1 /*********************************************************************
2  *
3  *	vlsi_ir.c:	VLSI82C147 PCI IrDA controller driver for Linux
4  *
5  *	Copyright (c) 2001-2003 Martin Diehl
6  *
7  *	This program is free software; you can redistribute it and/or
8  *	modify it under the terms of the GNU General Public License as
9  *	published by the Free Software Foundation; either version 2 of
10  *	the License, or (at your option) any later version.
11  *
12  *	This program is distributed in the hope that it will be useful,
13  *	but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15  *	GNU General Public License for more details.
16  *
17  *	You should have received a copy of the GNU General Public License
18  *	along with this program; if not, write to the Free Software
19  *	Foundation, Inc., 59 Temple Place, Suite 330, Boston,
20  *	MA 02111-1307 USA
21  *
22  ********************************************************************/
23 
24 #include <linux/module.h>
25 
26 #define DRIVER_NAME 		"vlsi_ir"
27 #define DRIVER_VERSION		"v0.5"
28 #define DRIVER_DESCRIPTION	"IrDA SIR/MIR/FIR driver for VLSI 82C147"
29 #define DRIVER_AUTHOR		"Martin Diehl <info@mdiehl.de>"
30 
31 MODULE_DESCRIPTION(DRIVER_DESCRIPTION);
32 MODULE_AUTHOR(DRIVER_AUTHOR);
33 MODULE_LICENSE("GPL");
34 
35 /********************************************************/
36 
37 #include <linux/kernel.h>
38 #include <linux/init.h>
39 #include <linux/interrupt.h>
40 #include <linux/pci.h>
41 #include <linux/slab.h>
42 #include <linux/netdevice.h>
43 #include <linux/skbuff.h>
44 #include <linux/delay.h>
45 #include <linux/time.h>
46 #include <linux/proc_fs.h>
47 #include <linux/seq_file.h>
48 #include <linux/mutex.h>
49 #include <asm/uaccess.h>
50 #include <asm/byteorder.h>
51 
52 #include <net/irda/irda.h>
53 #include <net/irda/irda_device.h>
54 #include <net/irda/wrapper.h>
55 #include <net/irda/crc.h>
56 
57 #include "vlsi_ir.h"
58 
59 /********************************************************/
60 
61 static /* const */ char drivername[] = DRIVER_NAME;
62 
63 static DEFINE_PCI_DEVICE_TABLE(vlsi_irda_table) = {
64 	{
65 		.class =        PCI_CLASS_WIRELESS_IRDA << 8,
66 		.class_mask =	PCI_CLASS_SUBCLASS_MASK << 8,
67 		.vendor =       PCI_VENDOR_ID_VLSI,
68 		.device =       PCI_DEVICE_ID_VLSI_82C147,
69 		.subvendor = 	PCI_ANY_ID,
70 		.subdevice =	PCI_ANY_ID,
71 	},
72 	{ /* all zeroes */ }
73 };
74 
75 MODULE_DEVICE_TABLE(pci, vlsi_irda_table);
76 
77 /********************************************************/
78 
79 /*	clksrc: which clock source to be used
80  *		0: auto - try PLL, fallback to 40MHz XCLK
81  *		1: on-chip 48MHz PLL
82  *		2: external 48MHz XCLK
83  *		3: external 40MHz XCLK (HP OB-800)
84  */
85 
86 static int clksrc = 0;			/* default is 0(auto) */
87 module_param(clksrc, int, 0);
88 MODULE_PARM_DESC(clksrc, "clock input source selection");
89 
90 /*	ringsize: size of the tx and rx descriptor rings
91  *		independent for tx and rx
92  *		specify as ringsize=tx[,rx]
93  *		allowed values: 4, 8, 16, 32, 64
94  *		Due to the IrDA 1.x max. allowed window size=7,
95  *		there should be no gain when using rings larger than 8
96  */
97 
98 static int ringsize[] = {8,8};		/* default is tx=8 / rx=8 */
99 module_param_array(ringsize, int, NULL, 0);
100 MODULE_PARM_DESC(ringsize, "TX, RX ring descriptor size");
101 
102 /*	sirpulse: tuning of the SIR pulse width within IrPHY 1.3 limits
103  *		0: very short, 1.5us (exception: 6us at 2.4 kbaud)
104  *		1: nominal 3/16 bittime width
105  *	note: IrDA compliant peer devices should be happy regardless
106  *		which one is used. Primary goal is to save some power
107  *		on the sender's side - at 9.6kbaud for example the short
108  *		pulse width saves more than 90% of the transmitted IR power.
109  */
110 
111 static int sirpulse = 1;		/* default is 3/16 bittime */
112 module_param(sirpulse, int, 0);
113 MODULE_PARM_DESC(sirpulse, "SIR pulse width tuning");
114 
115 /*	qos_mtt_bits: encoded min-turn-time value we require the peer device
116  *		 to use before transmitting to us. "Type 1" (per-station)
117  *		 bitfield according to IrLAP definition (section 6.6.8)
118  *		 Don't know which transceiver is used by my OB800 - the
119  *		 pretty common HP HDLS-1100 requires 1 msec - so lets use this.
120  */
121 
122 static int qos_mtt_bits = 0x07;		/* default is 1 ms or more */
123 module_param(qos_mtt_bits, int, 0);
124 MODULE_PARM_DESC(qos_mtt_bits, "IrLAP bitfield representing min-turn-time");
125 
126 /********************************************************/
127 
vlsi_reg_debug(unsigned iobase,const char * s)128 static void vlsi_reg_debug(unsigned iobase, const char *s)
129 {
130 	int	i;
131 
132 	printk(KERN_DEBUG "%s: ", s);
133 	for (i = 0; i < 0x20; i++)
134 		printk("%02x", (unsigned)inb((iobase+i)));
135 	printk("\n");
136 }
137 
vlsi_ring_debug(struct vlsi_ring * r)138 static void vlsi_ring_debug(struct vlsi_ring *r)
139 {
140 	struct ring_descr *rd;
141 	unsigned i;
142 
143 	printk(KERN_DEBUG "%s - ring %p / size %u / mask 0x%04x / len %u / dir %d / hw %p\n",
144 		__func__, r, r->size, r->mask, r->len, r->dir, r->rd[0].hw);
145 	printk(KERN_DEBUG "%s - head = %d / tail = %d\n", __func__,
146 		atomic_read(&r->head) & r->mask, atomic_read(&r->tail) & r->mask);
147 	for (i = 0; i < r->size; i++) {
148 		rd = &r->rd[i];
149 		printk(KERN_DEBUG "%s - ring descr %u: ", __func__, i);
150 		printk("skb=%p data=%p hw=%p\n", rd->skb, rd->buf, rd->hw);
151 		printk(KERN_DEBUG "%s - hw: status=%02x count=%u addr=0x%08x\n",
152 			__func__, (unsigned) rd_get_status(rd),
153 			(unsigned) rd_get_count(rd), (unsigned) rd_get_addr(rd));
154 	}
155 }
156 
157 /********************************************************/
158 
159 /* needed regardless of CONFIG_PROC_FS */
160 static struct proc_dir_entry *vlsi_proc_root = NULL;
161 
162 #ifdef CONFIG_PROC_FS
163 
vlsi_proc_pdev(struct seq_file * seq,struct pci_dev * pdev)164 static void vlsi_proc_pdev(struct seq_file *seq, struct pci_dev *pdev)
165 {
166 	unsigned iobase = pci_resource_start(pdev, 0);
167 	unsigned i;
168 
169 	seq_printf(seq, "\n%s (vid/did: [%04x:%04x])\n",
170 		   pci_name(pdev), (int)pdev->vendor, (int)pdev->device);
171 	seq_printf(seq, "pci-power-state: %u\n", (unsigned) pdev->current_state);
172 	seq_printf(seq, "resources: irq=%u / io=0x%04x / dma_mask=0x%016Lx\n",
173 		   pdev->irq, (unsigned)pci_resource_start(pdev, 0), (unsigned long long)pdev->dma_mask);
174 	seq_printf(seq, "hw registers: ");
175 	for (i = 0; i < 0x20; i++)
176 		seq_printf(seq, "%02x", (unsigned)inb((iobase+i)));
177 	seq_printf(seq, "\n");
178 }
179 
vlsi_proc_ndev(struct seq_file * seq,struct net_device * ndev)180 static void vlsi_proc_ndev(struct seq_file *seq, struct net_device *ndev)
181 {
182 	vlsi_irda_dev_t *idev = netdev_priv(ndev);
183 	u8 byte;
184 	u16 word;
185 	unsigned delta1, delta2;
186 	struct timeval now;
187 	unsigned iobase = ndev->base_addr;
188 
189 	seq_printf(seq, "\n%s link state: %s / %s / %s / %s\n", ndev->name,
190 		netif_device_present(ndev) ? "attached" : "detached",
