1 /*
2  * Copyright 2011 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  */
14 
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/moduleparam.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>      /* printk() */
20 #include <linux/slab.h>        /* kmalloc() */
21 #include <linux/errno.h>       /* error codes */
22 #include <linux/types.h>       /* size_t */
23 #include <linux/interrupt.h>
24 #include <linux/in.h>
25 #include <linux/netdevice.h>   /* struct device, and other headers */
26 #include <linux/etherdevice.h> /* eth_type_trans */
27 #include <linux/skbuff.h>
28 #include <linux/ioctl.h>
29 #include <linux/cdev.h>
30 #include <linux/hugetlb.h>
31 #include <linux/in6.h>
32 #include <linux/timer.h>
33 #include <linux/io.h>
34 #include <asm/checksum.h>
35 #include <asm/homecache.h>
36 
37 #include <hv/drv_xgbe_intf.h>
38 #include <hv/drv_xgbe_impl.h>
39 #include <hv/hypervisor.h>
40 #include <hv/netio_intf.h>
41 
42 /* For TSO */
43 #include <linux/ip.h>
44 #include <linux/tcp.h>
45 
46 
47 /*
48  * First, "tile_net_init_module()" initializes all four "devices" which
49  * can be used by linux.
50  *
51  * Then, "ifconfig DEVICE up" calls "tile_net_open()", which analyzes
52  * the network cpus, then uses "tile_net_open_aux()" to initialize
53  * LIPP/LEPP, and then uses "tile_net_open_inner()" to register all
54  * the tiles, provide buffers to LIPP, allow ingress to start, and
55  * turn on hypervisor interrupt handling (and NAPI) on all tiles.
56  *
57  * If registration fails due to the link being down, then "retry_work"
58  * is used to keep calling "tile_net_open_inner()" until it succeeds.
59  *
60  * If "ifconfig DEVICE down" is called, it uses "tile_net_stop()" to
61  * stop egress, drain the LIPP buffers, unregister all the tiles, stop
62  * LIPP/LEPP, and wipe the LEPP queue.
63  *
64  * We start out with the ingress interrupt enabled on each CPU.  When
65  * this interrupt fires, we disable it, and call "napi_schedule()".
66  * This will cause "tile_net_poll()" to be called, which will pull
67  * packets from the netio queue, filtering them out, or passing them
68  * to "netif_receive_skb()".  If our budget is exhausted, we will
69  * return, knowing we will be called again later.  Otherwise, we
70  * reenable the ingress interrupt, and call "napi_complete()".
71  *
72  * HACK: Since disabling the ingress interrupt is not reliable, we
73  * ignore the interrupt if the global "active" flag is false.
74  *
75  *
76  * NOTE: The use of "native_driver" ensures that EPP exists, and that
77  * we are using "LIPP" and "LEPP".
78  *
79  * NOTE: Failing to free completions for an arbitrarily long time
80  * (which is defined to be illegal) does in fact cause bizarre
81  * problems.  The "egress_timer" helps prevent this from happening.
82  */
83 
84 
85 /* HACK: Allow use of "jumbo" packets. */
86 /* This should be 1500 if "jumbo" is not set in LIPP. */
87 /* This should be at most 10226 (10240 - 14) if "jumbo" is set in LIPP. */
88 /* ISSUE: This has not been thoroughly tested (except at 1500). */
89 #define TILE_NET_MTU 1500
90 
91 /* HACK: Define to support GSO. */
92 /* ISSUE: This may actually hurt performance of the TCP blaster. */
93 /* #define TILE_NET_GSO */
94 
95 /* Define this to collapse "duplicate" acks. */
96 /* #define IGNORE_DUP_ACKS */
97 
98 /* HACK: Define this to verify incoming packets. */
99 /* #define TILE_NET_VERIFY_INGRESS */
100 
101 /* Use 3000 to enable the Linux Traffic Control (QoS) layer, else 0. */
102 #define TILE_NET_TX_QUEUE_LEN 0
103 
104 /* Define to dump packets (prints out the whole packet on tx and rx). */
105 /* #define TILE_NET_DUMP_PACKETS */
106 
107 /* Define to enable debug spew (all PDEBUG's are enabled). */
108 /* #define TILE_NET_DEBUG */
109 
110 
111 /* Define to activate paranoia checks. */
112 /* #define TILE_NET_PARANOIA */
113 
114 /* Default transmit lockup timeout period, in jiffies. */
115 #define TILE_NET_TIMEOUT (5 * HZ)
116 
117 /* Default retry interval for bringing up the NetIO interface, in jiffies. */
118 #define TILE_NET_RETRY_INTERVAL (5 * HZ)
119 
120 /* Number of ports (xgbe0, xgbe1, gbe0, gbe1). */
121 #define TILE_NET_DEVS 4
122 
123 
124 
125 /* Paranoia. */
126 #if NET_IP_ALIGN != LIPP_PACKET_PADDING
127 #error "NET_IP_ALIGN must match LIPP_PACKET_PADDING."
128 #endif
129 
130 
131 /* Debug print. */
132 #ifdef TILE_NET_DEBUG
133 #define PDEBUG(fmt, args...) net_printk(fmt, ## args)
134 #else
135 #define PDEBUG(fmt, args...)
136 #endif
137 
138 
139 MODULE_AUTHOR("Tilera");
140 MODULE_LICENSE("GPL");
141 
142 
143 /*
144  * Queue of incoming packets for a specific cpu and device.
145  *
146  * Includes a pointer to the "system" data, and the actual "user" data.
147  */
148 struct tile_netio_queue {
149 	netio_queue_impl_t *__system_part;
150 	netio_queue_user_impl_t __user_part;
151 
152 };
153 
154 
155 /*
156  * Statistics counters for a specific cpu and device.
157  */
158 struct tile_net_stats_t {
159 	u32 rx_packets;
160 	u32 rx_bytes;
161 	u32 tx_packets;
162 	u32 tx_bytes;
163 };
164 
165 
166 /*
167  * Info for a specific cpu and device.
168  *
169  * ISSUE: There is a "dev" pointer in "napi" as well.
170  */
171 struct tile_net_cpu {
172 	/* The NAPI struct. */
173 	struct napi_struct napi;
174 	/* Packet queue. */
175 	struct tile_netio_queue queue;
176 	/* Statistics. */
177 	struct tile_net_stats_t stats;
178 	/* True iff NAPI is enabled. */
179 	bool napi_enabled;
180 	/* True if this tile has successfully registered with the IPP. */
181 	bool registered;
182 	/* True if the link was down last time we tried to register. */
183 	bool link_down;
184 	/* True if "egress_timer" is scheduled. */
185 	bool egress_timer_scheduled;
186 	/* Number of small sk_buffs which must still be provided. */
187 	unsigned int num_needed_small_buffers;
188 	/* Number of large sk_buffs which must still be provided. */
189 	unsigned int num_needed_large_buffers;
190 	/* A timer for handling egress completions. */
191 	struct timer_list egress_timer;
192 };
193 
194 
195 /*
196  * Info for a specific device.
197  */
198 struct tile_net_priv {
199 	/* Our network device. */
200 	struct net_device *dev;
201 	/* Pages making up the egress queue. */
202 	struct page *eq_pages;
203 	/* Address of the actual egress queue. */
204 	lepp_queue_t *eq;
205 	/* Protects "eq". */
206 	spinlock_t eq_lock;
207 	/* The hypervisor handle for this interface. */
208 	int hv_devhdl;
209 	/* The intr bit mask that IDs this device. */
210 	u32 intr_id;
211 	/* True iff "tile_net_open_aux()" has succeeded. */
212 	bool partly_opened;
213 	/* True iff the device is "active". */
214 	bool active;
215 	/* Effective network cpus. */
216 	struct cpumask network_cpus_map;
217 	/* Number of network cpus. */
218 	int network_cpus_count;
219 	/* Credits per network cpu. */
220 	int network_cpus_credits;
221 	/* Network stats. */
222 	struct net_device_stats stats;
223 	/* For NetIO bringup retries. */
224 	struct delayed_work retry_work;
225 	/* Quick access to per cpu data. */
226 	struct tile_net_cpu *cpu[NR_CPUS];
227 };
228 
229 /* Log2 of the number of small pages needed for the egress queue. */
230 #define EQ_ORDER  get_order(sizeof(lepp_queue_t))
231 /* Size of the egress queue's pages. */
232 #define EQ_SIZE   (1 << (PAGE_SHIFT + EQ_ORDER))
233 
234 /*
235  * The actual devices (xgbe0, xgbe1, gbe0, gbe1).
236  */
237 static struct net_device *tile_net_devs[TILE_NET_DEVS];
238 
239 /*
240  * The "tile_net_cpu" structures for each device.
241  */
242 static DEFINE_PER_CPU(struct tile_net_cpu, hv_xgbe0);
243 static DEFINE_PER_CPU(struct tile_net_cpu, hv_xgbe1);
244 static DEFINE_PER_CPU(struct tile_net_cpu, hv_gbe0);
245 static DEFINE_PER_CPU(struct tile_net_cpu, hv_gbe1);
246 
247 
248 /*
249  * True if "network_cpus" was specified.
250  */
251 static bool network_cpus_used;
252 
253 /*
254  * The actual cpus in "network_cpus".
255  */
256 static struct cpumask network_cpus_map;
257 
258 
259 
260 #ifdef TILE_NET_DEBUG
261 /*
262  * printk with extra stuff.
263  *
264  * We print the CPU we're running in brackets.
265  */
net_printk(char * fmt,...)266 static void net_printk(char *fmt, ...)
267 {
268 	int i;
269 	int len;
270 	va_list args;
271 	static char buf[256];
272 
273 	len = sprintf(buf, "tile_net[%2.2d]: ", smp_processor_id());
274 	va_start(args, fmt);
275 	i = vscnprintf(buf + len, sizeof(buf) - len - 1, fmt, args);
276 	va_end(args);
277 	buf[255] = '\0';
278 	pr_notice(buf);
279 }
280 #endif
281 
282 
283 #ifdef TILE_NET_DUMP_PACKETS
284 /*
285  * Dump a packet.
286  */
dump_packet(unsigned char * data,unsigned long length,char * s)287 static void dump_packet(unsigned char *data, unsigned long length, char *s)
288 {
289 	int my_cpu = smp_processor_id();
290 
291 	unsigned long i;
292 	char buf[128];
293 
294 	static unsigned int count;
295 
296 	pr_info("dump_packet(data %p, length 0x%lx s %s count 0x%x)\n",
297 	       data, length, s, count++);
298 
299 	pr_info("\n");
300 
301 	for (i = 0; i < length; i++) {
302 		if ((i & 0xf) == 0)
303 			sprintf(buf, "[%02d] %8.8lx:", my_cpu, i);
304 		sprintf(buf + strlen(buf), " %2.2x", data[i]);
305 		if ((i & 0xf) == 0xf || i == length - 1) {
306 			strcat(buf, "\n");
307 			pr_info("%s", buf);
308 		}
309 	}
310 }
311 #endif
312 
313 
314 /*
315  * Provide support for the __netio_fastio1() swint
316  * (see <hv/drv_xgbe_intf.h> for how it is used).
317  *
318  * The fastio swint2 call may clobber all the caller-saved registers.
319  * It rarely clobbers memory, but we allow for the possibility in
320  * the signature just to be on the safe side.
321  *
322  * Also, gcc doesn't seem to allow an input operand to be
323  * clobbered, so we fake it with dummy outputs.
324  *
325  * This function can't be static because of the way it is declared
326  * in the netio header.
327  */
__netio_fastio1(u32 fastio_index,u32 arg0)328 inline int __netio_fastio1(u32 fastio_index, u32 arg0)
329 {
330 	long result, clobber_r1, clobber_r10;
331 	asm volatile("swint2"
332 		     : "=R00" (result),
333 		       "=R01" (clobber_r1), "=R10" (clobber_r10)
334 		     : "R10" (fastio_index), "R01" (arg0)
335 		     : "memory", "r2", "r3", "r4",
336 		       "r5", "r6", "r7", "r8", "r9",
337 		       "r11", "r12", "r13", "r14",
338 		       "r15", "r16", "r17", "r18", "r19",
339 		       "r20", "r21", "r22", "r23", "r24",
340 		       "r25", "r26", "r27", "r28", "r29");
341 	return result;
342 }
343 
344 
345 /*
346  * Provide a linux buffer to LIPP.
