1 /*
2  * SuperH IrDA Driver
3  *
4  * Copyright (C) 2009 Renesas Solutions Corp.
5  * Kuninori Morimoto <morimoto.kuninori@renesas.com>
6  *
7  * Based on bfin_sir.c
8  * Copyright 2006-2009 Analog Devices Inc.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  */
14 
15 #include <linux/io.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/platform_device.h>
19 #include <linux/slab.h>
20 #include <net/irda/wrapper.h>
21 #include <net/irda/irda_device.h>
22 #include <asm/clock.h>
23 
24 #define DRIVER_NAME "sh_sir"
25 
26 #define RX_PHASE	(1 << 0)
27 #define TX_PHASE	(1 << 1)
28 #define TX_COMP_PHASE	(1 << 2) /* tx complete */
29 #define NONE_PHASE	(1 << 31)
30 
31 #define IRIF_RINTCLR	0x0016 /* DMA rx interrupt source clear */
32 #define IRIF_TINTCLR	0x0018 /* DMA tx interrupt source clear */
33 #define IRIF_SIR0	0x0020 /* IrDA-SIR10 control */
34 #define IRIF_SIR1	0x0022 /* IrDA-SIR10 baudrate error correction */
35 #define IRIF_SIR2	0x0024 /* IrDA-SIR10 baudrate count */
36 #define IRIF_SIR3	0x0026 /* IrDA-SIR10 status */
37 #define IRIF_SIR_FRM	0x0028 /* Hardware frame processing set */
38 #define IRIF_SIR_EOF	0x002A /* EOF value */
39 #define IRIF_SIR_FLG	0x002C /* Flag clear */
40 #define IRIF_UART_STS2	0x002E /* UART status 2 */
41 #define IRIF_UART0	0x0030 /* UART control */
42 #define IRIF_UART1	0x0032 /* UART status */
43 #define IRIF_UART2	0x0034 /* UART mode */
44 #define IRIF_UART3	0x0036 /* UART transmit data */
45 #define IRIF_UART4	0x0038 /* UART receive data */
46 #define IRIF_UART5	0x003A /* UART interrupt mask */
47 #define IRIF_UART6	0x003C /* UART baud rate error correction */
48 #define IRIF_UART7	0x003E /* UART baud rate count set */
49 #define IRIF_CRC0	0x0040 /* CRC engine control */
50 #define IRIF_CRC1	0x0042 /* CRC engine input data */
51 #define IRIF_CRC2	0x0044 /* CRC engine calculation */
52 #define IRIF_CRC3	0x0046 /* CRC engine output data 1 */
53 #define IRIF_CRC4	0x0048 /* CRC engine output data 2 */
54 
55 /* IRIF_SIR0 */
56 #define IRTPW		(1 << 1) /* transmit pulse width select */
57 #define IRERRC		(1 << 0) /* Clear receive pulse width error */
58 
59 /* IRIF_SIR3 */
60 #define IRERR		(1 << 0) /* received pulse width Error */
61 
62 /* IRIF_SIR_FRM */
63 #define EOFD		(1 << 9) /* EOF detection flag */
64 #define FRER		(1 << 8) /* Frame Error bit */
65 #define FRP		(1 << 0) /* Frame processing set */
66 
67 /* IRIF_UART_STS2 */
68 #define IRSME		(1 << 6) /* Receive Sum     Error flag */
69 #define IROVE		(1 << 5) /* Receive Overrun Error flag */
70 #define IRFRE		(1 << 4) /* Receive Framing Error flag */
71 #define IRPRE		(1 << 3) /* Receive Parity  Error flag */
72 
73 /* IRIF_UART0_*/
74 #define TBEC		(1 << 2) /* Transmit Data Clear */
75 #define RIE		(1 << 1) /* Receive Enable */
76 #define TIE		(1 << 0) /* Transmit Enable */
77 
78 /* IRIF_UART1 */
79 #define URSME		(1 << 6) /* Receive Sum Error Flag */
80 #define UROVE		(1 << 5) /* Receive Overrun Error Flag */
81 #define URFRE		(1 << 4) /* Receive Framing Error Flag */
82 #define URPRE		(1 << 3) /* Receive Parity Error Flag */
83 #define RBF		(1 << 2) /* Receive Buffer Full Flag */
84 #define TSBE		(1 << 1) /* Transmit Shift Buffer Empty Flag */