191 		netif_running(ndev) ? "running" : "not running",
192 		netif_carrier_ok(ndev) ? "carrier ok" : "no carrier",
193 		netif_queue_stopped(ndev) ? "queue stopped" : "queue running");
194 
195 	if (!netif_running(ndev))
196 		return;
197 
198 	seq_printf(seq, "\nhw-state:\n");
199 	pci_read_config_byte(idev->pdev, VLSI_PCI_IRMISC, &byte);
200 	seq_printf(seq, "IRMISC:%s%s%s uart%s",
201 		(byte&IRMISC_IRRAIL) ? " irrail" : "",
202 		(byte&IRMISC_IRPD) ? " irpd" : "",
203 		(byte&IRMISC_UARTTST) ? " uarttest" : "",
204 		(byte&IRMISC_UARTEN) ? "@" : " disabled\n");
205 	if (byte&IRMISC_UARTEN) {
206 		seq_printf(seq, "0x%s\n",
207 			(byte&2) ? ((byte&1) ? "3e8" : "2e8")
208 				 : ((byte&1) ? "3f8" : "2f8"));
209 	}
210 	pci_read_config_byte(idev->pdev, VLSI_PCI_CLKCTL, &byte);
211 	seq_printf(seq, "CLKCTL: PLL %s%s%s / clock %s / wakeup %s\n",
212 		(byte&CLKCTL_PD_INV) ? "powered" : "down",
213 		(byte&CLKCTL_LOCK) ? " locked" : "",
214 		(byte&CLKCTL_EXTCLK) ? ((byte&CLKCTL_XCKSEL)?" / 40 MHz XCLK":" / 48 MHz XCLK") : "",
215 		(byte&CLKCTL_CLKSTP) ? "stopped" : "running",
216 		(byte&CLKCTL_WAKE) ? "enabled" : "disabled");
217 	pci_read_config_byte(idev->pdev, VLSI_PCI_MSTRPAGE, &byte);
218 	seq_printf(seq, "MSTRPAGE: 0x%02x\n", (unsigned)byte);
219 
220 	byte = inb(iobase+VLSI_PIO_IRINTR);
221 	seq_printf(seq, "IRINTR:%s%s%s%s%s%s%s%s\n",
222 		(byte&IRINTR_ACTEN) ? " ACTEN" : "",
223 		(byte&IRINTR_RPKTEN) ? " RPKTEN" : "",
224 		(byte&IRINTR_TPKTEN) ? " TPKTEN" : "",
225 		(byte&IRINTR_OE_EN) ? " OE_EN" : "",
226 		(byte&IRINTR_ACTIVITY) ? " ACTIVITY" : "",
227 		(byte&IRINTR_RPKTINT) ? " RPKTINT" : "",
228 		(byte&IRINTR_TPKTINT) ? " TPKTINT" : "",
229 		(byte&IRINTR_OE_INT) ? " OE_INT" : "");
230 	word = inw(iobase+VLSI_PIO_RINGPTR);
231 	seq_printf(seq, "RINGPTR: rx=%u / tx=%u\n", RINGPTR_GET_RX(word), RINGPTR_GET_TX(word));
232 	word = inw(iobase+VLSI_PIO_RINGBASE);
233 	seq_printf(seq, "RINGBASE: busmap=0x%08x\n",
234 		((unsigned)word << 10)|(MSTRPAGE_VALUE<<24));
235 	word = inw(iobase+VLSI_PIO_RINGSIZE);
236 	seq_printf(seq, "RINGSIZE: rx=%u / tx=%u\n", RINGSIZE_TO_RXSIZE(word),
237 		RINGSIZE_TO_TXSIZE(word));
238 
239 	word = inw(iobase+VLSI_PIO_IRCFG);
240 	seq_printf(seq, "IRCFG:%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
241 		(word&IRCFG_LOOP) ? " LOOP" : "",
242 		(word&IRCFG_ENTX) ? " ENTX" : "",
243 		(word&IRCFG_ENRX) ? " ENRX" : "",
244 		(word&IRCFG_MSTR) ? " MSTR" : "",
245 		(word&IRCFG_RXANY) ? " RXANY" : "",
246 		(word&IRCFG_CRC16) ? " CRC16" : "",
247 		(word&IRCFG_FIR) ? " FIR" : "",
248 		(word&IRCFG_MIR) ? " MIR" : "",
249 		(word&IRCFG_SIR) ? " SIR" : "",
250 		(word&IRCFG_SIRFILT) ? " SIRFILT" : "",
251 		(word&IRCFG_SIRTEST) ? " SIRTEST" : "",
252 		(word&IRCFG_TXPOL) ? " TXPOL" : "",
253 		(word&IRCFG_RXPOL) ? " RXPOL" : "");
254 	word = inw(iobase+VLSI_PIO_IRENABLE);
255 	seq_printf(seq, "IRENABLE:%s%s%s%s%s%s%s%s\n",
256 		(word&IRENABLE_PHYANDCLOCK) ? " PHYANDCLOCK" : "",
257 		(word&IRENABLE_CFGER) ? " CFGERR" : "",
258 		(word&IRENABLE_FIR_ON) ? " FIR_ON" : "",
259 		(word&IRENABLE_MIR_ON) ? " MIR_ON" : "",
260 		(word&IRENABLE_SIR_ON) ? " SIR_ON" : "",
261 		(word&IRENABLE_ENTXST) ? " ENTXST" : "",
262 		(word&IRENABLE_ENRXST) ? " ENRXST" : "",
263 		(word&IRENABLE_CRC16_ON) ? " CRC16_ON" : "");
264 	word = inw(iobase+VLSI_PIO_PHYCTL);
265 	seq_printf(seq, "PHYCTL: baud-divisor=%u / pulsewidth=%u / preamble=%u\n",
266 		(unsigned)PHYCTL_TO_BAUD(word),
267 		(unsigned)PHYCTL_TO_PLSWID(word),
268 		(unsigned)PHYCTL_TO_PREAMB(word));
269 	word = inw(iobase+VLSI_PIO_NPHYCTL);
270 	seq_printf(seq, "NPHYCTL: baud-divisor=%u / pulsewidth=%u / preamble=%u\n",
271 		(unsigned)PHYCTL_TO_BAUD(word),
272 		(unsigned)PHYCTL_TO_PLSWID(word),
273 		(unsigned)PHYCTL_TO_PREAMB(word));
274 	word = inw(iobase+VLSI_PIO_MAXPKT);
275 	seq_printf(seq, "MAXPKT: max. rx packet size = %u\n", word);
276 	word = inw(iobase+VLSI_PIO_RCVBCNT) & RCVBCNT_MASK;
277 	seq_printf(seq, "RCVBCNT: rx-fifo filling level = %u\n", word);
278 
279 	seq_printf(seq, "\nsw-state:\n");
280 	seq_printf(seq, "IrPHY setup: %d baud - %s encoding\n", idev->baud,
281 		(idev->mode==IFF_SIR)?"SIR":((idev->mode==IFF_MIR)?"MIR":"FIR"));
282 	do_gettimeofday(&now);
283 	if (now.tv_usec >= idev->last_rx.tv_usec) {
284 		delta2 = now.tv_usec - idev->last_rx.tv_usec;
285 		delta1 = 0;
286 	}
287 	else {
288 		delta2 = 1000000 + now.tv_usec - idev->last_rx.tv_usec;
289 		delta1 = 1;
290 	}
291 	seq_printf(seq, "last rx: %lu.%06u sec\n",
292 		now.tv_sec - idev->last_rx.tv_sec - delta1, delta2);
293 
294 	seq_printf(seq, "RX: packets=%lu / bytes=%lu / errors=%lu / dropped=%lu",
295 		ndev->stats.rx_packets, ndev->stats.rx_bytes, ndev->stats.rx_errors,
296 		ndev->stats.rx_dropped);
297 	seq_printf(seq, " / overrun=%lu / length=%lu / frame=%lu / crc=%lu\n",
298 		ndev->stats.rx_over_errors, ndev->stats.rx_length_errors,
299 		ndev->stats.rx_frame_errors, ndev->stats.rx_crc_errors);
300 	seq_printf(seq, "TX: packets=%lu / bytes=%lu / errors=%lu / dropped=%lu / fifo=%lu\n",
301 		ndev->stats.tx_packets, ndev->stats.tx_bytes, ndev->stats.tx_errors,
302 		ndev->stats.tx_dropped, ndev->stats.tx_fifo_errors);
303 
304 }
305 
vlsi_proc_ring(struct seq_file * seq,struct vlsi_ring * r)306 static void vlsi_proc_ring(struct seq_file *seq, struct vlsi_ring *r)
307 {
308 	struct ring_descr *rd;
309 	unsigned i, j;
310 	int h, t;
311 
312 	seq_printf(seq, "size %u / mask 0x%04x / len %u / dir %d / hw %p\n",
313 		r->size, r->mask, r->len, r->dir, r->rd[0].hw);
314 	h = atomic_read(&r->head) & r->mask;
315 	t = atomic_read(&r->tail) & r->mask;
316 	seq_printf(seq, "head = %d / tail = %d ", h, t);
317 	if (h == t)
318 		seq_printf(seq, "(empty)\n");
319 	else {
320 		if (((t+1)&r->mask) == h)
321 			seq_printf(seq, "(full)\n");
322 		else
323 			seq_printf(seq, "(level = %d)\n", ((unsigned)(t-h) & r->mask));
324 		rd = &r->rd[h];
325 		j = (unsigned) rd_get_count(rd);
326 		seq_printf(seq, "current: rd = %d / status = %02x / len = %u\n",
327 				h, (unsigned)rd_get_status(rd), j);
328 		if (j > 0) {
329 			seq_printf(seq, "   data:");
330 			if (j > 20)
331 				j = 20;
332 			for (i = 0; i < j; i++)
333 				seq_printf(seq, " %02x", (unsigned)((unsigned char *)rd->buf)[i]);
334 			seq_printf(seq, "\n");
335 		}
336 	}
337 	for (i = 0; i < r->size; i++) {
338 		rd = &r->rd[i];
339 		seq_printf(seq, "> ring descr %u: ", i);
340 		seq_printf(seq, "skb=%p data=%p hw=%p\n", rd->skb, rd->buf, rd->hw);
341 		seq_printf(seq, "  hw: status=%02x count=%u busaddr=0x%08x\n",
342 			(unsigned) rd_get_status(rd),
343 			(unsigned) rd_get_count(rd), (unsigned) rd_get_addr(rd));
344 	}
345 }
346 
vlsi_seq_show(struct seq_file * seq,void * v)347 static int vlsi_seq_show(struct seq_file *seq, void *v)
348 {
349 	struct net_device *ndev = seq->private;
350 	vlsi_irda_dev_t *idev = netdev_priv(ndev);
351 	unsigned long flags;
352 
353 	seq_printf(seq, "\n%s %s\n\n", DRIVER_NAME, DRIVER_VERSION);
354 	seq_printf(seq, "clksrc: %s\n",