347  */
tile_net_provide_linux_buffer(struct tile_net_cpu * info,void * va,bool small)348 static void tile_net_provide_linux_buffer(struct tile_net_cpu *info,
349 					  void *va, bool small)
350 {
351 	struct tile_netio_queue *queue = &info->queue;
352 
353 	/* Convert "va" and "small" to "linux_buffer_t". */
354 	unsigned int buffer = ((unsigned int)(__pa(va) >> 7) << 1) + small;
355 
356 	__netio_fastio_free_buffer(queue->__user_part.__fastio_index, buffer);
357 }
358 
359 
360 /*
361  * Provide a linux buffer for LIPP.
362  *
363  * Note that the ACTUAL allocation for each buffer is a "struct sk_buff",
364  * plus a chunk of memory that includes not only the requested bytes, but
365  * also NET_SKB_PAD bytes of initial padding, and a "struct skb_shared_info".
366  *
367  * Note that "struct skb_shared_info" is 88 bytes with 64K pages and
368  * 268 bytes with 4K pages (since the frags[] array needs 18 entries).
369  *
370  * Without jumbo packets, the maximum packet size will be 1536 bytes,
371  * and we use 2 bytes (NET_IP_ALIGN) of padding.  ISSUE: If we told
372  * the hardware to clip at 1518 bytes instead of 1536 bytes, then we
373  * could save an entire cache line, but in practice, we don't need it.
374  *
375  * Since CPAs are 38 bits, and we can only encode the high 31 bits in
376  * a "linux_buffer_t", the low 7 bits must be zero, and thus, we must
377  * align the actual "va" mod 128.
378  *
379  * We assume that the underlying "head" will be aligned mod 64.  Note
380  * that in practice, we have seen "head" NOT aligned mod 128 even when
381  * using 2048 byte allocations, which is surprising.
382  *
383  * If "head" WAS always aligned mod 128, we could change LIPP to
384  * assume that the low SIX bits are zero, and the 7th bit is one, that
385  * is, align the actual "va" mod 128 plus 64, which would be "free".
386  *
387  * For now, the actual "head" pointer points at NET_SKB_PAD bytes of
388  * padding, plus 28 or 92 bytes of extra padding, plus the sk_buff
389  * pointer, plus the NET_IP_ALIGN padding, plus 126 or 1536 bytes for
390  * the actual packet, plus 62 bytes of empty padding, plus some
391  * padding and the "struct skb_shared_info".
392  *
393  * With 64K pages, a large buffer thus needs 32+92+4+2+1536+62+88
394  * bytes, or 1816 bytes, which fits comfortably into 2048 bytes.
395  *
396  * With 64K pages, a small buffer thus needs 32+92+4+2+126+88
397  * bytes, or 344 bytes, which means we are wasting 64+ bytes, and
398  * could presumably increase the size of small buffers.
399  *
400  * With 4K pages, a large buffer thus needs 32+92+4+2+1536+62+268
401  * bytes, or 1996 bytes, which fits comfortably into 2048 bytes.
402  *
403  * With 4K pages, a small buffer thus needs 32+92+4+2+126+268
404  * bytes, or 524 bytes, which is annoyingly wasteful.
405  *
406  * Maybe we should increase LIPP_SMALL_PACKET_SIZE to 192?
407  *
408  * ISSUE: Maybe we should increase "NET_SKB_PAD" to 64?
409  */
tile_net_provide_needed_buffer(struct tile_net_cpu * info,bool small)410 static bool tile_net_provide_needed_buffer(struct tile_net_cpu *info,
411 					   bool small)
412 {
413 #if TILE_NET_MTU <= 1536
414 	/* Without "jumbo", 2 + 1536 should be sufficient. */
415 	unsigned int large_size = NET_IP_ALIGN + 1536;
416 #else
417 	/* ISSUE: This has not been tested. */
418 	unsigned int large_size = NET_IP_ALIGN + TILE_NET_MTU + 100;
419 #endif
420 
421 	/* Avoid "false sharing" with last cache line. */
422 	/* ISSUE: This is already done by "dev_alloc_skb()". */
423 	unsigned int len =
424 		 (((small ? LIPP_SMALL_PACKET_SIZE : large_size) +
425 		   CHIP_L2_LINE_SIZE() - 1) & -CHIP_L2_LINE_SIZE());
426 
427 	unsigned int padding = 128 - NET_SKB_PAD;
428 	unsigned int align;
429 
430 	struct sk_buff *skb;
431 	void *va;
432 
433 	struct sk_buff **skb_ptr;
434 
435 	/* Request 96 extra bytes for alignment purposes. */
436 	skb = dev_alloc_skb(len + padding);
437 	if (skb == NULL)
438 		return false;
439 
440 	/* Skip 32 or 96 bytes to align "data" mod 128. */
441 	align = -(long)skb->data & (128 - 1);
442 	BUG_ON(align > padding);
443 	skb_reserve(skb, align);
444 
445 	/* This address is given to IPP. */
446 	va = skb->data;
447 
448 	/* Buffers must not span a huge page. */
449 	BUG_ON(((((long)va & ~HPAGE_MASK) + len) & HPAGE_MASK) != 0);
450 
451 #ifdef TILE_NET_PARANOIA
452 #if CHIP_HAS_CBOX_HOME_MAP()
453 	if (hash_default) {
454 		HV_PTE pte = *virt_to_pte(current->mm, (unsigned long)va);
455 		if (hv_pte_get_mode(pte) != HV_PTE_MODE_CACHE_HASH_L3)
456 			panic("Non-HFH ingress buffer! VA=%p Mode=%d PTE=%llx",
457 			      va, hv_pte_get_mode(pte), hv_pte_val(pte));
458 	}
459 #endif
460 #endif
461 
462 	/* Invalidate the packet buffer. */
463 	if (!hash_default)
464 		__inv_buffer(va, len);
465 
466 	/* Skip two bytes to satisfy LIPP assumptions. */
467 	/* Note that this aligns IP on a 16 byte boundary. */
468 	/* ISSUE: Do this when the packet arrives? */
469 	skb_reserve(skb, NET_IP_ALIGN);
470 
471 	/* Save a back-pointer to 'skb'. */
472 	skb_ptr = va - sizeof(*skb_ptr);
473 	*skb_ptr = skb;
474 
475 	/* Make sure "skb_ptr" has been flushed. */
476 	__insn_mf();
477 
478 	/* Provide the new buffer. */
479 	tile_net_provide_linux_buffer(info, va, small);
480 
481 	return true;
482 }
483 
484 
485 /*
486  * Provide linux buffers for LIPP.
487  */
tile_net_provide_needed_buffers(struct tile_net_cpu * info)488 static void tile_net_provide_needed_buffers(struct tile_net_cpu *info)
489 {
490 	while (info->num_needed_small_buffers != 0) {
491 		if (!tile_net_provide_needed_buffer(info, true))
492 			goto oops;
493 		info->num_needed_small_buffers--;
494 	}
495 
496 	while (info->num_needed_large_buffers != 0) {
497 		if (!tile_net_provide_needed_buffer(info, false))
498 			goto oops;
499 		info->num_needed_large_buffers--;
500 	}
501 
502 	return;
503 
504 oops:
505 
506 	/* Add a description to the page allocation failure dump. */
507 	pr_notice("Could not provide a linux buffer to LIPP.\n");
508 }
509 
510 
511 /*
512  * Grab some LEPP completions, and store them in "comps", of size
513  * "comps_size", and return the number of completions which were
514  * stored, so the caller can free them.
515  */
tile_net_lepp_grab_comps(lepp_queue_t * eq,struct sk_buff * comps[],unsigned int comps_size,unsigned int min_size)516 static unsigned int tile_net_lepp_grab_comps(lepp_queue_t *eq,
517 					     struct sk_buff *comps[],
518 					     unsigned int comps_size,
519 					     unsigned int min_size)
520 {
521 	unsigned int n = 0;
522 
523 	unsigned int comp_head = eq->comp_head;
524 	unsigned int comp_busy = eq->comp_busy;
525 
526 	while (comp_head != comp_busy && n < comps_size) {
527 		comps[n++] = eq->comps[comp_head];
528 		LEPP_QINC(comp_head);
529 	}
530 
531 	if (n < min_size)
532 		return 0;
533 
534 	eq->comp_head = comp_head;
535 
536 	return n;
537 }
538 
539 
540 /*
541  * Free some comps, and return true iff there are still some pending.
542  */
tile_net_lepp_free_comps(struct net_device * dev,bool all)543 static bool tile_net_lepp_free_comps(struct net_device *dev, bool all)
544 {
545 	struct tile_net_priv *priv = netdev_priv(dev);
546 
547 	lepp_queue_t *eq = priv->eq;
548 
549 	struct sk_buff *olds[64];
550 	unsigned int wanted = 64;
551 	unsigned int i, n;
552 	bool pending;
553 
554 	spin_lock(&priv->eq_lock);
555 
556 	if (all)
557 		eq->comp_busy = eq->comp_tail;
558 
559 	n = tile_net_lepp_grab_comps(eq, olds, wanted, 0);
560 
561 	pending = (eq->comp_head != eq->comp_tail);
562 
563 	spin_unlock(&priv->eq_lock);
564 
565 	for (i = 0; i < n; i++)
566 		kfree_skb(olds[i]);
567 
568 	return pending;
569 }
570 
571 
572 /*
573  * Make sure the egress timer is scheduled.
574  *
575  * Note that we use "schedule if not scheduled" logic instead of the more
576  * obvious "reschedule" logic, because "reschedule" is fairly expensive.
577  */
tile_net_schedule_egress_timer(struct tile_net_cpu * info)578 static void tile_net_schedule_egress_timer(struct tile_net_cpu *info)
579 {
580 	if (!info->egress_timer_scheduled) {
581 		mod_timer_pinned(&info->egress_timer, jiffies + 1);
582 		info->egress_timer_scheduled = true;
583 	}
584 }
585 
586 
587 /*
588  * The "function" for "info->egress_timer".
589  *
590  * This timer will reschedule itself as long as there are any pending
591  * completions expected (on behalf of any tile).
592  *
593  * ISSUE: Realistically, will the timer ever stop scheduling itself?
594  *
595  * ISSUE: This timer is almost never actually needed, so just use a global
596  * timer that can run on any tile.
597  *
598  * ISSUE: Maybe instead track number of expected completions, and free
599  * only that many, resetting to zero if "pending" is ever false.
600  */
tile_net_handle_egress_timer(unsigned long arg)601 static void tile_net_handle_egress_timer(unsigned long arg)
602 {
603 	struct tile_net_cpu *info = (struct tile_net_cpu *)arg;
604 	struct net_device *dev = info->napi.dev;
605 
606 	/* The timer is no longer scheduled. */
607 	info->egress_timer_scheduled = false;
608 
609 	/* Free comps, and reschedule timer if more are pending. */
610 	if (tile_net_lepp_free_comps(dev, false))
611 		tile_net_schedule_egress_timer(info);
612 }
613 
614 
615 #ifdef IGNORE_DUP_ACKS
616 
617 /*
618  * Help detect "duplicate" ACKs.  These are sequential packets (for a
619  * given flow) which are exactly 66 bytes long, sharing everything but
620  * ID=2@0x12, Hsum=2@0x18, Ack=4@0x2a, WinSize=2@0x30, Csum=2@0x32,
621  * Tstamps=10@0x38.  The ID's are +1, the Hsum's are -1, the Ack's are
622  * +N, and the Tstamps are usually identical.
623  *
624  * NOTE: Apparently truly duplicate acks (with identical "ack" values),
625  * should not be collapsed, as they are used for some kind of flow control.