85 #define TBE		(1 << 0) /* Transmit Buffer Empty flag */
86 #define TBCOMP		(TSBE | TBE)
87 
88 /* IRIF_UART5 */
89 #define RSEIM		(1 << 6) /* Receive Sum Error Flag IRQ Mask */
90 #define RBFIM		(1 << 2) /* Receive Buffer Full Flag IRQ Mask */
91 #define TSBEIM		(1 << 1) /* Transmit Shift Buffer Empty Flag IRQ Mask */
92 #define TBEIM		(1 << 0) /* Transmit Buffer Empty Flag IRQ Mask */
93 #define RX_MASK		(RSEIM  | RBFIM)
94 
95 /* IRIF_CRC0 */
96 #define CRC_RST		(1 << 15) /* CRC Engine Reset */
97 #define CRC_CT_MASK	0x0FFF
98 
99 /************************************************************************
100 
101 
102 			structure
103 
104 
105 ************************************************************************/
106 struct sh_sir_self {
107 	void __iomem		*membase;
108 	unsigned int		 irq;
109 	struct clk		*clk;
110 
111 	struct net_device	*ndev;
112 
113 	struct irlap_cb		*irlap;
114 	struct qos_info		qos;
115 
116 	iobuff_t		tx_buff;
117 	iobuff_t		rx_buff;
118 };
119 
120 /************************************************************************
121 
122 
123 			common function
124 
125 
126 ************************************************************************/
sh_sir_write(struct sh_sir_self * self,u32 offset,u16 data)127 static void sh_sir_write(struct sh_sir_self *self, u32 offset, u16 data)
128 {
129 	iowrite16(data, self->membase + offset);
130 }
131 
sh_sir_read(struct sh_sir_self * self,u32 offset)132 static u16 sh_sir_read(struct sh_sir_self *self, u32 offset)
133 {
134 	return ioread16(self->membase + offset);
135 }
136 
sh_sir_update_bits(struct sh_sir_self * self,u32 offset,u16 mask,u16 data)137 static void sh_sir_update_bits(struct sh_sir_self *self, u32 offset,
138 			       u16 mask, u16 data)
139 {
140 	u16 old, new;
141 
142 	old = sh_sir_read(self, offset);
143 	new = (old & ~mask) | data;
144 	if (old != new)
145 		sh_sir_write(self, offset, new);
146 }
147 
148 /************************************************************************
149 
150 
151 			CRC function
152 
153 
154 ************************************************************************/
sh_sir_crc_reset(struct sh_sir_self * self)155 static void sh_sir_crc_reset(struct sh_sir_self *self)
156 {
157 	sh_sir_write(self, IRIF_CRC0, CRC_RST);
158 }
159 
sh_sir_crc_add(struct sh_sir_self * self,u8 data)160 static void sh_sir_crc_add(struct sh_sir_self *self, u8 data)
161 {
162 	sh_sir_write(self, IRIF_CRC1, (u16)data);
163 }
164 
sh_sir_crc_cnt(struct sh_sir_self * self)165 static u16 sh_sir_crc_cnt(struct sh_sir_self *self)
166 {
167 	return CRC_CT_MASK & sh_sir_read(self, IRIF_CRC0);
168 }
169 
sh_sir_crc_out(struct sh_sir_self * self)170 static u16 sh_sir_crc_out(struct sh_sir_self *self)
171 {
172 	return sh_sir_read(self, IRIF_CRC4);
173 }
174 
sh_sir_crc_init(struct sh_sir_self * self)175 static int sh_sir_crc_init(struct sh_sir_self *self)
176 {
177 	struct device *dev = &self->ndev->dev;
178 	int ret = -EIO;
179 	u16 val;
180 
181 	sh_sir_crc_reset(self);
182 
183 	sh_sir_crc_add(self, 0xCC);
184 	sh_sir_crc_add(self, 0xF5);
185 	sh_sir_crc_add(self, 0xF1);
186 	sh_sir_crc_add(self, 0xA7);
187 
188 	val = sh_sir_crc_cnt(self);
189 	if (4 != val) {