355 		(clksrc>=2) ? ((clksrc==3)?"40MHz XCLK":"48MHz XCLK")
356 			    : ((clksrc==1)?"48MHz PLL":"autodetect"));
357 	seq_printf(seq, "ringsize: tx=%d / rx=%d\n",
358 		ringsize[0], ringsize[1]);
359 	seq_printf(seq, "sirpulse: %s\n", (sirpulse)?"3/16 bittime":"short");
360 	seq_printf(seq, "qos_mtt_bits: 0x%02x\n", (unsigned)qos_mtt_bits);
361 
362 	spin_lock_irqsave(&idev->lock, flags);
363 	if (idev->pdev != NULL) {
364 		vlsi_proc_pdev(seq, idev->pdev);
365 
366 		if (idev->pdev->current_state == 0)
367 			vlsi_proc_ndev(seq, ndev);
368 		else
369 			seq_printf(seq, "\nPCI controller down - resume_ok = %d\n",
370 				idev->resume_ok);
371 		if (netif_running(ndev) && idev->rx_ring && idev->tx_ring) {
372 			seq_printf(seq, "\n--------- RX ring -----------\n\n");
373 			vlsi_proc_ring(seq, idev->rx_ring);
374 			seq_printf(seq, "\n--------- TX ring -----------\n\n");
375 			vlsi_proc_ring(seq, idev->tx_ring);
376 		}
377 	}
378 	seq_printf(seq, "\n");
379 	spin_unlock_irqrestore(&idev->lock, flags);
380 
381 	return 0;
382 }
383 
vlsi_seq_open(struct inode * inode,struct file * file)384 static int vlsi_seq_open(struct inode *inode, struct file *file)
385 {
386 	return single_open(file, vlsi_seq_show, PDE(inode)->data);
387 }
388 
389 static const struct file_operations vlsi_proc_fops = {
390 	.owner	 = THIS_MODULE,
391 	.open    = vlsi_seq_open,
392 	.read    = seq_read,
393 	.llseek  = seq_lseek,
394 	.release = single_release,
395 };
396 
397 #define VLSI_PROC_FOPS		(&vlsi_proc_fops)
398 
399 #else	/* CONFIG_PROC_FS */
400 #define VLSI_PROC_FOPS		NULL
401 #endif
402 
403 /********************************************************/
404 
vlsi_alloc_ring(struct pci_dev * pdev,struct ring_descr_hw * hwmap,unsigned size,unsigned len,int dir)405 static struct vlsi_ring *vlsi_alloc_ring(struct pci_dev *pdev, struct ring_descr_hw *hwmap,
406 						unsigned size, unsigned len, int dir)
407 {
408 	struct vlsi_ring *r;
409 	struct ring_descr *rd;
410 	unsigned	i, j;
411 	dma_addr_t	busaddr;
412 
413 	if (!size  ||  ((size-1)&size)!=0)	/* must be >0 and power of 2 */
414 		return NULL;
415 
416 	r = kmalloc(sizeof(*r) + size * sizeof(struct ring_descr), GFP_KERNEL);
417 	if (!r)
418 		return NULL;
419 	memset(r, 0, sizeof(*r));
420 
421 	r->pdev = pdev;
422 	r->dir = dir;
423 	r->len = len;
424 	r->rd = (struct ring_descr *)(r+1);
425 	r->mask = size - 1;
426 	r->size = size;
427 	atomic_set(&r->head, 0);
428 	atomic_set(&r->tail, 0);
429 
430 	for (i = 0; i < size; i++) {
431 		rd = r->rd + i;
432 		memset(rd, 0, sizeof(*rd));
433 		rd->hw = hwmap + i;
434 		rd->buf = kmalloc(len, GFP_KERNEL|GFP_DMA);
435 		if (rd->buf == NULL ||
436 		    !(busaddr = pci_map_single(pdev, rd->buf, len, dir))) {
437 			if (rd->buf) {
438 				IRDA_ERROR("%s: failed to create PCI-MAP for %p",
439 					   __func__, rd->buf);
440 				kfree(rd->buf);
441 				rd->buf = NULL;
442 			}
443 			for (j = 0; j < i; j++) {
444 				rd = r->rd + j;
445 				busaddr = rd_get_addr(rd);
446 				rd_set_addr_status(rd, 0, 0);
447 				if (busaddr)
448 					pci_unmap_single(pdev, busaddr, len, dir);
449 				kfree(rd->buf);
450 				rd->buf = NULL;
451 			}
452 			kfree(r);
453 			return NULL;
454 		}
455 		rd_set_addr_status(rd, busaddr, 0);
456 		/* initially, the dma buffer is owned by the CPU */
457 		rd->skb = NULL;
458 	}
459 	return r;
460 }
461 
vlsi_free_ring(struct vlsi_ring * r)462 static int vlsi_free_ring(struct vlsi_ring *r)
463 {
464 	struct ring_descr *rd;
465 	unsigned	i;
466 	dma_addr_t	busaddr;
467 
468 	for (i = 0; i < r->size; i++) {
469 		rd = r->rd + i;
470 		if (rd->skb)
471 			dev_kfree_skb_any(rd->skb);
472 		busaddr = rd_get_addr(rd);
473 		rd_set_addr_status(rd, 0, 0);
474 		if (busaddr)
475 			pci_unmap_single(r->pdev, busaddr, r->len, r->dir);
476 		kfree(rd->buf);
477 	}
478 	kfree(r);
479 	return 0;
480 }
481 
vlsi_create_hwif(vlsi_irda_dev_t * idev)482 static int vlsi_create_hwif(vlsi_irda_dev_t *idev)
483 {
484 	char 			*ringarea;
485 	struct ring_descr_hw	*hwmap;
486 
487 	idev->virtaddr = NULL;
488 	idev->busaddr = 0;
489 
490 	ringarea = pci_alloc_consistent(idev->pdev, HW_RING_AREA_SIZE, &idev->busaddr);
491 	if (!ringarea) {
492 		IRDA_ERROR("%s: insufficient memory for descriptor rings\n",
493 			   __func__);
494 		goto out;
495 	}
496 	memset(ringarea, 0, HW_RING_AREA_SIZE);
497 
498 	hwmap = (struct ring_descr_hw *)ringarea;
499 	idev->rx_ring = vlsi_alloc_ring(idev->pdev, hwmap, ringsize[1],
500 					XFER_BUF_SIZE, PCI_DMA_FROMDEVICE);
501 	if (idev->rx_ring == NULL)
502 		goto out_unmap;
503 
504 	hwmap += MAX_RING_DESCR;
505 	idev->tx_ring = vlsi_alloc_ring(idev->pdev, hwmap, ringsize[0],
506 					XFER_BUF_SIZE, PCI_DMA_TODEVICE);
507 	if (idev->tx_ring == NULL)
508 		goto out_free_rx;
509 
510 	idev->virtaddr = ringarea;
511 	return 0;
512 
513 out_free_rx:
514 	vlsi_free_ring(idev->rx_ring);
515 out_unmap:
516 	idev->rx_ring = idev->tx_ring = NULL;
517 	pci_free_consistent(idev->pdev, HW_RING_AREA_SIZE, ringarea, idev->busaddr);
518 	idev->busaddr = 0;
519 out:
520 	return -ENOMEM;
521 }
522 
vlsi_destroy_hwif(vlsi_irda_dev_t * idev)523 static int vlsi_destroy_hwif(vlsi_irda_dev_t *idev)
524 {
525 	vlsi_free_ring(idev->rx_ring);
526 	vlsi_free_ring(idev->tx_ring);
527 	idev->rx_ring = idev->tx_ring = NULL;
528 
529 	if (idev->busaddr)
530 		pci_free_consistent(idev->pdev,HW_RING_AREA_SIZE,idev->virtaddr,idev->busaddr);
531 
532 	idev->virtaddr = NULL;
533 	idev->busaddr = 0;
534 
535 	return 0;
536 }
537 
538 /********************************************************/
539 
vlsi_process_rx(struct vlsi_ring * r,struct ring_descr * rd)540 static int vlsi_process_rx(struct vlsi_ring *r, struct ring_descr *rd)
541 {
542 	u16		status;
543 	int		crclen, len = 0;
544 	struct sk_buff	*skb;
545 	int		ret = 0;
546 	struct net_device *ndev = (struct net_device *)pci_get_drvdata(r->pdev);
547 	vlsi_irda_dev_t *idev = netdev_priv(ndev);
548 
549 	pci_dma_sync_single_for_cpu(r->pdev, rd_get_addr(rd), r->len, r->dir);
550 	/* dma buffer now owned by the CPU */
551 	status = rd_get_status(rd);
552 	if (status & RD_RX_ERROR) {
553 		if (status & RD_RX_OVER)
554 			ret |= VLSI_RX_OVER;
555 		if (status & RD_RX_LENGTH)
556 			ret |= VLSI_RX_LENGTH;
557 		if (status & RD_RX_PHYERR)
558 			ret |= VLSI_RX_FRAME;
559 		if (status & RD_RX_CRCERR)
560 			ret |= VLSI_RX_CRC;
561 		goto done;
562 	}
563 
564 	len = rd_get_count(rd);
565 	crclen = (idev->mode==IFF_FIR) ? sizeof(u32) : sizeof(u16);
566 	len -= crclen;		/* remove trailing CRC */
567 	if (len <= 0) {
568 		IRDA_DEBUG(0, "%s: strange frame (len=%d)\n", __func__, len);
569 		ret |= VLSI_RX_DROP;
570 		goto done;
571 	}
572 
573 	if (idev->mode == IFF_SIR) {	/* hw checks CRC in MIR, FIR mode */
574 
575 		/* rd->buf is a streaming PCI_DMA_FROMDEVICE map. Doing the
576 		 * endian-adjustment there just in place will dirty a cache line
577 		 * which belongs to the map and thus we must be sure it will
578 		 * get flushed before giving the buffer back to hardware.
579 		 * vlsi_fill_rx() will do this anyway - but here we rely on.
