1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4 
5 	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22 
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24 
25   Documentation available at:
26 	http://www.stlinux.com
27   Support available at:
28 	https://bugzilla.stlinux.com/
29 *******************************************************************************/
30 
31 #include <linux/kernel.h>
32 #include <linux/interrupt.h>
33 #include <linux/ip.h>
34 #include <linux/tcp.h>
35 #include <linux/skbuff.h>
36 #include <linux/ethtool.h>
37 #include <linux/if_ether.h>
38 #include <linux/crc32.h>
39 #include <linux/mii.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/slab.h>
44 #include <linux/prefetch.h>
45 #ifdef CONFIG_STMMAC_DEBUG_FS
46 #include <linux/debugfs.h>
47 #include <linux/seq_file.h>
48 #endif
49 #include "stmmac.h"
50 
51 #undef STMMAC_DEBUG
52 /*#define STMMAC_DEBUG*/
53 #ifdef STMMAC_DEBUG
54 #define DBG(nlevel, klevel, fmt, args...) \
55 		((void)(netif_msg_##nlevel(priv) && \
56 		printk(KERN_##klevel fmt, ## args)))
57 #else
58 #define DBG(nlevel, klevel, fmt, args...) do { } while (0)
59 #endif
60 
61 #undef STMMAC_RX_DEBUG
62 /*#define STMMAC_RX_DEBUG*/
63 #ifdef STMMAC_RX_DEBUG
64 #define RX_DBG(fmt, args...)  printk(fmt, ## args)
65 #else
66 #define RX_DBG(fmt, args...)  do { } while (0)
67 #endif
68 
69 #undef STMMAC_XMIT_DEBUG
70 /*#define STMMAC_XMIT_DEBUG*/
71 #ifdef STMMAC_TX_DEBUG
72 #define TX_DBG(fmt, args...)  printk(fmt, ## args)
73 #else
74 #define TX_DBG(fmt, args...)  do { } while (0)
75 #endif
76 
77 #define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
78 #define JUMBO_LEN	9000
79 
80 /* Module parameters */
81 #define TX_TIMEO 5000 /* default 5 seconds */
82 static int watchdog = TX_TIMEO;
83 module_param(watchdog, int, S_IRUGO | S_IWUSR);
84 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");
85 
86 static int debug = -1;		/* -1: default, 0: no output, 16:  all */
87 module_param(debug, int, S_IRUGO | S_IWUSR);
88 MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");
89 
90 int phyaddr = -1;
91 module_param(phyaddr, int, S_IRUGO);
92 MODULE_PARM_DESC(phyaddr, "Physical device address");
93 
94 #define DMA_TX_SIZE 256
95 static int dma_txsize = DMA_TX_SIZE;
96 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
97 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
98 
99 #define DMA_RX_SIZE 256
100 static int dma_rxsize = DMA_RX_SIZE;
101 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
102 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
103 
104 static int flow_ctrl = FLOW_OFF;
105 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
106 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
107 
108 static int pause = PAUSE_TIME;
109 module_param(pause, int, S_IRUGO | S_IWUSR);
110 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
111 
112 #define TC_DEFAULT 64
113 static int tc = TC_DEFAULT;
114 module_param(tc, int, S_IRUGO | S_IWUSR);
115 MODULE_PARM_DESC(tc, "DMA threshold control value");
116 
117 /* Pay attention to tune this parameter; take care of both
118  * hardware capability and network stabitily/performance impact.
