1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <asm/unaligned.h>
21 
22 #include "hw.h"
23 #include "hw-ops.h"
24 #include "rc.h"
25 #include "ar9003_mac.h"
26 
27 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
28 
29 MODULE_AUTHOR("Atheros Communications");
30 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
31 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
32 MODULE_LICENSE("Dual BSD/GPL");
33 
ath9k_init(void)34 static int __init ath9k_init(void)
35 {
36 	return 0;
37 }
38 module_init(ath9k_init);
39 
ath9k_exit(void)40 static void __exit ath9k_exit(void)
41 {
42 	return;
43 }
44 module_exit(ath9k_exit);
45 
46 /* Private hardware callbacks */
47 
ath9k_hw_init_cal_settings(struct ath_hw * ah)48 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
49 {
50 	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
51 }
52 
ath9k_hw_init_mode_regs(struct ath_hw * ah)53 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
54 {
55 	ath9k_hw_private_ops(ah)->init_mode_regs(ah);
56 }
57 
ath9k_hw_compute_pll_control(struct ath_hw * ah,struct ath9k_channel * chan)58 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
59 					struct ath9k_channel *chan)
60 {
61 	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
62 }
63 
ath9k_hw_init_mode_gain_regs(struct ath_hw * ah)64 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
65 {
66 	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
67 		return;
68 
69 	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
70 }
71 
ath9k_hw_ani_cache_ini_regs(struct ath_hw * ah)72 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
73 {
74 	/* You will not have this callback if using the old ANI */
75 	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
76 		return;
77 
78 	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
79 }
80 
81 /********************/
82 /* Helper Functions */
83 /********************/
84 
ath9k_hw_set_clockrate(struct ath_hw * ah)85 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
86 {
87 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
88 	struct ath_common *common = ath9k_hw_common(ah);
89 	unsigned int clockrate;
90 
91 	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
92 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
93 		clockrate = 117;
94 	else if (!ah->curchan) /* should really check for CCK instead */
95 		clockrate = ATH9K_CLOCK_RATE_CCK;
96 	else if (conf->channel->band == IEEE80211_BAND_2GHZ)
97 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
98 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
99 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
100 	else
101 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
102 
103 	if (conf_is_ht40(conf))
104 		clockrate *= 2;
105 
106 	if (ah->curchan) {
107 		if (IS_CHAN_HALF_RATE(ah->curchan))
108 			clockrate /= 2;
109 		if (IS_CHAN_QUARTER_RATE(ah->curchan))
110 			clockrate /= 4;
111 	}
112 
113 	common->clockrate = clockrate;
114 }
115 
ath9k_hw_mac_to_clks(struct ath_hw * ah,u32 usecs)116 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
117 {
118 	struct ath_common *common = ath9k_hw_common(ah);
119 
120 	return usecs * common->clockrate;
121 }
122 
ath9k_hw_wait(struct ath_hw * ah,u32 reg,u32 mask,u32 val,u32 timeout)123 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
124 {
125 	int i;
126 
127 	BUG_ON(timeout < AH_TIME_QUANTUM);
128 
129 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
130 		if ((REG_READ(ah, reg) & mask) == val)
131 			return true;
132 
133 		udelay(AH_TIME_QUANTUM);
134 	}
135 
136 	ath_dbg(ath9k_hw_common(ah), ANY,
137 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
138 		timeout, reg, REG_READ(ah, reg), mask, val);
139 
140 	return false;
141 }
142 EXPORT_SYMBOL(ath9k_hw_wait);
143 
ath9k_hw_write_array(struct ath_hw * ah,struct ar5416IniArray * array,int column,unsigned int * writecnt)144 void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
145 			  int column, unsigned int *writecnt)
146 {
147 	int r;
148 
149 	ENABLE_REGWRITE_BUFFER(ah);
150 	for (r = 0; r < array->ia_rows; r++) {
151 		REG_WRITE(ah, INI_RA(array, r, 0),
152 			  INI_RA(array, r, column));
153 		DO_DELAY(*writecnt);
154 	}
155 	REGWRITE_BUFFER_FLUSH(ah);
156 }
157 
ath9k_hw_reverse_bits(u32 val,u32 n)158 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
159 {
160 	u32 retval;
161 	int i;
162 
163 	for (i = 0, retval = 0; i < n; i++) {
164 		retval = (retval << 1) | (val & 1);
165 		val >>= 1;
166 	}
167 	return retval;
168 }
169 
ath9k_hw_computetxtime(struct ath_hw * ah,u8 phy,int kbps,u32 frameLen,u16 rateix,bool shortPreamble)170 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
171 			   u8 phy, int kbps,
172 			   u32 frameLen, u16 rateix,
173 			   bool shortPreamble)
174 {
175 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
176 
177 	if (kbps == 0)
178 		return 0;
179 
180 	switch (phy) {
181 	case WLAN_RC_PHY_CCK:
182 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
183 		if (shortPreamble)
184 			phyTime >>= 1;
185 		numBits = frameLen << 3;
186 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
187 		break;
188 	case WLAN_RC_PHY_OFDM:
189 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
190 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
191 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
192 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
193 			txTime = OFDM_SIFS_TIME_QUARTER
194 				+ OFDM_PREAMBLE_TIME_QUARTER
195 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
196 		} else if (ah->curchan &&
197 			   IS_CHAN_HALF_RATE(ah->curchan)) {
198 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
199 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
200 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
201 			txTime = OFDM_SIFS_TIME_HALF +
202 				OFDM_PREAMBLE_TIME_HALF
203 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
204 		} else {
205 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
206 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
207 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
208 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
209 				+ (numSymbols * OFDM_SYMBOL_TIME);
210 		}
211 		break;
212 	default:
213 		ath_err(ath9k_hw_common(ah),
214 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
215 		txTime = 0;
216 		break;
217 	}
218 
219 	return txTime;
220 }
221 EXPORT_SYMBOL(ath9k_hw_computetxtime);
222 
ath9k_hw_get_channel_centers(struct ath_hw * ah,struct ath9k_channel * chan,struct chan_centers * centers)223 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
224 				  struct ath9k_channel *chan,
225 				  struct chan_centers *centers)
226 {
227 	int8_t extoff;
228 
229 	if (!IS_CHAN_HT40(chan)) {
230 		centers->ctl_center = centers->ext_center =
231 			centers->synth_center = chan->channel;
232 		return;
233 	}
234 
235 	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
236 	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
237 		centers->synth_center =
238 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
239 		extoff = 1;
240 	} else {
241 		centers->synth_center =
242 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
243 		extoff = -1;
244 	}
245 
246 	centers->ctl_center =
247 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
248 	/* 25 MHz spacing is supported by hw but not on upper layers */
249 	centers->ext_center =
250 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
251 }
252 
253 /******************/
254 /* Chip Revisions */
255 /******************/
256 
ath9k_hw_read_revisions(struct ath_hw * ah)257 static void ath9k_hw_read_revisions(struct ath_hw *ah)
258 {
259 	u32 val;
260 
261 	switch (ah->hw_version.devid) {
262 	case AR5416_AR9100_DEVID:
263 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
264 		break;
265 	case AR9300_DEVID_AR9330:
266 		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
267 		if (ah->get_mac_revision) {
268 			ah->hw_version.macRev = ah->get_mac_revision();
269 		} else {
270 			val = REG_READ(ah, AR_SREV);
271 			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
272 		}
273 		return;
274 	case AR9300_DEVID_AR9340:
275 		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
276 		val = REG_READ(ah, AR_SREV);
277 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
278 		return;
279 	}
280 
281 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
282 
283 	if (val == 0xFF) {
284 		val = REG_READ(ah, AR_SREV);
285 		ah->hw_version.macVersion =
286 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
287 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
288 
289 		if (AR_SREV_9462(ah))
290 			ah->is_pciexpress = true;
291 		else
292 			ah->is_pciexpress = (val &
293 					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
294 	} else {
295 		if (!AR_SREV_9100(ah))
296 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
297 
298 		ah->hw_version.macRev = val & AR_SREV_REVISION;
299 
300 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
301 			ah->is_pciexpress = true;
302 	}
303 }
304 
305 /************************************/
306 /* HW Attach, Detach, Init Routines */
307 /************************************/
308 
ath9k_hw_disablepcie(struct ath_hw * ah)309 static void ath9k_hw_disablepcie(struct ath_hw *ah)
310 {
311 	if (!AR_SREV_5416(ah))
312 		return;
313 
314 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
315 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
316 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
317 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
318 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
319 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
320 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
321 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
322 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
323 
324 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
325 }
326 
ath9k_hw_aspm_init(struct ath_hw * ah)327 static void ath9k_hw_aspm_init(struct ath_hw *ah)
328 {
329 	struct ath_common *common = ath9k_hw_common(ah);
330 
331 	if (common->bus_ops->aspm_init)
332 		common->bus_ops->aspm_init(common);
333 }
334 
335 /* This should work for all families including legacy */
ath9k_hw_chip_test(struct ath_hw * ah)336 static bool ath9k_hw_chip_test(struct ath_hw *ah)
337 {
338 	struct ath_common *common = ath9k_hw_common(ah);
339 	u32 regAddr[2] = { AR_STA_ID0 };
340 	u32 regHold[2];
341 	static const u32 patternData[4] = {
342 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
343 	};
344 	int i, j, loop_max;
345 
346 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
347 		loop_max = 2;
348 		regAddr[1] = AR_PHY_BASE + (8 << 2);
349 	} else
350 		loop_max = 1;
351 
352 	for (i = 0; i < loop_max; i++) {
353 		u32 addr = regAddr[i];
354 		u32 wrData, rdData;
355 
356 		regHold[i] = REG_READ(ah, addr);
357 		for (j = 0; j < 0x100; j++) {
358 			wrData = (j << 16) | j;
359 			REG_WRITE(ah, addr, wrData);
360 			rdData = REG_READ(ah, addr);
361 			if (rdData != wrData) {
362 				ath_err(common,
363 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
364 					addr, wrData, rdData);
365 				return false;
366 			}
367 		}
368 		for (j = 0; j < 4; j++) {
369 			wrData = patternData[j];
370 			REG_WRITE(ah, addr, wrData);
371 			rdData = REG_READ(ah, addr);
372 			if (wrData != rdData) {
373 				ath_err(common,
374 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
375 					addr, wrData, rdData);
376 				return false;
377 			}
378 		}
379 		REG_WRITE(ah, regAddr[i], regHold[i]);
380 	}
381 	udelay(100);
382 
383 	return true;
384 }
385 
ath9k_hw_init_config(struct ath_hw * ah)386 static void ath9k_hw_init_config(struct ath_hw *ah)
387 {
388 	int i;
389 
390 	ah->config.dma_beacon_response_time = 2;
391 	ah->config.sw_beacon_response_time = 10;
392 	ah->config.additional_swba_backoff = 0;
393 	ah->config.ack_6mb = 0x0;
394 	ah->config.cwm_ignore_extcca = 0;
395 	ah->config.pcie_clock_req = 0;
396 	ah->config.pcie_waen = 0;
397 	ah->config.analog_shiftreg = 1;
398 	ah->config.enable_ani = true;
399 
400 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
401 		ah->config.spurchans[i][0] = AR_NO_SPUR;
402 		ah->config.spurchans[i][1] = AR_NO_SPUR;
403 	}
404 
405 	/* PAPRD needs some more work to be enabled */
406 	ah->config.paprd_disable = 1;
407 
408 	ah->config.rx_intr_mitigation = true;
409 	ah->config.pcieSerDesWrite = true;
410 
411 	/*
412 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
413 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
414 	 * This means we use it for all AR5416 devices, and the few
415 	 * minor PCI AR9280 devices out there.
416 	 *
417 	 * Serialization is required because these devices do not handle
418 	 * well the case of two concurrent reads/writes due to the latency
419 	 * involved. During one read/write another read/write can be issued
420 	 * on another CPU while the previous read/write may still be working
421 	 * on our hardware, if we hit this case the hardware poops in a loop.
422 	 * We prevent this by serializing reads and writes.
423 	 *
424 	 * This issue is not present on PCI-Express devices or pre-AR5416
425 	 * devices (legacy, 802.11abg).