580 		 */
581 		le16_to_cpus(rd->buf+len);
582 		if (irda_calc_crc16(INIT_FCS,rd->buf,len+crclen) != GOOD_FCS) {
583 			IRDA_DEBUG(0, "%s: crc error\n", __func__);
584 			ret |= VLSI_RX_CRC;
585 			goto done;
586 		}
587 	}
588 
589 	if (!rd->skb) {
590 		IRDA_WARNING("%s: rx packet lost\n", __func__);
591 		ret |= VLSI_RX_DROP;
592 		goto done;
593 	}
594 
595 	skb = rd->skb;
596 	rd->skb = NULL;
597 	skb->dev = ndev;
598 	memcpy(skb_put(skb,len), rd->buf, len);
599 	skb_reset_mac_header(skb);
600 	if (in_interrupt())
601 		netif_rx(skb);
602 	else
603 		netif_rx_ni(skb);
604 
605 done:
606 	rd_set_status(rd, 0);
607 	rd_set_count(rd, 0);
608 	/* buffer still owned by CPU */
609 
610 	return (ret) ? -ret : len;
611 }
612 
vlsi_fill_rx(struct vlsi_ring * r)613 static void vlsi_fill_rx(struct vlsi_ring *r)
614 {
615 	struct ring_descr *rd;
616 
617 	for (rd = ring_last(r); rd != NULL; rd = ring_put(r)) {
618 		if (rd_is_active(rd)) {
619 			IRDA_WARNING("%s: driver bug: rx descr race with hw\n",
620 				     __func__);
621 			vlsi_ring_debug(r);
622 			break;
623 		}
624 		if (!rd->skb) {
625 			rd->skb = dev_alloc_skb(IRLAP_SKB_ALLOCSIZE);
626 			if (rd->skb) {
627 				skb_reserve(rd->skb,1);
628 				rd->skb->protocol = htons(ETH_P_IRDA);
629 			}
630 			else
631 				break;	/* probably not worth logging? */
632 		}
633 		/* give dma buffer back to busmaster */
634 		pci_dma_sync_single_for_device(r->pdev, rd_get_addr(rd), r->len, r->dir);
635 		rd_activate(rd);
636 	}
637 }
638 
vlsi_rx_interrupt(struct net_device * ndev)639 static void vlsi_rx_interrupt(struct net_device *ndev)
640 {
641 	vlsi_irda_dev_t *idev = netdev_priv(ndev);
642 	struct vlsi_ring *r = idev->rx_ring;
643 	struct ring_descr *rd;
644 	int ret;
645 
646 	for (rd = ring_first(r); rd != NULL; rd = ring_get(r)) {
647 
648 		if (rd_is_active(rd))
649 			break;
650 
651 		ret = vlsi_process_rx(r, rd);
652 
653 		if (ret < 0) {
654 			ret = -ret;
655 			ndev->stats.rx_errors++;
656 			if (ret & VLSI_RX_DROP)
657 				ndev->stats.rx_dropped++;
658 			if (ret & VLSI_RX_OVER)
659 				ndev->stats.rx_over_errors++;
660 			if (ret & VLSI_RX_LENGTH)
661 				ndev->stats.rx_length_errors++;
662 			if (ret & VLSI_RX_FRAME)
663 				ndev->stats.rx_frame_errors++;
664 			if (ret & VLSI_RX_CRC)
665 				ndev->stats.rx_crc_errors++;
666 		}
667 		else if (ret > 0) {
668 			ndev->stats.rx_packets++;
669 			ndev->stats.rx_bytes += ret;
670 		}
671 	}
672 
673 	do_gettimeofday(&idev->last_rx); /* remember "now" for later mtt delay */
674 
675 	vlsi_fill_rx(r);
676 
677 	if (ring_first(r) == NULL) {
678 		/* we are in big trouble, if this should ever happen */
679 		IRDA_ERROR("%s: rx ring exhausted!\n", __func__);
680 		vlsi_ring_debug(r);
681 	}
682 	else
683 		outw(0, ndev->base_addr+VLSI_PIO_PROMPT);
684 }
685 
686 /* caller must have stopped the controller from busmastering */
687 
vlsi_unarm_rx(vlsi_irda_dev_t * idev)688 static void vlsi_unarm_rx(vlsi_irda_dev_t *idev)
689 {
690 	struct net_device *ndev = pci_get_drvdata(idev->pdev);
691 	struct vlsi_ring *r = idev->rx_ring;
692 	struct ring_descr *rd;
693 	int ret;
694 
695 	for (rd = ring_first(r); rd != NULL; rd = ring_get(r)) {
696 
697 		ret = 0;
698 		if (rd_is_active(rd)) {
699 			rd_set_status(rd, 0);
700 			if (rd_get_count(rd)) {
701 				IRDA_DEBUG(0, "%s - dropping rx packet\n", __func__);
702 				ret = -VLSI_RX_DROP;
703 			}
704 			rd_set_count(rd, 0);
705 			pci_dma_sync_single_for_cpu(r->pdev, rd_get_addr(rd), r->len, r->dir);
706 			if (rd->skb) {
707 				dev_kfree_skb_any(rd->skb);
708 				rd->skb = NULL;
709 			}
710 		}
711 		else
712 			ret = vlsi_process_rx(r, rd);
713 
714 		if (ret < 0) {
715 			ret = -ret;
716 			ndev->stats.rx_errors++;
717 			if (ret & VLSI_RX_DROP)
718 				ndev->stats.rx_dropped++;
719 			if (ret & VLSI_RX_OVER)
720 				ndev->stats.rx_over_errors++;
721 			if (ret & VLSI_RX_LENGTH)
722 				ndev->stats.rx_length_errors++;
723 			if (ret & VLSI_RX_FRAME)
724 				ndev->stats.rx_frame_errors++;
725 			if (ret & VLSI_RX_CRC)
726 				ndev->stats.rx_crc_errors++;
727 		}
728 		else if (ret > 0) {
729 			ndev->stats.rx_packets++;
730 			ndev->stats.rx_bytes += ret;
731 		}
732 	}
733 }
734 
735 /********************************************************/
736 
vlsi_process_tx(struct vlsi_ring * r,struct ring_descr * rd)737 static int vlsi_process_tx(struct vlsi_ring *r, struct ring_descr *rd)
738 {
739 	u16		status;
740 	int		len;
741 	int		ret;
742 
743 	pci_dma_sync_single_for_cpu(r->pdev, rd_get_addr(rd), r->len, r->dir);
744 	/* dma buffer now owned by the CPU */
745 	status = rd_get_status(rd);
746 	if (status & RD_TX_UNDRN)
747 		ret = VLSI_TX_FIFO;
748 	else
749 		ret = 0;
750 	rd_set_status(rd, 0);
751 
752 	if (rd->skb) {
753 		len = rd->skb->len;
754 		dev_kfree_skb_any(rd->skb);
755 		rd->skb = NULL;
756 	}
757 	else	/* tx-skb already freed? - should never happen */
758 		len = rd_get_count(rd);		/* incorrect for SIR! (due to wrapping) */
759 
760 	rd_set_count(rd, 0);
761 	/* dma buffer still owned by the CPU */
762 
763 	return (ret) ? -ret : len;
764 }
765 
vlsi_set_baud(vlsi_irda_dev_t * idev,unsigned iobase)766 static int vlsi_set_baud(vlsi_irda_dev_t *idev, unsigned iobase)
767 {
768 	u16 nphyctl;
769 	u16 config;
770 	unsigned mode;
771 	int	ret;
772 	int	baudrate;
773 	int	fifocnt;
774 
775 	baudrate = idev->new_baud;
776 	IRDA_DEBUG(2, "%s: %d -> %d\n", __func__, idev->baud, idev->new_baud);
777 	if (baudrate == 4000000) {
778 		mode = IFF_FIR;
779 		config = IRCFG_FIR;
780 		nphyctl = PHYCTL_FIR;
781 	}
782 	else if (baudrate == 1152000) {
783 		mode = IFF_MIR;
784 		config = IRCFG_MIR | IRCFG_CRC16;
785 		nphyctl = PHYCTL_MIR(clksrc==3);
786 	}
787 	else {
788 		mode = IFF_SIR;
789 		config = IRCFG_SIR | IRCFG_SIRFILT  | IRCFG_RXANY;
790 		switch(baudrate) {
791 			default:
792 				IRDA_WARNING("%s: undefined baudrate %d - fallback to 9600!\n",
793 					     __func__, baudrate);
794 				baudrate = 9600;
795 				/* fallthru */
796 			case 2400:
797 			case 9600:
798 			case 19200:
799 			case 38400:
800 			case 57600:
801 			case 115200:
802 				nphyctl = PHYCTL_SIR(baudrate,sirpulse,clksrc==3);
803 				break;
804 		}
805 	}
806 	config |= IRCFG_MSTR | IRCFG_ENRX;
807 
808 	fifocnt = inw(iobase+VLSI_PIO_RCVBCNT) & RCVBCNT_MASK;
809 	if (fifocnt != 0) {
810 		IRDA_DEBUG(0, "%s: rx fifo not empty(%d)\n", __func__, fifocnt);
811 	}
812 
813 	outw(0, iobase+VLSI_PIO_IRENABLE);
814 	outw(config, iobase+VLSI_PIO_IRCFG);
815 	outw(nphyctl, iobase+VLSI_PIO_NPHYCTL);
816 	wmb();
817 	outw(IRENABLE_PHYANDCLOCK, iobase+VLSI_PIO_IRENABLE);
818 	mb();
819 
820 	udelay(1);	/* chip applies IRCFG on next rising edge of its 8MHz clock */
821 
822 	/* read back settings for validation */
823 
824 	config = inw(iobase+VLSI_PIO_IRENABLE) & IRENABLE_MASK;
825 
826 	if (mode == IFF_FIR)
827 		config ^= IRENABLE_FIR_ON;
828 	else if (mode == IFF_MIR)
829 		config ^= (IRENABLE_MIR_ON|IRENABLE_CRC16_ON);
830 	else
831 		config ^= IRENABLE_SIR_ON;
832 
833 	if (config != (IRENABLE_PHYANDCLOCK|IRENABLE_ENRXST)) {
834 		IRDA_WARNING("%s: failed to set %s mode!\n", __func__,
835 			(mode==IFF_SIR)?"SIR":((mode==IFF_MIR)?"MIR":"FIR"));
836 		ret = -1;
837 	}
838 	else {
839 		if (inw(iobase+VLSI_PIO_PHYCTL) != nphyctl) {
840 			IRDA_WARNING("%s: failed to apply baudrate %d\n",
841 				     __func__, baudrate);
842 			ret = -1;
843 		}
844 		else {
845 			idev->mode = mode;
846 			idev->baud = baudrate;
847 			idev->new_baud = 0;
848 			ret = 0;
849 		}
850 	}
851 
852 	if (ret)
853 		vlsi_reg_debug(iobase,__func__);
854 
855 	return ret;
856 }
857 
vlsi_hard_start_xmit(struct sk_buff * skb,struct net_device * ndev)858 static netdev_tx_t vlsi_hard_start_xmit(struct sk_buff *skb,
859 					      struct net_device *ndev)
860 {
861 	vlsi_irda_dev_t *idev = netdev_priv(ndev);
862 	struct vlsi_ring	*r = idev->tx_ring;
863 	struct ring_descr *rd;
864 	unsigned long flags;
865 	unsigned iobase = ndev->base_addr;
866 	u8 status;
867 	u16 config;
868 	int mtt;
869 	int len, speed;
870 	struct timeval  now, ready;
871 	char *msg = NULL;
872 
873 	speed = irda_get_next_speed(skb);
874 	spin_lock_irqsave(&idev->lock, flags);
875 	if (speed != -1  &&  speed != idev->baud) {
876 		netif_stop_queue(ndev);
877 		idev->new_baud = speed;
878 		status = RD_TX_CLRENTX;  /* stop tx-ring after this frame */
879 	}
880 	else
881 		status = 0;
882 
883 	if (skb->len == 0) {
884 		/* handle zero packets - should be speed change */
885 		if (status == 0) {
886 			msg = "bogus zero-length packet";
887 			goto drop_unlock;
888 		}
889 
890 		/* due to the completely asynch tx operation we might have
891 		 * IrLAP racing with the hardware here, f.e. if the controller
892 		 * is just sending the last packet with current speed while
893 		 * the LAP is already switching the speed using synchronous
894 		 * len=0 packet. Immediate execution would lead to hw lockup
895 		 * requiring a powercycle to reset. Good candidate to trigger
896 		 * this is the final UA:RSP packet after receiving a DISC:CMD
897 		 * when getting the LAP down.
