1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <asm/unaligned.h>
21
22 #include "hw.h"
23 #include "hw-ops.h"
24 #include "rc.h"
25 #include "ar9003_mac.h"
26
27 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
28
29 MODULE_AUTHOR("Atheros Communications");
30 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
31 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
32 MODULE_LICENSE("Dual BSD/GPL");
33
ath9k_init(void)34 static int __init ath9k_init(void)
35 {
36 return 0;
37 }
38 module_init(ath9k_init);
39
ath9k_exit(void)40 static void __exit ath9k_exit(void)
41 {
42 return;
43 }
44 module_exit(ath9k_exit);
45
46 /* Private hardware callbacks */
47
ath9k_hw_init_cal_settings(struct ath_hw * ah)48 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
49 {
50 ath9k_hw_private_ops(ah)->init_cal_settings(ah);
51 }
52
ath9k_hw_init_mode_regs(struct ath_hw * ah)53 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
54 {
55 ath9k_hw_private_ops(ah)->init_mode_regs(ah);
56 }
57
ath9k_hw_compute_pll_control(struct ath_hw * ah,struct ath9k_channel * chan)58 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
59 struct ath9k_channel *chan)
60 {
61 return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
62 }
63
ath9k_hw_init_mode_gain_regs(struct ath_hw * ah)64 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
65 {
66 if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
67 return;
68
69 ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
70 }
71
ath9k_hw_ani_cache_ini_regs(struct ath_hw * ah)72 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
73 {
74 /* You will not have this callback if using the old ANI */
75 if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
76 return;
77
78 ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
79 }
80
81 /********************/
82 /* Helper Functions */
83 /********************/
84
ath9k_hw_set_clockrate(struct ath_hw * ah)85 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
86 {
87 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
88 struct ath_common *common = ath9k_hw_common(ah);
89 unsigned int clockrate;
90
91 /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
92 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
93 clockrate = 117;
94 else if (!ah->curchan) /* should really check for CCK instead */
95 clockrate = ATH9K_CLOCK_RATE_CCK;
96 else if (conf->channel->band == IEEE80211_BAND_2GHZ)
97 clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
98 else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
99 clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
100 else
101 clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
102
103 if (conf_is_ht40(conf))
104 clockrate *= 2;
105
106 if (ah->curchan) {
107 if (IS_CHAN_HALF_RATE(ah->curchan))
108 clockrate /= 2;
109 if (IS_CHAN_QUARTER_RATE(ah->curchan))
110 clockrate /= 4;
111 }
112
113 common->clockrate = clockrate;
114 }
115
ath9k_hw_mac_to_clks(struct ath_hw * ah,u32 usecs)116 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
117 {
118 struct ath_common *common = ath9k_hw_common(ah);
119
120 return usecs * common->clockrate;
121 }
122
ath9k_hw_wait(struct ath_hw * ah,u32 reg,u32 mask,u32 val,u32 timeout)123 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
124 {
125 int i;
126
127 BUG_ON(timeout < AH_TIME_QUANTUM);
128
129 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
130 if ((REG_READ(ah, reg) & mask) == val)
131 return true;
132
133 udelay(AH_TIME_QUANTUM);
134 }
135
136 ath_dbg(ath9k_hw_common(ah), ANY,
137 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
138 timeout, reg, REG_READ(ah, reg), mask, val);
139
140 return false;
141 }
142 EXPORT_SYMBOL(ath9k_hw_wait);
143
ath9k_hw_write_array(struct ath_hw * ah,struct ar5416IniArray * array,int column,unsigned int * writecnt)144 void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
145 int column, unsigned int *writecnt)
146 {
147 int r;
148
149 ENABLE_REGWRITE_BUFFER(ah);
150 for (r = 0; r < array->ia_rows; r++) {
151 REG_WRITE(ah, INI_RA(array, r, 0),
152 INI_RA(array, r, column));
153 DO_DELAY(*writecnt);
154 }
155 REGWRITE_BUFFER_FLUSH(ah);
156 }
157
ath9k_hw_reverse_bits(u32 val,u32 n)158 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
159 {
160 u32 retval;
161 int i;
162
163 for (i = 0, retval = 0; i < n; i++) {
164 retval = (retval << 1) | (val & 1);
165 val >>= 1;
166 }
167 return retval;
168 }
169
ath9k_hw_computetxtime(struct ath_hw * ah,u8 phy,int kbps,u32 frameLen,u16 rateix,bool shortPreamble)170 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
171 u8 phy, int kbps,
172 u32 frameLen, u16 rateix,
173 bool shortPreamble)
174 {
175 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
176
177 if (kbps == 0)
178 return 0;
179
180 switch (phy) {
181 case WLAN_RC_PHY_CCK:
182 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
183 if (shortPreamble)
184 phyTime >>= 1;
185 numBits = frameLen << 3;
186 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
187 break;
188 case WLAN_RC_PHY_OFDM:
189 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
190 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
191 numBits = OFDM_PLCP_BITS + (frameLen << 3);
192 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
193 txTime = OFDM_SIFS_TIME_QUARTER
194 + OFDM_PREAMBLE_TIME_QUARTER
195 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
196 } else if (ah->curchan &&
197 IS_CHAN_HALF_RATE(ah->curchan)) {
198 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
199 numBits = OFDM_PLCP_BITS + (frameLen << 3);
200 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
201 txTime = OFDM_SIFS_TIME_HALF +
202 OFDM_PREAMBLE_TIME_HALF
203 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
204 } else {
205 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
206 numBits = OFDM_PLCP_BITS + (frameLen << 3);
207 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
208 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
209 + (numSymbols * OFDM_SYMBOL_TIME);
210 }
211 break;
212 default:
213 ath_err(ath9k_hw_common(ah),
214 "Unknown phy %u (rate ix %u)\n", phy, rateix);
215 txTime = 0;
216 break;
217 }
218
219 return txTime;
220 }
221 EXPORT_SYMBOL(ath9k_hw_computetxtime);
222
ath9k_hw_get_channel_centers(struct ath_hw * ah,struct ath9k_channel * chan,struct chan_centers * centers)223 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
224 struct ath9k_channel *chan,
225 struct chan_centers *centers)
226 {
227 int8_t extoff;
228
229 if (!IS_CHAN_HT40(chan)) {
230 centers->ctl_center = centers->ext_center =
231 centers->synth_center = chan->channel;
232 return;
233 }
234
235 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
236 (chan->chanmode == CHANNEL_G_HT40PLUS)) {
237 centers->synth_center =
238 chan->channel + HT40_CHANNEL_CENTER_SHIFT;
239 extoff = 1;
240 } else {
241 centers->synth_center =
242 chan->channel - HT40_CHANNEL_CENTER_SHIFT;
243 extoff = -1;
244 }
245
246 centers->ctl_center =
247 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
248 /* 25 MHz spacing is supported by hw but not on upper layers */
249 centers->ext_center =
250 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
251 }
252
253 /******************/
254 /* Chip Revisions */
255 /******************/
256
ath9k_hw_read_revisions(struct ath_hw * ah)257 static void ath9k_hw_read_revisions(struct ath_hw *ah)
258 {
259 u32 val;
260
261 switch (ah->hw_version.devid) {
262 case AR5416_AR9100_DEVID:
263 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
264 break;
265 case AR9300_DEVID_AR9330:
266 ah->hw_version.macVersion = AR_SREV_VERSION_9330;
267 if (ah->get_mac_revision) {
268 ah->hw_version.macRev = ah->get_mac_revision();
269 } else {
270 val = REG_READ(ah, AR_SREV);
271 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
272 }
273 return;
274 case AR9300_DEVID_AR9340:
275 ah->hw_version.macVersion = AR_SREV_VERSION_9340;
276 val = REG_READ(ah, AR_SREV);
277 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
278 return;
279 }
280
281 val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
282
283 if (val == 0xFF) {
284 val = REG_READ(ah, AR_SREV);
285 ah->hw_version.macVersion =
286 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
287 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
288
289 if (AR_SREV_9462(ah))
290 ah->is_pciexpress = true;
291 else
292 ah->is_pciexpress = (val &
293 AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
294 } else {
295 if (!AR_SREV_9100(ah))
296 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
297
298 ah->hw_version.macRev = val & AR_SREV_REVISION;
299
300 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
301 ah->is_pciexpress = true;
302 }
303 }
304
305 /************************************/
306 /* HW Attach, Detach, Init Routines */
307 /************************************/
308
ath9k_hw_disablepcie(struct ath_hw * ah)309 static void ath9k_hw_disablepcie(struct ath_hw *ah)
310 {
311 if (!AR_SREV_5416(ah))
312 return;
313
314 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
315 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
316 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
317 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
318 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
319 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
320 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
321 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
322 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
323
324 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
325 }
326
ath9k_hw_aspm_init(struct ath_hw * ah)327 static void ath9k_hw_aspm_init(struct ath_hw *ah)
328 {
329 struct ath_common *common = ath9k_hw_common(ah);
330
331 if (common->bus_ops->aspm_init)
332 common->bus_ops->aspm_init(common);
333 }
334
335 /* This should work for all families including legacy */
ath9k_hw_chip_test(struct ath_hw * ah)336 static bool ath9k_hw_chip_test(struct ath_hw *ah)
337 {
338 struct ath_common *common = ath9k_hw_common(ah);
339 u32 regAddr[2] = { AR_STA_ID0 };
340 u32 regHold[2];
341 static const u32 patternData[4] = {
342 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
343 };
344 int i, j, loop_max;
345
346 if (!AR_SREV_9300_20_OR_LATER(ah)) {
347 loop_max = 2;
348 regAddr[1] = AR_PHY_BASE + (8 << 2);
349 } else
350 loop_max = 1;
351
352 for (i = 0; i < loop_max; i++) {
353 u32 addr = regAddr[i];
354 u32 wrData, rdData;
355
356 regHold[i] = REG_READ(ah, addr);
357 for (j = 0; j < 0x100; j++) {
358 wrData = (j << 16) | j;
359 REG_WRITE(ah, addr, wrData);
360 rdData = REG_READ(ah, addr);
361 if (rdData != wrData) {
362 ath_err(common,
363 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
364 addr, wrData, rdData);
365 return false;
366 }
367 }
368 for (j = 0; j < 4; j++) {
369 wrData = patternData[j];
370 REG_WRITE(ah, addr, wrData);
371 rdData = REG_READ(ah, addr);
372 if (wrData != rdData) {
373 ath_err(common,
374 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
375 addr, wrData, rdData);
376 return false;
377 }
378 }
379 REG_WRITE(ah, regAddr[i], regHold[i]);
380 }
381 udelay(100);
382
383 return true;
384 }
385
ath9k_hw_init_config(struct ath_hw * ah)386 static void ath9k_hw_init_config(struct ath_hw *ah)
387 {
388 int i;
389
390 ah->config.dma_beacon_response_time = 2;
391 ah->config.sw_beacon_response_time = 10;
392 ah->config.additional_swba_backoff = 0;
393 ah->config.ack_6mb = 0x0;
394 ah->config.cwm_ignore_extcca = 0;
395 ah->config.pcie_clock_req = 0;
396 ah->config.pcie_waen = 0;
397 ah->config.analog_shiftreg = 1;
398 ah->config.enable_ani = true;
399
400 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
401 ah->config.spurchans[i][0] = AR_NO_SPUR;
402 ah->config.spurchans[i][1] = AR_NO_SPUR;
403 }
404
405 /* PAPRD needs some more work to be enabled */
406 ah->config.paprd_disable = 1;
407
408 ah->config.rx_intr_mitigation = true;
409 ah->config.pcieSerDesWrite = true;
410
411 /*
412 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
413 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
414 * This means we use it for all AR5416 devices, and the few
415 * minor PCI AR9280 devices out there.
416 *
417 * Serialization is required because these devices do not handle
418 * well the case of two concurrent reads/writes due to the latency
419 * involved. During one read/write another read/write can be issued
420 * on another CPU while the previous read/write may still be working
421 * on our hardware, if we hit this case the hardware poops in a loop.
422 * We prevent this by serializing reads and writes.
423 *
424 * This issue is not present on PCI-Express devices or pre-AR5416
425 * devices (legacy, 802.11abg).
