1 /*
2  * Alchemy Semi Au1000 IrDA driver
3  *
4  * Copyright 2001 MontaVista Software Inc.
5  * Author: MontaVista Software, Inc.
6  *         	ppopov@mvista.com or source@mvista.com
7  *
8  *  This program is free software; you can distribute it and/or modify it
9  *  under the terms of the GNU General Public License (Version 2) as
10  *  published by the Free Software Foundation.
11  *
12  *  This program is distributed in the hope it will be useful, but WITHOUT
13  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15  *  for more details.
16  *
17  *  You should have received a copy of the GNU General Public License along
18  *  with this program; if not, write to the Free Software Foundation, Inc.,
19  *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
20  */
21 
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/interrupt.h>
26 #include <linux/platform_device.h>
27 #include <linux/slab.h>
28 #include <linux/time.h>
29 #include <linux/types.h>
30 
31 #include <net/irda/irda.h>
32 #include <net/irda/irmod.h>
33 #include <net/irda/wrapper.h>
34 #include <net/irda/irda_device.h>
35 #include <asm/mach-au1x00/au1000.h>
36 
37 /* registers */
38 #define IR_RING_PTR_STATUS	0x00
39 #define IR_RING_BASE_ADDR_H	0x04
40 #define IR_RING_BASE_ADDR_L	0x08
41 #define IR_RING_SIZE		0x0C
42 #define IR_RING_PROMPT		0x10
43 #define IR_RING_ADDR_CMPR	0x14
44 #define IR_INT_CLEAR		0x18
45 #define IR_CONFIG_1		0x20
46 #define IR_SIR_FLAGS		0x24
47 #define IR_STATUS		0x28
48 #define IR_READ_PHY_CONFIG	0x2C
49 #define IR_WRITE_PHY_CONFIG	0x30
50 #define IR_MAX_PKT_LEN		0x34
51 #define IR_RX_BYTE_CNT		0x38
52 #define IR_CONFIG_2		0x3C
53 #define IR_ENABLE		0x40
54 
55 /* Config1 */
56 #define IR_RX_INVERT_LED	(1 << 0)
57 #define IR_TX_INVERT_LED	(1 << 1)
58 #define IR_ST			(1 << 2)
59 #define IR_SF			(1 << 3)
60 #define IR_SIR			(1 << 4)
61 #define IR_MIR			(1 << 5)
62 #define IR_FIR			(1 << 6)
63 #define IR_16CRC		(1 << 7)
64 #define IR_TD			(1 << 8)
65 #define IR_RX_ALL		(1 << 9)
66 #define IR_DMA_ENABLE		(1 << 10)
67 #define IR_RX_ENABLE		(1 << 11)
68 #define IR_TX_ENABLE		(1 << 12)
69 #define IR_LOOPBACK		(1 << 14)
70 #define IR_SIR_MODE		(IR_SIR | IR_DMA_ENABLE | \
71 				 IR_RX_ALL | IR_RX_ENABLE | IR_SF | \
72 				 IR_16CRC)
73 
74 /* ir_status */
75 #define IR_RX_STATUS		(1 << 9)
76 #define IR_TX_STATUS		(1 << 10)
77 #define IR_PHYEN		(1 << 15)
78 
79 /* ir_write_phy_config */
80 #define IR_BR(x)		(((x) & 0x3f) << 10)	/* baud rate */
81 #define IR_PW(x)		(((x) & 0x1f) << 5)	/* pulse width */
82 #define IR_P(x)			((x) & 0x1f)		/* preamble bits */
83 
84 /* Config2 */
85 #define IR_MODE_INV		(1 << 0)
86 #define IR_ONE_PIN		(1 << 1)
87 #define IR_PHYCLK_40MHZ		(0 << 2)
88 #define IR_PHYCLK_48MHZ		(1 << 2)
89 #define IR_PHYCLK_56MHZ		(2 << 2)
90 #define IR_PHYCLK_64MHZ		(3 << 2)
91 #define IR_DP			(1 << 4)
92 #define IR_DA			(1 << 5)
93 #define IR_FLT_HIGH		(0 << 6)
94 #define IR_FLT_MEDHI		(1 << 6)
95 #define IR_FLT_MEDLO		(2 << 6)
96 #define IR_FLT_LO		(3 << 6)
97 #define IR_IEN			(1 << 8)
98 
99 /* ir_enable */
100 #define IR_HC			(1 << 3)	/* divide SBUS clock by 2 */
101 #define IR_CE			(1 << 2)	/* clock enable */
102 #define IR_C			(1 << 1)	/* coherency bit */
103 #define IR_BE			(1 << 0)	/* set in big endian mode */
104 
105 #define NUM_IR_DESC	64
106 #define RING_SIZE_4	0x0
107 #define RING_SIZE_16	0x3
108 #define RING_SIZE_64	0xF
109 #define MAX_NUM_IR_DESC	64
110 #define MAX_BUF_SIZE	2048
111 
