1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2 /*
3 Written 1998-2001 by Donald Becker.
4
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
6
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
13
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
28 [link no longer provides useful info -jgarzik]
29
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #define DRV_NAME "via-rhine"
35 #define DRV_VERSION "1.5.0"
36 #define DRV_RELDATE "2010-10-09"
37
38 #include <linux/types.h>
39
40 /* A few user-configurable values.
41 These may be modified when a driver module is loaded. */
42 static int debug = 0;
43 #define RHINE_MSG_DEFAULT \
44 (0x0000)
45
46 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
47 Setting to > 1518 effectively disables this feature. */
48 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
49 defined(CONFIG_SPARC) || defined(__ia64__) || \
50 defined(__sh__) || defined(__mips__)
51 static int rx_copybreak = 1518;
52 #else
53 static int rx_copybreak;
54 #endif
55
56 /* Work-around for broken BIOSes: they are unable to get the chip back out of
57 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
58 static bool avoid_D3;
59
60 /*
61 * In case you are looking for 'options[]' or 'full_duplex[]', they
62 * are gone. Use ethtool(8) instead.
63 */
64
65 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
66 The Rhine has a 64 element 8390-like hash table. */
67 static const int multicast_filter_limit = 32;
68
69
70 /* Operational parameters that are set at compile time. */
71
72 /* Keep the ring sizes a power of two for compile efficiency.
73 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
74 Making the Tx ring too large decreases the effectiveness of channel
75 bonding and packet priority.
76 There are no ill effects from too-large receive rings. */
77 #define TX_RING_SIZE 16
78 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
79 #define RX_RING_SIZE 64
80
81 /* Operational parameters that usually are not changed. */
82
83 /* Time in jiffies before concluding the transmitter is hung. */
84 #define TX_TIMEOUT (2*HZ)
85
86 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
87
88 #include <linux/module.h>
89 #include <linux/moduleparam.h>
90 #include <linux/kernel.h>
91 #include <linux/string.h>
92 #include <linux/timer.h>
93 #include <linux/errno.h>
94 #include <linux/ioport.h>
95 #include <linux/interrupt.h>
96 #include <linux/pci.h>
97 #include <linux/dma-mapping.h>
98 #include <linux/netdevice.h>
99 #include <linux/etherdevice.h>
100 #include <linux/skbuff.h>
101 #include <linux/init.h>
102 #include <linux/delay.h>
103 #include <linux/mii.h>
104 #include <linux/ethtool.h>
105 #include <linux/crc32.h>
106 #include <linux/if_vlan.h>
107 #include <linux/bitops.h>
108 #include <linux/workqueue.h>
109 #include <asm/processor.h> /* Processor type for cache alignment. */
110 #include <asm/io.h>
111 #include <asm/irq.h>
112 #include <asm/uaccess.h>
113 #include <linux/dmi.h>
114
115 /* These identify the driver base version and may not be removed. */
116 static const char version[] __devinitconst =
117 "v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker";
118
119 /* This driver was written to use PCI memory space. Some early versions
120 of the Rhine may only work correctly with I/O space accesses. */
121 #ifdef CONFIG_VIA_RHINE_MMIO
122 #define USE_MMIO
123 #else
124 #endif
125
126 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
127 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
128 MODULE_LICENSE("GPL");
129
130 module_param(debug, int, 0);
131 module_param(rx_copybreak, int, 0);
132 module_param(avoid_D3, bool, 0);
133 MODULE_PARM_DESC(debug, "VIA Rhine debug message flags");
134 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
135 MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
136
137 #define MCAM_SIZE 32
138 #define VCAM_SIZE 32
139
140 /*
141 Theory of Operation
142
143 I. Board Compatibility
144
145 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
146 controller.
147
148 II. Board-specific settings
149
150 Boards with this chip are functional only in a bus-master PCI slot.
151
152 Many operational settings are loaded from the EEPROM to the Config word at
153 offset 0x78. For most of these settings, this driver assumes that they are
154 correct.
155 If this driver is compiled to use PCI memory space operations the EEPROM
156 must be configured to enable memory ops.
157
158 III. Driver operation
159
160 IIIa. Ring buffers
161
162 This driver uses two statically allocated fixed-size descriptor lists
163 formed into rings by a branch from the final descriptor to the beginning of
164 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
165
166 IIIb/c. Transmit/Receive Structure
167
168 This driver attempts to use a zero-copy receive and transmit scheme.
169
170 Alas, all data buffers are required to start on a 32 bit boundary, so
171 the driver must often copy transmit packets into bounce buffers.
172
173 The driver allocates full frame size skbuffs for the Rx ring buffers at
174 open() time and passes the skb->data field to the chip as receive data
175 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
176 a fresh skbuff is allocated and the frame is copied to the new skbuff.
177 When the incoming frame is larger, the skbuff is passed directly up the
178 protocol stack. Buffers consumed this way are replaced by newly allocated
179 skbuffs in the last phase of rhine_rx().
180
181 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
182 using a full-sized skbuff for small frames vs. the copying costs of larger
183 frames. New boards are typically used in generously configured machines
184 and the underfilled buffers have negligible impact compared to the benefit of
185 a single allocation size, so the default value of zero results in never
186 copying packets. When copying is done, the cost is usually mitigated by using
187 a combined copy/checksum routine. Copying also preloads the cache, which is
188 most useful with small frames.
189
190 Since the VIA chips are only able to transfer data to buffers on 32 bit
191 boundaries, the IP header at offset 14 in an ethernet frame isn't
192 longword aligned for further processing. Copying these unaligned buffers
193 has the beneficial effect of 16-byte aligning the IP header.
194
195 IIId. Synchronization
196
197 The driver runs as two independent, single-threaded flows of control. One
198 is the send-packet routine, which enforces single-threaded use by the
199 netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
200 which is single threaded by the hardware and interrupt handling software.
201
202 The send packet thread has partial control over the Tx ring. It locks the
203 netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
204 the ring is not available it stops the transmit queue by
205 calling netif_stop_queue.
206
207 The interrupt handler has exclusive control over the Rx ring and records stats
208 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
209 empty by incrementing the dirty_tx mark. If at least half of the entries in
210 the Rx ring are available the transmit queue is woken up if it was stopped.
211
212 IV. Notes
213
214 IVb. References
215
216 Preliminary VT86C100A manual from http://www.via.com.tw/
217 http://www.scyld.com/expert/100mbps.html
218 http://www.scyld.com/expert/NWay.html
219 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
220 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
221
222
223 IVc. Errata
224
225 The VT86C100A manual is not reliable information.
226 The 3043 chip does not handle unaligned transmit or receive buffers, resulting
227 in significant performance degradation for bounce buffer copies on transmit
228 and unaligned IP headers on receive.
229 The chip does not pad to minimum transmit length.
230
231 */
232
233
234 /* This table drives the PCI probe routines. It's mostly boilerplate in all
235 of the drivers, and will likely be provided by some future kernel.
236 Note the matching code -- the first table entry matchs all 56** cards but
237 second only the 1234 card.
238 */
239
240 enum rhine_revs {
241 VT86C100A = 0x00,
242 VTunknown0 = 0x20,
243 VT6102 = 0x40,
244 VT8231 = 0x50, /* Integrated MAC */
245 VT8233 = 0x60, /* Integrated MAC */
246 VT8235 = 0x74, /* Integrated MAC */
247 VT8237 = 0x78, /* Integrated MAC */
248 VTunknown1 = 0x7C,
249 VT6105 = 0x80,
250 VT6105_B0 = 0x83,
251 VT6105L = 0x8A,
252 VT6107 = 0x8C,
253 VTunknown2 = 0x8E,
254 VT6105M = 0x90, /* Management adapter */
255 };
256
257 enum rhine_quirks {
258 rqWOL = 0x0001, /* Wake-On-LAN support */
259 rqForceReset = 0x0002,
260 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
261 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
262 rqRhineI = 0x0100, /* See comment below */
263 };
264 /*
265 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
266 * MMIO as well as for the collision counter and the Tx FIFO underflow
267 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
268 */
269
270 /* Beware of PCI posted writes */
271 #define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
272
273 static DEFINE_PCI_DEVICE_TABLE(rhine_pci_tbl) = {
274 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */
275 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */
276 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */
277 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */
278 { } /* terminate list */
279 };
280 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
281
282
283 /* Offsets to the device registers. */
284 enum register_offsets {
285 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
286 ChipCmd1=0x09, TQWake=0x0A,
287 IntrStatus=0x0C, IntrEnable=0x0E,
288 MulticastFilter0=0x10, MulticastFilter1=0x14,
289 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
290 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F,
291 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
292 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
293 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
294 StickyHW=0x83, IntrStatus2=0x84,
295 CamMask=0x88, CamCon=0x92, CamAddr=0x93,
296 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
297 WOLcrClr1=0xA6, WOLcgClr=0xA7,
298 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
299 };
300
301 /* Bits in ConfigD */
302 enum backoff_bits {
303 BackOptional=0x01, BackModify=0x02,
304 BackCaptureEffect=0x04, BackRandom=0x08
305 };
306
