv, i, &stats);
2765 break;
2766 }
2767 #endif
2768 if (stats.len < sizeof(struct libipw_hdr_3addr))
2769 break;
2770 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2771 case IEEE80211_FTYPE_MGMT:
2772 libipw_rx_mgt(priv->ieee,
2773 &u->rx_data.header, &stats);
2774 break;
2775
2776 case IEEE80211_FTYPE_CTL:
2777 break;
2778
2779 case IEEE80211_FTYPE_DATA:
2780 isr_rx(priv, i, &stats);
2781 break;
2782
2783 }
2784 break;
2785 }
2786
2787 increment:
2788 /* clear status field associated with this RBD */
2789 rxq->drv[i].status.info.field = 0;
2790
2791 i = (i + 1) % rxq->entries;
2792 }
2793
2794 if (i != s) {
2795 /* backtrack one entry, wrapping to end if at 0 */
2796 rxq->next = (i ? i : rxq->entries) - 1;
2797
2798 write_register(priv->net_dev,
2799 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2800 }
2801 }
2802
2803 /*
2804 * __ipw2100_tx_process
2805 *
2806 * This routine will determine whether the next packet on
2807 * the fw_pend_list has been processed by the firmware yet.
2808 *
2809 * If not, then it does nothing and returns.
2810 *
2811 * If so, then it removes the item from the fw_pend_list, frees
2812 * any associated storage, and places the item back on the
2813 * free list of its source (either msg_free_list or tx_free_list)
2814 *
2815 * TX Queue works as follows:
2816 *
2817 * Read index - points to the next TBD that the firmware will
2818 * process. The firmware will read the data, and once
2819 * done processing, it will advance the Read index.
2820 *
2821 * Write index - driver fills this entry with an constructed TBD
2822 * entry. The Write index is not advanced until the
2823 * packet has been configured.
2824 *
2825 * In between the W and R indexes are the TBDs that have NOT been
2826 * processed. Lagging behind the R index are packets that have
2827 * been processed but have not been freed by the driver.
2828 *
2829 * In order to free old storage, an internal index will be maintained
2830 * that points to the next packet to be freed. When all used
2831 * packets have been freed, the oldest index will be the same as the
2832 * firmware's read index.
2833 *
2834 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2835 *
2836 * Because the TBD structure can not contain arbitrary data, the
2837 * driver must keep an internal queue of cached allocations such that
2838 * it can put that data back into the tx_free_list and msg_free_list
2839 * for use by future command and data packets.
2840 *
2841 */
__ipw2100_tx_process(struct ipw2100_priv * priv)2842 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2843 {
2844 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2845 struct ipw2100_bd *tbd;
2846 struct list_head *element;
2847 struct ipw2100_tx_packet *packet;
2848 int descriptors_used;
2849 int e, i;
2850 u32 r, w, frag_num = 0;
2851
2852 if (list_empty(&priv->fw_pend_list))
2853 return 0;
2854
2855 element = priv->fw_pend_list.next;
2856
2857 packet = list_entry(element, struct ipw2100_tx_packet, list);
2858 tbd = &txq->drv[packet->index];
2859
2860 /* Determine how many TBD entries must be finished... */
2861 switch (packet->type) {
2862 case COMMAND:
2863 /* COMMAND uses only one slot; don't advance */
2864 descriptors_used = 1;
2865 e = txq->oldest;
2866 break;
2867
2868 case DATA:
2869 /* DATA uses two slots; advance and loop position. */
2870 descriptors_used = tbd->num_fragments;
2871 frag_num = tbd->num_fragments - 1;
2872 e = txq->oldest + frag_num;
2873 e %= txq->entries;
2874 break;
2875
2876 default:
2877 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2878 priv->net_dev->name);
2879 return 0;
2880 }
2881
2882 /* if the last TBD is not done by NIC yet, then packet is
2883 * not ready to be released.
2884 *
2885 */
2886 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2887 &r);
2888 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2889 &w);
2890 if (w != txq->next)
2891 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2892 priv->net_dev->name);
2893
2894 /*
2895 * txq->next is the index of the last packet written txq->oldest is
2896 * the index of the r is the index of the next packet to be read by
2897 * firmware
2898 */
2899
2900 /*
2901 * Quick graphic to help you visualize the following
2902 * if / else statement
2903 *
2904 * ===>| s---->|===============
2905 * e>|
2906 * | a | b | c | d | e | f | g | h | i | j | k | l
2907 * r---->|
2908 * w
2909 *
2910 * w - updated by driver
2911 * r - updated by firmware
2912 * s - start of oldest BD entry (txq->oldest)
2913 * e - end of oldest BD entry
2914 *
2915 */
2916 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2917 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2918 return 0;
2919 }
2920
2921 list_del(element);
2922 DEC_STAT(&priv->fw_pend_stat);
2923
2924 #ifdef CONFIG_IPW2100_DEBUG
2925 {
2926 i = txq->oldest;
2927 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2928 &txq->drv[i],
2929 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2930 txq->drv[i].host_addr, txq->drv[i].buf_length);
2931
2932 if (packet->type == DATA) {
2933 i = (i + 1) % txq->entries;
2934
2935 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2936 &txq->drv[i],
2937 (u32) (txq->nic + i *
2938 sizeof(struct ipw2100_bd)),
2939 (u32) txq->drv[i].host_addr,
2940 txq->drv[i].buf_length);
2941 }
2942 }
2943 #endif
2944
2945 switch (packet->type) {
2946 case DATA:
2947 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2948 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2949 "Expecting DATA TBD but pulled "
2950 "something else: ids %d=%d.\n",
2951 priv->net_dev->name, txq->oldest, packet->index);
2952
2953 /* DATA packet; we have to unmap and free the SKB */
2954 for (i = 0; i < frag_num; i++) {
2955 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2956
2957 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2958 (packet->index + 1 + i) % txq->entries,
2959 tbd->host_addr, tbd->buf_length);
2960
2961 pci_unmap_single(priv->pci_dev,
2962 tbd->host_addr,
2963 tbd->buf_length, PCI_DMA_TODEVICE);
2964 }
2965
2966 libipw_txb_free(packet->info.d_struct.txb);
2967 packet->info.d_struct.txb = NULL;
2968
2969 list_add_tail(element, &priv->tx_free_list);
2970 INC_STAT(&priv->tx_free_stat);
2971
2972 /* We have a free slot in the Tx queue, so wake up the
2973 * transmit layer if it is stopped. */
2974 if (priv->status & STATUS_ASSOCIATED)
2975 netif_wake_queue(priv->net_dev);
2976
2977 /* A packet was processed by the hardware, so update the
2978 * watchdog */
2979 priv->net_dev->trans_start = jiffies;
2980
2981 break;
2982
2983 case COMMAND:
2984 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2985 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2986 "Expecting COMMAND TBD but pulled "
2987 "something else: ids %d=%d.\n",
2988 priv->net_dev->name, txq->oldest, packet->index);
2989
2990 #ifdef CONFIG_IPW2100_DEBUG
2991 if (packet->info.c_struct.cmd->host_command_reg <
2992 ARRAY_SIZE(command_types))
2993 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2994 command_types[packet->info.c_struct.cmd->
2995 host_command_reg],
2996 packet->info.c_struct.cmd->
2997 host_command_reg,
2998 packet->info.c_struct.cmd->cmd_status_reg);
2999 #endif
3000
3001 list_add_tail(element, &priv->msg_free_list);
3002 INC_STAT(&priv->msg_free_stat);
3003 break;
3004 }
3005
3006 /* advance oldest used TBD pointer to start of next entry */
3007 txq->oldest = (e + 1) % txq->entries;
3008 /* increase available TBDs number */
3009 txq->available += descriptors_used;
3010 SET_STAT(&priv->txq_stat, txq->available);
3011
3012 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
3013 jiffies - packet->jiffy_start);
3014
3015 return (!list_empty(&priv->fw_pend_list));
3016 }
3017
__ipw2100_tx_complete(struct ipw2100_priv * priv)3018 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
3019 {
3020 int i = 0;
3021
3022 while (__ipw2100_tx_process(priv) && i < 200)
3023 i++;
3024
3025 if (i == 200) {
3026 printk(KERN_WARNING DRV_NAME ": "
3027 "%s: Driver is running slow (%d iters).\n",
3028 priv->net_dev->name, i);
3029 }
3030 }
3031
ipw2100_tx_send_commands(struct ipw2100_priv * priv)3032 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3033 {
3034 struct list_head *element;
3035 struct ipw2100_tx_packet *packet;
3036 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3037 struct ipw2100_bd *tbd;
3038 int next = txq->next;
3039
3040 while (!list_empty(&priv->msg_pend_list)) {
3041 /* if there isn't enough space in TBD queue, then
3042 * don't stuff a new one in.
3043 * NOTE: 3 are needed as a command will take one,
3044 * and there is a minimum of 2 that must be
3045 * maintained between the r and w indexes
3046 */
3047 if (txq->available <= 3) {
3048 IPW_DEBUG_TX("no room in tx_queue\n");
3049 break;
3050 }
3051
3052 element = priv->msg_pend_list.next;
3053 list_del(element);
3054 DEC_STAT(&priv->msg_pend_stat);
3055
3056 packet = list_entry(element, struct ipw2100_tx_packet, list);
3057
3058 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3059 &txq->drv[txq->next],
3060 (u32) (txq->nic + txq->next *
3061 sizeof(struct ipw2100_bd)));
3062
3063 packet->index = txq->next;
3064
3065 tbd = &txq->drv[txq->next];
3066
3067 /* initialize TBD */
3068 tbd->host_addr = packet->info.c_struct.cmd_phys;
3069 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3070 /* not marking number of fragments causes problems
3071 * with f/w debug version */
3072 tbd->num_fragments = 1;
3073 tbd->status.info.field =
3074 IPW_BD_STATUS_TX_FRAME_COMMAND |
3075 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3076
3077 /* update TBD queue counters */
3078 txq->next++;
3079 txq->next %= txq->entries;
3080 txq->available--;
3081 DEC_STAT(&priv->txq_stat);
3082
3083 list_add_tail(element, &priv->fw_pend_list);
3084 INC_STAT(&priv->fw_pend_stat);
3085 }
3086
3087 if (txq->next != next) {
3088 /* kick off the DMA by notifying firmware the
3089 * write index has moved; make sure TBD stores are sync'd */
3090 wmb();
3091 write_register(priv->net_dev,
3092 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3093 txq->next);
3094 }
3095 }
3096
3097 /*
3098 * ipw2100_tx_send_data
3099 *
3100 */
ipw2100_tx_send_data(struct ipw2100_priv * priv)3101 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3102 {
3103 struct list_head *element;
3104 struct ipw2100_tx_packet *packet;
3105 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3106 struct ipw2100_bd *tbd;
3107 int next = txq->next;
3108 int i = 0;
3109 struct ipw2100_data_header *ipw_hdr;
3110 struct libipw_hdr_3addr *hdr;
3111
3112 while (!list_empty(&priv->tx_pend_list)) {
3113 /* if there isn't enough space in TBD queue, then
3114 * don't stuff a new one in.
3115 * NOTE: 4 are needed as a data will take two,
3116 * and there is a minimum of 2 that must be
3117 * maintained between the r and w indexes
3118 */
3119 element = priv->tx_pend_list.next;
3120 packet = list_entry(element, struct ipw2100_tx_packet, list);
3121
3122 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3123 IPW_MAX_BDS)) {
3124 /* TODO: Support merging buffers if more than
3125 * IPW_MAX_BDS are used */
3126 IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded. "
3127 "Increase fragmentation level.\n",
3128 priv->net_dev->name);
3129 }
3130
3131 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3132 IPW_DEBUG_TX("no room in tx_queue\n");
3133 break;
3134 }
3135
3136 list_del(element);
3137 DEC_STAT(&priv->tx_pend_stat);
3138
3139 tbd = &txq->drv[txq->next];
3140
3141 packet->index = txq->next;
3142
3143 ipw_hdr = packet->info.d_struct.data;
3144 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3145 fragments[0]->data;
3146
3147 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3148 /* To DS: Addr1 = BSSID, Addr2 = SA,
3149 Addr3 = DA */
3150 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3151 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3152 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3153 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3154 Addr3 = BSSID */
3155 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3156 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3157 }
3158
3159 ipw_hdr->host_command_reg = SEND;
3160 ipw_hdr->host_command_reg1 = 0;
3161
3162 /* For now we only support host based encryption */
3163 ipw_hdr->needs_encryption = 0;
3164 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3165 if (packet->info.d_struct.txb->nr_frags > 1)
3166 ipw_hdr->fragment_size =
3167 packet->info.d_struct.txb->frag_size -
3168 LIBIPW_3ADDR_LEN;
3169 else
3170 ipw_hdr->fragment_size = 0;
3171
3172 tbd->host_addr = packet->info.d_struct.data_phys;
3173 tbd->buf_length = sizeof(struct ipw2100_data_header);
3174 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3175 tbd->status.info.field =
3176 IPW_BD_STATUS_TX_FRAME_802_3 |
3177 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3178 txq->next++;
3179 txq->next %= txq->entries;
3180
3181 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3182 packet->index, tbd->host_addr, tbd->buf_length);
3183 #ifdef CONFIG_IPW2100_DEBUG
3184 if (packet->info.d_struct.txb->nr_frags > 1)
3185 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3186 packet->info.d_struct.txb->nr_frags);
3187 #endif
3188
3189 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3190 tbd = &txq->drv[txq->next];
3191 if (i == packet->info.d_struct.txb->nr_frags - 1)
3192 tbd->status.info.field =
3193 IPW_BD_STATUS_TX_FRAME_802_3 |
3194 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3195 else
3196 tbd->status.info.field =
3197 IPW_BD_STATUS_TX_FRAME_802_3 |
3198 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3199
3200 tbd->buf_length = packet->info.d_struct.txb->
3201 fragments[i]->len - LIBIPW_3ADDR_LEN;
3202
3203 tbd->host_addr = pci_map_single(priv->pci_dev,
3204 packet->info.d_struct.
3205 txb->fragments[i]->
3206 data +
3207 LIBIPW_3ADDR_LEN,
3208 tbd->buf_length,
3209 PCI_DMA_TODEVICE);
3210
3211 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3212 txq->next, tbd->host_addr,
3213 tbd->buf_length);
3214
3215 pci_dma_sync_single_for_device(priv->pci_dev,
3216 tbd->host_addr,
3217 tbd->buf_length,
3218 PCI_DMA_TODEVICE);
3219
3220 txq->next++;
3221 txq->next %= txq->entries;
3222 }
3223
3224 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3225 SET_STAT(&priv->txq_stat, txq->available);
3226
3227 list_add_tail(element, &priv->fw_pend_list);
3228 INC_STAT(&priv->fw_pend_stat);
3229 }
3230
3231 if (txq->next != next) {
3232 /* kick off the DMA by notifying firmware the
3233 * write index has moved; make sure TBD stores are sync'd */
3234 write_register(priv->net_dev,
3235 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3236 txq->next);
3237 }
3238 }
3239
ipw2100_irq_tasklet(struct ipw2100_priv * priv)3240 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3241 {
3242 struct net_device *dev = priv->net_dev;
3243 unsigned long flags;
3244 u32 inta, tmp;
3245
3246 spin_lock_irqsave(&priv->low_lock, flags);
3247 ipw2100_disable_interrupts(priv);
3248
3249 read_register(dev, IPW_REG_INTA, &inta);
3250
3251 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3252 (unsigned long)inta & IPW_INTERRUPT_MASK);
3253
3254 priv->in_isr++;
3255 priv->interrupts++;
3256
3257 /* We do not loop and keep polling for more interrupts as this
3258 * is frowned upon and doesn't play nicely with other potentially
3259 * chained IRQs */
3260 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3261 (unsigned long)inta & IPW_INTERRUPT_MASK);
3262
3263 if (inta & IPW2100_INTA_FATAL_ERROR) {
3264 printk(KERN_WARNING DRV_NAME
3265 ": Fatal interrupt. Scheduling firmware restart.\n");
3266 priv->inta_other++;
3267 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3268
3269 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3270 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3271 priv->net_dev->name, priv->fatal_error);
3272
3273 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3274 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3275 priv->net_dev->name, tmp);
3276
3277 /* Wake up any sleeping jobs */
3278 schedule_reset(priv);
3279 }
3280
3281 if (inta & IPW2100_INTA_PARITY_ERROR) {
3282 printk(KERN_ERR DRV_NAME
3283 ": ***** PARITY ERROR INTERRUPT !!!!\n");
3284 priv->inta_other++;
3285 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3286 }
3287
3288 if (inta & IPW2100_INTA_RX_TRANSFER) {
3289 IPW_DEBUG_ISR("RX interrupt\n");
3290
3291 priv->rx_interrupts++;
3292
3293 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3294
3295 __ipw2100_rx_process(priv);
3296 __ipw2100_tx_complete(priv);
3297 }
3298
3299 if (inta & IPW2100_INTA_TX_TRANSFER) {
3300 IPW_DEBUG_ISR("TX interrupt\n");
3301
3302 priv->tx_interrupts++;
3303
3304 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3305
3306 __ipw2100_tx_complete(priv);
3307 ipw2100_tx_send_commands(priv);
3308 ipw2100_tx_send_data(priv);
3309 }
3310
3311 if (inta & IPW2100_INTA_TX_COMPLETE) {
3312 IPW_DEBUG_ISR("TX complete\n");
3313 priv->inta_other++;
3314 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3315
3316 __ipw2100_tx_complete(priv);
3317 }
3318
3319 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3320 /* ipw2100_handle_event(dev); */
3321 priv->inta_other++;
3322 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3323 }
3324
3325 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3326 IPW_DEBUG_ISR("FW init done interrupt\n");
3327 priv->inta_other++;
3328
3329 read_register(dev, IPW_REG_INTA, &tmp);
3330 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3331 IPW2100_INTA_PARITY_ERROR)) {
3332 write_register(dev, IPW_REG_INTA,
3333 IPW2100_INTA_FATAL_ERROR |
3334 IPW2100_INTA_PARITY_ERROR);
3335 }
3336
3337 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3338 }
3339
3340 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3341 IPW_DEBUG_ISR("Status change interrupt\n");
3342 priv->inta_other++;
3343 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3344 }
3345
3346 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3347 IPW_DEBUG_ISR("slave host mode interrupt\n");
3348 priv->inta_other++;
3349 write_register(dev, IPW_REG_INTA,
3350 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3351 }
3352
3353 priv->in_isr--;
3354 ipw2100_enable_interrupts(priv);
3355
3356 spin_unlock_irqrestore(&priv->low_lock, flags);
3357
3358 IPW_DEBUG_ISR("exit\n");
3359 }
3360
ipw2100_interrupt(int irq,void * data)3361 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3362 {
3363 struct ipw2100_priv *priv = data;
3364 u32 inta, inta_mask;
3365
3366 if (!data)
3367 return IRQ_NONE;
3368
3369 spin_lock(&priv->low_lock);
3370
3371 /* We check to see if we should be ignoring interrupts before
3372 * we touch the hardware. During ucode load if we try and handle
3373 * an interrupt we can cause keyboard problems as well as cause
3374 * the ucode to fail to initialize */
3375 if (!(priv->status & STATUS_INT_ENABLED)) {
3376 /* Shared IRQ */
3377 goto none;
3378 }
3379
3380 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3381 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3382
3383 if (inta == 0xFFFFFFFF) {
3384 /* Hardware disappeared */
3385 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3386 goto none;
3387 }
3388
3389 inta &= IPW_INTERRUPT_MASK;
3390
3391 if (!(inta & inta_mask)) {
3392 /* Shared interrupt */
3393 goto none;
3394 }
3395
3396 /* We disable the hardware interrupt here just to prevent unneeded
3397 * calls to be made. We disable this again within the actual
3398 * work tasklet, so if another part of the code re-enables the
3399 * interrupt, that is fine */
3400 ipw2100_disable_interrupts(priv);
3401
3402 tasklet_schedule(&priv->irq_tasklet);
3403 spin_unlock(&priv->low_lock);
3404
3405 return IRQ_HANDLED;
3406 none:
3407 spin_unlock(&priv->low_lock);
3408 return IRQ_NONE;
3409 }
3410
ipw2100_tx(struct libipw_txb * txb,struct net_device * dev,int pri)3411 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3412 struct net_device *dev, int pri)
3413 {
3414 struct ipw2100_priv *priv = libipw_priv(dev);
3415 struct list_head *element;
3416 struct ipw2100_tx_packet *packet;
3417 unsigned long flags;
3418
3419 spin_lock_irqsave(&priv->low_lock, flags);
3420
3421 if (!(priv->status & STATUS_ASSOCIATED)) {
3422 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3423 priv->net_dev->stats.tx_carrier_errors++;
3424 netif_stop_queue(dev);
3425 goto fail_unlock;
3426 }
3427
3428 if (list_empty(&priv->tx_free_list))
3429 goto fail_unlock;
3430
3431 element = priv->tx_free_list.next;
3432 packet = list_entry(element, struct ipw2100_tx_packet, list);
3433
3434 packet->info.d_struct.txb = txb;
3435
3436 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3437 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3438
3439 packet->jiffy_start = jiffies;
3440
3441 list_del(element);
3442 DEC_STAT(&priv->tx_free_stat);
3443
3444 list_add_tail(element, &priv->tx_pend_list);
3445 INC_STAT(&priv->tx_pend_stat);
3446
3447 ipw2100_tx_send_data(priv);
3448
3449 spin_unlock_irqrestore(&priv->low_lock, flags);
3450 return NETDEV_TX_OK;
3451
3452 fail_unlock:
3453 netif_stop_queue(dev);
3454 spin_unlock_irqrestore(&priv->low_lock, flags);
3455 return NETDEV_TX_BUSY;
3456 }
3457
ipw2100_msg_allocate(struct ipw2100_priv * priv)3458 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3459 {
3460 int i, j, err = -EINVAL;
3461 void *v;
3462 dma_addr_t p;
3463
3464 priv->msg_buffers =
3465 kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3466 GFP_KERNEL);
3467 if (!priv->msg_buffers) {
3468 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3469 "buffers.\n", priv->net_dev->name);
3470 return -ENOMEM;
3471 }
3472
3473 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3474 v = pci_alloc_consistent(priv->pci_dev,
3475 sizeof(struct ipw2100_cmd_header), &p);
3476 if (!v) {
3477 printk(KERN_ERR DRV_NAME ": "
3478 "%s: PCI alloc failed for msg "
3479 "buffers.\n", priv->net_dev->name);
3480 err = -ENOMEM;
3481 break;
3482 }
3483
3484 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3485
3486 priv->msg_buffers[i].type = COMMAND;
3487 priv->msg_buffers[i].info.c_struct.cmd =
3488 (struct ipw2100_cmd_header *)v;
3489 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3490 }
3491
3492 if (i == IPW_COMMAND_POOL_SIZE)
3493 return 0;
3494
3495 for (j = 0; j < i; j++) {
3496 pci_free_consistent(priv->pci_dev,
3497 sizeof(struct ipw2100_cmd_header),
3498 priv->msg_buffers[j].info.c_struct.cmd,
3499 priv->msg_buffers[j].info.c_struct.