119  * Many tests showed that ~4ms latency seems to be good enough. */
120 #ifdef CONFIG_STMMAC_TIMER
121 #define DEFAULT_PERIODIC_RATE	256
122 static int tmrate = DEFAULT_PERIODIC_RATE;
123 module_param(tmrate, int, S_IRUGO | S_IWUSR);
124 MODULE_PARM_DESC(tmrate, "External timer freq. (default: 256Hz)");
125 #endif
126 
127 #define DMA_BUFFER_SIZE	BUF_SIZE_2KiB
128 static int buf_sz = DMA_BUFFER_SIZE;
129 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
130 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
131 
132 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
133 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
134 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
135 
136 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
137 
138 #ifdef CONFIG_STMMAC_DEBUG_FS
139 static int stmmac_init_fs(struct net_device *dev);
140 static void stmmac_exit_fs(void);
141 #endif
142 
143 /**
144  * stmmac_verify_args - verify the driver parameters.
145  * Description: it verifies if some wrong parameter is passed to the driver.
146  * Note that wrong parameters are replaced with the default values.
147  */
stmmac_verify_args(void)148 static void stmmac_verify_args(void)
149 {
150 	if (unlikely(watchdog < 0))
151 		watchdog = TX_TIMEO;
152 	if (unlikely(dma_rxsize < 0))
153 		dma_rxsize = DMA_RX_SIZE;
154 	if (unlikely(dma_txsize < 0))
155 		dma_txsize = DMA_TX_SIZE;
156 	if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
157 		buf_sz = DMA_BUFFER_SIZE;
158 	if (unlikely(flow_ctrl > 1))
159 		flow_ctrl = FLOW_AUTO;
160 	else if (likely(flow_ctrl < 0))
161 		flow_ctrl = FLOW_OFF;
162 	if (unlikely((pause < 0) || (pause > 0xffff)))
163 		pause = PAUSE_TIME;
164 }
165 
166 #if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
print_pkt(unsigned char * buf,int len)167 static void print_pkt(unsigned char *buf, int len)
168 {
169 	int j;
170 	pr_info("len = %d byte, buf addr: 0x%p", len, buf);
171 	for (j = 0; j < len; j++) {
172 		if ((j % 16) == 0)
173 			pr_info("\n %03x:", j);
174 		pr_info(" %02x", buf[j]);
175 	}
176 	pr_info("\n");
177 }
178 #endif
179 
180 /* minimum number of free TX descriptors required to wake up TX process */
181 #define STMMAC_TX_THRESH(x)	(x->dma_tx_size/4)
182 
stmmac_tx_avail(struct stmmac_priv * priv)183 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
184 {
185 	return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
186 }
187 
188 /* On some ST platforms, some HW system configuraton registers have to be
189  * set according to the link speed negotiated.
190  */
stmmac_hw_fix_mac_speed(struct stmmac_priv * priv)191 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
192 {
193 	struct phy_device *phydev = priv->phydev;
194 
195 	if (likely(priv->plat->fix_mac_speed))
196 		priv->plat->fix_mac_speed(priv->plat->bsp_priv,
197 					  phydev->speed);
198 }
199 
200 /**
201  * stmmac_adjust_link
202  * @dev: net device structure
203  * Description: it adjusts the link parameters.
204  */
stmmac_adjust_link(struct net_device * dev)205 static void stmmac_adjust_link(struct net_device *dev)
206 {
207 	struct stmmac_priv *priv = netdev_priv(dev);
208 	struct phy_device *phydev = priv->phydev;
209 	unsigned long flags;
210 	int new_state = 0;
211 	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
212 
213 	if (phydev == NULL)
214 		return;
215 
216 	DBG(probe, DEBUG, "stmmac_adjust_link: called.  address %d link %d\n",
217 	    phydev->addr, phydev->link);
218 
219 	spin_lock_irqsave(&priv->lock, flags);
220 	if (phydev->link) {
221 		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
222 
223 		/* Now we make sure that we can be in full duplex mode.