307 /* Bits in the TxConfig (TCR) register */
308 enum tcr_bits {
309 TCR_PQEN=0x01,
310 TCR_LB0=0x02, /* loopback[0] */
311 TCR_LB1=0x04, /* loopback[1] */
312 TCR_OFSET=0x08,
313 TCR_RTGOPT=0x10,
314 TCR_RTFT0=0x20,
315 TCR_RTFT1=0x40,
316 TCR_RTSF=0x80,
317 };
318
319 /* Bits in the CamCon (CAMC) register */
320 enum camcon_bits {
321 CAMC_CAMEN=0x01,
322 CAMC_VCAMSL=0x02,
323 CAMC_CAMWR=0x04,
324 CAMC_CAMRD=0x08,
325 };
326
327 /* Bits in the PCIBusConfig1 (BCR1) register */
328 enum bcr1_bits {
329 BCR1_POT0=0x01,
330 BCR1_POT1=0x02,
331 BCR1_POT2=0x04,
332 BCR1_CTFT0=0x08,
333 BCR1_CTFT1=0x10,
334 BCR1_CTSF=0x20,
335 BCR1_TXQNOBK=0x40, /* for VT6105 */
336 BCR1_VIDFR=0x80, /* for VT6105 */
337 BCR1_MED0=0x40, /* for VT6102 */
338 BCR1_MED1=0x80, /* for VT6102 */
339 };
340
341 #ifdef USE_MMIO
342 /* Registers we check that mmio and reg are the same. */
343 static const int mmio_verify_registers[] = {
344 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
345 0
346 };
347 #endif
348
349 /* Bits in the interrupt status/mask registers. */
350 enum intr_status_bits {
351 IntrRxDone = 0x0001,
352 IntrTxDone = 0x0002,
353 IntrRxErr = 0x0004,
354 IntrTxError = 0x0008,
355 IntrRxEmpty = 0x0020,
356 IntrPCIErr = 0x0040,
357 IntrStatsMax = 0x0080,
358 IntrRxEarly = 0x0100,
359 IntrTxUnderrun = 0x0210,
360 IntrRxOverflow = 0x0400,
361 IntrRxDropped = 0x0800,
362 IntrRxNoBuf = 0x1000,
363 IntrTxAborted = 0x2000,
364 IntrLinkChange = 0x4000,
365 IntrRxWakeUp = 0x8000,
366 IntrTxDescRace = 0x080000, /* mapped from IntrStatus2 */
367 IntrNormalSummary = IntrRxDone | IntrTxDone,
368 IntrTxErrSummary = IntrTxDescRace | IntrTxAborted | IntrTxError |
369 IntrTxUnderrun,
370 };
371
372 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
373 enum wol_bits {
374 WOLucast = 0x10,
375 WOLmagic = 0x20,
376 WOLbmcast = 0x30,
377 WOLlnkon = 0x40,
378 WOLlnkoff = 0x80,
379 };
380
381 /* The Rx and Tx buffer descriptors. */
382 struct rx_desc {
383 __le32 rx_status;
384 __le32 desc_length; /* Chain flag, Buffer/frame length */
385 __le32 addr;
386 __le32 next_desc;
387 };
388 struct tx_desc {
389 __le32 tx_status;
390 __le32 desc_length; /* Chain flag, Tx Config, Frame length */
391 __le32 addr;
392 __le32 next_desc;
393 };
394
395 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
396 #define TXDESC 0x00e08000
397
398 enum rx_status_bits {
399 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
400 };
401
402 /* Bits in *_desc.*_status */
403 enum desc_status_bits {
404 DescOwn=0x80000000
405 };
406
407 /* Bits in *_desc.*_length */
408 enum desc_length_bits {
409 DescTag=0x00010000
410 };
411
412 /* Bits in ChipCmd. */
413 enum chip_cmd_bits {
414 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
415 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
416 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
417 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
418 };
419
420 struct rhine_private {
421 /* Bit mask for configured VLAN ids */
422 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
423
424 /* Descriptor rings */
425 struct rx_desc *rx_ring;
426 struct tx_desc *tx_ring;
427 dma_addr_t rx_ring_dma;
428 dma_addr_t tx_ring_dma;
429
430 /* The addresses of receive-in-place skbuffs. */
431 struct sk_buff *rx_skbuff[RX_RING_SIZE];
432 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
433
434 /* The saved address of a sent-in-place packet/buffer, for later free(). */
435 struct sk_buff *tx_skbuff[TX_RING_SIZE];
436 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
437
438 /* Tx bounce buffers (Rhine-I only) */
439 unsigned char *tx_buf[TX_RING_SIZE];
440 unsigned char *tx_bufs;
441 dma_addr_t tx_bufs_dma;
442
443 struct pci_dev *pdev;
444 long pioaddr;
445 struct net_device *dev;
446 struct napi_struct napi;
447 spinlock_t lock;
448 struct mutex task_lock;
449 bool task_enable;
450 struct work_struct slow_event_task;
451 struct work_struct reset_task;
452
453 u32 msg_enable;
454
455 /* Frequently used values: keep some adjacent for cache effect. */
456 u32 quirks;
457 struct rx_desc *rx_head_desc;
458 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
459 unsigned int cur_tx, dirty_tx;
460 unsigned int rx_buf_sz; /* Based on MTU+slack. */
461 u8 wolopts;
462
463 u8 tx_thresh, rx_thresh;
464
465 struct mii_if_info mii_if;
466 void __iomem *base;
467 };
468
469 #define BYTE_REG_BITS_ON(x, p) do { iowrite8((ioread8((p))|(x)), (p)); } while (0)
470 #define WORD_REG_BITS_ON(x, p) do { iowrite16((ioread16((p))|(x)), (p)); } while (0)
471 #define DWORD_REG_BITS_ON(x, p) do { iowrite32((ioread32((p))|(x)), (p)); } while (0)
472
473 #define BYTE_REG_BITS_IS_ON(x, p) (ioread8((p)) & (x))
474 #define WORD_REG_BITS_IS_ON(x, p) (ioread16((p)) & (x))
475 #define DWORD_REG_BITS_IS_ON(x, p) (ioread32((p)) & (x))
476
477 #define BYTE_REG_BITS_OFF(x, p) do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0)
478 #define WORD_REG_BITS_OFF(x, p) do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0)
479 #define DWORD_REG_BITS_OFF(x, p) do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0)
480
481 #define BYTE_REG_BITS_SET(x, m, p) do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0)
482 #define WORD_REG_BITS_SET(x, m, p) do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0)
483 #define DWORD_REG_BITS_SET(x, m, p) do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0)
484
485
486 static int mdio_read(struct net_device *dev, int phy_id, int location);
487 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
488 static int rhine_open(struct net_device *dev);
489 static void rhine_reset_task(struct work_struct *work);
490 static void rhine_slow_event_task(struct work_struct *work);
491 static void rhine_tx_timeout(struct net_device *dev);
492 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
493 struct net_device *dev);
494 static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
495 static void rhine_tx(struct net_device *dev);
496 static int rhine_rx(struct net_device *dev, int limit);
497 static void rhine_set_rx_mode(struct net_device *dev);
498 static struct net_device_stats *rhine_get_stats(struct net_device *dev);
499 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
500 static const struct ethtool_ops netdev_ethtool_ops;
501 static int rhine_close(struct net_device *dev);
502 static int rhine_vlan_rx_add_vid(struct net_device *dev, unsigned short vid);
503 static int rhine_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid);
504 static void rhine_restart_tx(struct net_device *dev);
505
rhine_wait_bit(struct rhine_private * rp,u8 reg,u8 mask,bool high)506 static void rhine_wait_bit(struct rhine_private *rp, u8 reg, u8 mask, bool high)
507 {
508 void __iomem *ioaddr = rp->base;
509 int i;
510
511 for (i = 0; i < 1024; i++) {
512 if (high ^ !!(ioread8(ioaddr + reg) & mask))
513 break;
514 udelay(10);
515 }
516 if (i > 64) {
517 netif_dbg(rp, hw, rp->dev, "%s bit wait (%02x/%02x) cycle "
518 "count: %04d\n", high ? "high" : "low", reg, mask, i);
519 }
520 }
521
rhine_wait_bit_high(struct rhine_private * rp,u8 reg,u8 mask)522 static void rhine_wait_bit_high(struct rhine_private *rp, u8 reg, u8 mask)
523 {
524 rhine_wait_bit(rp, reg, mask, true);
525 }
526
rhine_wait_bit_low(struct rhine_private * rp,u8 reg,u8 mask)527 static void rhine_wait_bit_low(struct rhine_private *rp, u8 reg, u8 mask)
528 {
529 rhine_wait_bit(rp, reg, mask, false);
530 }
531
rhine_get_events(struct rhine_private * rp)532 static u32 rhine_get_events(struct rhine_private *rp)
533 {
534 void __iomem *ioaddr = rp->base;
535 u32 intr_status;
536
537 intr_status = ioread16(ioaddr + IntrStatus);
538 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
539 if (rp->quirks & rqStatusWBRace)
540 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
541 return intr_status;
542 }
543
rhine_ack_events(struct rhine_private * rp,u32 mask)544 static void rhine_ack_events(struct rhine_private *rp, u32 mask)
545 {
546 void __iomem *ioaddr = rp->base;
547
548 if (rp->quirks & rqStatusWBRace)
549 iowrite8(mask >> 16, ioaddr + IntrStatus2);
550 iowrite16(mask, ioaddr + IntrStatus);
551 mmiowb();
552 }
553
554 /*
555 * Get power related registers into sane state.
556 * Notify user about past WOL event.
557 */
rhine_power_init(struct net_device * dev)558 static void rhine_power_init(struct net_device *dev)
559 {
560 struct rhine_private *rp = netdev_priv(dev);
561 void __iomem *ioaddr = rp->base;
562 u16 wolstat;
563
564 if (rp->quirks & rqWOL) {
565 /* Make sure chip is in power state D0 */
566 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
567
568 /* Disable "force PME-enable" */
569 iowrite8(0x80, ioaddr + WOLcgClr);
570
571 /* Clear power-event config bits (WOL) */
572 iowrite8(0xFF, ioaddr + WOLcrClr);
573 /* More recent cards can manage two additional patterns */
574 if (rp->quirks & rq6patterns)
575 iowrite8(0x03, ioaddr + WOLcrClr1);
576
577 /* Save power-event status bits */
578 wolstat = ioread8(ioaddr + PwrcsrSet);
579 if (rp->quirks & rq6patterns)
580 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
581
582 /* Clear power-event status bits */
583 iowrite8(0xFF, ioaddr + PwrcsrClr);
584 if (rp->quirks & rq6patterns)
585 iowrite8(0x03, ioaddr + PwrcsrClr1);
586
587 if (wolstat) {
588 char *reason;
589 switch (wolstat) {
590 case WOLmagic:
591 reason = "Magic packet";
592 break;
593 case WOLlnkon:
594 reason = "Link went up";
595 break;
596 case WOLlnkoff:
597 reason = "Link went down";
598 break;
599 case WOLucast:
600 reason = "Unicast packet";
601 break;
602 case WOLbmcast:
603 reason = "Multicast/broadcast packet";
604 break;
605 default:
606 reason = "Unknown";
607 }
608 netdev_info(dev, "Woke system up. Reason: %s\n",
609 reason);
610 }
611 }
612 }
613
rhine_chip_reset(struct net_device * dev)614 static void rhine_chip_reset(struct net_device *dev)
615 {
616 struct rhine_private *rp = netdev_priv(dev);
617 void __iomem *ioaddr = rp->base;
618 u8 cmd1;
619
620 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
621 IOSYNC;
622
623 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
624 netdev_info(dev, "Reset not complete yet. Trying harder.\n");
625
626 /* Force reset */
627 if (rp->quirks & rqForceReset)
628 iowrite8(0x40, ioaddr + MiscCmd);
629
630 /* Reset can take somewhat longer (rare) */
631 rhine_wait_bit_low(rp, ChipCmd1, Cmd1Reset);
632 }
633
634 cmd1 = ioread8(ioaddr + ChipCmd1);
635 netif_info(rp, hw, dev, "Reset %s\n", (cmd1 & Cmd1Reset) ?