3500 cmd_phys);
3501 }
3502
3503 kfree(priv->msg_buffers);
3504 priv->msg_buffers = NULL;
3505
3506 return err;
3507 }
3508
ipw2100_msg_initialize(struct ipw2100_priv * priv)3509 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3510 {
3511 int i;
3512
3513 INIT_LIST_HEAD(&priv->msg_free_list);
3514 INIT_LIST_HEAD(&priv->msg_pend_list);
3515
3516 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3517 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3518 SET_STAT(&priv->msg_free_stat, i);
3519
3520 return 0;
3521 }
3522
ipw2100_msg_free(struct ipw2100_priv * priv)3523 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3524 {
3525 int i;
3526
3527 if (!priv->msg_buffers)
3528 return;
3529
3530 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3531 pci_free_consistent(priv->pci_dev,
3532 sizeof(struct ipw2100_cmd_header),
3533 priv->msg_buffers[i].info.c_struct.cmd,
3534 priv->msg_buffers[i].info.c_struct.
3535 cmd_phys);
3536 }
3537
3538 kfree(priv->msg_buffers);
3539 priv->msg_buffers = NULL;
3540 }
3541
show_pci(struct device * d,struct device_attribute * attr,char * buf)3542 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3543 char *buf)
3544 {
3545 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3546 char *out = buf;
3547 int i, j;
3548 u32 val;
3549
3550 for (i = 0; i < 16; i++) {
3551 out += sprintf(out, "[%08X] ", i * 16);
3552 for (j = 0; j < 16; j += 4) {
3553 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3554 out += sprintf(out, "%08X ", val);
3555 }
3556 out += sprintf(out, "\n");
3557 }
3558
3559 return out - buf;
3560 }
3561
3562 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3563
show_cfg(struct device * d,struct device_attribute * attr,char * buf)3564 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3565 char *buf)
3566 {
3567 struct ipw2100_priv *p = dev_get_drvdata(d);
3568 return sprintf(buf, "0x%08x\n", (int)p->config);
3569 }
3570
3571 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3572
show_status(struct device * d,struct device_attribute * attr,char * buf)3573 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3574 char *buf)
3575 {
3576 struct ipw2100_priv *p = dev_get_drvdata(d);
3577 return sprintf(buf, "0x%08x\n", (int)p->status);
3578 }
3579
3580 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3581
show_capability(struct device * d,struct device_attribute * attr,char * buf)3582 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3583 char *buf)
3584 {
3585 struct ipw2100_priv *p = dev_get_drvdata(d);
3586 return sprintf(buf, "0x%08x\n", (int)p->capability);
3587 }
3588
3589 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3590
3591 #define IPW2100_REG(x) { IPW_ ##x, #x }
3592 static const struct {
3593 u32 addr;
3594 const char *name;
3595 } hw_data[] = {
3596 IPW2100_REG(REG_GP_CNTRL),
3597 IPW2100_REG(REG_GPIO),
3598 IPW2100_REG(REG_INTA),
3599 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3600 #define IPW2100_NIC(x, s) { x, #x, s }
3601 static const struct {
3602 u32 addr;
3603 const char *name;
3604 size_t size;
3605 } nic_data[] = {
3606 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3607 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3608 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3609 static const struct {
3610 u8 index;
3611 const char *name;
3612 const char *desc;
3613 } ord_data[] = {
3614 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3615 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3616 "successful Host Tx's (MSDU)"),
3617 IPW2100_ORD(STAT_TX_DIR_DATA,
3618 "successful Directed Tx's (MSDU)"),
3619 IPW2100_ORD(STAT_TX_DIR_DATA1,
3620 "successful Directed Tx's (MSDU) @ 1MB"),
3621 IPW2100_ORD(STAT_TX_DIR_DATA2,
3622 "successful Directed Tx's (MSDU) @ 2MB"),
3623 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3624 "successful Directed Tx's (MSDU) @ 5_5MB"),
3625 IPW2100_ORD(STAT_TX_DIR_DATA11,
3626 "successful Directed Tx's (MSDU) @ 11MB"),
3627 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3628 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3629 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3630 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3631 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3632 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3633 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3634 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3635 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3636 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3637 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3638 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3639 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3640 IPW2100_ORD(STAT_TX_ASSN_RESP,
3641 "successful Association response Tx's"),
3642 IPW2100_ORD(STAT_TX_REASSN,
3643 "successful Reassociation Tx's"),
3644 IPW2100_ORD(STAT_TX_REASSN_RESP,
3645 "successful Reassociation response Tx's"),
3646 IPW2100_ORD(STAT_TX_PROBE,
3647 "probes successfully transmitted"),
3648 IPW2100_ORD(STAT_TX_PROBE_RESP,
3649 "probe responses successfully transmitted"),
3650 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3651 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3652 IPW2100_ORD(STAT_TX_DISASSN,
3653 "successful Disassociation TX"),
3654 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3655 IPW2100_ORD(STAT_TX_DEAUTH,
3656 "successful Deauthentication TX"),
3657 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3658 "Total successful Tx data bytes"),
3659 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3660 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3661 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3662 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3663 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3664 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3665 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3666 "times max tries in a hop failed"),
3667 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3668 "times disassociation failed"),
3669 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3670 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3671 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3672 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3673 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3674 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3675 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3676 "directed packets at 5.5MB"),
3677 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3678 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3679 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3680 "nondirected packets at 1MB"),
3681 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3682 "nondirected packets at 2MB"),
3683 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3684 "nondirected packets at 5.5MB"),
3685 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3686 "nondirected packets at 11MB"),
3687 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3688 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3689 "Rx CTS"),
3690 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3691 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3692 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3693 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3694 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3695 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3696 IPW2100_ORD(STAT_RX_REASSN_RESP,
3697 "Reassociation response Rx's"),
3698 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3699 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3700 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3701 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3702 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3703 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3704 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3705 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3706 "Total rx data bytes received"),
3707 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3708 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3709 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3710 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3711 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3712 IPW2100_ORD(STAT_RX_DUPLICATE1,
3713 "duplicate rx packets at 1MB"),
3714 IPW2100_ORD(STAT_RX_DUPLICATE2,
3715 "duplicate rx packets at 2MB"),
3716 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3717 "duplicate rx packets at 5.5MB"),
3718 IPW2100_ORD(STAT_RX_DUPLICATE11,
3719 "duplicate rx packets at 11MB"),
3720 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3721 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3722 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3723 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3724 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3725 "rx frames with invalid protocol"),
3726 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3727 IPW2100_ORD(STAT_RX_NO_BUFFER,
3728 "rx frames rejected due to no buffer"),
3729 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3730 "rx frames dropped due to missing fragment"),
3731 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3732 "rx frames dropped due to non-sequential fragment"),
3733 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3734 "rx frames dropped due to unmatched 1st frame"),
3735 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3736 "rx frames dropped due to uncompleted frame"),
3737 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3738 "ICV errors during decryption"),
3739 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3740 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3741 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3742 "poll response timeouts"),
3743 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3744 "timeouts waiting for last {broad,multi}cast pkt"),
3745 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3746 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3747 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3748 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3749 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3750 "current calculation of % missed beacons"),
3751 IPW2100_ORD(STAT_PERCENT_RETRIES,
3752 "current calculation of % missed tx retries"),
3753 IPW2100_ORD(ASSOCIATED_AP_PTR,
3754 "0 if not associated, else pointer to AP table entry"),
3755 IPW2100_ORD(AVAILABLE_AP_CNT,
3756 "AP's decsribed in the AP table"),
3757 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3758 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3759 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3760 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3761 "failures due to response fail"),
3762 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3763 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3764 IPW2100_ORD(STAT_ROAM_INHIBIT,
3765 "times roaming was inhibited due to activity"),
3766 IPW2100_ORD(RSSI_AT_ASSN,
3767 "RSSI of associated AP at time of association"),
3768 IPW2100_ORD(STAT_ASSN_CAUSE1,
3769 "reassociation: no probe response or TX on hop"),
3770 IPW2100_ORD(STAT_ASSN_CAUSE2,
3771 "reassociation: poor tx/rx quality"),
3772 IPW2100_ORD(STAT_ASSN_CAUSE3,
3773 "reassociation: tx/rx quality (excessive AP load"),
3774 IPW2100_ORD(STAT_ASSN_CAUSE4,
3775 "reassociation: AP RSSI level"),
3776 IPW2100_ORD(STAT_ASSN_CAUSE5,
3777 "reassociations due to load leveling"),
3778 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3779 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3780 "times authentication response failed"),
3781 IPW2100_ORD(STATION_TABLE_CNT,
3782 "entries in association table"),
3783 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3784 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3785 IPW2100_ORD(COUNTRY_CODE,
3786 "IEEE country code as recv'd from beacon"),
3787 IPW2100_ORD(COUNTRY_CHANNELS,
3788 "channels suported by country"),
3789 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3790 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3791 IPW2100_ORD(ANTENNA_DIVERSITY,
3792 "TRUE if antenna diversity is disabled"),
3793 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3794 IPW2100_ORD(OUR_FREQ,
3795 "current radio freq lower digits - channel ID"),
3796 IPW2100_ORD(RTC_TIME, "current RTC time"),
3797 IPW2100_ORD(PORT_TYPE, "operating mode"),
3798 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3799 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3800 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3801 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3802 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3803 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3804 IPW2100_ORD(CAPABILITIES,
3805 "Management frame capability field"),
3806 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3807 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3808 IPW2100_ORD(RTS_THRESHOLD,
3809 "Min packet length for RTS handshaking"),
3810 IPW2100_ORD(INT_MODE, "International mode"),
3811 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3812 "protocol frag threshold"),
3813 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3814 "EEPROM offset in SRAM"),
3815 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3816 "EEPROM size in SRAM"),
3817 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3818 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3819 "EEPROM IBSS 11b channel set"),
3820 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3821 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3822 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3823 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3824 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3825
show_registers(struct device * d,struct device_attribute * attr,char * buf)3826 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3827 char *buf)
3828 {
3829 int i;
3830 struct ipw2100_priv *priv = dev_get_drvdata(d);
3831 struct net_device *dev = priv->net_dev;
3832 char *out = buf;
3833 u32 val = 0;
3834
3835 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3836
3837 for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3838 read_register(dev, hw_data[i].addr, &val);
3839 out += sprintf(out, "%30s [%08X] : %08X\n",
3840 hw_data[i].name, hw_data[i].addr, val);
3841 }
3842
3843 return out - buf;
3844 }
3845
3846 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3847
show_hardware(struct device * d,struct device_attribute * attr,char * buf)3848 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3849 char *buf)
3850 {
3851 struct ipw2100_priv *priv = dev_get_drvdata(d);
3852 struct net_device *dev = priv->net_dev;
3853 char *out = buf;
3854 int i;
3855
3856 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3857
3858 for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3859 u8 tmp8;
3860 u16 tmp16;
3861 u32 tmp32;
3862
3863 switch (nic_data[i].size) {
3864 case 1:
3865 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3866 out += sprintf(out, "%30s [%08X] : %02X\n",
3867 nic_data[i].name, nic_data[i].addr,
3868 tmp8);
3869 break;
3870 case 2:
3871 read_nic_word(dev, nic_data[i].addr, &tmp16);
3872 out += sprintf(out, "%30s [%08X] : %04X\n",
3873 nic_data[i].name, nic_data[i].addr,
3874 tmp16);
3875 break;
3876 case 4:
3877 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3878 out += sprintf(out, "%30s [%08X] : %08X\n",
3879 nic_data[i].name, nic_data[i].addr,
3880 tmp32);
3881 break;
3882 }
3883 }
3884 return out - buf;
3885 }
3886
3887 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3888
show_memory(struct device * d,struct device_attribute * attr,char * buf)3889 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3890 char *buf)
3891 {
3892 struct ipw2100_priv *priv = dev_get_drvdata(d);
3893 struct net_device *dev = priv->net_dev;
3894 static unsigned long loop = 0;
3895 int len = 0;
3896 u32 buffer[4];
3897 int i;
3898 char line[81];
3899
3900 if (loop >= 0x30000)
3901 loop = 0;
3902
3903 /* sysfs provides us PAGE_SIZE buffer */
3904 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3905
3906 if (priv->snapshot[0])
3907 for (i = 0; i < 4; i++)
3908 buffer[i] =
3909 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3910 else
3911 for (i = 0; i < 4; i++)
3912 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3913
3914 if (priv->dump_raw)
3915 len += sprintf(buf + len,
3916 "%c%c%c%c"
3917 "%c%c%c%c"
3918 "%c%c%c%c"
3919 "%c%c%c%c",
3920 ((u8 *) buffer)[0x0],
3921 ((u8 *) buffer)[0x1],
3922 ((u8 *) buffer)[0x2],
3923 ((u8 *) buffer)[0x3],
3924 ((u8 *) buffer)[0x4],
3925 ((u8 *) buffer)[0x5],
3926 ((u8 *) buffer)[0x6],
3927 ((u8 *) buffer)[0x7],
3928 ((u8 *) buffer)[0x8],
3929 ((u8 *) buffer)[0x9],
3930 ((u8 *) buffer)[0xa],
3931 ((u8 *) buffer)[0xb],
3932 ((u8 *) buffer)[0xc],
3933 ((u8 *) buffer)[0xd],
3934 ((u8 *) buffer)[0xe],
3935 ((u8 *) buffer)[0xf]);
3936 else
3937 len += sprintf(buf + len, "%s\n",
3938 snprint_line(line, sizeof(line),
3939 (u8 *) buffer, 16, loop));
3940 loop += 16;
3941 }
3942
3943 return len;
3944 }
3945
store_memory(struct device * d,struct device_attribute * attr,const char * buf,size_t count)3946 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3947 const char *buf, size_t count)
3948 {
3949 struct ipw2100_priv *priv = dev_get_drvdata(d);
3950 struct net_device *dev = priv->net_dev;
3951 const char *p = buf;
3952
3953 (void)dev; /* kill unused-var warning for debug-only code */
3954
3955 if (count < 1)
3956 return count;
3957
3958 if (p[0] == '1' ||
3959 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3960 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3961 dev->name);
3962 priv->dump_raw = 1;
3963
3964 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3965 tolower(p[1]) == 'f')) {
3966 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3967 dev->name);
3968 priv->dump_raw = 0;
3969
3970 } else if (tolower(p[0]) == 'r') {
3971 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3972 ipw2100_snapshot_free(priv);
3973
3974 } else
3975 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3976 "reset = clear memory snapshot\n", dev->name);
3977
3978 return count;
3979 }
3980
3981 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3982
show_ordinals(struct device * d,struct device_attribute * attr,char * buf)3983 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3984 char *buf)
3985 {
3986 struct ipw2100_priv *priv = dev_get_drvdata(d);
3987 u32 val = 0;
3988 int len = 0;
3989 u32 val_len;
3990 static int loop = 0;
3991
3992 if (priv->status & STATUS_RF_KILL_MASK)
3993 return 0;
3994
3995 if (loop >= ARRAY_SIZE(ord_data))
3996 loop = 0;
3997
3998 /* sysfs provides us PAGE_SIZE buffer */
3999 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
4000 val_len = sizeof(u32);
4001
4002 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
4003 &val_len))
4004 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
4005 ord_data[loop].index,
4006 ord_data[loop].desc);
4007 else
4008 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
4009 ord_data[loop].index, val,
4010 ord_data[loop].desc);
4011 loop++;
4012 }
4013
4014 return len;
4015 }
4016
4017 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
4018
show_stats(struct device * d,struct device_attribute * attr,char * buf)4019 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
4020 char *buf)
4021 {
4022 struct ipw2100_priv *priv = dev_get_drvdata(d);
4023 char *out = buf;
4024
4025 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4026 priv->interrupts, priv->tx_interrupts,
4027 priv->rx_interrupts, priv->inta_other);
4028 out += sprintf(out, "firmware resets: %d\n", priv->resets);
4029 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4030 #ifdef CONFIG_IPW2100_DEBUG
4031 out += sprintf(out, "packet mismatch image: %s\n",
4032 priv->snapshot[0] ? "YES" : "NO");
4033 #endif
4034
4035 return out - buf;
4036 }
4037
4038 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4039
ipw2100_switch_mode(struct ipw2100_priv * priv,u32 mode)4040 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4041 {
4042 int err;
4043
4044 if (mode == priv->ieee->iw_mode)
4045 return 0;
4046
4047 err = ipw2100_disable_adapter(priv);
4048 if (err) {
4049 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4050 priv->net_dev->name, err);
4051 return err;
4052 }
4053
4054 switch (mode) {
4055 case IW_MODE_INFRA:
4056 priv->net_dev->type = ARPHRD_ETHER;
4057 break;
4058 case IW_MODE_ADHOC:
4059 priv->net_dev->type = ARPHRD_ETHER;
4060 break;
4061 #ifdef CONFIG_IPW2100_MONITOR
4062 case IW_MODE_MONITOR:
4063 priv->last_mode = priv->ieee->iw_mode;
4064 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4065 break;
4066 #endif /* CONFIG_IPW2100_MONITOR */
4067 }
4068
4069 priv->ieee->iw_mode = mode;
4070
4071 #ifdef CONFIG_PM
4072 /* Indicate ipw2100_download_firmware download firmware
4073 * from disk instead of memory. */
4074 ipw2100_firmware.version = 0;
4075 #endif
4076
4077 printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
4078 priv->reset_backoff = 0;
4079 schedule_reset(priv);
4080
4081 return 0;
4082 }
4083
show_internals(struct device * d,struct device_attribute * attr,char * buf)4084 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4085 char *buf)
4086 {
4087 struct ipw2100_priv *priv = dev_get_drvdata(d);
4088 int len = 0;
4089
4090 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4091
4092 if (priv->status & STATUS_ASSOCIATED)
4093 len += sprintf(buf + len, "connected: %lu\n",
4094 get_seconds() - priv->connect_start);
4095 else
4096 len += sprintf(buf + len, "not connected\n");
4097
4098 DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4099 DUMP_VAR(status, "08lx");
4100 DUMP_VAR(config, "08lx");
4101 DUMP_VAR(capability, "08lx");
4102
4103 len +=
4104 sprintf(buf + len, "last_rtc: %lu\n",
4105 (unsigned long)priv->last_rtc);
4106
4107 DUMP_VAR(fatal_error, "d");
4108 DUMP_VAR(stop_hang_check, "d");
4109 DUMP_VAR(stop_rf_kill, "d");
4110 DUMP_VAR(messages_sent, "d");
4111
4112 DUMP_VAR(tx_pend_stat.value, "d");
4113 DUMP_VAR(tx_pend_stat.hi, "d");
4114
4115 DUMP_VAR(tx_free_stat.value, "d");
4116 DUMP_VAR(tx_free_stat.lo, "d");
4117
4118 DUMP_VAR(msg_free_stat.value, "d");
4119 DUMP_VAR(msg_free_stat.lo, "d");
4120
4121 DUMP_VAR(msg_pend_stat.value, "d");
4122 DUMP_VAR(msg_pend_stat.hi, "d");
4123
4124 DUMP_VAR(fw_pend_stat.value, "d");
4125 DUMP_VAR(fw_pend_stat.hi, "d");
4126
4127 DUMP_VAR(txq_stat.value, "d");
4128 DUMP_VAR(txq_stat.lo, "d");
4129
4130 DUMP_VAR(ieee->scans, "d");
4131 DUMP_VAR(reset_backoff, "d");
4132
4133 return len;
4134 }
4135
4136 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4137
show_bssinfo(struct device * d,struct device_attribute * attr,char * buf)4138 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4139 char *buf)
4140 {
4141 struct ipw2100_priv *priv = dev_get_drvdata(d);
4142 char essid[IW_ESSID_MAX_SIZE + 1];
4143 u8 bssid[ETH_ALEN];
4144 u32 chan = 0;
4145 char *out = buf;
4146 unsigned int length;
4147 int ret;
4148
4149 if (priv->status & STATUS_RF_KILL_MASK)
4150 return 0;
4151
4152 memset(essid, 0, sizeof(essid));
4153 memset(bssid, 0, sizeof(bssid));
4154
4155 length = IW_ESSID_MAX_SIZE;
4156 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4157 if (ret)
4158 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4159 __LINE__);
4160
4161 length = sizeof(bssid);
4162 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4163 bssid, &length);
4164 if (ret)
4165 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4166 __LINE__);
4167
4168 length = sizeof(u32);
4169 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4170 if (ret)
4171 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4172 __LINE__);
4173
4174 out += sprintf(out, "ESSID: %s\n", essid);
4175 out += sprintf(out, "BSSID: %pM\n", bssid);
4176 out += sprintf(out, "Channel: %d\n", chan);
4177
4178 return out - buf;
4179 }
4180
4181 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4182
4183 #ifdef CONFIG_IPW2100_DEBUG
show_debug_level(struct device_driver * d,char * buf)4184 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4185 {
4186 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4187 }
4188
store_debug_level(struct device_driver * d,const char * buf,size_t count)4189 static ssize_t store_debug_level(struct device_driver *d,
4190 const char *buf, size_t count)
4191 {
4192 char *p = (char *)buf;
4193 u32 val;
4194
4195 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4196 p++;
4197 if (p[0] == 'x' || p[0] == 'X')
4198 p++;
4199 val = simple_strtoul(p, &p, 16);
4200 } else
4201 val = simple_strtoul(p, &p, 10);
4202 if (p == buf)
4203 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4204 else
4205 ipw2100_debug_level = val;
4206
4207 return strnlen(buf, count);
4208 }
4209
4210 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4211 store_debug_level);
4212 #endif /* CONFIG_IPW2100_DEBUG */
4213
show_fatal_error(struct device * d,struct device_attribute * attr,char * buf)4214 static ssize_t show_fatal_error(struct device *d,
4215 struct device_attribute *attr, char *buf)
4216 {
4217 struct ipw2100_priv *priv = dev_get_drvdata(d);
4218 char *out = buf;
4219 int i;
4220
4221 if (priv->fatal_error)
4222 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4223 else
4224 out += sprintf(out, "0\n");
4225
4226 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4227 if (!priv->fatal_errors[(priv->fatal_index - i) %
4228 IPW2100_ERROR_QUEUE])
4229 continue;
4230
4231 out += sprintf(out, "%d. 0x%08X\n", i,
4232 priv->fatal_errors[(priv->fatal_index - i) %
4233 IPW2100_ERROR_QUEUE]);
4234 }
4235
4236 return out - buf;
4237 }
4238
store_fatal_error(struct device * d,struct device_attribute * attr,const char * buf,size_t count)4239 static ssize_t store_fatal_error(struct device *d,
4240 struct device_attribute *attr, const char *buf,
4241 size_t count)
4242 {
4243 struct ipw2100_priv *priv = dev_get_drvdata(d);
4244 schedule_reset(priv);
4245 return count;
4246 }
4247
4248 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4249 store_fatal_error);
4250
show_scan_age(struct device * d,struct device_attribute * attr,char * buf)4251 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4252 char *buf)
4253 {
4254 struct ipw2100_priv *priv = dev_get_drvdata(d);
4255 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4256 }
4257
store_scan_age(struct device * d,struct device_attribute * attr,const char * buf,size_t count)4258 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4259 const char *buf, size_t count)
4260 {
4261 struct ipw2100_priv *priv = dev_get_drvdata(d);
4262 struct net_device *dev = priv->net_dev;
4263 char buffer[] = "00000000";
4264 unsigned long len =
4265 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4266 unsigned long val;
4267 char *p = buffer;
4268
4269 (void)dev; /* kill unused-var warning for debug-only code */
4270
4271 IPW_DEBUG_INFO("enter\n");
4272
4273 strncpy(buffer, buf, len);
4274 buffer[len] = 0;
4275
4276 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4277 p++;