224 		 * If not, we operate in half-duplex mode. */
225 		if (phydev->duplex != priv->oldduplex) {
226 			new_state = 1;
227 			if (!(phydev->duplex))
228 				ctrl &= ~priv->hw->link.duplex;
229 			else
230 				ctrl |= priv->hw->link.duplex;
231 			priv->oldduplex = phydev->duplex;
232 		}
233 		/* Flow Control operation */
234 		if (phydev->pause)
235 			priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
236 						 fc, pause_time);
237 
238 		if (phydev->speed != priv->speed) {
239 			new_state = 1;
240 			switch (phydev->speed) {
241 			case 1000:
242 				if (likely(priv->plat->has_gmac))
243 					ctrl &= ~priv->hw->link.port;
244 					stmmac_hw_fix_mac_speed(priv);
245 				break;
246 			case 100:
247 			case 10:
248 				if (priv->plat->has_gmac) {
249 					ctrl |= priv->hw->link.port;
250 					if (phydev->speed == SPEED_100) {
251 						ctrl |= priv->hw->link.speed;
252 					} else {
253 						ctrl &= ~(priv->hw->link.speed);
254 					}
255 				} else {
256 					ctrl &= ~priv->hw->link.port;
257 				}
258 				stmmac_hw_fix_mac_speed(priv);
259 				break;
260 			default:
261 				if (netif_msg_link(priv))
262 					pr_warning("%s: Speed (%d) is not 10"
263 				       " or 100!\n", dev->name, phydev->speed);
264 				break;
265 			}
266 
267 			priv->speed = phydev->speed;
268 		}
269 
270 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
271 
272 		if (!priv->oldlink) {
273 			new_state = 1;
274 			priv->oldlink = 1;
275 		}
276 	} else if (priv->oldlink) {
277 		new_state = 1;
278 		priv->oldlink = 0;
279 		priv->speed = 0;
280 		priv->oldduplex = -1;
281 	}
282 
283 	if (new_state && netif_msg_link(priv))
284 		phy_print_status(phydev);
285 
286 	spin_unlock_irqrestore(&priv->lock, flags);
287 
288 	DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
289 }
290 
291 /**
292  * stmmac_init_phy - PHY initialization
293  * @dev: net device structure
294  * Description: it initializes the driver's PHY state, and attaches the PHY
295  * to the mac driver.
296  *  Return value:
297  *  0 on success
298  */
stmmac_init_phy(struct net_device * dev)299 static int stmmac_init_phy(struct net_device *dev)
300 {
301 	struct stmmac_priv *priv = netdev_priv(dev);
302 	struct phy_device *phydev;
303 	char phy_id[MII_BUS_ID_SIZE + 3];
304 	char bus_id[MII_BUS_ID_SIZE];
305 	int interface = priv->plat->interface;
306 	priv->oldlink = 0;
307 	priv->speed = 0;
308 	priv->oldduplex = -1;
309 
310 	snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x", priv->plat->bus_id);
311 	snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
312 		 priv->plat->phy_addr);
313 	pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id);
314 
315 	phydev = phy_connect(dev, phy_id, &stmmac_adjust_link, 0, interface);
316 
317 	if (IS_ERR(phydev)) {
318 		pr_err("%s: Could not attach to PHY\n", dev->name);
319 		return PTR_ERR(phydev);
320 	}
321 
322 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
323 	if ((interface == PHY_INTERFACE_MODE_MII) ||
324 	    (interface == PHY_INTERFACE_MODE_RMII))
325 		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
326 					 SUPPORTED_1000baseT_Full);
327 
328 	/*
329 	 * Broken HW is sometimes missing the pull-up resistor on the
330 	 * MDIO line, which results in reads to non-existent devices returning
331 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
332 	 * device as well.
333 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
334 	 */
335 	if (phydev->phy_id == 0) {
336 		phy_disconnect(phydev);
337 		return -ENODEV;
338 	}
339 	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
340 		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
341 
342 	priv->phydev = phydev;
343 
344 	return 0;
345 }
346 
347 /**
348  * display_ring
349  * @p: pointer to the ring.
350  * @size: size of the ring.
351  * Description: display all the descriptors within the ring.