426 */
427 if (num_possible_cpus() > 1)
428 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
429 }
430
ath9k_hw_init_defaults(struct ath_hw * ah)431 static void ath9k_hw_init_defaults(struct ath_hw *ah)
432 {
433 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
434
435 regulatory->country_code = CTRY_DEFAULT;
436 regulatory->power_limit = MAX_RATE_POWER;
437
438 ah->hw_version.magic = AR5416_MAGIC;
439 ah->hw_version.subvendorid = 0;
440
441 ah->atim_window = 0;
442 ah->sta_id1_defaults =
443 AR_STA_ID1_CRPT_MIC_ENABLE |
444 AR_STA_ID1_MCAST_KSRCH;
445 if (AR_SREV_9100(ah))
446 ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
447 ah->enable_32kHz_clock = DONT_USE_32KHZ;
448 ah->slottime = ATH9K_SLOT_TIME_9;
449 ah->globaltxtimeout = (u32) -1;
450 ah->power_mode = ATH9K_PM_UNDEFINED;
451 }
452
ath9k_hw_init_macaddr(struct ath_hw * ah)453 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
454 {
455 struct ath_common *common = ath9k_hw_common(ah);
456 u32 sum;
457 int i;
458 u16 eeval;
459 static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
460
461 sum = 0;
462 for (i = 0; i < 3; i++) {
463 eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
464 sum += eeval;
465 common->macaddr[2 * i] = eeval >> 8;
466 common->macaddr[2 * i + 1] = eeval & 0xff;
467 }
468 if (sum == 0 || sum == 0xffff * 3)
469 return -EADDRNOTAVAIL;
470
471 return 0;
472 }
473
ath9k_hw_post_init(struct ath_hw * ah)474 static int ath9k_hw_post_init(struct ath_hw *ah)
475 {
476 struct ath_common *common = ath9k_hw_common(ah);
477 int ecode;
478
479 if (common->bus_ops->ath_bus_type != ATH_USB) {
480 if (!ath9k_hw_chip_test(ah))
481 return -ENODEV;
482 }
483
484 if (!AR_SREV_9300_20_OR_LATER(ah)) {
485 ecode = ar9002_hw_rf_claim(ah);
486 if (ecode != 0)
487 return ecode;
488 }
489
490 ecode = ath9k_hw_eeprom_init(ah);
491 if (ecode != 0)
492 return ecode;
493
494 ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
495 ah->eep_ops->get_eeprom_ver(ah),
496 ah->eep_ops->get_eeprom_rev(ah));
497
498 ecode = ath9k_hw_rf_alloc_ext_banks(ah);
499 if (ecode) {
500 ath_err(ath9k_hw_common(ah),
501 "Failed allocating banks for external radio\n");
502 ath9k_hw_rf_free_ext_banks(ah);
503 return ecode;
504 }
505
506 if (ah->config.enable_ani) {
507 ath9k_hw_ani_setup(ah);
508 ath9k_hw_ani_init(ah);
509 }
510
511 return 0;
512 }
513
ath9k_hw_attach_ops(struct ath_hw * ah)514 static void ath9k_hw_attach_ops(struct ath_hw *ah)
515 {
516 if (AR_SREV_9300_20_OR_LATER(ah))
517 ar9003_hw_attach_ops(ah);
518 else
519 ar9002_hw_attach_ops(ah);
520 }
521
522 /* Called for all hardware families */
__ath9k_hw_init(struct ath_hw * ah)523 static int __ath9k_hw_init(struct ath_hw *ah)
524 {
525 struct ath_common *common = ath9k_hw_common(ah);
526 int r = 0;
527
528 ath9k_hw_read_revisions(ah);
529
530 /*
531 * Read back AR_WA into a permanent copy and set bits 14 and 17.
532 * We need to do this to avoid RMW of this register. We cannot
533 * read the reg when chip is asleep.
534 */
535 ah->WARegVal = REG_READ(ah, AR_WA);
536 ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
537 AR_WA_ASPM_TIMER_BASED_DISABLE);
538
539 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
540 ath_err(common, "Couldn't reset chip\n");
541 return -EIO;
542 }
543
544 if (AR_SREV_9462(ah))
545 ah->WARegVal &= ~AR_WA_D3_L1_DISABLE;
546
547 ath9k_hw_init_defaults(ah);
548 ath9k_hw_init_config(ah);
549
550 ath9k_hw_attach_ops(ah);
551
552 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
553 ath_err(common, "Couldn't wakeup chip\n");
554 return -EIO;
555 }
556
557 if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
558 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
559 ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
560 !ah->is_pciexpress)) {
561 ah->config.serialize_regmode =
562 SER_REG_MODE_ON;
563 } else {
564 ah->config.serialize_regmode =
565 SER_REG_MODE_OFF;
566 }
567 }
568
569 ath_dbg(common, RESET, "serialize_regmode is %d\n",
570 ah->config.serialize_regmode);
571
572 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
573 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
574 else
575 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
576
577 switch (ah->hw_version.macVersion) {
578 case AR_SREV_VERSION_5416_PCI:
579 case AR_SREV_VERSION_5416_PCIE:
580 case AR_SREV_VERSION_9160:
581 case AR_SREV_VERSION_9100:
582 case AR_SREV_VERSION_9280:
583 case AR_SREV_VERSION_9285:
584 case AR_SREV_VERSION_9287:
585 case AR_SREV_VERSION_9271:
586 case AR_SREV_VERSION_9300:
587 case AR_SREV_VERSION_9330:
588 case AR_SREV_VERSION_9485:
589 case AR_SREV_VERSION_9340:
590 case AR_SREV_VERSION_9462:
591 break;
592 default:
593 ath_err(common,
594 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
595 ah->hw_version.macVersion, ah->hw_version.macRev);
596 return -EOPNOTSUPP;
597 }
598
599 if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
600 AR_SREV_9330(ah))
601 ah->is_pciexpress = false;
602
603 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
604 ath9k_hw_init_cal_settings(ah);
605
606 ah->ani_function = ATH9K_ANI_ALL;
607 if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
608 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
609 if (!AR_SREV_9300_20_OR_LATER(ah))
610 ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
611
612 /* disable ANI for 9340 */
613 if (AR_SREV_9340(ah))
614 ah->config.enable_ani = false;
615
616 ath9k_hw_init_mode_regs(ah);
617
618 if (!ah->is_pciexpress)
619 ath9k_hw_disablepcie(ah);
620
621 if (!AR_SREV_9300_20_OR_LATER(ah))
622 ar9002_hw_cck_chan14_spread(ah);
623
624 r = ath9k_hw_post_init(ah);
625 if (r)
626 return r;
627
628 ath9k_hw_init_mode_gain_regs(ah);
629 r = ath9k_hw_fill_cap_info(ah);
630 if (r)
631 return r;
632
633 if (ah->is_pciexpress)
634 ath9k_hw_aspm_init(ah);
635
636 r = ath9k_hw_init_macaddr(ah);
637 if (r) {
638 ath_err(common, "Failed to initialize MAC address\n");
639 return r;
640 }
641
642 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
643 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
644 else
645 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
646
647 if (AR_SREV_9330(ah))
648 ah->bb_watchdog_timeout_ms = 85;
649 else
650 ah->bb_watchdog_timeout_ms = 25;
651
652 common->state = ATH_HW_INITIALIZED;
653
654 return 0;
655 }
656
ath9k_hw_init(struct ath_hw * ah)657 int ath9k_hw_init(struct ath_hw *ah)
658 {
659 int ret;
660 struct ath_common *common = ath9k_hw_common(ah);
661
662 /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
663 switch (ah->hw_version.devid) {
664 case AR5416_DEVID_PCI:
665 case AR5416_DEVID_PCIE:
666 case AR5416_AR9100_DEVID:
667 case AR9160_DEVID_PCI:
668 case AR9280_DEVID_PCI:
669 case AR9280_DEVID_PCIE:
670 case AR9285_DEVID_PCIE:
671 case AR9287_DEVID_PCI:
672 case AR9287_DEVID_PCIE:
673 case AR2427_DEVID_PCIE:
674 case AR9300_DEVID_PCIE:
675 case AR9300_DEVID_AR9485_PCIE:
676 case AR9300_DEVID_AR9330:
677 case AR9300_DEVID_AR9340:
678 case AR9300_DEVID_AR9580:
679 case AR9300_DEVID_AR9462:
680 break;
681 default:
682 if (common->bus_ops->ath_bus_type == ATH_USB)
683 break;
684 ath_err(common, "Hardware device ID 0x%04x not supported\n",
685 ah->hw_version.devid);
686 return -EOPNOTSUPP;
687 }
688
689 ret = __ath9k_hw_init(ah);
690 if (ret) {
691 ath_err(common,
692 "Unable to initialize hardware; initialization status: %d\n",
693 ret);
694 return ret;
695 }
696
697 return 0;
698 }
699 EXPORT_SYMBOL(ath9k_hw_init);
700
ath9k_hw_init_qos(struct ath_hw * ah)701 static void ath9k_hw_init_qos(struct ath_hw *ah)
702 {
703 ENABLE_REGWRITE_BUFFER(ah);
704
705 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
706 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
707
708 REG_WRITE(ah, AR_QOS_NO_ACK,
709 SM(2, AR_QOS_NO_ACK_TWO_BIT) |
710 SM(5, AR_QOS_NO_ACK_BIT_OFF) |
711 SM(0, AR_QOS_NO_ACK_BYTE_OFF));
712
713 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
714 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
715 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
716 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
717 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
718
719 REGWRITE_BUFFER_FLUSH(ah);
720 }
721
ar9003_get_pll_sqsum_dvc(struct ath_hw * ah)722 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
723 {
724 REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
725 udelay(100);
726 REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
727
728 while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
729 udelay(100);
730
731 return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
732 }
733 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
734
ath9k_hw_init_pll(struct ath_hw * ah,struct ath9k_channel * chan)735 static void ath9k_hw_init_pll(struct ath_hw *ah,
736 struct ath9k_channel *chan)
737 {
738 u32 pll;
739
740 if (AR_SREV_9485(ah)) {
741
742 /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
743 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
744 AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
745 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
746 AR_CH0_DPLL2_KD, 0x40);
747 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
748 AR_CH0_DPLL2_KI, 0x4);
749
750 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
751 AR_CH0_BB_DPLL1_REFDIV, 0x5);
752 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
753 AR_CH0_BB_DPLL1_NINI, 0x58);
754 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
755 AR_CH0_BB_DPLL1_NFRAC, 0x0);
756
757 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
758 AR_CH0_BB_DPLL2_OUTDIV, 0x1);
759 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
760 AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
761 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
762 AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
763
764 /* program BB PLL phase_shift to 0x6 */
765 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
766 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
767
768 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
769 AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
770 udelay(1000);
771 } else if (AR_SREV_9330(ah)) {
772 u32 ddr_dpll2, pll_control2, kd;
773
774 if (ah->is_clk_25mhz) {
775 ddr_dpll2 = 0x18e82f01;
776 pll_control2 = 0xe04a3d;
777 kd = 0x1d;
778 } else {
779 ddr_dpll2 = 0x19e82f01;
780 pll_control2 = 0x886666;
781 kd = 0x3d;
782 }
783
784 /* program DDR PLL ki and kd value */
785 REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
786
787 /* program DDR PLL phase_shift */
788 REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
789 AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
790
791 REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
792 udelay(1000);
793
794 /* program refdiv, nint, frac to RTC register */
795 REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
796
797 /* program BB PLL kd and ki value */