636 "failed" : "succeeded");
637 }
638
639 #ifdef USE_MMIO
enable_mmio(long pioaddr,u32 quirks)640 static void enable_mmio(long pioaddr, u32 quirks)
641 {
642 int n;
643 if (quirks & rqRhineI) {
644 /* More recent docs say that this bit is reserved ... */
645 n = inb(pioaddr + ConfigA) | 0x20;
646 outb(n, pioaddr + ConfigA);
647 } else {
648 n = inb(pioaddr + ConfigD) | 0x80;
649 outb(n, pioaddr + ConfigD);
650 }
651 }
652 #endif
653
654 /*
655 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
656 * (plus 0x6C for Rhine-I/II)
657 */
rhine_reload_eeprom(long pioaddr,struct net_device * dev)658 static void __devinit rhine_reload_eeprom(long pioaddr, struct net_device *dev)
659 {
660 struct rhine_private *rp = netdev_priv(dev);
661 void __iomem *ioaddr = rp->base;
662 int i;
663
664 outb(0x20, pioaddr + MACRegEEcsr);
665 for (i = 0; i < 1024; i++) {
666 if (!(inb(pioaddr + MACRegEEcsr) & 0x20))
667 break;
668 }
669 if (i > 512)
670 pr_info("%4d cycles used @ %s:%d\n", i, __func__, __LINE__);
671
672 #ifdef USE_MMIO
673 /*
674 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
675 * MMIO. If reloading EEPROM was done first this could be avoided, but
676 * it is not known if that still works with the "win98-reboot" problem.
677 */
678 enable_mmio(pioaddr, rp->quirks);
679 #endif
680
681 /* Turn off EEPROM-controlled wake-up (magic packet) */
682 if (rp->quirks & rqWOL)
683 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
684
685 }
686
687 #ifdef CONFIG_NET_POLL_CONTROLLER
rhine_poll(struct net_device * dev)688 static void rhine_poll(struct net_device *dev)
689 {
690 disable_irq(dev->irq);
691 rhine_interrupt(dev->irq, (void *)dev);
692 enable_irq(dev->irq);
693 }
694 #endif
695
rhine_kick_tx_threshold(struct rhine_private * rp)696 static void rhine_kick_tx_threshold(struct rhine_private *rp)
697 {
698 if (rp->tx_thresh < 0xe0) {
699 void __iomem *ioaddr = rp->base;
700
701 rp->tx_thresh += 0x20;
702 BYTE_REG_BITS_SET(rp->tx_thresh, 0x80, ioaddr + TxConfig);
703 }
704 }
705
rhine_tx_err(struct rhine_private * rp,u32 status)706 static void rhine_tx_err(struct rhine_private *rp, u32 status)
707 {
708 struct net_device *dev = rp->dev;
709
710 if (status & IntrTxAborted) {
711 netif_info(rp, tx_err, dev,
712 "Abort %08x, frame dropped\n", status);
713 }
714
715 if (status & IntrTxUnderrun) {
716 rhine_kick_tx_threshold(rp);
717 netif_info(rp, tx_err ,dev, "Transmitter underrun, "
718 "Tx threshold now %02x\n", rp->tx_thresh);
719 }
720
721 if (status & IntrTxDescRace)
722 netif_info(rp, tx_err, dev, "Tx descriptor write-back race\n");
723
724 if ((status & IntrTxError) &&
725 (status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace)) == 0) {
726 rhine_kick_tx_threshold(rp);
727 netif_info(rp, tx_err, dev, "Unspecified error. "
728 "Tx threshold now %02x\n", rp->tx_thresh);
729 }
730
731 rhine_restart_tx(dev);
732 }
733
rhine_update_rx_crc_and_missed_errord(struct rhine_private * rp)734 static void rhine_update_rx_crc_and_missed_errord(struct rhine_private *rp)
735 {
736 void __iomem *ioaddr = rp->base;
737 struct net_device_stats *stats = &rp->dev->stats;
738
739 stats->rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
740 stats->rx_missed_errors += ioread16(ioaddr + RxMissed);
741
742 /*
743 * Clears the "tally counters" for CRC errors and missed frames(?).
744 * It has been reported that some chips need a write of 0 to clear
745 * these, for others the counters are set to 1 when written to and
746 * instead cleared when read. So we clear them both ways ...
747 */
748 iowrite32(0, ioaddr + RxMissed);
749 ioread16(ioaddr + RxCRCErrs);
750 ioread16(ioaddr + RxMissed);
751 }
752
753 #define RHINE_EVENT_NAPI_RX (IntrRxDone | \
754 IntrRxErr | \
755 IntrRxEmpty | \
756 IntrRxOverflow | \
757 IntrRxDropped | \
758 IntrRxNoBuf | \
759 IntrRxWakeUp)
760
761 #define RHINE_EVENT_NAPI_TX_ERR (IntrTxError | \
762 IntrTxAborted | \
763 IntrTxUnderrun | \
764 IntrTxDescRace)
765 #define RHINE_EVENT_NAPI_TX (IntrTxDone | RHINE_EVENT_NAPI_TX_ERR)
766
767 #define RHINE_EVENT_NAPI (RHINE_EVENT_NAPI_RX | \
768 RHINE_EVENT_NAPI_TX | \
769 IntrStatsMax)
770 #define RHINE_EVENT_SLOW (IntrPCIErr | IntrLinkChange)
771 #define RHINE_EVENT (RHINE_EVENT_NAPI | RHINE_EVENT_SLOW)
772
rhine_napipoll(struct napi_struct * napi,int budget)773 static int rhine_napipoll(struct napi_struct *napi, int budget)
774 {
775 struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
776 struct net_device *dev = rp->dev;
777 void __iomem *ioaddr = rp->base;
778 u16 enable_mask = RHINE_EVENT & 0xffff;
779 int work_done = 0;
780 u32 status;
781
782 status = rhine_get_events(rp);
783 rhine_ack_events(rp, status & ~RHINE_EVENT_SLOW);
784
785 if (status & RHINE_EVENT_NAPI_RX)
786 work_done += rhine_rx(dev, budget);
787
788 if (status & RHINE_EVENT_NAPI_TX) {
789 if (status & RHINE_EVENT_NAPI_TX_ERR) {
790 /* Avoid scavenging before Tx engine turned off */
791 rhine_wait_bit_low(rp, ChipCmd, CmdTxOn);
792 if (ioread8(ioaddr + ChipCmd) & CmdTxOn)
793 netif_warn(rp, tx_err, dev, "Tx still on\n");
794 }
795
796 rhine_tx(dev);
797
798 if (status & RHINE_EVENT_NAPI_TX_ERR)
799 rhine_tx_err(rp, status);
800 }
801
802 if (status & IntrStatsMax) {
803 spin_lock(&rp->lock);
804 rhine_update_rx_crc_and_missed_errord(rp);
805 spin_unlock(&rp->lock);
806 }
807
808 if (status & RHINE_EVENT_SLOW) {
809 enable_mask &= ~RHINE_EVENT_SLOW;
810 schedule_work(&rp->slow_event_task);
811 }
812
813 if (work_done < budget) {
814 napi_complete(napi);
815 iowrite16(enable_mask, ioaddr + IntrEnable);
816 mmiowb();
817 }
818 return work_done;
819 }
820
rhine_hw_init(struct net_device * dev,long pioaddr)821 static void __devinit rhine_hw_init(struct net_device *dev, long pioaddr)
822 {
823 struct rhine_private *rp = netdev_priv(dev);
824
825 /* Reset the chip to erase previous misconfiguration. */
826 rhine_chip_reset(dev);
827
828 /* Rhine-I needs extra time to recuperate before EEPROM reload */
829 if (rp->quirks & rqRhineI)
830 msleep(5);
831
832 /* Reload EEPROM controlled bytes cleared by soft reset */
833 rhine_reload_eeprom(pioaddr, dev);
834 }
835
836 static const struct net_device_ops rhine_netdev_ops = {
837 .ndo_open = rhine_open,
838 .ndo_stop = rhine_close,
839 .ndo_start_xmit = rhine_start_tx,
840 .ndo_get_stats = rhine_get_stats,
841 .ndo_set_rx_mode = rhine_set_rx_mode,
842 .ndo_change_mtu = eth_change_mtu,
843 .ndo_validate_addr = eth_validate_addr,
844 .ndo_set_mac_address = eth_mac_addr,
845 .ndo_do_ioctl = netdev_ioctl,
846 .ndo_tx_timeout = rhine_tx_timeout,
847 .ndo_vlan_rx_add_vid = rhine_vlan_rx_add_vid,
848 .ndo_vlan_rx_kill_vid = rhine_vlan_rx_kill_vid,
849 #ifdef CONFIG_NET_POLL_CONTROLLER
850 .ndo_poll_controller = rhine_poll,
851 #endif
852 };
853
rhine_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)854 static int __devinit rhine_init_one(struct pci_dev *pdev,
855 const struct pci_device_id *ent)
856 {
857 struct net_device *dev;
858 struct rhine_private *rp;
859 int i, rc;
860 u32 quirks;
861 long pioaddr;
862 long memaddr;
863 void __iomem *ioaddr;
864 int io_size, phy_id;
865 const char *name;
866 #ifdef USE_MMIO
867 int bar = 1;
868 #else
869 int bar = 0;
870 #endif
871
872 /* when built into the kernel, we only print version if device is found */
873 #ifndef MODULE
874 pr_info_once("%s\n", version);
875 #endif
876
877 io_size = 256;
878 phy_id = 0;
879 quirks = 0;
880 name = "Rhine";
881 if (pdev->revision < VTunknown0) {
882 quirks = rqRhineI;
883 io_size = 128;
884 }
885 else if (pdev->revision >= VT6102) {
886 quirks = rqWOL | rqForceReset;
887 if (pdev->revision < VT6105) {
888 name = "Rhine II";
889 quirks |= rqStatusWBRace; /* Rhine-II exclusive */
890 }
891 else {
892 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */
893 if (pdev->revision >= VT6105_B0)
894 quirks |= rq6patterns;
895 if (pdev->revision < VT6105M)
896 name = "Rhine III";
897 else
898 name = "Rhine III (Management Adapter)";
899 }
900 }
901
902 rc = pci_enable_device(pdev);
903 if (rc)
904 goto err_out;
905
906 /* this should always be supported */
907 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
908 if (rc) {
909 dev_err(&pdev->dev,
910 "32-bit PCI DMA addresses not supported by the card!?\n");
911 goto err_out;
912 }
913
914 /* sanity check */
915 if ((pci_resource_len(pdev, 0) < io_size) ||
916 (pci_resource_len(pdev, 1) < io_size)) {
917 rc = -EIO;
918 dev_err(&pdev->dev, "Insufficient PCI resources, aborting\n");
919 goto err_out;
920 }
921
922 pioaddr = pci_resource_start(pdev, 0);
923 memaddr = pci_resource_start(pdev, 1);
924
925 pci_set_master(pdev);
926
927 dev = alloc_etherdev(sizeof(struct rhine_private));
928 if (!dev) {
929 rc = -ENOMEM;
930 dev_err(&pdev->dev, "alloc_etherdev failed\n");
931 goto err_out;
932 }
933 SET_NETDEV_DEV(dev, &pdev->dev);
934
935 rp = netdev_priv(dev);
936 rp->dev = dev;
937 rp->quirks = quirks;
938 rp->pioaddr = pioaddr;
939 rp->pdev = pdev;
940 rp->msg_enable = netif_msg_init(debug, RHINE_MSG_DEFAULT);
941
942 rc = pci_request_regions(pdev, DRV_NAME);
943 if (rc)
944 goto err_out_free_netdev;
945
946 ioaddr = pci_iomap(pdev, bar, io_size);
947 if (!ioaddr) {
948 rc = -EIO;
949 dev_err(&pdev->dev,
950 "ioremap failed for device %s, region 0x%X @ 0x%lX\n",
951 pci_name(pdev), io_size, memaddr);
952 goto err_out_free_res;
953 }
954
955 #ifdef USE_MMIO
956 enable_mmio(pioaddr, quirks);
957
958 /* Check that selected MMIO registers match the PIO ones */
959 i = 0;
960 while (mmio_verify_registers[i]) {
961 int reg = mmio_verify_registers[i++];