352  */
display_ring(struct dma_desc * p,int size)353 static void display_ring(struct dma_desc *p, int size)
354 {
355 	struct tmp_s {
356 		u64 a;
357 		unsigned int b;
358 		unsigned int c;
359 	};
360 	int i;
361 	for (i = 0; i < size; i++) {
362 		struct tmp_s *x = (struct tmp_s *)(p + i);
363 		pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
364 		       i, (unsigned int)virt_to_phys(&p[i]),
365 		       (unsigned int)(x->a), (unsigned int)((x->a) >> 32),
366 		       x->b, x->c);
367 		pr_info("\n");
368 	}
369 }
370 
stmmac_set_bfsize(int mtu,int bufsize)371 static int stmmac_set_bfsize(int mtu, int bufsize)
372 {
373 	int ret = bufsize;
374 
375 	if (mtu >= BUF_SIZE_4KiB)
376 		ret = BUF_SIZE_8KiB;
377 	else if (mtu >= BUF_SIZE_2KiB)
378 		ret = BUF_SIZE_4KiB;
379 	else if (mtu >= DMA_BUFFER_SIZE)
380 		ret = BUF_SIZE_2KiB;
381 	else
382 		ret = DMA_BUFFER_SIZE;
383 
384 	return ret;
385 }
386 
387 /**
388  * init_dma_desc_rings - init the RX/TX descriptor rings
389  * @dev: net device structure
390  * Description:  this function initializes the DMA RX/TX descriptors
391  * and allocates the socket buffers. It suppors the chained and ring
392  * modes.
393  */
init_dma_desc_rings(struct net_device * dev)394 static void init_dma_desc_rings(struct net_device *dev)
395 {
396 	int i;
397 	struct stmmac_priv *priv = netdev_priv(dev);
398 	struct sk_buff *skb;
399 	unsigned int txsize = priv->dma_tx_size;
400 	unsigned int rxsize = priv->dma_rx_size;
401 	unsigned int bfsize;
402 	int dis_ic = 0;
403 	int des3_as_data_buf = 0;
404 
405 	/* Set the max buffer size according to the DESC mode
406 	 * and the MTU. Note that RING mode allows 16KiB bsize. */
407 	bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);
408 
409 	if (bfsize == BUF_SIZE_16KiB)
410 		des3_as_data_buf = 1;
411 	else
412 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
413 
414 #ifdef CONFIG_STMMAC_TIMER
415 	/* Disable interrupts on completion for the reception if timer is on */
416 	if (likely(priv->tm->enable))
417 		dis_ic = 1;
418 #endif
419 
420 	DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
421 	    txsize, rxsize, bfsize);
422 
423 	priv->rx_skbuff_dma = kmalloc(rxsize * sizeof(dma_addr_t), GFP_KERNEL);
424 	priv->rx_skbuff =
425 	    kmalloc(sizeof(struct sk_buff *) * rxsize, GFP_KERNEL);
426 	priv->dma_rx =
427 	    (struct dma_desc *)dma_alloc_coherent(priv->device,
428 						  rxsize *
429 						  sizeof(struct dma_desc),
430 						  &priv->dma_rx_phy,
431 						  GFP_KERNEL);
432 	priv->tx_skbuff = kmalloc(sizeof(struct sk_buff *) * txsize,
433 				       GFP_KERNEL);
434 	priv->dma_tx =
435 	    (struct dma_desc *)dma_alloc_coherent(priv->device,
436 						  txsize *
437 						  sizeof(struct dma_desc),
438 						  &priv->dma_tx_phy,
439 						  GFP_KERNEL);
440 
441 	if ((priv->dma_rx == NULL) || (priv->dma_tx == NULL)) {
442 		pr_err("%s:ERROR allocating the DMA Tx/Rx desc\n", __func__);
443 		return;
444 	}
445 
446 	DBG(probe, INFO, "stmmac (%s) DMA desc: virt addr (Rx %p, "
447 	    "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
448 	    dev->name, priv->dma_rx, priv->dma_tx,
449 	    (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);
450 
451 	/* RX INITIALIZATION */
452 	DBG(probe, INFO, "stmmac: SKB addresses:\n"
453 			 "skb\t\tskb data\tdma data\n");
454 
455 	for (i = 0; i < rxsize; i++) {