626  */
is_dup_ack(char * s1,char * s2,unsigned int len)627 static bool is_dup_ack(char *s1, char *s2, unsigned int len)
628 {
629 	int i;
630 
631 	unsigned long long ignorable = 0;
632 
633 	/* Identification. */
634 	ignorable |= (1ULL << 0x12);
635 	ignorable |= (1ULL << 0x13);
636 
637 	/* Header checksum. */
638 	ignorable |= (1ULL << 0x18);
639 	ignorable |= (1ULL << 0x19);
640 
641 	/* ACK. */
642 	ignorable |= (1ULL << 0x2a);
643 	ignorable |= (1ULL << 0x2b);
644 	ignorable |= (1ULL << 0x2c);
645 	ignorable |= (1ULL << 0x2d);
646 
647 	/* WinSize. */
648 	ignorable |= (1ULL << 0x30);
649 	ignorable |= (1ULL << 0x31);
650 
651 	/* Checksum. */
652 	ignorable |= (1ULL << 0x32);
653 	ignorable |= (1ULL << 0x33);
654 
655 	for (i = 0; i < len; i++, ignorable >>= 1) {
656 
657 		if ((ignorable & 1) || (s1[i] == s2[i]))
658 			continue;
659 
660 #ifdef TILE_NET_DEBUG
661 		/* HACK: Mention non-timestamp diffs. */
662 		if (i < 0x38 && i != 0x2f &&
663 		    net_ratelimit())
664 			pr_info("Diff at 0x%x\n", i);
665 #endif
666 
667 		return false;
668 	}
669 
670 #ifdef TILE_NET_NO_SUPPRESS_DUP_ACKS
671 	/* HACK: Do not suppress truly duplicate ACKs. */
672 	/* ISSUE: Is this actually necessary or helpful? */
673 	if (s1[0x2a] == s2[0x2a] &&
674 	    s1[0x2b] == s2[0x2b] &&
675 	    s1[0x2c] == s2[0x2c] &&
676 	    s1[0x2d] == s2[0x2d]) {
677 		return false;
678 	}
679 #endif
680 
681 	return true;
682 }
683 
684 #endif
685 
686 
687 
tile_net_discard_aux(struct tile_net_cpu * info,int index)688 static void tile_net_discard_aux(struct tile_net_cpu *info, int index)
689 {
690 	struct tile_netio_queue *queue = &info->queue;
691 	netio_queue_impl_t *qsp = queue->__system_part;
692 	netio_queue_user_impl_t *qup = &queue->__user_part;
693 
694 	int index2_aux = index + sizeof(netio_pkt_t);
695 	int index2 =
696 		((index2_aux ==
697 		  qsp->__packet_receive_queue.__last_packet_plus_one) ?
698 		 0 : index2_aux);
699 
700 	netio_pkt_t *pkt = (netio_pkt_t *)((unsigned long) &qsp[1] + index);
701 
702 	/* Extract the "linux_buffer_t". */
703 	unsigned int buffer = pkt->__packet.word;
704 
705 	/* Convert "linux_buffer_t" to "va". */
706 	void *va = __va((phys_addr_t)(buffer >> 1) << 7);
707 
708 	/* Acquire the associated "skb". */
709 	struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
710 	struct sk_buff *skb = *skb_ptr;
711 
712 	kfree_skb(skb);
713 
714 	/* Consume this packet. */
715 	qup->__packet_receive_read = index2;
716 }
717 
718 
719 /*
720  * Like "tile_net_poll()", but just discard packets.
721  */
tile_net_discard_packets(struct net_device * dev)722 static void tile_net_discard_packets(struct net_device *dev)
723 {
724 	struct tile_net_priv *priv = netdev_priv(dev);
725 	int my_cpu = smp_processor_id();
726 	struct tile_net_cpu *info = priv->cpu[my_cpu];
727 	struct tile_netio_queue *queue = &info->queue;
728 	netio_queue_impl_t *qsp = queue->__system_part;
729 	netio_queue_user_impl_t *qup = &queue->__user_part;
730 
731 	while (qup->__packet_receive_read !=
732 	       qsp->__packet_receive_queue.__packet_write) {
733 		int index = qup->__packet_receive_read;
734 		tile_net_discard_aux(info, index);
735 	}
736 }
737 
738 
739 /*
740  * Handle the next packet.  Return true if "processed", false if "filtered".
741  */
tile_net_poll_aux(struct tile_net_cpu * info,int index)742 static bool tile_net_poll_aux(struct tile_net_cpu *info, int index)
743 {
744 	struct net_device *dev = info->napi.dev;
745 
746 	struct tile_netio_queue *queue = &info->queue;
747 	netio_queue_impl_t *qsp = queue->__system_part;
748 	netio_queue_user_impl_t *qup = &queue->__user_part;
749 	struct tile_net_stats_t *stats = &info->stats;
750 
751 	int filter;
752 
753 	int index2_aux = index + sizeof(netio_pkt_t);
754 	int index2 =
755 		((index2_aux ==
756 		  qsp->__packet_receive_queue.__last_packet_plus_one) ?
757 		 0 : index2_aux);
758 
759 	netio_pkt_t *pkt = (netio_pkt_t *)((unsigned long) &qsp[1] + index);
760 
761 	netio_pkt_metadata_t *metadata = NETIO_PKT_METADATA(pkt);
762 
763 	/* Extract the packet size.  FIXME: Shouldn't the second line */
764 	/* get subtracted?  Mostly moot, since it should be "zero". */
765 	unsigned long len =
766 		(NETIO_PKT_CUSTOM_LENGTH(pkt) +
767 		 NET_IP_ALIGN - NETIO_PACKET_PADDING);
768 
769 	/* Extract the "linux_buffer_t". */
770 	unsigned int buffer = pkt->__packet.word;
771 
772 	/* Extract "small" (vs "large"). */
773 	bool small = ((buffer & 1) != 0);
774 
775 	/* Convert "linux_buffer_t" to "va". */
776 	void *va = __va((phys_addr_t)(buffer >> 1) << 7);
777 
778 	/* Extract the packet data pointer. */
779 	/* Compare to "NETIO_PKT_CUSTOM_DATA(pkt)". */
780 	unsigned char *buf = va + NET_IP_ALIGN;
781 
782 	/* Invalidate the packet buffer. */
783 	if (!hash_default)
784 		__inv_buffer(buf, len);
785 
786 	/* ISSUE: Is this needed? */
787 	dev->last_rx = jiffies;
788 
789 #ifdef TILE_NET_DUMP_PACKETS
790 	dump_packet(buf, len, "rx");
791 #endif /* TILE_NET_DUMP_PACKETS */
792 
793 #ifdef TILE_NET_VERIFY_INGRESS
794 	if (!NETIO_PKT_L4_CSUM_CORRECT_M(metadata, pkt) &&
795 	    NETIO_PKT_L4_CSUM_CALCULATED_M(metadata, pkt)) {
796 		/* Bug 6624: Includes UDP packets with a "zero" checksum. */
797 		pr_warning("Bad L4 checksum on %d byte packet.\n", len);
798 	}
799 	if (!NETIO_PKT_L3_CSUM_CORRECT_M(metadata, pkt) &&
800 	    NETIO_PKT_L3_CSUM_CALCULATED_M(metadata, pkt)) {
801 		dump_packet(buf, len, "rx");
802 		panic("Bad L3 checksum.");
803 	}
804 	switch (NETIO_PKT_STATUS_M(metadata, pkt)) {
805 	case NETIO_PKT_STATUS_OVERSIZE:
806 		if (len >= 64) {
807 			dump_packet(buf, len, "rx");
808 			panic("Unexpected OVERSIZE.");
809 		}
810 		break;
811 	case NETIO_PKT_STATUS_BAD:
812 		pr_warning("Unexpected BAD %ld byte packet.\n", len);
813 	}
814 #endif
815 
816 	filter = 0;
817 
818 	/* ISSUE: Filter TCP packets with "bad" checksums? */
819 
820 	if (!(dev->flags & IFF_UP)) {
821 		/* Filter packets received before we're up. */
822 		filter = 1;
823 	} else if (NETIO_PKT_STATUS_M(metadata, pkt) == NETIO_PKT_STATUS_BAD) {
824 		/* Filter "truncated" packets. */
825 		filter = 1;
826 	} else if (!(dev->flags & IFF_PROMISC)) {
827 		/* FIXME: Implement HW multicast filter. */
828 		if (!is_multicast_ether_addr(buf)) {
829 			/* Filter packets not for our address. */
830 			const u8 *mine = dev->dev_addr;
831 			filter = compare_ether_addr(mine, buf);
832 		}
833 	}
834 
835 	if (filter) {
836 
837 		/* ISSUE: Update "drop" statistics? */
838 
839 		tile_net_provide_linux_buffer(info, va, small);
840 
841 	} else {
842 
843 		/* Acquire the associated "skb". */
844 		struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
845 		struct sk_buff *skb = *skb_ptr;
846 
847 		/* Paranoia. */
848 		if (skb->data != buf)
849 			panic("Corrupt linux buffer from LIPP! "
850 			      "VA=%p, skb=%p, skb->data=%p\n",
851 			      va, skb, skb->data);
852 
853 		/* Encode the actual packet length. */
854 		skb_put(skb, len);
855 
856 		/* NOTE: This call also sets "skb->dev = dev". */
857 		skb->protocol = eth_type_trans(skb, dev);
858 
859 		/* Avoid recomputing "good" TCP/UDP checksums. */
860 		if (NETIO_PKT_L4_CSUM_CORRECT_M(metadata, pkt))
861 			skb->ip_summed = CHECKSUM_UNNECESSARY;
862 
863 		netif_receive_skb(skb);
864 
865 		stats->rx_packets++;
866 		stats->rx_bytes += len;
867 
868 		if (small)
869 			info->num_needed_small_buffers++;
870 		else
871 			info->num_needed_large_buffers++;
872 	}
873 
874 	/* Return four credits after every fourth packet. */
875 	if (--qup->__receive_credit_remaining == 0) {
876 		u32 interval = qup->__receive_credit_interval;
877 		qup->__receive_credit_remaining = interval;
878 		__netio_fastio_return_credits(qup->__fastio_index, interval);
879 	}
880 
881 	/* Consume this packet. */
882 	qup->__packet_receive_read = index2;
883 
884 	return !filter;
885 }
886 
887 
888 /*
889  * Handle some packets for the given device on the current CPU.
890  *
891  * If "tile_net_stop()" is called on some other tile while this
892  * function is running, we will return, hopefully before that
893  * other tile asks us to call "napi_disable()".
894  *
895  * The "rotting packet" race condition occurs if a packet arrives
896  * during the extremely narrow window between the queue appearing to
897  * be empty, and the ingress interrupt being re-enabled.  This happens
898  * a LOT under heavy network load.
899  */
tile_net_poll(struct napi_struct * napi,int budget)900 static int tile_net_poll(struct napi_struct *napi, int budget)
901 {
902 	struct net_device *dev = napi->dev;
903 	struct tile_net_priv *priv = netdev_priv(dev);
904 	int my_cpu = smp_processor_id();
905 	struct tile_net_cpu *info = priv->cpu[my_cpu];
906 	struct tile_netio_queue *queue = &info->queue;
907 	netio_queue_impl_t *qsp = queue->__system_part;
908 	netio_queue_user_impl_t *qup = &queue->__user_part;
909 
910 	unsigned int work = 0;
911 
912 	while (priv->active) {
913 		int index = qup->__packet_receive_read;
914 		if (index == qsp->__packet_receive_queue.__packet_write)
915 			break;
916 
917 		if (tile_net_poll_aux(info, index)) {
918 			if (++work >= budget)
919 				goto done;
920 		}
921 	}
922 
923 	napi_complete(&info->napi);
924 
925 	if (!priv->active)
926 		goto done;
927 
928 	/* Re-enable the ingress interrupt. */
929 	enable_percpu_irq(priv->intr_id, 0);
930 
931 	/* HACK: Avoid the "rotting packet" problem (see above). */
932 	if (qup->__packet_receive_read !=
933 	    qsp->__packet_receive_queue.__packet_write) {
934 		/* ISSUE: Sometimes this returns zero, presumably */
935 		/* because an interrupt was handled for this tile. */
936 		(void)napi_reschedule(&info->napi);
937 	}
938 
939 done:
940 
941 	if (priv->active)
942 		tile_net_provide_needed_buffers(info);
943 
944 	return work;
945 }
946 
947 
948 /*
949  * Handle an ingress interrupt for the given device on the current cpu.