798 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
799 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
800
801 /* program BB PLL phase_shift */
802 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
803 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
804 } else if (AR_SREV_9340(ah)) {
805 u32 regval, pll2_divint, pll2_divfrac, refdiv;
806
807 REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
808 udelay(1000);
809
810 REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
811 udelay(100);
812
813 if (ah->is_clk_25mhz) {
814 pll2_divint = 0x54;
815 pll2_divfrac = 0x1eb85;
816 refdiv = 3;
817 } else {
818 pll2_divint = 88;
819 pll2_divfrac = 0;
820 refdiv = 5;
821 }
822
823 regval = REG_READ(ah, AR_PHY_PLL_MODE);
824 regval |= (0x1 << 16);
825 REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
826 udelay(100);
827
828 REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
829 (pll2_divint << 18) | pll2_divfrac);
830 udelay(100);
831
832 regval = REG_READ(ah, AR_PHY_PLL_MODE);
833 regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
834 (0x4 << 26) | (0x18 << 19);
835 REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
836 REG_WRITE(ah, AR_PHY_PLL_MODE,
837 REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
838 udelay(1000);
839 }
840
841 pll = ath9k_hw_compute_pll_control(ah, chan);
842
843 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
844
845 if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah))
846 udelay(1000);
847
848 /* Switch the core clock for ar9271 to 117Mhz */
849 if (AR_SREV_9271(ah)) {
850 udelay(500);
851 REG_WRITE(ah, 0x50040, 0x304);
852 }
853
854 udelay(RTC_PLL_SETTLE_DELAY);
855
856 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
857
858 if (AR_SREV_9340(ah)) {
859 if (ah->is_clk_25mhz) {
860 REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
861 REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
862 REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae);
863 } else {
864 REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
865 REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
866 REG_WRITE(ah, AR_SLP32_INC, 0x0001e800);
867 }
868 udelay(100);
869 }
870 }
871
ath9k_hw_init_interrupt_masks(struct ath_hw * ah,enum nl80211_iftype opmode)872 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
873 enum nl80211_iftype opmode)
874 {
875 u32 sync_default = AR_INTR_SYNC_DEFAULT;
876 u32 imr_reg = AR_IMR_TXERR |
877 AR_IMR_TXURN |
878 AR_IMR_RXERR |
879 AR_IMR_RXORN |
880 AR_IMR_BCNMISC;
881
882 if (AR_SREV_9340(ah))
883 sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
884
885 if (AR_SREV_9300_20_OR_LATER(ah)) {
886 imr_reg |= AR_IMR_RXOK_HP;
887 if (ah->config.rx_intr_mitigation)
888 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
889 else
890 imr_reg |= AR_IMR_RXOK_LP;
891
892 } else {
893 if (ah->config.rx_intr_mitigation)
894 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
895 else
896 imr_reg |= AR_IMR_RXOK;
897 }
898
899 if (ah->config.tx_intr_mitigation)
900 imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
901 else
902 imr_reg |= AR_IMR_TXOK;
903
904 if (opmode == NL80211_IFTYPE_AP)
905 imr_reg |= AR_IMR_MIB;
906
907 ENABLE_REGWRITE_BUFFER(ah);
908
909 REG_WRITE(ah, AR_IMR, imr_reg);
910 ah->imrs2_reg |= AR_IMR_S2_GTT;
911 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
912
913 if (!AR_SREV_9100(ah)) {
914 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
915 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
916 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
917 }
918
919 REGWRITE_BUFFER_FLUSH(ah);
920
921 if (AR_SREV_9300_20_OR_LATER(ah)) {
922 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
923 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
924 REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
925 REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
926 }
927 }
928
ath9k_hw_set_sifs_time(struct ath_hw * ah,u32 us)929 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
930 {
931 u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
932 val = min(val, (u32) 0xFFFF);
933 REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
934 }
935
ath9k_hw_setslottime(struct ath_hw * ah,u32 us)936 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
937 {
938 u32 val = ath9k_hw_mac_to_clks(ah, us);
939 val = min(val, (u32) 0xFFFF);
940 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
941 }
942
ath9k_hw_set_ack_timeout(struct ath_hw * ah,u32 us)943 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
944 {
945 u32 val = ath9k_hw_mac_to_clks(ah, us);
946 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
947 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
948 }
949
ath9k_hw_set_cts_timeout(struct ath_hw * ah,u32 us)950 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
951 {
952 u32 val = ath9k_hw_mac_to_clks(ah, us);
953 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
954 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
955 }
956
ath9k_hw_set_global_txtimeout(struct ath_hw * ah,u32 tu)957 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
958 {
959 if (tu > 0xFFFF) {
960 ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
961 tu);
962 ah->globaltxtimeout = (u32) -1;
963 return false;
964 } else {
965 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
966 ah->globaltxtimeout = tu;
967 return true;
968 }
969 }
970
ath9k_hw_init_global_settings(struct ath_hw * ah)971 void ath9k_hw_init_global_settings(struct ath_hw *ah)
972 {
973 struct ath_common *common = ath9k_hw_common(ah);
974 struct ieee80211_conf *conf = &common->hw->conf;
975 const struct ath9k_channel *chan = ah->curchan;
976 int acktimeout, ctstimeout;
977 int slottime;
978 int sifstime;
979 int rx_lat = 0, tx_lat = 0, eifs = 0;
980 u32 reg;
981
982 ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
983 ah->misc_mode);
984
985 if (!chan)
986 return;
987
988 if (ah->misc_mode != 0)
989 REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
990
991 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
992 rx_lat = 41;
993 else
994 rx_lat = 37;
995 tx_lat = 54;
996
997 if (IS_CHAN_HALF_RATE(chan)) {
998 eifs = 175;
999 rx_lat *= 2;
1000 tx_lat *= 2;
1001 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1002 tx_lat += 11;
1003
1004 slottime = 13;
1005 sifstime = 32;
1006 } else if (IS_CHAN_QUARTER_RATE(chan)) {
1007 eifs = 340;
1008 rx_lat = (rx_lat * 4) - 1;
1009 tx_lat *= 4;
1010 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1011 tx_lat += 22;
1012
1013 slottime = 21;
1014 sifstime = 64;
1015 } else {
1016 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1017 eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1018 reg = AR_USEC_ASYNC_FIFO;
1019 } else {
1020 eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1021 common->clockrate;
1022 reg = REG_READ(ah, AR_USEC);
1023 }
1024 rx_lat = MS(reg, AR_USEC_RX_LAT);
1025 tx_lat = MS(reg, AR_USEC_TX_LAT);
1026
1027 slottime = ah->slottime;
1028 if (IS_CHAN_5GHZ(chan))
1029 sifstime = 16;
1030 else
1031 sifstime = 10;
1032 }
1033
1034 /* As defined by IEEE 802.11-2007 17.3.8.6 */
1035 acktimeout = slottime + sifstime + 3 * ah->coverage_class;
1036 ctstimeout = acktimeout;
1037
1038 /*
1039 * Workaround for early ACK timeouts, add an offset to match the
1040 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1041 * This was initially only meant to work around an issue with delayed
1042 * BA frames in some implementations, but it has been found to fix ACK
1043 * timeout issues in other cases as well.
1044 */
1045 if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ) {
1046 acktimeout += 64 - sifstime - ah->slottime;
1047 ctstimeout += 48 - sifstime - ah->slottime;
1048 }
1049
1050
1051 ath9k_hw_set_sifs_time(ah, sifstime);
1052 ath9k_hw_setslottime(ah, slottime);
1053 ath9k_hw_set_ack_timeout(ah, acktimeout);
1054 ath9k_hw_set_cts_timeout(ah, ctstimeout);
1055 if (ah->globaltxtimeout != (u32) -1)
1056 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1057
1058 REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1059 REG_RMW(ah, AR_USEC,
1060 (common->clockrate - 1) |
1061 SM(rx_lat, AR_USEC_RX_LAT) |
1062 SM(tx_lat, AR_USEC_TX_LAT),
1063 AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1064
1065 }
1066 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1067
ath9k_hw_deinit(struct ath_hw * ah)1068 void ath9k_hw_deinit(struct ath_hw *ah)
1069 {
1070 struct ath_common *common = ath9k_hw_common(ah);
1071
1072 if (common->state < ATH_HW_INITIALIZED)
1073 goto free_hw;
1074
1075 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1076
1077 free_hw:
1078 ath9k_hw_rf_free_ext_banks(ah);
1079 }
1080 EXPORT_SYMBOL(ath9k_hw_deinit);
1081
1082 /*******/
1083 /* INI */
1084 /*******/
1085
ath9k_regd_get_ctl(struct ath_regulatory * reg,struct ath9k_channel * chan)1086 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1087 {
1088 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1089
1090 if (IS_CHAN_B(chan))
1091 ctl |= CTL_11B;
1092 else if (IS_CHAN_G(chan))
1093 ctl |= CTL_11G;
1094 else
1095 ctl |= CTL_11A;
1096
1097 return ctl;
1098 }
1099
1100 /****************************************/
1101 /* Reset and Channel Switching Routines */
1102 /****************************************/
1103
ath9k_hw_set_dma(struct ath_hw * ah)1104 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1105 {
1106 struct ath_common *common = ath9k_hw_common(ah);
1107
1108 ENABLE_REGWRITE_BUFFER(ah);
1109
1110 /*
1111 * set AHB_MODE not to do cacheline prefetches
1112 */
1113 if (!AR_SREV_9300_20_OR_LATER(ah))
1114 REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1115
1116 /*
1117 * let mac dma reads be in 128 byte chunks
1118 */
1119 REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1120
1121 REGWRITE_BUFFER_FLUSH(ah);
1122
1123 /*
1124 * Restore TX Trigger Level to its pre-reset value.
1125 * The initial value depends on whether aggregation is enabled, and is
1126 * adjusted whenever underruns are detected.
1127 */
1128 if (!AR_SREV_9300_20_OR_LATER(ah))
1129 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1130
1131 ENABLE_REGWRITE_BUFFER(ah);
1132
1133 /*
1134 * let mac dma writes be in 128 byte chunks
1135 */
1136 REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1137
1138 /*
1139 * Setup receive FIFO threshold to hold off TX activities
1140 */
1141 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1142
1143 if (AR_SREV_9300_20_OR_LATER(ah)) {
1144 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1145 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1146
1147 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1148 ah->caps.rx_status_len);
1149 }
1150
1151 /*
1152 * reduce the number of usable entries in PCU TXBUF to avoid
1153 * wrap around issues.
1154 */
1155 if (AR_SREV_9285(ah)) {
1156 /* For AR9285 the number of Fifos are reduced to half.