112 /* Ring descriptor flags */
113 #define AU_OWN		(1 << 7) /* tx,rx */
114 #define IR_DIS_CRC	(1 << 6) /* tx */
115 #define IR_BAD_CRC	(1 << 5) /* tx */
116 #define IR_NEED_PULSE	(1 << 4) /* tx */
117 #define IR_FORCE_UNDER	(1 << 3) /* tx */
118 #define IR_DISABLE_TX	(1 << 2) /* tx */
119 #define IR_HW_UNDER	(1 << 0) /* tx */
120 #define IR_TX_ERROR	(IR_DIS_CRC | IR_BAD_CRC | IR_HW_UNDER)
121 
122 #define IR_PHY_ERROR	(1 << 6) /* rx */
123 #define IR_CRC_ERROR	(1 << 5) /* rx */
124 #define IR_MAX_LEN	(1 << 4) /* rx */
125 #define IR_FIFO_OVER	(1 << 3) /* rx */
126 #define IR_SIR_ERROR	(1 << 2) /* rx */
127 #define IR_RX_ERROR	(IR_PHY_ERROR | IR_CRC_ERROR | \
128 			 IR_MAX_LEN | IR_FIFO_OVER | IR_SIR_ERROR)
129 
130 struct db_dest {
131 	struct db_dest *pnext;
132 	volatile u32 *vaddr;
133 	dma_addr_t dma_addr;
134 };
135 
136 struct ring_dest {
137 	u8 count_0;	/* 7:0  */
138 	u8 count_1;	/* 12:8 */
139 	u8 reserved;
140 	u8 flags;
141 	u8 addr_0;	/* 7:0   */
142 	u8 addr_1;	/* 15:8  */
143 	u8 addr_2;	/* 23:16 */
144 	u8 addr_3;	/* 31:24 */
145 };
146 
147 /* Private data for each instance */
148 struct au1k_private {
149 	void __iomem *iobase;
150 	int irq_rx, irq_tx;
151 
152 	struct db_dest *pDBfree;
153 	struct db_dest db[2 * NUM_IR_DESC];
154 	volatile struct ring_dest *rx_ring[NUM_IR_DESC];
155 	volatile struct ring_dest *tx_ring[NUM_IR_DESC];
156 	struct db_dest *rx_db_inuse[NUM_IR_DESC];
157 	struct db_dest *tx_db_inuse[NUM_IR_DESC];
158 	u32 rx_head;
159 	u32 tx_head;
160 	u32 tx_tail;
161 	u32 tx_full;
162 
163 	iobuff_t rx_buff;
164 
165 	struct net_device *netdev;
166 	struct timeval stamp;
167 	struct timeval now;
168 	struct qos_info qos;
169 	struct irlap_cb *irlap;
170 
171 	u8 open;
172 	u32 speed;
173 	u32 newspeed;
174 
175 	struct timer_list timer;
176 
177 	struct resource *ioarea;
178 	struct au1k_irda_platform_data *platdata;
179 };
180 
181 static int qos_mtt_bits = 0x07;  /* 1 ms or more */
182 
183 #define RUN_AT(x) (jiffies + (x))
184 
au1k_irda_plat_set_phy_mode(struct au1k_private * p,int mode)185 static void au1k_irda_plat_set_phy_mode(struct au1k_private *p, int mode)
186 {
187 	if (p->platdata && p->platdata->set_phy_mode)
188 		p->platdata->set_phy_mode(mode);
189 }
190 
irda_read(struct au1k_private * p,unsigned long ofs)191 static inline unsigned long irda_read(struct au1k_private *p,
192 				      unsigned long ofs)
193 {
194 	/*
195 	* IrDA peripheral bug. You have to read the register
196 	* twice to get the right value.
197 	*/
198 	(void)__raw_readl(p->iobase + ofs);
199 	return __raw_readl(p->iobase + ofs);
200 }
201 
irda_write(struct au1k_private * p,unsigned long ofs,unsigned long val)202 static inline void irda_write(struct au1k_private *p, unsigned long ofs,
203 			      unsigned long val)
204 {
205 	__raw_writel(val, p->iobase + ofs);
206 	wmb();
207 }
208 
209 /*
210  * Buffer allocation/deallocation routines. The buffer descriptor returned
211  * has the virtual and dma address of a buffer suitable for
212  * both, receive and transmit operations.
213  */
GetFreeDB(struct au1k_private * aup)214 static struct db_dest *GetFreeDB(struct au1k_private *aup)
215 {
216 	struct db_dest *db;
217 	db = aup->pDBfree;
218 
219 	if (db)
220 		aup->pDBfree = db->pnext;
221 	return db;
222 }
223 
224 /*
225   DMA memory allocation, derived from pci_alloc_consistent.
226   However, the Au1000 data cache is coherent (when programmed
227   so), therefore we return KSEG0 address, not KSEG1.