950  *
951  * ISSUE: Sometimes this gets called after "disable_percpu_irq()" has
952  * been called!  This is probably due to "pending hypervisor downcalls".
953  *
954  * ISSUE: Is there any race condition between the "napi_schedule()" here
955  * and the "napi_complete()" call above?
956  */
tile_net_handle_ingress_interrupt(int irq,void * dev_ptr)957 static irqreturn_t tile_net_handle_ingress_interrupt(int irq, void *dev_ptr)
958 {
959 	struct net_device *dev = (struct net_device *)dev_ptr;
960 	struct tile_net_priv *priv = netdev_priv(dev);
961 	int my_cpu = smp_processor_id();
962 	struct tile_net_cpu *info = priv->cpu[my_cpu];
963 
964 	/* Disable the ingress interrupt. */
965 	disable_percpu_irq(priv->intr_id);
966 
967 	/* Ignore unwanted interrupts. */
968 	if (!priv->active)
969 		return IRQ_HANDLED;
970 
971 	/* ISSUE: Sometimes "info->napi_enabled" is false here. */
972 
973 	napi_schedule(&info->napi);
974 
975 	return IRQ_HANDLED;
976 }
977 
978 
979 /*
980  * One time initialization per interface.
981  */
tile_net_open_aux(struct net_device * dev)982 static int tile_net_open_aux(struct net_device *dev)
983 {
984 	struct tile_net_priv *priv = netdev_priv(dev);
985 
986 	int ret;
987 	int dummy;
988 	unsigned int epp_lotar;
989 
990 	/*
991 	 * Find out where EPP memory should be homed.
992 	 */
993 	ret = hv_dev_pread(priv->hv_devhdl, 0,
994 			   (HV_VirtAddr)&epp_lotar, sizeof(epp_lotar),
995 			   NETIO_EPP_SHM_OFF);
996 	if (ret < 0) {
997 		pr_err("could not read epp_shm_queue lotar.\n");
998 		return -EIO;
999 	}
1000 
1001 	/*
1002 	 * Home the page on the EPP.
1003 	 */
1004 	{
1005 		int epp_home = hv_lotar_to_cpu(epp_lotar);
1006 		homecache_change_page_home(priv->eq_pages, EQ_ORDER, epp_home);
1007 	}
1008 
1009 	/*
1010 	 * Register the EPP shared memory queue.
1011 	 */
1012 	{
1013 		netio_ipp_address_t ea = {
1014 			.va = 0,
1015 			.pa = __pa(priv->eq),
1016 			.pte = hv_pte(0),
1017 			.size = EQ_SIZE,
1018 		};
1019 		ea.pte = hv_pte_set_lotar(ea.pte, epp_lotar);
1020 		ea.pte = hv_pte_set_mode(ea.pte, HV_PTE_MODE_CACHE_TILE_L3);
1021 		ret = hv_dev_pwrite(priv->hv_devhdl, 0,
1022 				    (HV_VirtAddr)&ea,
1023 				    sizeof(ea),
1024 				    NETIO_EPP_SHM_OFF);
1025 		if (ret < 0)
1026 			return -EIO;
1027 	}
1028 
1029 	/*
1030 	 * Start LIPP/LEPP.
1031 	 */
1032 	if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
1033 			  sizeof(dummy), NETIO_IPP_START_SHIM_OFF) < 0) {
1034 		pr_warning("Failed to start LIPP/LEPP.\n");
1035 		return -EIO;
1036 	}
1037 
1038 	return 0;
1039 }
1040 
1041 
1042 /*
1043  * Register with hypervisor on the current CPU.
1044  *
1045  * Strangely, this function does important things even if it "fails",
1046  * which is especially common if the link is not up yet.  Hopefully
1047  * these things are all "harmless" if done twice!
1048  */
tile_net_register(void * dev_ptr)1049 static void tile_net_register(void *dev_ptr)
1050 {
1051 	struct net_device *dev = (struct net_device *)dev_ptr;
1052 	struct tile_net_priv *priv = netdev_priv(dev);
1053 	int my_cpu = smp_processor_id();
1054 	struct tile_net_cpu *info;
1055 
1056 	struct tile_netio_queue *queue;
1057 
1058 	/* Only network cpus can receive packets. */
1059 	int queue_id =
1060 		cpumask_test_cpu(my_cpu, &priv->network_cpus_map) ? 0 : 255;
1061 
1062 	netio_input_config_t config = {
1063 		.flags = 0,
1064 		.num_receive_packets = priv->network_cpus_credits,
1065 		.queue_id = queue_id
1066 	};
1067 
1068 	int ret = 0;
1069 	netio_queue_impl_t *queuep;
1070 
1071 	PDEBUG("tile_net_register(queue_id %d)\n", queue_id);
1072 
1073 	if (!strcmp(dev->name, "xgbe0"))
1074 		info = &__get_cpu_var(hv_xgbe0);
1075 	else if (!strcmp(dev->name, "xgbe1"))
1076 		info = &__get_cpu_var(hv_xgbe1);
1077 	else if (!strcmp(dev->name, "gbe0"))
1078 		info = &__get_cpu_var(hv_gbe0);
1079 	else if (!strcmp(dev->name, "gbe1"))
1080 		info = &__get_cpu_var(hv_gbe1);
1081 	else
1082 		BUG();
1083 
1084 	/* Initialize the egress timer. */
1085 	init_timer(&info->egress_timer);
1086 	info->egress_timer.data = (long)info;
1087 	info->egress_timer.function = tile_net_handle_egress_timer;
1088 
1089 	priv->cpu[my_cpu] = info;
1090 
1091 	/*
1092 	 * Register ourselves with LIPP.  This does a lot of stuff,
1093 	 * including invoking the LIPP registration code.
1094 	 */
1095 	ret = hv_dev_pwrite(priv->hv_devhdl, 0,
1096 			    (HV_VirtAddr)&config,
1097 			    sizeof(netio_input_config_t),
1098 			    NETIO_IPP_INPUT_REGISTER_OFF);
1099 	PDEBUG("hv_dev_pwrite(NETIO_IPP_INPUT_REGISTER_OFF) returned %d\n",
1100 	       ret);
1101 	if (ret < 0) {
1102 		if (ret != NETIO_LINK_DOWN) {
1103 			printk(KERN_DEBUG "hv_dev_pwrite "
1104 			       "NETIO_IPP_INPUT_REGISTER_OFF failure %d\n",
1105 			       ret);
1106 		}
1107 		info->link_down = (ret == NETIO_LINK_DOWN);
1108 		return;
1109 	}
1110 
1111 	/*
1112 	 * Get the pointer to our queue's system part.
1113 	 */
1114 
1115 	ret = hv_dev_pread(priv->hv_devhdl, 0,
1116 			   (HV_VirtAddr)&queuep,
1117 			   sizeof(netio_queue_impl_t *),
1118 			   NETIO_IPP_INPUT_REGISTER_OFF);
1119 	PDEBUG("hv_dev_pread(NETIO_IPP_INPUT_REGISTER_OFF) returned %d\n",
1120 	       ret);
1121 	PDEBUG("queuep %p\n", queuep);
1122 	if (ret <= 0) {
1123 		/* ISSUE: Shouldn't this be a fatal error? */
1124 		pr_err("hv_dev_pread NETIO_IPP_INPUT_REGISTER_OFF failure\n");
1125 		return;
1126 	}
1127 
1128 	queue = &info->queue;
1129 
1130 	queue->__system_part = queuep;
1131 
1132 	memset(&queue->__user_part, 0, sizeof(netio_queue_user_impl_t));
1133 
1134 	/* This is traditionally "config.num_receive_packets / 2". */
1135 	queue->__user_part.__receive_credit_interval = 4;
1136 	queue->__user_part.__receive_credit_remaining =
1137 		queue->__user_part.__receive_credit_interval;
1138 
1139 	/*
1140 	 * Get a fastio index from the hypervisor.
1141 	 * ISSUE: Shouldn't this check the result?
1142 	 */
1143 	ret = hv_dev_pread(priv->hv_devhdl, 0,
1144 			   (HV_VirtAddr)&queue->__user_part.__fastio_index,
1145 			   sizeof(queue->__user_part.__fastio_index),
1146 			   NETIO_IPP_GET_FASTIO_OFF);
1147 	PDEBUG("hv_dev_pread(NETIO_IPP_GET_FASTIO_OFF) returned %d\n", ret);
1148 
1149 	/* Now we are registered. */
1150 	info->registered = true;
1151 }
1152 
1153 
1154 /*
1155  * Deregister with hypervisor on the current CPU.
1156  *
1157  * This simply discards all our credits, so no more packets will be
1158  * delivered to this tile.  There may still be packets in our queue.
1159  *
1160  * Also, disable the ingress interrupt.
1161  */
tile_net_deregister(void * dev_ptr)1162 static void tile_net_deregister(void *dev_ptr)
1163 {
1164 	struct net_device *dev = (struct net_device *)dev_ptr;
1165 	struct tile_net_priv *priv = netdev_priv(dev);
1166 	int my_cpu = smp_processor_id();
1167 	struct tile_net_cpu *info = priv->cpu[my_cpu];
1168 
1169 	/* Disable the ingress interrupt. */
1170 	disable_percpu_irq(priv->intr_id);
1171 
1172 	/* Do nothing else if not registered. */
1173 	if (info == NULL || !info->registered)
1174 		return;
1175 
1176 	{
1177 		struct tile_netio_queue *queue = &info->queue;
1178 		netio_queue_user_impl_t *qup = &queue->__user_part;
1179 
1180 		/* Discard all our credits. */
1181 		__netio_fastio_return_credits(qup->__fastio_index, -1);
1182 	}
1183 }
1184 
1185 
1186 /*
1187  * Unregister with hypervisor on the current CPU.
1188  *
1189  * Also, disable the ingress interrupt.
1190  */
tile_net_unregister(void * dev_ptr)1191 static void tile_net_unregister(void *dev_ptr)
1192 {
1193 	struct net_device *dev = (struct net_device *)dev_ptr;
1194 	struct tile_net_priv *priv = netdev_priv(dev);
1195 	int my_cpu = smp_processor_id();
1196 	struct tile_net_cpu *info = priv->cpu[my_cpu];
1197 
1198 	int ret;
1199 	int dummy = 0;
1200 
1201 	/* Disable the ingress interrupt. */
1202 	disable_percpu_irq(priv->intr_id);
1203 
1204 	/* Do nothing else if not registered. */
1205 	if (info == NULL || !info->registered)
1206 		return;
1207 
1208 	/* Unregister ourselves with LIPP/LEPP. */
1209 	ret = hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
1210 			    sizeof(dummy), NETIO_IPP_INPUT_UNREGISTER_OFF);
1211 	if (ret < 0)
1212 		panic("Failed to unregister with LIPP/LEPP!\n");
1213 
1214 	/* Discard all packets still in our NetIO queue. */
1215 	tile_net_discard_packets(dev);
1216 
1217 	/* Reset state. */
1218 	info->num_needed_small_buffers = 0;
1219 	info->num_needed_large_buffers = 0;
1220 
1221 	/* Cancel egress timer. */
1222 	del_timer(&info->egress_timer);
1223 	info->egress_timer_scheduled = false;
1224 }
1225 
1226 
1227 /*
1228  * Helper function for "tile_net_stop()".
1229  *
1230  * Also used to handle registration failure in "tile_net_open_inner()",
1231  * when the various extra steps in "tile_net_stop()" are not necessary.
1232  */
tile_net_stop_aux(struct net_device * dev)1233 static void tile_net_stop_aux(struct net_device *dev)
1234 {
1235 	struct tile_net_priv *priv = netdev_priv(dev);
1236 	int i;
1237 
1238 	int dummy = 0;
1239 
1240 	/*
1241 	 * Unregister all tiles, so LIPP will stop delivering packets.