962 unsigned char a = inb(pioaddr+reg);
963 unsigned char b = readb(ioaddr+reg);
964 if (a != b) {
965 rc = -EIO;
966 dev_err(&pdev->dev,
967 "MMIO do not match PIO [%02x] (%02x != %02x)\n",
968 reg, a, b);
969 goto err_out_unmap;
970 }
971 }
972 #endif /* USE_MMIO */
973
974 dev->base_addr = (unsigned long)ioaddr;
975 rp->base = ioaddr;
976
977 /* Get chip registers into a sane state */
978 rhine_power_init(dev);
979 rhine_hw_init(dev, pioaddr);
980
981 for (i = 0; i < 6; i++)
982 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
983
984 if (!is_valid_ether_addr(dev->dev_addr)) {
985 /* Report it and use a random ethernet address instead */
986 netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr);
987 random_ether_addr(dev->dev_addr);
988 netdev_info(dev, "Using random MAC address: %pM\n",
989 dev->dev_addr);
990 }
991 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
992
993 /* For Rhine-I/II, phy_id is loaded from EEPROM */
994 if (!phy_id)
995 phy_id = ioread8(ioaddr + 0x6C);
996
997 dev->irq = pdev->irq;
998
999 spin_lock_init(&rp->lock);
1000 mutex_init(&rp->task_lock);
1001 INIT_WORK(&rp->reset_task, rhine_reset_task);
1002 INIT_WORK(&rp->slow_event_task, rhine_slow_event_task);
1003
1004 rp->mii_if.dev = dev;
1005 rp->mii_if.mdio_read = mdio_read;
1006 rp->mii_if.mdio_write = mdio_write;
1007 rp->mii_if.phy_id_mask = 0x1f;
1008 rp->mii_if.reg_num_mask = 0x1f;
1009
1010 /* The chip-specific entries in the device structure. */
1011 dev->netdev_ops = &rhine_netdev_ops;
1012 dev->ethtool_ops = &netdev_ethtool_ops,
1013 dev->watchdog_timeo = TX_TIMEOUT;
1014
1015 netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
1016
1017 if (rp->quirks & rqRhineI)
1018 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
1019
1020 if (pdev->revision >= VT6105M)
1021 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
1022 NETIF_F_HW_VLAN_FILTER;
1023
1024 /* dev->name not defined before register_netdev()! */
1025 rc = register_netdev(dev);
1026 if (rc)
1027 goto err_out_unmap;
1028
1029 netdev_info(dev, "VIA %s at 0x%lx, %pM, IRQ %d\n",
1030 name,
1031 #ifdef USE_MMIO
1032 memaddr,
1033 #else
1034 (long)ioaddr,
1035 #endif
1036 dev->dev_addr, pdev->irq);
1037
1038 pci_set_drvdata(pdev, dev);
1039
1040 {
1041 u16 mii_cmd;
1042 int mii_status = mdio_read(dev, phy_id, 1);
1043 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
1044 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
1045 if (mii_status != 0xffff && mii_status != 0x0000) {
1046 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
1047 netdev_info(dev,
1048 "MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n",
1049 phy_id,
1050 mii_status, rp->mii_if.advertising,
1051 mdio_read(dev, phy_id, 5));
1052
1053 /* set IFF_RUNNING */
1054 if (mii_status & BMSR_LSTATUS)
1055 netif_carrier_on(dev);
1056 else
1057 netif_carrier_off(dev);
1058
1059 }
1060 }
1061 rp->mii_if.phy_id = phy_id;
1062 if (avoid_D3)
1063 netif_info(rp, probe, dev, "No D3 power state at shutdown\n");
1064
1065 return 0;
1066
1067 err_out_unmap:
1068 pci_iounmap(pdev, ioaddr);
1069 err_out_free_res:
1070 pci_release_regions(pdev);
1071 err_out_free_netdev:
1072 free_netdev(dev);
1073 err_out:
1074 return rc;
1075 }
1076
alloc_ring(struct net_device * dev)1077 static int alloc_ring(struct net_device* dev)
1078 {
1079 struct rhine_private *rp = netdev_priv(dev);
1080 void *ring;
1081 dma_addr_t ring_dma;
1082
1083 ring = pci_alloc_consistent(rp->pdev,
1084 RX_RING_SIZE * sizeof(struct rx_desc) +
1085 TX_RING_SIZE * sizeof(struct tx_desc),
1086 &ring_dma);
1087 if (!ring) {
1088 netdev_err(dev, "Could not allocate DMA memory\n");
1089 return -ENOMEM;
1090 }
1091 if (rp->quirks & rqRhineI) {
1092 rp->tx_bufs = pci_alloc_consistent(rp->pdev,
1093 PKT_BUF_SZ * TX_RING_SIZE,
1094 &rp->tx_bufs_dma);
1095 if (rp->tx_bufs == NULL) {
1096 pci_free_consistent(rp->pdev,
1097 RX_RING_SIZE * sizeof(struct rx_desc) +
1098 TX_RING_SIZE * sizeof(struct tx_desc),
1099 ring, ring_dma);
1100 return -ENOMEM;
1101 }
1102 }
1103
1104 rp->rx_ring = ring;
1105 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
1106 rp->rx_ring_dma = ring_dma;
1107 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
1108
1109 return 0;
1110 }
1111
free_ring(struct net_device * dev)1112 static void free_ring(struct net_device* dev)
1113 {
1114 struct rhine_private *rp = netdev_priv(dev);
1115
1116 pci_free_consistent(rp->pdev,
1117 RX_RING_SIZE * sizeof(struct rx_desc) +
1118 TX_RING_SIZE * sizeof(struct tx_desc),
1119 rp->rx_ring, rp->rx_ring_dma);
1120 rp->tx_ring = NULL;
1121
1122 if (rp->tx_bufs)
1123 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
1124 rp->tx_bufs, rp->tx_bufs_dma);
1125
1126 rp->tx_bufs = NULL;
1127
1128 }
1129
alloc_rbufs(struct net_device * dev)1130 static void alloc_rbufs(struct net_device *dev)
1131 {
1132 struct rhine_private *rp = netdev_priv(dev);
1133 dma_addr_t next;
1134 int i;
1135
1136 rp->dirty_rx = rp->cur_rx = 0;
1137
1138 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1139 rp->rx_head_desc = &rp->rx_ring[0];
1140 next = rp->rx_ring_dma;
1141
1142 /* Init the ring entries */
1143 for (i = 0; i < RX_RING_SIZE; i++) {
1144 rp->rx_ring[i].rx_status = 0;
1145 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
1146 next += sizeof(struct rx_desc);
1147 rp->rx_ring[i].next_desc = cpu_to_le32(next);
1148 rp->rx_skbuff[i] = NULL;
1149 }
1150 /* Mark the last entry as wrapping the ring. */
1151 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
1152
1153 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1154 for (i = 0; i < RX_RING_SIZE; i++) {
1155 struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1156 rp->rx_skbuff[i] = skb;
1157 if (skb == NULL)
1158 break;
1159 skb->dev = dev; /* Mark as being used by this device. */
1160
1161 rp->rx_skbuff_dma[i] =
1162 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
1163 PCI_DMA_FROMDEVICE);
1164
1165 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
1166 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
1167 }
1168 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1169 }
1170
free_rbufs(struct net_device * dev)1171 static void free_rbufs(struct net_device* dev)
1172 {
1173 struct rhine_private *rp = netdev_priv(dev);
1174 int i;
1175
1176 /* Free all the skbuffs in the Rx queue. */
1177 for (i = 0; i < RX_RING_SIZE; i++) {
1178 rp->rx_ring[i].rx_status = 0;
1179 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1180 if (rp->rx_skbuff[i]) {
1181 pci_unmap_single(rp->pdev,
1182 rp->rx_skbuff_dma[i],
1183 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1184 dev_kfree_skb(rp->rx_skbuff[i]);
1185 }
1186 rp->rx_skbuff[i] = NULL;
1187 }
1188 }
1189
alloc_tbufs(struct net_device * dev)1190 static void alloc_tbufs(struct net_device* dev)
1191 {
1192 struct rhine_private *rp = netdev_priv(dev);
1193 dma_addr_t next;
1194 int i;
1195
1196 rp->dirty_tx = rp->cur_tx = 0;
1197 next = rp->tx_ring_dma;
1198 for (i = 0; i < TX_RING_SIZE; i++) {
1199 rp->tx_skbuff[i] = NULL;
1200 rp->tx_ring[i].tx_status = 0;
1201 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1202 next += sizeof(struct tx_desc);
1203 rp->tx_ring[i].next_desc = cpu_to_le32(next);
1204 if (rp->quirks & rqRhineI)
1205 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
1206 }
1207 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
1208
1209 }
1210
free_tbufs(struct net_device * dev)1211 static void free_tbufs(struct net_device* dev)
1212 {
1213 struct rhine_private *rp = netdev_priv(dev);
1214 int i;
1215
1216 for (i = 0; i < TX_RING_SIZE; i++) {
1217 rp->tx_ring[i].tx_status = 0;
1218 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1219 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1220 if (rp->tx_skbuff[i]) {
1221 if (rp->tx_skbuff_dma[i]) {
1222 pci_unmap_single(rp->pdev,
1223 rp->tx_skbuff_dma[i],
1224 rp->tx_skbuff[i]->len,
1225 PCI_DMA_TODEVICE);
1226 }
1227 dev_kfree_skb(rp->tx_skbuff[i]);
1228 }
1229 rp->tx_skbuff[i] = NULL;
1230 rp->tx_buf[i] = NULL;
1231 }
1232 }
1233
rhine_check_media(struct net_device * dev,unsigned int init_media)1234 static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1235 {
1236 struct rhine_private *rp = netdev_priv(dev);
1237 void __iomem *ioaddr = rp->base;
1238
1239 mii_check_media(&rp->mii_if, netif_msg_link(rp), init_media);
1240
1241 if (rp->mii_if.full_duplex)
1242 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1243 ioaddr + ChipCmd1);
1244 else
1245 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1246 ioaddr + ChipCmd1);
1247
1248 netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1249 rp->mii_if.force_media, netif_carrier_ok(dev));
1250 }
1251
1252 /* Called after status of force_media possibly changed */
rhine_set_carrier(struct mii_if_info * mii)1253 static void rhine_set_carrier(struct mii_if_info *mii)
1254 {
1255 struct net_device *dev = mii->dev;
1256 struct rhine_private *rp = netdev_priv(dev);
1257
1258 if (mii->force_media) {
1259 /* autoneg is off: Link is always assumed to be up */
1260 if (!netif_carrier_ok(dev))
1261 netif_carrier_on(dev);
1262 } else /* Let MMI library update carrier status */
1263 rhine_check_media(dev, 0);
1264
1265 netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1266 mii->force_media, netif_carrier_ok(dev));
1267 }
1268
1269 /**
1270 * rhine_set_cam - set CAM multicast filters
1271 * @ioaddr: register block of this Rhine
1272 * @idx: multicast CAM index [0..MCAM_SIZE-1]
1273 * @addr: multicast address (6 bytes)
1274 *
1275 * Load addresses into multicast filters.