190 		dev_err(dev, "CRC count error %x\n", val);
191 		goto crc_init_out;
192 	}
193 
194 	val = sh_sir_crc_out(self);
195 	if (0x51DF != val) {
196 		dev_err(dev, "CRC result error%x\n", val);
197 		goto crc_init_out;
198 	}
199 
200 	ret = 0;
201 
202 crc_init_out:
203 
204 	sh_sir_crc_reset(self);
205 	return ret;
206 }
207 
208 /************************************************************************
209 
210 
211 			baud rate functions
212 
213 
214 ************************************************************************/
215 #define SCLK_BASE 1843200 /* 1.8432MHz */
216 
sh_sir_find_sclk(struct clk * irda_clk)217 static u32 sh_sir_find_sclk(struct clk *irda_clk)
218 {
219 	struct cpufreq_frequency_table *freq_table = irda_clk->freq_table;
220 	struct clk *pclk = clk_get(NULL, "peripheral_clk");
221 	u32 limit, min = 0xffffffff, tmp;
222 	int i, index = 0;
223 
224 	limit = clk_get_rate(pclk);
225 	clk_put(pclk);
226 
227 	/* IrDA can not set over peripheral_clk */
228 	for (i = 0;
229 	     freq_table[i].frequency != CPUFREQ_TABLE_END;
230 	     i++) {
231 		u32 freq = freq_table[i].frequency;
232 
233 		if (freq == CPUFREQ_ENTRY_INVALID)
234 			continue;
235 
236 		/* IrDA should not over peripheral_clk */
237 		if (freq > limit)
238 			continue;
239 
240 		tmp = freq % SCLK_BASE;
241 		if (tmp < min) {
242 			min = tmp;
243 			index = i;
244 		}
245 	}
246 
247 	return freq_table[index].frequency;
248 }
249 
250 #define ERR_ROUNDING(a) ((a + 5000) / 10000)
sh_sir_set_baudrate(struct sh_sir_self * self,u32 baudrate)251 static int sh_sir_set_baudrate(struct sh_sir_self *self, u32 baudrate)
252 {
253 	struct clk *clk;
254 	struct device *dev = &self->ndev->dev;
255 	u32 rate;
256 	u16 uabca, uabc;
257 	u16 irbca, irbc;
258 	u32 min, rerr, tmp;
259 	int i;
260 
261 	/* Baud Rate Error Correction x 10000 */
262 	u32 rate_err_array[] = {
263 		   0,  625, 1250, 1875,
264 		2500, 3125, 3750, 4375,
265 		5000, 5625, 6250, 6875,
266 		7500, 8125, 8750, 9375,
267 	};
268 
269 	/*
270 	 * FIXME
271 	 *
272 	 * it support 9600 only now
273 	 */
274 	switch (baudrate) {
275 	case 9600:
276 		break;
277 	default:
278 		dev_err(dev, "un-supported baudrate %d\n", baudrate);
279 		return -EIO;
280 	}
281 
282 	clk = clk_get(NULL, "irda_clk");
283 	if (!clk) {
284 		dev_err(dev, "can not get irda_clk\n");
285 		return -EIO;
286 	}
287 
288 	clk_set_rate(clk, sh_sir_find_sclk(clk));
289 	rate = clk_get_rate(clk);
290 	clk_put(clk);
291 
292 	dev_dbg(dev, "selected sclk = %d\n", rate);
293 
294 	/*
295 	 * CALCULATION
296 	 *
297 	 * 1843200 = system rate / (irbca + (irbc + 1))
298 	 */
299 
300 	irbc = rate / SCLK_BASE;
301 
302 	tmp = rate - (SCLK_BASE * irbc);
303 	tmp *= 10000;
304 
305 	rerr = tmp / SCLK_BASE;
306 
307 	min = 0xffffffff;
308 	irbca = 0;
309 	for (i = 0; i < ARRAY_SIZE(rate_err_array); i++) {
310 		tmp = abs(rate_err_array[i] - rerr);
311 		if (min > tmp) {
312 			min = tmp;
313 			irbca = i;
314 		}
315 	}
316 
317 	tmp = rate / (irbc + ERR_ROUNDING(rate_err_array[irbca]));
318 	if ((SCLK_BASE / 100) < abs(tmp - SCLK_BASE))
319 		dev_warn(dev, "IrDA freq error margin over %d\n", tmp);
320 
321 	dev_dbg(dev, "target = %d, result = %d, infrared = %d.%d\n",