1242 	 * Also, delete all the "napi" objects (sequentially, to protect
1243 	 * "dev->napi_list").
1244 	 */
1245 	on_each_cpu(tile_net_unregister, (void *)dev, 1);
1246 	for_each_online_cpu(i) {
1247 		struct tile_net_cpu *info = priv->cpu[i];
1248 		if (info != NULL && info->registered) {
1249 			netif_napi_del(&info->napi);
1250 			info->registered = false;
1251 		}
1252 	}
1253 
1254 	/* Stop LIPP/LEPP. */
1255 	if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
1256 			  sizeof(dummy), NETIO_IPP_STOP_SHIM_OFF) < 0)
1257 		panic("Failed to stop LIPP/LEPP!\n");
1258 
1259 	priv->partly_opened = false;
1260 }
1261 
1262 
1263 /*
1264  * Disable NAPI for the given device on the current cpu.
1265  */
tile_net_stop_disable(void * dev_ptr)1266 static void tile_net_stop_disable(void *dev_ptr)
1267 {
1268 	struct net_device *dev = (struct net_device *)dev_ptr;
1269 	struct tile_net_priv *priv = netdev_priv(dev);
1270 	int my_cpu = smp_processor_id();
1271 	struct tile_net_cpu *info = priv->cpu[my_cpu];
1272 
1273 	/* Disable NAPI if needed. */
1274 	if (info != NULL && info->napi_enabled) {
1275 		napi_disable(&info->napi);
1276 		info->napi_enabled = false;
1277 	}
1278 }
1279 
1280 
1281 /*
1282  * Enable NAPI and the ingress interrupt for the given device
1283  * on the current cpu.
1284  *
1285  * ISSUE: Only do this for "network cpus"?
1286  */
tile_net_open_enable(void * dev_ptr)1287 static void tile_net_open_enable(void *dev_ptr)
1288 {
1289 	struct net_device *dev = (struct net_device *)dev_ptr;
1290 	struct tile_net_priv *priv = netdev_priv(dev);
1291 	int my_cpu = smp_processor_id();
1292 	struct tile_net_cpu *info = priv->cpu[my_cpu];
1293 
1294 	/* Enable NAPI. */
1295 	napi_enable(&info->napi);
1296 	info->napi_enabled = true;
1297 
1298 	/* Enable the ingress interrupt. */
1299 	enable_percpu_irq(priv->intr_id, 0);
1300 }
1301 
1302 
1303 /*
1304  * tile_net_open_inner does most of the work of bringing up the interface.
1305  * It's called from tile_net_open(), and also from tile_net_retry_open().
1306  * The return value is 0 if the interface was brought up, < 0 if
1307  * tile_net_open() should return the return value as an error, and > 0 if
1308  * tile_net_open() should return success and schedule a work item to
1309  * periodically retry the bringup.
1310  */
tile_net_open_inner(struct net_device * dev)1311 static int tile_net_open_inner(struct net_device *dev)
1312 {
1313 	struct tile_net_priv *priv = netdev_priv(dev);
1314 	int my_cpu = smp_processor_id();
1315 	struct tile_net_cpu *info;
1316 	struct tile_netio_queue *queue;
1317 	int result = 0;
1318 	int i;
1319 	int dummy = 0;
1320 
1321 	/*
1322 	 * First try to register just on the local CPU, and handle any
1323 	 * semi-expected "link down" failure specially.  Note that we
1324 	 * do NOT call "tile_net_stop_aux()", unlike below.
1325 	 */
1326 	tile_net_register(dev);
1327 	info = priv->cpu[my_cpu];
1328 	if (!info->registered) {
1329 		if (info->link_down)
1330 			return 1;
1331 		return -EAGAIN;
1332 	}
1333 
1334 	/*
1335 	 * Now register everywhere else.  If any registration fails,
1336 	 * even for "link down" (which might not be possible), we
1337 	 * clean up using "tile_net_stop_aux()".  Also, add all the
1338 	 * "napi" objects (sequentially, to protect "dev->napi_list").
1339 	 * ISSUE: Only use "netif_napi_add()" for "network cpus"?
1340 	 */
1341 	smp_call_function(tile_net_register, (void *)dev, 1);
1342 	for_each_online_cpu(i) {
1343 		struct tile_net_cpu *info = priv->cpu[i];
1344 		if (info->registered)
1345 			netif_napi_add(dev, &info->napi, tile_net_poll, 64);
1346 		else
1347 			result = -EAGAIN;
1348 	}
1349 	if (result != 0) {
1350 		tile_net_stop_aux(dev);
1351 		return result;
1352 	}
1353 
1354 	queue = &info->queue;
1355 
1356 	if (priv->intr_id == 0) {
1357 		unsigned int irq;
1358 
1359 		/*
1360 		 * Acquire the irq allocated by the hypervisor.  Every
1361 		 * queue gets the same irq.  The "__intr_id" field is
1362 		 * "1 << irq", so we use "__ffs()" to extract "irq".
1363 		 */
1364 		priv->intr_id = queue->__system_part->__intr_id;
1365 		BUG_ON(priv->intr_id == 0);
1366 		irq = __ffs(priv->intr_id);
1367 
1368 		/*
1369 		 * Register the ingress interrupt handler for this
1370 		 * device, permanently.
1371 		 *
1372 		 * We used to call "free_irq()" in "tile_net_stop()",
1373 		 * and then re-register the handler here every time,
1374 		 * but that caused DNP errors in "handle_IRQ_event()"
1375 		 * because "desc->action" was NULL.  See bug 9143.
1376 		 */
1377 		tile_irq_activate(irq, TILE_IRQ_PERCPU);
1378 		BUG_ON(request_irq(irq, tile_net_handle_ingress_interrupt,
1379 				   0, dev->name, (void *)dev) != 0);
1380 	}
1381 
1382 	{
1383 		/* Allocate initial buffers. */
1384 
1385 		int max_buffers =
1386 			priv->network_cpus_count * priv->network_cpus_credits;
1387 
1388 		info->num_needed_small_buffers =
1389 			min(LIPP_SMALL_BUFFERS, max_buffers);
1390 
1391 		info->num_needed_large_buffers =
1392 			min(LIPP_LARGE_BUFFERS, max_buffers);
1393 
1394 		tile_net_provide_needed_buffers(info);
1395 
1396 		if (info->num_needed_small_buffers != 0 ||
1397 		    info->num_needed_large_buffers != 0)
1398 			panic("Insufficient memory for buffer stack!");
1399 	}
1400 
1401 	/* We are about to be active. */
1402 	priv->active = true;
1403 
1404 	/* Make sure "active" is visible to all tiles. */
1405 	mb();
1406 
1407 	/* On each tile, enable NAPI and the ingress interrupt. */
1408 	on_each_cpu(tile_net_open_enable, (void *)dev, 1);
1409 
1410 	/* Start LIPP/LEPP and activate "ingress" at the shim. */
1411 	if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
1412 			  sizeof(dummy), NETIO_IPP_INPUT_INIT_OFF) < 0)
1413 		panic("Failed to activate the LIPP Shim!\n");
1414 
1415 	/* Start our transmit queue. */
1416 	netif_start_queue(dev);
1417 
1418 	return 0;
1419 }
1420 
1421 
1422 /*
1423  * Called periodically to retry bringing up the NetIO interface,
1424  * if it doesn't come up cleanly during tile_net_open().
1425  */
tile_net_open_retry(struct work_struct * w)1426 static void tile_net_open_retry(struct work_struct *w)
1427 {
1428 	struct delayed_work *dw =
1429 		container_of(w, struct delayed_work, work);
1430 
1431 	struct tile_net_priv *priv =
1432 		container_of(dw, struct tile_net_priv, retry_work);
1433 
1434 	/*
1435 	 * Try to bring the NetIO interface up.  If it fails, reschedule
1436 	 * ourselves to try again later; otherwise, tell Linux we now have
1437 	 * a working link.  ISSUE: What if the return value is negative?
1438 	 */
1439 	if (tile_net_open_inner(priv->dev) != 0)
1440 		schedule_delayed_work(&priv->retry_work,
1441 				      TILE_NET_RETRY_INTERVAL);
1442 	else
1443 		netif_carrier_on(priv->dev);
1444 }
1445 
1446 
1447 /*
1448  * Called when a network interface is made active.
1449  *
1450  * Returns 0 on success, negative value on failure.
1451  *
1452  * The open entry point is called when a network interface is made
1453  * active by the system (IFF_UP).  At this point all resources needed
1454  * for transmit and receive operations are allocated, the interrupt
1455  * handler is registered with the OS (if needed), the watchdog timer
1456  * is started, and the stack is notified that the interface is ready.
1457  *
1458  * If the actual link is not available yet, then we tell Linux that
1459  * we have no carrier, and we keep checking until the link comes up.
1460  */
tile_net_open(struct net_device * dev)1461 static int tile_net_open(struct net_device *dev)
1462 {
1463 	int ret = 0;
1464 	struct tile_net_priv *priv = netdev_priv(dev);
1465 
1466 	/*
1467 	 * We rely on priv->partly_opened to tell us if this is the
1468 	 * first time this interface is being brought up. If it is
1469 	 * set, the IPP was already initialized and should not be
1470 	 * initialized again.
1471 	 */
1472 	if (!priv->partly_opened) {
1473 
1474 		int count;
1475 		int credits;
1476 
1477 		/* Initialize LIPP/LEPP, and start the Shim. */
1478 		ret = tile_net_open_aux(dev);
1479 		if (ret < 0) {
1480 			pr_err("tile_net_open_aux failed: %d\n", ret);
1481 			return ret;
1482 		}
1483 
1484 		/* Analyze the network cpus. */
1485 
1486 		if (network_cpus_used)
1487 			cpumask_copy(&priv->network_cpus_map,
1488 				     &network_cpus_map);
1489 		else
1490 			cpumask_copy(&priv->network_cpus_map, cpu_online_mask);
1491 
1492 
1493 		count = cpumask_weight(&priv->network_cpus_map);
1494 
1495 		/* Limit credits to available buffers, and apply min. */
1496 		credits = max(16, (LIPP_LARGE_BUFFERS / count) & ~1);
1497 
1498 		/* Apply "GBE" max limit. */
1499 		/* ISSUE: Use higher limit for XGBE? */
1500 		credits = min(NETIO_MAX_RECEIVE_PKTS, credits);
1501 
1502 		priv->network_cpus_count = count;
1503 		priv->network_cpus_credits = credits;
1504 
1505 #ifdef TILE_NET_DEBUG
1506 		pr_info("Using %d network cpus, with %d credits each\n",
1507 		       priv->network_cpus_count, priv->network_cpus_credits);
1508 #endif
1509 
1510 		priv->partly_opened = true;
1511 
1512 	} else {
1513 		/* FIXME: Is this possible? */
1514 		/* printk("Already partly opened.\n"); */
1515 	}
1516 
1517 	/*
1518 	 * Attempt to bring up the link.
1519 	 */
1520 	ret = tile_net_open_inner(dev);
1521 	if (ret <= 0) {
1522 		if (ret == 0)
1523 			netif_carrier_on(dev);
1524 		return ret;
1525 	}
1526 
1527 	/*
1528 	 * We were unable to bring up the NetIO interface, but we want to
1529 	 * try again in a little bit.  Tell Linux that we have no carrier
1530 	 * so it doesn't try to use the interface before the link comes up
1531 	 * and then remember to try again later.