4278 if (p[0] == 'x' || p[0] == 'X')
4279 p++;
4280 val = simple_strtoul(p, &p, 16);
4281 } else
4282 val = simple_strtoul(p, &p, 10);
4283 if (p == buffer) {
4284 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4285 } else {
4286 priv->ieee->scan_age = val;
4287 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4288 }
4289
4290 IPW_DEBUG_INFO("exit\n");
4291 return len;
4292 }
4293
4294 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4295
show_rf_kill(struct device * d,struct device_attribute * attr,char * buf)4296 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4297 char *buf)
4298 {
4299 /* 0 - RF kill not enabled
4300 1 - SW based RF kill active (sysfs)
4301 2 - HW based RF kill active
4302 3 - Both HW and SW baed RF kill active */
4303 struct ipw2100_priv *priv = dev_get_drvdata(d);
4304 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4305 (rf_kill_active(priv) ? 0x2 : 0x0);
4306 return sprintf(buf, "%i\n", val);
4307 }
4308
ipw_radio_kill_sw(struct ipw2100_priv * priv,int disable_radio)4309 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4310 {
4311 if ((disable_radio ? 1 : 0) ==
4312 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4313 return 0;
4314
4315 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4316 disable_radio ? "OFF" : "ON");
4317
4318 mutex_lock(&priv->action_mutex);
4319
4320 if (disable_radio) {
4321 priv->status |= STATUS_RF_KILL_SW;
4322 ipw2100_down(priv);
4323 } else {
4324 priv->status &= ~STATUS_RF_KILL_SW;
4325 if (rf_kill_active(priv)) {
4326 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4327 "disabled by HW switch\n");
4328 /* Make sure the RF_KILL check timer is running */
4329 priv->stop_rf_kill = 0;
4330 cancel_delayed_work(&priv->rf_kill);
4331 schedule_delayed_work(&priv->rf_kill,
4332 round_jiffies_relative(HZ));
4333 } else
4334 schedule_reset(priv);
4335 }
4336
4337 mutex_unlock(&priv->action_mutex);
4338 return 1;
4339 }
4340
store_rf_kill(struct device * d,struct device_attribute * attr,const char * buf,size_t count)4341 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4342 const char *buf, size_t count)
4343 {
4344 struct ipw2100_priv *priv = dev_get_drvdata(d);
4345 ipw_radio_kill_sw(priv, buf[0] == '1');
4346 return count;
4347 }
4348
4349 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4350
4351 static struct attribute *ipw2100_sysfs_entries[] = {
4352 &dev_attr_hardware.attr,
4353 &dev_attr_registers.attr,
4354 &dev_attr_ordinals.attr,
4355 &dev_attr_pci.attr,
4356 &dev_attr_stats.attr,
4357 &dev_attr_internals.attr,
4358 &dev_attr_bssinfo.attr,
4359 &dev_attr_memory.attr,
4360 &dev_attr_scan_age.attr,
4361 &dev_attr_fatal_error.attr,
4362 &dev_attr_rf_kill.attr,
4363 &dev_attr_cfg.attr,
4364 &dev_attr_status.attr,
4365 &dev_attr_capability.attr,
4366 NULL,
4367 };
4368
4369 static struct attribute_group ipw2100_attribute_group = {
4370 .attrs = ipw2100_sysfs_entries,
4371 };
4372
status_queue_allocate(struct ipw2100_priv * priv,int entries)4373 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4374 {
4375 struct ipw2100_status_queue *q = &priv->status_queue;
4376
4377 IPW_DEBUG_INFO("enter\n");
4378
4379 q->size = entries * sizeof(struct ipw2100_status);
4380 q->drv =
4381 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4382 q->size, &q->nic);
4383 if (!q->drv) {
4384 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4385 return -ENOMEM;
4386 }
4387
4388 memset(q->drv, 0, q->size);
4389
4390 IPW_DEBUG_INFO("exit\n");
4391
4392 return 0;
4393 }
4394
status_queue_free(struct ipw2100_priv * priv)4395 static void status_queue_free(struct ipw2100_priv *priv)
4396 {
4397 IPW_DEBUG_INFO("enter\n");
4398
4399 if (priv->status_queue.drv) {
4400 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4401 priv->status_queue.drv,
4402 priv->status_queue.nic);
4403 priv->status_queue.drv = NULL;
4404 }
4405
4406 IPW_DEBUG_INFO("exit\n");
4407 }
4408
bd_queue_allocate(struct ipw2100_priv * priv,struct ipw2100_bd_queue * q,int entries)4409 static int bd_queue_allocate(struct ipw2100_priv *priv,
4410 struct ipw2100_bd_queue *q, int entries)
4411 {
4412 IPW_DEBUG_INFO("enter\n");
4413
4414 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4415
4416 q->entries = entries;
4417 q->size = entries * sizeof(struct ipw2100_bd);
4418 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4419 if (!q->drv) {
4420 IPW_DEBUG_INFO
4421 ("can't allocate shared memory for buffer descriptors\n");
4422 return -ENOMEM;
4423 }
4424 memset(q->drv, 0, q->size);
4425
4426 IPW_DEBUG_INFO("exit\n");
4427
4428 return 0;
4429 }
4430
bd_queue_free(struct ipw2100_priv * priv,struct ipw2100_bd_queue * q)4431 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4432 {
4433 IPW_DEBUG_INFO("enter\n");
4434
4435 if (!q)
4436 return;
4437
4438 if (q->drv) {
4439 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4440 q->drv = NULL;
4441 }
4442
4443 IPW_DEBUG_INFO("exit\n");
4444 }
4445
bd_queue_initialize(struct ipw2100_priv * priv,struct ipw2100_bd_queue * q,u32 base,u32 size,u32 r,u32 w)4446 static void bd_queue_initialize(struct ipw2100_priv *priv,
4447 struct ipw2100_bd_queue *q, u32 base, u32 size,
4448 u32 r, u32 w)
4449 {
4450 IPW_DEBUG_INFO("enter\n");
4451
4452 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4453 (u32) q->nic);
4454
4455 write_register(priv->net_dev, base, q->nic);
4456 write_register(priv->net_dev, size, q->entries);
4457 write_register(priv->net_dev, r, q->oldest);
4458 write_register(priv->net_dev, w, q->next);
4459
4460 IPW_DEBUG_INFO("exit\n");
4461 }
4462
ipw2100_kill_works(struct ipw2100_priv * priv)4463 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4464 {
4465 priv->stop_rf_kill = 1;
4466 priv->stop_hang_check = 1;
4467 cancel_delayed_work_sync(&priv->reset_work);
4468 cancel_delayed_work_sync(&priv->security_work);
4469 cancel_delayed_work_sync(&priv->wx_event_work);
4470 cancel_delayed_work_sync(&priv->hang_check);
4471 cancel_delayed_work_sync(&priv->rf_kill);
4472 cancel_work_sync(&priv->scan_event_now);
4473 cancel_delayed_work_sync(&priv->scan_event_later);
4474 }
4475
ipw2100_tx_allocate(struct ipw2100_priv * priv)4476 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4477 {
4478 int i, j, err = -EINVAL;
4479 void *v;
4480 dma_addr_t p;
4481
4482 IPW_DEBUG_INFO("enter\n");
4483
4484 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4485 if (err) {
4486 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4487 priv->net_dev->name);
4488 return err;
4489 }
4490
4491 priv->tx_buffers =
4492 kmalloc(TX_PENDED_QUEUE_LENGTH * sizeof(struct ipw2100_tx_packet),
4493 GFP_ATOMIC);
4494 if (!priv->tx_buffers) {
4495 printk(KERN_ERR DRV_NAME
4496 ": %s: alloc failed form tx buffers.\n",
4497 priv->net_dev->name);
4498 bd_queue_free(priv, &priv->tx_queue);
4499 return -ENOMEM;
4500 }
4501
4502 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4503 v = pci_alloc_consistent(priv->pci_dev,
4504 sizeof(struct ipw2100_data_header),
4505 &p);
4506 if (!v) {
4507 printk(KERN_ERR DRV_NAME
4508 ": %s: PCI alloc failed for tx " "buffers.\n",
4509 priv->net_dev->name);
4510 err = -ENOMEM;
4511 break;
4512 }
4513
4514 priv->tx_buffers[i].type = DATA;
4515 priv->tx_buffers[i].info.d_struct.data =
4516 (struct ipw2100_data_header *)v;
4517 priv->tx_buffers[i].info.d_struct.data_phys = p;
4518 priv->tx_buffers[i].info.d_struct.txb = NULL;
4519 }
4520
4521 if (i == TX_PENDED_QUEUE_LENGTH)
4522 return 0;
4523
4524 for (j = 0; j < i; j++) {
4525 pci_free_consistent(priv->pci_dev,
4526 sizeof(struct ipw2100_data_header),
4527 priv->tx_buffers[j].info.d_struct.data,
4528 priv->tx_buffers[j].info.d_struct.
4529 data_phys);
4530 }
4531
4532 kfree(priv->tx_buffers);
4533 priv->tx_buffers = NULL;
4534
4535 return err;
4536 }
4537
ipw2100_tx_initialize(struct ipw2100_priv * priv)4538 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4539 {
4540 int i;
4541
4542 IPW_DEBUG_INFO("enter\n");
4543
4544 /*
4545 * reinitialize packet info lists
4546 */
4547 INIT_LIST_HEAD(&priv->fw_pend_list);
4548 INIT_STAT(&priv->fw_pend_stat);
4549
4550 /*
4551 * reinitialize lists
4552 */
4553 INIT_LIST_HEAD(&priv->tx_pend_list);
4554 INIT_LIST_HEAD(&priv->tx_free_list);
4555 INIT_STAT(&priv->tx_pend_stat);
4556 INIT_STAT(&priv->tx_free_stat);
4557
4558 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4559 /* We simply drop any SKBs that have been queued for
4560 * transmit */
4561 if (priv->tx_buffers[i].info.d_struct.txb) {
4562 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4563 txb);
4564 priv->tx_buffers[i].info.d_struct.txb = NULL;
4565 }
4566
4567 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4568 }
4569
4570 SET_STAT(&priv->tx_free_stat, i);
4571
4572 priv->tx_queue.oldest = 0;
4573 priv->tx_queue.available = priv->tx_queue.entries;
4574 priv->tx_queue.next = 0;
4575 INIT_STAT(&priv->txq_stat);
4576 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4577
4578 bd_queue_initialize(priv, &priv->tx_queue,
4579 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4580 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4581 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4582 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4583
4584 IPW_DEBUG_INFO("exit\n");
4585
4586 }
4587
ipw2100_tx_free(struct ipw2100_priv * priv)4588 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4589 {
4590 int i;
4591
4592 IPW_DEBUG_INFO("enter\n");
4593
4594 bd_queue_free(priv, &priv->tx_queue);
4595
4596 if (!priv->tx_buffers)
4597 return;
4598
4599 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4600 if (priv->tx_buffers[i].info.d_struct.txb) {
4601 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4602 txb);
4603 priv->tx_buffers[i].info.d_struct.txb = NULL;
4604 }
4605 if (priv->tx_buffers[i].info.d_struct.data)
4606 pci_free_consistent(priv->pci_dev,
4607 sizeof(struct ipw2100_data_header),
4608 priv->tx_buffers[i].info.d_struct.
4609 data,
4610 priv->tx_buffers[i].info.d_struct.
4611 data_phys);
4612 }
4613
4614 kfree(priv->tx_buffers);
4615 priv->tx_buffers = NULL;
4616
4617 IPW_DEBUG_INFO("exit\n");
4618 }
4619
ipw2100_rx_allocate(struct ipw2100_priv * priv)4620 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4621 {
4622 int i, j, err = -EINVAL;
4623
4624 IPW_DEBUG_INFO("enter\n");
4625
4626 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4627 if (err) {
4628 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4629 return err;
4630 }
4631
4632 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4633 if (err) {
4634 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4635 bd_queue_free(priv, &priv->rx_queue);
4636 return err;
4637 }
4638
4639 /*
4640 * allocate packets
4641 */
4642 priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4643 sizeof(struct ipw2100_rx_packet),
4644 GFP_KERNEL);
4645 if (!priv->rx_buffers) {
4646 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4647
4648 bd_queue_free(priv, &priv->rx_queue);
4649
4650 status_queue_free(priv);
4651
4652 return -ENOMEM;
4653 }
4654
4655 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4656 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4657
4658 err = ipw2100_alloc_skb(priv, packet);
4659 if (unlikely(err)) {
4660 err = -ENOMEM;
4661 break;
4662 }
4663
4664 /* The BD holds the cache aligned address */
4665 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4666 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4667 priv->status_queue.drv[i].status_fields = 0;
4668 }
4669
4670 if (i == RX_QUEUE_LENGTH)
4671 return 0;
4672
4673 for (j = 0; j < i; j++) {
4674 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4675 sizeof(struct ipw2100_rx_packet),
4676 PCI_DMA_FROMDEVICE);
4677 dev_kfree_skb(priv->rx_buffers[j].skb);
4678 }
4679
4680 kfree(priv->rx_buffers);
4681 priv->rx_buffers = NULL;
4682
4683 bd_queue_free(priv, &priv->rx_queue);
4684
4685 status_queue_free(priv);
4686
4687 return err;
4688 }
4689
ipw2100_rx_initialize(struct ipw2100_priv * priv)4690 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4691 {
4692 IPW_DEBUG_INFO("enter\n");
4693
4694 priv->rx_queue.oldest = 0;
4695 priv->rx_queue.available = priv->rx_queue.entries - 1;
4696 priv->rx_queue.next = priv->rx_queue.entries - 1;
4697
4698 INIT_STAT(&priv->rxq_stat);
4699 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4700
4701 bd_queue_initialize(priv, &priv->rx_queue,
4702 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4703 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4704 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4705 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4706
4707 /* set up the status queue */
4708 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4709 priv->status_queue.nic);
4710
4711 IPW_DEBUG_INFO("exit\n");
4712 }
4713
ipw2100_rx_free(struct ipw2100_priv * priv)4714 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4715 {
4716 int i;
4717
4718 IPW_DEBUG_INFO("enter\n");
4719
4720 bd_queue_free(priv, &priv->rx_queue);
4721 status_queue_free(priv);
4722
4723 if (!priv->rx_buffers)
4724 return;
4725
4726 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4727 if (priv->rx_buffers[i].rxp) {
4728 pci_unmap_single(priv->pci_dev,
4729 priv->rx_buffers[i].dma_addr,
4730 sizeof(struct ipw2100_rx),
4731 PCI_DMA_FROMDEVICE);
4732 dev_kfree_skb(priv->rx_buffers[i].skb);
4733 }
4734 }
4735
4736 kfree(priv->rx_buffers);
4737 priv->rx_buffers = NULL;
4738
4739 IPW_DEBUG_INFO("exit\n");
4740 }
4741
ipw2100_read_mac_address(struct ipw2100_priv * priv)4742 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4743 {
4744 u32 length = ETH_ALEN;
4745 u8 addr[ETH_ALEN];
4746
4747 int err;
4748
4749 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4750 if (err) {
4751 IPW_DEBUG_INFO("MAC address read failed\n");
4752 return -EIO;
4753 }
4754
4755 memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4756 IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4757
4758 return 0;
4759 }
4760
4761 /********************************************************************
4762 *
4763 * Firmware Commands
4764 *
4765 ********************************************************************/
4766
ipw2100_set_mac_address(struct ipw2100_priv * priv,int batch_mode)4767 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4768 {
4769 struct host_command cmd = {
4770 .host_command = ADAPTER_ADDRESS,
4771 .host_command_sequence = 0,
4772 .host_command_length = ETH_ALEN
4773 };
4774 int err;
4775
4776 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4777
4778 IPW_DEBUG_INFO("enter\n");
4779
4780 if (priv->config & CFG_CUSTOM_MAC) {
4781 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4782 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4783 } else
4784 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4785 ETH_ALEN);
4786
4787 err = ipw2100_hw_send_command(priv, &cmd);
4788
4789 IPW_DEBUG_INFO("exit\n");
4790 return err;
4791 }
4792
ipw2100_set_port_type(struct ipw2100_priv * priv,u32 port_type,int batch_mode)4793 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4794 int batch_mode)
4795 {
4796 struct host_command cmd = {
4797 .host_command = PORT_TYPE,
4798 .host_command_sequence = 0,
4799 .host_command_length = sizeof(u32)
4800 };
4801 int err;
4802
4803 switch (port_type) {
4804 case IW_MODE_INFRA:
4805 cmd.host_command_parameters[0] = IPW_BSS;
4806 break;
4807 case IW_MODE_ADHOC:
4808 cmd.host_command_parameters[0] = IPW_IBSS;
4809 break;
4810 }
4811
4812 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4813 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4814
4815 if (!batch_mode) {
4816 err = ipw2100_disable_adapter(priv);
4817 if (err) {
4818 printk(KERN_ERR DRV_NAME
4819 ": %s: Could not disable adapter %d\n",
4820 priv->net_dev->name, err);
4821 return err;
4822 }
4823 }
4824
4825 /* send cmd to firmware */
4826 err = ipw2100_hw_send_command(priv, &cmd);
4827
4828 if (!batch_mode)
4829 ipw2100_enable_adapter(priv);
4830
4831 return err;
4832 }
4833
ipw2100_set_channel(struct ipw2100_priv * priv,u32 channel,int batch_mode)4834 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4835 int batch_mode)
4836 {
4837 struct host_command cmd = {
4838 .host_command = CHANNEL,
4839 .host_command_sequence = 0,
4840 .host_command_length = sizeof(u32)
4841 };
4842 int err;
4843
4844 cmd.host_command_parameters[0] = channel;
4845
4846 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4847
4848 /* If BSS then we don't support channel selection */
4849 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4850 return 0;
4851
4852 if ((channel != 0) &&
4853 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4854 return -EINVAL;
4855
4856 if (!batch_mode) {
4857 err = ipw2100_disable_adapter(priv);
4858 if (err)
4859 return err;
4860 }
4861
4862 err = ipw2100_hw_send_command(priv, &cmd);
4863 if (err) {
4864 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4865 return err;
4866 }
4867
4868 if (channel)
4869 priv->config |= CFG_STATIC_CHANNEL;
4870 else
4871 priv->config &= ~CFG_STATIC_CHANNEL;
4872
4873 priv->channel = channel;
4874
4875 if (!batch_mode) {
4876 err = ipw2100_enable_adapter(priv);
4877 if (err)
4878 return err;
4879 }
4880
4881 return 0;
4882 }
4883
ipw2100_system_config(struct ipw2100_priv * priv,int batch_mode)4884 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4885 {
4886 struct host_command cmd = {
4887 .host_command = SYSTEM_CONFIG,
4888 .host_command_sequence = 0,
4889 .host_command_length = 12,
4890 };
4891 u32 ibss_mask, len = sizeof(u32);
4892 int err;
4893
4894 /* Set system configuration */
4895
4896 if (!batch_mode) {
4897 err = ipw2100_disable_adapter(priv);
4898 if (err)
4899 return err;
4900 }
4901
4902 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4903 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4904
4905 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4906 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4907
4908 if (!(priv->config & CFG_LONG_PREAMBLE))
4909 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4910
4911 err = ipw2100_get_ordinal(priv,
4912 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4913 &ibss_mask, &len);
4914 if (err)
4915 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4916
4917 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4918 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4919
4920 /* 11b only */
4921 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4922
4923 err = ipw2100_hw_send_command(priv, &cmd);
4924 if (err)
4925 return err;
4926
4927 /* If IPv6 is configured in the kernel then we don't want to filter out all
4928 * of the multicast packets as IPv6 needs some. */
4929 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4930 cmd.host_command = ADD_MULTICAST;
4931 cmd.host_command_sequence = 0;
4932 cmd.host_command_length = 0;
4933
4934 ipw2100_hw_send_command(priv, &cmd);
4935 #endif
4936 if (!batch_mode) {
4937 err = ipw2100_enable_adapter(priv);
4938 if (err)
4939 return err;
4940 }
4941
4942 return 0;
4943 }
4944
ipw2100_set_tx_rates(struct ipw2100_priv * priv,u32 rate,int batch_mode)4945 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4946 int batch_mode)
4947 {
4948 struct host_command cmd = {
4949 .host_command = BASIC_TX_RATES,
4950 .host_command_sequence = 0,
4951 .host_command_length = 4
4952 };
4953 int err;
4954
4955 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4956
4957 if (!batch_mode) {
4958 err = ipw2100_disable_adapter(priv);
4959 if (err)
4960 return err;
4961 }
4962
4963 /* Set BASIC TX Rate first */
4964 ipw2100_hw_send_command(priv, &cmd);
4965
4966 /* Set TX Rate */
4967 cmd.host_command = TX_RATES;
4968 ipw2100_hw_send_command(priv, &cmd);
4969
4970 /* Set MSDU TX Rate */
4971 cmd.host_command = MSDU_TX_RATES;
4972 ipw2100_hw_send_command(priv, &cmd);
4973
4974 if (!batch_mode) {
4975 err = ipw2100_enable_adapter(priv);
4976 if (err)
4977 return err;
4978 }
4979
4980 priv->tx_rates = rate;
4981
4982 return 0;
4983 }
4984
ipw2100_set_power_mode(struct ipw2100_priv * priv,int power_level)4985 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4986 {
4987 struct host_command cmd = {
4988 .host_command = POWER_MODE,
4989 .host_command_sequence = 0,
4990 .host_command_length = 4
4991 };
4992 int err;
4993
4994 cmd.host_command_parameters[0] = power_level;
4995
4996 err = ipw2100_hw_send_command(priv, &cmd);
4997 if (err)
4998 return err;
4999
5000 if (power_level == IPW_POWER_MODE_CAM)
5001 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
5002 else
5003 priv->power_mode = IPW_POWER_ENABLED | power_level;
5004
5005 #ifdef IPW2100_TX_POWER
5006 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
5007 /* Set beacon interval */
5008 cmd.host_command = TX_POWER_INDEX;
5009 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
5010
5011 err = ipw2100_hw_send_command(priv, &cmd);
5012 if (err)
5013 return err;
5014 }
5015 #endif
5016
5017 return 0;
5018 }
5019
ipw2100_set_rts_threshold(struct ipw2100_priv * priv,u32 threshold)5020 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
5021 {
5022 struct host_command cmd = {
5023 .host_command = RTS_THRESHOLD,
5024 .host_command_sequence = 0,
5025 .host_command_length = 4
5026 };
5027 int err;
5028
5029 if (threshold & RTS_DISABLED)
5030 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
5031 else
5032 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
5033
5034 err = ipw2100_hw_send_command(priv, &cmd);
5035 if (err)
5036 return err;
5037
5038 priv->rts_threshold = threshold;
5039
5040 return 0;
5041 }
5042
5043 #if 0
5044 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
5045 u32 threshold, int batch_mode)
5046 {
5047 struct host_command cmd = {
5048 .host_command = FRAG_THRESHOLD,
5049 .host_command_sequence = 0,
5050 .host_command_length = 4,
5051 .host_command_parameters[0] = 0,
5052 };
5053 int err;
5054
5055 if (!batch_mode) {
5056 err = ipw2100_disable_adapter(priv);
5057 if (err)
5058 return err;
5059 }
5060
5061 if (threshold == 0)
5062 threshold = DEFAULT_FRAG_THRESHOLD;
5063 else {
5064 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5065 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5066 }
5067
5068 cmd.host_command_parameters[0] = threshold;
5069
5070 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5071
5072 err = ipw2100_hw_send_command(priv, &cmd);
5073
5074 if (!batch_mode)
5075 ipw2100_enable_adapter(priv);
5076
5077 if (!err)
5078 priv->frag_threshold = threshold;
5079
5080 return err;
5081 }
5082 #endif
5083
ipw2100_set_short_retry(struct ipw2100_priv * priv,u32 retry)5084 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5085 {
5086 struct host_command cmd = {
5087 .host_command = SHORT_RETRY_LIMIT,
5088 .host_command_sequence = 0,
5089 .host_command_length = 4
5090 };
5091 int err;
5092
5093 cmd.host_command_parameters[0] = retry;
5094
5095 err = ipw2100_hw_send_command(priv, &cmd);
5096 if (err)
5097 return err;
5098
5099 priv->short_retry_limit = retry;
5100
5101 return 0;
5102 }
5103
ipw2100_set_long_retry(struct ipw2100_priv * priv,u32 retry)5104 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5105 {
5106 struct host_command cmd = {
5107 .host_command = LONG_RETRY_LIMIT,
5108 .host_command_sequence = 0,
5109 .host_command_length = 4
5110 };
5111 int err;
5112
5113 cmd.host_command_parameters[0] = retry;
5114
5115 err = ipw2100_hw_send_command(priv, &cmd);
5116 if (err)
5117 return err;
5118
5119 priv->long_retry_limit = retry;
5120
5121 return 0;
5122 }
5123
ipw2100_set_mandatory_bssid(struct ipw2100_priv * priv,u8 * bssid,int batch_mode)5124 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5125 int batch_mode)
5126 {
5127 struct host_command cmd = {
5128 .host_command = MANDATORY_BSSID,
5129 .host_command_sequence = 0,
5130 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5131 };
5132 int err;
5133
5134 #ifdef CONFIG_IPW2100_DEBUG
5135 if (bssid != NULL)
5136 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5137 else
5138 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5139 #endif
5140 /* if BSSID is empty then we disable mandatory bssid mode */
5141 if (bssid != NULL)
5142 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5143
5144 if (!batch_mode) {
5145 err = ipw2100_disable_adapter(priv);
5146 if (err)
5147 return err;
5148 }
5149
5150 err = ipw2100_hw_send_command(priv, &cmd);
5151
5152 if (!batch_mode)
5153 ipw2100_enable_adapter(priv);
5154
5155 return err;
5156 }
5157
ipw2100_disassociate_bssid(struct ipw2100_priv * priv)5158 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5159 {
5160 struct host_command cmd = {
5161 .host_command = DISASSOCIATION_BSSID,
5162 .host_command_sequence = 0,
5163 .host_command_length = ETH_ALEN
5164 };
5165 int err;
5166 int len;
5167
5168 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5169
5170 len = ETH_ALEN;
5171 /* The Firmware currently ignores the BSSID and just disassociates from
5172 * the currently associated AP -- but in the off chance that a future
5173 * firmware does use the BSSID provided here, we go ahead and try and
5174 * set it to the currently associated AP's BSSID */
5175 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5176
5177 err = ipw2100_hw_send_command(priv, &cmd);
5178
5179 return err;
5180 }
5181
5182 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5183 struct ipw2100_wpa_assoc_frame *, int)
5184 __attribute__ ((unused));
5185
ipw2100_set_wpa_ie(struct ipw2100_priv * priv,struct ipw2100_wpa_assoc_frame * wpa_frame,int batch_mode)5186 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5187 struct ipw2100_wpa_assoc_frame *wpa_frame,
5188 int batch_mode)
5189 {
5190 struct host_command cmd = {
5191 .host_command = SET_WPA_IE,
5192 .host_command_sequence = 0,
5193 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5194 };
5195 int err;
5196
5197 IPW_DEBUG_HC("SET_WPA_IE\n");
5198
5199 if (!batch_mode) {
5200 err = ipw2100_disable_adapter(priv);
5201 if (err)
5202 return err;
5203 }
5204
5205 memcpy(cmd.host_command_parameters, wpa_frame,
5206 sizeof(struct ipw2100_wpa_assoc_frame));
5207
5208 err = ipw2100_hw_send_command(priv, &cmd);
5209
5210 if (!batch_mode) {
5211 if (ipw2100_enable_adapter(priv))
5212 err = -EIO;
5213 }
5214
5215 return err;
5216 }
5217
5218 struct security_info_params {
5219 u32 allowed_ciphers;
5220 u16 version;
5221 u8 auth_mode;
5222 u8 replay_counters_number;
5223 u8 unicast_using_group;
5224 } __packed;
5225
ipw2100_set_security_information(struct ipw2100_priv * priv,int auth_mode,int security_level,int unicast_using_group,int batch_mode)5226 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5227 int auth_mode,
5228 int security_level,
5229 int unicast_using_group,
5230 int batch_mode)
5231 {
5232 struct host_command cmd = {
5233 .host_command = SET_SECURITY_INFORMATION,
5234 .host_command_sequence = 0,
5235 .host_command_length = sizeof(struct security_info_params)
5236 };
5237 struct security_info_params *security =
5238 (struct security_info_params *)&cmd.host_command_parameters;
5239 int err;
5240 memset(security, 0, sizeof(*security));
5241
5242 /* If shared key AP authentication is turned on, then we need to
5243 * configure the firmware to try and use it.