898 		 * Note that we are not protected by the queue_stop approach
899 		 * because the final UA:RSP arrives _without_ request to apply
900 		 * new-speed-after-this-packet - hence the driver doesn't know
901 		 * this was the last packet and doesn't stop the queue. So the
902 		 * forced switch to default speed from LAP gets through as fast
903 		 * as only some 10 usec later while the UA:RSP is still processed
904 		 * by the hardware and we would get screwed.
905 		 */
906 
907 		if (ring_first(idev->tx_ring) == NULL) {
908 			/* no race - tx-ring already empty */
909 			vlsi_set_baud(idev, iobase);
910 			netif_wake_queue(ndev);
911 		}
912 		else
913 			;
914 			/* keep the speed change pending like it would
915 			 * for any len>0 packet. tx completion interrupt
916 			 * will apply it when the tx ring becomes empty.
917 			 */
918 		spin_unlock_irqrestore(&idev->lock, flags);
919 		dev_kfree_skb_any(skb);
920 		return NETDEV_TX_OK;
921 	}
922 
923 	/* sanity checks - simply drop the packet */
924 
925 	rd = ring_last(r);
926 	if (!rd) {
927 		msg = "ring full, but queue wasn't stopped";
928 		goto drop_unlock;
929 	}
930 
931 	if (rd_is_active(rd)) {
932 		msg = "entry still owned by hw";
933 		goto drop_unlock;
934 	}
935 
936 	if (!rd->buf) {
937 		msg = "tx ring entry without pci buffer";
938 		goto drop_unlock;
939 	}
940 
941 	if (rd->skb) {
942 		msg = "ring entry with old skb still attached";
943 		goto drop_unlock;
944 	}
945 
946 	/* no need for serialization or interrupt disable during mtt */
947 	spin_unlock_irqrestore(&idev->lock, flags);
948 
949 	if ((mtt = irda_get_mtt(skb)) > 0) {
950 
951 		ready.tv_usec = idev->last_rx.tv_usec + mtt;
952 		ready.tv_sec = idev->last_rx.tv_sec;
953 		if (ready.tv_usec >= 1000000) {
954 			ready.tv_usec -= 1000000;
955 			ready.tv_sec++;		/* IrLAP 1.1: mtt always < 1 sec */
956 		}
957 		for(;;) {
958 			do_gettimeofday(&now);
959 			if (now.tv_sec > ready.tv_sec ||
960 			    (now.tv_sec==ready.tv_sec && now.tv_usec>=ready.tv_usec))
961 			    	break;
962 			udelay(100);
963 			/* must not sleep here - called under netif_tx_lock! */
964 		}
965 	}
966 
967 	/* tx buffer already owned by CPU due to pci_dma_sync_single_for_cpu()
968 	 * after subsequent tx-completion
969 	 */
970 
971 	if (idev->mode == IFF_SIR) {
972 		status |= RD_TX_DISCRC;		/* no hw-crc creation */
973 		len = async_wrap_skb(skb, rd->buf, r->len);
974 
975 		/* Some rare worst case situation in SIR mode might lead to
976 		 * potential buffer overflow. The wrapper detects this, returns
977 		 * with a shortened frame (without FCS/EOF) but doesn't provide
978 		 * any error indication about the invalid packet which we are
979 		 * going to transmit.
980 		 * Therefore we log if the buffer got filled to the point, where the
981 		 * wrapper would abort, i.e. when there are less than 5 bytes left to
982 		 * allow appending the FCS/EOF.
983 		 */
984 
985 		if (len >= r->len-5)
986 			 IRDA_WARNING("%s: possible buffer overflow with SIR wrapping!\n",
987 				      __func__);
988 	}
989 	else {
990 		/* hw deals with MIR/FIR mode wrapping */
991 		status |= RD_TX_PULSE;		/* send 2 us highspeed indication pulse */
992 		len = skb->len;
993 		if (len > r->len) {
994 			msg = "frame exceeds tx buffer length";
995 			goto drop;
996 		}
997 		else
998 			skb_copy_from_linear_data(skb, rd->buf, len);
999 	}
1000 
1001 	rd->skb = skb;			/* remember skb for tx-complete stats */
1002 
1003 	rd_set_count(rd, len);
1004 	rd_set_status(rd, status);	/* not yet active! */
1005 
1006 	/* give dma buffer back to busmaster-hw (flush caches to make
1007 	 * CPU-driven changes visible from the pci bus).
1008 	 */
1009 
1010 	pci_dma_sync_single_for_device(r->pdev, rd_get_addr(rd), r->len, r->dir);
1011 
1012 /*	Switching to TX mode here races with the controller
1013  *	which may stop TX at any time when fetching an inactive descriptor
1014  *	or one with CLR_ENTX set. So we switch on TX only, if TX was not running
1015  *	_after_ the new descriptor was activated on the ring. This ensures
1016  *	we will either find TX already stopped or we can be sure, there
1017  *	will be a TX-complete interrupt even if the chip stopped doing
1018  *	TX just after we found it still running. The ISR will then find
1019  *	the non-empty ring and restart TX processing. The enclosing
1020  *	spinlock provides the correct serialization to prevent race with isr.
1021  */
1022 
1023 	spin_lock_irqsave(&idev->lock,flags);
1024 
1025 	rd_activate(rd);
1026 
1027 	if (!(inw(iobase+VLSI_PIO_IRENABLE) & IRENABLE_ENTXST)) {
1028 		int fifocnt;
1029 
1030 		fifocnt = inw(ndev->base_addr+VLSI_PIO_RCVBCNT) & RCVBCNT_MASK;
1031 		if (fifocnt != 0) {
1032 			IRDA_DEBUG(0, "%s: rx fifo not empty(%d)\n", __func__, fifocnt);
1033 		}
1034 
1035 		config = inw(iobase+VLSI_PIO_IRCFG);
1036 		mb();
1037 		outw(config | IRCFG_ENTX, iobase+VLSI_PIO_IRCFG);
1038 		wmb();
1039 		outw(0, iobase+VLSI_PIO_PROMPT);
1040 	}
1041 
1042 	if (ring_put(r) == NULL) {
1043 		netif_stop_queue(ndev);
1044 		IRDA_DEBUG(3, "%s: tx ring full - queue stopped\n", __func__);
1045 	}
1046 	spin_unlock_irqrestore(&idev->lock, flags);
1047 
1048 	return NETDEV_TX_OK;
1049 
1050 drop_unlock:
1051 	spin_unlock_irqrestore(&idev->lock, flags);
1052 drop:
1053 	IRDA_WARNING("%s: dropping packet - %s\n", __func__, msg);
1054 	dev_kfree_skb_any(skb);
1055 	ndev->stats.tx_errors++;
1056 	ndev->stats.tx_dropped++;
1057 	/* Don't even think about returning NET_XMIT_DROP (=1) here!
1058 	 * In fact any retval!=0 causes the packet scheduler to requeue the
1059 	 * packet for later retry of transmission - which isn't exactly
1060 	 * what we want after we've just called dev_kfree_skb_any ;-)
1061 	 */
1062 	return NETDEV_TX_OK;
1063 }
1064 
vlsi_tx_interrupt(struct net_device * ndev)1065 static void vlsi_tx_interrupt(struct net_device *ndev)
1066 {
1067 	vlsi_irda_dev_t *idev = netdev_priv(ndev);
1068 	struct vlsi_ring	*r = idev->tx_ring;
1069 	struct ring_descr	*rd;
1070 	unsigned	iobase;
1071 	int	ret;
1072 	u16	config;
1073 
1074 	for (rd = ring_first(r); rd != NULL; rd = ring_get(r)) {
1075 
1076 		if (rd_is_active(rd))
1077 			break;
1078 
1079 		ret = vlsi_process_tx(r, rd);
1080 
1081 		if (ret < 0) {
1082 			ret = -ret;
1083 			ndev->stats.tx_errors++;
1084 			if (ret & VLSI_TX_DROP)
1085 				ndev->stats.tx_dropped++;
1086 			if (ret & VLSI_TX_FIFO)
1087 				ndev->stats.tx_fifo_errors++;
1088 		}
1089 		else if (ret > 0){
1090 			ndev->stats.tx_packets++;
1091 			ndev->stats.tx_bytes += ret;
1092 		}
1093 	}
1094 
1095 	iobase = ndev->base_addr;
1096 
1097 	if (idev->new_baud  &&  rd == NULL)	/* tx ring empty and speed change pending */
1098 		vlsi_set_baud(idev, iobase);
1099 
1100 	config = inw(iobase+VLSI_PIO_IRCFG);
1101 	if (rd == NULL)			/* tx ring empty: re-enable rx */
1102 		outw((config & ~IRCFG_ENTX) | IRCFG_ENRX, iobase+VLSI_PIO_IRCFG);
1103 
1104 	else if (!(inw(iobase+VLSI_PIO_IRENABLE) & IRENABLE_ENTXST)) {
1105 		int fifocnt;
1106 
1107 		fifocnt = inw(iobase+VLSI_PIO_RCVBCNT) & RCVBCNT_MASK;
1108 		if (fifocnt != 0) {
1109 			IRDA_DEBUG(0, "%s: rx fifo not empty(%d)\n",
1110 				__func__, fifocnt);
1111 		}
1112 		outw(config | IRCFG_ENTX, iobase+VLSI_PIO_IRCFG);
1113 	}
1114 
1115 	outw(0, iobase+VLSI_PIO_PROMPT);
1116 
1117 	if (netif_queue_stopped(ndev)  &&  !idev->new_baud) {
1118 		netif_wake_queue(ndev);
1119 		IRDA_DEBUG(3, "%s: queue awoken\n", __func__);
1120 	}
1121 }
1122 
1123 /* caller must have stopped the controller from busmastering */
1124 
vlsi_unarm_tx(vlsi_irda_dev_t * idev)1125 static void vlsi_unarm_tx(vlsi_irda_dev_t *idev)
1126 {
1127 	struct net_device *ndev = pci_get_drvdata(idev->pdev);
1128 	struct vlsi_ring *r = idev->tx_ring;
1129 	struct ring_descr *rd;
1130 	int ret;
1131 
1132 	for (rd = ring_first(r); rd != NULL; rd = ring_get(r)) {
1133 
1134 		ret = 0;
1135 		if (rd_is_active(rd)) {
1136 			rd_set_status(rd, 0);
1137 			rd_set_count(rd, 0);
1138 			pci_dma_sync_single_for_cpu(r->pdev, rd_get_addr(rd), r->len, r->dir);
1139 			if (rd->skb) {
1140 				dev_kfree_skb_any(rd->skb);
1141 				rd->skb = NULL;
1142 			}
1143 			IRDA_DEBUG(0, "%s - dropping tx packet\n", __func__);
1144 			ret = -VLSI_TX_DROP;
1145 		}
1146 		else
1147 			ret = vlsi_process_tx(r, rd);
1148 
1149 		if (ret < 0) {
1150 			ret = -ret;
1151 			ndev->stats.tx_errors++;
1152 			if (ret & VLSI_TX_DROP)
1153 				ndev->stats.tx_dropped++;
1154 			if (ret & VLSI_TX_FIFO)
1155 				ndev->stats.tx_fifo_errors++;
1156 		}
1157 		else if (ret > 0){
1158 			ndev->stats.tx_packets++;
1159 			ndev->stats.tx_bytes += ret;
1160 		}
1161 	}
1162 
1163 }
1164 
1165 /********************************************************/
1166 
vlsi_start_clock(struct pci_dev * pdev)1167 static int vlsi_start_clock(struct pci_dev *pdev)
1168 {
1169 	u8	clkctl, lock;
1170 	int	i, count;
1171 
1172 	if (clksrc < 2) { /* auto or PLL: try PLL */
1173 		clkctl = CLKCTL_PD_INV | CLKCTL_CLKSTP;
1174 		pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);
1175 
1176 		/* procedure to detect PLL lock synchronisation:
1177 		 * after 0.5 msec initial delay we expect to find 3 PLL lock
1178 		 * indications within 10 msec for successful PLL detection.