1157 * So set the usable tx buf size also to half to
1158 * avoid data/delimiter underruns
1159 */
1160 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1161 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1162 } else if (!AR_SREV_9271(ah)) {
1163 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1164 AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1165 }
1166
1167 REGWRITE_BUFFER_FLUSH(ah);
1168
1169 if (AR_SREV_9300_20_OR_LATER(ah))
1170 ath9k_hw_reset_txstatus_ring(ah);
1171 }
1172
ath9k_hw_set_operating_mode(struct ath_hw * ah,int opmode)1173 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1174 {
1175 u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1176 u32 set = AR_STA_ID1_KSRCH_MODE;
1177
1178 switch (opmode) {
1179 case NL80211_IFTYPE_ADHOC:
1180 case NL80211_IFTYPE_MESH_POINT:
1181 set |= AR_STA_ID1_ADHOC;
1182 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1183 break;
1184 case NL80211_IFTYPE_AP:
1185 set |= AR_STA_ID1_STA_AP;
1186 /* fall through */
1187 case NL80211_IFTYPE_STATION:
1188 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1189 break;
1190 default:
1191 if (!ah->is_monitoring)
1192 set = 0;
1193 break;
1194 }
1195 REG_RMW(ah, AR_STA_ID1, set, mask);
1196 }
1197
ath9k_hw_get_delta_slope_vals(struct ath_hw * ah,u32 coef_scaled,u32 * coef_mantissa,u32 * coef_exponent)1198 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1199 u32 *coef_mantissa, u32 *coef_exponent)
1200 {
1201 u32 coef_exp, coef_man;
1202
1203 for (coef_exp = 31; coef_exp > 0; coef_exp--)
1204 if ((coef_scaled >> coef_exp) & 0x1)
1205 break;
1206
1207 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1208
1209 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1210
1211 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1212 *coef_exponent = coef_exp - 16;
1213 }
1214
ath9k_hw_set_reset(struct ath_hw * ah,int type)1215 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1216 {
1217 u32 rst_flags;
1218 u32 tmpReg;
1219
1220 if (AR_SREV_9100(ah)) {
1221 REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1222 AR_RTC_DERIVED_CLK_PERIOD, 1);
1223 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1224 }
1225
1226 ENABLE_REGWRITE_BUFFER(ah);
1227
1228 if (AR_SREV_9300_20_OR_LATER(ah)) {
1229 REG_WRITE(ah, AR_WA, ah->WARegVal);
1230 udelay(10);
1231 }
1232
1233 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1234 AR_RTC_FORCE_WAKE_ON_INT);
1235
1236 if (AR_SREV_9100(ah)) {
1237 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1238 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1239 } else {
1240 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1241 if (tmpReg &
1242 (AR_INTR_SYNC_LOCAL_TIMEOUT |
1243 AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1244 u32 val;
1245 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1246
1247 val = AR_RC_HOSTIF;
1248 if (!AR_SREV_9300_20_OR_LATER(ah))
1249 val |= AR_RC_AHB;
1250 REG_WRITE(ah, AR_RC, val);
1251
1252 } else if (!AR_SREV_9300_20_OR_LATER(ah))
1253 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1254
1255 rst_flags = AR_RTC_RC_MAC_WARM;
1256 if (type == ATH9K_RESET_COLD)
1257 rst_flags |= AR_RTC_RC_MAC_COLD;
1258 }
1259
1260 if (AR_SREV_9330(ah)) {
1261 int npend = 0;
1262 int i;
1263
1264 /* AR9330 WAR:
1265 * call external reset function to reset WMAC if:
1266 * - doing a cold reset
1267 * - we have pending frames in the TX queues
1268 */
1269
1270 for (i = 0; i < AR_NUM_QCU; i++) {
1271 npend = ath9k_hw_numtxpending(ah, i);
1272 if (npend)
1273 break;
1274 }
1275
1276 if (ah->external_reset &&
1277 (npend || type == ATH9K_RESET_COLD)) {
1278 int reset_err = 0;
1279
1280 ath_dbg(ath9k_hw_common(ah), RESET,
1281 "reset MAC via external reset\n");
1282
1283 reset_err = ah->external_reset();
1284 if (reset_err) {
1285 ath_err(ath9k_hw_common(ah),
1286 "External reset failed, err=%d\n",
1287 reset_err);
1288 return false;
1289 }
1290
1291 REG_WRITE(ah, AR_RTC_RESET, 1);
1292 }
1293 }
1294
1295 REG_WRITE(ah, AR_RTC_RC, rst_flags);
1296
1297 REGWRITE_BUFFER_FLUSH(ah);
1298
1299 udelay(50);
1300
1301 REG_WRITE(ah, AR_RTC_RC, 0);
1302 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1303 ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1304 return false;
1305 }
1306
1307 if (!AR_SREV_9100(ah))
1308 REG_WRITE(ah, AR_RC, 0);
1309
1310 if (AR_SREV_9100(ah))
1311 udelay(50);
1312
1313 return true;
1314 }
1315
ath9k_hw_set_reset_power_on(struct ath_hw * ah)1316 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1317 {
1318 ENABLE_REGWRITE_BUFFER(ah);
1319
1320 if (AR_SREV_9300_20_OR_LATER(ah)) {
1321 REG_WRITE(ah, AR_WA, ah->WARegVal);
1322 udelay(10);
1323 }
1324
1325 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1326 AR_RTC_FORCE_WAKE_ON_INT);
1327
1328 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1329 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1330
1331 REG_WRITE(ah, AR_RTC_RESET, 0);
1332
1333 REGWRITE_BUFFER_FLUSH(ah);
1334
1335 if (!AR_SREV_9300_20_OR_LATER(ah))
1336 udelay(2);
1337
1338 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1339 REG_WRITE(ah, AR_RC, 0);
1340
1341 REG_WRITE(ah, AR_RTC_RESET, 1);
1342
1343 if (!ath9k_hw_wait(ah,
1344 AR_RTC_STATUS,
1345 AR_RTC_STATUS_M,
1346 AR_RTC_STATUS_ON,
1347 AH_WAIT_TIMEOUT)) {
1348 ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1349 return false;
1350 }
1351
1352 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1353 }
1354
ath9k_hw_set_reset_reg(struct ath_hw * ah,u32 type)1355 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1356 {
1357 bool ret = false;
1358
1359 if (AR_SREV_9300_20_OR_LATER(ah)) {
1360 REG_WRITE(ah, AR_WA, ah->WARegVal);
1361 udelay(10);
1362 }
1363
1364 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1365 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1366
1367 switch (type) {
1368 case ATH9K_RESET_POWER_ON:
1369 ret = ath9k_hw_set_reset_power_on(ah);
1370 break;
1371 case ATH9K_RESET_WARM:
1372 case ATH9K_RESET_COLD:
1373 ret = ath9k_hw_set_reset(ah, type);
1374 break;
1375 default:
1376 break;
1377 }
1378
1379 if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
1380 REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
1381
1382 return ret;
1383 }
1384
ath9k_hw_chip_reset(struct ath_hw * ah,struct ath9k_channel * chan)1385 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1386 struct ath9k_channel *chan)
1387 {
1388 if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1389 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1390 return false;
1391 } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1392 return false;
1393
1394 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1395 return false;
1396
1397 ah->chip_fullsleep = false;
1398 ath9k_hw_init_pll(ah, chan);
1399 ath9k_hw_set_rfmode(ah, chan);
1400
1401 return true;
1402 }
1403
ath9k_hw_channel_change(struct ath_hw * ah,struct ath9k_channel * chan)1404 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1405 struct ath9k_channel *chan)
1406 {
1407 struct ath_common *common = ath9k_hw_common(ah);
1408 u32 qnum;
1409 int r;
1410 bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1411 bool band_switch, mode_diff;
1412 u8 ini_reloaded;
1413
1414 band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) !=
1415 (ah->curchan->channelFlags & (CHANNEL_2GHZ |
1416 CHANNEL_5GHZ));
1417 mode_diff = (chan->chanmode != ah->curchan->chanmode);
1418
1419 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1420 if (ath9k_hw_numtxpending(ah, qnum)) {
1421 ath_dbg(common, QUEUE,
1422 "Transmit frames pending on queue %d\n", qnum);
1423 return false;
1424 }
1425 }
1426
1427 if (!ath9k_hw_rfbus_req(ah)) {
1428 ath_err(common, "Could not kill baseband RX\n");
1429 return false;
1430 }
1431
1432 if (edma && (band_switch || mode_diff)) {
1433 ath9k_hw_mark_phy_inactive(ah);
1434 udelay(5);
1435
1436 ath9k_hw_init_pll(ah, NULL);
1437
1438 if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1439 ath_err(common, "Failed to do fast channel change\n");
1440 return false;
1441 }
1442 }
1443
1444 ath9k_hw_set_channel_regs(ah, chan);
1445
1446 r = ath9k_hw_rf_set_freq(ah, chan);
1447 if (r) {
1448 ath_err(common, "Failed to set channel\n");
1449 return false;
1450 }
1451 ath9k_hw_set_clockrate(ah);
1452 ath9k_hw_apply_txpower(ah, chan);
1453 ath9k_hw_rfbus_done(ah);
1454
1455 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1456 ath9k_hw_set_delta_slope(ah, chan);
1457
1458 ath9k_hw_spur_mitigate_freq(ah, chan);
1459
1460 if (edma && (band_switch || mode_diff)) {
1461 ah->ah_flags |= AH_FASTCC;
1462 if (band_switch || ini_reloaded)
1463 ah->eep_ops->set_board_values(ah, chan);
1464
1465 ath9k_hw_init_bb(ah, chan);
1466
1467 if (band_switch || ini_reloaded)
1468 ath9k_hw_init_cal(ah, chan);
1469 ah->ah_flags &= ~AH_FASTCC;
1470 }
1471
1472 return true;
1473 }
1474
ath9k_hw_apply_gpio_override(struct ath_hw * ah)1475 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1476 {
1477 u32 gpio_mask = ah->gpio_mask;
1478 int i;
1479
1480 for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1481 if (!(gpio_mask & 1))
1482 continue;
1483
1484 ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1485 ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1486 }
1487 }
1488
ath9k_hw_check_alive(struct ath_hw * ah)1489 bool ath9k_hw_check_alive(struct ath_hw *ah)
1490 {
1491 int count = 50;
1492 u32 reg;
1493
1494 if (AR_SREV_9285_12_OR_LATER(ah))
1495 return true;
1496
1497 do {
1498 reg = REG_READ(ah, AR_OBS_BUS_1);
1499
1500 if ((reg & 0x7E7FFFEF) == 0x00702400)
1501 continue;
1502
1503 switch (reg & 0x7E000B00) {
1504 case 0x1E000000:
1505 case 0x52000B00:
1506 case 0x18000B00:
1507 continue;
1508 default:
1509 return true;
1510 }
1511 } while (count-- > 0);
1512
1513 return false;
1514 }
1515 EXPORT_SYMBOL(ath9k_hw_check_alive);
1516
ath9k_hw_reset(struct ath_hw * ah,struct ath9k_channel * chan,struct ath9k_hw_cal_data * caldata,bool bChannelChange)1517 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1518 struct ath9k_hw_cal_data *caldata, bool bChannelChange)
1519 {
1520 struct ath_common *common = ath9k_hw_common(ah);
1521 struct ath9k_hw_mci *mci_hw = &ah->btcoex_hw.mci;
1522 u32 saveLedState;
1523 struct ath9k_channel *curchan = ah->curchan;
1524 u32 saveDefAntenna;
1525 u32 macStaId1;
1526 u64 tsf = 0;
1527 int i, r;
1528 bool allow_fbs = false;
1529 bool mci = !!(ah->caps.hw_caps & ATH9K_HW_CAP_MCI);
1530 bool save_fullsleep = ah->chip_fullsleep;
1531
1532 if (mci) {
1533
1534 ar9003_mci_2g5g_changed(ah, IS_CHAN_2GHZ(chan));
1535
1536 if (mci_hw->bt_state == MCI_BT_CAL_START) {
1537 u32 payload[4] = {0, 0, 0, 0};
1538
1539 ath_dbg(common, MCI, "MCI stop rx for BT CAL\n");
1540
1541 mci_hw->bt_state = MCI_BT_CAL;
1542
1543 /*
1544 * MCI FIX: disable mci interrupt here. This is to avoid
1545 * SW_MSG_DONE or RX_MSG bits to trigger MCI_INT and
1546 * lead to mci_intr reentry.