1276 */
rhine_set_cam(void __iomem * ioaddr,int idx,u8 * addr)1277 static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr)
1278 {
1279 int i;
1280
1281 iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1282 wmb();
1283
1284 /* Paranoid -- idx out of range should never happen */
1285 idx &= (MCAM_SIZE - 1);
1286
1287 iowrite8((u8) idx, ioaddr + CamAddr);
1288
1289 for (i = 0; i < 6; i++, addr++)
1290 iowrite8(*addr, ioaddr + MulticastFilter0 + i);
1291 udelay(10);
1292 wmb();
1293
1294 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1295 udelay(10);
1296
1297 iowrite8(0, ioaddr + CamCon);
1298 }
1299
1300 /**
1301 * rhine_set_vlan_cam - set CAM VLAN filters
1302 * @ioaddr: register block of this Rhine
1303 * @idx: VLAN CAM index [0..VCAM_SIZE-1]
1304 * @addr: VLAN ID (2 bytes)
1305 *
1306 * Load addresses into VLAN filters.
1307 */
rhine_set_vlan_cam(void __iomem * ioaddr,int idx,u8 * addr)1308 static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr)
1309 {
1310 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1311 wmb();
1312
1313 /* Paranoid -- idx out of range should never happen */
1314 idx &= (VCAM_SIZE - 1);
1315
1316 iowrite8((u8) idx, ioaddr + CamAddr);
1317
1318 iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6);
1319 udelay(10);
1320 wmb();
1321
1322 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1323 udelay(10);
1324
1325 iowrite8(0, ioaddr + CamCon);
1326 }
1327
1328 /**
1329 * rhine_set_cam_mask - set multicast CAM mask
1330 * @ioaddr: register block of this Rhine
1331 * @mask: multicast CAM mask
1332 *
1333 * Mask sets multicast filters active/inactive.
1334 */
rhine_set_cam_mask(void __iomem * ioaddr,u32 mask)1335 static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask)
1336 {
1337 iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1338 wmb();
1339
1340 /* write mask */
1341 iowrite32(mask, ioaddr + CamMask);
1342
1343 /* disable CAMEN */
1344 iowrite8(0, ioaddr + CamCon);
1345 }
1346
1347 /**
1348 * rhine_set_vlan_cam_mask - set VLAN CAM mask
1349 * @ioaddr: register block of this Rhine
1350 * @mask: VLAN CAM mask
1351 *
1352 * Mask sets VLAN filters active/inactive.
1353 */
rhine_set_vlan_cam_mask(void __iomem * ioaddr,u32 mask)1354 static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask)
1355 {
1356 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1357 wmb();
1358
1359 /* write mask */
1360 iowrite32(mask, ioaddr + CamMask);
1361
1362 /* disable CAMEN */
1363 iowrite8(0, ioaddr + CamCon);
1364 }
1365
1366 /**
1367 * rhine_init_cam_filter - initialize CAM filters
1368 * @dev: network device
1369 *
1370 * Initialize (disable) hardware VLAN and multicast support on this
1371 * Rhine.
1372 */
rhine_init_cam_filter(struct net_device * dev)1373 static void rhine_init_cam_filter(struct net_device *dev)
1374 {
1375 struct rhine_private *rp = netdev_priv(dev);
1376 void __iomem *ioaddr = rp->base;
1377
1378 /* Disable all CAMs */
1379 rhine_set_vlan_cam_mask(ioaddr, 0);
1380 rhine_set_cam_mask(ioaddr, 0);
1381
1382 /* disable hardware VLAN support */
1383 BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig);
1384 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
1385 }
1386
1387 /**
1388 * rhine_update_vcam - update VLAN CAM filters
1389 * @rp: rhine_private data of this Rhine
1390 *
1391 * Update VLAN CAM filters to match configuration change.
1392 */
rhine_update_vcam(struct net_device * dev)1393 static void rhine_update_vcam(struct net_device *dev)
1394 {
1395 struct rhine_private *rp = netdev_priv(dev);
1396 void __iomem *ioaddr = rp->base;
1397 u16 vid;
1398 u32 vCAMmask = 0; /* 32 vCAMs (6105M and better) */
1399 unsigned int i = 0;
1400
1401 for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) {
1402 rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid);
1403 vCAMmask |= 1 << i;
1404 if (++i >= VCAM_SIZE)
1405 break;
1406 }
1407 rhine_set_vlan_cam_mask(ioaddr, vCAMmask);
1408 }
1409
rhine_vlan_rx_add_vid(struct net_device * dev,unsigned short vid)1410 static int rhine_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
1411 {
1412 struct rhine_private *rp = netdev_priv(dev);
1413
1414 spin_lock_bh(&rp->lock);
1415 set_bit(vid, rp->active_vlans);
1416 rhine_update_vcam(dev);
1417 spin_unlock_bh(&rp->lock);
1418 return 0;
1419 }
1420
rhine_vlan_rx_kill_vid(struct net_device * dev,unsigned short vid)1421 static int rhine_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
1422 {
1423 struct rhine_private *rp = netdev_priv(dev);
1424
1425 spin_lock_bh(&rp->lock);
1426 clear_bit(vid, rp->active_vlans);
1427 rhine_update_vcam(dev);
1428 spin_unlock_bh(&rp->lock);
1429 return 0;
1430 }
1431
init_registers(struct net_device * dev)1432 static void init_registers(struct net_device *dev)
1433 {
1434 struct rhine_private *rp = netdev_priv(dev);
1435 void __iomem *ioaddr = rp->base;
1436 int i;
1437
1438 for (i = 0; i < 6; i++)
1439 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1440
1441 /* Initialize other registers. */
1442 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1443 /* Configure initial FIFO thresholds. */
1444 iowrite8(0x20, ioaddr + TxConfig);
1445 rp->tx_thresh = 0x20;
1446 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1447
1448 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1449 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1450
1451 rhine_set_rx_mode(dev);
1452
1453 if (rp->pdev->revision >= VT6105M)
1454 rhine_init_cam_filter(dev);
1455
1456 napi_enable(&rp->napi);
1457
1458 iowrite16(RHINE_EVENT & 0xffff, ioaddr + IntrEnable);
1459
1460 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1461 ioaddr + ChipCmd);
1462 rhine_check_media(dev, 1);
1463 }
1464
1465 /* Enable MII link status auto-polling (required for IntrLinkChange) */
rhine_enable_linkmon(struct rhine_private * rp)1466 static void rhine_enable_linkmon(struct rhine_private *rp)
1467 {
1468 void __iomem *ioaddr = rp->base;
1469
1470 iowrite8(0, ioaddr + MIICmd);
1471 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1472 iowrite8(0x80, ioaddr + MIICmd);
1473
1474 rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1475
1476 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1477 }
1478
1479 /* Disable MII link status auto-polling (required for MDIO access) */
rhine_disable_linkmon(struct rhine_private * rp)1480 static void rhine_disable_linkmon(struct rhine_private *rp)
1481 {
1482 void __iomem *ioaddr = rp->base;
1483
1484 iowrite8(0, ioaddr + MIICmd);
1485
1486 if (rp->quirks & rqRhineI) {
1487 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1488
1489 /* Can be called from ISR. Evil. */
1490 mdelay(1);
1491
1492 /* 0x80 must be set immediately before turning it off */
1493 iowrite8(0x80, ioaddr + MIICmd);
1494
1495 rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1496
1497 /* Heh. Now clear 0x80 again. */
1498 iowrite8(0, ioaddr + MIICmd);
1499 }
1500 else
1501 rhine_wait_bit_high(rp, MIIRegAddr, 0x80);
1502 }
1503
1504 /* Read and write over the MII Management Data I/O (MDIO) interface. */
1505
mdio_read(struct net_device * dev,int phy_id,int regnum)1506 static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1507 {
1508 struct rhine_private *rp = netdev_priv(dev);
1509 void __iomem *ioaddr = rp->base;
1510 int result;
1511
1512 rhine_disable_linkmon(rp);
1513
1514 /* rhine_disable_linkmon already cleared MIICmd */
1515 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1516 iowrite8(regnum, ioaddr + MIIRegAddr);
1517 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
1518 rhine_wait_bit_low(rp, MIICmd, 0x40);
1519 result = ioread16(ioaddr + MIIData);
1520
1521 rhine_enable_linkmon(rp);
1522 return result;
1523 }
1524
mdio_write(struct net_device * dev,int phy_id,int regnum,int value)1525 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1526 {
1527 struct rhine_private *rp = netdev_priv(dev);
1528 void __iomem *ioaddr = rp->base;
1529
1530 rhine_disable_linkmon(rp);
1531
1532 /* rhine_disable_linkmon already cleared MIICmd */
1533 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1534 iowrite8(regnum, ioaddr + MIIRegAddr);
1535 iowrite16(value, ioaddr + MIIData);
1536 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
1537 rhine_wait_bit_low(rp, MIICmd, 0x20);
1538
1539 rhine_enable_linkmon(rp);
1540 }
1541
rhine_task_disable(struct rhine_private * rp)1542 static void rhine_task_disable(struct rhine_private *rp)
1543 {
1544 mutex_lock(&rp->task_lock);
1545 rp->task_enable = false;