456 		struct dma_desc *p = priv->dma_rx + i;
457 
458 		skb = __netdev_alloc_skb(dev, bfsize + NET_IP_ALIGN,
459 					 GFP_KERNEL);
460 		if (unlikely(skb == NULL)) {
461 			pr_err("%s: Rx init fails; skb is NULL\n", __func__);
462 			break;
463 		}
464 		skb_reserve(skb, NET_IP_ALIGN);
465 		priv->rx_skbuff[i] = skb;
466 		priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
467 						bfsize, DMA_FROM_DEVICE);
468 
469 		p->des2 = priv->rx_skbuff_dma[i];
470 
471 		priv->hw->ring->init_desc3(des3_as_data_buf, p);
472 
473 		DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
474 			priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
475 	}
476 	priv->cur_rx = 0;
477 	priv->dirty_rx = (unsigned int)(i - rxsize);
478 	priv->dma_buf_sz = bfsize;
479 	buf_sz = bfsize;
480 
481 	/* TX INITIALIZATION */
482 	for (i = 0; i < txsize; i++) {
483 		priv->tx_skbuff[i] = NULL;
484 		priv->dma_tx[i].des2 = 0;
485 	}
486 
487 	/* In case of Chained mode this sets the des3 to the next
488 	 * element in the chain */
489 	priv->hw->ring->init_dma_chain(priv->dma_rx, priv->dma_rx_phy, rxsize);
490 	priv->hw->ring->init_dma_chain(priv->dma_tx, priv->dma_tx_phy, txsize);
491 
492 	priv->dirty_tx = 0;
493 	priv->cur_tx = 0;
494 
495 	/* Clear the Rx/Tx descriptors */
496 	priv->hw->desc->init_rx_desc(priv->dma_rx, rxsize, dis_ic);
497 	priv->hw->desc->init_tx_desc(priv->dma_tx, txsize);
498 
499 	if (netif_msg_hw(priv)) {
500 		pr_info("RX descriptor ring:\n");
501 		display_ring(priv->dma_rx, rxsize);
502 		pr_info("TX descriptor ring:\n");
503 		display_ring(priv->dma_tx, txsize);
504 	}
505 }
506 
dma_free_rx_skbufs(struct stmmac_priv * priv)507 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
508 {
509 	int i;
510 
511 	for (i = 0; i < priv->dma_rx_size; i++) {
512 		if (priv->rx_skbuff[i]) {
513 			dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
514 					 priv->dma_buf_sz, DMA_FROM_DEVICE);
515 			dev_kfree_skb_any(priv->rx_skbuff[i]);
516 		}
517 		priv->rx_skbuff[i] = NULL;
518 	}
519 }
520 
dma_free_tx_skbufs(struct stmmac_priv * priv)521 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
522 {
523 	int i;
524 
525 	for (i = 0; i < priv->dma_tx_size; i++) {
526 		if (priv->tx_skbuff[i] != NULL) {
527 			struct dma_desc *p = priv->dma_tx + i;
528 			if (p->des2)
529 				dma_unmap_single(priv->device, p->des2,
530 						 priv->hw->desc->get_tx_len(p),
531 						 DMA_TO_DEVICE);
532 			dev_kfree_skb_any(priv->tx_skbuff[i]);
533 			priv->tx_skbuff[i] = NULL;
534 		}
535 	}
536 }
537 
free_dma_desc_resources(struct stmmac_priv * priv)538 static void free_dma_desc_resources(struct stmmac_priv *priv)
539 {
540 	/* Release the DMA TX/RX socket buffers */
541 	dma_free_rx_skbufs(priv);
542 	dma_free_tx_skbufs(priv);
543 
544 	/* Free the region of consistent memory previously allocated for
545 	 * the DMA */
546 	dma_free_coherent(priv->device,
547 			  priv->dma_tx_size * sizeof(struct dma_desc),
548 			  priv->dma_tx, priv->dma_tx_phy);
549 	dma_free_coherent(priv->device,
550 			  priv->dma_rx_size * sizeof(struct dma_desc),
551 			  priv->dma_rx, priv->dma_rx_phy);
552 	kfree(priv->rx_skbuff_dma);
553 	kfree(priv->rx_skbuff);
554 	kfree(priv->tx_skbuff);
555 }
556 
557 /**
558  *  stmmac_dma_operation_mode - HW DMA operation mode
559  *  @priv : pointer to the private device structure.