1547 */
1548
1549 ar9003_mci_disable_interrupt(ah);
1550
1551 ath_dbg(common, MCI, "send WLAN_CAL_GRANT\n");
1552 MCI_GPM_SET_CAL_TYPE(payload, MCI_GPM_WLAN_CAL_GRANT);
1553 ar9003_mci_send_message(ah, MCI_GPM, 0, payload,
1554 16, true, false);
1555
1556 ath_dbg(common, MCI, "\nMCI BT is calibrating\n");
1557
1558 /* Wait BT calibration to be completed for 25ms */
1559
1560 if (ar9003_mci_wait_for_gpm(ah, MCI_GPM_BT_CAL_DONE,
1561 0, 25000))
1562 ath_dbg(common, MCI,
1563 "MCI got BT_CAL_DONE\n");
1564 else
1565 ath_dbg(common, MCI,
1566 "MCI ### BT cal takes to long, force bt_state to be bt_awake\n");
1567 mci_hw->bt_state = MCI_BT_AWAKE;
1568 /* MCI FIX: enable mci interrupt here */
1569 ar9003_mci_enable_interrupt(ah);
1570
1571 return true;
1572 }
1573 }
1574
1575
1576 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1577 return -EIO;
1578
1579 if (curchan && !ah->chip_fullsleep)
1580 ath9k_hw_getnf(ah, curchan);
1581
1582 ah->caldata = caldata;
1583 if (caldata &&
1584 (chan->channel != caldata->channel ||
1585 (chan->channelFlags & ~CHANNEL_CW_INT) !=
1586 (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1587 /* Operating channel changed, reset channel calibration data */
1588 memset(caldata, 0, sizeof(*caldata));
1589 ath9k_init_nfcal_hist_buffer(ah, chan);
1590 }
1591 ah->noise = ath9k_hw_getchan_noise(ah, chan);
1592
1593 if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1594 bChannelChange = false;
1595
1596 if (caldata &&
1597 caldata->done_txiqcal_once &&
1598 caldata->done_txclcal_once &&
1599 caldata->rtt_hist.num_readings)
1600 allow_fbs = true;
1601
1602 if (bChannelChange &&
1603 (ah->chip_fullsleep != true) &&
1604 (ah->curchan != NULL) &&
1605 (chan->channel != ah->curchan->channel) &&
1606 (allow_fbs ||
1607 ((chan->channelFlags & CHANNEL_ALL) ==
1608 (ah->curchan->channelFlags & CHANNEL_ALL)))) {
1609 if (ath9k_hw_channel_change(ah, chan)) {
1610 ath9k_hw_loadnf(ah, ah->curchan);
1611 ath9k_hw_start_nfcal(ah, true);
1612 if (mci && mci_hw->ready)
1613 ar9003_mci_2g5g_switch(ah, true);
1614
1615 if (AR_SREV_9271(ah))
1616 ar9002_hw_load_ani_reg(ah, chan);
1617 return 0;
1618 }
1619 }
1620
1621 if (mci) {
1622 ar9003_mci_disable_interrupt(ah);
1623
1624 if (mci_hw->ready && !save_fullsleep) {
1625 ar9003_mci_mute_bt(ah);
1626 udelay(20);
1627 REG_WRITE(ah, AR_BTCOEX_CTRL, 0);
1628 }
1629
1630 mci_hw->bt_state = MCI_BT_SLEEP;
1631 mci_hw->ready = false;
1632 }
1633
1634
1635 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1636 if (saveDefAntenna == 0)
1637 saveDefAntenna = 1;
1638
1639 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1640
1641 /* For chips on which RTC reset is done, save TSF before it gets cleared */
1642 if (AR_SREV_9100(ah) ||
1643 (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1644 tsf = ath9k_hw_gettsf64(ah);
1645
1646 saveLedState = REG_READ(ah, AR_CFG_LED) &
1647 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1648 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1649
1650 ath9k_hw_mark_phy_inactive(ah);
1651
1652 ah->paprd_table_write_done = false;
1653
1654 /* Only required on the first reset */
1655 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1656 REG_WRITE(ah,
1657 AR9271_RESET_POWER_DOWN_CONTROL,
1658 AR9271_RADIO_RF_RST);
1659 udelay(50);
1660 }
1661
1662 if (!ath9k_hw_chip_reset(ah, chan)) {
1663 ath_err(common, "Chip reset failed\n");
1664 return -EINVAL;
1665 }
1666
1667 /* Only required on the first reset */
1668 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1669 ah->htc_reset_init = false;
1670 REG_WRITE(ah,
1671 AR9271_RESET_POWER_DOWN_CONTROL,
1672 AR9271_GATE_MAC_CTL);
1673 udelay(50);
1674 }
1675
1676 /* Restore TSF */
1677 if (tsf)
1678 ath9k_hw_settsf64(ah, tsf);
1679
1680 if (AR_SREV_9280_20_OR_LATER(ah))
1681 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1682
1683 if (!AR_SREV_9300_20_OR_LATER(ah))
1684 ar9002_hw_enable_async_fifo(ah);
1685
1686 r = ath9k_hw_process_ini(ah, chan);
1687 if (r)
1688 return r;
1689
1690 if (mci)
1691 ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1692
1693 /*
1694 * Some AR91xx SoC devices frequently fail to accept TSF writes
1695 * right after the chip reset. When that happens, write a new
1696 * value after the initvals have been applied, with an offset
1697 * based on measured time difference
1698 */
1699 if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1700 tsf += 1500;
1701 ath9k_hw_settsf64(ah, tsf);
1702 }
1703
1704 /* Setup MFP options for CCMP */
1705 if (AR_SREV_9280_20_OR_LATER(ah)) {
1706 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1707 * frames when constructing CCMP AAD. */
1708 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1709 0xc7ff);
1710 ah->sw_mgmt_crypto = false;
1711 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1712 /* Disable hardware crypto for management frames */
1713 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1714 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1715 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1716 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1717 ah->sw_mgmt_crypto = true;
1718 } else
1719 ah->sw_mgmt_crypto = true;
1720
1721 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1722 ath9k_hw_set_delta_slope(ah, chan);
1723
1724 ath9k_hw_spur_mitigate_freq(ah, chan);
1725 ah->eep_ops->set_board_values(ah, chan);
1726
1727 ENABLE_REGWRITE_BUFFER(ah);
1728
1729 REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1730 REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1731 | macStaId1
1732 | AR_STA_ID1_RTS_USE_DEF
1733 | (ah->config.
1734 ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1735 | ah->sta_id1_defaults);
1736 ath_hw_setbssidmask(common);
1737 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1738 ath9k_hw_write_associd(ah);
1739 REG_WRITE(ah, AR_ISR, ~0);
1740 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1741
1742 REGWRITE_BUFFER_FLUSH(ah);
1743
1744 ath9k_hw_set_operating_mode(ah, ah->opmode);
1745
1746 r = ath9k_hw_rf_set_freq(ah, chan);
1747 if (r)
1748 return r;
1749
1750 ath9k_hw_set_clockrate(ah);
1751
1752 ENABLE_REGWRITE_BUFFER(ah);
1753
1754 for (i = 0; i < AR_NUM_DCU; i++)
1755 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1756
1757 REGWRITE_BUFFER_FLUSH(ah);
1758
1759 ah->intr_txqs = 0;
1760 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1761 ath9k_hw_resettxqueue(ah, i);
1762
1763 ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1764 ath9k_hw_ani_cache_ini_regs(ah);
1765 ath9k_hw_init_qos(ah);
1766
1767 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1768 ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1769
1770 ath9k_hw_init_global_settings(ah);
1771
1772 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1773 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1774 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1775 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1776 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1777 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1778 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1779 }
1780
1781 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1782
1783 ath9k_hw_set_dma(ah);
1784
1785 REG_WRITE(ah, AR_OBS, 8);
1786
1787 if (ah->config.rx_intr_mitigation) {
1788 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1789 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1790 }
1791
1792 if (ah->config.tx_intr_mitigation) {
1793 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1794 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1795 }
1796
1797 ath9k_hw_init_bb(ah, chan);
1798
1799 if (caldata) {
1800 caldata->done_txiqcal_once = false;
1801 caldata->done_txclcal_once = false;
1802 caldata->rtt_hist.num_readings = 0;
1803 }
1804 if (!ath9k_hw_init_cal(ah, chan))
1805 return -EIO;
1806
1807 ath9k_hw_loadnf(ah, chan);
1808 ath9k_hw_start_nfcal(ah, true);
1809
1810 if (mci && mci_hw->ready) {
1811
1812 if (IS_CHAN_2GHZ(chan) &&
1813 (mci_hw->bt_state == MCI_BT_SLEEP)) {
1814
1815 if (ar9003_mci_check_int(ah,
1816 AR_MCI_INTERRUPT_RX_MSG_REMOTE_RESET) ||
1817 ar9003_mci_check_int(ah,
1818 AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE)) {
1819
1820 /*
1821 * BT is sleeping. Check if BT wakes up during
1822 * WLAN calibration. If BT wakes up during
1823 * WLAN calibration, need to go through all
1824 * message exchanges again and recal.
1825 */
1826
1827 ath_dbg(common, MCI,
1828 "MCI BT wakes up during WLAN calibration\n");
1829
1830 REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
1831 AR_MCI_INTERRUPT_RX_MSG_REMOTE_RESET |
1832 AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE);
1833 ath_dbg(common, MCI, "MCI send REMOTE_RESET\n");
1834 ar9003_mci_remote_reset(ah, true);
1835 ar9003_mci_send_sys_waking(ah, true);
1836 udelay(1);
1837 if (IS_CHAN_2GHZ(chan))
1838 ar9003_mci_send_lna_transfer(ah, true);
1839
1840 mci_hw->bt_state = MCI_BT_AWAKE;
1841
1842 ath_dbg(common, MCI, "MCI re-cal\n");
1843
1844 if (caldata) {
1845 caldata->done_txiqcal_once = false;
1846 caldata->done_txclcal_once = false;
1847 caldata->rtt_hist.num_readings = 0;
1848 }
1849
1850 if (!ath9k_hw_init_cal(ah, chan))
1851 return -EIO;
1852
1853 }
1854 }
1855 ar9003_mci_enable_interrupt(ah);
1856 }
1857
1858 ENABLE_REGWRITE_BUFFER(ah);
1859
1860 ath9k_hw_restore_chainmask(ah);
1861 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1862
1863 REGWRITE_BUFFER_FLUSH(ah);
1864
1865 /*
1866 * For big endian systems turn on swapping for descriptors
1867 */
1868 if (AR_SREV_9100(ah)) {
1869 u32 mask;
1870 mask = REG_READ(ah, AR_CFG);
1871 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1872 ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1873 mask);
1874 } else {
1875 mask =
1876 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1877 REG_WRITE(ah, AR_CFG, mask);
1878 ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1879 REG_READ(ah, AR_CFG));
1880 }
1881 } else {
1882 if (common->bus_ops->ath_bus_type == ATH_USB) {
1883 /* Configure AR9271 target WLAN */
1884 if (AR_SREV_9271(ah))
1885 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1886 else
1887 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1888 }
1889 #ifdef __BIG_ENDIAN
1890 else if (AR_SREV_9330(ah) || AR_SREV_9340(ah))
1891 REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1892 else
1893 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1894 #endif
1895 }
1896
1897 if (ah->btcoex_hw.enabled &&
1898 ath9k_hw_get_btcoex_scheme(ah) != ATH_BTCOEX_CFG_NONE)
1899 ath9k_hw_btcoex_enable(ah);
1900
1901 if (mci && mci_hw->ready) {
1902 /*
1903 * check BT state again to make
1904 * sure it's not changed.
1905 */
1906
1907 ar9003_mci_sync_bt_state(ah);
1908 ar9003_mci_2g5g_switch(ah, true);
1909
1910 if ((mci_hw->bt_state == MCI_BT_AWAKE) &&
1911 (mci_hw->query_bt == true)) {
1912 mci_hw->need_flush_btinfo = true;
1913 }
1914 }
1915
1916 if (AR_SREV_9300_20_OR_LATER(ah)) {
1917 ar9003_hw_bb_watchdog_config(ah);
1918
1919 ar9003_hw_disable_phy_restart(ah);
1920 }
1921
1922 ath9k_hw_apply_gpio_override(ah);
1923
1924 return 0;
1925 }
1926 EXPORT_SYMBOL(ath9k_hw_reset);
1927
1928 /******************************/
1929 /* Power Management (Chipset) */
1930 /******************************/
1931
1932 /*
1933 * Notify Power Mgt is disabled in self-generated frames.
1934 * If requested, force chip to sleep.
1935 */
ath9k_set_power_sleep(struct ath_hw * ah,int setChip)1936 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1937 {
1938 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1939 if (setChip) {
1940 if (AR_SREV_9462(ah)) {
1941 REG_WRITE(ah, AR_TIMER_MODE,
1942 REG_READ(ah, AR_TIMER_MODE) & 0xFFFFFF00);
1943 REG_WRITE(ah, AR_NDP2_TIMER_MODE, REG_READ(ah,
1944 AR_NDP2_TIMER_MODE) & 0xFFFFFF00);
1945 REG_WRITE(ah, AR_SLP32_INC,
1946 REG_READ(ah, AR_SLP32_INC) & 0xFFF00000);
1947 /* xxx Required for WLAN only case ? */
1948 REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
1949 udelay(100);
1950 }
1951
1952 /*
1953 * Clear the RTC force wake bit to allow the
1954 * mac to go to sleep.
1955 */
1956 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
1957
1958 if (AR_SREV_9462(ah))
1959 udelay(100);
1960
1961 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1962 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1963
1964 /* Shutdown chip. Active low */
1965 if (!AR_SREV_5416(ah) &&
1966 !AR_SREV_9271(ah) && !AR_SREV_9462_10(ah)) {
1967 REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
1968 udelay(2);
1969 }
1970 }
1971
1972 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1973 if (AR_SREV_9300_20_OR_LATER(ah))
1974 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1975 }
1976
1977 /*
1978 * Notify Power Management is enabled in self-generating
1979 * frames. If request, set power mode of chip to
1980 * auto/normal. Duration in units of 128us (1/8 TU).
1981 */
ath9k_set_power_network_sleep(struct ath_hw * ah,int setChip)1982 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1983 {
1984 u32 val;
1985
1986 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1987 if (setChip) {
1988 struct ath9k_hw_capabilities *pCap = &ah->caps;
1989
1990 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1991 /* Set WakeOnInterrupt bit; clear ForceWake bit */
1992 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1993 AR_RTC_FORCE_WAKE_ON_INT);
1994 } else {
1995
1996 /* When chip goes into network sleep, it could be waken
1997 * up by MCI_INT interrupt caused by BT's HW messages
1998 * (LNA_xxx, CONT_xxx) which chould be in a very fast
1999 * rate (~100us). This will cause chip to leave and
2000 * re-enter network sleep mode frequently, which in
2001 * consequence will have WLAN MCI HW to generate lots of
2002 * SYS_WAKING and SYS_SLEEPING messages which will make
2003 * BT CPU to busy to process.