5244 *
5245 * Actual data encryption/decryption is handled by the host. */
5246 security->auth_mode = auth_mode;
5247 security->unicast_using_group = unicast_using_group;
5248
5249 switch (security_level) {
5250 default:
5251 case SEC_LEVEL_0:
5252 security->allowed_ciphers = IPW_NONE_CIPHER;
5253 break;
5254 case SEC_LEVEL_1:
5255 security->allowed_ciphers = IPW_WEP40_CIPHER |
5256 IPW_WEP104_CIPHER;
5257 break;
5258 case SEC_LEVEL_2:
5259 security->allowed_ciphers = IPW_WEP40_CIPHER |
5260 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5261 break;
5262 case SEC_LEVEL_2_CKIP:
5263 security->allowed_ciphers = IPW_WEP40_CIPHER |
5264 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5265 break;
5266 case SEC_LEVEL_3:
5267 security->allowed_ciphers = IPW_WEP40_CIPHER |
5268 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5269 break;
5270 }
5271
5272 IPW_DEBUG_HC
5273 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5274 security->auth_mode, security->allowed_ciphers, security_level);
5275
5276 security->replay_counters_number = 0;
5277
5278 if (!batch_mode) {
5279 err = ipw2100_disable_adapter(priv);
5280 if (err)
5281 return err;
5282 }
5283
5284 err = ipw2100_hw_send_command(priv, &cmd);
5285
5286 if (!batch_mode)
5287 ipw2100_enable_adapter(priv);
5288
5289 return err;
5290 }
5291
ipw2100_set_tx_power(struct ipw2100_priv * priv,u32 tx_power)5292 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5293 {
5294 struct host_command cmd = {
5295 .host_command = TX_POWER_INDEX,
5296 .host_command_sequence = 0,
5297 .host_command_length = 4
5298 };
5299 int err = 0;
5300 u32 tmp = tx_power;
5301
5302 if (tx_power != IPW_TX_POWER_DEFAULT)
5303 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5304 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5305
5306 cmd.host_command_parameters[0] = tmp;
5307
5308 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5309 err = ipw2100_hw_send_command(priv, &cmd);
5310 if (!err)
5311 priv->tx_power = tx_power;
5312
5313 return 0;
5314 }
5315
ipw2100_set_ibss_beacon_interval(struct ipw2100_priv * priv,u32 interval,int batch_mode)5316 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5317 u32 interval, int batch_mode)
5318 {
5319 struct host_command cmd = {
5320 .host_command = BEACON_INTERVAL,
5321 .host_command_sequence = 0,
5322 .host_command_length = 4
5323 };
5324 int err;
5325
5326 cmd.host_command_parameters[0] = interval;
5327
5328 IPW_DEBUG_INFO("enter\n");
5329
5330 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5331 if (!batch_mode) {
5332 err = ipw2100_disable_adapter(priv);
5333 if (err)
5334 return err;
5335 }
5336
5337 ipw2100_hw_send_command(priv, &cmd);
5338
5339 if (!batch_mode) {
5340 err = ipw2100_enable_adapter(priv);
5341 if (err)
5342 return err;
5343 }
5344 }
5345
5346 IPW_DEBUG_INFO("exit\n");
5347
5348 return 0;
5349 }
5350
ipw2100_queues_initialize(struct ipw2100_priv * priv)5351 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5352 {
5353 ipw2100_tx_initialize(priv);
5354 ipw2100_rx_initialize(priv);
5355 ipw2100_msg_initialize(priv);
5356 }
5357
ipw2100_queues_free(struct ipw2100_priv * priv)5358 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5359 {
5360 ipw2100_tx_free(priv);
5361 ipw2100_rx_free(priv);
5362 ipw2100_msg_free(priv);
5363 }
5364
ipw2100_queues_allocate(struct ipw2100_priv * priv)5365 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5366 {
5367 if (ipw2100_tx_allocate(priv) ||
5368 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5369 goto fail;
5370
5371 return 0;
5372
5373 fail:
5374 ipw2100_tx_free(priv);
5375 ipw2100_rx_free(priv);
5376 ipw2100_msg_free(priv);
5377 return -ENOMEM;
5378 }
5379
5380 #define IPW_PRIVACY_CAPABLE 0x0008
5381
ipw2100_set_wep_flags(struct ipw2100_priv * priv,u32 flags,int batch_mode)5382 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5383 int batch_mode)
5384 {
5385 struct host_command cmd = {
5386 .host_command = WEP_FLAGS,
5387 .host_command_sequence = 0,
5388 .host_command_length = 4
5389 };
5390 int err;
5391
5392 cmd.host_command_parameters[0] = flags;
5393
5394 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5395
5396 if (!batch_mode) {
5397 err = ipw2100_disable_adapter(priv);
5398 if (err) {
5399 printk(KERN_ERR DRV_NAME
5400 ": %s: Could not disable adapter %d\n",
5401 priv->net_dev->name, err);
5402 return err;
5403 }
5404 }
5405
5406 /* send cmd to firmware */
5407 err = ipw2100_hw_send_command(priv, &cmd);
5408
5409 if (!batch_mode)
5410 ipw2100_enable_adapter(priv);
5411
5412 return err;
5413 }
5414
5415 struct ipw2100_wep_key {
5416 u8 idx;
5417 u8 len;
5418 u8 key[13];
5419 };
5420
5421 /* Macros to ease up priting WEP keys */
5422 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5423 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5424 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5425 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5426
5427 /**
5428 * Set a the wep key
5429 *
5430 * @priv: struct to work on
5431 * @idx: index of the key we want to set
5432 * @key: ptr to the key data to set
5433 * @len: length of the buffer at @key
5434 * @batch_mode: FIXME perform the operation in batch mode, not
5435 * disabling the device.
5436 *
5437 * @returns 0 if OK, < 0 errno code on error.
5438 *
5439 * Fill out a command structure with the new wep key, length an
5440 * index and send it down the wire.
5441 */
ipw2100_set_key(struct ipw2100_priv * priv,int idx,char * key,int len,int batch_mode)5442 static int ipw2100_set_key(struct ipw2100_priv *priv,
5443 int idx, char *key, int len, int batch_mode)
5444 {
5445 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5446 struct host_command cmd = {
5447 .host_command = WEP_KEY_INFO,
5448 .host_command_sequence = 0,
5449 .host_command_length = sizeof(struct ipw2100_wep_key),
5450 };
5451 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5452 int err;
5453
5454 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5455 idx, keylen, len);
5456
5457 /* NOTE: We don't check cached values in case the firmware was reset
5458 * or some other problem is occurring. If the user is setting the key,
5459 * then we push the change */
5460
5461 wep_key->idx = idx;
5462 wep_key->len = keylen;
5463
5464 if (keylen) {
5465 memcpy(wep_key->key, key, len);
5466 memset(wep_key->key + len, 0, keylen - len);
5467 }
5468
5469 /* Will be optimized out on debug not being configured in */
5470 if (keylen == 0)
5471 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5472 priv->net_dev->name, wep_key->idx);
5473 else if (keylen == 5)
5474 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5475 priv->net_dev->name, wep_key->idx, wep_key->len,
5476 WEP_STR_64(wep_key->key));
5477 else
5478 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5479 "\n",
5480 priv->net_dev->name, wep_key->idx, wep_key->len,
5481 WEP_STR_128(wep_key->key));
5482
5483 if (!batch_mode) {
5484 err = ipw2100_disable_adapter(priv);
5485 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5486 if (err) {
5487 printk(KERN_ERR DRV_NAME
5488 ": %s: Could not disable adapter %d\n",
5489 priv->net_dev->name, err);
5490 return err;
5491 }
5492 }
5493
5494 /* send cmd to firmware */
5495 err = ipw2100_hw_send_command(priv, &cmd);
5496
5497 if (!batch_mode) {
5498 int err2 = ipw2100_enable_adapter(priv);
5499 if (err == 0)
5500 err = err2;
5501 }
5502 return err;
5503 }
5504
ipw2100_set_key_index(struct ipw2100_priv * priv,int idx,int batch_mode)5505 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5506 int idx, int batch_mode)
5507 {
5508 struct host_command cmd = {
5509 .host_command = WEP_KEY_INDEX,
5510 .host_command_sequence = 0,
5511 .host_command_length = 4,
5512 .host_command_parameters = {idx},
5513 };
5514 int err;
5515
5516 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5517
5518 if (idx < 0 || idx > 3)
5519 return -EINVAL;
5520
5521 if (!batch_mode) {
5522 err = ipw2100_disable_adapter(priv);
5523 if (err) {
5524 printk(KERN_ERR DRV_NAME
5525 ": %s: Could not disable adapter %d\n",
5526 priv->net_dev->name, err);
5527 return err;
5528 }
5529 }
5530
5531 /* send cmd to firmware */
5532 err = ipw2100_hw_send_command(priv, &cmd);
5533
5534 if (!batch_mode)
5535 ipw2100_enable_adapter(priv);
5536
5537 return err;
5538 }
5539
ipw2100_configure_security(struct ipw2100_priv * priv,int batch_mode)5540 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5541 {
5542 int i, err, auth_mode, sec_level, use_group;
5543
5544 if (!(priv->status & STATUS_RUNNING))
5545 return 0;
5546
5547 if (!batch_mode) {
5548 err = ipw2100_disable_adapter(priv);
5549 if (err)
5550 return err;
5551 }
5552
5553 if (!priv->ieee->sec.enabled) {
5554 err =
5555 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5556 SEC_LEVEL_0, 0, 1);
5557 } else {
5558 auth_mode = IPW_AUTH_OPEN;
5559 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5560 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5561 auth_mode = IPW_AUTH_SHARED;
5562 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5563 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5564 }
5565
5566 sec_level = SEC_LEVEL_0;
5567 if (priv->ieee->sec.flags & SEC_LEVEL)
5568 sec_level = priv->ieee->sec.level;
5569
5570 use_group = 0;
5571 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5572 use_group = priv->ieee->sec.unicast_uses_group;
5573
5574 err =
5575 ipw2100_set_security_information(priv, auth_mode, sec_level,
5576 use_group, 1);
5577 }
5578
5579 if (err)
5580 goto exit;
5581
5582 if (priv->ieee->sec.enabled) {
5583 for (i = 0; i < 4; i++) {
5584 if (!(priv->ieee->sec.flags & (1 << i))) {
5585 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5586 priv->ieee->sec.key_sizes[i] = 0;
5587 } else {
5588 err = ipw2100_set_key(priv, i,
5589 priv->ieee->sec.keys[i],
5590 priv->ieee->sec.
5591 key_sizes[i], 1);
5592 if (err)
5593 goto exit;
5594 }
5595 }
5596
5597 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5598 }
5599
5600 /* Always enable privacy so the Host can filter WEP packets if
5601 * encrypted data is sent up */
5602 err =
5603 ipw2100_set_wep_flags(priv,
5604 priv->ieee->sec.
5605 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5606 if (err)
5607 goto exit;
5608
5609 priv->status &= ~STATUS_SECURITY_UPDATED;
5610
5611 exit:
5612 if (!batch_mode)
5613 ipw2100_enable_adapter(priv);
5614
5615 return err;
5616 }
5617
ipw2100_security_work(struct work_struct * work)5618 static void ipw2100_security_work(struct work_struct *work)
5619 {
5620 struct ipw2100_priv *priv =
5621 container_of(work, struct ipw2100_priv, security_work.work);
5622
5623 /* If we happen to have reconnected before we get a chance to
5624 * process this, then update the security settings--which causes
5625 * a disassociation to occur */
5626 if (!(priv->status & STATUS_ASSOCIATED) &&
5627 priv->status & STATUS_SECURITY_UPDATED)
5628 ipw2100_configure_security(priv, 0);
5629 }
5630
shim__set_security(struct net_device * dev,struct libipw_security * sec)5631 static void shim__set_security(struct net_device *dev,
5632 struct libipw_security *sec)
5633 {
5634 struct ipw2100_priv *priv = libipw_priv(dev);
5635 int i, force_update = 0;
5636
5637 mutex_lock(&priv->action_mutex);
5638 if (!(priv->status & STATUS_INITIALIZED))
5639 goto done;
5640
5641 for (i = 0; i < 4; i++) {
5642 if (sec->flags & (1 << i)) {
5643 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5644 if (sec->key_sizes[i] == 0)
5645 priv->ieee->sec.flags &= ~(1 << i);
5646 else
5647 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5648 sec->key_sizes[i]);
5649 if (sec->level == SEC_LEVEL_1) {
5650 priv->ieee->sec.flags |= (1 << i);
5651 priv->status |= STATUS_SECURITY_UPDATED;
5652 } else
5653 priv->ieee->sec.flags &= ~(1 << i);
5654 }
5655 }
5656
5657 if ((sec->flags & SEC_ACTIVE_KEY) &&
5658 priv->ieee->sec.active_key != sec->active_key) {
5659 if (sec->active_key <= 3) {
5660 priv->ieee->sec.active_key = sec->active_key;
5661 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5662 } else
5663 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5664
5665 priv->status |= STATUS_SECURITY_UPDATED;
5666 }
5667
5668 if ((sec->flags & SEC_AUTH_MODE) &&
5669 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5670 priv->ieee->sec.auth_mode = sec->auth_mode;
5671 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5672 priv->status |= STATUS_SECURITY_UPDATED;
5673 }
5674
5675 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5676 priv->ieee->sec.flags |= SEC_ENABLED;
5677 priv->ieee->sec.enabled = sec->enabled;
5678 priv->status |= STATUS_SECURITY_UPDATED;
5679 force_update = 1;
5680 }
5681
5682 if (sec->flags & SEC_ENCRYPT)
5683 priv->ieee->sec.encrypt = sec->encrypt;
5684
5685 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5686 priv->ieee->sec.level = sec->level;
5687 priv->ieee->sec.flags |= SEC_LEVEL;
5688 priv->status |= STATUS_SECURITY_UPDATED;
5689 }
5690
5691 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5692 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5693 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5694 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5695 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5696 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5697 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5698 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5699 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5700 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5701
5702 /* As a temporary work around to enable WPA until we figure out why
5703 * wpa_supplicant toggles the security capability of the driver, which
5704 * forces a disassocation with force_update...