560  *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
561  *  or Store-And-Forward capability.
562  */
stmmac_dma_operation_mode(struct stmmac_priv * priv)563 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
564 {
565 	if (likely(priv->plat->force_sf_dma_mode ||
566 		((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) {
567 		/*
568 		 * In case of GMAC, SF mode can be enabled
569 		 * to perform the TX COE in HW. This depends on:
570 		 * 1) TX COE if actually supported
571 		 * 2) There is no bugged Jumbo frame support
572 		 *    that needs to not insert csum in the TDES.
573 		 */
574 		priv->hw->dma->dma_mode(priv->ioaddr,
575 					SF_DMA_MODE, SF_DMA_MODE);
576 		tc = SF_DMA_MODE;
577 	} else
578 		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
579 }
580 
581 /**
582  * stmmac_tx:
583  * @priv: private driver structure
584  * Description: it reclaims resources after transmission completes.
585  */
stmmac_tx(struct stmmac_priv * priv)586 static void stmmac_tx(struct stmmac_priv *priv)
587 {
588 	unsigned int txsize = priv->dma_tx_size;
589 
590 	spin_lock(&priv->tx_lock);
591 
592 	while (priv->dirty_tx != priv->cur_tx) {
593 		int last;
594 		unsigned int entry = priv->dirty_tx % txsize;
595 		struct sk_buff *skb = priv->tx_skbuff[entry];
596 		struct dma_desc *p = priv->dma_tx + entry;
597 
598 		/* Check if the descriptor is owned by the DMA. */
599 		if (priv->hw->desc->get_tx_owner(p))
600 			break;
601 
602 		/* Verify tx error by looking at the last segment */
603 		last = priv->hw->desc->get_tx_ls(p);
604 		if (likely(last)) {
605 			int tx_error =
606 				priv->hw->desc->tx_status(&priv->dev->stats,
607 							  &priv->xstats, p,
608 							  priv->ioaddr);
609 			if (likely(tx_error == 0)) {
610 				priv->dev->stats.tx_packets++;
611 				priv->xstats.tx_pkt_n++;
612 			} else
613 				priv->dev->stats.tx_errors++;
614 		}
615 		TX_DBG("%s: curr %d, dirty %d\n", __func__,
616 			priv->cur_tx, priv->dirty_tx);
617 
618 		if (likely(p->des2))
619 			dma_unmap_single(priv->device, p->des2,
620 					 priv->hw->desc->get_tx_len(p),
621 					 DMA_TO_DEVICE);
622 		priv->hw->ring->clean_desc3(p);
623 
624 		if (likely(skb != NULL)) {
625 			/*
626 			 * If there's room in the queue (limit it to size)
627 			 * we add this skb back into the pool,
628 			 * if it's the right size.