322 	       SCLK_BASE, tmp, irbc, rate_err_array[irbca]);
323 
324 	irbca = (irbca & 0xF) << 4;
325 	irbc  = (irbc - 1) & 0xF;
326 
327 	if (!irbc) {
328 		dev_err(dev, "sh_sir can not set 0 in IRIF_SIR2\n");
329 		return -EIO;
330 	}
331 
332 	sh_sir_write(self, IRIF_SIR0, IRTPW | IRERRC);
333 	sh_sir_write(self, IRIF_SIR1, irbca);
334 	sh_sir_write(self, IRIF_SIR2, irbc);
335 
336 	/*
337 	 * CALCULATION
338 	 *
339 	 * BaudRate[bps] = system rate / (uabca + (uabc + 1) x 16)
340 	 */
341 
342 	uabc = rate / baudrate;
343 	uabc = (uabc / 16) - 1;
344 	uabc = (uabc + 1) * 16;
345 
346 	tmp = rate - (uabc * baudrate);
347 	tmp *= 10000;
348 
349 	rerr = tmp / baudrate;
350 
351 	min = 0xffffffff;
352 	uabca = 0;
353 	for (i = 0; i < ARRAY_SIZE(rate_err_array); i++) {
354 		tmp = abs(rate_err_array[i] - rerr);
355 		if (min > tmp) {
356 			min = tmp;
357 			uabca = i;
358 		}
359 	}
360 
361 	tmp = rate / (uabc + ERR_ROUNDING(rate_err_array[uabca]));
362 	if ((baudrate / 100) < abs(tmp - baudrate))
363 		dev_warn(dev, "UART freq error margin over %d\n", tmp);
364 
365 	dev_dbg(dev, "target = %d, result = %d, uart = %d.%d\n",
366 	       baudrate, tmp,
367 	       uabc, rate_err_array[uabca]);
368 
369 	uabca = (uabca & 0xF) << 4;
370 	uabc  = (uabc / 16) - 1;
371 
372 	sh_sir_write(self, IRIF_UART6, uabca);
373 	sh_sir_write(self, IRIF_UART7, uabc);
374 
375 	return 0;
376 }
377 
378 /************************************************************************
379 
380 
381 			iobuf function
382 
383 
384 ************************************************************************/
__sh_sir_init_iobuf(iobuff_t * io,int size)385 static int __sh_sir_init_iobuf(iobuff_t *io, int size)
386 {
387 	io->head = kmalloc(size, GFP_KERNEL);
388 	if (!io->head)
389 		return -ENOMEM;
390 
391 	io->truesize	= size;
392 	io->in_frame	= FALSE;
393 	io->state	= OUTSIDE_FRAME;
394 	io->data	= io->head;
395 
396 	return 0;
397 }
398 
sh_sir_remove_iobuf(struct sh_sir_self * self)399 static void sh_sir_remove_iobuf(struct sh_sir_self *self)
400 {
401 	kfree(self->rx_buff.head);
402 	kfree(self->tx_buff.head);
403 
404 	self->rx_buff.head = NULL;
405 	self->tx_buff.head = NULL;
406 }
407 
sh_sir_init_iobuf(struct sh_sir_self * self,int rxsize,int txsize)408 static int sh_sir_init_iobuf(struct sh_sir_self *self, int rxsize, int txsize)
409 {
410 	int err = -ENOMEM;
411 
412 	if (self->rx_buff.head ||
413 	    self->tx_buff.head) {
414 		dev_err(&self->ndev->dev, "iobuff has already existed.");
415 		return err;
416 	}
417 
418 	err = __sh_sir_init_iobuf(&self->rx_buff, rxsize);
419 	if (err)
420 		goto iobuf_err;
421 
422 	err = __sh_sir_init_iobuf(&self->tx_buff, txsize);
423 
424 iobuf_err:
425 	if (err)
426 		sh_sir_remove_iobuf(self);
427 
428 	return err;
429 }
430 
431 /************************************************************************
432 
433 
434 			status function
435 
436 
437 ************************************************************************/
sh_sir_clear_all_err(struct sh_sir_self * self)438 static void sh_sir_clear_all_err(struct sh_sir_self *self)
439 {
440 	/* Clear error flag for receive pulse width */
441 	sh_sir_update_bits(self, IRIF_SIR0, IRERRC, IRERRC);