1179 		 */
1180 		udelay(500);
1181 		count = 0;
1182 		for (i = 500; i <= 10000; i += 50) { /* max 10 msec */
1183 			pci_read_config_byte(pdev, VLSI_PCI_CLKCTL, &lock);
1184 			if (lock&CLKCTL_LOCK) {
1185 				if (++count >= 3)
1186 					break;
1187 			}
1188 			udelay(50);
1189 		}
1190 		if (count < 3) {
1191 			if (clksrc == 1) { /* explicitly asked for PLL hence bail out */
1192 				IRDA_ERROR("%s: no PLL or failed to lock!\n",
1193 					   __func__);
1194 				clkctl = CLKCTL_CLKSTP;
1195 				pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);
1196 				return -1;
1197 			}
1198 			else			/* was: clksrc=0(auto) */
1199 				clksrc = 3;	/* fallback to 40MHz XCLK (OB800) */
1200 
1201 			IRDA_DEBUG(0, "%s: PLL not locked, fallback to clksrc=%d\n",
1202 				__func__, clksrc);
1203 		}
1204 		else
1205 			clksrc = 1;	/* got successful PLL lock */
1206 	}
1207 
1208 	if (clksrc != 1) {
1209 		/* we get here if either no PLL detected in auto-mode or
1210 		   an external clock source was explicitly specified */
1211 
1212 		clkctl = CLKCTL_EXTCLK | CLKCTL_CLKSTP;
1213 		if (clksrc == 3)
1214 			clkctl |= CLKCTL_XCKSEL;
1215 		pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);
1216 
1217 		/* no way to test for working XCLK */
1218 	}
1219 	else
1220 		pci_read_config_byte(pdev, VLSI_PCI_CLKCTL, &clkctl);
1221 
1222 	/* ok, now going to connect the chip with the clock source */
1223 
1224 	clkctl &= ~CLKCTL_CLKSTP;
1225 	pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);
1226 
1227 	return 0;
1228 }
1229 
vlsi_stop_clock(struct pci_dev * pdev)1230 static void vlsi_stop_clock(struct pci_dev *pdev)
1231 {
1232 	u8	clkctl;
1233 
1234 	/* disconnect chip from clock source */
1235 	pci_read_config_byte(pdev, VLSI_PCI_CLKCTL, &clkctl);
1236 	clkctl |= CLKCTL_CLKSTP;
1237 	pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);
1238 
1239 	/* disable all clock sources */
1240 	clkctl &= ~(CLKCTL_EXTCLK | CLKCTL_PD_INV);
1241 	pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);
1242 }
1243 
1244 /********************************************************/
1245 
1246 /* writing all-zero to the VLSI PCI IO register area seems to prevent
1247  * some occasional situations where the hardware fails (symptoms are
1248  * what appears as stalled tx/rx state machines, i.e. everything ok for
1249  * receive or transmit but hw makes no progress or is unable to access
1250  * the bus memory locations).
1251  * Best place to call this is immediately after/before the internal clock
1252  * gets started/stopped.
1253  */
1254 
vlsi_clear_regs(unsigned iobase)1255 static inline void vlsi_clear_regs(unsigned iobase)
1256 {
1257 	unsigned	i;
1258 	const unsigned	chip_io_extent = 32;
1259 
1260 	for (i = 0; i < chip_io_extent; i += sizeof(u16))
1261 		outw(0, iobase + i);
1262 }
1263 
vlsi_init_chip(struct pci_dev * pdev)1264 static int vlsi_init_chip(struct pci_dev *pdev)
1265 {
1266 	struct net_device *ndev = pci_get_drvdata(pdev);
1267 	vlsi_irda_dev_t *idev = netdev_priv(ndev);
1268 	unsigned	iobase;
1269 	u16 ptr;
1270 
1271 	/* start the clock and clean the registers */
1272 
1273 	if (vlsi_start_clock(pdev)) {
1274 		IRDA_ERROR("%s: no valid clock source\n", __func__);
1275 		return -1;
1276 	}
1277 	iobase = ndev->base_addr;
1278 	vlsi_clear_regs(iobase);
1279 
1280 	outb(IRINTR_INT_MASK, iobase+VLSI_PIO_IRINTR); /* w/c pending IRQ, disable all INT */
1281 
1282 	outw(0, iobase+VLSI_PIO_IRENABLE);	/* disable IrPHY-interface */
1283 
1284 	/* disable everything, particularly IRCFG_MSTR - (also resetting the RING_PTR) */
1285 
1286 	outw(0, iobase+VLSI_PIO_IRCFG);
1287 	wmb();
1288 
1289 	outw(MAX_PACKET_LENGTH, iobase+VLSI_PIO_MAXPKT);  /* max possible value=0x0fff */
1290 
1291 	outw(BUS_TO_RINGBASE(idev->busaddr), iobase+VLSI_PIO_RINGBASE);
1292 
1293 	outw(TX_RX_TO_RINGSIZE(idev->tx_ring->size, idev->rx_ring->size),
1294 		iobase+VLSI_PIO_RINGSIZE);
1295 
1296 	ptr = inw(iobase+VLSI_PIO_RINGPTR);
1297 	atomic_set(&idev->rx_ring->head, RINGPTR_GET_RX(ptr));
1298 	atomic_set(&idev->rx_ring->tail, RINGPTR_GET_RX(ptr));
1299 	atomic_set(&idev->tx_ring->head, RINGPTR_GET_TX(ptr));
1300 	atomic_set(&idev->tx_ring->tail, RINGPTR_GET_TX(ptr));
1301 
1302 	vlsi_set_baud(idev, iobase);	/* idev->new_baud used as provided by caller */
1303 
1304 	outb(IRINTR_INT_MASK, iobase+VLSI_PIO_IRINTR);	/* just in case - w/c pending IRQ's */
1305 	wmb();
1306 
1307 	/* DO NOT BLINDLY ENABLE IRINTR_ACTEN!
1308 	 * basically every received pulse fires an ACTIVITY-INT
1309 	 * leading to >>1000 INT's per second instead of few 10
1310 	 */
1311 
1312 	outb(IRINTR_RPKTEN|IRINTR_TPKTEN, iobase+VLSI_PIO_IRINTR);
1313 
1314 	return 0;
1315 }
1316 
vlsi_start_hw(vlsi_irda_dev_t * idev)1317 static int vlsi_start_hw(vlsi_irda_dev_t *idev)
1318 {
1319 	struct pci_dev *pdev = idev->pdev;
1320 	struct net_device *ndev = pci_get_drvdata(pdev);
1321 	unsigned iobase = ndev->base_addr;
1322 	u8 byte;
1323 
1324 	/* we don't use the legacy UART, disable its address decoding */
1325 
1326 	pci_read_config_byte(pdev, VLSI_PCI_IRMISC, &byte);
1327 	byte &= ~(IRMISC_UARTEN | IRMISC_UARTTST);
1328 	pci_write_config_byte(pdev, VLSI_PCI_IRMISC, byte);
1329 
1330 	/* enable PCI busmaster access to our 16MB page */
1331 
1332 	pci_write_config_byte(pdev, VLSI_PCI_MSTRPAGE, MSTRPAGE_VALUE);
1333 	pci_set_master(pdev);
1334 
1335 	if (vlsi_init_chip(pdev) < 0) {
1336 		pci_disable_device(pdev);
1337 		return -1;
1338 	}
1339 
1340 	vlsi_fill_rx(idev->rx_ring);
1341 
1342 	do_gettimeofday(&idev->last_rx);	/* first mtt may start from now on */
1343 
1344 	outw(0, iobase+VLSI_PIO_PROMPT);	/* kick hw state machine */
1345 
1346 	return 0;
1347 }
1348 
vlsi_stop_hw(vlsi_irda_dev_t * idev)1349 static int vlsi_stop_hw(vlsi_irda_dev_t *idev)
1350 {
1351 	struct pci_dev *pdev = idev->pdev;
1352 	struct net_device *ndev = pci_get_drvdata(pdev);
1353 	unsigned iobase = ndev->base_addr;
1354 	unsigned long flags;
1355 
1356 	spin_lock_irqsave(&idev->lock,flags);
1357 	outw(0, iobase+VLSI_PIO_IRENABLE);
1358 	outw(0, iobase+VLSI_PIO_IRCFG);			/* disable everything */
1359 
1360 	/* disable and w/c irqs */
1361 	outb(0, iobase+VLSI_PIO_IRINTR);
1362 	wmb();
1363 	outb(IRINTR_INT_MASK, iobase+VLSI_PIO_IRINTR);
1364 	spin_unlock_irqrestore(&idev->lock,flags);
1365 
1366 	vlsi_unarm_tx(idev);
1367 	vlsi_unarm_rx(idev);
1368 
1369 	vlsi_clear_regs(iobase);
1370 	vlsi_stop_clock(pdev);
1371 
1372 	pci_disable_device(pdev);
1373 
1374 	return 0;
1375 }
1376 
1377 /**************************************************************/
1378 
vlsi_tx_timeout(struct net_device * ndev)1379 static void vlsi_tx_timeout(struct net_device *ndev)
1380 {
1381 	vlsi_irda_dev_t *idev = netdev_priv(ndev);
1382 
1383 
1384 	vlsi_reg_debug(ndev->base_addr, __func__);
1385 	vlsi_ring_debug(idev->tx_ring);
1386 
1387 	if (netif_running(ndev))
1388 		netif_stop_queue(ndev);
1389 
1390 	vlsi_stop_hw(idev);
1391 
1392 	/* now simply restart the whole thing */
1393 
1394 	if (!idev->new_baud)
1395 		idev->new_baud = idev->baud;		/* keep current baudrate */
1396 
1397 	if (vlsi_start_hw(idev))
1398 		IRDA_ERROR("%s: failed to restart hw - %s(%s) unusable!\n",
1399 			   __func__, pci_name(idev->pdev), ndev->name);
1400 	else
1401 		netif_start_queue(ndev);
1402 }
1403 
vlsi_ioctl(struct net_device * ndev,struct ifreq * rq,int cmd)1404 static int vlsi_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1405 {
1406 	vlsi_irda_dev_t *idev = netdev_priv(ndev);
1407 	struct if_irda_req *irq = (struct if_irda_req *) rq;
1408 	unsigned long flags;
1409 	u16 fifocnt;
1410 	int ret = 0;
1411 
1412 	switch (cmd) {
1413 		case SIOCSBANDWIDTH:
1414 			if (!capable(CAP_NET_ADMIN)) {
1415 				ret = -EPERM;
1416 				break;
1417 			}
1418 			spin_lock_irqsave(&idev->lock, flags);
1419 			idev->new_baud = irq->ifr_baudrate;
1420 			/* when called from userland there might be a minor race window here
1421 			 * if the stack tries to change speed concurrently - which would be
1422 			 * pretty strange anyway with the userland having full control...