2004 */
2005 if (AR_SREV_9462(ah)) {
2006 val = REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_EN) &
2007 ~AR_MCI_INTERRUPT_RX_HW_MSG_MASK;
2008 REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, val);
2009 }
2010 /*
2011 * Clear the RTC force wake bit to allow the
2012 * mac to go to sleep.
2013 */
2014 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2015 AR_RTC_FORCE_WAKE_EN);
2016
2017 if (AR_SREV_9462(ah))
2018 udelay(30);
2019 }
2020 }
2021
2022 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2023 if (AR_SREV_9300_20_OR_LATER(ah))
2024 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2025 }
2026
ath9k_hw_set_power_awake(struct ath_hw * ah,int setChip)2027 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2028 {
2029 u32 val;
2030 int i;
2031
2032 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2033 if (AR_SREV_9300_20_OR_LATER(ah)) {
2034 REG_WRITE(ah, AR_WA, ah->WARegVal);
2035 udelay(10);
2036 }
2037
2038 if (setChip) {
2039 if ((REG_READ(ah, AR_RTC_STATUS) &
2040 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2041 if (ath9k_hw_set_reset_reg(ah,
2042 ATH9K_RESET_POWER_ON) != true) {
2043 return false;
2044 }
2045 if (!AR_SREV_9300_20_OR_LATER(ah))
2046 ath9k_hw_init_pll(ah, NULL);
2047 }
2048 if (AR_SREV_9100(ah))
2049 REG_SET_BIT(ah, AR_RTC_RESET,
2050 AR_RTC_RESET_EN);
2051
2052 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2053 AR_RTC_FORCE_WAKE_EN);
2054 udelay(50);
2055
2056 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2057 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2058 if (val == AR_RTC_STATUS_ON)
2059 break;
2060 udelay(50);
2061 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2062 AR_RTC_FORCE_WAKE_EN);
2063 }
2064 if (i == 0) {
2065 ath_err(ath9k_hw_common(ah),
2066 "Failed to wakeup in %uus\n",
2067 POWER_UP_TIME / 20);
2068 return false;
2069 }
2070 }
2071
2072 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2073
2074 return true;
2075 }
2076
ath9k_hw_setpower(struct ath_hw * ah,enum ath9k_power_mode mode)2077 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2078 {
2079 struct ath_common *common = ath9k_hw_common(ah);
2080 struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
2081 int status = true, setChip = true;
2082 static const char *modes[] = {
2083 "AWAKE",
2084 "FULL-SLEEP",
2085 "NETWORK SLEEP",
2086 "UNDEFINED"
2087 };
2088
2089 if (ah->power_mode == mode)
2090 return status;
2091
2092 ath_dbg(common, RESET, "%s -> %s\n",
2093 modes[ah->power_mode], modes[mode]);
2094
2095 switch (mode) {
2096 case ATH9K_PM_AWAKE:
2097 status = ath9k_hw_set_power_awake(ah, setChip);
2098
2099 if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
2100 REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
2101
2102 break;
2103 case ATH9K_PM_FULL_SLEEP:
2104
2105 if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI) {
2106 if (ar9003_mci_state(ah, MCI_STATE_ENABLE, NULL) &&
2107 (mci->bt_state != MCI_BT_SLEEP) &&
2108 !mci->halted_bt_gpm) {
2109 ath_dbg(common, MCI,
2110 "MCI halt BT GPM (full_sleep)\n");
2111 ar9003_mci_send_coex_halt_bt_gpm(ah,
2112 true, true);
2113 }
2114
2115 mci->ready = false;
2116 REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
2117 }
2118
2119 ath9k_set_power_sleep(ah, setChip);
2120 ah->chip_fullsleep = true;
2121 break;
2122 case ATH9K_PM_NETWORK_SLEEP:
2123
2124 if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
2125 REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
2126
2127 ath9k_set_power_network_sleep(ah, setChip);
2128 break;
2129 default:
2130 ath_err(common, "Unknown power mode %u\n", mode);
2131 return false;
2132 }
2133 ah->power_mode = mode;
2134
2135 /*
2136 * XXX: If this warning never comes up after a while then
2137 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2138 * ath9k_hw_setpower() return type void.
2139 */
2140
2141 if (!(ah->ah_flags & AH_UNPLUGGED))
2142 ATH_DBG_WARN_ON_ONCE(!status);
2143
2144 return status;
2145 }
2146 EXPORT_SYMBOL(ath9k_hw_setpower);
2147
2148 /*******************/
2149 /* Beacon Handling */
2150 /*******************/
2151
ath9k_hw_beaconinit(struct ath_hw * ah,u32 next_beacon,u32 beacon_period)2152 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2153 {
2154 int flags = 0;
2155
2156 ENABLE_REGWRITE_BUFFER(ah);
2157
2158 switch (ah->opmode) {
2159 case NL80211_IFTYPE_ADHOC:
2160 case NL80211_IFTYPE_MESH_POINT:
2161 REG_SET_BIT(ah, AR_TXCFG,
2162 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2163 REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
2164 TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
2165 flags |= AR_NDP_TIMER_EN;
2166 case NL80211_IFTYPE_AP:
2167 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2168 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2169 TU_TO_USEC(ah->config.dma_beacon_response_time));
2170 REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2171 TU_TO_USEC(ah->config.sw_beacon_response_time));
2172 flags |=
2173 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2174 break;
2175 default:
2176 ath_dbg(ath9k_hw_common(ah), BEACON,
2177 "%s: unsupported opmode: %d\n", __func__, ah->opmode);
2178 return;
2179 break;
2180 }
2181
2182 REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2183 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2184 REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2185 REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
2186
2187 REGWRITE_BUFFER_FLUSH(ah);
2188
2189 REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2190 }
2191 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2192
ath9k_hw_set_sta_beacon_timers(struct ath_hw * ah,const struct ath9k_beacon_state * bs)2193 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2194 const struct ath9k_beacon_state *bs)
2195 {
2196 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2197 struct ath9k_hw_capabilities *pCap = &ah->caps;
2198 struct ath_common *common = ath9k_hw_common(ah);
2199
2200 ENABLE_REGWRITE_BUFFER(ah);
2201
2202 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
2203
2204 REG_WRITE(ah, AR_BEACON_PERIOD,
2205 TU_TO_USEC(bs->bs_intval));
2206 REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
2207 TU_TO_USEC(bs->bs_intval));
2208
2209 REGWRITE_BUFFER_FLUSH(ah);
2210
2211 REG_RMW_FIELD(ah, AR_RSSI_THR,
2212 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2213
2214 beaconintval = bs->bs_intval;
2215
2216 if (bs->bs_sleepduration > beaconintval)
2217 beaconintval = bs->bs_sleepduration;
2218
2219 dtimperiod = bs->bs_dtimperiod;
2220 if (bs->bs_sleepduration > dtimperiod)
2221 dtimperiod = bs->bs_sleepduration;
2222
2223 if (beaconintval == dtimperiod)
2224 nextTbtt = bs->bs_nextdtim;
2225 else
2226 nextTbtt = bs->bs_nexttbtt;
2227
2228 ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2229 ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2230 ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2231 ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2232
2233 ENABLE_REGWRITE_BUFFER(ah);
2234
2235 REG_WRITE(ah, AR_NEXT_DTIM,
2236 TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
2237 REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2238
2239 REG_WRITE(ah, AR_SLEEP1,
2240 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2241 | AR_SLEEP1_ASSUME_DTIM);
2242
2243 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2244 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2245 else
2246 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2247
2248 REG_WRITE(ah, AR_SLEEP2,
2249 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2250
2251 REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2252 REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2253
2254 REGWRITE_BUFFER_FLUSH(ah);
2255
2256 REG_SET_BIT(ah, AR_TIMER_MODE,
2257 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2258 AR_DTIM_TIMER_EN);
2259
2260 /* TSF Out of Range Threshold */
2261 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2262 }
2263 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2264
2265 /*******************/
2266 /* HW Capabilities */
2267 /*******************/
2268
fixup_chainmask(u8 chip_chainmask,u8 eeprom_chainmask)2269 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2270 {
2271 eeprom_chainmask &= chip_chainmask;
2272 if (eeprom_chainmask)
2273 return eeprom_chainmask;
2274 else
2275 return chip_chainmask;
2276 }
2277
2278 /**
2279 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2280 * @ah: the atheros hardware data structure
2281 *
2282 * We enable DFS support upstream on chipsets which have passed a series
2283 * of tests. The testing requirements are going to be documented. Desired
2284 * test requirements are documented at:
2285 *
2286 * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2287 *
2288 * Once a new chipset gets properly tested an individual commit can be used
2289 * to document the testing for DFS for that chipset.
2290 */
ath9k_hw_dfs_tested(struct ath_hw * ah)2291 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2292 {
2293
2294 switch (ah->hw_version.macVersion) {
2295 /* AR9580 will likely be our first target to get testing on */
2296 case AR_SREV_VERSION_9580:
2297 default:
2298 return false;
2299 }
2300 }
2301
ath9k_hw_fill_cap_info(struct ath_hw * ah)2302 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2303 {
2304 struct ath9k_hw_capabilities *pCap = &ah->caps;
2305 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2306 struct ath_common *common = ath9k_hw_common(ah);
2307 struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
2308 unsigned int chip_chainmask;
2309
2310 u16 eeval;
2311 u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2312
2313 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2314 regulatory->current_rd = eeval;
2315
2316 if (ah->opmode != NL80211_IFTYPE_AP &&
2317 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2318 if (regulatory->current_rd == 0x64 ||
2319 regulatory->current_rd == 0x65)
2320 regulatory->current_rd += 5;
2321 else if (regulatory->current_rd == 0x41)
2322 regulatory->current_rd = 0x43;
2323 ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2324 regulatory->current_rd);
2325 }
2326
2327 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2328 if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2329 ath_err(common,
2330 "no band has been marked as supported in EEPROM\n");
2331 return -EINVAL;
2332 }
2333
2334 if (eeval & AR5416_OPFLAGS_11A)
2335 pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2336
2337 if (eeval & AR5416_OPFLAGS_11G)
2338 pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2339
2340 if (AR_SREV_9485(ah) || AR_SREV_9285(ah) || AR_SREV_9330(ah))
2341 chip_chainmask = 1;
2342 else if (AR_SREV_9462(ah))
2343 chip_chainmask = 3;
2344 else if (!AR_SREV_9280_20_OR_LATER(ah))
2345 chip_chainmask = 7;
2346 else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2347 chip_chainmask = 3;
2348 else
2349 chip_chainmask = 7;
2350
2351 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2352 /*
2353 * For AR9271 we will temporarilly uses the rx chainmax as read from
2354 * the EEPROM.