442 
443 	/* Clear frame / EOF error flag */
444 	sh_sir_write(self, IRIF_SIR_FLG, 0xffff);
445 
446 	/* Clear all status error */
447 	sh_sir_write(self, IRIF_UART_STS2, 0);
448 }
449 
sh_sir_set_phase(struct sh_sir_self * self,int phase)450 static void sh_sir_set_phase(struct sh_sir_self *self, int phase)
451 {
452 	u16 uart5 = 0;
453 	u16 uart0 = 0;
454 
455 	switch (phase) {
456 	case TX_PHASE:
457 		uart5 = TBEIM;
458 		uart0 = TBEC | TIE;
459 		break;
460 	case TX_COMP_PHASE:
461 		uart5 = TSBEIM;
462 		uart0 = TIE;
463 		break;
464 	case RX_PHASE:
465 		uart5 = RX_MASK;
466 		uart0 = RIE;
467 		break;
468 	default:
469 		break;
470 	}
471 
472 	sh_sir_write(self, IRIF_UART5, uart5);
473 	sh_sir_write(self, IRIF_UART0, uart0);
474 }
475 
sh_sir_is_which_phase(struct sh_sir_self * self)476 static int sh_sir_is_which_phase(struct sh_sir_self *self)
477 {
478 	u16 val = sh_sir_read(self, IRIF_UART5);
479 
480 	if (val & TBEIM)
481 		return TX_PHASE;
482 
483 	if (val & TSBEIM)
484 		return TX_COMP_PHASE;
485 
486 	if (val & RX_MASK)
487 		return RX_PHASE;
488 
489 	return NONE_PHASE;
490 }
491 
sh_sir_tx(struct sh_sir_self * self,int phase)492 static void sh_sir_tx(struct sh_sir_self *self, int phase)
493 {
494 	switch (phase) {
495 	case TX_PHASE:
496 		if (0 >= self->tx_buff.len) {
497 			sh_sir_set_phase(self, TX_COMP_PHASE);
498 		} else {
499 			sh_sir_write(self, IRIF_UART3, self->tx_buff.data[0]);
500 			self->tx_buff.len--;
501 			self->tx_buff.data++;
502 		}
503 		break;
504 	case TX_COMP_PHASE:
505 		sh_sir_set_phase(self, RX_PHASE);
506 		netif_wake_queue(self->ndev);
507 		break;
508 	default:
509 		dev_err(&self->ndev->dev, "should not happen\n");
510 		break;
511 	}
512 }
513 
sh_sir_read_data(struct sh_sir_self * self)514 static int sh_sir_read_data(struct sh_sir_self *self)
515 {
516 	u16 val = 0;
517 	int timeout = 1024;
518 
519 	while (timeout--) {
520 		val = sh_sir_read(self, IRIF_UART1);
521 
522 		/* data get */
523 		if (val & RBF) {
524 			if (val & (URSME | UROVE | URFRE | URPRE))
525 				break;
526 
527 			return (int)sh_sir_read(self, IRIF_UART4);
528 		}
529 
530 		udelay(1);
531 	}
532 
533 	dev_err(&self->ndev->dev, "UART1 %04x : STATUS %04x\n",
534 		val, sh_sir_read(self, IRIF_UART_STS2));
535 
536 	/* read data register for clear error */
537 	sh_sir_read(self, IRIF_UART4);
538 
539 	return -1;
540 }
541 
sh_sir_rx(struct sh_sir_self * self)542 static void sh_sir_rx(struct sh_sir_self *self)
543 {
544 	int timeout = 1024;
545 	int data;
546 
547 	while (timeout--) {
548 		data = sh_sir_read_data(self);
549 		if (data < 0)
550 			break;
551 
552 		async_unwrap_char(self->ndev, &self->ndev->stats,
553 				  &self->rx_buff, (u8)data);
554 		self->ndev->last_rx = jiffies;
555 
556 		if (EOFD & sh_sir_read(self, IRIF_SIR_FRM))
557 			continue;
558 
559 		break;
560 	}
561 }
562 
sh_sir_irq(int irq,void * dev_id)563 static irqreturn_t sh_sir_irq(int irq, void *dev_id)
564 {
565 	struct sh_sir_self *self = dev_id;
566 	struct device *dev = &self->ndev->dev;
567 	int phase = sh_sir_is_which_phase(self);
568 
569 	switch (phase) {
570 	case TX_COMP_PHASE:
571 	case TX_PHASE:
572 		sh_sir_tx(self, phase);