629 			 */
630 			if ((skb_queue_len(&priv->rx_recycle) <
631 				priv->dma_rx_size) &&
632 				skb_recycle_check(skb, priv->dma_buf_sz))
633 				__skb_queue_head(&priv->rx_recycle, skb);
634 			else
635 				dev_kfree_skb(skb);
636 
637 			priv->tx_skbuff[entry] = NULL;
638 		}
639 
640 		priv->hw->desc->release_tx_desc(p);
641 
642 		entry = (++priv->dirty_tx) % txsize;
643 	}
644 	if (unlikely(netif_queue_stopped(priv->dev) &&
645 		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
646 		netif_tx_lock(priv->dev);
647 		if (netif_queue_stopped(priv->dev) &&
648 		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
649 			TX_DBG("%s: restart transmit\n", __func__);
650 			netif_wake_queue(priv->dev);
651 		}
652 		netif_tx_unlock(priv->dev);
653 	}
654 	spin_unlock(&priv->tx_lock);
655 }
656 
stmmac_enable_irq(struct stmmac_priv * priv)657 static inline void stmmac_enable_irq(struct stmmac_priv *priv)
658 {
659 #ifdef CONFIG_STMMAC_TIMER
660 	if (likely(priv->tm->enable))
661 		priv->tm->timer_start(tmrate);
662 	else
663 #endif
664 		priv->hw->dma->enable_dma_irq(priv->ioaddr);
665 }
666 
stmmac_disable_irq(struct stmmac_priv * priv)667 static inline void stmmac_disable_irq(struct stmmac_priv *priv)
668 {
669 #ifdef CONFIG_STMMAC_TIMER
670 	if (likely(priv->tm->enable))
671 		priv->tm->timer_stop();
672 	else
673 #endif
674 		priv->hw->dma->disable_dma_irq(priv->ioaddr);
675 }
676 
stmmac_has_work(struct stmmac_priv * priv)677 static int stmmac_has_work(struct stmmac_priv *priv)
678 {
679 	unsigned int has_work = 0;
680 	int rxret, tx_work = 0;
681 
682 	rxret = priv->hw->desc->get_rx_owner(priv->dma_rx +
683 		(priv->cur_rx % priv->dma_rx_size));
684 
685 	if (priv->dirty_tx != priv->cur_tx)
686 		tx_work = 1;
687 
688 	if (likely(!rxret || tx_work))
689 		has_work = 1;
690 
691 	return has_work;
692 }
693 
_stmmac_schedule(struct stmmac_priv * priv)694 static inline void _stmmac_schedule(struct stmmac_priv *priv)
695 {
696 	if (likely(stmmac_has_work(priv))) {
697 		stmmac_disable_irq(priv);
698 		napi_schedule(&priv->napi);
699 	}
700 }
701 
702 #ifdef CONFIG_STMMAC_TIMER
stmmac_schedule(struct net_device * dev)703 void stmmac_schedule(struct net_device *dev)
704 {
705 	struct stmmac_priv *priv = netdev_priv(dev);
706 
707 	priv->xstats.sched_timer_n++;
708 
709 	_stmmac_schedule(priv);
710 }
711 
stmmac_no_timer_started(unsigned int x)712 static void stmmac_no_timer_started(unsigned int x)
713 {;
714 };
715 
stmmac_no_timer_stopped(void)716 static void stmmac_no_timer_stopped(void)
717 {;
718 };
719 #endif
720 
721 /**
722  * stmmac_tx_err:
723  * @priv: pointer to the private device structure
724  * Description: it cleans the descriptors and restarts the transmission
725  * in case of errors.