2355 */
2356 if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2357 !(eeval & AR5416_OPFLAGS_11A) &&
2358 !(AR_SREV_9271(ah)))
2359 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2360 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2361 else if (AR_SREV_9100(ah))
2362 pCap->rx_chainmask = 0x7;
2363 else
2364 /* Use rx_chainmask from EEPROM. */
2365 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2366
2367 pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2368 pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2369 ah->txchainmask = pCap->tx_chainmask;
2370 ah->rxchainmask = pCap->rx_chainmask;
2371
2372 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2373
2374 /* enable key search for every frame in an aggregate */
2375 if (AR_SREV_9300_20_OR_LATER(ah))
2376 ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2377
2378 common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2379
2380 if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2381 pCap->hw_caps |= ATH9K_HW_CAP_HT;
2382 else
2383 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2384
2385 if (AR_SREV_9271(ah))
2386 pCap->num_gpio_pins = AR9271_NUM_GPIO;
2387 else if (AR_DEVID_7010(ah))
2388 pCap->num_gpio_pins = AR7010_NUM_GPIO;
2389 else if (AR_SREV_9300_20_OR_LATER(ah))
2390 pCap->num_gpio_pins = AR9300_NUM_GPIO;
2391 else if (AR_SREV_9287_11_OR_LATER(ah))
2392 pCap->num_gpio_pins = AR9287_NUM_GPIO;
2393 else if (AR_SREV_9285_12_OR_LATER(ah))
2394 pCap->num_gpio_pins = AR9285_NUM_GPIO;
2395 else if (AR_SREV_9280_20_OR_LATER(ah))
2396 pCap->num_gpio_pins = AR928X_NUM_GPIO;
2397 else
2398 pCap->num_gpio_pins = AR_NUM_GPIO;
2399
2400 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2401 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2402 else
2403 pCap->rts_aggr_limit = (8 * 1024);
2404
2405 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2406 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2407 if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2408 ah->rfkill_gpio =
2409 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2410 ah->rfkill_polarity =
2411 MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2412
2413 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2414 }
2415 #endif
2416 if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2417 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2418 else
2419 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2420
2421 if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2422 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2423 else
2424 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2425
2426 if (common->btcoex_enabled) {
2427 if (AR_SREV_9462(ah))
2428 btcoex_hw->scheme = ATH_BTCOEX_CFG_MCI;
2429 else if (AR_SREV_9300_20_OR_LATER(ah)) {
2430 btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2431 btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9300;
2432 btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9300;
2433 btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO_9300;
2434 } else if (AR_SREV_9280_20_OR_LATER(ah)) {
2435 btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9280;
2436 btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9280;
2437
2438 if (AR_SREV_9285(ah)) {
2439 btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2440 btcoex_hw->btpriority_gpio =
2441 ATH_BTPRIORITY_GPIO_9285;
2442 } else {
2443 btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
2444 }
2445 }
2446 } else {
2447 btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
2448 }
2449
2450 if (AR_SREV_9300_20_OR_LATER(ah)) {
2451 pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2452 if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah))
2453 pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2454
2455 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2456 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2457 pCap->rx_status_len = sizeof(struct ar9003_rxs);
2458 pCap->tx_desc_len = sizeof(struct ar9003_txc);
2459 pCap->txs_len = sizeof(struct ar9003_txs);
2460 if (!ah->config.paprd_disable &&
2461 ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2462 pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2463 } else {
2464 pCap->tx_desc_len = sizeof(struct ath_desc);
2465 if (AR_SREV_9280_20(ah))
2466 pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2467 }
2468
2469 if (AR_SREV_9300_20_OR_LATER(ah))
2470 pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2471
2472 if (AR_SREV_9300_20_OR_LATER(ah))
2473 ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2474
2475 if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2476 pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2477
2478 if (AR_SREV_9285(ah))
2479 if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2480 ant_div_ctl1 =
2481 ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2482 if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
2483 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2484 }
2485 if (AR_SREV_9300_20_OR_LATER(ah)) {
2486 if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2487 pCap->hw_caps |= ATH9K_HW_CAP_APM;
2488 }
2489
2490
2491 if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
2492 ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2493 /*
2494 * enable the diversity-combining algorithm only when
2495 * both enable_lna_div and enable_fast_div are set
2496 * Table for Diversity
2497 * ant_div_alt_lnaconf bit 0-1
2498 * ant_div_main_lnaconf bit 2-3
2499 * ant_div_alt_gaintb bit 4
2500 * ant_div_main_gaintb bit 5
2501 * enable_ant_div_lnadiv bit 6
2502 * enable_ant_fast_div bit 7
2503 */
2504 if ((ant_div_ctl1 >> 0x6) == 0x3)
2505 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2506 }
2507
2508 if (AR_SREV_9485_10(ah)) {
2509 pCap->pcie_lcr_extsync_en = true;
2510 pCap->pcie_lcr_offset = 0x80;
2511 }
2512
2513 if (ath9k_hw_dfs_tested(ah))
2514 pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2515
2516 tx_chainmask = pCap->tx_chainmask;
2517 rx_chainmask = pCap->rx_chainmask;
2518 while (tx_chainmask || rx_chainmask) {
2519 if (tx_chainmask & BIT(0))
2520 pCap->max_txchains++;
2521 if (rx_chainmask & BIT(0))
2522 pCap->max_rxchains++;
2523
2524 tx_chainmask >>= 1;
2525 rx_chainmask >>= 1;
2526 }
2527
2528 if (AR_SREV_9300_20_OR_LATER(ah)) {
2529 ah->enabled_cals |= TX_IQ_CAL;
2530 if (AR_SREV_9485_OR_LATER(ah))
2531 ah->enabled_cals |= TX_IQ_ON_AGC_CAL;
2532 }
2533 if (AR_SREV_9462(ah))
2534 pCap->hw_caps |= ATH9K_HW_CAP_RTT | ATH9K_HW_CAP_MCI;
2535
2536 return 0;
2537 }
2538
2539 /****************************/
2540 /* GPIO / RFKILL / Antennae */
2541 /****************************/
2542
ath9k_hw_gpio_cfg_output_mux(struct ath_hw * ah,u32 gpio,u32 type)2543 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2544 u32 gpio, u32 type)
2545 {
2546 int addr;
2547 u32 gpio_shift, tmp;
2548
2549 if (gpio > 11)
2550 addr = AR_GPIO_OUTPUT_MUX3;
2551 else if (gpio > 5)
2552 addr = AR_GPIO_OUTPUT_MUX2;
2553 else
2554 addr = AR_GPIO_OUTPUT_MUX1;
2555
2556 gpio_shift = (gpio % 6) * 5;
2557
2558 if (AR_SREV_9280_20_OR_LATER(ah)
2559 || (addr != AR_GPIO_OUTPUT_MUX1)) {
2560 REG_RMW(ah, addr, (type << gpio_shift),
2561 (0x1f << gpio_shift));
2562 } else {
2563 tmp = REG_READ(ah, addr);
2564 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2565 tmp &= ~(0x1f << gpio_shift);
2566 tmp |= (type << gpio_shift);
2567 REG_WRITE(ah, addr, tmp);
2568 }
2569 }
2570
ath9k_hw_cfg_gpio_input(struct ath_hw * ah,u32 gpio)2571 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2572 {
2573 u32 gpio_shift;
2574
2575 BUG_ON(gpio >= ah->caps.num_gpio_pins);
2576
2577 if (AR_DEVID_7010(ah)) {
2578 gpio_shift = gpio;
2579 REG_RMW(ah, AR7010_GPIO_OE,
2580 (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2581 (AR7010_GPIO_OE_MASK << gpio_shift));
2582 return;
2583 }
2584
2585 gpio_shift = gpio << 1;
2586 REG_RMW(ah,
2587 AR_GPIO_OE_OUT,
2588 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2589 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2590 }
2591 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2592
ath9k_hw_gpio_get(struct ath_hw * ah,u32 gpio)2593 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2594 {
2595 #define MS_REG_READ(x, y) \
2596 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2597
2598 if (gpio >= ah->caps.num_gpio_pins)
2599 return 0xffffffff;
2600
2601 if (AR_DEVID_7010(ah)) {
2602 u32 val;
2603 val = REG_READ(ah, AR7010_GPIO_IN);
2604 return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2605 } else if (AR_SREV_9300_20_OR_LATER(ah))
2606 return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2607 AR_GPIO_BIT(gpio)) != 0;
2608 else if (AR_SREV_9271(ah))
2609 return MS_REG_READ(AR9271, gpio) != 0;
2610 else if (AR_SREV_9287_11_OR_LATER(ah))
2611 return MS_REG_READ(AR9287, gpio) != 0;
2612 else if (AR_SREV_9285_12_OR_LATER(ah))
2613 return MS_REG_READ(AR9285, gpio) != 0;
2614 else if (AR_SREV_9280_20_OR_LATER(ah))
2615 return MS_REG_READ(AR928X, gpio) != 0;
2616 else
2617 return MS_REG_READ(AR, gpio) != 0;
2618 }
2619 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2620
ath9k_hw_cfg_output(struct ath_hw * ah,u32 gpio,u32 ah_signal_type)2621 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2622 u32 ah_signal_type)
2623 {
2624 u32 gpio_shift;
2625
2626 if (AR_DEVID_7010(ah)) {
2627 gpio_shift = gpio;
2628 REG_RMW(ah, AR7010_GPIO_OE,
2629 (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2630 (AR7010_GPIO_OE_MASK << gpio_shift));
2631 return;
2632 }
2633
2634 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2635 gpio_shift = 2 * gpio;
2636 REG_RMW(ah,
2637 AR_GPIO_OE_OUT,
2638 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2639 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2640 }
2641 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2642
ath9k_hw_set_gpio(struct ath_hw * ah,u32 gpio,u32 val)2643 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2644 {
2645 if (AR_DEVID_7010(ah)) {
2646 val = val ? 0 : 1;
2647 REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2648 AR_GPIO_BIT(gpio));
2649 return;
2650 }
2651
2652 if (AR_SREV_9271(ah))
2653 val = ~val;
2654
2655 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2656 AR_GPIO_BIT(gpio));
2657 }
2658 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2659
ath9k_hw_getdefantenna(struct ath_hw * ah)2660 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2661 {
2662 return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2663 }
2664 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2665
ath9k_hw_setantenna(struct ath_hw * ah,u32 antenna)2666 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2667 {
2668 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2669 }
2670 EXPORT_SYMBOL(ath9k_hw_setantenna);
2671
2672 /*********************/
2673 /* General Operation */
2674 /*********************/
2675
ath9k_hw_getrxfilter(struct ath_hw * ah)2676 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2677 {
2678 u32 bits = REG_READ(ah, AR_RX_FILTER);
2679 u32 phybits = REG_READ(ah, AR_PHY_ERR);
2680
2681 if (phybits & AR_PHY_ERR_RADAR)
2682 bits |= ATH9K_RX_FILTER_PHYRADAR;
2683 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2684 bits |= ATH9K_RX_FILTER_PHYERR;
2685
2686 return bits;
2687 }
2688 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2689
ath9k_hw_setrxfilter(struct ath_hw * ah,u32 bits)2690 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2691 {
2692 u32 phybits;
2693
2694 ENABLE_REGWRITE_BUFFER(ah);
2695
2696 if (AR_SREV_9462(ah))
2697 bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2698
2699 REG_WRITE(ah, AR_RX_FILTER, bits);
2700
2701 phybits = 0;
2702 if (bits & ATH9K_RX_FILTER_PHYRADAR)
2703 phybits |= AR_PHY_ERR_RADAR;
2704 if (bits & ATH9K_RX_FILTER_PHYERR)
2705 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2706 REG_WRITE(ah, AR_PHY_ERR, phybits);
2707
2708 if (phybits)
2709 REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2710 else
2711 REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2712
2713 REGWRITE_BUFFER_FLUSH(ah);
2714 }
2715 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2716
ath9k_hw_phy_disable(struct ath_hw * ah)2717 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2718 {
2719 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2720 return false;
2721
2722 ath9k_hw_init_pll(ah, NULL);
2723 return true;
2724 }
2725 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2726
ath9k_hw_disable(struct ath_hw * ah)2727 bool ath9k_hw_disable(struct ath_hw *ah)
2728 {
2729 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2730 return false;
2731
2732 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2733 return false;
2734
2735 ath9k_hw_init_pll(ah, NULL);
2736 return true;
2737 }
2738 EXPORT_SYMBOL(ath9k_hw_disable);
2739
get_antenna_gain(struct ath_hw * ah,struct ath9k_channel * chan)2740 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2741 {
2742 enum eeprom_param gain_param;
2743
2744 if (IS_CHAN_2GHZ(chan))
2745 gain_param = EEP_ANTENNA_GAIN_2G;
2746 else
2747 gain_param = EEP_ANTENNA_GAIN_5G;
2748
2749 return ah->eep_ops->get_eeprom(ah, gain_param);
2750 }
2751
ath9k_hw_apply_txpower(struct ath_hw * ah,struct ath9k_channel * chan)2752 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan)
2753 {
2754 struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2755 struct ieee80211_channel *channel;
2756 int chan_pwr, new_pwr, max_gain;
2757 int ant_gain, ant_reduction = 0;
2758
2759 if (!chan)
2760 return;
2761
2762 channel = chan->chan;
2763 chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2764 new_pwr = min_t(int, chan_pwr, reg->power_limit);