5705 *
5706 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5707 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5708 ipw2100_configure_security(priv, 0);
5709 done:
5710 mutex_unlock(&priv->action_mutex);
5711 }
5712
ipw2100_adapter_setup(struct ipw2100_priv * priv)5713 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5714 {
5715 int err;
5716 int batch_mode = 1;
5717 u8 *bssid;
5718
5719 IPW_DEBUG_INFO("enter\n");
5720
5721 err = ipw2100_disable_adapter(priv);
5722 if (err)
5723 return err;
5724 #ifdef CONFIG_IPW2100_MONITOR
5725 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5726 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5727 if (err)
5728 return err;
5729
5730 IPW_DEBUG_INFO("exit\n");
5731
5732 return 0;
5733 }
5734 #endif /* CONFIG_IPW2100_MONITOR */
5735
5736 err = ipw2100_read_mac_address(priv);
5737 if (err)
5738 return -EIO;
5739
5740 err = ipw2100_set_mac_address(priv, batch_mode);
5741 if (err)
5742 return err;
5743
5744 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5745 if (err)
5746 return err;
5747
5748 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5749 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5750 if (err)
5751 return err;
5752 }
5753
5754 err = ipw2100_system_config(priv, batch_mode);
5755 if (err)
5756 return err;
5757
5758 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5759 if (err)
5760 return err;
5761
5762 /* Default to power mode OFF */
5763 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5764 if (err)
5765 return err;
5766
5767 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5768 if (err)
5769 return err;
5770
5771 if (priv->config & CFG_STATIC_BSSID)
5772 bssid = priv->bssid;
5773 else
5774 bssid = NULL;
5775 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5776 if (err)
5777 return err;
5778
5779 if (priv->config & CFG_STATIC_ESSID)
5780 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5781 batch_mode);
5782 else
5783 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5784 if (err)
5785 return err;
5786
5787 err = ipw2100_configure_security(priv, batch_mode);
5788 if (err)
5789 return err;
5790
5791 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5792 err =
5793 ipw2100_set_ibss_beacon_interval(priv,
5794 priv->beacon_interval,
5795 batch_mode);
5796 if (err)
5797 return err;
5798
5799 err = ipw2100_set_tx_power(priv, priv->tx_power);
5800 if (err)
5801 return err;
5802 }
5803
5804 /*
5805 err = ipw2100_set_fragmentation_threshold(
5806 priv, priv->frag_threshold, batch_mode);
5807 if (err)
5808 return err;
5809 */
5810
5811 IPW_DEBUG_INFO("exit\n");
5812
5813 return 0;
5814 }
5815
5816 /*************************************************************************
5817 *
5818 * EXTERNALLY CALLED METHODS
5819 *
5820 *************************************************************************/
5821
5822 /* This method is called by the network layer -- not to be confused with
5823 * ipw2100_set_mac_address() declared above called by this driver (and this
5824 * method as well) to talk to the firmware */
ipw2100_set_address(struct net_device * dev,void * p)5825 static int ipw2100_set_address(struct net_device *dev, void *p)
5826 {
5827 struct ipw2100_priv *priv = libipw_priv(dev);
5828 struct sockaddr *addr = p;
5829 int err = 0;
5830
5831 if (!is_valid_ether_addr(addr->sa_data))
5832 return -EADDRNOTAVAIL;
5833
5834 mutex_lock(&priv->action_mutex);
5835
5836 priv->config |= CFG_CUSTOM_MAC;
5837 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5838
5839 err = ipw2100_set_mac_address(priv, 0);
5840 if (err)
5841 goto done;
5842
5843 priv->reset_backoff = 0;
5844 mutex_unlock(&priv->action_mutex);
5845 ipw2100_reset_adapter(&priv->reset_work.work);
5846 return 0;
5847
5848 done:
5849 mutex_unlock(&priv->action_mutex);
5850 return err;
5851 }
5852
ipw2100_open(struct net_device * dev)5853 static int ipw2100_open(struct net_device *dev)
5854 {
5855 struct ipw2100_priv *priv = libipw_priv(dev);
5856 unsigned long flags;
5857 IPW_DEBUG_INFO("dev->open\n");
5858
5859 spin_lock_irqsave(&priv->low_lock, flags);
5860 if (priv->status & STATUS_ASSOCIATED) {
5861 netif_carrier_on(dev);
5862 netif_start_queue(dev);
5863 }
5864 spin_unlock_irqrestore(&priv->low_lock, flags);
5865
5866 return 0;
5867 }
5868
ipw2100_close(struct net_device * dev)5869 static int ipw2100_close(struct net_device *dev)
5870 {
5871 struct ipw2100_priv *priv = libipw_priv(dev);
5872 unsigned long flags;
5873 struct list_head *element;
5874 struct ipw2100_tx_packet *packet;
5875
5876 IPW_DEBUG_INFO("enter\n");
5877
5878 spin_lock_irqsave(&priv->low_lock, flags);
5879
5880 if (priv->status & STATUS_ASSOCIATED)
5881 netif_carrier_off(dev);
5882 netif_stop_queue(dev);
5883
5884 /* Flush the TX queue ... */
5885 while (!list_empty(&priv->tx_pend_list)) {
5886 element = priv->tx_pend_list.next;
5887 packet = list_entry(element, struct ipw2100_tx_packet, list);
5888
5889 list_del(element);
5890 DEC_STAT(&priv->tx_pend_stat);
5891
5892 libipw_txb_free(packet->info.d_struct.txb);
5893 packet->info.d_struct.txb = NULL;
5894
5895 list_add_tail(element, &priv->tx_free_list);
5896 INC_STAT(&priv->tx_free_stat);
5897 }
5898 spin_unlock_irqrestore(&priv->low_lock, flags);
5899
5900 IPW_DEBUG_INFO("exit\n");
5901
5902 return 0;
5903 }
5904
5905 /*
5906 * TODO: Fix this function... its just wrong
5907 */
ipw2100_tx_timeout(struct net_device * dev)5908 static void ipw2100_tx_timeout(struct net_device *dev)
5909 {
5910 struct ipw2100_priv *priv = libipw_priv(dev);
5911
5912 dev->stats.tx_errors++;
5913
5914 #ifdef CONFIG_IPW2100_MONITOR
5915 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5916 return;
5917 #endif
5918
5919 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5920 dev->name);
5921 schedule_reset(priv);
5922 }
5923
ipw2100_wpa_enable(struct ipw2100_priv * priv,int value)5924 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5925 {
5926 /* This is called when wpa_supplicant loads and closes the driver
5927 * interface. */
5928 priv->ieee->wpa_enabled = value;
5929 return 0;
5930 }
5931
ipw2100_wpa_set_auth_algs(struct ipw2100_priv * priv,int value)5932 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5933 {
5934
5935 struct libipw_device *ieee = priv->ieee;
5936 struct libipw_security sec = {
5937 .flags = SEC_AUTH_MODE,
5938 };
5939 int ret = 0;
5940
5941 if (value & IW_AUTH_ALG_SHARED_KEY) {
5942 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5943 ieee->open_wep = 0;
5944 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5945 sec.auth_mode = WLAN_AUTH_OPEN;
5946 ieee->open_wep = 1;
5947 } else if (value & IW_AUTH_ALG_LEAP) {
5948 sec.auth_mode = WLAN_AUTH_LEAP;
5949 ieee->open_wep = 1;
5950 } else
5951 return -EINVAL;
5952
5953 if (ieee->set_security)
5954 ieee->set_security(ieee->dev, &sec);
5955 else
5956 ret = -EOPNOTSUPP;
5957
5958 return ret;
5959 }
5960
ipw2100_wpa_assoc_frame(struct ipw2100_priv * priv,char * wpa_ie,int wpa_ie_len)5961 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5962 char *wpa_ie, int wpa_ie_len)
5963 {
5964
5965 struct ipw2100_wpa_assoc_frame frame;
5966
5967 frame.fixed_ie_mask = 0;
5968
5969 /* copy WPA IE */
5970 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5971 frame.var_ie_len = wpa_ie_len;
5972
5973 /* make sure WPA is enabled */
5974 ipw2100_wpa_enable(priv, 1);
5975 ipw2100_set_wpa_ie(priv, &frame, 0);
5976 }
5977
ipw_ethtool_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)5978 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5979 struct ethtool_drvinfo *info)
5980 {
5981 struct ipw2100_priv *priv = libipw_priv(dev);
5982 char fw_ver[64], ucode_ver[64];
5983
5984 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5985 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5986
5987 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5988 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5989
5990 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5991 fw_ver, priv->eeprom_version, ucode_ver);
5992
5993 strlcpy(info->bus_info, pci_name(priv->pci_dev),
5994 sizeof(info->bus_info));
5995 }
5996
ipw2100_ethtool_get_link(struct net_device * dev)5997 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5998 {
5999 struct ipw2100_priv *priv = libipw_priv(dev);
6000 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
6001 }
6002
6003 static const struct ethtool_ops ipw2100_ethtool_ops = {
6004 .get_link = ipw2100_ethtool_get_link,
6005 .get_drvinfo = ipw_ethtool_get_drvinfo,
6006 };
6007
ipw2100_hang_check(struct work_struct * work)6008 static void ipw2100_hang_check(struct work_struct *work)
6009 {
6010 struct ipw2100_priv *priv =
6011 container_of(work, struct ipw2100_priv, hang_check.work);
6012 unsigned long flags;
6013 u32 rtc = 0xa5a5a5a5;
6014 u32 len = sizeof(rtc);
6015 int restart = 0;
6016
6017 spin_lock_irqsave(&priv->low_lock, flags);
6018
6019 if (priv->fatal_error != 0) {
6020 /* If fatal_error is set then we need to restart */
6021 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
6022 priv->net_dev->name);
6023
6024 restart = 1;
6025 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
6026 (rtc == priv->last_rtc)) {
6027 /* Check if firmware is hung */
6028 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
6029 priv->net_dev->name);
6030
6031 restart = 1;
6032 }
6033
6034 if (restart) {
6035 /* Kill timer */
6036 priv->stop_hang_check = 1;
6037 priv->hangs++;
6038
6039 /* Restart the NIC */
6040 schedule_reset(priv);
6041 }
6042
6043 priv->last_rtc = rtc;
6044
6045 if (!priv->stop_hang_check)
6046 schedule_delayed_work(&priv->hang_check, HZ / 2);
6047
6048 spin_unlock_irqrestore(&priv->low_lock, flags);
6049 }
6050
ipw2100_rf_kill(struct work_struct * work)6051 static void ipw2100_rf_kill(struct work_struct *work)
6052 {
6053 struct ipw2100_priv *priv =
6054 container_of(work, struct ipw2100_priv, rf_kill.work);
6055 unsigned long flags;
6056
6057 spin_lock_irqsave(&priv->low_lock, flags);
6058
6059 if (rf_kill_active(priv)) {
6060 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6061 if (!priv->stop_rf_kill)
6062 schedule_delayed_work(&priv->rf_kill,
6063 round_jiffies_relative(HZ));
6064 goto exit_unlock;
6065 }
6066
6067 /* RF Kill is now disabled, so bring the device back up */
6068
6069 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6070 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6071 "device\n");
6072 schedule_reset(priv);
6073 } else
6074 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
6075 "enabled\n");
6076
6077 exit_unlock:
6078 spin_unlock_irqrestore(&priv->low_lock, flags);
6079 }
6080
6081 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6082
6083 static const struct net_device_ops ipw2100_netdev_ops = {
6084 .ndo_open = ipw2100_open,
6085 .ndo_stop = ipw2100_close,
6086 .ndo_start_xmit = libipw_xmit,
6087 .ndo_change_mtu = libipw_change_mtu,
6088 .ndo_init = ipw2100_net_init,
6089 .ndo_tx_timeout = ipw2100_tx_timeout,
6090 .ndo_set_mac_address = ipw2100_set_address,
6091 .ndo_validate_addr = eth_validate_addr,
6092 };
6093
6094 /* Look into using netdev destructor to shutdown libipw? */
6095
ipw2100_alloc_device(struct pci_dev * pci_dev,void __iomem * base_addr,unsigned long mem_start,unsigned long mem_len)6096 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6097 void __iomem * base_addr,
6098 unsigned long mem_start,
6099 unsigned long mem_len)
6100 {
6101 struct ipw2100_priv *priv;
6102 struct net_device *dev;
6103
6104 dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6105 if (!dev)
6106 return NULL;
6107 priv = libipw_priv(dev);
6108 priv->ieee = netdev_priv(dev);
6109 priv->pci_dev = pci_dev;
6110 priv->net_dev = dev;
6111
6112 priv->ieee->hard_start_xmit = ipw2100_tx;
6113 priv->ieee->set_security = shim__set_security;
6114
6115 priv->ieee->perfect_rssi = -20;
6116 priv->ieee->worst_rssi = -85;
6117
6118 dev->netdev_ops = &ipw2100_netdev_ops;
6119 dev->ethtool_ops = &ipw2100_ethtool_ops;
6120 dev->wireless_handlers = &ipw2100_wx_handler_def;
6121 priv->wireless_data.libipw = priv->ieee;
6122 dev->wireless_data = &priv->wireless_data;
6123 dev->watchdog_timeo = 3 * HZ;
6124 dev->irq = 0;
6125
6126 dev->base_addr = (unsigned long)base_addr;
6127 dev->mem_start = mem_start;
6128 dev->mem_end = dev->mem_start + mem_len - 1;
6129
6130 /* NOTE: We don't use the wireless_handlers hook
6131 * in dev as the system will start throwing WX requests
6132 * to us before we're actually initialized and it just
6133 * ends up causing problems. So, we just handle
6134 * the WX extensions through the ipw2100_ioctl interface */
6135
6136 /* memset() puts everything to 0, so we only have explicitly set
6137 * those values that need to be something else */
6138
6139 /* If power management is turned on, default to AUTO mode */
6140 priv->power_mode = IPW_POWER_AUTO;
6141
6142 #ifdef CONFIG_IPW2100_MONITOR
6143 priv->config |= CFG_CRC_CHECK;
6144 #endif
6145 priv->ieee->wpa_enabled = 0;
6146 priv->ieee->drop_unencrypted = 0;
6147 priv->ieee->privacy_invoked = 0;
6148 priv->ieee->ieee802_1x = 1;
6149
6150 /* Set module parameters */
6151 switch (network_mode) {
6152 case 1:
6153 priv->ieee->iw_mode = IW_MODE_ADHOC;
6154 break;
6155 #ifdef CONFIG_IPW2100_MONITOR
6156 case 2:
6157 priv->ieee->iw_mode = IW_MODE_MONITOR;
6158 break;
6159 #endif
6160 default:
6161 case 0:
6162 priv->ieee->iw_mode = IW_MODE_INFRA;
6163 break;
6164 }
6165
6166 if (disable == 1)
6167 priv->status |= STATUS_RF_KILL_SW;
6168
6169 if (channel != 0 &&
6170 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6171 priv->config |= CFG_STATIC_CHANNEL;
6172 priv->channel = channel;
6173 }
6174
6175 if (associate)
6176 priv->config |= CFG_ASSOCIATE;
6177
6178 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6179 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6180 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6181 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6182 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6183 priv->tx_power = IPW_TX_POWER_DEFAULT;
6184 priv->tx_rates = DEFAULT_TX_RATES;
6185
6186 strcpy(priv->nick, "ipw2100");
6187
6188 spin_lock_init(&priv->low_lock);
6189 mutex_init(&priv->action_mutex);
6190 mutex_init(&priv->adapter_mutex);
6191
6192 init_waitqueue_head(&priv->wait_command_queue);
6193
6194 netif_carrier_off(dev);
6195
6196 INIT_LIST_HEAD(&priv->msg_free_list);
6197 INIT_LIST_HEAD(&priv->msg_pend_list);
6198 INIT_STAT(&priv->msg_free_stat);
6199 INIT_STAT(&priv->msg_pend_stat);
6200
6201 INIT_LIST_HEAD(&priv->tx_free_list);
6202 INIT_LIST_HEAD(&priv->tx_pend_list);
6203 INIT_STAT(&priv->tx_free_stat);
6204 INIT_STAT(&priv->tx_pend_stat);
6205
6206 INIT_LIST_HEAD(&priv->fw_pend_list);
6207 INIT_STAT(&priv->fw_pend_stat);
6208
6209 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6210 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6211 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6212 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6213 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6214 INIT_WORK(&priv->scan_event_now, ipw2100_scan_event_now);
6215 INIT_DELAYED_WORK(&priv->scan_event_later, ipw2100_scan_event_later);
6216
6217 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6218 ipw2100_irq_tasklet, (unsigned long)priv);
6219
6220 /* NOTE: We do not start the deferred work for status checks yet */
6221 priv->stop_rf_kill = 1;
6222 priv->stop_hang_check = 1;
6223
6224 return dev;
6225 }
6226
ipw2100_pci_init_one(struct pci_dev * pci_dev,const struct pci_device_id * ent)6227 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6228 const struct pci_device_id *ent)
6229 {
6230 unsigned long mem_start, mem_len, mem_flags;
6231 void __iomem *base_addr = NULL;
6232 struct net_device *dev = NULL;
6233 struct ipw2100_priv *priv = NULL;
6234 int err = 0;
6235 int registered = 0;
6236 u32 val;
6237
6238 IPW_DEBUG_INFO("enter\n");
6239
6240 mem_start = pci_resource_start(pci_dev, 0);
6241 mem_len = pci_resource_len(pci_dev, 0);
6242 mem_flags = pci_resource_flags(pci_dev, 0);
6243
6244 if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6245 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6246 err = -ENODEV;
6247 goto fail;
6248 }
6249
6250 base_addr = ioremap_nocache(mem_start, mem_len);
6251 if (!base_addr) {
6252 printk(KERN_WARNING DRV_NAME
6253 "Error calling ioremap_nocache.\n");
6254 err = -EIO;
6255 goto fail;
6256 }
6257
6258 /* allocate and initialize our net_device */
6259 dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6260 if (!dev) {
6261 printk(KERN_WARNING DRV_NAME
6262 "Error calling ipw2100_alloc_device.\n");
6263 err = -ENOMEM;
6264 goto fail;
6265 }
6266
6267 /* set up PCI mappings for device */
6268 err = pci_enable_device(pci_dev);
6269 if (err) {
6270 printk(KERN_WARNING DRV_NAME
6271 "Error calling pci_enable_device.\n");
6272 return err;
6273 }
6274
6275 priv = libipw_priv(dev);
6276
6277 pci_set_master(pci_dev);
6278 pci_set_drvdata(pci_dev, priv);
6279
6280 err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6281 if (err) {
6282 printk(KERN_WARNING DRV_NAME
6283 "Error calling pci_set_dma_mask.\n");
6284 pci_disable_device(pci_dev);
6285 return err;
6286 }
6287
6288 err = pci_request_regions(pci_dev, DRV_NAME);
6289 if (err) {
6290 printk(KERN_WARNING DRV_NAME
6291 "Error calling pci_request_regions.\n");
6292 pci_disable_device(pci_dev);
6293 return err;
6294 }
6295
6296 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6297 * PCI Tx retries from interfering with C3 CPU state */
6298 pci_read_config_dword(pci_dev, 0x40, &val);
6299 if ((val & 0x0000ff00) != 0)
6300 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6301
6302 pci_set_power_state(pci_dev, PCI_D0);
6303
6304 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6305 printk(KERN_WARNING DRV_NAME
6306 "Device not found via register read.\n");
6307 err = -ENODEV;
6308 goto fail;
6309 }
6310
6311 SET_NETDEV_DEV(dev, &pci_dev->dev);
6312
6313 /* Force interrupts to be shut off on the device */
6314 priv->status |= STATUS_INT_ENABLED;
6315 ipw2100_disable_interrupts(priv);
6316
6317 /* Allocate and initialize the Tx/Rx queues and lists */
6318 if (ipw2100_queues_allocate(priv)) {
6319 printk(KERN_WARNING DRV_NAME
6320 "Error calling ipw2100_queues_allocate.\n");
6321 err = -ENOMEM;
6322 goto fail;
6323 }
6324 ipw2100_queues_initialize(priv);
6325
6326 err = request_irq(pci_dev->irq,
6327 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6328 if (err) {
6329 printk(KERN_WARNING DRV_NAME
6330 "Error calling request_irq: %d.\n", pci_dev->irq);
6331 goto fail;
6332 }
6333 dev->irq = pci_dev->irq;
6334
6335 IPW_DEBUG_INFO("Attempting to register device...\n");
6336
6337 printk(KERN_INFO DRV_NAME
6338 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6339
6340 /* Bring up the interface. Pre 0.46, after we registered the
6341 * network device we would call ipw2100_up. This introduced a race
6342 * condition with newer hotplug configurations (network was coming
6343 * up and making calls before the device was initialized).
6344 *
6345 * If we called ipw2100_up before we registered the device, then the
6346 * device name wasn't registered. So, we instead use the net_dev->init
6347 * member to call a function that then just turns and calls ipw2100_up.
6348 * net_dev->init is called after name allocation but before the
6349 * notifier chain is called */
6350 err = register_netdev(dev);
6351 if (err) {
6352 printk(KERN_WARNING DRV_NAME
6353 "Error calling register_netdev.\n");
6354 goto fail;
6355 }
6356 registered = 1;
6357
6358 err = ipw2100_wdev_init(dev);
6359 if (err)
6360 goto fail;
6361
6362 mutex_lock(&priv->action_mutex);
6363
6364 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6365
6366 /* perform this after register_netdev so that dev->name is set */
6367 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6368 if (err)
6369 goto fail_unlock;
6370
6371 /* If the RF Kill switch is disabled, go ahead and complete the
6372 * startup sequence */
6373 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6374 /* Enable the adapter - sends HOST_COMPLETE */
6375 if (ipw2100_enable_adapter(priv)) {
6376 printk(KERN_WARNING DRV_NAME
6377 ": %s: failed in call to enable adapter.\n",
6378 priv->net_dev->name);
6379 ipw2100_hw_stop_adapter(priv);
6380 err = -EIO;
6381 goto fail_unlock;
6382 }
6383
6384 /* Start a scan . . . */
6385 ipw2100_set_scan_options(priv);
6386 ipw2100_start_scan(priv);
6387 }
6388
6389 IPW_DEBUG_INFO("exit\n");
6390
6391 priv->status |= STATUS_INITIALIZED;
6392
6393 mutex_unlock(&priv->action_mutex);
6394
6395 return 0;
6396
6397 fail_unlock:
6398 mutex_unlock(&priv->action_mutex);
6399 wiphy_unregister(priv->ieee->wdev.wiphy);
6400 kfree(priv->ieee->bg_band.channels);
6401 fail:
6402 if (dev) {
6403 if (registered)
6404 unregister_netdev(dev);
6405
6406 ipw2100_hw_stop_adapter(priv);
6407
6408 ipw2100_disable_interrupts(priv);
6409
6410 if (dev->irq)
6411 free_irq(dev->irq, priv);
6412
6413 ipw2100_kill_works(priv);
6414
6415 /* These are safe to call even if they weren't allocated */
6416 ipw2100_queues_free(priv);
6417 sysfs_remove_group(&pci_dev->dev.kobj,
6418 &ipw2100_attribute_group);
6419
6420 free_libipw(dev, 0);
6421 pci_set_drvdata(pci_dev, NULL);
6422 }
6423
6424 if (base_addr)
6425 iounmap(base_addr);
6426
6427 pci_release_regions(pci_dev);
6428 pci_disable_device(pci_dev);
6429
6430 return err;
6431 }
6432
ipw2100_pci_remove_one(struct pci_dev * pci_dev)6433 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6434 {
6435 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6436 struct net_device *dev;
6437
6438 if (priv) {
6439 mutex_lock(&priv->action_mutex);
6440
6441 priv->status &= ~STATUS_INITIALIZED;
6442
6443 dev = priv->net_dev;
6444 sysfs_remove_group(&pci_dev->dev.kobj,
6445 &ipw2100_attribute_group);
6446
6447 #ifdef CONFIG_PM
6448 if (ipw2100_firmware.version)
6449 ipw2100_release_firmware(priv, &ipw2100_firmware);
6450 #endif
6451 /* Take down the hardware */
6452 ipw2100_down(priv);
6453
6454 /* Release the mutex so that the network subsystem can
6455 * complete any needed calls into the driver... */
6456 mutex_unlock(&priv->action_mutex);
6457
6458 /* Unregister the device first - this results in close()
6459 * being called if the device is open. If we free storage
6460 * first, then close() will crash. */
6461 unregister_netdev(dev);
6462
6463 ipw2100_kill_works(priv);
6464
6465 ipw2100_queues_free(priv);
6466
6467 /* Free potential debugging firmware snapshot */
6468 ipw2100_snapshot_free(priv);
6469
6470 if (dev->irq)
6471 free_irq(dev->irq, priv);
6472
6473 if (dev->base_addr)
6474 iounmap((void __iomem *)dev->base_addr);
6475
6476 /* wiphy_unregister needs to be here, before free_libipw */
6477 wiphy_unregister(priv->ieee->wdev.wiphy);
6478 kfree(priv->ieee->bg_band.channels);
6479 free_libipw(dev, 0);
6480 }
6481
6482 pci_release_regions(pci_dev);
6483 pci_disable_device(pci_dev);
6484
6485 IPW_DEBUG_INFO("exit\n");
6486 }
6487
6488 #ifdef CONFIG_PM
ipw2100_suspend(struct pci_dev * pci_dev,pm_message_t state)6489 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6490 {
6491 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6492 struct net_device *dev = priv->net_dev;
6493
6494 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6495
6496 mutex_lock(&priv->action_mutex);
6497 if (priv->status & STATUS_INITIALIZED) {
6498 /* Take down the device; powers it off, etc. */
6499 ipw2100_down(priv);
6500 }
6501
6502 /* Remove the PRESENT state of the device */
6503 netif_device_detach(dev);
6504
6505 pci_save_state(pci_dev);
6506 pci_disable_device(pci_dev);
6507 pci_set_power_state(pci_dev, PCI_D3hot);
6508
6509 priv->suspend_at = get_seconds();
6510
6511 mutex_unlock(&priv->action_mutex);
6512
6513 return 0;
6514 }
6515
ipw2100_resume(struct pci_dev * pci_dev)6516 static int ipw2100_resume(struct pci_dev *pci_dev)
6517 {
6518 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6519 struct net_device *dev = priv->net_dev;
6520 int err;
6521 u32 val;
6522
6523 if (IPW2100_PM_DISABLED)
6524 return 0;
6525
6526 mutex_lock(&priv->action_mutex);
6527
6528 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6529
6530 pci_set_power_state(pci_dev, PCI_D0);
6531 err = pci_enable_device(pci_dev);
6532 if (err) {
6533 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6534 dev->name);
6535 mutex_unlock(&priv->action_mutex);
6536 return err;
6537 }
6538 pci_restore_state(pci_dev);
6539
6540 /*
6541 * Suspend/Resume resets the PCI configuration space, so we have to
6542 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6543 * from interfering with C3 CPU state. pci_restore_state won't help
6544 * here since it only restores the first 64 bytes pci config header.