1546 mutex_unlock(&rp->task_lock);
1547
1548 cancel_work_sync(&rp->slow_event_task);
1549 cancel_work_sync(&rp->reset_task);
1550 }
1551
rhine_task_enable(struct rhine_private * rp)1552 static void rhine_task_enable(struct rhine_private *rp)
1553 {
1554 mutex_lock(&rp->task_lock);
1555 rp->task_enable = true;
1556 mutex_unlock(&rp->task_lock);
1557 }
1558
rhine_open(struct net_device * dev)1559 static int rhine_open(struct net_device *dev)
1560 {
1561 struct rhine_private *rp = netdev_priv(dev);
1562 void __iomem *ioaddr = rp->base;
1563 int rc;
1564
1565 rc = request_irq(rp->pdev->irq, rhine_interrupt, IRQF_SHARED, dev->name,
1566 dev);
1567 if (rc)
1568 return rc;
1569
1570 netif_dbg(rp, ifup, dev, "%s() irq %d\n", __func__, rp->pdev->irq);
1571
1572 rc = alloc_ring(dev);
1573 if (rc) {
1574 free_irq(rp->pdev->irq, dev);
1575 return rc;
1576 }
1577 alloc_rbufs(dev);
1578 alloc_tbufs(dev);
1579 rhine_chip_reset(dev);
1580 rhine_task_enable(rp);
1581 init_registers(dev);
1582
1583 netif_dbg(rp, ifup, dev, "%s() Done - status %04x MII status: %04x\n",
1584 __func__, ioread16(ioaddr + ChipCmd),
1585 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1586
1587 netif_start_queue(dev);
1588
1589 return 0;
1590 }
1591
rhine_reset_task(struct work_struct * work)1592 static void rhine_reset_task(struct work_struct *work)
1593 {
1594 struct rhine_private *rp = container_of(work, struct rhine_private,
1595 reset_task);
1596 struct net_device *dev = rp->dev;
1597
1598 mutex_lock(&rp->task_lock);
1599
1600 if (!rp->task_enable)
1601 goto out_unlock;
1602
1603 napi_disable(&rp->napi);
1604 spin_lock_bh(&rp->lock);
1605
1606 /* clear all descriptors */
1607 free_tbufs(dev);
1608 free_rbufs(dev);
1609 alloc_tbufs(dev);
1610 alloc_rbufs(dev);
1611
1612 /* Reinitialize the hardware. */
1613 rhine_chip_reset(dev);
1614 init_registers(dev);
1615
1616 spin_unlock_bh(&rp->lock);
1617
1618 dev->trans_start = jiffies; /* prevent tx timeout */
1619 dev->stats.tx_errors++;
1620 netif_wake_queue(dev);
1621
1622 out_unlock:
1623 mutex_unlock(&rp->task_lock);
1624 }
1625
rhine_tx_timeout(struct net_device * dev)1626 static void rhine_tx_timeout(struct net_device *dev)
1627 {
1628 struct rhine_private *rp = netdev_priv(dev);
1629 void __iomem *ioaddr = rp->base;
1630
1631 netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n",
1632 ioread16(ioaddr + IntrStatus),
1633 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1634
1635 schedule_work(&rp->reset_task);
1636 }
1637
rhine_start_tx(struct sk_buff * skb,struct net_device * dev)1638 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
1639 struct net_device *dev)
1640 {
1641 struct rhine_private *rp = netdev_priv(dev);
1642 void __iomem *ioaddr = rp->base;
1643 unsigned entry;
1644
1645 /* Caution: the write order is important here, set the field
1646 with the "ownership" bits last. */
1647
1648 /* Calculate the next Tx descriptor entry. */
1649 entry = rp->cur_tx % TX_RING_SIZE;
1650
1651 if (skb_padto(skb, ETH_ZLEN))
1652 return NETDEV_TX_OK;
1653
1654 rp->tx_skbuff[entry] = skb;
1655
1656 if ((rp->quirks & rqRhineI) &&
1657 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1658 /* Must use alignment buffer. */
1659 if (skb->len > PKT_BUF_SZ) {
1660 /* packet too long, drop it */
1661 dev_kfree_skb(skb);
1662 rp->tx_skbuff[entry] = NULL;
1663 dev->stats.tx_dropped++;
1664 return NETDEV_TX_OK;
1665 }
1666
1667 /* Padding is not copied and so must be redone. */
1668 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
1669 if (skb->len < ETH_ZLEN)
1670 memset(rp->tx_buf[entry] + skb->len, 0,
1671 ETH_ZLEN - skb->len);
1672 rp->tx_skbuff_dma[entry] = 0;
1673 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1674 (rp->tx_buf[entry] -
1675 rp->tx_bufs));
1676 } else {
1677 rp->tx_skbuff_dma[entry] =
1678 pci_map_single(rp->pdev, skb->data, skb->len,
1679 PCI_DMA_TODEVICE);
1680 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1681 }
1682
1683 rp->tx_ring[entry].desc_length =
1684 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1685
1686 if (unlikely(vlan_tx_tag_present(skb))) {
1687 rp->tx_ring[entry].tx_status = cpu_to_le32((vlan_tx_tag_get(skb)) << 16);
1688 /* request tagging */
1689 rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000);
1690 }
1691 else
1692 rp->tx_ring[entry].tx_status = 0;
1693
1694 /* lock eth irq */
1695 wmb();
1696 rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn);
1697 wmb();
1698
1699 rp->cur_tx++;
1700
1701 /* Non-x86 Todo: explicitly flush cache lines here. */
1702
1703 if (vlan_tx_tag_present(skb))
1704 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */
1705 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
1706
1707 /* Wake the potentially-idle transmit channel */
1708 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1709 ioaddr + ChipCmd1);
1710 IOSYNC;
1711
1712 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1713 netif_stop_queue(dev);
1714
1715 netif_dbg(rp, tx_queued, dev, "Transmit frame #%d queued in slot %d\n",
1716 rp->cur_tx - 1, entry);
1717
1718 return NETDEV_TX_OK;
1719 }
1720
rhine_irq_disable(struct rhine_private * rp)1721 static void rhine_irq_disable(struct rhine_private *rp)
1722 {
1723 iowrite16(0x0000, rp->base + IntrEnable);
1724 mmiowb();
1725 }
1726
1727 /* The interrupt handler does all of the Rx thread work and cleans up
1728 after the Tx thread. */
rhine_interrupt(int irq,void * dev_instance)1729 static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1730 {
1731 struct net_device *dev = dev_instance;
1732 struct rhine_private *rp = netdev_priv(dev);
1733 u32 status;
1734 int handled = 0;
1735
1736 status = rhine_get_events(rp);
1737
1738 netif_dbg(rp, intr, dev, "Interrupt, status %08x\n", status);
1739
1740 if (status & RHINE_EVENT) {
1741 handled = 1;
1742
1743 rhine_irq_disable(rp);
1744 napi_schedule(&rp->napi);
1745 }
1746
1747 if (status & ~(IntrLinkChange | IntrStatsMax | RHINE_EVENT_NAPI)) {
1748 netif_err(rp, intr, dev, "Something Wicked happened! %08x\n",
1749 status);
1750 }
1751
1752 return IRQ_RETVAL(handled);
1753 }
1754
1755 /* This routine is logically part of the interrupt handler, but isolated
1756 for clarity. */
rhine_tx(struct net_device * dev)1757 static void rhine_tx(struct net_device *dev)
1758 {
1759 struct rhine_private *rp = netdev_priv(dev);
1760 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1761
1762 /* find and cleanup dirty tx descriptors */
1763 while (rp->dirty_tx != rp->cur_tx) {
1764 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1765 netif_dbg(rp, tx_done, dev, "Tx scavenge %d status %08x\n",
1766 entry, txstatus);
1767 if (txstatus & DescOwn)
1768 break;
1769 if (txstatus & 0x8000) {
1770 netif_dbg(rp, tx_done, dev,
1771 "Transmit error, Tx status %08x\n", txstatus);
1772 dev->stats.tx_errors++;
1773 if (txstatus & 0x0400)
1774 dev->stats.tx_carrier_errors++;
1775 if (txstatus & 0x0200)
1776 dev->stats.tx_window_errors++;
1777 if (txstatus & 0x0100)
1778 dev->stats.tx_aborted_errors++;
1779 if (txstatus & 0x0080)
1780 dev->stats.tx_heartbeat_errors++;
1781 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1782 (txstatus & 0x0800) || (txstatus & 0x1000)) {
1783 dev->stats.tx_fifo_errors++;
1784 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1785 break; /* Keep the skb - we try again */
1786 }
1787 /* Transmitter restarted in 'abnormal' handler. */
1788 } else {
1789 if (rp->quirks & rqRhineI)
1790 dev->stats.collisions += (txstatus >> 3) & 0x0F;
1791 else
1792 dev->stats.collisions += txstatus & 0x0F;
1793 netif_dbg(rp, tx_done, dev, "collisions: %1.1x:%1.1x\n",
1794 (txstatus >> 3) & 0xF, txstatus & 0xF);
1795 dev->stats.tx_bytes += rp->tx_skbuff[entry]->len;
1796 dev->stats.tx_packets++;
1797 }
1798 /* Free the original skb. */
1799 if (rp->tx_skbuff_dma[entry]) {
1800 pci_unmap_single(rp->pdev,
1801 rp->tx_skbuff_dma[entry],
1802 rp->tx_skbuff[entry]->len,
1803 PCI_DMA_TODEVICE);
1804 }
1805 dev_kfree_skb_irq(rp->tx_skbuff[entry]);
1806 rp->tx_skbuff[entry] = NULL;
1807 entry = (++rp->dirty_tx) % TX_RING_SIZE;
1808 }
1809 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1810 netif_wake_queue(dev);
1811 }
1812
1813 /**
1814 * rhine_get_vlan_tci - extract TCI from Rx data buffer
1815 * @skb: pointer to sk_buff
1816 * @data_size: used data area of the buffer including CRC
1817 *
1818 * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q
1819 * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte
1820 * aligned following the CRC.