228 */
dma_alloc(size_t size,dma_addr_t * dma_handle)229 static void *dma_alloc(size_t size, dma_addr_t *dma_handle)
230 {
231 	void *ret;
232 	int gfp = GFP_ATOMIC | GFP_DMA;
233 
234 	ret = (void *)__get_free_pages(gfp, get_order(size));
235 
236 	if (ret != NULL) {
237 		memset(ret, 0, size);
238 		*dma_handle = virt_to_bus(ret);
239 		ret = (void *)KSEG0ADDR(ret);
240 	}
241 	return ret;
242 }
243 
dma_free(void * vaddr,size_t size)244 static void dma_free(void *vaddr, size_t size)
245 {
246 	vaddr = (void *)KSEG0ADDR(vaddr);
247 	free_pages((unsigned long) vaddr, get_order(size));
248 }
249 
250 
setup_hw_rings(struct au1k_private * aup,u32 rx_base,u32 tx_base)251 static void setup_hw_rings(struct au1k_private *aup, u32 rx_base, u32 tx_base)
252 {
253 	int i;
254 	for (i = 0; i < NUM_IR_DESC; i++) {
255 		aup->rx_ring[i] = (volatile struct ring_dest *)
256 			(rx_base + sizeof(struct ring_dest) * i);
257 	}
258 	for (i = 0; i < NUM_IR_DESC; i++) {
259 		aup->tx_ring[i] = (volatile struct ring_dest *)
260 			(tx_base + sizeof(struct ring_dest) * i);
261 	}
262 }
263 
au1k_irda_init_iobuf(iobuff_t * io,int size)264 static int au1k_irda_init_iobuf(iobuff_t *io, int size)
265 {
266 	io->head = kmalloc(size, GFP_KERNEL);
267 	if (io->head != NULL) {
268 		io->truesize	= size;
269 		io->in_frame	= FALSE;
270 		io->state	= OUTSIDE_FRAME;
271 		io->data	= io->head;
272 	}
273 	return io->head ? 0 : -ENOMEM;
274 }
275 
276 /*
277  * Set the IrDA communications speed.
278  */
au1k_irda_set_speed(struct net_device * dev,int speed)279 static int au1k_irda_set_speed(struct net_device *dev, int speed)
280 {
281 	struct au1k_private *aup = netdev_priv(dev);
282 	volatile struct ring_dest *ptxd;
283 	unsigned long control;
284 	int ret = 0, timeout = 10, i;
285 
286 	if (speed == aup->speed)
287 		return ret;
288 
289 	/* disable PHY first */
290 	au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF);
291 	irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) & ~IR_PHYEN);
292 
293 	/* disable RX/TX */
294 	irda_write(aup, IR_CONFIG_1,
295 	    irda_read(aup, IR_CONFIG_1) & ~(IR_RX_ENABLE | IR_TX_ENABLE));
296 	msleep(20);
297 	while (irda_read(aup, IR_STATUS) & (IR_RX_STATUS | IR_TX_STATUS)) {
298 		msleep(20);
299 		if (!timeout--) {
300 			printk(KERN_ERR "%s: rx/tx disable timeout\n",
301 					dev->name);
302 			break;
303 		}
304 	}
305 
306 	/* disable DMA */
307 	irda_write(aup, IR_CONFIG_1,
308 		   irda_read(aup, IR_CONFIG_1) & ~IR_DMA_ENABLE);
309 	msleep(20);
310 
311 	/* After we disable tx/rx. the index pointers go back to zero. */
312 	aup->tx_head = aup->tx_tail = aup->rx_head = 0;
313 	for (i = 0; i < NUM_IR_DESC; i++) {
314 		ptxd = aup->tx_ring[i];
315 		ptxd->flags = 0;
316 		ptxd->count_0 = 0;
317 		ptxd->count_1 = 0;
318 	}
319 
320 	for (i = 0; i < NUM_IR_DESC; i++) {
321 		ptxd = aup->rx_ring[i];
322 		ptxd->count_0 = 0;
323 		ptxd->count_1 = 0;
324 		ptxd->flags = AU_OWN;
325 	}
326 
327 	if (speed == 4000000)
328 		au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_FIR);
329 	else
330 		au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_SIR);
331 
332 	switch (speed) {
333 	case 9600:
334 		irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(11) | IR_PW(12));
335 		irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
336 		break;
337 	case 19200:
338 		irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(5) | IR_PW(12));
339 		irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
340 		break;
341 	case 38400:
342 		irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(2) | IR_PW(12));
343 		irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
344 		break;
345 	case 57600:
346 		irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(1) | IR_PW(12));
347 		irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
348 		break;
349 	case 115200:
350 		irda_write(aup, IR_WRITE_PHY_CONFIG, IR_PW(12));
351 		irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
352 		break;
353 	case 4000000:
354 		irda_write(aup, IR_WRITE_PHY_CONFIG, IR_P(15));
355 		irda_write(aup, IR_CONFIG_1, IR_FIR | IR_DMA_ENABLE |
356 				IR_RX_ENABLE);
357 		break;
358 	default:
359 		printk(KERN_ERR "%s unsupported speed %x\n", dev->name, speed);
360 		ret = -EINVAL;
361 		break;
362 	}
363 
364 	aup->speed = speed;
365 	irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) | IR_PHYEN);
366 
367 	control = irda_read(aup, IR_STATUS);
368 	irda_write(aup, IR_RING_PROMPT, 0);
369 
370 	if (control & (1 << 14)) {
371 		printk(KERN_ERR "%s: configuration error\n", dev->name);
372 	} else {
373 		if (control & (1 << 11))
374 			printk(KERN_DEBUG "%s Valid SIR config\n", dev->name);
375 		if (control & (1 << 12))
376 			printk(KERN_DEBUG "%s Valid MIR config\n", dev->name);
377 		if (control & (1 << 13))
378 			printk(KERN_DEBUG "%s Valid FIR config\n", dev->name);
379 		if (control & (1 << 10))
380 			printk(KERN_DEBUG "%s TX enabled\n", dev->name);
381 		if (control & (1 << 9))
382 			printk(KERN_DEBUG "%s RX enabled\n", dev->name);
383 	}
384 
385 	return ret;
386 }
387 
update_rx_stats(struct net_device * dev,u32 status,u32 count)388 static void update_rx_stats(struct net_device *dev, u32 status, u32 count)
389 {
390 	struct net_device_stats *ps = &dev->stats;
391 
392 	ps->rx_packets++;
393 
394 	if (status & IR_RX_ERROR) {
395 		ps->rx_errors++;
396 		if (status & (IR_PHY_ERROR | IR_FIFO_OVER))
397 			ps->rx_missed_errors++;
398 		if (status & IR_MAX_LEN)
399 			ps->rx_length_errors++;
400 		if (status & IR_CRC_ERROR)
401 			ps->rx_crc_errors++;
402 	} else
403 		ps->rx_bytes += count;
404 }
405 
update_tx_stats(struct net_device * dev,u32 status,u32 pkt_len)406 static void update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len)
407 {
408 	struct net_device_stats *ps = &dev->stats;
409 
410 	ps->tx_packets++;
411 	ps->tx_bytes += pkt_len;
412 
413 	if (status & IR_TX_ERROR) {
414 		ps->tx_errors++;
415 		ps->tx_aborted_errors++;
416 	}
417 }
418 
au1k_tx_ack(struct net_device * dev)419 static void au1k_tx_ack(struct net_device *dev)
420 {
421 	struct au1k_private *aup = netdev_priv(dev);
422 	volatile struct ring_dest *ptxd;
423 
424 	ptxd = aup->tx_ring[aup->tx_tail];
425 	while (!(ptxd->flags & AU_OWN) && (aup->tx_tail != aup->tx_head)) {
426 		update_tx_stats(dev, ptxd->flags,
427 				(ptxd->count_1 << 8) | ptxd->count_0);
428 		ptxd->count_0 = 0;
429 		ptxd->count_1 = 0;
430 		wmb();
431 		aup->tx_tail = (aup->tx_tail + 1) & (NUM_IR_DESC - 1);
432 		ptxd = aup->tx_ring[aup->tx_tail];
433 
434 		if (aup->tx_full) {
435 			aup->tx_full = 0;
436 			netif_wake_queue(dev);
437 		}
438 	}
439 
440 	if (aup->tx_tail == aup->tx_head) {
441 		if (aup->newspeed) {
442 			au1k_irda_set_speed(dev, aup->newspeed);
443 			aup->newspeed = 0;
444 		} else {
445 			irda_write(aup, IR_CONFIG_1,
446 			    irda_read(aup, IR_CONFIG_1) & ~IR_TX_ENABLE);
447 			irda_write(aup, IR_CONFIG_1,
448 			    irda_read(aup, IR_CONFIG_1) | IR_RX_ENABLE);
449 			irda_write(aup, IR_RING_PROMPT, 0);
450 		}
451 	}
452 }
453 
au1k_irda_rx(struct net_device * dev)454 static int au1k_irda_rx(struct net_device *dev)
455 {
456 	struct au1k_private *aup = netdev_priv(dev);
457 	volatile struct ring_dest *prxd;
458 	struct sk_buff *skb;
459 	struct db_dest *pDB;
460 	u32 flags, count;
461 
462 	prxd = aup->rx_ring[aup->rx_head];
463 	flags = prxd->flags;
464 
465 	while (!(flags & AU_OWN))  {
466 		pDB = aup->rx_db_inuse[aup->rx_head];
467 		count = (prxd->count_1 << 8) | prxd->count_0;
468 		if (!(flags & IR_RX_ERROR)) {
469 			/* good frame */
470 			update_rx_stats(dev, flags, count);
471 			skb = alloc_skb(count + 1, GFP_ATOMIC);
472 			if (skb == NULL) {
473 				dev->stats.rx_dropped++;
474 				continue;
475 			}
476 			skb_reserve(skb, 1);
477 			if (aup->speed == 4000000)
478 				skb_put(skb, count);
479 			else
480 				skb_put(skb, count - 2);
481 			skb_copy_to_linear_data(skb, (void *)pDB->vaddr,
482 						count - 2);
483 			skb->dev = dev;
484 			skb_reset_mac_header(skb);