573 		break;
574 	case RX_PHASE:
575 		if (sh_sir_read(self, IRIF_SIR3))
576 			dev_err(dev, "rcv pulse width error occurred\n");
577 
578 		sh_sir_rx(self);
579 		sh_sir_clear_all_err(self);
580 		break;
581 	default:
582 		dev_err(dev, "unknown interrupt\n");
583 	}
584 
585 	 return IRQ_HANDLED;
586 }
587 
588 /************************************************************************
589 
590 
591 			net_device_ops function
592 
593 
594 ************************************************************************/
sh_sir_hard_xmit(struct sk_buff * skb,struct net_device * ndev)595 static int sh_sir_hard_xmit(struct sk_buff *skb, struct net_device *ndev)
596 {
597 	struct sh_sir_self *self = netdev_priv(ndev);
598 	int speed = irda_get_next_speed(skb);
599 
600 	if ((0 < speed) &&
601 	    (9600 != speed)) {
602 		dev_err(&ndev->dev, "support 9600 only (%d)\n", speed);
603 		return -EIO;
604 	}
605 
606 	netif_stop_queue(ndev);
607 
608 	self->tx_buff.data = self->tx_buff.head;
609 	self->tx_buff.len = 0;
610 	if (skb->len)
611 		self->tx_buff.len = async_wrap_skb(skb, self->tx_buff.data,
612 						   self->tx_buff.truesize);
613 
614 	sh_sir_set_phase(self, TX_PHASE);
615 	dev_kfree_skb(skb);
616 
617 	return 0;
618 }
619 
sh_sir_ioctl(struct net_device * ndev,struct ifreq * ifreq,int cmd)620 static int sh_sir_ioctl(struct net_device *ndev, struct ifreq *ifreq, int cmd)
621 {
622 	/*
623 	 * FIXME
624 	 *
625 	 * This function is needed for irda framework.
626 	 * But nothing to do now
627 	 */
628 	return 0;
629 }
630 
sh_sir_stats(struct net_device * ndev)631 static struct net_device_stats *sh_sir_stats(struct net_device *ndev)
632 {
633 	struct sh_sir_self *self = netdev_priv(ndev);
634 
635 	return &self->ndev->stats;
636 }
637 
sh_sir_open(struct net_device * ndev)638 static int sh_sir_open(struct net_device *ndev)
639 {
640 	struct sh_sir_self *self = netdev_priv(ndev);
641 	int err;
642 
643 	clk_enable(self->clk);
644 	err = sh_sir_crc_init(self);
645 	if (err)
646 		goto open_err;
647 
648 	sh_sir_set_baudrate(self, 9600);
649 
650 	self->irlap = irlap_open(ndev, &self->qos, DRIVER_NAME);
651 	if (!self->irlap) {
652 		err = -ENODEV;
653 		goto open_err;
654 	}
655 
656 	/*
657 	 * Now enable the interrupt then start the queue
658 	 */
659 	sh_sir_update_bits(self, IRIF_SIR_FRM, FRP, FRP);
660 	sh_sir_read(self, IRIF_UART1); /* flag clear */
661 	sh_sir_read(self, IRIF_UART4); /* flag clear */
662 	sh_sir_set_phase(self, RX_PHASE);
663 
664 	netif_start_queue(ndev);
665 
666 	dev_info(&self->ndev->dev, "opened\n");
667 
668 	return 0;
669 
670 open_err:
671 	clk_disable(self->clk);
672 
673 	return err;
674 }
675 
sh_sir_stop(struct net_device * ndev)676 static int sh_sir_stop(struct net_device *ndev)
677 {
678 	struct sh_sir_self *self = netdev_priv(ndev);
679 
680 	/* Stop IrLAP */
681 	if (self->irlap) {
682 		irlap_close(self->irlap);
683 		self->irlap = NULL;
684 	}
685 
686 	netif_stop_queue(ndev);
687 
688 	dev_info(&ndev->dev, "stoped\n");
689 
690 	return 0;
691 }
692 
693 static const struct net_device_ops sh_sir_ndo = {
694 	.ndo_open		= sh_sir_open,
695 	.ndo_stop		= sh_sir_stop,
696 	.ndo_start_xmit		= sh_sir_hard_xmit,