426 	 */
427 	if (num_possible_cpus() > 1)
428 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
429 }
430 
ath9k_hw_init_defaults(struct ath_hw * ah)431 static void ath9k_hw_init_defaults(struct ath_hw *ah)
432 {
433 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
434 
435 	regulatory->country_code = CTRY_DEFAULT;
436 	regulatory->power_limit = MAX_RATE_POWER;
437 
438 	ah->hw_version.magic = AR5416_MAGIC;
439 	ah->hw_version.subvendorid = 0;
440 
441 	ah->atim_window = 0;
442 	ah->sta_id1_defaults =
443 		AR_STA_ID1_CRPT_MIC_ENABLE |
444 		AR_STA_ID1_MCAST_KSRCH;
445 	if (AR_SREV_9100(ah))
446 		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
447 	ah->enable_32kHz_clock = DONT_USE_32KHZ;
448 	ah->slottime = ATH9K_SLOT_TIME_9;
449 	ah->globaltxtimeout = (u32) -1;
450 	ah->power_mode = ATH9K_PM_UNDEFINED;
451 }
452 
ath9k_hw_init_macaddr(struct ath_hw * ah)453 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
454 {
455 	struct ath_common *common = ath9k_hw_common(ah);
456 	u32 sum;
457 	int i;
458 	u16 eeval;
459 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
460 
461 	sum = 0;
462 	for (i = 0; i < 3; i++) {
463 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
464 		sum += eeval;
465 		common->macaddr[2 * i] = eeval >> 8;
466 		common->macaddr[2 * i + 1] = eeval & 0xff;
467 	}
468 	if (sum == 0 || sum == 0xffff * 3)
469 		return -EADDRNOTAVAIL;
470 
471 	return 0;
472 }
473 
ath9k_hw_post_init(struct ath_hw * ah)474 static int ath9k_hw_post_init(struct ath_hw *ah)
475 {
476 	struct ath_common *common = ath9k_hw_common(ah);
477 	int ecode;
478 
479 	if (common->bus_ops->ath_bus_type != ATH_USB) {
480 		if (!ath9k_hw_chip_test(ah))
481 			return -ENODEV;
482 	}
483 
484 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
485 		ecode = ar9002_hw_rf_claim(ah);
486 		if (ecode != 0)
487 			return ecode;
488 	}
489 
490 	ecode = ath9k_hw_eeprom_init(ah);
491 	if (ecode != 0)
492 		return ecode;
493 
494 	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
495 		ah->eep_ops->get_eeprom_ver(ah),
496 		ah->eep_ops->get_eeprom_rev(ah));
497 
498 	ecode = ath9k_hw_rf_alloc_ext_banks(ah);
499 	if (ecode) {
500 		ath_err(ath9k_hw_common(ah),
501 			"Failed allocating banks for external radio\n");
502 		ath9k_hw_rf_free_ext_banks(ah);
503 		return ecode;
504 	}
505 
506 	if (ah->config.enable_ani) {
507 		ath9k_hw_ani_setup(ah);
508 		ath9k_hw_ani_init(ah);
509 	}
510 
511 	return 0;
512 }
513 
ath9k_hw_attach_ops(struct ath_hw * ah)514 static void ath9k_hw_attach_ops(struct ath_hw *ah)
515 {
516 	if (AR_SREV_9300_20_OR_LATER(ah))
517 		ar9003_hw_attach_ops(ah);
518 	else
519 		ar9002_hw_attach_ops(ah);
520 }
521 
522 /* Called for all hardware families */
__ath9k_hw_init(struct ath_hw * ah)523 static int __ath9k_hw_init(struct ath_hw *ah)
524 {
525 	struct ath_common *common = ath9k_hw_common(ah);
526 	int r = 0;
527 
528 	ath9k_hw_read_revisions(ah);
529 
530 	/*
531 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
532 	 * We need to do this to avoid RMW of this register. We cannot
533 	 * read the reg when chip is asleep.
534 	 */
535 	ah->WARegVal = REG_READ(ah, AR_WA);
536 	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
537 			 AR_WA_ASPM_TIMER_BASED_DISABLE);
538 
539 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
540 		ath_err(common, "Couldn't reset chip\n");
541 		return -EIO;
542 	}
543 
544 	if (AR_SREV_9462(ah))
545 		ah->WARegVal &= ~AR_WA_D3_L1_DISABLE;
546 
547 	ath9k_hw_init_defaults(ah);
548 	ath9k_hw_init_config(ah);
549 
550 	ath9k_hw_attach_ops(ah);
551 
552 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
553 		ath_err(common, "Couldn't wakeup chip\n");
554 		return -EIO;
555 	}
556 
557 	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
558 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
559 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
560 		     !ah->is_pciexpress)) {
561 			ah->config.serialize_regmode =
562 				SER_REG_MODE_ON;
563 		} else {
564 			ah->config.serialize_regmode =
565 				SER_REG_MODE_OFF;
566 		}
567 	}
568 
569 	ath_dbg(common, RESET, "serialize_regmode is %d\n",
570 		ah->config.serialize_regmode);
571 
572 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
573 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
574 	else
575 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
576 
577 	switch (ah->hw_version.macVersion) {
578 	case AR_SREV_VERSION_5416_PCI:
579 	case AR_SREV_VERSION_5416_PCIE:
580 	case AR_SREV_VERSION_9160:
581 	case AR_SREV_VERSION_9100:
582 	case AR_SREV_VERSION_9280:
583 	case AR_SREV_VERSION_9285:
584 	case AR_SREV_VERSION_9287:
585 	case AR_SREV_VERSION_9271:
586 	case AR_SREV_VERSION_9300:
587 	case AR_SREV_VERSION_9330:
588 	case AR_SREV_VERSION_9485:
589 	case AR_SREV_VERSION_9340:
590 	case AR_SREV_VERSION_9462:
591 		break;
592 	default:
593 		ath_err(common,
594 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
595 			ah->hw_version.macVersion, ah->hw_version.macRev);
596 		return -EOPNOTSUPP;
597 	}
598 
599 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
600 	    AR_SREV_9330(ah))
601 		ah->is_pciexpress = false;
602 
603 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
604 	ath9k_hw_init_cal_settings(ah);
605 
606 	ah->ani_function = ATH9K_ANI_ALL;
607 	if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
608 		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
609 	if (!AR_SREV_9300_20_OR_LATER(ah))
610 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
611 
612 	/* disable ANI for 9340 */
613 	if (AR_SREV_9340(ah))
614 		ah->config.enable_ani = false;
615 
616 	ath9k_hw_init_mode_regs(ah);
617 
618 	if (!ah->is_pciexpress)
619 		ath9k_hw_disablepcie(ah);
620 
621 	if (!AR_SREV_9300_20_OR_LATER(ah))
622 		ar9002_hw_cck_chan14_spread(ah);
623 
624 	r = ath9k_hw_post_init(ah);
625 	if (r)
626 		return r;
627 
628 	ath9k_hw_init_mode_gain_regs(ah);
629 	r = ath9k_hw_fill_cap_info(ah);
630 	if (r)
631 		return r;
632 
633 	if (ah->is_pciexpress)
634 		ath9k_hw_aspm_init(ah);
635 
636 	r = ath9k_hw_init_macaddr(ah);
637 	if (r) {
638 		ath_err(common, "Failed to initialize MAC address\n");
639 		return r;
640 	}
641 
642 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
643 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
644 	else
645 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
646 
647 	if (AR_SREV_9330(ah))
648 		ah->bb_watchdog_timeout_ms = 85;
649 	else
650 		ah->bb_watchdog_timeout_ms = 25;
651 
652 	common->state = ATH_HW_INITIALIZED;
653 
654 	return 0;
655 }
656 
ath9k_hw_init(struct ath_hw * ah)657 int ath9k_hw_init(struct ath_hw *ah)
658 {
659 	int ret;
660 	struct ath_common *common = ath9k_hw_common(ah);
661 
662 	/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
663 	switch (ah->hw_version.devid) {
664 	case AR5416_DEVID_PCI:
665 	case AR5416_DEVID_PCIE:
666 	case AR5416_AR9100_DEVID:
667 	case AR9160_DEVID_PCI:
668 	case AR9280_DEVID_PCI:
669 	case AR9280_DEVID_PCIE:
670 	case AR9285_DEVID_PCIE:
671 	case AR9287_DEVID_PCI:
672 	case AR9287_DEVID_PCIE:
673 	case AR2427_DEVID_PCIE:
674 	case AR9300_DEVID_PCIE:
675 	case AR9300_DEVID_AR9485_PCIE:
676 	case AR9300_DEVID_AR9330:
677 	case AR9300_DEVID_AR9340:
678 	case AR9300_DEVID_AR9580:
679 	case AR9300_DEVID_AR9462:
680 		break;
681 	default:
682 		if (common->bus_ops->ath_bus_type == ATH_USB)
683 			break;
684 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
685 			ah->hw_version.devid);
686 		return -EOPNOTSUPP;
687 	}
688 
689 	ret = __ath9k_hw_init(ah);
690 	if (ret) {
691 		ath_err(common,
692 			"Unable to initialize hardware; initialization status: %d\n",
693 			ret);
694 		return ret;
695 	}
696 
697 	return 0;
698 }
699 EXPORT_SYMBOL(ath9k_hw_init);
700 
ath9k_hw_init_qos(struct ath_hw * ah)701 static void ath9k_hw_init_qos(struct ath_hw *ah)
702 {
703 	ENABLE_REGWRITE_BUFFER(ah);
704 
705 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
706 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
707 
708 	REG_WRITE(ah, AR_QOS_NO_ACK,
709 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
710 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
711 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
712 
713 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
714 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
715 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
716 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
717 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
718 
719 	REGWRITE_BUFFER_FLUSH(ah);
720 }
721 
ar9003_get_pll_sqsum_dvc(struct ath_hw * ah)722 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
723 {
724 	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
725 	udelay(100);
726 	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
727 
728 	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
729 		udelay(100);
730 
731 	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
732 }
733 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
734 
ath9k_hw_init_pll(struct ath_hw * ah,struct ath9k_channel * chan)735 static void ath9k_hw_init_pll(struct ath_hw *ah,
736 			      struct ath9k_channel *chan)
737 {
738 	u32 pll;
739 
740 	if (AR_SREV_9485(ah)) {
741 
742 		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
743 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
744 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
745 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
746 			      AR_CH0_DPLL2_KD, 0x40);
747 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
748 			      AR_CH0_DPLL2_KI, 0x4);
749 
750 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
751 			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
752 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
753 			      AR_CH0_BB_DPLL1_NINI, 0x58);
754 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
755 			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
756 
757 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
758 			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
759 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
760 			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
761 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
762 			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
763 
764 		/* program BB PLL phase_shift to 0x6 */
765 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
766 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
767 
768 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
769 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
770 		udelay(1000);
771 	} else if (AR_SREV_9330(ah)) {
772 		u32 ddr_dpll2, pll_control2, kd;
773 
774 		if (ah->is_clk_25mhz) {
775 			ddr_dpll2 = 0x18e82f01;
776 			pll_control2 = 0xe04a3d;
777 			kd = 0x1d;
778 		} else {
779 			ddr_dpll2 = 0x19e82f01;
780 			pll_control2 = 0x886666;
781 			kd = 0x3d;
782 		}
783 
784 		/* program DDR PLL ki and kd value */
785 		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
786 
787 		/* program DDR PLL phase_shift */
788 		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
789 			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
790 
791 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
792 		udelay(1000);
793 
794 		/* program refdiv, nint, frac to RTC register */
795 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
796 