485 			skb->protocol = htons(ETH_P_IRDA);
486 			netif_rx(skb);
487 			prxd->count_0 = 0;
488 			prxd->count_1 = 0;
489 		}
490 		prxd->flags |= AU_OWN;
491 		aup->rx_head = (aup->rx_head + 1) & (NUM_IR_DESC - 1);
492 		irda_write(aup, IR_RING_PROMPT, 0);
493 
494 		/* next descriptor */
495 		prxd = aup->rx_ring[aup->rx_head];
496 		flags = prxd->flags;
497 
498 	}
499 	return 0;
500 }
501 
au1k_irda_interrupt(int dummy,void * dev_id)502 static irqreturn_t au1k_irda_interrupt(int dummy, void *dev_id)
503 {
504 	struct net_device *dev = dev_id;
505 	struct au1k_private *aup = netdev_priv(dev);
506 
507 	irda_write(aup, IR_INT_CLEAR, 0); /* ack irda interrupts */
508 
509 	au1k_irda_rx(dev);
510 	au1k_tx_ack(dev);
511 
512 	return IRQ_HANDLED;
513 }
514 
au1k_init(struct net_device * dev)515 static int au1k_init(struct net_device *dev)
516 {
517 	struct au1k_private *aup = netdev_priv(dev);
518 	u32 enable, ring_address;
519 	int i;
520 
521 	enable = IR_HC | IR_CE | IR_C;
522 #ifndef CONFIG_CPU_LITTLE_ENDIAN
523 	enable |= IR_BE;
524 #endif
525 	aup->tx_head = 0;
526 	aup->tx_tail = 0;
527 	aup->rx_head = 0;
528 
529 	for (i = 0; i < NUM_IR_DESC; i++)
530 		aup->rx_ring[i]->flags = AU_OWN;
531 
532 	irda_write(aup, IR_ENABLE, enable);
533 	msleep(20);
534 
535 	/* disable PHY */
536 	au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF);
537 	irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) & ~IR_PHYEN);
538 	msleep(20);
539 
540 	irda_write(aup, IR_MAX_PKT_LEN, MAX_BUF_SIZE);
541 
542 	ring_address = (u32)virt_to_phys((void *)aup->rx_ring[0]);
543 	irda_write(aup, IR_RING_BASE_ADDR_H, ring_address >> 26);
544 	irda_write(aup, IR_RING_BASE_ADDR_L, (ring_address >> 10) & 0xffff);
545 
546 	irda_write(aup, IR_RING_SIZE,
547 				(RING_SIZE_64 << 8) | (RING_SIZE_64 << 12));
548 
549 	irda_write(aup, IR_CONFIG_2, IR_PHYCLK_48MHZ | IR_ONE_PIN);
550 	irda_write(aup, IR_RING_ADDR_CMPR, 0);
551 
552 	au1k_irda_set_speed(dev, 9600);
553 	return 0;
554 }
555 
au1k_irda_start(struct net_device * dev)556 static int au1k_irda_start(struct net_device *dev)
557 {
558 	struct au1k_private *aup = netdev_priv(dev);
559 	char hwname[32];
560 	int retval;
561 
562 	retval = au1k_init(dev);
563 	if (retval) {
564 		printk(KERN_ERR "%s: error in au1k_init\n", dev->name);
565 		return retval;
566 	}
567 
568 	retval = request_irq(aup->irq_tx, &au1k_irda_interrupt, 0,
569 			     dev->name, dev);
570 	if (retval) {
571 		printk(KERN_ERR "%s: unable to get IRQ %d\n",
572 				dev->name, dev->irq);
573 		return retval;
574 	}
575 	retval = request_irq(aup->irq_rx, &au1k_irda_interrupt, 0,
576 			     dev->name, dev);
577 	if (retval) {
578 		free_irq(aup->irq_tx, dev);
579 		printk(KERN_ERR "%s: unable to get IRQ %d\n",
580 				dev->name, dev->irq);
581 		return retval;
582 	}
583 
584 	/* Give self a hardware name */
585 	sprintf(hwname, "Au1000 SIR/FIR");
586 	aup->irlap = irlap_open(dev, &aup->qos, hwname);
587 	netif_start_queue(dev);
588 
589 	/* int enable */
590 	irda_write(aup, IR_CONFIG_2, irda_read(aup, IR_CONFIG_2) | IR_IEN);
591 
592 	/* power up */
593 	au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_SIR);
594 
595 	aup->timer.expires = RUN_AT((3 * HZ));
596 	aup->timer.data = (unsigned long)dev;
597 	return 0;
598 }
599 
au1k_irda_stop(struct net_device * dev)600 static int au1k_irda_stop(struct net_device *dev)
601 {
602 	struct au1k_private *aup = netdev_priv(dev);
603 
604 	au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF);
605 
606 	/* disable interrupts */
607 	irda_write(aup, IR_CONFIG_2, irda_read(aup, IR_CONFIG_2) & ~IR_IEN);
608 	irda_write(aup, IR_CONFIG_1, 0);
609 	irda_write(aup, IR_ENABLE, 0); /* disable clock */
610 
611 	if (aup->irlap) {
612 		irlap_close(aup->irlap);
613 		aup->irlap = NULL;
614 	}
615 
616 	netif_stop_queue(dev);
617 	del_timer(&aup->timer);
618 
619 	/* disable the interrupt */
620 	free_irq(aup->irq_tx, dev);
621 	free_irq(aup->irq_rx, dev);
622 
623 	return 0;
624 }
625 
626 /*
627  * Au1000 transmit routine.