697 	.ndo_do_ioctl		= sh_sir_ioctl,
698 	.ndo_get_stats		= sh_sir_stats,
699 };
700 
701 /************************************************************************
702 
703 
704 			platform_driver function
705 
706 
707 ************************************************************************/
sh_sir_probe(struct platform_device * pdev)708 static int __devinit sh_sir_probe(struct platform_device *pdev)
709 {
710 	struct net_device *ndev;
711 	struct sh_sir_self *self;
712 	struct resource *res;
713 	char clk_name[8];
714 	int irq;
715 	int err = -ENOMEM;
716 
717 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
718 	irq = platform_get_irq(pdev, 0);
719 	if (!res || irq < 0) {
720 		dev_err(&pdev->dev, "Not enough platform resources.\n");
721 		goto exit;
722 	}
723 
724 	ndev = alloc_irdadev(sizeof(*self));
725 	if (!ndev)
726 		goto exit;
727 
728 	self = netdev_priv(ndev);
729 	self->membase = ioremap_nocache(res->start, resource_size(res));
730 	if (!self->membase) {
731 		err = -ENXIO;
732 		dev_err(&pdev->dev, "Unable to ioremap.\n");
733 		goto err_mem_1;
734 	}
735 
736 	err = sh_sir_init_iobuf(self, IRDA_SKB_MAX_MTU, IRDA_SIR_MAX_FRAME);
737 	if (err)
738 		goto err_mem_2;
739 
740 	snprintf(clk_name, sizeof(clk_name), "irda%d", pdev->id);
741 	self->clk = clk_get(&pdev->dev, clk_name);
742 	if (IS_ERR(self->clk)) {
743 		dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
744 		goto err_mem_3;
745 	}
746 
747 	irda_init_max_qos_capabilies(&self->qos);
748 
749 	ndev->netdev_ops	= &sh_sir_ndo;
750 	ndev->irq		= irq;
751 
752 	self->ndev			= ndev;
753 	self->qos.baud_rate.bits	&= IR_9600; /* FIXME */
754 	self->qos.min_turn_time.bits	= 1; /* 10 ms or more */
755 
756 	irda_qos_bits_to_value(&self->qos);
757 
758 	err = register_netdev(ndev);
759 	if (err)
760 		goto err_mem_4;
761 
762 	platform_set_drvdata(pdev, ndev);
763 
764 	if (request_irq(irq, sh_sir_irq, IRQF_DISABLED, "sh_sir", self)) {
765 		dev_warn(&pdev->dev, "Unable to attach sh_sir interrupt\n");
766 		goto err_mem_4;
767 	}
768 
769 	dev_info(&pdev->dev, "SuperH IrDA probed\n");
770 
771 	goto exit;
772 
773 err_mem_4:
774 	clk_put(self->clk);
775 err_mem_3:
776 	sh_sir_remove_iobuf(self);
777 err_mem_2:
778 	iounmap(self->membase);
779 err_mem_1:
780 	free_netdev(ndev);
781 exit:
782 	return err;
783 }
784 
sh_sir_remove(struct platform_device * pdev)785 static int __devexit sh_sir_remove(struct platform_device *pdev)
786 {
787 	struct net_device *ndev = platform_get_drvdata(pdev);
788 	struct sh_sir_self *self = netdev_priv(ndev);
789 
790 	if (!self)
791 		return 0;
792 
793 	unregister_netdev(ndev);
794 	clk_put(self->clk);
795 	sh_sir_remove_iobuf(self);
796 	iounmap(self->membase);
797 	free_netdev(ndev);
798 	platform_set_drvdata(pdev, NULL);
799 
800 	return 0;
801 }
802 
803 static struct platform_driver sh_sir_driver = {
804 	.probe   = sh_sir_probe,
805 	.remove  = __devexit_p(sh_sir_remove),
806 	.driver  = {
807 		.name = DRIVER_NAME,
808 	},
809 };
810 
811 module_platform_driver(sh_sir_driver);
812 
813 MODULE_AUTHOR("Kuninori Morimoto <morimoto.kuninori@renesas.com>");
814 MODULE_DESCRIPTION("SuperH IrDA driver");
815 MODULE_LICENSE("GPL");
816