797 		/* program BB PLL kd and ki value */
798 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
799 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
800 
801 		/* program BB PLL phase_shift */
802 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
803 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
804 	} else if (AR_SREV_9340(ah)) {
805 		u32 regval, pll2_divint, pll2_divfrac, refdiv;
806 
807 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
808 		udelay(1000);
809 
810 		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
811 		udelay(100);
812 
813 		if (ah->is_clk_25mhz) {
814 			pll2_divint = 0x54;
815 			pll2_divfrac = 0x1eb85;
816 			refdiv = 3;
817 		} else {
818 			pll2_divint = 88;
819 			pll2_divfrac = 0;
820 			refdiv = 5;
821 		}
822 
823 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
824 		regval |= (0x1 << 16);
825 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
826 		udelay(100);
827 
828 		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
829 			  (pll2_divint << 18) | pll2_divfrac);
830 		udelay(100);
831 
832 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
833 		regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
834 			 (0x4 << 26) | (0x18 << 19);
835 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
836 		REG_WRITE(ah, AR_PHY_PLL_MODE,
837 			  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
838 		udelay(1000);
839 	}
840 
841 	pll = ath9k_hw_compute_pll_control(ah, chan);
842 
843 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
844 
845 	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah))
846 		udelay(1000);
847 
848 	/* Switch the core clock for ar9271 to 117Mhz */
849 	if (AR_SREV_9271(ah)) {
850 		udelay(500);
851 		REG_WRITE(ah, 0x50040, 0x304);
852 	}
853 
854 	udelay(RTC_PLL_SETTLE_DELAY);
855 
856 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
857 
858 	if (AR_SREV_9340(ah)) {
859 		if (ah->is_clk_25mhz) {
860 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
861 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
862 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
863 		} else {
864 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
865 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
866 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
867 		}
868 		udelay(100);
869 	}
870 }
871 
ath9k_hw_init_interrupt_masks(struct ath_hw * ah,enum nl80211_iftype opmode)872 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
873 					  enum nl80211_iftype opmode)
874 {
875 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
876 	u32 imr_reg = AR_IMR_TXERR |
877 		AR_IMR_TXURN |
878 		AR_IMR_RXERR |
879 		AR_IMR_RXORN |
880 		AR_IMR_BCNMISC;
881 
882 	if (AR_SREV_9340(ah))
883 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
884 
885 	if (AR_SREV_9300_20_OR_LATER(ah)) {
886 		imr_reg |= AR_IMR_RXOK_HP;
887 		if (ah->config.rx_intr_mitigation)
888 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
889 		else
890 			imr_reg |= AR_IMR_RXOK_LP;
891 
892 	} else {
893 		if (ah->config.rx_intr_mitigation)
894 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
895 		else
896 			imr_reg |= AR_IMR_RXOK;
897 	}
898 
899 	if (ah->config.tx_intr_mitigation)
900 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
901 	else
902 		imr_reg |= AR_IMR_TXOK;
903 
904 	if (opmode == NL80211_IFTYPE_AP)
905 		imr_reg |= AR_IMR_MIB;
906 
907 	ENABLE_REGWRITE_BUFFER(ah);
908 
909 	REG_WRITE(ah, AR_IMR, imr_reg);
910 	ah->imrs2_reg |= AR_IMR_S2_GTT;
911 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
912 
913 	if (!AR_SREV_9100(ah)) {
914 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
915 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
916 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
917 	}
918 
919 	REGWRITE_BUFFER_FLUSH(ah);
920 
921 	if (AR_SREV_9300_20_OR_LATER(ah)) {
922 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
923 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
924 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
925 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
926 	}
927 }
928 
ath9k_hw_set_sifs_time(struct ath_hw * ah,u32 us)929 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
930 {
931 	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
932 	val = min(val, (u32) 0xFFFF);
933 	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
934 }
935 
ath9k_hw_setslottime(struct ath_hw * ah,u32 us)936 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
937 {
938 	u32 val = ath9k_hw_mac_to_clks(ah, us);
939 	val = min(val, (u32) 0xFFFF);
940 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
941 }
942 
ath9k_hw_set_ack_timeout(struct ath_hw * ah,u32 us)943 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
944 {
945 	u32 val = ath9k_hw_mac_to_clks(ah, us);
946 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
947 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
948 }
949 
ath9k_hw_set_cts_timeout(struct ath_hw * ah,u32 us)950 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
951 {
952 	u32 val = ath9k_hw_mac_to_clks(ah, us);
953 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
954 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
955 }
956 
ath9k_hw_set_global_txtimeout(struct ath_hw * ah,u32 tu)957 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
958 {
959 	if (tu > 0xFFFF) {
960 		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
961 			tu);
962 		ah->globaltxtimeout = (u32) -1;
963 		return false;
964 	} else {
965 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
966 		ah->globaltxtimeout = tu;
967 		return true;
968 	}
969 }
970 
ath9k_hw_init_global_settings(struct ath_hw * ah)971 void ath9k_hw_init_global_settings(struct ath_hw *ah)
972 {
973 	struct ath_common *common = ath9k_hw_common(ah);
974 	struct ieee80211_conf *conf = &common->hw->conf;
975 	const struct ath9k_channel *chan = ah->curchan;
976 	int acktimeout, ctstimeout;
977 	int slottime;
978 	int sifstime;
979 	int rx_lat = 0, tx_lat = 0, eifs = 0;
980 	u32 reg;
981 
982 	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
983 		ah->misc_mode);
984 
985 	if (!chan)
986 		return;
987 
988 	if (ah->misc_mode != 0)
989 		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
990 
991 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
992 		rx_lat = 41;
993 	else
994 		rx_lat = 37;
995 	tx_lat = 54;
996 
997 	if (IS_CHAN_HALF_RATE(chan)) {
998 		eifs = 175;
999 		rx_lat *= 2;
1000 		tx_lat *= 2;
1001 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1002 		    tx_lat += 11;
1003 
1004 		slottime = 13;
1005 		sifstime = 32;
1006 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1007 		eifs = 340;
1008 		rx_lat = (rx_lat * 4) - 1;
1009 		tx_lat *= 4;
1010 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1011 		    tx_lat += 22;
1012 
1013 		slottime = 21;
1014 		sifstime = 64;
1015 	} else {
1016 		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1017 			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1018 			reg = AR_USEC_ASYNC_FIFO;
1019 		} else {
1020 			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1021 				common->clockrate;
1022 			reg = REG_READ(ah, AR_USEC);
1023 		}
1024 		rx_lat = MS(reg, AR_USEC_RX_LAT);
1025 		tx_lat = MS(reg, AR_USEC_TX_LAT);
1026 
1027 		slottime = ah->slottime;
1028 		if (IS_CHAN_5GHZ(chan))
1029 			sifstime = 16;
1030 		else
1031 			sifstime = 10;
1032 	}
1033 
1034 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1035 	acktimeout = slottime + sifstime + 3 * ah->coverage_class;
1036 	ctstimeout = acktimeout;
1037 
1038 	/*
1039 	 * Workaround for early ACK timeouts, add an offset to match the
1040 	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1041 	 * This was initially only meant to work around an issue with delayed
1042 	 * BA frames in some implementations, but it has been found to fix ACK
1043 	 * timeout issues in other cases as well.
1044 	 */
1045 	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ) {
1046 		acktimeout += 64 - sifstime - ah->slottime;
1047 		ctstimeout += 48 - sifstime - ah->slottime;
1048 	}
1049 
1050 
1051 	ath9k_hw_set_sifs_time(ah, sifstime);
1052 	ath9k_hw_setslottime(ah, slottime);
1053 	ath9k_hw_set_ack_timeout(ah, acktimeout);
1054 	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1055 	if (ah->globaltxtimeout != (u32) -1)
1056 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1057 
1058 	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1059 	REG_RMW(ah, AR_USEC,
1060 		(common->clockrate - 1) |
1061 		SM(rx_lat, AR_USEC_RX_LAT) |
1062 		SM(tx_lat, AR_USEC_TX_LAT),
1063 		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1064 
1065 }
1066 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1067 
ath9k_hw_deinit(struct ath_hw * ah)1068 void ath9k_hw_deinit(struct ath_hw *ah)
1069 {
1070 	struct ath_common *common = ath9k_hw_common(ah);
1071 
1072 	if (common->state < ATH_HW_INITIALIZED)
1073 		goto free_hw;
1074 
1075 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1076 
1077 free_hw:
1078 	ath9k_hw_rf_free_ext_banks(ah);
1079 }
1080 EXPORT_SYMBOL(ath9k_hw_deinit);
1081 
1082 /*******/
1083 /* INI */
1084 /*******/
1085 
ath9k_regd_get_ctl(struct ath_regulatory * reg,struct ath9k_channel * chan)1086 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1087 {
1088 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1089 
1090 	if (IS_CHAN_B(chan))
1091 		ctl |= CTL_11B;
1092 	else if (IS_CHAN_G(chan))
1093 		ctl |= CTL_11G;
1094 	else
1095 		ctl |= CTL_11A;
1096 
1097 	return ctl;
1098 }
1099 
1100 /****************************************/
1101 /* Reset and Channel Switching Routines */
1102 /****************************************/
1103 
ath9k_hw_set_dma(struct ath_hw * ah)1104 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1105 {
1106 	struct ath_common *common = ath9k_hw_common(ah);
1107 
1108 	ENABLE_REGWRITE_BUFFER(ah);
1109 
1110 	/*
1111 	 * set AHB_MODE not to do cacheline prefetches
1112 	*/
1113 	if (!AR_SREV_9300_20_OR_LATER(ah))
1114 		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1115 
1116 	/*
1117 	 * let mac dma reads be in 128 byte chunks
1118 	 */
1119 	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1120 
1121 	REGWRITE_BUFFER_FLUSH(ah);
1122 
1123 	/*
1124 	 * Restore TX Trigger Level to its pre-reset value.
1125 	 * The initial value depends on whether aggregation is enabled, and is
1126 	 * adjusted whenever underruns are detected.
1127 	 */
1128 	if (!AR_SREV_9300_20_OR_LATER(ah))
1129 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1130 
1131 	ENABLE_REGWRITE_BUFFER(ah);
1132 
1133 	/*
1134 	 * let mac dma writes be in 128 byte chunks
1135 	 */
1136 	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1137 
1138 	/*
1139 	 * Setup receive FIFO threshold to hold off TX activities
1140 	 */
1141 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1142 
1143 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1144 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1145 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1146 
1147 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1148 			ah->caps.rx_status_len);
1149 	}
1150 
1151 	/*
1152 	 * reduce the number of usable entries in PCU TXBUF to avoid
1153 	 * wrap around issues.
1154 	 */
1155 	if (AR_SREV_9285(ah)) {
1156 		/* For AR9285 the number of Fifos are reduced to half.