628  */
au1k_irda_hard_xmit(struct sk_buff * skb,struct net_device * dev)629 static int au1k_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
630 {
631 	struct au1k_private *aup = netdev_priv(dev);
632 	int speed = irda_get_next_speed(skb);
633 	volatile struct ring_dest *ptxd;
634 	struct db_dest *pDB;
635 	u32 len, flags;
636 
637 	if (speed != aup->speed && speed != -1)
638 		aup->newspeed = speed;
639 
640 	if ((skb->len == 0) && (aup->newspeed)) {
641 		if (aup->tx_tail == aup->tx_head) {
642 			au1k_irda_set_speed(dev, speed);
643 			aup->newspeed = 0;
644 		}
645 		dev_kfree_skb(skb);
646 		return NETDEV_TX_OK;
647 	}
648 
649 	ptxd = aup->tx_ring[aup->tx_head];
650 	flags = ptxd->flags;
651 
652 	if (flags & AU_OWN) {
653 		printk(KERN_DEBUG "%s: tx_full\n", dev->name);
654 		netif_stop_queue(dev);
655 		aup->tx_full = 1;
656 		return 1;
657 	} else if (((aup->tx_head + 1) & (NUM_IR_DESC - 1)) == aup->tx_tail) {
658 		printk(KERN_DEBUG "%s: tx_full\n", dev->name);
659 		netif_stop_queue(dev);
660 		aup->tx_full = 1;
661 		return 1;
662 	}
663 
664 	pDB = aup->tx_db_inuse[aup->tx_head];
665 
666 #if 0
667 	if (irda_read(aup, IR_RX_BYTE_CNT) != 0) {
668 		printk(KERN_DEBUG "tx warning: rx byte cnt %x\n",
669 				irda_read(aup, IR_RX_BYTE_CNT));
670 	}
671 #endif
672 
673 	if (aup->speed == 4000000) {
674 		/* FIR */
675 		skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
676 		ptxd->count_0 = skb->len & 0xff;
677 		ptxd->count_1 = (skb->len >> 8) & 0xff;
678 	} else {
679 		/* SIR */
680 		len = async_wrap_skb(skb, (u8 *)pDB->vaddr, MAX_BUF_SIZE);
681 		ptxd->count_0 = len & 0xff;
682 		ptxd->count_1 = (len >> 8) & 0xff;
683 		ptxd->flags |= IR_DIS_CRC;
684 	}
685 	ptxd->flags |= AU_OWN;
686 	wmb();
687 
688 	irda_write(aup, IR_CONFIG_1,
689 		   irda_read(aup, IR_CONFIG_1) | IR_TX_ENABLE);
690 	irda_write(aup, IR_RING_PROMPT, 0);
691 
692 	dev_kfree_skb(skb);
693 	aup->tx_head = (aup->tx_head + 1) & (NUM_IR_DESC - 1);
694 	return NETDEV_TX_OK;
695 }
696 
697 /*
698  * The Tx ring has been full longer than the watchdog timeout
699  * value. The transmitter must be hung?