1821 */
rhine_get_vlan_tci(struct sk_buff * skb,int data_size)1822 static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size)
1823 {
1824 u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2;
1825 return be16_to_cpup((__be16 *)trailer);
1826 }
1827
1828 /* Process up to limit frames from receive ring */
rhine_rx(struct net_device * dev,int limit)1829 static int rhine_rx(struct net_device *dev, int limit)
1830 {
1831 struct rhine_private *rp = netdev_priv(dev);
1832 int count;
1833 int entry = rp->cur_rx % RX_RING_SIZE;
1834
1835 netif_dbg(rp, rx_status, dev, "%s(), entry %d status %08x\n", __func__,
1836 entry, le32_to_cpu(rp->rx_head_desc->rx_status));
1837
1838 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1839 for (count = 0; count < limit; ++count) {
1840 struct rx_desc *desc = rp->rx_head_desc;
1841 u32 desc_status = le32_to_cpu(desc->rx_status);
1842 u32 desc_length = le32_to_cpu(desc->desc_length);
1843 int data_size = desc_status >> 16;
1844
1845 if (desc_status & DescOwn)
1846 break;
1847
1848 netif_dbg(rp, rx_status, dev, "%s() status %08x\n", __func__,
1849 desc_status);
1850
1851 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1852 if ((desc_status & RxWholePkt) != RxWholePkt) {
1853 netdev_warn(dev,
1854 "Oversized Ethernet frame spanned multiple buffers, "
1855 "entry %#x length %d status %08x!\n",
1856 entry, data_size,
1857 desc_status);
1858 netdev_warn(dev,
1859 "Oversized Ethernet frame %p vs %p\n",
1860 rp->rx_head_desc,
1861 &rp->rx_ring[entry]);
1862 dev->stats.rx_length_errors++;
1863 } else if (desc_status & RxErr) {
1864 /* There was a error. */
1865 netif_dbg(rp, rx_err, dev,
1866 "%s() Rx error %08x\n", __func__,
1867 desc_status);
1868 dev->stats.rx_errors++;
1869 if (desc_status & 0x0030)
1870 dev->stats.rx_length_errors++;
1871 if (desc_status & 0x0048)
1872 dev->stats.rx_fifo_errors++;
1873 if (desc_status & 0x0004)
1874 dev->stats.rx_frame_errors++;
1875 if (desc_status & 0x0002) {
1876 /* this can also be updated outside the interrupt handler */
1877 spin_lock(&rp->lock);
1878 dev->stats.rx_crc_errors++;
1879 spin_unlock(&rp->lock);
1880 }
1881 }
1882 } else {
1883 struct sk_buff *skb = NULL;
1884 /* Length should omit the CRC */
1885 int pkt_len = data_size - 4;
1886 u16 vlan_tci = 0;
1887
1888 /* Check if the packet is long enough to accept without
1889 copying to a minimally-sized skbuff. */
1890 if (pkt_len < rx_copybreak)
1891 skb = netdev_alloc_skb_ip_align(dev, pkt_len);
1892 if (skb) {
1893 pci_dma_sync_single_for_cpu(rp->pdev,
1894 rp->rx_skbuff_dma[entry],
1895 rp->rx_buf_sz,
1896 PCI_DMA_FROMDEVICE);
1897
1898 skb_copy_to_linear_data(skb,
1899 rp->rx_skbuff[entry]->data,
1900 pkt_len);
1901 skb_put(skb, pkt_len);
1902 pci_dma_sync_single_for_device(rp->pdev,
1903 rp->rx_skbuff_dma[entry],
1904 rp->rx_buf_sz,
1905 PCI_DMA_FROMDEVICE);
1906 } else {
1907 skb = rp->rx_skbuff[entry];
1908 if (skb == NULL) {
1909 netdev_err(dev, "Inconsistent Rx descriptor chain\n");
1910 break;
1911 }
1912 rp->rx_skbuff[entry] = NULL;
1913 skb_put(skb, pkt_len);
1914 pci_unmap_single(rp->pdev,
1915 rp->rx_skbuff_dma[entry],
1916 rp->rx_buf_sz,
1917 PCI_DMA_FROMDEVICE);
1918 }
1919
1920 if (unlikely(desc_length & DescTag))
1921 vlan_tci = rhine_get_vlan_tci(skb, data_size);
1922
1923 skb->protocol = eth_type_trans(skb, dev);
1924
1925 if (unlikely(desc_length & DescTag))
1926 __vlan_hwaccel_put_tag(skb, vlan_tci);
1927 netif_receive_skb(skb);
1928 dev->stats.rx_bytes += pkt_len;
1929 dev->stats.rx_packets++;
1930 }
1931 entry = (++rp->cur_rx) % RX_RING_SIZE;
1932 rp->rx_head_desc = &rp->rx_ring[entry];
1933 }
1934
1935 /* Refill the Rx ring buffers. */
1936 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1937 struct sk_buff *skb;
1938 entry = rp->dirty_rx % RX_RING_SIZE;
1939 if (rp->rx_skbuff[entry] == NULL) {
1940 skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1941 rp->rx_skbuff[entry] = skb;
1942 if (skb == NULL)
1943 break; /* Better luck next round. */
1944 skb->dev = dev; /* Mark as being used by this device. */
1945 rp->rx_skbuff_dma[entry] =
1946 pci_map_single(rp->pdev, skb->data,
1947 rp->rx_buf_sz,
1948 PCI_DMA_FROMDEVICE);
1949 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1950 }
1951 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1952 }
1953
1954 return count;
1955 }
1956
rhine_restart_tx(struct net_device * dev)1957 static void rhine_restart_tx(struct net_device *dev) {
1958 struct rhine_private *rp = netdev_priv(dev);
1959 void __iomem *ioaddr = rp->base;
1960 int entry = rp->dirty_tx % TX_RING_SIZE;
1961 u32 intr_status;
1962
1963 /*
1964 * If new errors occurred, we need to sort them out before doing Tx.
1965 * In that case the ISR will be back here RSN anyway.
1966 */
1967 intr_status = rhine_get_events(rp);
1968
1969 if ((intr_status & IntrTxErrSummary) == 0) {
1970
1971 /* We know better than the chip where it should continue. */
1972 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
1973 ioaddr + TxRingPtr);
1974
1975 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
1976 ioaddr + ChipCmd);
1977
1978 if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000))
1979 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */
1980 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
1981
1982 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1983 ioaddr + ChipCmd1);
1984 IOSYNC;
1985 }
1986 else {
1987 /* This should never happen */
1988 netif_warn(rp, tx_err, dev, "another error occurred %08x\n",
1989 intr_status);
1990 }
1991
1992 }
1993
rhine_slow_event_task(struct work_struct * work)1994 static void rhine_slow_event_task(struct work_struct *work)
1995 {
1996 struct rhine_private *rp =
1997 container_of(work, struct rhine_private, slow_event_task);
1998 struct net_device *dev = rp->dev;
1999 u32 intr_status;
2000
2001 mutex_lock(&rp->task_lock);
2002
2003 if (!rp->task_enable)
2004 goto out_unlock;
2005
2006 intr_status = rhine_get_events(rp);
2007 rhine_ack_events(rp, intr_status & RHINE_EVENT_SLOW);
2008
2009 if (intr_status & IntrLinkChange)
2010 rhine_check_media(dev, 0);
2011
2012 if (intr_status & IntrPCIErr)
2013 netif_warn(rp, hw, dev, "PCI error\n");
2014
2015 napi_disable(&rp->napi);
2016 rhine_irq_disable(rp);
2017 /* Slow and safe. Consider __napi_schedule as a replacement ? */
2018 napi_enable(&rp->napi);
2019 napi_schedule(&rp->napi);
2020
2021 out_unlock:
2022 mutex_unlock(&rp->task_lock);
2023 }
2024
rhine_get_stats(struct net_device * dev)2025 static struct net_device_stats *rhine_get_stats(struct net_device *dev)
2026 {
2027 struct rhine_private *rp = netdev_priv(dev);
2028
2029 spin_lock_bh(&rp->lock);
2030 rhine_update_rx_crc_and_missed_errord(rp);
2031 spin_unlock_bh(&rp->lock);
2032
2033 return &dev->stats;
2034 }
2035
rhine_set_rx_mode(struct net_device * dev)2036 static void rhine_set_rx_mode(struct net_device *dev)
2037 {
2038 struct rhine_private *rp = netdev_priv(dev);
2039 void __iomem *ioaddr = rp->base;
2040 u32 mc_filter[2]; /* Multicast hash filter */
2041 u8 rx_mode = 0x0C; /* Note: 0x02=accept runt, 0x01=accept errs */
2042 struct netdev_hw_addr *ha;
2043
2044 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2045 rx_mode = 0x1C;
2046 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2047 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
2048 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2049 (dev->flags & IFF_ALLMULTI)) {
2050 /* Too many to match, or accept all multicasts. */
2051 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2052 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
2053 } else if (rp->pdev->revision >= VT6105M) {
2054 int i = 0;
2055 u32 mCAMmask = 0; /* 32 mCAMs (6105M and better) */
2056 netdev_for_each_mc_addr(ha, dev) {
2057 if (i == MCAM_SIZE)
2058 break;
2059 rhine_set_cam(ioaddr, i, ha->addr);
2060 mCAMmask |= 1 << i;
2061 i++;
2062 }
2063 rhine_set_cam_mask(ioaddr, mCAMmask);
2064 } else {
2065 memset(mc_filter, 0, sizeof(mc_filter));
2066 netdev_for_each_mc_addr(ha, dev) {
2067 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
2068
2069 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
2070 }
2071 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
2072 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
2073 }
2074 /* enable/disable VLAN receive filtering */
2075 if (rp->pdev->revision >= VT6105M) {
2076 if (dev->flags & IFF_PROMISC)
2077 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2078 else
2079 BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2080 }
2081 BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig);
2082 }
2083
netdev_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)2084 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2085 {
2086 struct rhine_private *rp = netdev_priv(dev);
2087
2088 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2089 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2090 strlcpy(info->bus_info, pci_name(rp->pdev), sizeof(info->bus_info));
2091 }
2092