1423 			 */
1424 			vlsi_set_baud(idev, ndev->base_addr);
1425 			spin_unlock_irqrestore(&idev->lock, flags);
1426 			break;
1427 		case SIOCSMEDIABUSY:
1428 			if (!capable(CAP_NET_ADMIN)) {
1429 				ret = -EPERM;
1430 				break;
1431 			}
1432 			irda_device_set_media_busy(ndev, TRUE);
1433 			break;
1434 		case SIOCGRECEIVING:
1435 			/* the best we can do: check whether there are any bytes in rx fifo.
1436 			 * The trustable window (in case some data arrives just afterwards)
1437 			 * may be as short as 1usec or so at 4Mbps.
1438 			 */
1439 			fifocnt = inw(ndev->base_addr+VLSI_PIO_RCVBCNT) & RCVBCNT_MASK;
1440 			irq->ifr_receiving = (fifocnt!=0) ? 1 : 0;
1441 			break;
1442 		default:
1443 			IRDA_WARNING("%s: notsupp - cmd=%04x\n",
1444 				     __func__, cmd);
1445 			ret = -EOPNOTSUPP;
1446 	}
1447 
1448 	return ret;
1449 }
1450 
1451 /********************************************************/
1452 
vlsi_interrupt(int irq,void * dev_instance)1453 static irqreturn_t vlsi_interrupt(int irq, void *dev_instance)
1454 {
1455 	struct net_device *ndev = dev_instance;
1456 	vlsi_irda_dev_t *idev = netdev_priv(ndev);
1457 	unsigned	iobase;
1458 	u8		irintr;
1459 	int 		boguscount = 5;
1460 	unsigned long	flags;
1461 	int		handled = 0;
1462 
1463 	iobase = ndev->base_addr;
1464 	spin_lock_irqsave(&idev->lock,flags);
1465 	do {
1466 		irintr = inb(iobase+VLSI_PIO_IRINTR);
1467 		mb();
1468 		outb(irintr, iobase+VLSI_PIO_IRINTR);	/* acknowledge asap */
1469 
1470 		if (!(irintr&=IRINTR_INT_MASK))		/* not our INT - probably shared */
1471 			break;
1472 
1473 		handled = 1;
1474 
1475 		if (unlikely(!(irintr & ~IRINTR_ACTIVITY)))
1476 			break;				/* nothing todo if only activity */
1477 
1478 		if (irintr&IRINTR_RPKTINT)
1479 			vlsi_rx_interrupt(ndev);
1480 
1481 		if (irintr&IRINTR_TPKTINT)
1482 			vlsi_tx_interrupt(ndev);
1483 
1484 	} while (--boguscount > 0);
1485 	spin_unlock_irqrestore(&idev->lock,flags);
1486 
1487 	if (boguscount <= 0)
1488 		IRDA_MESSAGE("%s: too much work in interrupt!\n",
1489 			     __func__);
1490 	return IRQ_RETVAL(handled);
1491 }
1492 
1493 /********************************************************/
1494 
vlsi_open(struct net_device * ndev)1495 static int vlsi_open(struct net_device *ndev)
1496 {
1497 	vlsi_irda_dev_t *idev = netdev_priv(ndev);
1498 	int	err = -EAGAIN;
1499 	char	hwname[32];
1500 
1501 	if (pci_request_regions(idev->pdev, drivername)) {
1502 		IRDA_WARNING("%s: io resource busy\n", __func__);
1503 		goto errout;
1504 	}
1505 	ndev->base_addr = pci_resource_start(idev->pdev,0);
1506 	ndev->irq = idev->pdev->irq;
1507 
1508 	/* under some rare occasions the chip apparently comes up with
1509 	 * IRQ's pending. We better w/c pending IRQ and disable them all
1510 	 */
1511 
1512 	outb(IRINTR_INT_MASK, ndev->base_addr+VLSI_PIO_IRINTR);
1513 
1514 	if (request_irq(ndev->irq, vlsi_interrupt, IRQF_SHARED,
1515 			drivername, ndev)) {
1516 		IRDA_WARNING("%s: couldn't get IRQ: %d\n",
1517 			     __func__, ndev->irq);
1518 		goto errout_io;
1519 	}
1520 
1521 	if ((err = vlsi_create_hwif(idev)) != 0)
1522 		goto errout_irq;
1523 
1524 	sprintf(hwname, "VLSI-FIR @ 0x%04x", (unsigned)ndev->base_addr);
1525 	idev->irlap = irlap_open(ndev,&idev->qos,hwname);
1526 	if (!idev->irlap)
1527 		goto errout_free_ring;
1528 
1529 	do_gettimeofday(&idev->last_rx);  /* first mtt may start from now on */
1530 
1531 	idev->new_baud = 9600;		/* start with IrPHY using 9600(SIR) mode */
1532 
1533 	if ((err = vlsi_start_hw(idev)) != 0)
1534 		goto errout_close_irlap;
1535 
1536 	netif_start_queue(ndev);
1537 
1538 	IRDA_MESSAGE("%s: device %s operational\n", __func__, ndev->name);
1539 
1540 	return 0;
1541 
1542 errout_close_irlap:
1543 	irlap_close(idev->irlap);
1544 errout_free_ring:
1545 	vlsi_destroy_hwif(idev);
1546 errout_irq:
1547 	free_irq(ndev->irq,ndev);
1548 errout_io:
1549 	pci_release_regions(idev->pdev);
1550 errout:
1551 	return err;
1552 }
1553 
vlsi_close(struct net_device * ndev)1554 static int vlsi_close(struct net_device *ndev)
1555 {
1556 	vlsi_irda_dev_t *idev = netdev_priv(ndev);
1557 
1558 	netif_stop_queue(ndev);
1559 
1560 	if (idev->irlap)
1561 		irlap_close(idev->irlap);
1562 	idev->irlap = NULL;
1563 
1564 	vlsi_stop_hw(idev);
1565 
1566 	vlsi_destroy_hwif(idev);
1567 
1568 	free_irq(ndev->irq,ndev);
1569 
1570 	pci_release_regions(idev->pdev);
1571 
1572 	IRDA_MESSAGE("%s: device %s stopped\n", __func__, ndev->name);
1573 
1574 	return 0;
1575 }
1576 
1577 static const struct net_device_ops vlsi_netdev_ops = {
1578 	.ndo_open       = vlsi_open,
1579 	.ndo_stop       = vlsi_close,
1580 	.ndo_start_xmit = vlsi_hard_start_xmit,
1581 	.ndo_do_ioctl   = vlsi_ioctl,
1582 	.ndo_tx_timeout = vlsi_tx_timeout,
1583 };
1584 
vlsi_irda_init(struct net_device * ndev)1585 static int vlsi_irda_init(struct net_device *ndev)
1586 {
1587 	vlsi_irda_dev_t *idev = netdev_priv(ndev);
1588 	struct pci_dev *pdev = idev->pdev;
1589 
1590 	ndev->irq = pdev->irq;
1591 	ndev->base_addr = pci_resource_start(pdev,0);
1592 
1593 	/* PCI busmastering
1594 	 * see include file for details why we need these 2 masks, in this order!