1157 		 * So set the usable tx buf size also to half to
1158 		 * avoid data/delimiter underruns
1159 		 */
1160 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1161 			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1162 	} else if (!AR_SREV_9271(ah)) {
1163 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1164 			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1165 	}
1166 
1167 	REGWRITE_BUFFER_FLUSH(ah);
1168 
1169 	if (AR_SREV_9300_20_OR_LATER(ah))
1170 		ath9k_hw_reset_txstatus_ring(ah);
1171 }
1172 
ath9k_hw_set_operating_mode(struct ath_hw * ah,int opmode)1173 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1174 {
1175 	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1176 	u32 set = AR_STA_ID1_KSRCH_MODE;
1177 
1178 	switch (opmode) {
1179 	case NL80211_IFTYPE_ADHOC:
1180 	case NL80211_IFTYPE_MESH_POINT:
1181 		set |= AR_STA_ID1_ADHOC;
1182 		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1183 		break;
1184 	case NL80211_IFTYPE_AP:
1185 		set |= AR_STA_ID1_STA_AP;
1186 		/* fall through */
1187 	case NL80211_IFTYPE_STATION:
1188 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1189 		break;
1190 	default:
1191 		if (!ah->is_monitoring)
1192 			set = 0;
1193 		break;
1194 	}
1195 	REG_RMW(ah, AR_STA_ID1, set, mask);
1196 }
1197 
ath9k_hw_get_delta_slope_vals(struct ath_hw * ah,u32 coef_scaled,u32 * coef_mantissa,u32 * coef_exponent)1198 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1199 				   u32 *coef_mantissa, u32 *coef_exponent)
1200 {
1201 	u32 coef_exp, coef_man;
1202 
1203 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1204 		if ((coef_scaled >> coef_exp) & 0x1)
1205 			break;
1206 
1207 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1208 
1209 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1210 
1211 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1212 	*coef_exponent = coef_exp - 16;
1213 }
1214 
ath9k_hw_set_reset(struct ath_hw * ah,int type)1215 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1216 {
1217 	u32 rst_flags;
1218 	u32 tmpReg;
1219 
1220 	if (AR_SREV_9100(ah)) {
1221 		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1222 			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1223 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1224 	}
1225 
1226 	ENABLE_REGWRITE_BUFFER(ah);
1227 
1228 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1229 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1230 		udelay(10);
1231 	}
1232 
1233 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1234 		  AR_RTC_FORCE_WAKE_ON_INT);
1235 
1236 	if (AR_SREV_9100(ah)) {
1237 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1238 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1239 	} else {
1240 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1241 		if (tmpReg &
1242 		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1243 		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1244 			u32 val;
1245 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1246 
1247 			val = AR_RC_HOSTIF;
1248 			if (!AR_SREV_9300_20_OR_LATER(ah))
1249 				val |= AR_RC_AHB;
1250 			REG_WRITE(ah, AR_RC, val);
1251 
1252 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1253 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1254 
1255 		rst_flags = AR_RTC_RC_MAC_WARM;
1256 		if (type == ATH9K_RESET_COLD)
1257 			rst_flags |= AR_RTC_RC_MAC_COLD;
1258 	}
1259 
1260 	if (AR_SREV_9330(ah)) {
1261 		int npend = 0;
1262 		int i;
1263 
1264 		/* AR9330 WAR:
1265 		 * call external reset function to reset WMAC if:
1266 		 * - doing a cold reset
1267 		 * - we have pending frames in the TX queues
1268 		 */
1269 
1270 		for (i = 0; i < AR_NUM_QCU; i++) {
1271 			npend = ath9k_hw_numtxpending(ah, i);
1272 			if (npend)
1273 				break;
1274 		}
1275 
1276 		if (ah->external_reset &&
1277 		    (npend || type == ATH9K_RESET_COLD)) {
1278 			int reset_err = 0;
1279 
1280 			ath_dbg(ath9k_hw_common(ah), RESET,
1281 				"reset MAC via external reset\n");
1282 
1283 			reset_err = ah->external_reset();
1284 			if (reset_err) {
1285 				ath_err(ath9k_hw_common(ah),
1286 					"External reset failed, err=%d\n",
1287 					reset_err);
1288 				return false;
1289 			}
1290 
1291 			REG_WRITE(ah, AR_RTC_RESET, 1);
1292 		}
1293 	}
1294 
1295 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1296 
1297 	REGWRITE_BUFFER_FLUSH(ah);
1298 
1299 	udelay(50);
1300 
1301 	REG_WRITE(ah, AR_RTC_RC, 0);
1302 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1303 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1304 		return false;
1305 	}
1306 
1307 	if (!AR_SREV_9100(ah))
1308 		REG_WRITE(ah, AR_RC, 0);
1309 
1310 	if (AR_SREV_9100(ah))
1311 		udelay(50);
1312 
1313 	return true;
1314 }
1315 
ath9k_hw_set_reset_power_on(struct ath_hw * ah)1316 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1317 {
1318 	ENABLE_REGWRITE_BUFFER(ah);
1319 
1320 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1321 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1322 		udelay(10);
1323 	}
1324 
1325 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1326 		  AR_RTC_FORCE_WAKE_ON_INT);
1327 
1328 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1329 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1330 
1331 	REG_WRITE(ah, AR_RTC_RESET, 0);
1332 
1333 	REGWRITE_BUFFER_FLUSH(ah);
1334 
1335 	if (!AR_SREV_9300_20_OR_LATER(ah))
1336 		udelay(2);
1337 
1338 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1339 		REG_WRITE(ah, AR_RC, 0);
1340 
1341 	REG_WRITE(ah, AR_RTC_RESET, 1);
1342 
1343 	if (!ath9k_hw_wait(ah,
1344 			   AR_RTC_STATUS,
1345 			   AR_RTC_STATUS_M,
1346 			   AR_RTC_STATUS_ON,
1347 			   AH_WAIT_TIMEOUT)) {
1348 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1349 		return false;
1350 	}
1351 
1352 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1353 }
1354 
ath9k_hw_set_reset_reg(struct ath_hw * ah,u32 type)1355 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1356 {
1357 	bool ret = false;
1358 
1359 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1360 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1361 		udelay(10);
1362 	}
1363 
1364 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1365 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1366 
1367 	switch (type) {
1368 	case ATH9K_RESET_POWER_ON:
1369 		ret = ath9k_hw_set_reset_power_on(ah);
1370 		break;
1371 	case ATH9K_RESET_WARM:
1372 	case ATH9K_RESET_COLD:
1373 		ret = ath9k_hw_set_reset(ah, type);
1374 		break;
1375 	default:
1376 		break;
1377 	}
1378 
1379 	if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
1380 		REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
1381 
1382 	return ret;
1383 }
1384 
ath9k_hw_chip_reset(struct ath_hw * ah,struct ath9k_channel * chan)1385 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1386 				struct ath9k_channel *chan)
1387 {
1388 	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1389 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1390 			return false;
1391 	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1392 		return false;
1393 
1394 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1395 		return false;
1396 
1397 	ah->chip_fullsleep = false;
1398 	ath9k_hw_init_pll(ah, chan);
1399 	ath9k_hw_set_rfmode(ah, chan);
1400 
1401 	return true;
1402 }
1403 
ath9k_hw_channel_change(struct ath_hw * ah,struct ath9k_channel * chan)1404 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1405 				    struct ath9k_channel *chan)
1406 {
1407 	struct ath_common *common = ath9k_hw_common(ah);
1408 	u32 qnum;
1409 	int r;
1410 	bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1411 	bool band_switch, mode_diff;
1412 	u8 ini_reloaded;
1413 
1414 	band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) !=
1415 		      (ah->curchan->channelFlags & (CHANNEL_2GHZ |
1416 						    CHANNEL_5GHZ));
1417 	mode_diff = (chan->chanmode != ah->curchan->chanmode);
1418 
1419 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1420 		if (ath9k_hw_numtxpending(ah, qnum)) {
1421 			ath_dbg(common, QUEUE,
1422 				"Transmit frames pending on queue %d\n", qnum);
1423 			return false;
1424 		}
1425 	}
1426 
1427 	if (!ath9k_hw_rfbus_req(ah)) {
1428 		ath_err(common, "Could not kill baseband RX\n");
1429 		return false;
1430 	}
1431 
1432 	if (edma && (band_switch || mode_diff)) {
1433 		ath9k_hw_mark_phy_inactive(ah);
1434 		udelay(5);
1435 
1436 		ath9k_hw_init_pll(ah, NULL);
1437 
1438 		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1439 			ath_err(common, "Failed to do fast channel change\n");
1440 			return false;
1441 		}
1442 	}
1443 
1444 	ath9k_hw_set_channel_regs(ah, chan);
1445 
1446 	r = ath9k_hw_rf_set_freq(ah, chan);
1447 	if (r) {
1448 		ath_err(common, "Failed to set channel\n");
1449 		return false;
1450 	}
1451 	ath9k_hw_set_clockrate(ah);
1452 	ath9k_hw_apply_txpower(ah, chan);
1453 	ath9k_hw_rfbus_done(ah);
1454 
1455 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1456 		ath9k_hw_set_delta_slope(ah, chan);
1457 
1458 	ath9k_hw_spur_mitigate_freq(ah, chan);
1459 
1460 	if (edma && (band_switch || mode_diff)) {
1461 		ah->ah_flags |= AH_FASTCC;
1462 		if (band_switch || ini_reloaded)
1463 			ah->eep_ops->set_board_values(ah, chan);
1464 
1465 		ath9k_hw_init_bb(ah, chan);
1466 
1467 		if (band_switch || ini_reloaded)
1468 			ath9k_hw_init_cal(ah, chan);
1469 		ah->ah_flags &= ~AH_FASTCC;
1470 	}
1471 
1472 	return true;
1473 }
1474 
ath9k_hw_apply_gpio_override(struct ath_hw * ah)1475 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1476 {
1477 	u32 gpio_mask = ah->gpio_mask;
1478 	int i;
1479 
1480 	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1481 		if (!(gpio_mask & 1))
1482 			continue;
1483 
1484 		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1485 		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1486 	}
1487 }
1488 
ath9k_hw_check_alive(struct ath_hw * ah)1489 bool ath9k_hw_check_alive(struct ath_hw *ah)
1490 {
1491 	int count = 50;
1492 	u32 reg;
1493 
1494 	if (AR_SREV_9285_12_OR_LATER(ah))
1495 		return true;
1496 
1497 	do {
1498 		reg = REG_READ(ah, AR_OBS_BUS_1);
1499 
1500 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1501 			continue;
1502 
1503 		switch (reg & 0x7E000B00) {
1504 		case 0x1E000000:
1505 		case 0x52000B00:
1506 		case 0x18000B00:
1507 			continue;
1508 		default:
1509 			return true;
1510 		}
1511 	} while (count-- > 0);
1512 
1513 	return false;
1514 }
1515 EXPORT_SYMBOL(ath9k_hw_check_alive);
1516 
ath9k_hw_reset(struct ath_hw * ah,struct ath9k_channel * chan,struct ath9k_hw_cal_data * caldata,bool bChannelChange)1517 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1518 		   struct ath9k_hw_cal_data *caldata, bool bChannelChange)
1519 {
1520 	struct ath_common *common = ath9k_hw_common(ah);
1521 	struct ath9k_hw_mci *mci_hw = &ah->btcoex_hw.mci;
1522 	u32 saveLedState;
1523 	struct ath9k_channel *curchan = ah->curchan;
1524 	u32 saveDefAntenna;
1525 	u32 macStaId1;
1526 	u64 tsf = 0;
1527 	int i, r;
1528 	bool allow_fbs = false;
1529 	bool mci = !!(ah->caps.hw_caps & ATH9K_HW_CAP_MCI);
1530 	bool save_fullsleep = ah->chip_fullsleep;
1531 
1532 	if (mci) {
1533 
1534 		ar9003_mci_2g5g_changed(ah, IS_CHAN_2GHZ(chan));
1535 
1536 		if (mci_hw->bt_state == MCI_BT_CAL_START) {
1537 			u32 payload[4] = {0, 0, 0, 0};
1538 
1539 			ath_dbg(common, MCI, "MCI stop rx for BT CAL\n");
1540 
1541 			mci_hw->bt_state = MCI_BT_CAL;
1542 
1543 			/*
1544 			 * MCI FIX: disable mci interrupt here. This is to avoid
1545 			 * SW_MSG_DONE or RX_MSG bits to trigger MCI_INT and
1546 			 * lead to mci_intr reentry.