700  */
au1k_tx_timeout(struct net_device * dev)701 static void au1k_tx_timeout(struct net_device *dev)
702 {
703 	u32 speed;
704 	struct au1k_private *aup = netdev_priv(dev);
705 
706 	printk(KERN_ERR "%s: tx timeout\n", dev->name);
707 	speed = aup->speed;
708 	aup->speed = 0;
709 	au1k_irda_set_speed(dev, speed);
710 	aup->tx_full = 0;
711 	netif_wake_queue(dev);
712 }
713 
au1k_irda_ioctl(struct net_device * dev,struct ifreq * ifreq,int cmd)714 static int au1k_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
715 {
716 	struct if_irda_req *rq = (struct if_irda_req *)ifreq;
717 	struct au1k_private *aup = netdev_priv(dev);
718 	int ret = -EOPNOTSUPP;
719 
720 	switch (cmd) {
721 	case SIOCSBANDWIDTH:
722 		if (capable(CAP_NET_ADMIN)) {
723 			/*
724 			 * We are unable to set the speed if the
725 			 * device is not running.
726 			 */
727 			if (aup->open)
728 				ret = au1k_irda_set_speed(dev,
729 						rq->ifr_baudrate);
730 			else {
731 				printk(KERN_ERR "%s ioctl: !netif_running\n",
732 						dev->name);
733 				ret = 0;
734 			}
735 		}
736 		break;
737 
738 	case SIOCSMEDIABUSY:
739 		ret = -EPERM;
740 		if (capable(CAP_NET_ADMIN)) {
741 			irda_device_set_media_busy(dev, TRUE);
742 			ret = 0;
743 		}
744 		break;
745 
746 	case SIOCGRECEIVING:
747 		rq->ifr_receiving = 0;
748 		break;
749 	default:
750 		break;
751 	}
752 	return ret;
753 }
754 
755 static const struct net_device_ops au1k_irda_netdev_ops = {
756 	.ndo_open		= au1k_irda_start,
757 	.ndo_stop		= au1k_irda_stop,
758 	.ndo_start_xmit		= au1k_irda_hard_xmit,
759 	.ndo_tx_timeout		= au1k_tx_timeout,
760 	.ndo_do_ioctl		= au1k_irda_ioctl,
761 };
762 
au1k_irda_net_init(struct net_device * dev)763 static int __devinit au1k_irda_net_init(struct net_device *dev)
764 {
765 	struct au1k_private *aup = netdev_priv(dev);
766 	struct db_dest *pDB, *pDBfree;
767 	int i, err, retval = 0;
768 	dma_addr_t temp;
769 
770 	err = au1k_irda_init_iobuf(&aup->rx_buff, 14384);
771 	if (err)
772 		goto out1;
773 
774 	dev->netdev_ops = &au1k_irda_netdev_ops;
775 
776 	irda_init_max_qos_capabilies(&aup->qos);
777 
778 	/* The only value we must override it the baudrate */
779 	aup->qos.baud_rate.bits = IR_9600 | IR_19200 | IR_38400 |
780 		IR_57600 | IR_115200 | IR_576000 | (IR_4000000 << 8);
781 
782 	aup->qos.min_turn_time.bits = qos_mtt_bits;
783 	irda_qos_bits_to_value(&aup->qos);
784 
785 	retval = -ENOMEM;
786 
787 	/* Tx ring follows rx ring + 512 bytes */
788 	/* we need a 1k aligned buffer */
789 	aup->rx_ring[0] = (struct ring_dest *)
790 		dma_alloc(2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)),
791 			  &temp);
792 	if (!aup->rx_ring[0])
793 		goto out2;
794 
795 	/* allocate the data buffers */
796 	aup->db[0].vaddr =
797 		(void *)dma_alloc(MAX_BUF_SIZE * 2 * NUM_IR_DESC, &temp);
798 	if (!aup->db[0].vaddr)
799 		goto out3;
800 
801 	setup_hw_rings(aup, (u32)aup->rx_ring[0], (u32)aup->rx_ring[0] + 512);
802 
803 	pDBfree = NULL;
804 	pDB = aup->db;
805 	for (i = 0; i < (2 * NUM_IR_DESC); i++) {
806 		pDB->pnext = pDBfree;
807 		pDBfree = pDB;
808 		pDB->vaddr =
809 		       (u32 *)((unsigned)aup->db[0].vaddr + (MAX_BUF_SIZE * i));
810 		pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
811 		pDB++;
812 	}
813 	aup->pDBfree = pDBfree;
814 
815 	/* attach a data buffer to each descriptor */
816 	for (i = 0; i < NUM_IR_DESC; i++) {
817 		pDB = GetFreeDB(aup);
818 		if (!pDB)
819 			goto out3;
820 		aup->rx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
821 		aup->rx_ring[i]->addr_1 = (u8)((pDB->dma_addr >>  8) & 0xff);
822 		aup->rx_ring[i]->addr_2 = (u8)((pDB->dma_addr >> 16) & 0xff);
823 		aup->rx_ring[i]->addr_3 = (u8)((pDB->dma_addr >> 24) & 0xff);
824 		aup->rx_db_inuse[i] = pDB;
825 	}
826 	for (i = 0; i < NUM_IR_DESC; i++) {
827 		pDB = GetFreeDB(aup);