6545 */
6546 pci_read_config_dword(pci_dev, 0x40, &val);
6547 if ((val & 0x0000ff00) != 0)
6548 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6549
6550 /* Set the device back into the PRESENT state; this will also wake
6551 * the queue of needed */
6552 netif_device_attach(dev);
6553
6554 priv->suspend_time = get_seconds() - priv->suspend_at;
6555
6556 /* Bring the device back up */
6557 if (!(priv->status & STATUS_RF_KILL_SW))
6558 ipw2100_up(priv, 0);
6559
6560 mutex_unlock(&priv->action_mutex);
6561
6562 return 0;
6563 }
6564 #endif
6565
ipw2100_shutdown(struct pci_dev * pci_dev)6566 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6567 {
6568 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6569
6570 /* Take down the device; powers it off, etc. */
6571 ipw2100_down(priv);
6572
6573 pci_disable_device(pci_dev);
6574 }
6575
6576 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6577
6578 static DEFINE_PCI_DEVICE_TABLE(ipw2100_pci_id_table) = {
6579 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6580 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6581 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6582 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6583 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6584 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6585 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6586 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6587 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6588 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6589 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6590 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6591 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6592
6593 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6594 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6595 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6596 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6597 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6598
6599 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6600 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6601 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6602 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6603 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6604 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6605 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6606
6607 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6608
6609 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6610 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6611 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6612 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6613 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6614 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6615 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6616
6617 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6618 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6619 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6620 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6621 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6622 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6623
6624 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6625 {0,},
6626 };
6627
6628 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6629
6630 static struct pci_driver ipw2100_pci_driver = {
6631 .name = DRV_NAME,
6632 .id_table = ipw2100_pci_id_table,
6633 .probe = ipw2100_pci_init_one,
6634 .remove = __devexit_p(ipw2100_pci_remove_one),
6635 #ifdef CONFIG_PM
6636 .suspend = ipw2100_suspend,
6637 .resume = ipw2100_resume,
6638 #endif
6639 .shutdown = ipw2100_shutdown,
6640 };
6641
6642 /**
6643 * Initialize the ipw2100 driver/module
6644 *
6645 * @returns 0 if ok, < 0 errno node con error.
6646 *
6647 * Note: we cannot init the /proc stuff until the PCI driver is there,
6648 * or we risk an unlikely race condition on someone accessing
6649 * uninitialized data in the PCI dev struct through /proc.
6650 */
ipw2100_init(void)6651 static int __init ipw2100_init(void)
6652 {
6653 int ret;
6654
6655 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6656 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6657
6658 pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6659 PM_QOS_DEFAULT_VALUE);
6660
6661 ret = pci_register_driver(&ipw2100_pci_driver);
6662 if (ret)
6663 goto out;
6664
6665 #ifdef CONFIG_IPW2100_DEBUG
6666 ipw2100_debug_level = debug;
6667 ret = driver_create_file(&ipw2100_pci_driver.driver,
6668 &driver_attr_debug_level);
6669 #endif
6670
6671 out:
6672 return ret;
6673 }
6674
6675 /**
6676 * Cleanup ipw2100 driver registration
6677 */
ipw2100_exit(void)6678 static void __exit ipw2100_exit(void)
6679 {
6680 /* FIXME: IPG: check that we have no instances of the devices open */
6681 #ifdef CONFIG_IPW2100_DEBUG
6682 driver_remove_file(&ipw2100_pci_driver.driver,
6683 &driver_attr_debug_level);
6684 #endif
6685 pci_unregister_driver(&ipw2100_pci_driver);
6686 pm_qos_remove_request(&ipw2100_pm_qos_req);
6687 }
6688
6689 module_init(ipw2100_init);
6690 module_exit(ipw2100_exit);
6691
ipw2100_wx_get_name(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6692 static int ipw2100_wx_get_name(struct net_device *dev,
6693 struct iw_request_info *info,
6694 union iwreq_data *wrqu, char *extra)
6695 {
6696 /*
6697 * This can be called at any time. No action lock required
6698 */
6699
6700 struct ipw2100_priv *priv = libipw_priv(dev);
6701 if (!(priv->status & STATUS_ASSOCIATED))
6702 strcpy(wrqu->name, "unassociated");
6703 else
6704 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6705
6706 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6707 return 0;
6708 }
6709
ipw2100_wx_set_freq(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6710 static int ipw2100_wx_set_freq(struct net_device *dev,
6711 struct iw_request_info *info,
6712 union iwreq_data *wrqu, char *extra)
6713 {
6714 struct ipw2100_priv *priv = libipw_priv(dev);
6715 struct iw_freq *fwrq = &wrqu->freq;
6716 int err = 0;
6717
6718 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6719 return -EOPNOTSUPP;
6720
6721 mutex_lock(&priv->action_mutex);
6722 if (!(priv->status & STATUS_INITIALIZED)) {
6723 err = -EIO;
6724 goto done;
6725 }
6726
6727 /* if setting by freq convert to channel */
6728 if (fwrq->e == 1) {
6729 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6730 int f = fwrq->m / 100000;
6731 int c = 0;
6732
6733 while ((c < REG_MAX_CHANNEL) &&
6734 (f != ipw2100_frequencies[c]))
6735 c++;
6736
6737 /* hack to fall through */
6738 fwrq->e = 0;
6739 fwrq->m = c + 1;
6740 }
6741 }
6742
6743 if (fwrq->e > 0 || fwrq->m > 1000) {
6744 err = -EOPNOTSUPP;
6745 goto done;
6746 } else { /* Set the channel */
6747 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6748 err = ipw2100_set_channel(priv, fwrq->m, 0);
6749 }
6750
6751 done:
6752 mutex_unlock(&priv->action_mutex);
6753 return err;
6754 }
6755
ipw2100_wx_get_freq(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6756 static int ipw2100_wx_get_freq(struct net_device *dev,
6757 struct iw_request_info *info,
6758 union iwreq_data *wrqu, char *extra)
6759 {
6760 /*
6761 * This can be called at any time. No action lock required
6762 */
6763
6764 struct ipw2100_priv *priv = libipw_priv(dev);
6765
6766 wrqu->freq.e = 0;
6767
6768 /* If we are associated, trying to associate, or have a statically
6769 * configured CHANNEL then return that; otherwise return ANY */
6770 if (priv->config & CFG_STATIC_CHANNEL ||
6771 priv->status & STATUS_ASSOCIATED)
6772 wrqu->freq.m = priv->channel;
6773 else
6774 wrqu->freq.m = 0;
6775
6776 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6777 return 0;
6778
6779 }
6780
ipw2100_wx_set_mode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6781 static int ipw2100_wx_set_mode(struct net_device *dev,
6782 struct iw_request_info *info,
6783 union iwreq_data *wrqu, char *extra)
6784 {
6785 struct ipw2100_priv *priv = libipw_priv(dev);
6786 int err = 0;
6787
6788 IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6789
6790 if (wrqu->mode == priv->ieee->iw_mode)
6791 return 0;
6792
6793 mutex_lock(&priv->action_mutex);
6794 if (!(priv->status & STATUS_INITIALIZED)) {
6795 err = -EIO;
6796 goto done;
6797 }
6798
6799 switch (wrqu->mode) {
6800 #ifdef CONFIG_IPW2100_MONITOR
6801 case IW_MODE_MONITOR:
6802 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6803 break;
6804 #endif /* CONFIG_IPW2100_MONITOR */
6805 case IW_MODE_ADHOC:
6806 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6807 break;
6808 case IW_MODE_INFRA:
6809 case IW_MODE_AUTO:
6810 default:
6811 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6812 break;
6813 }
6814
6815 done:
6816 mutex_unlock(&priv->action_mutex);
6817 return err;
6818 }
6819
ipw2100_wx_get_mode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6820 static int ipw2100_wx_get_mode(struct net_device *dev,
6821 struct iw_request_info *info,
6822 union iwreq_data *wrqu, char *extra)
6823 {
6824 /*
6825 * This can be called at any time. No action lock required
6826 */
6827
6828 struct ipw2100_priv *priv = libipw_priv(dev);
6829
6830 wrqu->mode = priv->ieee->iw_mode;
6831 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6832
6833 return 0;
6834 }
6835
6836 #define POWER_MODES 5
6837
6838 /* Values are in microsecond */
6839 static const s32 timeout_duration[POWER_MODES] = {
6840 350000,
6841 250000,
6842 75000,
6843 37000,
6844 25000,
6845 };
6846
6847 static const s32 period_duration[POWER_MODES] = {
6848 400000,
6849 700000,
6850 1000000,
6851 1000000,
6852 1000000
6853 };
6854
ipw2100_wx_get_range(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6855 static int ipw2100_wx_get_range(struct net_device *dev,
6856 struct iw_request_info *info,
6857 union iwreq_data *wrqu, char *extra)
6858 {
6859 /*
6860 * This can be called at any time. No action lock required
6861 */
6862
6863 struct ipw2100_priv *priv = libipw_priv(dev);
6864 struct iw_range *range = (struct iw_range *)extra;
6865 u16 val;
6866 int i, level;
6867
6868 wrqu->data.length = sizeof(*range);
6869 memset(range, 0, sizeof(*range));
6870
6871 /* Let's try to keep this struct in the same order as in
6872 * linux/include/wireless.h
6873 */
6874
6875 /* TODO: See what values we can set, and remove the ones we can't
6876 * set, or fill them with some default data.
6877 */
6878
6879 /* ~5 Mb/s real (802.11b) */
6880 range->throughput = 5 * 1000 * 1000;
6881
6882 // range->sensitivity; /* signal level threshold range */
6883
6884 range->max_qual.qual = 100;
6885 /* TODO: Find real max RSSI and stick here */
6886 range->max_qual.level = 0;
6887 range->max_qual.noise = 0;
6888 range->max_qual.updated = 7; /* Updated all three */
6889
6890 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6891 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6892 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6893 range->avg_qual.noise = 0;
6894 range->avg_qual.updated = 7; /* Updated all three */
6895
6896 range->num_bitrates = RATE_COUNT;
6897
6898 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6899 range->bitrate[i] = ipw2100_rates_11b[i];
6900 }
6901
6902 range->min_rts = MIN_RTS_THRESHOLD;
6903 range->max_rts = MAX_RTS_THRESHOLD;
6904 range->min_frag = MIN_FRAG_THRESHOLD;
6905 range->max_frag = MAX_FRAG_THRESHOLD;
6906
6907 range->min_pmp = period_duration[0]; /* Minimal PM period */
6908 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6909 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6910 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6911
6912 /* How to decode max/min PM period */
6913 range->pmp_flags = IW_POWER_PERIOD;
6914 /* How to decode max/min PM period */
6915 range->pmt_flags = IW_POWER_TIMEOUT;
6916 /* What PM options are supported */
6917 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6918
6919 range->encoding_size[0] = 5;
6920 range->encoding_size[1] = 13; /* Different token sizes */
6921 range->num_encoding_sizes = 2; /* Number of entry in the list */
6922 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6923 // range->encoding_login_index; /* token index for login token */
6924
6925 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6926 range->txpower_capa = IW_TXPOW_DBM;
6927 range->num_txpower = IW_MAX_TXPOWER;
6928 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6929 i < IW_MAX_TXPOWER;
6930 i++, level -=
6931 ((IPW_TX_POWER_MAX_DBM -
6932 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6933 range->txpower[i] = level / 16;
6934 } else {
6935 range->txpower_capa = 0;
6936 range->num_txpower = 0;
6937 }
6938
6939 /* Set the Wireless Extension versions */
6940 range->we_version_compiled = WIRELESS_EXT;
6941 range->we_version_source = 18;
6942
6943 // range->retry_capa; /* What retry options are supported */
6944 // range->retry_flags; /* How to decode max/min retry limit */
6945 // range->r_time_flags; /* How to decode max/min retry life */
6946 // range->min_retry; /* Minimal number of retries */
6947 // range->max_retry; /* Maximal number of retries */
6948 // range->min_r_time; /* Minimal retry lifetime */
6949 // range->max_r_time; /* Maximal retry lifetime */
6950
6951 range->num_channels = FREQ_COUNT;
6952
6953 val = 0;
6954 for (i = 0; i < FREQ_COUNT; i++) {
6955 // TODO: Include only legal frequencies for some countries
6956 // if (local->channel_mask & (1 << i)) {
6957 range->freq[val].i = i + 1;
6958 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6959 range->freq[val].e = 1;
6960 val++;
6961 // }
6962 if (val == IW_MAX_FREQUENCIES)
6963 break;
6964 }
6965 range->num_frequency = val;
6966
6967 /* Event capability (kernel + driver) */
6968 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6969 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6970 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6971
6972 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6973 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6974
6975 IPW_DEBUG_WX("GET Range\n");
6976
6977 return 0;
6978 }
6979
ipw2100_wx_set_wap(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6980 static int ipw2100_wx_set_wap(struct net_device *dev,
6981 struct iw_request_info *info,
6982 union iwreq_data *wrqu, char *extra)
6983 {
6984 struct ipw2100_priv *priv = libipw_priv(dev);
6985 int err = 0;
6986
6987 static const unsigned char any[] = {
6988 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6989 };
6990 static const unsigned char off[] = {
6991 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6992 };
6993
6994 // sanity checks
6995 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6996 return -EINVAL;
6997
6998 mutex_lock(&priv->action_mutex);
6999 if (!(priv->status & STATUS_INITIALIZED)) {
7000 err = -EIO;
7001 goto done;
7002 }
7003
7004 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
7005 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
7006 /* we disable mandatory BSSID association */
7007 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
7008 priv->config &= ~CFG_STATIC_BSSID;
7009 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
7010 goto done;
7011 }
7012
7013 priv->config |= CFG_STATIC_BSSID;
7014 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
7015
7016 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
7017
7018 IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
7019
7020 done:
7021 mutex_unlock(&priv->action_mutex);
7022 return err;
7023 }
7024
ipw2100_wx_get_wap(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7025 static int ipw2100_wx_get_wap(struct net_device *dev,
7026 struct iw_request_info *info,
7027 union iwreq_data *wrqu, char *extra)
7028 {
7029 /*
7030 * This can be called at any time. No action lock required
7031 */
7032
7033 struct ipw2100_priv *priv = libipw_priv(dev);
7034
7035 /* If we are associated, trying to associate, or have a statically
7036 * configured BSSID then return that; otherwise return ANY */
7037 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
7038 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
7039 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
7040 } else
7041 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
7042
7043 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
7044 return 0;
7045 }
7046
ipw2100_wx_set_essid(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7047 static int ipw2100_wx_set_essid(struct net_device *dev,
7048 struct iw_request_info *info,
7049 union iwreq_data *wrqu, char *extra)
7050 {
7051 struct ipw2100_priv *priv = libipw_priv(dev);
7052 char *essid = ""; /* ANY */
7053 int length = 0;
7054 int err = 0;
7055 DECLARE_SSID_BUF(ssid);
7056
7057 mutex_lock(&priv->action_mutex);
7058 if (!(priv->status & STATUS_INITIALIZED)) {
7059 err = -EIO;
7060 goto done;
7061 }
7062
7063 if (wrqu->essid.flags && wrqu->essid.length) {
7064 length = wrqu->essid.length;
7065 essid = extra;
7066 }
7067
7068 if (length == 0) {
7069 IPW_DEBUG_WX("Setting ESSID to ANY\n");
7070 priv->config &= ~CFG_STATIC_ESSID;
7071 err = ipw2100_set_essid(priv, NULL, 0, 0);
7072 goto done;
7073 }
7074
7075 length = min(length, IW_ESSID_MAX_SIZE);
7076
7077 priv->config |= CFG_STATIC_ESSID;
7078
7079 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7080 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7081 err = 0;
7082 goto done;
7083 }
7084
7085 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
7086 print_ssid(ssid, essid, length), length);
7087
7088 priv->essid_len = length;
7089 memcpy(priv->essid, essid, priv->essid_len);
7090
7091 err = ipw2100_set_essid(priv, essid, length, 0);
7092
7093 done:
7094 mutex_unlock(&priv->action_mutex);
7095 return err;
7096 }
7097
ipw2100_wx_get_essid(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7098 static int ipw2100_wx_get_essid(struct net_device *dev,
7099 struct iw_request_info *info,
7100 union iwreq_data *wrqu, char *extra)
7101 {
7102 /*
7103 * This can be called at any time. No action lock required
7104 */
7105
7106 struct ipw2100_priv *priv = libipw_priv(dev);
7107 DECLARE_SSID_BUF(ssid);
7108
7109 /* If we are associated, trying to associate, or have a statically
7110 * configured ESSID then return that; otherwise return ANY */
7111 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7112 IPW_DEBUG_WX("Getting essid: '%s'\n",
7113 print_ssid(ssid, priv->essid, priv->essid_len));
7114 memcpy(extra, priv->essid, priv->essid_len);
7115 wrqu->essid.length = priv->essid_len;
7116 wrqu->essid.flags = 1; /* active */
7117 } else {
7118 IPW_DEBUG_WX("Getting essid: ANY\n");
7119 wrqu->essid.length = 0;
7120 wrqu->essid.flags = 0; /* active */
7121 }
7122
7123 return 0;
7124 }
7125
ipw2100_wx_set_nick(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7126 static int ipw2100_wx_set_nick(struct net_device *dev,
7127 struct iw_request_info *info,
7128 union iwreq_data *wrqu, char *extra)
7129 {
7130 /*
7131 * This can be called at any time. No action lock required
7132 */
7133
7134 struct ipw2100_priv *priv = libipw_priv(dev);
7135
7136 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7137 return -E2BIG;
7138
7139 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7140 memset(priv->nick, 0, sizeof(priv->nick));
7141 memcpy(priv->nick, extra, wrqu->data.length);
7142
7143 IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7144
7145 return 0;
7146 }
7147
ipw2100_wx_get_nick(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7148 static int ipw2100_wx_get_nick(struct net_device *dev,
7149 struct iw_request_info *info,
7150 union iwreq_data *wrqu, char *extra)
7151 {
7152 /*
7153 * This can be called at any time. No action lock required
7154 */
7155
7156 struct ipw2100_priv *priv = libipw_priv(dev);
7157
7158 wrqu->data.length = strlen(priv->nick);
7159 memcpy(extra, priv->nick, wrqu->data.length);
7160 wrqu->data.flags = 1; /* active */
7161
7162 IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7163
7164 return 0;
7165 }
7166
ipw2100_wx_set_rate(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7167 static int ipw2100_wx_set_rate(struct net_device *dev,
7168 struct iw_request_info *info,
7169 union iwreq_data *wrqu, char *extra)
7170 {
7171 struct ipw2100_priv *priv = libipw_priv(dev);
7172 u32 target_rate = wrqu->bitrate.value;
7173 u32 rate;
7174 int err = 0;
7175
7176 mutex_lock(&priv->action_mutex);
7177 if (!(priv->status & STATUS_INITIALIZED)) {
7178 err = -EIO;
7179 goto done;
7180 }
7181
7182 rate = 0;
7183
7184 if (target_rate == 1000000 ||
7185 (!wrqu->bitrate.fixed && target_rate > 1000000))
7186 rate |= TX_RATE_1_MBIT;
7187 if (target_rate == 2000000 ||
7188 (!wrqu->bitrate.fixed && target_rate > 2000000))
7189 rate |= TX_RATE_2_MBIT;
7190 if (target_rate == 5500000 ||
7191 (!wrqu->bitrate.fixed && target_rate > 5500000))
7192 rate |= TX_RATE_5_5_MBIT;
7193 if (target_rate == 11000000 ||
7194 (!wrqu->bitrate.fixed && target_rate > 11000000))
7195 rate |= TX_RATE_11_MBIT;
7196 if (rate == 0)
7197 rate = DEFAULT_TX_RATES;
7198
7199 err = ipw2100_set_tx_rates(priv, rate, 0);
7200
7201 IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7202 done:
7203 mutex_unlock(&priv->action_mutex);
7204 return err;
7205 }
7206
ipw2100_wx_get_rate(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7207 static int ipw2100_wx_get_rate(struct net_device *dev,
7208 struct iw_request_info *info,
7209 union iwreq_data *wrqu, char *extra)
7210 {
7211 struct ipw2100_priv *priv = libipw_priv(dev);
7212 int val;
7213 unsigned int len = sizeof(val);
7214 int err = 0;
7215
7216 if (!(priv->status & STATUS_ENABLED) ||
7217 priv->status & STATUS_RF_KILL_MASK ||
7218 !(priv->status & STATUS_ASSOCIATED)) {
7219 wrqu->bitrate.value = 0;
7220 return 0;
7221 }
7222
7223 mutex_lock(&priv->action_mutex);
7224 if (!(priv->status & STATUS_INITIALIZED)) {
7225 err = -EIO;
7226 goto done;
7227 }
7228
7229 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7230 if (err) {
7231 IPW_DEBUG_WX("failed querying ordinals.\n");
7232 goto done;
7233 }
7234
7235 switch (val & TX_RATE_MASK) {
7236 case TX_RATE_1_MBIT:
7237 wrqu->bitrate.value = 1000000;
7238 break;
7239 case TX_RATE_2_MBIT:
7240 wrqu->bitrate.value = 2000000;
7241 break;
7242 case TX_RATE_5_5_MBIT:
7243 wrqu->bitrate.value = 5500000;
7244 break;
7245 case TX_RATE_11_MBIT:
7246 wrqu->bitrate.value = 11000000;
7247 break;
7248 default:
7249 wrqu->bitrate.value = 0;
7250 }
7251
7252 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7253
7254 done:
7255 mutex_unlock(&priv->action_mutex);
7256 return err;
7257 }
7258
ipw2100_wx_set_rts(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7259 static int ipw2100_wx_set_rts(struct net_device *dev,
7260 struct iw_request_info *info,
7261 union iwreq_data *wrqu, char *extra)
7262 {
7263 struct ipw2100_priv *priv = libipw_priv(dev);
7264 int value, err;
7265
7266 /* Auto RTS not yet supported */
7267 if (wrqu->rts.fixed == 0)
7268 return -EINVAL;
7269
7270 mutex_lock(&priv->action_mutex);
7271 if (!(priv->status & STATUS_INITIALIZED)) {
7272 err = -EIO;
7273 goto done;
7274 }
7275
7276 if (wrqu->rts.disabled)
7277 value = priv->rts_threshold | RTS_DISABLED;
7278 else {
7279 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7280 err = -EINVAL;
7281 goto done;
7282 }
7283 value = wrqu->rts.value;
7284 }
7285
7286 err = ipw2100_set_rts_threshold(priv, value);
7287
7288 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7289 done:
7290 mutex_unlock(&priv->action_mutex);
7291 return err;
7292 }
7293
ipw2100_wx_get_rts(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7294 static int ipw2100_wx_get_rts(struct net_device *dev,
7295 struct iw_request_info *info,
7296 union iwreq_data *wrqu, char *extra)
7297 {
7298 /*
7299 * This can be called at any time. No action lock required
7300 */
7301
7302 struct ipw2100_priv *priv = libipw_priv(dev);
7303
7304 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7305 wrqu->rts.fixed = 1; /* no auto select */
7306
7307 /* If RTS is set to the default value, then it is disabled */
7308 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7309
7310 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7311
7312 return 0;
7313 }
7314
ipw2100_wx_set_txpow(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7315 static int ipw2100_wx_set_txpow(struct net_device *dev,
7316 struct iw_request_info *info,
7317 union iwreq_data *wrqu, char *extra)
7318 {
7319 struct ipw2100_priv *priv = libipw_priv(dev);
7320 int err = 0, value;
7321
7322 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7323 return -EINPROGRESS;
7324
7325 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7326 return 0;
7327
7328 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7329 return -EINVAL;
7330
7331 if (wrqu->txpower.fixed == 0)
7332 value = IPW_TX_POWER_DEFAULT;
7333 else {
7334 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7335 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7336 return -EINVAL;
7337
7338 value = wrqu->txpower.value;
7339 }
7340
7341 mutex_lock(&priv->action_mutex);
7342 if (!(priv->status & STATUS_INITIALIZED)) {
7343 err = -EIO;
7344 goto done;
7345 }
7346
7347 err = ipw2100_set_tx_power(priv, value);
7348
7349 IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7350
7351 done:
7352 mutex_unlock(&priv->action_mutex);
7353 return err;
7354 }
7355
ipw2100_wx_get_txpow(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7356 static int ipw2100_wx_get_txpow(struct net_device *dev,
7357 struct iw_request_info *info,
7358 union iwreq_data *wrqu, char *extra)
7359 {
7360 /*
7361 * This can be called at any time. No action lock required
7362 */
7363
7364 struct ipw2100_priv *priv = libipw_priv(dev);
7365
7366 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7367
7368 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7369 wrqu->txpower.fixed = 0;
7370 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7371 } else {
7372 wrqu->txpower.fixed = 1;
7373 wrqu->txpower.value = priv->tx_power;
7374 }
7375
7376 wrqu->txpower.flags = IW_TXPOW_DBM;
7377
7378 IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7379
7380 return 0;
7381 }
7382
ipw2100_wx_set_frag(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7383 static int ipw2100_wx_set_frag(struct net_device *dev,
7384 struct iw_request_info *info,
7385 union iwreq_data *wrqu, char *extra)
7386 {
7387 /*
7388 * This can be called at any time. No action lock required
7389 */
7390
7391 struct ipw2100_priv *priv = libipw_priv(dev);
7392
7393 if (!wrqu->frag.fixed)
7394 return -EINVAL;
7395
7396 if (wrqu->frag.disabled) {
7397 priv->frag_threshold |= FRAG_DISABLED;
7398 priv->ieee->fts = DEFAULT_FTS;
7399 } else {
7400 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7401 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7402 return -EINVAL;
7403
7404 priv->ieee->fts = wrqu->frag.value & ~0x1;
7405 priv->frag_threshold = priv->ieee->fts;
7406 }
7407
7408 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7409
7410 return 0;
7411 }
7412
ipw2100_wx_get_frag(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7413 static int ipw2100_wx_get_frag(struct net_device *dev,
7414 struct iw_request_info *info,
7415 union iwreq_data *wrqu, char *extra)
7416 {
7417 /*
7418 * This can be called at any time. No action lock required
7419 */
7420
7421 struct ipw2100_priv *priv = libipw_priv(dev);
7422 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7423 wrqu->frag.fixed = 0; /* no auto select */
7424 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7425
7426 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7427
7428 return 0;
7429 }
7430
ipw2100_wx_set_retry(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7431 static int ipw2100_wx_set_retry(struct net_device *dev,
7432 struct iw_request_info *info,
7433 union iwreq_data *wrqu, char *extra)
7434 {
7435 struct ipw2100_priv *priv = libipw_priv(dev);
7436 int err = 0;
7437
7438 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7439 return -EINVAL;
7440
7441 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7442 return 0;
7443
7444 mutex_lock(&priv->action_mutex);
7445 if (!(priv->status & STATUS_INITIALIZED)) {
7446 err = -EIO;
7447 goto done;
7448 }
7449
7450 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7451 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7452 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7453 wrqu->retry.value);
7454 goto done;
7455 }
7456
7457 if (wrqu->retry.flags & IW_RETRY_LONG) {
7458 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7459 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7460 wrqu->retry.value);
7461 goto done;
7462 }
7463
7464 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7465 if (!err)
7466 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7467
7468 IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7469
7470 done:
7471 mutex_unlock(&priv->action_mutex);
7472 return err;
7473 }
7474
ipw2100_wx_get_retry(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7475 static int ipw2100_wx_get_retry(struct net_device *dev,
7476 struct iw_request_info *info,
7477 union iwreq_data *wrqu, char *extra)
7478 {
7479 /*
7480 * This can be called at any time. No action lock required
7481 */
7482
7483 struct ipw2100_priv *priv = libipw_priv(dev);
7484
7485 wrqu->retry.disabled = 0; /* can't be disabled */
7486
7487 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7488 return -EINVAL;
7489
7490 if (wrqu->retry.flags & IW_RETRY_LONG) {
7491 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7492 wrqu->retry.value = priv->long_retry_limit;
7493 } else {
7494 wrqu->retry.flags =
7495 (priv->short_retry_limit !=
7496 priv->long_retry_limit) ?