1547 			 */
1548 
1549 			ar9003_mci_disable_interrupt(ah);
1550 
1551 			ath_dbg(common, MCI, "send WLAN_CAL_GRANT\n");
1552 			MCI_GPM_SET_CAL_TYPE(payload, MCI_GPM_WLAN_CAL_GRANT);
1553 			ar9003_mci_send_message(ah, MCI_GPM, 0, payload,
1554 						16, true, false);
1555 
1556 			ath_dbg(common, MCI, "\nMCI BT is calibrating\n");
1557 
1558 			/* Wait BT calibration to be completed for 25ms */
1559 
1560 			if (ar9003_mci_wait_for_gpm(ah, MCI_GPM_BT_CAL_DONE,
1561 								  0, 25000))
1562 				ath_dbg(common, MCI,
1563 					"MCI got BT_CAL_DONE\n");
1564 			else
1565 				ath_dbg(common, MCI,
1566 					"MCI ### BT cal takes to long, force bt_state to be bt_awake\n");
1567 			mci_hw->bt_state = MCI_BT_AWAKE;
1568 			/* MCI FIX: enable mci interrupt here */
1569 			ar9003_mci_enable_interrupt(ah);
1570 
1571 			return true;
1572 		}
1573 	}
1574 
1575 
1576 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1577 		return -EIO;
1578 
1579 	if (curchan && !ah->chip_fullsleep)
1580 		ath9k_hw_getnf(ah, curchan);
1581 
1582 	ah->caldata = caldata;
1583 	if (caldata &&
1584 	    (chan->channel != caldata->channel ||
1585 	     (chan->channelFlags & ~CHANNEL_CW_INT) !=
1586 	     (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1587 		/* Operating channel changed, reset channel calibration data */
1588 		memset(caldata, 0, sizeof(*caldata));
1589 		ath9k_init_nfcal_hist_buffer(ah, chan);
1590 	}
1591 	ah->noise = ath9k_hw_getchan_noise(ah, chan);
1592 
1593 	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1594 		bChannelChange = false;
1595 
1596 	if (caldata &&
1597 	    caldata->done_txiqcal_once &&
1598 	    caldata->done_txclcal_once &&
1599 	    caldata->rtt_hist.num_readings)
1600 		allow_fbs = true;
1601 
1602 	if (bChannelChange &&
1603 	    (ah->chip_fullsleep != true) &&
1604 	    (ah->curchan != NULL) &&
1605 	    (chan->channel != ah->curchan->channel) &&
1606 	    (allow_fbs ||
1607 	     ((chan->channelFlags & CHANNEL_ALL) ==
1608 	      (ah->curchan->channelFlags & CHANNEL_ALL)))) {
1609 		if (ath9k_hw_channel_change(ah, chan)) {
1610 			ath9k_hw_loadnf(ah, ah->curchan);
1611 			ath9k_hw_start_nfcal(ah, true);
1612 			if (mci && mci_hw->ready)
1613 				ar9003_mci_2g5g_switch(ah, true);
1614 
1615 			if (AR_SREV_9271(ah))
1616 				ar9002_hw_load_ani_reg(ah, chan);
1617 			return 0;
1618 		}
1619 	}
1620 
1621 	if (mci) {
1622 		ar9003_mci_disable_interrupt(ah);
1623 
1624 		if (mci_hw->ready && !save_fullsleep) {
1625 			ar9003_mci_mute_bt(ah);
1626 			udelay(20);
1627 			REG_WRITE(ah, AR_BTCOEX_CTRL, 0);
1628 		}
1629 
1630 		mci_hw->bt_state = MCI_BT_SLEEP;
1631 		mci_hw->ready = false;
1632 	}
1633 
1634 
1635 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1636 	if (saveDefAntenna == 0)
1637 		saveDefAntenna = 1;
1638 
1639 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1640 
1641 	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1642 	if (AR_SREV_9100(ah) ||
1643 	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1644 		tsf = ath9k_hw_gettsf64(ah);
1645 
1646 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1647 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1648 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1649 
1650 	ath9k_hw_mark_phy_inactive(ah);
1651 
1652 	ah->paprd_table_write_done = false;
1653 
1654 	/* Only required on the first reset */
1655 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1656 		REG_WRITE(ah,
1657 			  AR9271_RESET_POWER_DOWN_CONTROL,
1658 			  AR9271_RADIO_RF_RST);
1659 		udelay(50);
1660 	}
1661 
1662 	if (!ath9k_hw_chip_reset(ah, chan)) {
1663 		ath_err(common, "Chip reset failed\n");
1664 		return -EINVAL;
1665 	}
1666 
1667 	/* Only required on the first reset */
1668 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1669 		ah->htc_reset_init = false;
1670 		REG_WRITE(ah,
1671 			  AR9271_RESET_POWER_DOWN_CONTROL,
1672 			  AR9271_GATE_MAC_CTL);
1673 		udelay(50);
1674 	}
1675 
1676 	/* Restore TSF */
1677 	if (tsf)
1678 		ath9k_hw_settsf64(ah, tsf);
1679 
1680 	if (AR_SREV_9280_20_OR_LATER(ah))
1681 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1682 
1683 	if (!AR_SREV_9300_20_OR_LATER(ah))
1684 		ar9002_hw_enable_async_fifo(ah);
1685 
1686 	r = ath9k_hw_process_ini(ah, chan);
1687 	if (r)
1688 		return r;
1689 
1690 	if (mci)
1691 		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1692 
1693 	/*
1694 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1695 	 * right after the chip reset. When that happens, write a new
1696 	 * value after the initvals have been applied, with an offset
1697 	 * based on measured time difference
1698 	 */
1699 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1700 		tsf += 1500;
1701 		ath9k_hw_settsf64(ah, tsf);
1702 	}
1703 
1704 	/* Setup MFP options for CCMP */
1705 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1706 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1707 		 * frames when constructing CCMP AAD. */
1708 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1709 			      0xc7ff);
1710 		ah->sw_mgmt_crypto = false;
1711 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1712 		/* Disable hardware crypto for management frames */
1713 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1714 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1715 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1716 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1717 		ah->sw_mgmt_crypto = true;
1718 	} else
1719 		ah->sw_mgmt_crypto = true;
1720 
1721 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1722 		ath9k_hw_set_delta_slope(ah, chan);
1723 
1724 	ath9k_hw_spur_mitigate_freq(ah, chan);
1725 	ah->eep_ops->set_board_values(ah, chan);
1726 
1727 	ENABLE_REGWRITE_BUFFER(ah);
1728 
1729 	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1730 	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1731 		  | macStaId1
1732 		  | AR_STA_ID1_RTS_USE_DEF
1733 		  | (ah->config.
1734 		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1735 		  | ah->sta_id1_defaults);
1736 	ath_hw_setbssidmask(common);
1737 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1738 	ath9k_hw_write_associd(ah);
1739 	REG_WRITE(ah, AR_ISR, ~0);
1740 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1741 
1742 	REGWRITE_BUFFER_FLUSH(ah);
1743 
1744 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1745 
1746 	r = ath9k_hw_rf_set_freq(ah, chan);
1747 	if (r)
1748 		return r;
1749 
1750 	ath9k_hw_set_clockrate(ah);
1751 
1752 	ENABLE_REGWRITE_BUFFER(ah);
1753 
1754 	for (i = 0; i < AR_NUM_DCU; i++)
1755 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1756 
1757 	REGWRITE_BUFFER_FLUSH(ah);
1758 
1759 	ah->intr_txqs = 0;
1760 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1761 		ath9k_hw_resettxqueue(ah, i);
1762 
1763 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1764 	ath9k_hw_ani_cache_ini_regs(ah);
1765 	ath9k_hw_init_qos(ah);
1766 
1767 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1768 		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1769 
1770 	ath9k_hw_init_global_settings(ah);
1771 
1772 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1773 		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1774 			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1775 		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1776 			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1777 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1778 			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1779 	}
1780 
1781 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1782 
1783 	ath9k_hw_set_dma(ah);
1784 
1785 	REG_WRITE(ah, AR_OBS, 8);
1786 
1787 	if (ah->config.rx_intr_mitigation) {
1788 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1789 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1790 	}
1791 
1792 	if (ah->config.tx_intr_mitigation) {
1793 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1794 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1795 	}
1796 
1797 	ath9k_hw_init_bb(ah, chan);
1798 
1799 	if (caldata) {
1800 		caldata->done_txiqcal_once = false;
1801 		caldata->done_txclcal_once = false;
1802 		caldata->rtt_hist.num_readings = 0;
1803 	}
1804 	if (!ath9k_hw_init_cal(ah, chan))
1805 		return -EIO;
1806 
1807 	ath9k_hw_loadnf(ah, chan);
1808 	ath9k_hw_start_nfcal(ah, true);
1809 
1810 	if (mci && mci_hw->ready) {
1811 
1812 		if (IS_CHAN_2GHZ(chan) &&
1813 		    (mci_hw->bt_state == MCI_BT_SLEEP)) {
1814 
1815 			if (ar9003_mci_check_int(ah,
1816 			    AR_MCI_INTERRUPT_RX_MSG_REMOTE_RESET) ||
1817 			    ar9003_mci_check_int(ah,
1818 			    AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE)) {
1819 
1820 				/*
1821 				 * BT is sleeping. Check if BT wakes up during
1822 				 * WLAN calibration. If BT wakes up during
1823 				 * WLAN calibration, need to go through all
1824 				 * message exchanges again and recal.
1825 				 */
1826 
1827 				ath_dbg(common, MCI,
1828 					"MCI BT wakes up during WLAN calibration\n");
1829 
1830 				REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
1831 					  AR_MCI_INTERRUPT_RX_MSG_REMOTE_RESET |
1832 					  AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE);
1833 				ath_dbg(common, MCI, "MCI send REMOTE_RESET\n");
1834 				ar9003_mci_remote_reset(ah, true);
1835 				ar9003_mci_send_sys_waking(ah, true);
1836 				udelay(1);
1837 				if (IS_CHAN_2GHZ(chan))
1838 					ar9003_mci_send_lna_transfer(ah, true);
1839 
1840 				mci_hw->bt_state = MCI_BT_AWAKE;
1841 
1842 				ath_dbg(common, MCI, "MCI re-cal\n");
1843 
1844 				if (caldata) {
1845 					caldata->done_txiqcal_once = false;
1846 					caldata->done_txclcal_once = false;
1847 					caldata->rtt_hist.num_readings = 0;
1848 				}
1849 
1850 				if (!ath9k_hw_init_cal(ah, chan))
1851 					return -EIO;
1852 
1853 			}
1854 		}
1855 		ar9003_mci_enable_interrupt(ah);
1856 	}
1857 
1858 	ENABLE_REGWRITE_BUFFER(ah);
1859 
1860 	ath9k_hw_restore_chainmask(ah);
1861 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1862 
1863 	REGWRITE_BUFFER_FLUSH(ah);
1864 
1865 	/*
1866 	 * For big endian systems turn on swapping for descriptors
1867 	 */
1868 	if (AR_SREV_9100(ah)) {
1869 		u32 mask;
1870 		mask = REG_READ(ah, AR_CFG);
1871 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1872 			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1873 				mask);
1874 		} else {
1875 			mask =
1876 				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1877 			REG_WRITE(ah, AR_CFG, mask);
1878 			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1879 				REG_READ(ah, AR_CFG));
1880 		}
1881 	} else {
1882 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1883 			/* Configure AR9271 target WLAN */
1884 			if (AR_SREV_9271(ah))
1885 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1886 			else
1887 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1888 		}
1889 #ifdef __BIG_ENDIAN
1890 		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah))
1891 			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1892 		else
1893 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1894 #endif
1895 	}
1896 
1897 	if (ah->btcoex_hw.enabled &&
1898 	    ath9k_hw_get_btcoex_scheme(ah) != ATH_BTCOEX_CFG_NONE)
1899 		ath9k_hw_btcoex_enable(ah);
1900 
1901 	if (mci && mci_hw->ready) {
1902 		/*
1903 		 * check BT state again to make
1904 		 * sure it's not changed.
1905 		 */
1906 
1907 		ar9003_mci_sync_bt_state(ah);
1908 		ar9003_mci_2g5g_switch(ah, true);
1909 
1910 		if ((mci_hw->bt_state == MCI_BT_AWAKE) &&
1911 				(mci_hw->query_bt == true)) {
1912 			mci_hw->need_flush_btinfo = true;
1913 		}
1914 	}
1915 
1916 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1917 		ar9003_hw_bb_watchdog_config(ah);
1918 
1919 		ar9003_hw_disable_phy_restart(ah);
1920 	}
1921 
1922 	ath9k_hw_apply_gpio_override(ah);
1923 
1924 	return 0;
1925 }
1926 EXPORT_SYMBOL(ath9k_hw_reset);
1927 
1928 /******************************/
1929 /* Power Management (Chipset) */
1930 /******************************/
1931 
1932 /*
1933  * Notify Power Mgt is disabled in self-generated frames.
1934  * If requested, force chip to sleep.
1935  */
ath9k_set_power_sleep(struct ath_hw * ah,int setChip)1936 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1937 {
1938 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1939 	if (setChip) {
1940 		if (AR_SREV_9462(ah)) {
1941 			REG_WRITE(ah, AR_TIMER_MODE,
1942 				  REG_READ(ah, AR_TIMER_MODE) & 0xFFFFFF00);
1943 			REG_WRITE(ah, AR_NDP2_TIMER_MODE, REG_READ(ah,
1944 				  AR_NDP2_TIMER_MODE) & 0xFFFFFF00);
1945 			REG_WRITE(ah, AR_SLP32_INC,
1946 				  REG_READ(ah, AR_SLP32_INC) & 0xFFF00000);
1947 			/* xxx Required for WLAN only case ? */
1948 			REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
1949 			udelay(100);
1950 		}
1951 
1952 		/*
1953 		 * Clear the RTC force wake bit to allow the
1954 		 * mac to go to sleep.
1955 		 */
1956 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
1957 
1958 		if (AR_SREV_9462(ah))
1959 			udelay(100);
1960 
1961 		if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1962 			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1963 
1964 		/* Shutdown chip. Active low */
1965 		if (!AR_SREV_5416(ah) &&
1966 				!AR_SREV_9271(ah) && !AR_SREV_9462_10(ah)) {
1967 			REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
1968 			udelay(2);
1969 		}
1970 	}
1971 
1972 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1973 	if (AR_SREV_9300_20_OR_LATER(ah))
1974 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1975 }
1976 
1977 /*
1978  * Notify Power Management is enabled in self-generating
1979  * frames. If request, set power mode of chip to
1980  * auto/normal.  Duration in units of 128us (1/8 TU).