828 		if (!pDB)
829 			goto out3;
830 		aup->tx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
831 		aup->tx_ring[i]->addr_1 = (u8)((pDB->dma_addr >>  8) & 0xff);
832 		aup->tx_ring[i]->addr_2 = (u8)((pDB->dma_addr >> 16) & 0xff);
833 		aup->tx_ring[i]->addr_3 = (u8)((pDB->dma_addr >> 24) & 0xff);
834 		aup->tx_ring[i]->count_0 = 0;
835 		aup->tx_ring[i]->count_1 = 0;
836 		aup->tx_ring[i]->flags = 0;
837 		aup->tx_db_inuse[i] = pDB;
838 	}
839 
840 	return 0;
841 
842 out3:
843 	dma_free((void *)aup->rx_ring[0],
844 		2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)));
845 out2:
846 	kfree(aup->rx_buff.head);
847 out1:
848 	printk(KERN_ERR "au1k_irda_net_init() failed.  Returns %d\n", retval);
849 	return retval;
850 }
851 
au1k_irda_probe(struct platform_device * pdev)852 static int __devinit au1k_irda_probe(struct platform_device *pdev)
853 {
854 	struct au1k_private *aup;
855 	struct net_device *dev;
856 	struct resource *r;
857 	int err;
858 
859 	dev = alloc_irdadev(sizeof(struct au1k_private));
860 	if (!dev)
861 		return -ENOMEM;
862 
863 	aup = netdev_priv(dev);
864 
865 	aup->platdata = pdev->dev.platform_data;
866 
867 	err = -EINVAL;
868 	r = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
869 	if (!r)
870 		goto out;
871 
872 	aup->irq_tx = r->start;
873 
874 	r = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
875 	if (!r)
876 		goto out;
877 
878 	aup->irq_rx = r->start;
879 
880 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
881 	if (!r)
882 		goto out;
883 
884 	err = -EBUSY;
885 	aup->ioarea = request_mem_region(r->start, r->end - r->start + 1,
886 					 pdev->name);
887 	if (!aup->ioarea)
888 		goto out;
889 
890 	aup->iobase = ioremap_nocache(r->start, r->end - r->start + 1);
891 	if (!aup->iobase)
892 		goto out2;
893 
894 	dev->irq = aup->irq_rx;
895 
896 	err = au1k_irda_net_init(dev);
897 	if (err)
898 		goto out3;
899 	err = register_netdev(dev);
900 	if (err)
901 		goto out4;
902 
903 	platform_set_drvdata(pdev, dev);
904 
905 	printk(KERN_INFO "IrDA: Registered device %s\n", dev->name);
906 	return 0;
907 
908 out4:
909 	dma_free((void *)aup->db[0].vaddr,
910 		MAX_BUF_SIZE * 2 * NUM_IR_DESC);
911 	dma_free((void *)aup->rx_ring[0],
912 		2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)));
913 	kfree(aup->rx_buff.head);
914 out3:
915 	iounmap(aup->iobase);
916 out2:
917 	release_resource(aup->ioarea);
918 	kfree(aup->ioarea);
919 out:
920 	free_netdev(dev);
921 	return err;
922 }
923 
au1k_irda_remove(struct platform_device * pdev)924 static int __devexit au1k_irda_remove(struct platform_device *pdev)
925 {
926 	struct net_device *dev = platform_get_drvdata(pdev);
927 	struct au1k_private *aup = netdev_priv(dev);
928 
929 	unregister_netdev(dev);
930 
931 	dma_free((void *)aup->db[0].vaddr,
932 		MAX_BUF_SIZE * 2 * NUM_IR_DESC);
933 	dma_free((void *)aup->rx_ring[0],
934 		2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)));
935 	kfree(aup->rx_buff.head);
936 
937 	iounmap(aup->iobase);
938 	release_resource(aup->ioarea);
939 	kfree(aup->ioarea);
940 
941 	free_netdev(dev);
942 
943 	return 0;
944 }
945 
946 static struct platform_driver au1k_irda_driver = {
947 	.driver	= {
948 		.name	= "au1000-irda",
949 		.owner	= THIS_MODULE,
950 	},
951 	.probe		= au1k_irda_probe,
952 	.remove		= __devexit_p(au1k_irda_remove),
953 };
954 
au1k_irda_load(void)955 static int __init au1k_irda_load(void)
956 {
957 	return platform_driver_register(&au1k_irda_driver);
958 }
959 
au1k_irda_unload(void)960 static void __exit au1k_irda_unload(void)
961 {
962 	return platform_driver_unregister(&au1k_irda_driver);
963 }
964 
965 MODULE_AUTHOR("Pete Popov <ppopov@mvista.com>");
966 MODULE_DESCRIPTION("Au1000 IrDA Device Driver");
967 
968 module_init(au1k_irda_load);
969 module_exit(au1k_irda_unload);
970