1532 	 */
1533 	netif_carrier_off(dev);
1534 	schedule_delayed_work(&priv->retry_work, TILE_NET_RETRY_INTERVAL);
1535 
1536 	return 0;
1537 }
1538 
1539 
tile_net_drain_lipp_buffers(struct tile_net_priv * priv)1540 static int tile_net_drain_lipp_buffers(struct tile_net_priv *priv)
1541 {
1542 	int n = 0;
1543 
1544 	/* Drain all the LIPP buffers. */
1545 	while (true) {
1546 		int buffer;
1547 
1548 		/* NOTE: This should never fail. */
1549 		if (hv_dev_pread(priv->hv_devhdl, 0, (HV_VirtAddr)&buffer,
1550 				 sizeof(buffer), NETIO_IPP_DRAIN_OFF) < 0)
1551 			break;
1552 
1553 		/* Stop when done. */
1554 		if (buffer == 0)
1555 			break;
1556 
1557 		{
1558 			/* Convert "linux_buffer_t" to "va". */
1559 			void *va = __va((phys_addr_t)(buffer >> 1) << 7);
1560 
1561 			/* Acquire the associated "skb". */
1562 			struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
1563 			struct sk_buff *skb = *skb_ptr;
1564 
1565 			kfree_skb(skb);
1566 		}
1567 
1568 		n++;
1569 	}
1570 
1571 	return n;
1572 }
1573 
1574 
1575 /*
1576  * Disables a network interface.
1577  *
1578  * Returns 0, this is not allowed to fail.
1579  *
1580  * The close entry point is called when an interface is de-activated
1581  * by the OS.  The hardware is still under the drivers control, but
1582  * needs to be disabled.  A global MAC reset is issued to stop the
1583  * hardware, and all transmit and receive resources are freed.
1584  *
1585  * ISSUE: How closely does "netif_running(dev)" mirror "priv->active"?
1586  *
1587  * Before we are called by "__dev_close()", "netif_running()" will
1588  * have been cleared, so no NEW calls to "tile_net_poll()" will be
1589  * made by "netpoll_poll_dev()".
1590  *
1591  * Often, this can cause some tiles to still have packets in their
1592  * queues, so we must call "tile_net_discard_packets()" later.
1593  *
1594  * Note that some other tile may still be INSIDE "tile_net_poll()",
1595  * and in fact, many will be, if there is heavy network load.
1596  *
1597  * Calling "on_each_cpu(tile_net_stop_disable, (void *)dev, 1)" when
1598  * any tile is still "napi_schedule()"'d will induce a horrible crash
1599  * when "msleep()" is called.  This includes tiles which are inside
1600  * "tile_net_poll()" which have not yet called "napi_complete()".
1601  *
1602  * So, we must first try to wait long enough for other tiles to finish
1603  * with any current "tile_net_poll()" call, and, hopefully, to clear
1604  * the "scheduled" flag.  ISSUE: It is unclear what happens to tiles
1605  * which have called "napi_schedule()" but which had not yet tried to
1606  * call "tile_net_poll()", or which exhausted their budget inside
1607  * "tile_net_poll()" just before this function was called.
1608  */
tile_net_stop(struct net_device * dev)1609 static int tile_net_stop(struct net_device *dev)
1610 {
1611 	struct tile_net_priv *priv = netdev_priv(dev);
1612 
1613 	PDEBUG("tile_net_stop()\n");
1614 
1615 	/* Start discarding packets. */
1616 	priv->active = false;
1617 
1618 	/* Make sure "active" is visible to all tiles. */
1619 	mb();
1620 
1621 	/*
1622 	 * On each tile, make sure no NEW packets get delivered, and
1623 	 * disable the ingress interrupt.
1624 	 *
1625 	 * Note that the ingress interrupt can fire AFTER this,
1626 	 * presumably due to packets which were recently delivered,
1627 	 * but it will have no effect.
1628 	 */
1629 	on_each_cpu(tile_net_deregister, (void *)dev, 1);
1630 
1631 	/* Optimistically drain LIPP buffers. */
1632 	(void)tile_net_drain_lipp_buffers(priv);
1633 
1634 	/* ISSUE: Only needed if not yet fully open. */
1635 	cancel_delayed_work_sync(&priv->retry_work);
1636 
1637 	/* Can't transmit any more. */
1638 	netif_stop_queue(dev);
1639 
1640 	/* Disable NAPI on each tile. */
1641 	on_each_cpu(tile_net_stop_disable, (void *)dev, 1);
1642 
1643 	/*
1644 	 * Drain any remaining LIPP buffers.  NOTE: This "printk()"
1645 	 * has never been observed, but in theory it could happen.
1646 	 */
1647 	if (tile_net_drain_lipp_buffers(priv) != 0)
1648 		printk("Had to drain some extra LIPP buffers!\n");
1649 
1650 	/* Stop LIPP/LEPP. */
1651 	tile_net_stop_aux(dev);
1652 
1653 	/*
1654 	 * ISSUE: It appears that, in practice anyway, by the time we
1655 	 * get here, there are no pending completions, but just in case,
1656 	 * we free (all of) them anyway.
1657 	 */
1658 	while (tile_net_lepp_free_comps(dev, true))
1659 		/* loop */;
1660 
1661 	/* Wipe the EPP queue, and wait till the stores hit the EPP. */
1662 	memset(priv->eq, 0, sizeof(lepp_queue_t));
1663 	mb();
1664 
1665 	return 0;
1666 }
1667 
1668 
1669 /*
1670  * Prepare the "frags" info for the resulting LEPP command.
1671  *
1672  * If needed, flush the memory used by the frags.
1673  */
tile_net_tx_frags(lepp_frag_t * frags,struct sk_buff * skb,void * b_data,unsigned int b_len)1674 static unsigned int tile_net_tx_frags(lepp_frag_t *frags,
1675 				      struct sk_buff *skb,
1676 				      void *b_data, unsigned int b_len)
1677 {
1678 	unsigned int i, n = 0;
1679 
1680 	struct skb_shared_info *sh = skb_shinfo(skb);
1681 
1682 	phys_addr_t cpa;
1683 
1684 	if (b_len != 0) {
1685 
1686 		if (!hash_default)
1687 			finv_buffer_remote(b_data, b_len, 0);
1688 
1689 		cpa = __pa(b_data);
1690 		frags[n].cpa_lo = cpa;
1691 		frags[n].cpa_hi = cpa >> 32;
1692 		frags[n].length = b_len;
1693 		frags[n].hash_for_home = hash_default;
1694 		n++;
1695 	}
1696 
1697 	for (i = 0; i < sh->nr_frags; i++) {
1698 
1699 		skb_frag_t *f = &sh->frags[i];
1700 		unsigned long pfn = page_to_pfn(skb_frag_page(f));
1701 
1702 		/* FIXME: Compute "hash_for_home" properly. */
1703 		/* ISSUE: The hypervisor checks CHIP_HAS_REV1_DMA_PACKETS(). */
1704 		int hash_for_home = hash_default;
1705 
1706 		/* FIXME: Hmmm. */
1707 		if (!hash_default) {
1708 			void *va = pfn_to_kaddr(pfn) + f->page_offset;
1709 			BUG_ON(PageHighMem(skb_frag_page(f)));
1710 			finv_buffer_remote(va, f->size, 0);
1711 		}
1712 
1713 		cpa = ((phys_addr_t)pfn << PAGE_SHIFT) + f->page_offset;
1714 		frags[n].cpa_lo = cpa;
1715 		frags[n].cpa_hi = cpa >> 32;
1716 		frags[n].length = skb_frag_size(f);
1717 		frags[n].hash_for_home = hash_for_home;
1718 		n++;
1719 	}
1720 
1721 	return n;
1722 }
1723 
1724 
1725 /*
1726  * This function takes "skb", consisting of a header template and a
1727  * payload, and hands it to LEPP, to emit as one or more segments,
1728  * each consisting of a possibly modified header, plus a piece of the
1729  * payload, via a process known as "tcp segmentation offload".
1730  *
1731  * Usually, "data" will contain the header template, of size "sh_len",
1732  * and "sh->frags" will contain "skb->data_len" bytes of payload, and
1733  * there will be "sh->gso_segs" segments.
1734  *
1735  * Sometimes, if "sendfile()" requires copying, we will be called with
1736  * "data" containing the header and payload, with "frags" being empty.
1737  *
1738  * In theory, "sh->nr_frags" could be 3, but in practice, it seems
1739  * that this will never actually happen.
1740  *
1741  * See "emulate_large_send_offload()" for some reference code, which
1742  * does not handle checksumming.
1743  *
1744  * ISSUE: How do we make sure that high memory DMA does not migrate?
1745  */
tile_net_tx_tso(struct sk_buff * skb,struct net_device * dev)1746 static int tile_net_tx_tso(struct sk_buff *skb, struct net_device *dev)
1747 {
1748 	struct tile_net_priv *priv = netdev_priv(dev);
1749 	int my_cpu = smp_processor_id();
1750 	struct tile_net_cpu *info = priv->cpu[my_cpu];
1751 	struct tile_net_stats_t *stats = &info->stats;
1752 
1753 	struct skb_shared_info *sh = skb_shinfo(skb);
1754 
1755 	unsigned char *data = skb->data;
1756 
1757 	/* The ip header follows the ethernet header. */
1758 	struct iphdr *ih = ip_hdr(skb);
1759 	unsigned int ih_len = ih->ihl * 4;
1760 
1761 	/* Note that "nh == ih", by definition. */
1762 	unsigned char *nh = skb_network_header(skb);
1763 	unsigned int eh_len = nh - data;
1764 
1765 	/* The tcp header follows the ip header. */
1766 	struct tcphdr *th = (struct tcphdr *)(nh + ih_len);
1767 	unsigned int th_len = th->doff * 4;
1768 
1769 	/* The total number of header bytes. */
1770 	/* NOTE: This may be less than skb_headlen(skb). */
1771 	unsigned int sh_len = eh_len + ih_len + th_len;
1772 
1773 	/* The number of payload bytes at "skb->data + sh_len". */
1774 	/* This is non-zero for sendfile() without HIGHDMA. */
1775 	unsigned int b_len = skb_headlen(skb) - sh_len;
1776 
1777 	/* The total number of payload bytes. */
1778 	unsigned int d_len = b_len + skb->data_len;
1779 
1780 	/* The maximum payload size. */
1781 	unsigned int p_len = sh->gso_size;
1782 
1783 	/* The total number of segments. */
1784 	unsigned int num_segs = sh->gso_segs;
1785 
1786 	/* The temporary copy of the command. */
1787 	u32 cmd_body[(LEPP_MAX_CMD_SIZE + 3) / 4];
1788 	lepp_tso_cmd_t *cmd = (lepp_tso_cmd_t *)cmd_body;
1789 
1790 	/* Analyze the "frags". */
1791 	unsigned int num_frags =
1792 		tile_net_tx_frags(cmd->frags, skb, data + sh_len, b_len);
1793 
1794 	/* The size of the command, including frags and header. */
1795 	size_t cmd_size = LEPP_TSO_CMD_SIZE(num_frags, sh_len);
1796 
1797 	/* The command header. */
1798 	lepp_tso_cmd_t cmd_init = {
1799 		.tso = true,
1800 		.header_size = sh_len,
1801 		.ip_offset = eh_len,
1802 		.tcp_offset = eh_len + ih_len,
1803 		.payload_size = p_len,
1804 		.num_frags = num_frags,
1805 	};
1806 
1807 	unsigned long irqflags;
1808 
1809 	lepp_queue_t *eq = priv->eq;
1810 
1811 	struct sk_buff *olds[8];
1812 	unsigned int wanted = 8;
1813 	unsigned int i, nolds = 0;
1814 
1815 	unsigned int cmd_head, cmd_tail, cmd_next;
1816 	unsigned int comp_tail;
1817 
1818 
1819 	/* Paranoia. */
1820 	BUG_ON(skb->protocol != htons(ETH_P_IP));
1821 	BUG_ON(ih->protocol != IPPROTO_TCP);
1822 	BUG_ON(skb->ip_summed != CHECKSUM_PARTIAL);
1823 	BUG_ON(num_frags > LEPP_MAX_FRAGS);
1824 	/*--BUG_ON(num_segs != (d_len + (p_len - 1)) / p_len); */
1825 	BUG_ON(num_segs <= 1);
1826 
1827 
1828 	/* Finish preparing the command. */
1829 
1830 	/* Copy the command header. */
1831 	*cmd = cmd_init;
1832 
1833 	/* Copy the "header". */
1834 	memcpy(&cmd->frags[num_frags], data, sh_len);
1835 
1836 
1837 	/* Prefetch and wait, to minimize time spent holding the spinlock. */
1838 	prefetch_L1(&eq->comp_tail);
1839 	prefetch_L1(&eq->cmd_tail);
1840 	mb();
1841 
1842 
1843 	/* Enqueue the command. */
1844 
1845 	spin_lock_irqsave(&priv->eq_lock, irqflags);
1846 
1847 	/*
1848 	 * Handle completions if needed to make room.