1981  */
ath9k_set_power_network_sleep(struct ath_hw * ah,int setChip)1982 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1983 {
1984 	u32 val;
1985 
1986 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1987 	if (setChip) {
1988 		struct ath9k_hw_capabilities *pCap = &ah->caps;
1989 
1990 		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1991 			/* Set WakeOnInterrupt bit; clear ForceWake bit */
1992 			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1993 				  AR_RTC_FORCE_WAKE_ON_INT);
1994 		} else {
1995 
1996 			/* When chip goes into network sleep, it could be waken
1997 			 * up by MCI_INT interrupt caused by BT's HW messages
1998 			 * (LNA_xxx, CONT_xxx) which chould be in a very fast
1999 			 * rate (~100us). This will cause chip to leave and
2000 			 * re-enter network sleep mode frequently, which in
2001 			 * consequence will have WLAN MCI HW to generate lots of
2002 			 * SYS_WAKING and SYS_SLEEPING messages which will make
2003 			 * BT CPU to busy to process.
2004 			 */
2005 			if (AR_SREV_9462(ah)) {
2006 				val = REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_EN) &
2007 					~AR_MCI_INTERRUPT_RX_HW_MSG_MASK;
2008 				REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, val);
2009 			}
2010 			/*
2011 			 * Clear the RTC force wake bit to allow the
2012 			 * mac to go to sleep.
2013 			 */
2014 			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2015 				    AR_RTC_FORCE_WAKE_EN);
2016 
2017 			if (AR_SREV_9462(ah))
2018 				udelay(30);
2019 		}
2020 	}
2021 
2022 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2023 	if (AR_SREV_9300_20_OR_LATER(ah))
2024 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2025 }
2026 
ath9k_hw_set_power_awake(struct ath_hw * ah,int setChip)2027 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2028 {
2029 	u32 val;
2030 	int i;
2031 
2032 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2033 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2034 		REG_WRITE(ah, AR_WA, ah->WARegVal);
2035 		udelay(10);
2036 	}
2037 
2038 	if (setChip) {
2039 		if ((REG_READ(ah, AR_RTC_STATUS) &
2040 		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2041 			if (ath9k_hw_set_reset_reg(ah,
2042 					   ATH9K_RESET_POWER_ON) != true) {
2043 				return false;
2044 			}
2045 			if (!AR_SREV_9300_20_OR_LATER(ah))
2046 				ath9k_hw_init_pll(ah, NULL);
2047 		}
2048 		if (AR_SREV_9100(ah))
2049 			REG_SET_BIT(ah, AR_RTC_RESET,
2050 				    AR_RTC_RESET_EN);
2051 
2052 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2053 			    AR_RTC_FORCE_WAKE_EN);
2054 		udelay(50);
2055 
2056 		for (i = POWER_UP_TIME / 50; i > 0; i--) {
2057 			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2058 			if (val == AR_RTC_STATUS_ON)
2059 				break;
2060 			udelay(50);
2061 			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2062 				    AR_RTC_FORCE_WAKE_EN);
2063 		}
2064 		if (i == 0) {
2065 			ath_err(ath9k_hw_common(ah),
2066 				"Failed to wakeup in %uus\n",
2067 				POWER_UP_TIME / 20);
2068 			return false;
2069 		}
2070 	}
2071 
2072 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2073 
2074 	return true;
2075 }
2076 
ath9k_hw_setpower(struct ath_hw * ah,enum ath9k_power_mode mode)2077 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2078 {
2079 	struct ath_common *common = ath9k_hw_common(ah);
2080 	struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
2081 	int status = true, setChip = true;
2082 	static const char *modes[] = {
2083 		"AWAKE",
2084 		"FULL-SLEEP",
2085 		"NETWORK SLEEP",
2086 		"UNDEFINED"
2087 	};
2088 
2089 	if (ah->power_mode == mode)
2090 		return status;
2091 
2092 	ath_dbg(common, RESET, "%s -> %s\n",
2093 		modes[ah->power_mode], modes[mode]);
2094 
2095 	switch (mode) {
2096 	case ATH9K_PM_AWAKE:
2097 		status = ath9k_hw_set_power_awake(ah, setChip);
2098 
2099 		if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
2100 			REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
2101 
2102 		break;
2103 	case ATH9K_PM_FULL_SLEEP:
2104 
2105 		if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI) {
2106 			if (ar9003_mci_state(ah, MCI_STATE_ENABLE, NULL) &&
2107 				(mci->bt_state != MCI_BT_SLEEP) &&
2108 				!mci->halted_bt_gpm) {
2109 				ath_dbg(common, MCI,
2110 					"MCI halt BT GPM (full_sleep)\n");
2111 				ar9003_mci_send_coex_halt_bt_gpm(ah,
2112 								 true, true);
2113 			}
2114 
2115 			mci->ready = false;
2116 			REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
2117 		}
2118 
2119 		ath9k_set_power_sleep(ah, setChip);
2120 		ah->chip_fullsleep = true;
2121 		break;
2122 	case ATH9K_PM_NETWORK_SLEEP:
2123 
2124 		if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
2125 			REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
2126 
2127 		ath9k_set_power_network_sleep(ah, setChip);
2128 		break;
2129 	default:
2130 		ath_err(common, "Unknown power mode %u\n", mode);
2131 		return false;
2132 	}
2133 	ah->power_mode = mode;
2134 
2135 	/*
2136 	 * XXX: If this warning never comes up after a while then
2137 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2138 	 * ath9k_hw_setpower() return type void.
2139 	 */
2140 
2141 	if (!(ah->ah_flags & AH_UNPLUGGED))
2142 		ATH_DBG_WARN_ON_ONCE(!status);
2143 
2144 	return status;
2145 }
2146 EXPORT_SYMBOL(ath9k_hw_setpower);
2147 
2148 /*******************/
2149 /* Beacon Handling */
2150 /*******************/
2151 
ath9k_hw_beaconinit(struct ath_hw * ah,u32 next_beacon,u32 beacon_period)2152 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2153 {
2154 	int flags = 0;
2155 
2156 	ENABLE_REGWRITE_BUFFER(ah);
2157 
2158 	switch (ah->opmode) {
2159 	case NL80211_IFTYPE_ADHOC:
2160 	case NL80211_IFTYPE_MESH_POINT:
2161 		REG_SET_BIT(ah, AR_TXCFG,
2162 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2163 		REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
2164 			  TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
2165 		flags |= AR_NDP_TIMER_EN;
2166 	case NL80211_IFTYPE_AP:
2167 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2168 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2169 			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2170 		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2171 			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2172 		flags |=
2173 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2174 		break;
2175 	default:
2176 		ath_dbg(ath9k_hw_common(ah), BEACON,
2177 			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2178 		return;
2179 		break;
2180 	}
2181 
2182 	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2183 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2184 	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2185 	REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
2186 
2187 	REGWRITE_BUFFER_FLUSH(ah);
2188 
2189 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2190 }
2191 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2192 
ath9k_hw_set_sta_beacon_timers(struct ath_hw * ah,const struct ath9k_beacon_state * bs)2193 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2194 				    const struct ath9k_beacon_state *bs)
2195 {
2196 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2197 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2198 	struct ath_common *common = ath9k_hw_common(ah);
2199 
2200 	ENABLE_REGWRITE_BUFFER(ah);
2201 
2202 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
2203 
2204 	REG_WRITE(ah, AR_BEACON_PERIOD,
2205 		  TU_TO_USEC(bs->bs_intval));
2206 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
2207 		  TU_TO_USEC(bs->bs_intval));
2208 
2209 	REGWRITE_BUFFER_FLUSH(ah);
2210 
2211 	REG_RMW_FIELD(ah, AR_RSSI_THR,
2212 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2213 
2214 	beaconintval = bs->bs_intval;
2215 
2216 	if (bs->bs_sleepduration > beaconintval)
2217 		beaconintval = bs->bs_sleepduration;
2218 
2219 	dtimperiod = bs->bs_dtimperiod;
2220 	if (bs->bs_sleepduration > dtimperiod)
2221 		dtimperiod = bs->bs_sleepduration;
2222 
2223 	if (beaconintval == dtimperiod)
2224 		nextTbtt = bs->bs_nextdtim;
2225 	else
2226 		nextTbtt = bs->bs_nexttbtt;
2227 
2228 	ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2229 	ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2230 	ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2231 	ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2232 
2233 	ENABLE_REGWRITE_BUFFER(ah);
2234 
2235 	REG_WRITE(ah, AR_NEXT_DTIM,
2236 		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
2237 	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2238 
2239 	REG_WRITE(ah, AR_SLEEP1,
2240 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2241 		  | AR_SLEEP1_ASSUME_DTIM);
2242 
2243 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2244 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2245 	else
2246 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2247 
2248 	REG_WRITE(ah, AR_SLEEP2,
2249 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2250 
2251 	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2252 	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2253 
2254 	REGWRITE_BUFFER_FLUSH(ah);
2255 
2256 	REG_SET_BIT(ah, AR_TIMER_MODE,
2257 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2258 		    AR_DTIM_TIMER_EN);
2259 
2260 	/* TSF Out of Range Threshold */
2261 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2262 }
2263 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2264 
2265 /*******************/
2266 /* HW Capabilities */
2267 /*******************/
2268 
fixup_chainmask(u8 chip_chainmask,u8 eeprom_chainmask)2269 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2270 {
2271 	eeprom_chainmask &= chip_chainmask;
2272 	if (eeprom_chainmask)
2273 		return eeprom_chainmask;
2274 	else
2275 		return chip_chainmask;
2276 }
2277 
2278 /**
2279  * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2280  * @ah: the atheros hardware data structure
2281  *
2282  * We enable DFS support upstream on chipsets which have passed a series
2283  * of tests. The testing requirements are going to be documented. Desired
2284  * test requirements are documented at:
2285  *
2286  * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2287  *
2288  * Once a new chipset gets properly tested an individual commit can be used
2289  * to document the testing for DFS for that chipset.
2290  */
ath9k_hw_dfs_tested(struct ath_hw * ah)2291 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2292 {
2293 
2294 	switch (ah->hw_version.macVersion) {
2295 	/* AR9580 will likely be our first target to get testing on */
2296 	case AR_SREV_VERSION_9580:
2297 	default:
2298 		return false;
2299 	}
2300 }
2301 
ath9k_hw_fill_cap_info(struct ath_hw * ah)2302 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2303 {
2304 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2305 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2306 	struct ath_common *common = ath9k_hw_common(ah);
2307 	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
2308 	unsigned int chip_chainmask;
2309 
2310 	u16 eeval;
2311 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2312 
2313 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2314 	regulatory->current_rd = eeval;
2315 
2316 	if (ah->opmode != NL80211_IFTYPE_AP &&
2317 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2318 		if (regulatory->current_rd == 0x64 ||
2319 		    regulatory->current_rd == 0x65)
2320 			regulatory->current_rd += 5;
2321 		else if (regulatory->current_rd == 0x41)
2322 			regulatory->current_rd = 0x43;
2323 		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2324 			regulatory->current_rd);
2325 	}
2326 
2327 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2328 	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2329 		ath_err(common,
2330 			"no band has been marked as supported in EEPROM\n");
2331 		return -EINVAL;
2332 	}
2333 
2334 	if (eeval & AR5416_OPFLAGS_11A)
2335 		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2336 
2337 	if (eeval & AR5416_OPFLAGS_11G)
2338 		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2339 
2340 	if (AR_SREV_9485(ah) || AR_SREV_9285(ah) || AR_SREV_9330(ah))
2341 		chip_chainmask = 1;
2342 	else if (AR_SREV_9462(ah))
2343 		chip_chainmask = 3;
2344 	else if (!AR_SREV_9280_20_OR_LATER(ah))
2345 		chip_chainmask = 7;
2346 	else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2347 		chip_chainmask = 3;
2348 	else
2349 		chip_chainmask = 7;
2350 
2351 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2352 	/*
2353 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2354 	 * the EEPROM.