1595 	 */
1596 
1597 	if (pci_set_dma_mask(pdev,DMA_MASK_USED_BY_HW) ||
1598 	    pci_set_dma_mask(pdev,DMA_MASK_MSTRPAGE)) {
1599 		IRDA_ERROR("%s: aborting due to PCI BM-DMA address limitations\n", __func__);
1600 		return -1;
1601 	}
1602 
1603 	irda_init_max_qos_capabilies(&idev->qos);
1604 
1605 	/* the VLSI82C147 does not support 576000! */
1606 
1607 	idev->qos.baud_rate.bits = IR_2400 | IR_9600
1608 		| IR_19200 | IR_38400 | IR_57600 | IR_115200
1609 		| IR_1152000 | (IR_4000000 << 8);
1610 
1611 	idev->qos.min_turn_time.bits = qos_mtt_bits;
1612 
1613 	irda_qos_bits_to_value(&idev->qos);
1614 
1615 	/* currently no public media definitions for IrDA */
1616 
1617 	ndev->flags |= IFF_PORTSEL | IFF_AUTOMEDIA;
1618 	ndev->if_port = IF_PORT_UNKNOWN;
1619 
1620 	ndev->netdev_ops = &vlsi_netdev_ops;
1621 	ndev->watchdog_timeo  = 500*HZ/1000;	/* max. allowed turn time for IrLAP */
1622 
1623 	SET_NETDEV_DEV(ndev, &pdev->dev);
1624 
1625 	return 0;
1626 }
1627 
1628 /**************************************************************/
1629 
1630 static int __devinit
vlsi_irda_probe(struct pci_dev * pdev,const struct pci_device_id * id)1631 vlsi_irda_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1632 {
1633 	struct net_device	*ndev;
1634 	vlsi_irda_dev_t		*idev;
1635 
1636 	if (pci_enable_device(pdev))
1637 		goto out;
1638 	else
1639 		pdev->current_state = 0; /* hw must be running now */
1640 
1641 	IRDA_MESSAGE("%s: IrDA PCI controller %s detected\n",
1642 		     drivername, pci_name(pdev));
1643 
1644 	if ( !pci_resource_start(pdev,0) ||
1645 	     !(pci_resource_flags(pdev,0) & IORESOURCE_IO) ) {
1646 		IRDA_ERROR("%s: bar 0 invalid", __func__);
1647 		goto out_disable;
1648 	}
1649 
1650 	ndev = alloc_irdadev(sizeof(*idev));
1651 	if (ndev==NULL) {
1652 		IRDA_ERROR("%s: Unable to allocate device memory.\n",
1653 			   __func__);
1654 		goto out_disable;
1655 	}
1656 
1657 	idev = netdev_priv(ndev);
1658 
1659 	spin_lock_init(&idev->lock);
1660 	mutex_init(&idev->mtx);
1661 	mutex_lock(&idev->mtx);
1662 	idev->pdev = pdev;
1663 
1664 	if (vlsi_irda_init(ndev) < 0)
1665 		goto out_freedev;
1666 
1667 	if (register_netdev(ndev) < 0) {
1668 		IRDA_ERROR("%s: register_netdev failed\n", __func__);
1669 		goto out_freedev;
1670 	}
1671 
1672 	if (vlsi_proc_root != NULL) {
1673 		struct proc_dir_entry *ent;
1674 
1675 		ent = proc_create_data(ndev->name, S_IFREG|S_IRUGO,
1676 				       vlsi_proc_root, VLSI_PROC_FOPS, ndev);
1677 		if (!ent) {
1678 			IRDA_WARNING("%s: failed to create proc entry\n",
1679 				     __func__);
1680 		} else {
1681 			ent->size = 0;
1682 		}
1683 		idev->proc_entry = ent;
1684 	}
1685 	IRDA_MESSAGE("%s: registered device %s\n", drivername, ndev->name);
1686 
1687 	pci_set_drvdata(pdev, ndev);
1688 	mutex_unlock(&idev->mtx);
1689 
1690 	return 0;
1691 
1692 out_freedev:
1693 	mutex_unlock(&idev->mtx);
1694 	free_netdev(ndev);
1695 out_disable:
1696 	pci_disable_device(pdev);
1697 out:
1698 	pci_set_drvdata(pdev, NULL);
1699 	return -ENODEV;
1700 }
1701 
vlsi_irda_remove(struct pci_dev * pdev)1702 static void __devexit vlsi_irda_remove(struct pci_dev *pdev)
1703 {
1704 	struct net_device *ndev = pci_get_drvdata(pdev);
1705 	vlsi_irda_dev_t *idev;
1706 
1707 	if (!ndev) {
1708 		IRDA_ERROR("%s: lost netdevice?\n", drivername);
1709 		return;
1710 	}
1711 
1712 	unregister_netdev(ndev);
1713 
1714 	idev = netdev_priv(ndev);
1715 	mutex_lock(&idev->mtx);
1716 	if (idev->proc_entry) {
1717 		remove_proc_entry(ndev->name, vlsi_proc_root);
1718 		idev->proc_entry = NULL;
1719 	}
1720 	mutex_unlock(&idev->mtx);
1721 
1722 	free_netdev(ndev);
1723 
1724 	pci_set_drvdata(pdev, NULL);
1725 
1726 	IRDA_MESSAGE("%s: %s removed\n", drivername, pci_name(pdev));
1727 }
1728 
1729 #ifdef CONFIG_PM
1730 
1731 /* The Controller doesn't provide PCI PM capabilities as defined by PCI specs.
1732  * Some of the Linux PCI-PM code however depends on this, for example in
1733  * pci_set_power_state(). So we have to take care to perform the required
1734  * operations on our own (particularly reflecting the pdev->current_state)
1735  * otherwise we might get cheated by pci-pm.
1736  */
1737 
1738 
vlsi_irda_suspend(struct pci_dev * pdev,pm_message_t state)1739 static int vlsi_irda_suspend(struct pci_dev *pdev, pm_message_t state)
1740 {
1741 	struct net_device *ndev = pci_get_drvdata(pdev);
1742 	vlsi_irda_dev_t *idev;
1743 
1744 	if (!ndev) {
1745 		IRDA_ERROR("%s - %s: no netdevice\n",
1746 			   __func__, pci_name(pdev));
1747 		return 0;
1748 	}
1749 	idev = netdev_priv(ndev);
1750 	mutex_lock(&idev->mtx);
1751 	if (pdev->current_state != 0) {			/* already suspended */
1752 		if (state.event > pdev->current_state) {	/* simply go deeper */
1753 			pci_set_power_state(pdev, pci_choose_state(pdev, state));
1754 			pdev->current_state = state.event;
1755 		}
1756 		else
1757 			IRDA_ERROR("%s - %s: invalid suspend request %u -> %u\n", __func__, pci_name(pdev), pdev->current_state, state.event);
1758 		mutex_unlock(&idev->mtx);
1759 		return 0;
1760 	}
1761 
1762 	if (netif_running(ndev)) {
1763 		netif_device_detach(ndev);
1764 		vlsi_stop_hw(idev);
1765 		pci_save_state(pdev);
1766 		if (!idev->new_baud)
1767 			/* remember speed settings to restore on resume */
1768 			idev->new_baud = idev->baud;
1769 	}
1770 
1771 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
1772 	pdev->current_state = state.event;
1773 	idev->resume_ok = 1;
1774 	mutex_unlock(&idev->mtx);
1775 	return 0;
1776 }
1777 
vlsi_irda_resume(struct pci_dev * pdev)1778 static int vlsi_irda_resume(struct pci_dev *pdev)
1779 {
1780 	struct net_device *ndev = pci_get_drvdata(pdev);
1781 	vlsi_irda_dev_t	*idev;
1782 
1783 	if (!ndev) {
1784 		IRDA_ERROR("%s - %s: no netdevice\n",
1785 			   __func__, pci_name(pdev));
1786 		return 0;
1787 	}
1788 	idev = netdev_priv(ndev);
1789 	mutex_lock(&idev->mtx);
1790 	if (pdev->current_state == 0) {
1791 		mutex_unlock(&idev->mtx);
1792 		IRDA_WARNING("%s - %s: already resumed\n",
1793 			     __func__, pci_name(pdev));
1794 		return 0;
1795 	}
1796 
1797 	pci_set_power_state(pdev, PCI_D0);
1798 	pdev->current_state = PM_EVENT_ON;
1799 
1800 	if (!idev->resume_ok) {
1801 		/* should be obsolete now - but used to happen due to:
1802 		 * - pci layer initially setting pdev->current_state = 4 (unknown)
1803 		 * - pci layer did not walk the save_state-tree (might be APM problem)
1804 		 *   so we could not refuse to suspend from undefined state
1805 		 * - vlsi_irda_suspend detected invalid state and refused to save
1806 		 *   configuration for resume - but was too late to stop suspending
1807 		 * - vlsi_irda_resume got screwed when trying to resume from garbage
1808 		 *
1809 		 * now we explicitly set pdev->current_state = 0 after enabling the
1810 		 * device and independently resume_ok should catch any garbage config.
1811 		 */
1812 		IRDA_WARNING("%s - hm, nothing to resume?\n", __func__);
1813 		mutex_unlock(&idev->mtx);
1814 		return 0;
1815 	}
1816 
1817 	if (netif_running(ndev)) {
1818 		pci_restore_state(pdev);
1819 		vlsi_start_hw(idev);
1820 		netif_device_attach(ndev);
1821 	}
1822 	idev->resume_ok = 0;
1823 	mutex_unlock(&idev->mtx);
1824 	return 0;
1825 }
1826 
1827 #endif /* CONFIG_PM */
1828 
1829 /*********************************************************/
1830 
1831 static struct pci_driver vlsi_irda_driver = {
1832 	.name		= drivername,
1833 	.id_table	= vlsi_irda_table,
1834 	.probe		= vlsi_irda_probe,
1835 	.remove		= __devexit_p(vlsi_irda_remove),
1836 #ifdef CONFIG_PM
1837 	.suspend	= vlsi_irda_suspend,
1838 	.resume		= vlsi_irda_resume,
1839 #endif
1840 };
1841 
1842 #define PROC_DIR ("driver/" DRIVER_NAME)
1843 
vlsi_mod_init(void)1844 static int __init vlsi_mod_init(void)
1845 {
1846 	int	i, ret;
1847 
1848 	if (clksrc < 0  ||  clksrc > 3) {
1849 		IRDA_ERROR("%s: invalid clksrc=%d\n", drivername, clksrc);
1850 		return -1;
1851 	}
1852 
1853 	for (i = 0; i < 2; i++) {
1854 		switch(ringsize[i]) {
1855 			case 4:
1856 			case 8:
1857 			case 16:
1858 			case 32:
1859 			case 64:
1860 				break;
1861 			default:
1862 				IRDA_WARNING("%s: invalid %s ringsize %d, using default=8", drivername, (i)?"rx":"tx", ringsize[i]);
1863 				ringsize[i] = 8;
1864 				break;
1865 		}
1866 	}
1867 
1868 	sirpulse = !!sirpulse;
1869 
1870 	/* proc_mkdir returns NULL if !CONFIG_PROC_FS.
1871 	 * Failure to create the procfs entry is handled like running
1872 	 * without procfs - it's not required for the driver to work.
1873 	 */
1874 	vlsi_proc_root = proc_mkdir(PROC_DIR, NULL);
1875 
1876 	ret = pci_register_driver(&vlsi_irda_driver);
1877 
1878 	if (ret && vlsi_proc_root)
1879 		remove_proc_entry(PROC_DIR, NULL);
1880 	return ret;
1881 
1882 }
1883 
vlsi_mod_exit(void)1884 static void __exit vlsi_mod_exit(void)
1885 {
1886 	pci_unregister_driver(&vlsi_irda_driver);
1887 	if (vlsi_proc_root)
1888 		remove_proc_entry(PROC_DIR, NULL);
1889 }
1890 
1891 module_init(vlsi_mod_init);
1892 module_exit(vlsi_mod_exit);
1893