2765 max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2766
2767 ant_gain = get_antenna_gain(ah, chan);
2768 if (ant_gain > max_gain)
2769 ant_reduction = ant_gain - max_gain;
2770
2771 ah->eep_ops->set_txpower(ah, chan,
2772 ath9k_regd_get_ctl(reg, chan),
2773 ant_reduction, new_pwr, false);
2774 }
2775
ath9k_hw_set_txpowerlimit(struct ath_hw * ah,u32 limit,bool test)2776 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2777 {
2778 struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2779 struct ath9k_channel *chan = ah->curchan;
2780 struct ieee80211_channel *channel = chan->chan;
2781
2782 reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2783 if (test)
2784 channel->max_power = MAX_RATE_POWER / 2;
2785
2786 ath9k_hw_apply_txpower(ah, chan);
2787
2788 if (test)
2789 channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2790 }
2791 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2792
ath9k_hw_setopmode(struct ath_hw * ah)2793 void ath9k_hw_setopmode(struct ath_hw *ah)
2794 {
2795 ath9k_hw_set_operating_mode(ah, ah->opmode);
2796 }
2797 EXPORT_SYMBOL(ath9k_hw_setopmode);
2798
ath9k_hw_setmcastfilter(struct ath_hw * ah,u32 filter0,u32 filter1)2799 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2800 {
2801 REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2802 REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2803 }
2804 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2805
ath9k_hw_write_associd(struct ath_hw * ah)2806 void ath9k_hw_write_associd(struct ath_hw *ah)
2807 {
2808 struct ath_common *common = ath9k_hw_common(ah);
2809
2810 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2811 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2812 ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2813 }
2814 EXPORT_SYMBOL(ath9k_hw_write_associd);
2815
2816 #define ATH9K_MAX_TSF_READ 10
2817
ath9k_hw_gettsf64(struct ath_hw * ah)2818 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2819 {
2820 u32 tsf_lower, tsf_upper1, tsf_upper2;
2821 int i;
2822
2823 tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2824 for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2825 tsf_lower = REG_READ(ah, AR_TSF_L32);
2826 tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2827 if (tsf_upper2 == tsf_upper1)
2828 break;
2829 tsf_upper1 = tsf_upper2;
2830 }
2831
2832 WARN_ON( i == ATH9K_MAX_TSF_READ );
2833
2834 return (((u64)tsf_upper1 << 32) | tsf_lower);
2835 }
2836 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2837
ath9k_hw_settsf64(struct ath_hw * ah,u64 tsf64)2838 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2839 {
2840 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2841 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2842 }
2843 EXPORT_SYMBOL(ath9k_hw_settsf64);
2844
ath9k_hw_reset_tsf(struct ath_hw * ah)2845 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2846 {
2847 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2848 AH_TSF_WRITE_TIMEOUT))
2849 ath_dbg(ath9k_hw_common(ah), RESET,
2850 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2851
2852 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2853 }
2854 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2855
ath9k_hw_set_tsfadjust(struct ath_hw * ah,u32 setting)2856 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2857 {
2858 if (setting)
2859 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2860 else
2861 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2862 }
2863 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2864
ath9k_hw_set11nmac2040(struct ath_hw * ah)2865 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2866 {
2867 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2868 u32 macmode;
2869
2870 if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2871 macmode = AR_2040_JOINED_RX_CLEAR;
2872 else
2873 macmode = 0;
2874
2875 REG_WRITE(ah, AR_2040_MODE, macmode);
2876 }
2877
2878 /* HW Generic timers configuration */
2879
2880 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2881 {
2882 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2883 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2884 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2885 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2886 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2887 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2888 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2889 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2890 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2891 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2892 AR_NDP2_TIMER_MODE, 0x0002},
2893 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2894 AR_NDP2_TIMER_MODE, 0x0004},
2895 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2896 AR_NDP2_TIMER_MODE, 0x0008},
2897 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2898 AR_NDP2_TIMER_MODE, 0x0010},
2899 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2900 AR_NDP2_TIMER_MODE, 0x0020},
2901 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2902 AR_NDP2_TIMER_MODE, 0x0040},
2903 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2904 AR_NDP2_TIMER_MODE, 0x0080}
2905 };
2906
2907 /* HW generic timer primitives */
2908
2909 /* compute and clear index of rightmost 1 */
rightmost_index(struct ath_gen_timer_table * timer_table,u32 * mask)2910 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2911 {
2912 u32 b;
2913
2914 b = *mask;
2915 b &= (0-b);
2916 *mask &= ~b;
2917 b *= debruijn32;
2918 b >>= 27;
2919
2920 return timer_table->gen_timer_index[b];
2921 }
2922
ath9k_hw_gettsf32(struct ath_hw * ah)2923 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2924 {
2925 return REG_READ(ah, AR_TSF_L32);
2926 }
2927 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2928
ath_gen_timer_alloc(struct ath_hw * ah,void (* trigger)(void *),void (* overflow)(void *),void * arg,u8 timer_index)2929 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2930 void (*trigger)(void *),
2931 void (*overflow)(void *),
2932 void *arg,
2933 u8 timer_index)
2934 {
2935 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2936 struct ath_gen_timer *timer;
2937
2938 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2939
2940 if (timer == NULL) {
2941 ath_err(ath9k_hw_common(ah),
2942 "Failed to allocate memory for hw timer[%d]\n",
2943 timer_index);
2944 return NULL;
2945 }
2946
2947 /* allocate a hardware generic timer slot */
2948 timer_table->timers[timer_index] = timer;
2949 timer->index = timer_index;
2950 timer->trigger = trigger;
2951 timer->overflow = overflow;
2952 timer->arg = arg;
2953
2954 return timer;
2955 }
2956 EXPORT_SYMBOL(ath_gen_timer_alloc);
2957
ath9k_hw_gen_timer_start(struct ath_hw * ah,struct ath_gen_timer * timer,u32 trig_timeout,u32 timer_period)2958 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2959 struct ath_gen_timer *timer,
2960 u32 trig_timeout,
2961 u32 timer_period)
2962 {
2963 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2964 u32 tsf, timer_next;
2965
2966 BUG_ON(!timer_period);
2967
2968 set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2969
2970 tsf = ath9k_hw_gettsf32(ah);
2971
2972 timer_next = tsf + trig_timeout;
2973
2974 ath_dbg(ath9k_hw_common(ah), HWTIMER,
2975 "current tsf %x period %x timer_next %x\n",
2976 tsf, timer_period, timer_next);
2977
2978 /*
2979 * Program generic timer registers
2980 */
2981 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2982 timer_next);
2983 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2984 timer_period);
2985 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2986 gen_tmr_configuration[timer->index].mode_mask);
2987
2988 if (AR_SREV_9462(ah)) {
2989 /*
2990 * Starting from AR9462, each generic timer can select which tsf
2991 * to use. But we still follow the old rule, 0 - 7 use tsf and
2992 * 8 - 15 use tsf2.
2993 */
2994 if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
2995 REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2996 (1 << timer->index));
2997 else
2998 REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2999 (1 << timer->index));
3000 }
3001
3002 /* Enable both trigger and thresh interrupt masks */
3003 REG_SET_BIT(ah, AR_IMR_S5,
3004 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3005 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3006 }
3007 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3008
ath9k_hw_gen_timer_stop(struct ath_hw * ah,struct ath_gen_timer * timer)3009 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3010 {
3011 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3012
3013 if ((timer->index < AR_FIRST_NDP_TIMER) ||
3014 (timer->index >= ATH_MAX_GEN_TIMER)) {
3015 return;
3016 }
3017
3018 /* Clear generic timer enable bits. */
3019 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3020 gen_tmr_configuration[timer->index].mode_mask);
3021
3022 /* Disable both trigger and thresh interrupt masks */
3023 REG_CLR_BIT(ah, AR_IMR_S5,
3024 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3025 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3026
3027 clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3028 }
3029 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3030
ath_gen_timer_free(struct ath_hw * ah,struct ath_gen_timer * timer)3031 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3032 {
3033 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3034
3035 /* free the hardware generic timer slot */
3036 timer_table->timers[timer->index] = NULL;
3037 kfree(timer);
3038 }
3039 EXPORT_SYMBOL(ath_gen_timer_free);
3040
3041 /*
3042 * Generic Timer Interrupts handling
3043 */
ath_gen_timer_isr(struct ath_hw * ah)3044 void ath_gen_timer_isr(struct ath_hw *ah)
3045 {
3046 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3047 struct ath_gen_timer *timer;
3048 struct ath_common *common = ath9k_hw_common(ah);
3049 u32 trigger_mask, thresh_mask, index;
3050
3051 /* get hardware generic timer interrupt status */
3052 trigger_mask = ah->intr_gen_timer_trigger;
3053 thresh_mask = ah->intr_gen_timer_thresh;
3054 trigger_mask &= timer_table->timer_mask.val;
3055 thresh_mask &= timer_table->timer_mask.val;
3056
3057 trigger_mask &= ~thresh_mask;
3058
3059 while (thresh_mask) {
3060 index = rightmost_index(timer_table, &thresh_mask);
3061 timer = timer_table->timers[index];
3062 BUG_ON(!timer);
3063 ath_dbg(common, HWTIMER, "TSF overflow for Gen timer %d\n",
3064 index);
3065 timer->overflow(timer->arg);
3066 }
3067
3068 while (trigger_mask) {
3069 index = rightmost_index(timer_table, &trigger_mask);
3070 timer = timer_table->timers[index];
3071 BUG_ON(!timer);
3072 ath_dbg(common, HWTIMER,
3073 "Gen timer[%d] trigger\n", index);
3074 timer->trigger(timer->arg);
3075 }
3076 }
3077 EXPORT_SYMBOL(ath_gen_timer_isr);
3078
3079 /********/
3080 /* HTC */
3081 /********/
3082
ath9k_hw_htc_resetinit(struct ath_hw * ah)3083 void ath9k_hw_htc_resetinit(struct ath_hw *ah)
3084 {
3085 ah->htc_reset_init = true;
3086 }
3087 EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
3088
3089 static struct {
3090 u32 version;
3091 const char * name;
3092 } ath_mac_bb_names[] = {
3093 /* Devices with external radios */
3094 { AR_SREV_VERSION_5416_PCI, "5416" },
3095 { AR_SREV_VERSION_5416_PCIE, "5418" },
3096 { AR_SREV_VERSION_9100, "9100" },
3097 { AR_SREV_VERSION_9160, "9160" },
3098 /* Single-chip solutions */
3099 { AR_SREV_VERSION_9280, "9280" },
3100 { AR_SREV_VERSION_9285, "9285" },
3101 { AR_SREV_VERSION_9287, "9287" },
3102 { AR_SREV_VERSION_9271, "9271" },
3103 { AR_SREV_VERSION_9300, "9300" },
3104 { AR_SREV_VERSION_9330, "9330" },
3105 { AR_SREV_VERSION_9340, "9340" },
3106 { AR_SREV_VERSION_9485, "9485" },
3107 { AR_SREV_VERSION_9462, "9462" },
3108 };
3109
3110 /* For devices with external radios */
3111 static struct {
3112 u16 version;
3113 const char * name;
3114 } ath_rf_names[] = {
3115 { 0, "5133" },
3116 { AR_RAD5133_SREV_MAJOR, "5133" },
3117 { AR_RAD5122_SREV_MAJOR, "5122" },
3118 { AR_RAD2133_SREV_MAJOR, "2133" },
3119 { AR_RAD2122_SREV_MAJOR, "2122" }
3120 };
3121
3122 /*
3123 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3124 */
ath9k_hw_mac_bb_name(u32 mac_bb_version)3125 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3126 {
3127 int i;
3128
3129 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3130 if (ath_mac_bb_names[i].version == mac_bb_version) {
3131 return ath_mac_bb_names[i].name;
3132 }
3133 }
3134
3135 return "????";
3136 }
3137
3138 /*
3139 * Return the RF name. "????" is returned if the RF is unknown.
3140 * Used for devices with external radios.
3141 */
ath9k_hw_rf_name(u16 rf_version)3142 static const char *ath9k_hw_rf_name(u16 rf_version)
3143 {
3144 int i;
3145
3146 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3147 if (ath_rf_names[i].version == rf_version) {
3148 return ath_rf_names[i].name;
3149 }
3150 }
3151
3152 return "????";
3153 }
3154
ath9k_hw_name(struct ath_hw * ah,char * hw_name,size_t len)3155 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3156 {
3157 int used;
3158
3159 /* chipsets >= AR9280 are single-chip */
3160 if (AR_SREV_9280_20_OR_LATER(ah)) {
3161 used = snprintf(hw_name, len,
3162 "Atheros AR%s Rev:%x",
3163 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3164 ah->hw_version.macRev);
3165 }
3166 else {
3167 used = snprintf(hw_name, len,
3168 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3169 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3170 ah->hw_version.macRev,
3171 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3172 AR_RADIO_SREV_MAJOR)),
3173 ah->hw_version.phyRev);
3174 }
3175
3176 hw_name[used] = '\0';
3177 }
3178 EXPORT_SYMBOL(ath9k_hw_name);
3179