netdev_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)2093 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2094 {
2095 struct rhine_private *rp = netdev_priv(dev);
2096 int rc;
2097
2098 mutex_lock(&rp->task_lock);
2099 rc = mii_ethtool_gset(&rp->mii_if, cmd);
2100 mutex_unlock(&rp->task_lock);
2101
2102 return rc;
2103 }
2104
netdev_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)2105 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2106 {
2107 struct rhine_private *rp = netdev_priv(dev);
2108 int rc;
2109
2110 mutex_lock(&rp->task_lock);
2111 rc = mii_ethtool_sset(&rp->mii_if, cmd);
2112 rhine_set_carrier(&rp->mii_if);
2113 mutex_unlock(&rp->task_lock);
2114
2115 return rc;
2116 }
2117
netdev_nway_reset(struct net_device * dev)2118 static int netdev_nway_reset(struct net_device *dev)
2119 {
2120 struct rhine_private *rp = netdev_priv(dev);
2121
2122 return mii_nway_restart(&rp->mii_if);
2123 }
2124
netdev_get_link(struct net_device * dev)2125 static u32 netdev_get_link(struct net_device *dev)
2126 {
2127 struct rhine_private *rp = netdev_priv(dev);
2128
2129 return mii_link_ok(&rp->mii_if);
2130 }
2131
netdev_get_msglevel(struct net_device * dev)2132 static u32 netdev_get_msglevel(struct net_device *dev)
2133 {
2134 struct rhine_private *rp = netdev_priv(dev);
2135
2136 return rp->msg_enable;
2137 }
2138
netdev_set_msglevel(struct net_device * dev,u32 value)2139 static void netdev_set_msglevel(struct net_device *dev, u32 value)
2140 {
2141 struct rhine_private *rp = netdev_priv(dev);
2142
2143 rp->msg_enable = value;
2144 }
2145
rhine_get_wol(struct net_device * dev,struct ethtool_wolinfo * wol)2146 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2147 {
2148 struct rhine_private *rp = netdev_priv(dev);
2149
2150 if (!(rp->quirks & rqWOL))
2151 return;
2152
2153 spin_lock_irq(&rp->lock);
2154 wol->supported = WAKE_PHY | WAKE_MAGIC |
2155 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
2156 wol->wolopts = rp->wolopts;
2157 spin_unlock_irq(&rp->lock);
2158 }
2159
rhine_set_wol(struct net_device * dev,struct ethtool_wolinfo * wol)2160 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2161 {
2162 struct rhine_private *rp = netdev_priv(dev);
2163 u32 support = WAKE_PHY | WAKE_MAGIC |
2164 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
2165
2166 if (!(rp->quirks & rqWOL))
2167 return -EINVAL;
2168
2169 if (wol->wolopts & ~support)
2170 return -EINVAL;
2171
2172 spin_lock_irq(&rp->lock);
2173 rp->wolopts = wol->wolopts;
2174 spin_unlock_irq(&rp->lock);
2175
2176 return 0;
2177 }
2178
2179 static const struct ethtool_ops netdev_ethtool_ops = {
2180 .get_drvinfo = netdev_get_drvinfo,
2181 .get_settings = netdev_get_settings,
2182 .set_settings = netdev_set_settings,
2183 .nway_reset = netdev_nway_reset,
2184 .get_link = netdev_get_link,
2185 .get_msglevel = netdev_get_msglevel,
2186 .set_msglevel = netdev_set_msglevel,
2187 .get_wol = rhine_get_wol,
2188 .set_wol = rhine_set_wol,
2189 };
2190
netdev_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)2191 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2192 {
2193 struct rhine_private *rp = netdev_priv(dev);
2194 int rc;
2195
2196 if (!netif_running(dev))
2197 return -EINVAL;
2198
2199 mutex_lock(&rp->task_lock);
2200 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
2201 rhine_set_carrier(&rp->mii_if);
2202 mutex_unlock(&rp->task_lock);
2203
2204 return rc;
2205 }
2206
rhine_close(struct net_device * dev)2207 static int rhine_close(struct net_device *dev)
2208 {
2209 struct rhine_private *rp = netdev_priv(dev);
2210 void __iomem *ioaddr = rp->base;
2211
2212 rhine_task_disable(rp);
2213 napi_disable(&rp->napi);
2214 netif_stop_queue(dev);
2215
2216 netif_dbg(rp, ifdown, dev, "Shutting down ethercard, status was %04x\n",
2217 ioread16(ioaddr + ChipCmd));
2218
2219 /* Switch to loopback mode to avoid hardware races. */
2220 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
2221
2222 rhine_irq_disable(rp);
2223
2224 /* Stop the chip's Tx and Rx processes. */
2225 iowrite16(CmdStop, ioaddr + ChipCmd);
2226
2227 free_irq(rp->pdev->irq, dev);
2228 free_rbufs(dev);
2229 free_tbufs(dev);
2230 free_ring(dev);
2231
2232 return 0;
2233 }
2234
2235
rhine_remove_one(struct pci_dev * pdev)2236 static void __devexit rhine_remove_one(struct pci_dev *pdev)
2237 {
2238 struct net_device *dev = pci_get_drvdata(pdev);
2239 struct rhine_private *rp = netdev_priv(dev);
2240
2241 unregister_netdev(dev);
2242
2243 pci_iounmap(pdev, rp->base);
2244 pci_release_regions(pdev);
2245
2246 free_netdev(dev);
2247 pci_disable_device(pdev);
2248 pci_set_drvdata(pdev, NULL);
2249 }
2250
rhine_shutdown(struct pci_dev * pdev)2251 static void rhine_shutdown (struct pci_dev *pdev)
2252 {
2253 struct net_device *dev = pci_get_drvdata(pdev);
2254 struct rhine_private *rp = netdev_priv(dev);
2255 void __iomem *ioaddr = rp->base;
2256
2257 if (!(rp->quirks & rqWOL))
2258 return; /* Nothing to do for non-WOL adapters */
2259
2260 rhine_power_init(dev);
2261
2262 /* Make sure we use pattern 0, 1 and not 4, 5 */
2263 if (rp->quirks & rq6patterns)
2264 iowrite8(0x04, ioaddr + WOLcgClr);
2265
2266 spin_lock(&rp->lock);
2267
2268 if (rp->wolopts & WAKE_MAGIC) {
2269 iowrite8(WOLmagic, ioaddr + WOLcrSet);
2270 /*
2271 * Turn EEPROM-controlled wake-up back on -- some hardware may
2272 * not cooperate otherwise.
2273 */
2274 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
2275 }
2276
2277 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
2278 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
2279
2280 if (rp->wolopts & WAKE_PHY)
2281 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
2282
2283 if (rp->wolopts & WAKE_UCAST)
2284 iowrite8(WOLucast, ioaddr + WOLcrSet);
2285
2286 if (rp->wolopts) {
2287 /* Enable legacy WOL (for old motherboards) */
2288 iowrite8(0x01, ioaddr + PwcfgSet);
2289 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
2290 }
2291
2292 spin_unlock(&rp->lock);
2293
2294 if (system_state == SYSTEM_POWER_OFF && !avoid_D3) {
2295 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
2296
2297 pci_wake_from_d3(pdev, true);
2298 pci_set_power_state(pdev, PCI_D3hot);
2299 }
2300 }
2301
2302 #ifdef CONFIG_PM_SLEEP
rhine_suspend(struct device * device)2303 static int rhine_suspend(struct device *device)
2304 {
2305 struct pci_dev *pdev = to_pci_dev(device);
2306 struct net_device *dev = pci_get_drvdata(pdev);
2307 struct rhine_private *rp = netdev_priv(dev);
2308
2309 if (!netif_running(dev))
2310 return 0;
2311
2312 rhine_task_disable(rp);
2313 rhine_irq_disable(rp);
2314 napi_disable(&rp->napi);
2315
2316 netif_device_detach(dev);
2317
2318 rhine_shutdown(pdev);
2319
2320 return 0;
2321 }
2322
rhine_resume(struct device * device)2323 static int rhine_resume(struct device *device)
2324 {
2325 struct pci_dev *pdev = to_pci_dev(device);
2326 struct net_device *dev = pci_get_drvdata(pdev);
2327 struct rhine_private *rp = netdev_priv(dev);
2328
2329 if (!netif_running(dev))
2330 return 0;
2331
2332 #ifdef USE_MMIO
2333 enable_mmio(rp->pioaddr, rp->quirks);
2334 #endif
2335 rhine_power_init(dev);
2336 free_tbufs(dev);
2337 free_rbufs(dev);
2338 alloc_tbufs(dev);
2339 alloc_rbufs(dev);
2340 rhine_task_enable(rp);
2341 spin_lock_bh(&rp->lock);
2342 init_registers(dev);
2343 spin_unlock_bh(&rp->lock);
2344
2345 netif_device_attach(dev);
2346
2347 return 0;
2348 }
2349
2350 static SIMPLE_DEV_PM_OPS(rhine_pm_ops, rhine_suspend, rhine_resume);
2351 #define RHINE_PM_OPS (&rhine_pm_ops)
2352
2353 #else
2354
2355 #define RHINE_PM_OPS NULL
2356
2357 #endif /* !CONFIG_PM_SLEEP */
2358
2359 static struct pci_driver rhine_driver = {
2360 .name = DRV_NAME,
2361 .id_table = rhine_pci_tbl,
2362 .probe = rhine_init_one,
2363 .remove = __devexit_p(rhine_remove_one),
2364 .shutdown = rhine_shutdown,
2365 .driver.pm = RHINE_PM_OPS,
2366 };
2367
2368 static struct dmi_system_id __initdata rhine_dmi_table[] = {
2369 {
2370 .ident = "EPIA-M",
2371 .matches = {
2372 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
2373 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2374 },
2375 },
2376 {
2377 .ident = "KV7",
2378 .matches = {
2379 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2380 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2381 },
2382 },
2383 { NULL }
2384 };
2385
rhine_init(void)2386 static int __init rhine_init(void)
2387 {
2388 /* when a module, this is printed whether or not devices are found in probe */
2389 #ifdef MODULE
2390 pr_info("%s\n", version);
2391 #endif
2392 if (dmi_check_system(rhine_dmi_table)) {
2393 /* these BIOSes fail at PXE boot if chip is in D3 */
2394 avoid_D3 = true;
2395 pr_warn("Broken BIOS detected, avoid_D3 enabled\n");
2396 }
2397 else if (avoid_D3)
2398 pr_info("avoid_D3 set\n");
2399
2400 return pci_register_driver(&rhine_driver);
2401 }
2402
2403
rhine_cleanup(void)2404 static void __exit rhine_cleanup(void)
2405 {
2406 pci_unregister_driver(&rhine_driver);
2407 }
2408
2409
2410 module_init(rhine_init);
2411 module_exit(rhine_cleanup);
2412