1849 	 * HACK: Spin until there is sufficient room.
1850 	 */
1851 	if (lepp_num_free_comp_slots(eq) == 0) {
1852 		nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 0);
1853 		if (nolds == 0) {
1854 busy:
1855 			spin_unlock_irqrestore(&priv->eq_lock, irqflags);
1856 			return NETDEV_TX_BUSY;
1857 		}
1858 	}
1859 
1860 	cmd_head = eq->cmd_head;
1861 	cmd_tail = eq->cmd_tail;
1862 
1863 	/* Prepare to advance, detecting full queue. */
1864 	cmd_next = cmd_tail + cmd_size;
1865 	if (cmd_tail < cmd_head && cmd_next >= cmd_head)
1866 		goto busy;
1867 	if (cmd_next > LEPP_CMD_LIMIT) {
1868 		cmd_next = 0;
1869 		if (cmd_next == cmd_head)
1870 			goto busy;
1871 	}
1872 
1873 	/* Copy the command. */
1874 	memcpy(&eq->cmds[cmd_tail], cmd, cmd_size);
1875 
1876 	/* Advance. */
1877 	cmd_tail = cmd_next;
1878 
1879 	/* Record "skb" for eventual freeing. */
1880 	comp_tail = eq->comp_tail;
1881 	eq->comps[comp_tail] = skb;
1882 	LEPP_QINC(comp_tail);
1883 	eq->comp_tail = comp_tail;
1884 
1885 	/* Flush before allowing LEPP to handle the command. */
1886 	/* ISSUE: Is this the optimal location for the flush? */
1887 	__insn_mf();
1888 
1889 	eq->cmd_tail = cmd_tail;
1890 
1891 	/* NOTE: Using "4" here is more efficient than "0" or "2", */
1892 	/* and, strangely, more efficient than pre-checking the number */
1893 	/* of available completions, and comparing it to 4. */
1894 	if (nolds == 0)
1895 		nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 4);
1896 
1897 	spin_unlock_irqrestore(&priv->eq_lock, irqflags);
1898 
1899 	/* Handle completions. */
1900 	for (i = 0; i < nolds; i++)
1901 		kfree_skb(olds[i]);
1902 
1903 	/* Update stats. */
1904 	stats->tx_packets += num_segs;
1905 	stats->tx_bytes += (num_segs * sh_len) + d_len;
1906 
1907 	/* Make sure the egress timer is scheduled. */
1908 	tile_net_schedule_egress_timer(info);
1909 
1910 	return NETDEV_TX_OK;
1911 }
1912 
1913 
1914 /*
1915  * Transmit a packet (called by the kernel via "hard_start_xmit" hook).
1916  */
tile_net_tx(struct sk_buff * skb,struct net_device * dev)1917 static int tile_net_tx(struct sk_buff *skb, struct net_device *dev)
1918 {
1919 	struct tile_net_priv *priv = netdev_priv(dev);
1920 	int my_cpu = smp_processor_id();
1921 	struct tile_net_cpu *info = priv->cpu[my_cpu];
1922 	struct tile_net_stats_t *stats = &info->stats;
1923 
1924 	unsigned long irqflags;
1925 
1926 	struct skb_shared_info *sh = skb_shinfo(skb);
1927 
1928 	unsigned int len = skb->len;
1929 	unsigned char *data = skb->data;
1930 
1931 	unsigned int csum_start = skb_checksum_start_offset(skb);
1932 
1933 	lepp_frag_t frags[LEPP_MAX_FRAGS];
1934 
1935 	unsigned int num_frags;
1936 
1937 	lepp_queue_t *eq = priv->eq;
1938 
1939 	struct sk_buff *olds[8];
1940 	unsigned int wanted = 8;
1941 	unsigned int i, nolds = 0;
1942 
1943 	unsigned int cmd_size = sizeof(lepp_cmd_t);
1944 
1945 	unsigned int cmd_head, cmd_tail, cmd_next;
1946 	unsigned int comp_tail;
1947 
1948 	lepp_cmd_t cmds[LEPP_MAX_FRAGS];
1949 
1950 
1951 	/*
1952 	 * This is paranoia, since we think that if the link doesn't come
1953 	 * up, telling Linux we have no carrier will keep it from trying
1954 	 * to transmit.  If it does, though, we can't execute this routine,
1955 	 * since data structures we depend on aren't set up yet.
1956 	 */
1957 	if (!info->registered)
1958 		return NETDEV_TX_BUSY;
1959 
1960 
1961 	/* Save the timestamp. */
1962 	dev->trans_start = jiffies;
1963 
1964 
1965 #ifdef TILE_NET_PARANOIA
1966 #if CHIP_HAS_CBOX_HOME_MAP()
1967 	if (hash_default) {
1968 		HV_PTE pte = *virt_to_pte(current->mm, (unsigned long)data);
1969 		if (hv_pte_get_mode(pte) != HV_PTE_MODE_CACHE_HASH_L3)
1970 			panic("Non-HFH egress buffer! VA=%p Mode=%d PTE=%llx",
1971 			      data, hv_pte_get_mode(pte), hv_pte_val(pte));
1972 	}
1973 #endif
1974 #endif
1975 
1976 
1977 #ifdef TILE_NET_DUMP_PACKETS
1978 	/* ISSUE: Does not dump the "frags". */
1979 	dump_packet(data, skb_headlen(skb), "tx");
1980 #endif /* TILE_NET_DUMP_PACKETS */
1981 
1982 
1983 	if (sh->gso_size != 0)
1984 		return tile_net_tx_tso(skb, dev);
1985 
1986 
1987 	/* Prepare the commands. */
1988 
1989 	num_frags = tile_net_tx_frags(frags, skb, data, skb_headlen(skb));
1990 
1991 	for (i = 0; i < num_frags; i++) {
1992 
1993 		bool final = (i == num_frags - 1);
1994 
1995 		lepp_cmd_t cmd = {
1996 			.cpa_lo = frags[i].cpa_lo,
1997 			.cpa_hi = frags[i].cpa_hi,
1998 			.length = frags[i].length,
1999 			.hash_for_home = frags[i].hash_for_home,
2000 			.send_completion = final,
2001 			.end_of_packet = final
2002 		};
2003 
2004 		if (i == 0 && skb->ip_summed == CHECKSUM_PARTIAL) {
2005 			cmd.compute_checksum = 1;
2006 			cmd.checksum_data.bits.start_byte = csum_start;
2007 			cmd.checksum_data.bits.count = len - csum_start;
2008 			cmd.checksum_data.bits.destination_byte =
2009 				csum_start + skb->csum_offset;
2010 		}
2011 
2012 		cmds[i] = cmd;
2013 	}
2014 
2015 
2016 	/* Prefetch and wait, to minimize time spent holding the spinlock. */
2017 	prefetch_L1(&eq->comp_tail);
2018 	prefetch_L1(&eq->cmd_tail);
2019 	mb();
2020 
2021 
2022 	/* Enqueue the commands. */
2023 
2024 	spin_lock_irqsave(&priv->eq_lock, irqflags);
2025 
2026 	/*
2027 	 * Handle completions if needed to make room.
2028 	 * HACK: Spin until there is sufficient room.
2029 	 */
2030 	if (lepp_num_free_comp_slots(eq) == 0) {
2031 		nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 0);
2032 		if (nolds == 0) {
2033 busy:
2034 			spin_unlock_irqrestore(&priv->eq_lock, irqflags);
2035 			return NETDEV_TX_BUSY;
2036 		}
2037 	}
2038 
2039 	cmd_head = eq->cmd_head;
2040 	cmd_tail = eq->cmd_tail;
2041 
2042 	/* Copy the commands, or fail. */
2043 	for (i = 0; i < num_frags; i++) {
2044 
2045 		/* Prepare to advance, detecting full queue. */
2046 		cmd_next = cmd_tail + cmd_size;
2047 		if (cmd_tail < cmd_head && cmd_next >= cmd_head)
2048 			goto busy;
2049 		if (cmd_next > LEPP_CMD_LIMIT) {
2050 			cmd_next = 0;
2051 			if (cmd_next == cmd_head)
2052 				goto busy;
2053 		}
2054 
2055 		/* Copy the command. */
2056 		*(lepp_cmd_t *)&eq->cmds[cmd_tail] = cmds[i];
2057 
2058 		/* Advance. */
2059 		cmd_tail = cmd_next;
2060 	}
2061 
2062 	/* Record "skb" for eventual freeing. */
2063 	comp_tail = eq->comp_tail;
2064 	eq->comps[comp_tail] = skb;
2065 	LEPP_QINC(comp_tail);
2066 	eq->comp_tail = comp_tail;
2067 
2068 	/* Flush before allowing LEPP to handle the command. */
2069 	/* ISSUE: Is this the optimal location for the flush? */
2070 	__insn_mf();
2071 
2072 	eq->cmd_tail = cmd_tail;
2073 
2074 	/* NOTE: Using "4" here is more efficient than "0" or "2", */
2075 	/* and, strangely, more efficient than pre-checking the number */
2076 	/* of available completions, and comparing it to 4. */
2077 	if (nolds == 0)
2078 		nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 4);
2079 
2080 	spin_unlock_irqrestore(&priv->eq_lock, irqflags);
2081 
2082 	/* Handle completions. */
2083 	for (i = 0; i < nolds; i++)
2084 		kfree_skb(olds[i]);
2085 
2086 	/* HACK: Track "expanded" size for short packets (e.g. 42 < 60). */
2087 	stats->tx_packets++;
2088 	stats->tx_bytes += ((len >= ETH_ZLEN) ? len : ETH_ZLEN);
2089 
2090 	/* Make sure the egress timer is scheduled. */
2091 	tile_net_schedule_egress_timer(info);
2092 
2093 	return NETDEV_TX_OK;
2094 }
2095 
2096 
2097 /*
2098  * Deal with a transmit timeout.
2099  */
tile_net_tx_timeout(struct net_device * dev)2100 static void tile_net_tx_timeout(struct net_device *dev)
2101 {
2102 	PDEBUG("tile_net_tx_timeout()\n");
2103 	PDEBUG("Transmit timeout at %ld, latency %ld\n", jiffies,
2104 	       jiffies - dev->trans_start);
2105 
2106 	/* XXX: ISSUE: This doesn't seem useful for us. */
2107 	netif_wake_queue(dev);
2108 }
2109 
2110 
2111 /*
2112  * Ioctl commands.
2113  */
tile_net_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)2114 static int tile_net_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2115 {
2116 	return -EOPNOTSUPP;
2117 }
2118 
2119 
2120 /*
2121  * Get System Network Statistics.
2122  *
2123  * Returns the address of the device statistics structure.
2124  */
tile_net_get_stats(struct net_device * dev)2125 static struct net_device_stats *tile_net_get_stats(struct net_device *dev)
2126 {
2127 	struct tile_net_priv *priv = netdev_priv(dev);
2128 	u32 rx_packets = 0;
2129 	u32 tx_packets = 0;
2130 	u32 rx_bytes = 0;
2131 	u32 tx_bytes = 0;
2132 	int i;
2133 
2134 	for_each_online_cpu(i) {
2135 		if (priv->cpu[i]) {
2136 			rx_packets += priv->cpu[i]->stats.rx_packets;
2137 			rx_bytes += priv->cpu[i]->stats.rx_bytes;
2138 			tx_packets += priv->cpu[i]->stats.tx_packets;
2139 			tx_bytes += priv->cpu[i]->stats.tx_bytes;
2140 		}
2141 	}
2142 
2143 	priv->stats.rx_packets = rx_packets;
2144 	priv->stats.rx_bytes = rx_bytes;
2145 	priv->stats.tx_packets = tx_packets;
2146 	priv->stats.tx_bytes = tx_bytes;
2147 
2148 	return &priv->stats;
2149 }
2150 
2151 
2152 /*
2153  * Change the "mtu".