7497 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7498
7499 wrqu->retry.value = priv->short_retry_limit;
7500 }
7501
7502 IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7503
7504 return 0;
7505 }
7506
ipw2100_wx_set_scan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7507 static int ipw2100_wx_set_scan(struct net_device *dev,
7508 struct iw_request_info *info,
7509 union iwreq_data *wrqu, char *extra)
7510 {
7511 struct ipw2100_priv *priv = libipw_priv(dev);
7512 int err = 0;
7513
7514 mutex_lock(&priv->action_mutex);
7515 if (!(priv->status & STATUS_INITIALIZED)) {
7516 err = -EIO;
7517 goto done;
7518 }
7519
7520 IPW_DEBUG_WX("Initiating scan...\n");
7521
7522 priv->user_requested_scan = 1;
7523 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7524 IPW_DEBUG_WX("Start scan failed.\n");
7525
7526 /* TODO: Mark a scan as pending so when hardware initialized
7527 * a scan starts */
7528 }
7529
7530 done:
7531 mutex_unlock(&priv->action_mutex);
7532 return err;
7533 }
7534
ipw2100_wx_get_scan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7535 static int ipw2100_wx_get_scan(struct net_device *dev,
7536 struct iw_request_info *info,
7537 union iwreq_data *wrqu, char *extra)
7538 {
7539 /*
7540 * This can be called at any time. No action lock required
7541 */
7542
7543 struct ipw2100_priv *priv = libipw_priv(dev);
7544 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7545 }
7546
7547 /*
7548 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7549 */
ipw2100_wx_set_encode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * key)7550 static int ipw2100_wx_set_encode(struct net_device *dev,
7551 struct iw_request_info *info,
7552 union iwreq_data *wrqu, char *key)
7553 {
7554 /*
7555 * No check of STATUS_INITIALIZED required
7556 */
7557
7558 struct ipw2100_priv *priv = libipw_priv(dev);
7559 return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7560 }
7561
ipw2100_wx_get_encode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * key)7562 static int ipw2100_wx_get_encode(struct net_device *dev,
7563 struct iw_request_info *info,
7564 union iwreq_data *wrqu, char *key)
7565 {
7566 /*
7567 * This can be called at any time. No action lock required
7568 */
7569
7570 struct ipw2100_priv *priv = libipw_priv(dev);
7571 return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7572 }
7573
ipw2100_wx_set_power(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7574 static int ipw2100_wx_set_power(struct net_device *dev,
7575 struct iw_request_info *info,
7576 union iwreq_data *wrqu, char *extra)
7577 {
7578 struct ipw2100_priv *priv = libipw_priv(dev);
7579 int err = 0;
7580
7581 mutex_lock(&priv->action_mutex);
7582 if (!(priv->status & STATUS_INITIALIZED)) {
7583 err = -EIO;
7584 goto done;
7585 }
7586
7587 if (wrqu->power.disabled) {
7588 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7589 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7590 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7591 goto done;
7592 }
7593
7594 switch (wrqu->power.flags & IW_POWER_MODE) {
7595 case IW_POWER_ON: /* If not specified */
7596 case IW_POWER_MODE: /* If set all mask */
7597 case IW_POWER_ALL_R: /* If explicitly state all */
7598 break;
7599 default: /* Otherwise we don't support it */
7600 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7601 wrqu->power.flags);
7602 err = -EOPNOTSUPP;
7603 goto done;
7604 }
7605
7606 /* If the user hasn't specified a power management mode yet, default
7607 * to BATTERY */
7608 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7609 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7610
7611 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7612
7613 done:
7614 mutex_unlock(&priv->action_mutex);
7615 return err;
7616
7617 }
7618
ipw2100_wx_get_power(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7619 static int ipw2100_wx_get_power(struct net_device *dev,
7620 struct iw_request_info *info,
7621 union iwreq_data *wrqu, char *extra)
7622 {
7623 /*
7624 * This can be called at any time. No action lock required
7625 */
7626
7627 struct ipw2100_priv *priv = libipw_priv(dev);
7628
7629 if (!(priv->power_mode & IPW_POWER_ENABLED))
7630 wrqu->power.disabled = 1;
7631 else {
7632 wrqu->power.disabled = 0;
7633 wrqu->power.flags = 0;
7634 }
7635
7636 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7637
7638 return 0;
7639 }
7640
7641 /*
7642 * WE-18 WPA support
7643 */
7644
7645 /* SIOCSIWGENIE */
ipw2100_wx_set_genie(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7646 static int ipw2100_wx_set_genie(struct net_device *dev,
7647 struct iw_request_info *info,
7648 union iwreq_data *wrqu, char *extra)
7649 {
7650
7651 struct ipw2100_priv *priv = libipw_priv(dev);
7652 struct libipw_device *ieee = priv->ieee;
7653 u8 *buf;
7654
7655 if (!ieee->wpa_enabled)
7656 return -EOPNOTSUPP;
7657
7658 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7659 (wrqu->data.length && extra == NULL))
7660 return -EINVAL;
7661
7662 if (wrqu->data.length) {
7663 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7664 if (buf == NULL)
7665 return -ENOMEM;
7666
7667 kfree(ieee->wpa_ie);
7668 ieee->wpa_ie = buf;
7669 ieee->wpa_ie_len = wrqu->data.length;
7670 } else {
7671 kfree(ieee->wpa_ie);
7672 ieee->wpa_ie = NULL;
7673 ieee->wpa_ie_len = 0;
7674 }
7675
7676 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7677
7678 return 0;
7679 }
7680
7681 /* SIOCGIWGENIE */
ipw2100_wx_get_genie(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7682 static int ipw2100_wx_get_genie(struct net_device *dev,
7683 struct iw_request_info *info,
7684 union iwreq_data *wrqu, char *extra)
7685 {
7686 struct ipw2100_priv *priv = libipw_priv(dev);
7687 struct libipw_device *ieee = priv->ieee;
7688
7689 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7690 wrqu->data.length = 0;
7691 return 0;
7692 }
7693
7694 if (wrqu->data.length < ieee->wpa_ie_len)
7695 return -E2BIG;
7696
7697 wrqu->data.length = ieee->wpa_ie_len;
7698 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7699
7700 return 0;
7701 }
7702
7703 /* SIOCSIWAUTH */
ipw2100_wx_set_auth(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7704 static int ipw2100_wx_set_auth(struct net_device *dev,
7705 struct iw_request_info *info,
7706 union iwreq_data *wrqu, char *extra)
7707 {
7708 struct ipw2100_priv *priv = libipw_priv(dev);
7709 struct libipw_device *ieee = priv->ieee;
7710 struct iw_param *param = &wrqu->param;
7711 struct lib80211_crypt_data *crypt;
7712 unsigned long flags;
7713 int ret = 0;
7714
7715 switch (param->flags & IW_AUTH_INDEX) {
7716 case IW_AUTH_WPA_VERSION:
7717 case IW_AUTH_CIPHER_PAIRWISE:
7718 case IW_AUTH_CIPHER_GROUP:
7719 case IW_AUTH_KEY_MGMT:
7720 /*
7721 * ipw2200 does not use these parameters
7722 */
7723 break;
7724
7725 case IW_AUTH_TKIP_COUNTERMEASURES:
7726 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7727 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7728 break;
7729
7730 flags = crypt->ops->get_flags(crypt->priv);
7731
7732 if (param->value)
7733 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7734 else
7735 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7736
7737 crypt->ops->set_flags(flags, crypt->priv);
7738
7739 break;
7740
7741 case IW_AUTH_DROP_UNENCRYPTED:{
7742 /* HACK:
7743 *
7744 * wpa_supplicant calls set_wpa_enabled when the driver
7745 * is loaded and unloaded, regardless of if WPA is being
7746 * used. No other calls are made which can be used to
7747 * determine if encryption will be used or not prior to
7748 * association being expected. If encryption is not being
7749 * used, drop_unencrypted is set to false, else true -- we
7750 * can use this to determine if the CAP_PRIVACY_ON bit should
7751 * be set.
7752 */
7753 struct libipw_security sec = {
7754 .flags = SEC_ENABLED,
7755 .enabled = param->value,
7756 };
7757 priv->ieee->drop_unencrypted = param->value;
7758 /* We only change SEC_LEVEL for open mode. Others
7759 * are set by ipw_wpa_set_encryption.
7760 */
7761 if (!param->value) {
7762 sec.flags |= SEC_LEVEL;
7763 sec.level = SEC_LEVEL_0;
7764 } else {
7765 sec.flags |= SEC_LEVEL;
7766 sec.level = SEC_LEVEL_1;
7767 }
7768 if (priv->ieee->set_security)
7769 priv->ieee->set_security(priv->ieee->dev, &sec);
7770 break;
7771 }
7772
7773 case IW_AUTH_80211_AUTH_ALG:
7774 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7775 break;
7776
7777 case IW_AUTH_WPA_ENABLED:
7778 ret = ipw2100_wpa_enable(priv, param->value);
7779 break;
7780
7781 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7782 ieee->ieee802_1x = param->value;
7783 break;
7784
7785 //case IW_AUTH_ROAMING_CONTROL:
7786 case IW_AUTH_PRIVACY_INVOKED:
7787 ieee->privacy_invoked = param->value;
7788 break;
7789
7790 default:
7791 return -EOPNOTSUPP;
7792 }
7793 return ret;
7794 }
7795
7796 /* SIOCGIWAUTH */
ipw2100_wx_get_auth(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7797 static int ipw2100_wx_get_auth(struct net_device *dev,
7798 struct iw_request_info *info,
7799 union iwreq_data *wrqu, char *extra)
7800 {
7801 struct ipw2100_priv *priv = libipw_priv(dev);
7802 struct libipw_device *ieee = priv->ieee;
7803 struct lib80211_crypt_data *crypt;
7804 struct iw_param *param = &wrqu->param;
7805 int ret = 0;
7806
7807 switch (param->flags & IW_AUTH_INDEX) {
7808 case IW_AUTH_WPA_VERSION:
7809 case IW_AUTH_CIPHER_PAIRWISE:
7810 case IW_AUTH_CIPHER_GROUP:
7811 case IW_AUTH_KEY_MGMT:
7812 /*
7813 * wpa_supplicant will control these internally
7814 */
7815 ret = -EOPNOTSUPP;
7816 break;
7817
7818 case IW_AUTH_TKIP_COUNTERMEASURES:
7819 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7820 if (!crypt || !crypt->ops->get_flags) {
7821 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7822 "crypt not set!\n");
7823 break;
7824 }
7825
7826 param->value = (crypt->ops->get_flags(crypt->priv) &
7827 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7828
7829 break;
7830
7831 case IW_AUTH_DROP_UNENCRYPTED:
7832 param->value = ieee->drop_unencrypted;
7833 break;
7834
7835 case IW_AUTH_80211_AUTH_ALG:
7836 param->value = priv->ieee->sec.auth_mode;
7837 break;
7838
7839 case IW_AUTH_WPA_ENABLED:
7840 param->value = ieee->wpa_enabled;
7841 break;
7842
7843 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7844 param->value = ieee->ieee802_1x;
7845 break;
7846
7847 case IW_AUTH_ROAMING_CONTROL:
7848 case IW_AUTH_PRIVACY_INVOKED:
7849 param->value = ieee->privacy_invoked;
7850 break;
7851
7852 default:
7853 return -EOPNOTSUPP;
7854 }
7855 return 0;
7856 }
7857
7858 /* SIOCSIWENCODEEXT */
ipw2100_wx_set_encodeext(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7859 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7860 struct iw_request_info *info,
7861 union iwreq_data *wrqu, char *extra)
7862 {
7863 struct ipw2100_priv *priv = libipw_priv(dev);
7864 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7865 }
7866
7867 /* SIOCGIWENCODEEXT */
ipw2100_wx_get_encodeext(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7868 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7869 struct iw_request_info *info,
7870 union iwreq_data *wrqu, char *extra)
7871 {
7872 struct ipw2100_priv *priv = libipw_priv(dev);
7873 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7874 }
7875
7876 /* SIOCSIWMLME */
ipw2100_wx_set_mlme(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7877 static int ipw2100_wx_set_mlme(struct net_device *dev,
7878 struct iw_request_info *info,
7879 union iwreq_data *wrqu, char *extra)
7880 {
7881 struct ipw2100_priv *priv = libipw_priv(dev);
7882 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7883 __le16 reason;
7884
7885 reason = cpu_to_le16(mlme->reason_code);
7886
7887 switch (mlme->cmd) {
7888 case IW_MLME_DEAUTH:
7889 // silently ignore
7890 break;
7891
7892 case IW_MLME_DISASSOC:
7893 ipw2100_disassociate_bssid(priv);
7894 break;
7895
7896 default:
7897 return -EOPNOTSUPP;
7898 }
7899 return 0;
7900 }
7901
7902 /*
7903 *
7904 * IWPRIV handlers
7905 *
7906 */
7907 #ifdef CONFIG_IPW2100_MONITOR
ipw2100_wx_set_promisc(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7908 static int ipw2100_wx_set_promisc(struct net_device *dev,
7909 struct iw_request_info *info,
7910 union iwreq_data *wrqu, char *extra)
7911 {
7912 struct ipw2100_priv *priv = libipw_priv(dev);
7913 int *parms = (int *)extra;
7914 int enable = (parms[0] > 0);
7915 int err = 0;
7916
7917 mutex_lock(&priv->action_mutex);
7918 if (!(priv->status & STATUS_INITIALIZED)) {
7919 err = -EIO;
7920 goto done;
7921 }
7922
7923 if (enable) {
7924 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7925 err = ipw2100_set_channel(priv, parms[1], 0);
7926 goto done;
7927 }
7928 priv->channel = parms[1];
7929 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7930 } else {
7931 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7932 err = ipw2100_switch_mode(priv, priv->last_mode);
7933 }
7934 done:
7935 mutex_unlock(&priv->action_mutex);
7936 return err;
7937 }
7938
ipw2100_wx_reset(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7939 static int ipw2100_wx_reset(struct net_device *dev,
7940 struct iw_request_info *info,
7941 union iwreq_data *wrqu, char *extra)
7942 {
7943 struct ipw2100_priv *priv = libipw_priv(dev);
7944 if (priv->status & STATUS_INITIALIZED)
7945 schedule_reset(priv);
7946 return 0;
7947 }
7948
7949 #endif
7950
ipw2100_wx_set_powermode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7951 static int ipw2100_wx_set_powermode(struct net_device *dev,
7952 struct iw_request_info *info,
7953 union iwreq_data *wrqu, char *extra)
7954 {
7955 struct ipw2100_priv *priv = libipw_priv(dev);
7956 int err = 0, mode = *(int *)extra;
7957
7958 mutex_lock(&priv->action_mutex);
7959 if (!(priv->status & STATUS_INITIALIZED)) {
7960 err = -EIO;
7961 goto done;
7962 }
7963
7964 if ((mode < 0) || (mode > POWER_MODES))
7965 mode = IPW_POWER_AUTO;
7966
7967 if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7968 err = ipw2100_set_power_mode(priv, mode);
7969 done:
7970 mutex_unlock(&priv->action_mutex);
7971 return err;
7972 }
7973
7974 #define MAX_POWER_STRING 80
ipw2100_wx_get_powermode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7975 static int ipw2100_wx_get_powermode(struct net_device *dev,
7976 struct iw_request_info *info,
7977 union iwreq_data *wrqu, char *extra)
7978 {
7979 /*
7980 * This can be called at any time. No action lock required
7981 */
7982
7983 struct ipw2100_priv *priv = libipw_priv(dev);
7984 int level = IPW_POWER_LEVEL(priv->power_mode);
7985 s32 timeout, period;
7986
7987 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7988 snprintf(extra, MAX_POWER_STRING,
7989 "Power save level: %d (Off)", level);
7990 } else {
7991 switch (level) {
7992 case IPW_POWER_MODE_CAM:
7993 snprintf(extra, MAX_POWER_STRING,
7994 "Power save level: %d (None)", level);
7995 break;
7996 case IPW_POWER_AUTO:
7997 snprintf(extra, MAX_POWER_STRING,
7998 "Power save level: %d (Auto)", level);
7999 break;
8000 default:
8001 timeout = timeout_duration[level - 1] / 1000;
8002 period = period_duration[level - 1] / 1000;
8003 snprintf(extra, MAX_POWER_STRING,
8004 "Power save level: %d "
8005 "(Timeout %dms, Period %dms)",
8006 level, timeout, period);
8007 }
8008 }
8009
8010 wrqu->data.length = strlen(extra) + 1;
8011
8012 return 0;
8013 }
8014
ipw2100_wx_set_preamble(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8015 static int ipw2100_wx_set_preamble(struct net_device *dev,
8016 struct iw_request_info *info,
8017 union iwreq_data *wrqu, char *extra)
8018 {
8019 struct ipw2100_priv *priv = libipw_priv(dev);
8020 int err, mode = *(int *)extra;
8021
8022 mutex_lock(&priv->action_mutex);
8023 if (!(priv->status & STATUS_INITIALIZED)) {
8024 err = -EIO;
8025 goto done;
8026 }
8027
8028 if (mode == 1)
8029 priv->config |= CFG_LONG_PREAMBLE;
8030 else if (mode == 0)
8031 priv->config &= ~CFG_LONG_PREAMBLE;
8032 else {
8033 err = -EINVAL;
8034 goto done;
8035 }
8036
8037 err = ipw2100_system_config(priv, 0);
8038
8039 done:
8040 mutex_unlock(&priv->action_mutex);
8041 return err;
8042 }
8043
ipw2100_wx_get_preamble(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8044 static int ipw2100_wx_get_preamble(struct net_device *dev,
8045 struct iw_request_info *info,
8046 union iwreq_data *wrqu, char *extra)
8047 {
8048 /*
8049 * This can be called at any time. No action lock required
8050 */
8051
8052 struct ipw2100_priv *priv = libipw_priv(dev);
8053
8054 if (priv->config & CFG_LONG_PREAMBLE)
8055 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
8056 else
8057 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
8058
8059 return 0;
8060 }
8061
8062 #ifdef CONFIG_IPW2100_MONITOR
ipw2100_wx_set_crc_check(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8063 static int ipw2100_wx_set_crc_check(struct net_device *dev,
8064 struct iw_request_info *info,
8065 union iwreq_data *wrqu, char *extra)
8066 {
8067 struct ipw2100_priv *priv = libipw_priv(dev);
8068 int err, mode = *(int *)extra;
8069
8070 mutex_lock(&priv->action_mutex);
8071 if (!(priv->status & STATUS_INITIALIZED)) {
8072 err = -EIO;
8073 goto done;
8074 }
8075
8076 if (mode == 1)
8077 priv->config |= CFG_CRC_CHECK;
8078 else if (mode == 0)
8079 priv->config &= ~CFG_CRC_CHECK;
8080 else {
8081 err = -EINVAL;
8082 goto done;
8083 }
8084 err = 0;
8085
8086 done:
8087 mutex_unlock(&priv->action_mutex);
8088 return err;
8089 }
8090
ipw2100_wx_get_crc_check(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8091 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8092 struct iw_request_info *info,
8093 union iwreq_data *wrqu, char *extra)
8094 {
8095 /*
8096 * This can be called at any time. No action lock required
8097 */
8098
8099 struct ipw2100_priv *priv = libipw_priv(dev);
8100
8101 if (priv->config & CFG_CRC_CHECK)
8102 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8103 else
8104 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8105
8106 return 0;
8107 }
8108 #endif /* CONFIG_IPW2100_MONITOR */
8109
8110 static iw_handler ipw2100_wx_handlers[] = {
8111 NULL, /* SIOCSIWCOMMIT */
8112 ipw2100_wx_get_name, /* SIOCGIWNAME */
8113 NULL, /* SIOCSIWNWID */
8114 NULL, /* SIOCGIWNWID */
8115 ipw2100_wx_set_freq, /* SIOCSIWFREQ */
8116 ipw2100_wx_get_freq, /* SIOCGIWFREQ */
8117 ipw2100_wx_set_mode, /* SIOCSIWMODE */
8118 ipw2100_wx_get_mode, /* SIOCGIWMODE */
8119 NULL, /* SIOCSIWSENS */
8120 NULL, /* SIOCGIWSENS */
8121 NULL, /* SIOCSIWRANGE */
8122 ipw2100_wx_get_range, /* SIOCGIWRANGE */
8123 NULL, /* SIOCSIWPRIV */
8124 NULL, /* SIOCGIWPRIV */
8125 NULL, /* SIOCSIWSTATS */
8126 NULL, /* SIOCGIWSTATS */
8127 NULL, /* SIOCSIWSPY */
8128 NULL, /* SIOCGIWSPY */
8129 NULL, /* SIOCGIWTHRSPY */
8130 NULL, /* SIOCWIWTHRSPY */
8131 ipw2100_wx_set_wap, /* SIOCSIWAP */
8132 ipw2100_wx_get_wap, /* SIOCGIWAP */
8133 ipw2100_wx_set_mlme, /* SIOCSIWMLME */
8134 NULL, /* SIOCGIWAPLIST -- deprecated */