2355 	 */
2356 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2357 	    !(eeval & AR5416_OPFLAGS_11A) &&
2358 	    !(AR_SREV_9271(ah)))
2359 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2360 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2361 	else if (AR_SREV_9100(ah))
2362 		pCap->rx_chainmask = 0x7;
2363 	else
2364 		/* Use rx_chainmask from EEPROM. */
2365 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2366 
2367 	pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2368 	pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2369 	ah->txchainmask = pCap->tx_chainmask;
2370 	ah->rxchainmask = pCap->rx_chainmask;
2371 
2372 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2373 
2374 	/* enable key search for every frame in an aggregate */
2375 	if (AR_SREV_9300_20_OR_LATER(ah))
2376 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2377 
2378 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2379 
2380 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2381 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2382 	else
2383 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2384 
2385 	if (AR_SREV_9271(ah))
2386 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2387 	else if (AR_DEVID_7010(ah))
2388 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2389 	else if (AR_SREV_9300_20_OR_LATER(ah))
2390 		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2391 	else if (AR_SREV_9287_11_OR_LATER(ah))
2392 		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2393 	else if (AR_SREV_9285_12_OR_LATER(ah))
2394 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2395 	else if (AR_SREV_9280_20_OR_LATER(ah))
2396 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2397 	else
2398 		pCap->num_gpio_pins = AR_NUM_GPIO;
2399 
2400 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2401 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2402 	else
2403 		pCap->rts_aggr_limit = (8 * 1024);
2404 
2405 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2406 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2407 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2408 		ah->rfkill_gpio =
2409 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2410 		ah->rfkill_polarity =
2411 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2412 
2413 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2414 	}
2415 #endif
2416 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2417 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2418 	else
2419 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2420 
2421 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2422 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2423 	else
2424 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2425 
2426 	if (common->btcoex_enabled) {
2427 		if (AR_SREV_9462(ah))
2428 			btcoex_hw->scheme = ATH_BTCOEX_CFG_MCI;
2429 		else if (AR_SREV_9300_20_OR_LATER(ah)) {
2430 			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2431 			btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9300;
2432 			btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9300;
2433 			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO_9300;
2434 		} else if (AR_SREV_9280_20_OR_LATER(ah)) {
2435 			btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9280;
2436 			btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9280;
2437 
2438 			if (AR_SREV_9285(ah)) {
2439 				btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2440 				btcoex_hw->btpriority_gpio =
2441 						ATH_BTPRIORITY_GPIO_9285;
2442 			} else {
2443 				btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
2444 			}
2445 		}
2446 	} else {
2447 		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
2448 	}
2449 
2450 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2451 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2452 		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah))
2453 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2454 
2455 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2456 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2457 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2458 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2459 		pCap->txs_len = sizeof(struct ar9003_txs);
2460 		if (!ah->config.paprd_disable &&
2461 		    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2462 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2463 	} else {
2464 		pCap->tx_desc_len = sizeof(struct ath_desc);
2465 		if (AR_SREV_9280_20(ah))
2466 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2467 	}
2468 
2469 	if (AR_SREV_9300_20_OR_LATER(ah))
2470 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2471 
2472 	if (AR_SREV_9300_20_OR_LATER(ah))
2473 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2474 
2475 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2476 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2477 
2478 	if (AR_SREV_9285(ah))
2479 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2480 			ant_div_ctl1 =
2481 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2482 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
2483 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2484 		}
2485 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2486 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2487 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2488 	}
2489 
2490 
2491 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
2492 		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2493 		/*
2494 		 * enable the diversity-combining algorithm only when
2495 		 * both enable_lna_div and enable_fast_div are set
2496 		 *		Table for Diversity
2497 		 * ant_div_alt_lnaconf		bit 0-1
2498 		 * ant_div_main_lnaconf		bit 2-3
2499 		 * ant_div_alt_gaintb		bit 4
2500 		 * ant_div_main_gaintb		bit 5
2501 		 * enable_ant_div_lnadiv	bit 6
2502 		 * enable_ant_fast_div		bit 7
2503 		 */
2504 		if ((ant_div_ctl1 >> 0x6) == 0x3)
2505 			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2506 	}
2507 
2508 	if (AR_SREV_9485_10(ah)) {
2509 		pCap->pcie_lcr_extsync_en = true;
2510 		pCap->pcie_lcr_offset = 0x80;
2511 	}
2512 
2513 	if (ath9k_hw_dfs_tested(ah))
2514 		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2515 
2516 	tx_chainmask = pCap->tx_chainmask;
2517 	rx_chainmask = pCap->rx_chainmask;
2518 	while (tx_chainmask || rx_chainmask) {
2519 		if (tx_chainmask & BIT(0))
2520 			pCap->max_txchains++;
2521 		if (rx_chainmask & BIT(0))
2522 			pCap->max_rxchains++;
2523 
2524 		tx_chainmask >>= 1;
2525 		rx_chainmask >>= 1;
2526 	}
2527 
2528 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2529 		ah->enabled_cals |= TX_IQ_CAL;
2530 		if (AR_SREV_9485_OR_LATER(ah))
2531 			ah->enabled_cals |= TX_IQ_ON_AGC_CAL;
2532 	}
2533 	if (AR_SREV_9462(ah))
2534 		pCap->hw_caps |= ATH9K_HW_CAP_RTT | ATH9K_HW_CAP_MCI;
2535 
2536 	return 0;
2537 }
2538 
2539 /****************************/
2540 /* GPIO / RFKILL / Antennae */
2541 /****************************/
2542 
ath9k_hw_gpio_cfg_output_mux(struct ath_hw * ah,u32 gpio,u32 type)2543 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2544 					 u32 gpio, u32 type)
2545 {
2546 	int addr;
2547 	u32 gpio_shift, tmp;
2548 
2549 	if (gpio > 11)
2550 		addr = AR_GPIO_OUTPUT_MUX3;
2551 	else if (gpio > 5)
2552 		addr = AR_GPIO_OUTPUT_MUX2;
2553 	else
2554 		addr = AR_GPIO_OUTPUT_MUX1;
2555 
2556 	gpio_shift = (gpio % 6) * 5;
2557 
2558 	if (AR_SREV_9280_20_OR_LATER(ah)
2559 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2560 		REG_RMW(ah, addr, (type << gpio_shift),
2561 			(0x1f << gpio_shift));
2562 	} else {
2563 		tmp = REG_READ(ah, addr);
2564 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2565 		tmp &= ~(0x1f << gpio_shift);
2566 		tmp |= (type << gpio_shift);
2567 		REG_WRITE(ah, addr, tmp);
2568 	}
2569 }
2570 
ath9k_hw_cfg_gpio_input(struct ath_hw * ah,u32 gpio)2571 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2572 {
2573 	u32 gpio_shift;
2574 
2575 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2576 
2577 	if (AR_DEVID_7010(ah)) {
2578 		gpio_shift = gpio;
2579 		REG_RMW(ah, AR7010_GPIO_OE,
2580 			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2581 			(AR7010_GPIO_OE_MASK << gpio_shift));
2582 		return;
2583 	}
2584 
2585 	gpio_shift = gpio << 1;
2586 	REG_RMW(ah,
2587 		AR_GPIO_OE_OUT,
2588 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2589 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2590 }
2591 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2592 
ath9k_hw_gpio_get(struct ath_hw * ah,u32 gpio)2593 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2594 {
2595 #define MS_REG_READ(x, y) \
2596 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2597 
2598 	if (gpio >= ah->caps.num_gpio_pins)
2599 		return 0xffffffff;
2600 
2601 	if (AR_DEVID_7010(ah)) {
2602 		u32 val;
2603 		val = REG_READ(ah, AR7010_GPIO_IN);
2604 		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2605 	} else if (AR_SREV_9300_20_OR_LATER(ah))
2606 		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2607 			AR_GPIO_BIT(gpio)) != 0;
2608 	else if (AR_SREV_9271(ah))
2609 		return MS_REG_READ(AR9271, gpio) != 0;
2610 	else if (AR_SREV_9287_11_OR_LATER(ah))
2611 		return MS_REG_READ(AR9287, gpio) != 0;
2612 	else if (AR_SREV_9285_12_OR_LATER(ah))
2613 		return MS_REG_READ(AR9285, gpio) != 0;
2614 	else if (AR_SREV_9280_20_OR_LATER(ah))
2615 		return MS_REG_READ(AR928X, gpio) != 0;
2616 	else
2617 		return MS_REG_READ(AR, gpio) != 0;
2618 }
2619 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2620 
ath9k_hw_cfg_output(struct ath_hw * ah,u32 gpio,u32 ah_signal_type)2621 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2622 			 u32 ah_signal_type)
2623 {
2624 	u32 gpio_shift;
2625 
2626 	if (AR_DEVID_7010(ah)) {
2627 		gpio_shift = gpio;
2628 		REG_RMW(ah, AR7010_GPIO_OE,
2629 			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2630 			(AR7010_GPIO_OE_MASK << gpio_shift));
2631 		return;
2632 	}
2633 
2634 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2635 	gpio_shift = 2 * gpio;
2636 	REG_RMW(ah,
2637 		AR_GPIO_OE_OUT,
2638 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2639 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2640 }
2641 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2642 
ath9k_hw_set_gpio(struct ath_hw * ah,u32 gpio,u32 val)2643 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2644 {
2645 	if (AR_DEVID_7010(ah)) {
2646 		val = val ? 0 : 1;
2647 		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2648 			AR_GPIO_BIT(gpio));
2649 		return;
2650 	}
2651 
2652 	if (AR_SREV_9271(ah))
2653 		val = ~val;
2654 
2655 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2656 		AR_GPIO_BIT(gpio));
2657 }
2658 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2659 
ath9k_hw_getdefantenna(struct ath_hw * ah)2660 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2661 {
2662 	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2663 }
2664 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2665 
ath9k_hw_setantenna(struct ath_hw * ah,u32 antenna)2666 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2667 {
2668 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2669 }
2670 EXPORT_SYMBOL(ath9k_hw_setantenna);
2671 
2672 /*********************/
2673 /* General Operation */
2674 /*********************/
2675 
ath9k_hw_getrxfilter(struct ath_hw * ah)2676 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2677 {
2678 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2679 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2680 
2681 	if (phybits & AR_PHY_ERR_RADAR)
2682 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2683 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2684 		bits |= ATH9K_RX_FILTER_PHYERR;
2685 
2686 	return bits;
2687 }
2688 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2689 
ath9k_hw_setrxfilter(struct ath_hw * ah,u32 bits)2690 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2691 {
2692 	u32 phybits;
2693 
2694 	ENABLE_REGWRITE_BUFFER(ah);
2695 
2696 	if (AR_SREV_9462(ah))
2697 		bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2698 
2699 	REG_WRITE(ah, AR_RX_FILTER, bits);
2700 
2701 	phybits = 0;
2702 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2703 		phybits |= AR_PHY_ERR_RADAR;
2704 	if (bits & ATH9K_RX_FILTER_PHYERR)
2705 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2706 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2707 
2708 	if (phybits)
2709 		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2710 	else
2711 		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2712 
2713 	REGWRITE_BUFFER_FLUSH(ah);
2714 }
2715 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2716 
ath9k_hw_phy_disable(struct ath_hw * ah)2717 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2718 {
2719 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2720 		return false;
2721 
2722 	ath9k_hw_init_pll(ah, NULL);
2723 	return true;
2724 }
2725 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2726 
ath9k_hw_disable(struct ath_hw * ah)2727 bool ath9k_hw_disable(struct ath_hw *ah)
2728 {
2729 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2730 		return false;
2731 
2732 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2733 		return false;
2734 
2735 	ath9k_hw_init_pll(ah, NULL);
2736 	return true;
2737 }
2738 EXPORT_SYMBOL(ath9k_hw_disable);
2739 
get_antenna_gain(struct ath_hw * ah,struct ath9k_channel * chan)2740 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2741 {
2742 	enum eeprom_param gain_param;
2743 
2744 	if (IS_CHAN_2GHZ(chan))
2745 		gain_param = EEP_ANTENNA_GAIN_2G;
2746 	else
2747 		gain_param = EEP_ANTENNA_GAIN_5G;
2748 
2749 	return ah->eep_ops->get_eeprom(ah, gain_param);
2750 }
2751 
ath9k_hw_apply_txpower(struct ath_hw * ah,struct ath9k_channel * chan)2752 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan)
2753 {
2754 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2755 	struct ieee80211_channel *channel;
2756 	int chan_pwr, new_pwr, max_gain;
2757 	int ant_gain, ant_reduction = 0;
2758 
2759 	if (!chan)
2760 		return;
2761 
2762 	channel = chan->chan;
2763 	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2764 	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2765 	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2766 