2154  *
2155  * The "change_mtu" method is usually not needed.
2156  * If you need it, it must be like this.
2157  */
tile_net_change_mtu(struct net_device * dev,int new_mtu)2158 static int tile_net_change_mtu(struct net_device *dev, int new_mtu)
2159 {
2160 	PDEBUG("tile_net_change_mtu()\n");
2161 
2162 	/* Check ranges. */
2163 	if ((new_mtu < 68) || (new_mtu > 1500))
2164 		return -EINVAL;
2165 
2166 	/* Accept the value. */
2167 	dev->mtu = new_mtu;
2168 
2169 	return 0;
2170 }
2171 
2172 
2173 /*
2174  * Change the Ethernet Address of the NIC.
2175  *
2176  * The hypervisor driver does not support changing MAC address.  However,
2177  * the IPP does not do anything with the MAC address, so the address which
2178  * gets used on outgoing packets, and which is accepted on incoming packets,
2179  * is completely up to the NetIO program or kernel driver which is actually
2180  * handling them.
2181  *
2182  * Returns 0 on success, negative on failure.
2183  */
tile_net_set_mac_address(struct net_device * dev,void * p)2184 static int tile_net_set_mac_address(struct net_device *dev, void *p)
2185 {
2186 	struct sockaddr *addr = p;
2187 
2188 	if (!is_valid_ether_addr(addr->sa_data))
2189 		return -EINVAL;
2190 
2191 	/* ISSUE: Note that "dev_addr" is now a pointer. */
2192 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2193 
2194 	return 0;
2195 }
2196 
2197 
2198 /*
2199  * Obtain the MAC address from the hypervisor.
2200  * This must be done before opening the device.
2201  */
tile_net_get_mac(struct net_device * dev)2202 static int tile_net_get_mac(struct net_device *dev)
2203 {
2204 	struct tile_net_priv *priv = netdev_priv(dev);
2205 
2206 	char hv_dev_name[32];
2207 	int len;
2208 
2209 	__netio_getset_offset_t offset = { .word = NETIO_IPP_PARAM_OFF };
2210 
2211 	int ret;
2212 
2213 	/* For example, "xgbe0". */
2214 	strcpy(hv_dev_name, dev->name);
2215 	len = strlen(hv_dev_name);
2216 
2217 	/* For example, "xgbe/0". */
2218 	hv_dev_name[len] = hv_dev_name[len - 1];
2219 	hv_dev_name[len - 1] = '/';
2220 	len++;
2221 
2222 	/* For example, "xgbe/0/native_hash". */
2223 	strcpy(hv_dev_name + len, hash_default ? "/native_hash" : "/native");
2224 
2225 	/* Get the hypervisor handle for this device. */
2226 	priv->hv_devhdl = hv_dev_open((HV_VirtAddr)hv_dev_name, 0);
2227 	PDEBUG("hv_dev_open(%s) returned %d %p\n",
2228 	       hv_dev_name, priv->hv_devhdl, &priv->hv_devhdl);
2229 	if (priv->hv_devhdl < 0) {
2230 		if (priv->hv_devhdl == HV_ENODEV)
2231 			printk(KERN_DEBUG "Ignoring unconfigured device %s\n",
2232 				 hv_dev_name);
2233 		else
2234 			printk(KERN_DEBUG "hv_dev_open(%s) returned %d\n",
2235 				 hv_dev_name, priv->hv_devhdl);
2236 		return -1;
2237 	}
2238 
2239 	/*
2240 	 * Read the hardware address from the hypervisor.
2241 	 * ISSUE: Note that "dev_addr" is now a pointer.
2242 	 */
2243 	offset.bits.class = NETIO_PARAM;
2244 	offset.bits.addr = NETIO_PARAM_MAC;
2245 	ret = hv_dev_pread(priv->hv_devhdl, 0,
2246 			   (HV_VirtAddr)dev->dev_addr, dev->addr_len,
2247 			   offset.word);
2248 	PDEBUG("hv_dev_pread(NETIO_PARAM_MAC) returned %d\n", ret);
2249 	if (ret <= 0) {
2250 		printk(KERN_DEBUG "hv_dev_pread(NETIO_PARAM_MAC) %s failed\n",
2251 		       dev->name);
2252 		/*
2253 		 * Since the device is configured by the hypervisor but we
2254 		 * can't get its MAC address, we are most likely running
2255 		 * the simulator, so let's generate a random MAC address.
2256 		 */
2257 		random_ether_addr(dev->dev_addr);
2258 	}
2259 
2260 	return 0;
2261 }
2262 
2263 static const struct net_device_ops tile_net_ops = {
2264 	.ndo_open = tile_net_open,
2265 	.ndo_stop = tile_net_stop,
2266 	.ndo_start_xmit = tile_net_tx,
2267 	.ndo_do_ioctl = tile_net_ioctl,
2268 	.ndo_get_stats = tile_net_get_stats,
2269 	.ndo_change_mtu = tile_net_change_mtu,
2270 	.ndo_tx_timeout = tile_net_tx_timeout,
2271 	.ndo_set_mac_address = tile_net_set_mac_address
2272 };
2273 
2274 
2275 /*
2276  * The setup function.
2277  *
2278  * This uses ether_setup() to assign various fields in dev, including
2279  * setting IFF_BROADCAST and IFF_MULTICAST, then sets some extra fields.
2280  */
tile_net_setup(struct net_device * dev)2281 static void tile_net_setup(struct net_device *dev)
2282 {
2283 	PDEBUG("tile_net_setup()\n");
2284 
2285 	ether_setup(dev);
2286 
2287 	dev->netdev_ops = &tile_net_ops;
2288 
2289 	dev->watchdog_timeo = TILE_NET_TIMEOUT;
2290 
2291 	/* We want lockless xmit. */
2292 	dev->features |= NETIF_F_LLTX;
2293 
2294 	/* We support hardware tx checksums. */
2295 	dev->features |= NETIF_F_HW_CSUM;
2296 
2297 	/* We support scatter/gather. */
2298 	dev->features |= NETIF_F_SG;
2299 
2300 	/* We support TSO. */
2301 	dev->features |= NETIF_F_TSO;
2302 
2303 #ifdef TILE_NET_GSO
2304 	/* We support GSO. */
2305 	dev->features |= NETIF_F_GSO;
2306 #endif
2307 
2308 	if (hash_default)
2309 		dev->features |= NETIF_F_HIGHDMA;
2310 
2311 	/* ISSUE: We should support NETIF_F_UFO. */
2312 
2313 	dev->tx_queue_len = TILE_NET_TX_QUEUE_LEN;
2314 
2315 	dev->mtu = TILE_NET_MTU;
2316 }
2317 
2318 
2319 /*
2320  * Allocate the device structure, register the device, and obtain the
2321  * MAC address from the hypervisor.
2322  */
tile_net_dev_init(const char * name)2323 static struct net_device *tile_net_dev_init(const char *name)
2324 {
2325 	int ret;
2326 	struct net_device *dev;
2327 	struct tile_net_priv *priv;
2328 
2329 	/*
2330 	 * Allocate the device structure.  This allocates "priv", calls
2331 	 * tile_net_setup(), and saves "name".  Normally, "name" is a
2332 	 * template, instantiated by register_netdev(), but not for us.
2333 	 */
2334 	dev = alloc_netdev(sizeof(*priv), name, tile_net_setup);
2335 	if (!dev) {
2336 		pr_err("alloc_netdev(%s) failed\n", name);
2337 		return NULL;
2338 	}
2339 
2340 	priv = netdev_priv(dev);
2341 
2342 	/* Initialize "priv". */
2343 
2344 	memset(priv, 0, sizeof(*priv));
2345 
2346 	/* Save "dev" for "tile_net_open_retry()". */
2347 	priv->dev = dev;
2348 
2349 	INIT_DELAYED_WORK(&priv->retry_work, tile_net_open_retry);
2350 
2351 	spin_lock_init(&priv->eq_lock);
2352 
2353 	/* Allocate "eq". */
2354 	priv->eq_pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, EQ_ORDER);
2355 	if (!priv->eq_pages) {
2356 		free_netdev(dev);
2357 		return NULL;
2358 	}
2359 	priv->eq = page_address(priv->eq_pages);
2360 
2361 	/* Register the network device. */
2362 	ret = register_netdev(dev);
2363 	if (ret) {
2364 		pr_err("register_netdev %s failed %d\n", dev->name, ret);
2365 		__free_pages(priv->eq_pages, EQ_ORDER);
2366 		free_netdev(dev);
2367 		return NULL;
2368 	}
2369 
2370 	/* Get the MAC address. */
2371 	ret = tile_net_get_mac(dev);
2372 	if (ret < 0) {
2373 		unregister_netdev(dev);
2374 		__free_pages(priv->eq_pages, EQ_ORDER);
2375 		free_netdev(dev);
2376 		return NULL;
2377 	}
2378 
2379 	return dev;
2380 }
2381 
2382 
2383 /*
2384  * Module cleanup.
2385  *
2386  * FIXME: If compiled as a module, this module cannot be "unloaded",
2387  * because the "ingress interrupt handler" is registered permanently.
2388  */
tile_net_cleanup(void)2389 static void tile_net_cleanup(void)
2390 {
2391 	int i;
2392 
2393 	for (i = 0; i < TILE_NET_DEVS; i++) {
2394 		if (tile_net_devs[i]) {
2395 			struct net_device *dev = tile_net_devs[i];
2396 			struct tile_net_priv *priv = netdev_priv(dev);
2397 			unregister_netdev(dev);
2398 			finv_buffer_remote(priv->eq, EQ_SIZE, 0);
2399 			__free_pages(priv->eq_pages, EQ_ORDER);
2400 			free_netdev(dev);
2401 		}
2402 	}
2403 }
2404 
2405 
2406 /*
2407  * Module initialization.
2408  */
tile_net_init_module(void)2409 static int tile_net_init_module(void)
2410 {
2411 	pr_info("Tilera IPP Net Driver\n");
2412 
2413 	tile_net_devs[0] = tile_net_dev_init("xgbe0");
2414 	tile_net_devs[1] = tile_net_dev_init("xgbe1");
2415 	tile_net_devs[2] = tile_net_dev_init("gbe0");
2416 	tile_net_devs[3] = tile_net_dev_init("gbe1");
2417 
2418 	return 0;
2419 }
2420 
2421 
2422 module_init(tile_net_init_module);
2423 module_exit(tile_net_cleanup);
2424 
2425 
2426 #ifndef MODULE
2427 
2428 /*
2429  * The "network_cpus" boot argument specifies the cpus that are dedicated
2430  * to handle ingress packets.
2431  *
2432  * The parameter should be in the form "network_cpus=m-n[,x-y]", where
2433  * m, n, x, y are integer numbers that represent the cpus that can be
2434  * neither a dedicated cpu nor a dataplane cpu.
2435  */
network_cpus_setup(char * str)2436 static int __init network_cpus_setup(char *str)
2437 {
2438 	int rc = cpulist_parse_crop(str, &network_cpus_map);
2439 	if (rc != 0) {
2440 		pr_warning("network_cpus=%s: malformed cpu list\n",
2441 		       str);
2442 	} else {
2443 
2444 		/* Remove dedicated cpus. */
2445 		cpumask_and(&network_cpus_map, &network_cpus_map,
2446 			    cpu_possible_mask);
2447 
2448 
2449 		if (cpumask_empty(&network_cpus_map)) {
2450 			pr_warning("Ignoring network_cpus='%s'.\n",
2451 			       str);
2452 		} else {
2453 			char buf[1024];
2454 			cpulist_scnprintf(buf, sizeof(buf), &network_cpus_map);
2455 			pr_info("Linux network CPUs: %s\n", buf);
2456 			network_cpus_used = true;
2457 		}
2458 	}
2459 
2460 	return 0;
2461 }
2462 __setup("network_cpus=", network_cpus_setup);
2463 
2464 #endif
2465