8135 ipw2100_wx_set_scan, /* SIOCSIWSCAN */
8136 ipw2100_wx_get_scan, /* SIOCGIWSCAN */
8137 ipw2100_wx_set_essid, /* SIOCSIWESSID */
8138 ipw2100_wx_get_essid, /* SIOCGIWESSID */
8139 ipw2100_wx_set_nick, /* SIOCSIWNICKN */
8140 ipw2100_wx_get_nick, /* SIOCGIWNICKN */
8141 NULL, /* -- hole -- */
8142 NULL, /* -- hole -- */
8143 ipw2100_wx_set_rate, /* SIOCSIWRATE */
8144 ipw2100_wx_get_rate, /* SIOCGIWRATE */
8145 ipw2100_wx_set_rts, /* SIOCSIWRTS */
8146 ipw2100_wx_get_rts, /* SIOCGIWRTS */
8147 ipw2100_wx_set_frag, /* SIOCSIWFRAG */
8148 ipw2100_wx_get_frag, /* SIOCGIWFRAG */
8149 ipw2100_wx_set_txpow, /* SIOCSIWTXPOW */
8150 ipw2100_wx_get_txpow, /* SIOCGIWTXPOW */
8151 ipw2100_wx_set_retry, /* SIOCSIWRETRY */
8152 ipw2100_wx_get_retry, /* SIOCGIWRETRY */
8153 ipw2100_wx_set_encode, /* SIOCSIWENCODE */
8154 ipw2100_wx_get_encode, /* SIOCGIWENCODE */
8155 ipw2100_wx_set_power, /* SIOCSIWPOWER */
8156 ipw2100_wx_get_power, /* SIOCGIWPOWER */
8157 NULL, /* -- hole -- */
8158 NULL, /* -- hole -- */
8159 ipw2100_wx_set_genie, /* SIOCSIWGENIE */
8160 ipw2100_wx_get_genie, /* SIOCGIWGENIE */
8161 ipw2100_wx_set_auth, /* SIOCSIWAUTH */
8162 ipw2100_wx_get_auth, /* SIOCGIWAUTH */
8163 ipw2100_wx_set_encodeext, /* SIOCSIWENCODEEXT */
8164 ipw2100_wx_get_encodeext, /* SIOCGIWENCODEEXT */
8165 NULL, /* SIOCSIWPMKSA */
8166 };
8167
8168 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8169 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8170 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8171 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8172 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8173 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8174 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8175 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8176
8177 static const struct iw_priv_args ipw2100_private_args[] = {
8178
8179 #ifdef CONFIG_IPW2100_MONITOR
8180 {
8181 IPW2100_PRIV_SET_MONITOR,
8182 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8183 {
8184 IPW2100_PRIV_RESET,
8185 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8186 #endif /* CONFIG_IPW2100_MONITOR */
8187
8188 {
8189 IPW2100_PRIV_SET_POWER,
8190 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8191 {
8192 IPW2100_PRIV_GET_POWER,
8193 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8194 "get_power"},
8195 {
8196 IPW2100_PRIV_SET_LONGPREAMBLE,
8197 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8198 {
8199 IPW2100_PRIV_GET_LONGPREAMBLE,
8200 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8201 #ifdef CONFIG_IPW2100_MONITOR
8202 {
8203 IPW2100_PRIV_SET_CRC_CHECK,
8204 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8205 {
8206 IPW2100_PRIV_GET_CRC_CHECK,
8207 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8208 #endif /* CONFIG_IPW2100_MONITOR */
8209 };
8210
8211 static iw_handler ipw2100_private_handler[] = {
8212 #ifdef CONFIG_IPW2100_MONITOR
8213 ipw2100_wx_set_promisc,
8214 ipw2100_wx_reset,
8215 #else /* CONFIG_IPW2100_MONITOR */
8216 NULL,
8217 NULL,
8218 #endif /* CONFIG_IPW2100_MONITOR */
8219 ipw2100_wx_set_powermode,
8220 ipw2100_wx_get_powermode,
8221 ipw2100_wx_set_preamble,
8222 ipw2100_wx_get_preamble,
8223 #ifdef CONFIG_IPW2100_MONITOR
8224 ipw2100_wx_set_crc_check,
8225 ipw2100_wx_get_crc_check,
8226 #else /* CONFIG_IPW2100_MONITOR */
8227 NULL,
8228 NULL,
8229 #endif /* CONFIG_IPW2100_MONITOR */
8230 };
8231
8232 /*
8233 * Get wireless statistics.
8234 * Called by /proc/net/wireless
8235 * Also called by SIOCGIWSTATS
8236 */
ipw2100_wx_wireless_stats(struct net_device * dev)8237 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8238 {
8239 enum {
8240 POOR = 30,
8241 FAIR = 60,
8242 GOOD = 80,
8243 VERY_GOOD = 90,
8244 EXCELLENT = 95,
8245 PERFECT = 100
8246 };
8247 int rssi_qual;
8248 int tx_qual;
8249 int beacon_qual;
8250 int quality;
8251
8252 struct ipw2100_priv *priv = libipw_priv(dev);
8253 struct iw_statistics *wstats;
8254 u32 rssi, tx_retries, missed_beacons, tx_failures;
8255 u32 ord_len = sizeof(u32);
8256
8257 if (!priv)
8258 return (struct iw_statistics *)NULL;
8259
8260 wstats = &priv->wstats;
8261
8262 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8263 * ipw2100_wx_wireless_stats seems to be called before fw is
8264 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8265 * and associated; if not associcated, the values are all meaningless
8266 * anyway, so set them all to NULL and INVALID */
8267 if (!(priv->status & STATUS_ASSOCIATED)) {
8268 wstats->miss.beacon = 0;
8269 wstats->discard.retries = 0;
8270 wstats->qual.qual = 0;
8271 wstats->qual.level = 0;
8272 wstats->qual.noise = 0;
8273 wstats->qual.updated = 7;
8274 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8275 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8276 return wstats;
8277 }
8278
8279 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8280 &missed_beacons, &ord_len))
8281 goto fail_get_ordinal;
8282
8283 /* If we don't have a connection the quality and level is 0 */
8284 if (!(priv->status & STATUS_ASSOCIATED)) {
8285 wstats->qual.qual = 0;
8286 wstats->qual.level = 0;
8287 } else {
8288 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8289 &rssi, &ord_len))
8290 goto fail_get_ordinal;
8291 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8292 if (rssi < 10)
8293 rssi_qual = rssi * POOR / 10;
8294 else if (rssi < 15)
8295 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8296 else if (rssi < 20)
8297 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8298 else if (rssi < 30)
8299 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8300 10 + GOOD;
8301 else
8302 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8303 10 + VERY_GOOD;
8304
8305 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8306 &tx_retries, &ord_len))
8307 goto fail_get_ordinal;
8308
8309 if (tx_retries > 75)
8310 tx_qual = (90 - tx_retries) * POOR / 15;
8311 else if (tx_retries > 70)
8312 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8313 else if (tx_retries > 65)
8314 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8315 else if (tx_retries > 50)
8316 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8317 15 + GOOD;
8318 else
8319 tx_qual = (50 - tx_retries) *
8320 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8321
8322 if (missed_beacons > 50)
8323 beacon_qual = (60 - missed_beacons) * POOR / 10;
8324 else if (missed_beacons > 40)
8325 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8326 10 + POOR;
8327 else if (missed_beacons > 32)
8328 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8329 18 + FAIR;
8330 else if (missed_beacons > 20)
8331 beacon_qual = (32 - missed_beacons) *
8332 (VERY_GOOD - GOOD) / 20 + GOOD;
8333 else
8334 beacon_qual = (20 - missed_beacons) *
8335 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8336
8337 quality = min(tx_qual, rssi_qual);
8338 quality = min(beacon_qual, quality);
8339
8340 #ifdef CONFIG_IPW2100_DEBUG
8341 if (beacon_qual == quality)
8342 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8343 else if (tx_qual == quality)
8344 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8345 else if (quality != 100)
8346 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8347 else
8348 IPW_DEBUG_WX("Quality not clamped.\n");
8349 #endif
8350
8351 wstats->qual.qual = quality;
8352 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8353 }
8354
8355 wstats->qual.noise = 0;
8356 wstats->qual.updated = 7;
8357 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8358
8359 /* FIXME: this is percent and not a # */
8360 wstats->miss.beacon = missed_beacons;
8361
8362 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8363 &tx_failures, &ord_len))
8364 goto fail_get_ordinal;
8365 wstats->discard.retries = tx_failures;
8366
8367 return wstats;
8368
8369 fail_get_ordinal:
8370 IPW_DEBUG_WX("failed querying ordinals.\n");
8371
8372 return (struct iw_statistics *)NULL;
8373 }
8374
8375 static struct iw_handler_def ipw2100_wx_handler_def = {
8376 .standard = ipw2100_wx_handlers,
8377 .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8378 .num_private = ARRAY_SIZE(ipw2100_private_handler),
8379 .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8380 .private = (iw_handler *) ipw2100_private_handler,
8381 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8382 .get_wireless_stats = ipw2100_wx_wireless_stats,
8383 };
8384
ipw2100_wx_event_work(struct work_struct * work)8385 static void ipw2100_wx_event_work(struct work_struct *work)
8386 {
8387 struct ipw2100_priv *priv =
8388 container_of(work, struct ipw2100_priv, wx_event_work.work);
8389 union iwreq_data wrqu;
8390 unsigned int len = ETH_ALEN;
8391
8392 if (priv->status & STATUS_STOPPING)
8393 return;
8394
8395 mutex_lock(&priv->action_mutex);
8396
8397 IPW_DEBUG_WX("enter\n");
8398
8399 mutex_unlock(&priv->action_mutex);
8400
8401 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8402
8403 /* Fetch BSSID from the hardware */
8404 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8405 priv->status & STATUS_RF_KILL_MASK ||
8406 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8407 &priv->bssid, &len)) {
8408 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8409 } else {
8410 /* We now have the BSSID, so can finish setting to the full
8411 * associated state */
8412 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8413 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8414 priv->status &= ~STATUS_ASSOCIATING;
8415 priv->status |= STATUS_ASSOCIATED;
8416 netif_carrier_on(priv->net_dev);
8417 netif_wake_queue(priv->net_dev);
8418 }
8419
8420 if (!(priv->status & STATUS_ASSOCIATED)) {
8421 IPW_DEBUG_WX("Configuring ESSID\n");
8422 mutex_lock(&priv->action_mutex);
8423 /* This is a disassociation event, so kick the firmware to
8424 * look for another AP */
8425 if (priv->config & CFG_STATIC_ESSID)
8426 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8427 0);
8428 else
8429 ipw2100_set_essid(priv, NULL, 0, 0);
8430 mutex_unlock(&priv->action_mutex);
8431 }
8432
8433 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8434 }
8435
8436 #define IPW2100_FW_MAJOR_VERSION 1
8437 #define IPW2100_FW_MINOR_VERSION 3
8438
8439 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8440 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8441
8442 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8443 IPW2100_FW_MAJOR_VERSION)
8444
8445 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8446 "." __stringify(IPW2100_FW_MINOR_VERSION)
8447
8448 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8449
8450 /*
8451
8452 BINARY FIRMWARE HEADER FORMAT
8453
8454 offset length desc
8455 0 2 version
8456 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8457 4 4 fw_len
8458 8 4 uc_len
8459 C fw_len firmware data
8460 12 + fw_len uc_len microcode data
8461
8462 */
8463
8464 struct ipw2100_fw_header {
8465 short version;
8466 short mode;
8467 unsigned int fw_size;
8468 unsigned int uc_size;
8469 } __packed;
8470
ipw2100_mod_firmware_load(struct ipw2100_fw * fw)8471 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8472 {
8473 struct ipw2100_fw_header *h =
8474 (struct ipw2100_fw_header *)fw->fw_entry->data;
8475
8476 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8477 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8478 "(detected version id of %u). "
8479 "See Documentation/networking/README.ipw2100\n",
8480 h->version);
8481 return 1;
8482 }
8483
8484 fw->version = h->version;
8485 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8486 fw->fw.size = h->fw_size;
8487 fw->uc.data = fw->fw.data + h->fw_size;
8488 fw->uc.size = h->uc_size;
8489
8490 return 0;
8491 }
8492
ipw2100_get_firmware(struct ipw2100_priv * priv,struct ipw2100_fw * fw)8493 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8494 struct ipw2100_fw *fw)
8495 {
8496 char *fw_name;
8497 int rc;
8498
8499 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8500 priv->net_dev->name);
8501
8502 switch (priv->ieee->iw_mode) {
8503 case IW_MODE_ADHOC:
8504 fw_name = IPW2100_FW_NAME("-i");
8505 break;
8506 #ifdef CONFIG_IPW2100_MONITOR
8507 case IW_MODE_MONITOR:
8508 fw_name = IPW2100_FW_NAME("-p");
8509 break;
8510 #endif
8511 case IW_MODE_INFRA:
8512 default:
8513 fw_name = IPW2100_FW_NAME("");
8514 break;
8515 }
8516
8517 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8518
8519 if (rc < 0) {
8520 printk(KERN_ERR DRV_NAME ": "
8521 "%s: Firmware '%s' not available or load failed.\n",
8522 priv->net_dev->name, fw_name);
8523 return rc;
8524 }
8525 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8526 fw->fw_entry->size);
8527
8528 ipw2100_mod_firmware_load(fw);
8529
8530 return 0;
8531 }
8532
8533 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8534 #ifdef CONFIG_IPW2100_MONITOR
8535 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8536 #endif
8537 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8538
ipw2100_release_firmware(struct ipw2100_priv * priv,struct ipw2100_fw * fw)8539 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8540 struct ipw2100_fw *fw)
8541 {
8542 fw->version = 0;
8543 if (fw->fw_entry)
8544 release_firmware(fw->fw_entry);
8545 fw->fw_entry = NULL;
8546 }
8547
ipw2100_get_fwversion(struct ipw2100_priv * priv,char * buf,size_t max)8548 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8549 size_t max)
8550 {
8551 char ver[MAX_FW_VERSION_LEN];
8552 u32 len = MAX_FW_VERSION_LEN;
8553 u32 tmp;
8554 int i;
8555 /* firmware version is an ascii string (max len of 14) */
8556 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8557 return -EIO;
8558 tmp = max;
8559 if (len >= max)
8560 len = max - 1;
8561 for (i = 0; i < len; i++)
8562 buf[i] = ver[i];
8563 buf[i] = '\0';
8564 return tmp;
8565 }
8566
ipw2100_get_ucodeversion(struct ipw2100_priv * priv,char * buf,size_t max)8567 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8568 size_t max)
8569 {
8570 u32 ver;
8571 u32 len = sizeof(ver);
8572 /* microcode version is a 32 bit integer */
8573 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8574 return -EIO;
8575 return snprintf(buf, max, "%08X", ver);
8576 }
8577
8578 /*
8579 * On exit, the firmware will have been freed from the fw list
8580 */
ipw2100_fw_download(struct ipw2100_priv * priv,struct ipw2100_fw * fw)8581 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8582 {
8583 /* firmware is constructed of N contiguous entries, each entry is
8584 * structured as:
8585 *
8586 * offset sie desc
8587 * 0 4 address to write to
8588 * 4 2 length of data run
8589 * 6 length data
8590 */
8591 unsigned int addr;
8592 unsigned short len;
8593
8594 const unsigned char *firmware_data = fw->fw.data;
8595 unsigned int firmware_data_left = fw->fw.size;
8596
8597 while (firmware_data_left > 0) {
8598 addr = *(u32 *) (firmware_data);
8599 firmware_data += 4;
8600 firmware_data_left -= 4;
8601
8602 len = *(u16 *) (firmware_data);
8603 firmware_data += 2;
8604 firmware_data_left -= 2;
8605
8606 if (len > 32) {
8607 printk(KERN_ERR DRV_NAME ": "
8608 "Invalid firmware run-length of %d bytes\n",
8609 len);
8610 return -EINVAL;
8611 }
8612
8613 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8614 firmware_data += len;
8615 firmware_data_left -= len;
8616 }
8617
8618 return 0;
8619 }
8620
8621 struct symbol_alive_response {
8622 u8 cmd_id;
8623 u8 seq_num;
8624 u8 ucode_rev;
8625 u8 eeprom_valid;
8626 u16 valid_flags;
8627 u8 IEEE_addr[6];
8628 u16 flags;
8629 u16 pcb_rev;
8630 u16 clock_settle_time; // 1us LSB
8631 u16 powerup_settle_time; // 1us LSB
8632 u16 hop_settle_time; // 1us LSB
8633 u8 date[3]; // month, day, year
8634 u8 time[2]; // hours, minutes
8635 u8 ucode_valid;
8636 };
8637
ipw2100_ucode_download(struct ipw2100_priv * priv,struct ipw2100_fw * fw)8638 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8639 struct ipw2100_fw *fw)
8640 {
8641 struct net_device *dev = priv->net_dev;
8642 const unsigned char *microcode_data = fw->uc.data;
8643 unsigned int microcode_data_left = fw->uc.size;
8644 void __iomem *reg = (void __iomem *)dev->base_addr;
8645
8646 struct symbol_alive_response response;
8647 int i, j;
8648 u8 data;
8649
8650 /* Symbol control */
8651 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8652 readl(reg);
8653 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8654 readl(reg);
8655
8656 /* HW config */
8657 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8658 readl(reg);
8659 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8660 readl(reg);
8661
8662 /* EN_CS_ACCESS bit to reset control store pointer */
8663 write_nic_byte(dev, 0x210000, 0x40);
8664 readl(reg);
8665 write_nic_byte(dev, 0x210000, 0x0);
8666 readl(reg);
8667 write_nic_byte(dev, 0x210000, 0x40);
8668 readl(reg);
8669
8670 /* copy microcode from buffer into Symbol */
8671
8672 while (microcode_data_left > 0) {
8673 write_nic_byte(dev, 0x210010, *microcode_data++);
8674 write_nic_byte(dev, 0x210010, *microcode_data++);
8675 microcode_data_left -= 2;
8676 }
8677
8678 /* EN_CS_ACCESS bit to reset the control store pointer */
8679 write_nic_byte(dev, 0x210000, 0x0);
8680 readl(reg);
8681
8682 /* Enable System (Reg 0)
8683 * first enable causes garbage in RX FIFO */
8684 write_nic_byte(dev, 0x210000, 0x0);
8685 readl(reg);
8686 write_nic_byte(dev, 0x210000, 0x80);
8687 readl(reg);
8688
8689 /* Reset External Baseband Reg */
8690 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8691 readl(reg);
8692 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8693 readl(reg);
8694
8695 /* HW Config (Reg 5) */
8696 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8697 readl(reg);
8698 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8699 readl(reg);
8700
8701 /* Enable System (Reg 0)
8702 * second enable should be OK */
8703 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8704 readl(reg);
8705 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8706
8707 /* check Symbol is enabled - upped this from 5 as it wasn't always
8708 * catching the update */
8709 for (i = 0; i < 10; i++) {
8710 udelay(10);
8711
8712 /* check Dino is enabled bit */
8713 read_nic_byte(dev, 0x210000, &data);
8714 if (data & 0x1)
8715 break;
8716 }
8717
8718 if (i == 10) {
8719 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8720 dev->name);
8721 return -EIO;
8722 }
8723
8724 /* Get Symbol alive response */
8725 for (i = 0; i < 30; i++) {
8726 /* Read alive response structure */
8727 for (j = 0;
8728 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8729 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8730
8731 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8732 break;
8733 udelay(10);
8734 }
8735
8736 if (i == 30) {
8737 printk(KERN_ERR DRV_NAME
8738 ": %s: No response from Symbol - hw not alive\n",
8739 dev->name);
8740 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8741 return -EIO;
8742 }
8743
8744 return 0;
8745 }
8746