2767 	ant_gain = get_antenna_gain(ah, chan);
2768 	if (ant_gain > max_gain)
2769 		ant_reduction = ant_gain - max_gain;
2770 
2771 	ah->eep_ops->set_txpower(ah, chan,
2772 				 ath9k_regd_get_ctl(reg, chan),
2773 				 ant_reduction, new_pwr, false);
2774 }
2775 
ath9k_hw_set_txpowerlimit(struct ath_hw * ah,u32 limit,bool test)2776 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2777 {
2778 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2779 	struct ath9k_channel *chan = ah->curchan;
2780 	struct ieee80211_channel *channel = chan->chan;
2781 
2782 	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2783 	if (test)
2784 		channel->max_power = MAX_RATE_POWER / 2;
2785 
2786 	ath9k_hw_apply_txpower(ah, chan);
2787 
2788 	if (test)
2789 		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2790 }
2791 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2792 
ath9k_hw_setopmode(struct ath_hw * ah)2793 void ath9k_hw_setopmode(struct ath_hw *ah)
2794 {
2795 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2796 }
2797 EXPORT_SYMBOL(ath9k_hw_setopmode);
2798 
ath9k_hw_setmcastfilter(struct ath_hw * ah,u32 filter0,u32 filter1)2799 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2800 {
2801 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2802 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2803 }
2804 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2805 
ath9k_hw_write_associd(struct ath_hw * ah)2806 void ath9k_hw_write_associd(struct ath_hw *ah)
2807 {
2808 	struct ath_common *common = ath9k_hw_common(ah);
2809 
2810 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2811 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2812 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2813 }
2814 EXPORT_SYMBOL(ath9k_hw_write_associd);
2815 
2816 #define ATH9K_MAX_TSF_READ 10
2817 
ath9k_hw_gettsf64(struct ath_hw * ah)2818 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2819 {
2820 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2821 	int i;
2822 
2823 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2824 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2825 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2826 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2827 		if (tsf_upper2 == tsf_upper1)
2828 			break;
2829 		tsf_upper1 = tsf_upper2;
2830 	}
2831 
2832 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2833 
2834 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2835 }
2836 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2837 
ath9k_hw_settsf64(struct ath_hw * ah,u64 tsf64)2838 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2839 {
2840 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2841 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2842 }
2843 EXPORT_SYMBOL(ath9k_hw_settsf64);
2844 
ath9k_hw_reset_tsf(struct ath_hw * ah)2845 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2846 {
2847 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2848 			   AH_TSF_WRITE_TIMEOUT))
2849 		ath_dbg(ath9k_hw_common(ah), RESET,
2850 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2851 
2852 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2853 }
2854 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2855 
ath9k_hw_set_tsfadjust(struct ath_hw * ah,u32 setting)2856 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2857 {
2858 	if (setting)
2859 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2860 	else
2861 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2862 }
2863 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2864 
ath9k_hw_set11nmac2040(struct ath_hw * ah)2865 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2866 {
2867 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2868 	u32 macmode;
2869 
2870 	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2871 		macmode = AR_2040_JOINED_RX_CLEAR;
2872 	else
2873 		macmode = 0;
2874 
2875 	REG_WRITE(ah, AR_2040_MODE, macmode);
2876 }
2877 
2878 /* HW Generic timers configuration */
2879 
2880 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2881 {
2882 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2883 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2884 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2885 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2886 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2887 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2888 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2889 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2890 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2891 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2892 				AR_NDP2_TIMER_MODE, 0x0002},
2893 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2894 				AR_NDP2_TIMER_MODE, 0x0004},
2895 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2896 				AR_NDP2_TIMER_MODE, 0x0008},
2897 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2898 				AR_NDP2_TIMER_MODE, 0x0010},
2899 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2900 				AR_NDP2_TIMER_MODE, 0x0020},
2901 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2902 				AR_NDP2_TIMER_MODE, 0x0040},
2903 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2904 				AR_NDP2_TIMER_MODE, 0x0080}
2905 };
2906 
2907 /* HW generic timer primitives */
2908 
2909 /* compute and clear index of rightmost 1 */
rightmost_index(struct ath_gen_timer_table * timer_table,u32 * mask)2910 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2911 {
2912 	u32 b;
2913 
2914 	b = *mask;
2915 	b &= (0-b);
2916 	*mask &= ~b;
2917 	b *= debruijn32;
2918 	b >>= 27;
2919 
2920 	return timer_table->gen_timer_index[b];
2921 }
2922 
ath9k_hw_gettsf32(struct ath_hw * ah)2923 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2924 {
2925 	return REG_READ(ah, AR_TSF_L32);
2926 }
2927 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2928 
ath_gen_timer_alloc(struct ath_hw * ah,void (* trigger)(void *),void (* overflow)(void *),void * arg,u8 timer_index)2929 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2930 					  void (*trigger)(void *),
2931 					  void (*overflow)(void *),
2932 					  void *arg,
2933 					  u8 timer_index)
2934 {
2935 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2936 	struct ath_gen_timer *timer;
2937 
2938 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2939 
2940 	if (timer == NULL) {
2941 		ath_err(ath9k_hw_common(ah),
2942 			"Failed to allocate memory for hw timer[%d]\n",
2943 			timer_index);
2944 		return NULL;
2945 	}
2946 
2947 	/* allocate a hardware generic timer slot */
2948 	timer_table->timers[timer_index] = timer;
2949 	timer->index = timer_index;
2950 	timer->trigger = trigger;
2951 	timer->overflow = overflow;
2952 	timer->arg = arg;
2953 
2954 	return timer;
2955 }
2956 EXPORT_SYMBOL(ath_gen_timer_alloc);
2957 
ath9k_hw_gen_timer_start(struct ath_hw * ah,struct ath_gen_timer * timer,u32 trig_timeout,u32 timer_period)2958 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2959 			      struct ath_gen_timer *timer,
2960 			      u32 trig_timeout,
2961 			      u32 timer_period)
2962 {
2963 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2964 	u32 tsf, timer_next;
2965 
2966 	BUG_ON(!timer_period);
2967 
2968 	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2969 
2970 	tsf = ath9k_hw_gettsf32(ah);
2971 
2972 	timer_next = tsf + trig_timeout;
2973 
2974 	ath_dbg(ath9k_hw_common(ah), HWTIMER,
2975 		"current tsf %x period %x timer_next %x\n",
2976 		tsf, timer_period, timer_next);
2977 
2978 	/*
2979 	 * Program generic timer registers
2980 	 */
2981 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2982 		 timer_next);
2983 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2984 		  timer_period);
2985 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2986 		    gen_tmr_configuration[timer->index].mode_mask);
2987 
2988 	if (AR_SREV_9462(ah)) {
2989 		/*
2990 		 * Starting from AR9462, each generic timer can select which tsf
2991 		 * to use. But we still follow the old rule, 0 - 7 use tsf and
2992 		 * 8 - 15  use tsf2.
2993 		 */
2994 		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
2995 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2996 				       (1 << timer->index));
2997 		else
2998 			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2999 				       (1 << timer->index));
3000 	}
3001 
3002 	/* Enable both trigger and thresh interrupt masks */
3003 	REG_SET_BIT(ah, AR_IMR_S5,
3004 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3005 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3006 }
3007 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3008 
ath9k_hw_gen_timer_stop(struct ath_hw * ah,struct ath_gen_timer * timer)3009 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3010 {
3011 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3012 
3013 	if ((timer->index < AR_FIRST_NDP_TIMER) ||
3014 		(timer->index >= ATH_MAX_GEN_TIMER)) {
3015 		return;
3016 	}
3017 
3018 	/* Clear generic timer enable bits. */
3019 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3020 			gen_tmr_configuration[timer->index].mode_mask);
3021 
3022 	/* Disable both trigger and thresh interrupt masks */
3023 	REG_CLR_BIT(ah, AR_IMR_S5,
3024 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3025 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3026 
3027 	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3028 }
3029 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3030 
ath_gen_timer_free(struct ath_hw * ah,struct ath_gen_timer * timer)3031 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3032 {
3033 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3034 
3035 	/* free the hardware generic timer slot */
3036 	timer_table->timers[timer->index] = NULL;
3037 	kfree(timer);
3038 }
3039 EXPORT_SYMBOL(ath_gen_timer_free);
3040 
3041 /*
3042  * Generic Timer Interrupts handling
3043  */
ath_gen_timer_isr(struct ath_hw * ah)3044 void ath_gen_timer_isr(struct ath_hw *ah)
3045 {
3046 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3047 	struct ath_gen_timer *timer;
3048 	struct ath_common *common = ath9k_hw_common(ah);
3049 	u32 trigger_mask, thresh_mask, index;
3050 
3051 	/* get hardware generic timer interrupt status */
3052 	trigger_mask = ah->intr_gen_timer_trigger;
3053 	thresh_mask = ah->intr_gen_timer_thresh;
3054 	trigger_mask &= timer_table->timer_mask.val;
3055 	thresh_mask &= timer_table->timer_mask.val;
3056 
3057 	trigger_mask &= ~thresh_mask;
3058 
3059 	while (thresh_mask) {
3060 		index = rightmost_index(timer_table, &thresh_mask);
3061 		timer = timer_table->timers[index];
3062 		BUG_ON(!timer);
3063 		ath_dbg(common, HWTIMER, "TSF overflow for Gen timer %d\n",
3064 			index);
3065 		timer->overflow(timer->arg);
3066 	}
3067 
3068 	while (trigger_mask) {
3069 		index = rightmost_index(timer_table, &trigger_mask);
3070 		timer = timer_table->timers[index];
3071 		BUG_ON(!timer);
3072 		ath_dbg(common, HWTIMER,
3073 			"Gen timer[%d] trigger\n", index);
3074 		timer->trigger(timer->arg);
3075 	}
3076 }
3077 EXPORT_SYMBOL(ath_gen_timer_isr);
3078 
3079 /********/
3080 /* HTC  */
3081 /********/
3082 
ath9k_hw_htc_resetinit(struct ath_hw * ah)3083 void ath9k_hw_htc_resetinit(struct ath_hw *ah)
3084 {
3085 	ah->htc_reset_init = true;
3086 }
3087 EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
3088 
3089 static struct {
3090 	u32 version;
3091 	const char * name;
3092 } ath_mac_bb_names[] = {
3093 	/* Devices with external radios */
3094 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3095 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3096 	{ AR_SREV_VERSION_9100,		"9100" },
3097 	{ AR_SREV_VERSION_9160,		"9160" },
3098 	/* Single-chip solutions */
3099 	{ AR_SREV_VERSION_9280,		"9280" },
3100 	{ AR_SREV_VERSION_9285,		"9285" },
3101 	{ AR_SREV_VERSION_9287,         "9287" },
3102 	{ AR_SREV_VERSION_9271,         "9271" },
3103 	{ AR_SREV_VERSION_9300,         "9300" },
3104 	{ AR_SREV_VERSION_9330,         "9330" },
3105 	{ AR_SREV_VERSION_9340,		"9340" },
3106 	{ AR_SREV_VERSION_9485,         "9485" },
3107 	{ AR_SREV_VERSION_9462,         "9462" },
3108 };
3109 
3110 /* For devices with external radios */
3111 static struct {
3112 	u16 version;
3113 	const char * name;
3114 } ath_rf_names[] = {
3115 	{ 0,				"5133" },
3116 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3117 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3118 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3119 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3120 };
3121 
3122 /*
3123  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3124  */
ath9k_hw_mac_bb_name(u32 mac_bb_version)3125 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3126 {
3127 	int i;
3128 
3129 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3130 		if (ath_mac_bb_names[i].version == mac_bb_version) {
3131 			return ath_mac_bb_names[i].name;
3132 		}
3133 	}
3134 
3135 	return "????";
3136 }
3137 
3138 /*
3139  * Return the RF name. "????" is returned if the RF is unknown.
3140  * Used for devices with external radios.
3141  */
ath9k_hw_rf_name(u16 rf_version)3142 static const char *ath9k_hw_rf_name(u16 rf_version)
3143 {
3144 	int i;
3145 
3146 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3147 		if (ath_rf_names[i].version == rf_version) {
3148 			return ath_rf_names[i].name;
3149 		}
3150 	}
3151 
3152 	return "????";
3153 }
3154 
ath9k_hw_name(struct ath_hw * ah,char * hw_name,size_t len)3155 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3156 {
3157 	int used;
3158 
3159 	/* chipsets >= AR9280 are single-chip */
3160 	if (AR_SREV_9280_20_OR_LATER(ah)) {
3161 		used = snprintf(hw_name, len,
3162 			       "Atheros AR%s Rev:%x",
3163 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3164 			       ah->hw_version.macRev);
3165 	}
3166 	else {
3167 		used = snprintf(hw_name, len,
3168 			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3169 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3170 			       ah->hw_version.macRev,
3171 			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3172 						AR_RADIO_SREV_MAJOR)),
3173 			       ah->hw_version.phyRev);
3174 	}
3175 
3176 	hw_name[used] = '\0';
3177 }
3178 EXPORT_SYMBOL(ath9k_hw_name);
3179