726  */
stmmac_tx_err(struct stmmac_priv * priv)727 static void stmmac_tx_err(struct stmmac_priv *priv)
728 {
729 	netif_stop_queue(priv->dev);
730 
731 	priv->hw->dma->stop_tx(priv->ioaddr);
732 	dma_free_tx_skbufs(priv);
733 	priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
734 	priv->dirty_tx = 0;
735 	priv->cur_tx = 0;
736 	priv->hw->dma->start_tx(priv->ioaddr);
737 
738 	priv->dev->stats.tx_errors++;
739 	netif_wake_queue(priv->dev);
740 }
741 
742 
stmmac_dma_interrupt(struct stmmac_priv * priv)743 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
744 {
745 	int status;
746 
747 	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
748 	if (likely(status == handle_tx_rx))
749 		_stmmac_schedule(priv);
750 
751 	else if (unlikely(status == tx_hard_error_bump_tc)) {
752 		/* Try to bump up the dma threshold on this failure */
753 		if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
754 			tc += 64;
755 			priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
756 			priv->xstats.threshold = tc;
757 		}
758 	} else if (unlikely(status == tx_hard_error))
759 		stmmac_tx_err(priv);
760 }
761 
stmmac_mmc_setup(struct stmmac_priv * priv)762 static void stmmac_mmc_setup(struct stmmac_priv *priv)
763 {
764 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
765 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
766 
767 	/* Mask MMC irq, counters are managed in SW and registers
768 	 * are cleared on each READ eventually. */
769 	dwmac_mmc_intr_all_mask(priv->ioaddr);
770 
771 	if (priv->dma_cap.rmon) {
772 		dwmac_mmc_ctrl(priv->ioaddr, mode);
773 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
774 	} else
775 		pr_info(" No MAC Management Counters available\n");
776 }
777 
stmmac_get_synopsys_id(struct stmmac_priv * priv)778 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
779 {
780 	u32 hwid = priv->hw->synopsys_uid;
781 
782 	/* Only check valid Synopsys Id because old MAC chips
783 	 * have no HW registers where get the ID */
784 	if (likely(hwid)) {
785 		u32 uid = ((hwid & 0x0000ff00) >> 8);
786 		u32 synid = (hwid & 0x000000ff);
787 
788 		pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
789 			uid, synid);
790 
791 		return synid;
792 	}
793 	return 0;
794 }
795 
796 /**
797  * stmmac_selec_desc_mode
798  * @dev : device pointer
799  * Description: select the Enhanced/Alternate or Normal descriptors */
stmmac_selec_desc_mode(struct stmmac_priv * priv)800 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
801 {
802 	if (priv->plat->enh_desc) {
803 		pr_info(" Enhanced/Alternate descriptors\n");
804 		priv->hw->desc = &enh_desc_ops;
805 	} else {
806 		pr_info(" Normal descriptors\n");
807 		priv->hw->desc = &ndesc_ops;
808 	}
809 }
810 
811 /**
812  * stmmac_get_hw_features
813  * @priv : private device pointer
814  * Description:
815  *  new GMAC chip generations have a new register to indicate the
816  *  presence of the optional feature/functions.
817  *  This can be also used to override the value passed through the
818  *  platform and necessary for old MAC10/100 and GMAC chips.
819  */
stmmac_get_hw_features(struct stmmac_priv * priv)820 static int stmmac_get_hw_features(struct stmmac_priv *priv)
821 {
822 	u32 hw_cap = 0;
823 
824 	if (priv->hw->dma->get_hw_feature) {
825 		hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
826 
827 		priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
828 		priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
829 		priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
830 		priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
831 		priv->dma_cap.multi_addr =
832 			(hw_cap & DMA_HW_FEAT_ADDMACADRSEL) >> 5;
833 		priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
834 		priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
835 		priv->dma_cap.pmt_remote_wake_up =
836 			(hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
837 		priv->dma_cap.pmt_magic_frame =
838 			(hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
839 		/* MMC */
840 		priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
841 		/* IEEE 1588-2002*/
842 		priv->dma_cap.time_stamp =
843 			(hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
844 		/* IEEE 1588-2008*/
845 		priv->dma_cap.atime_stamp =
846 			(hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
847 		/* 802.3az - Energy-Efficient Ethernet (EEE) */
848 		priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
849 		priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
850 		/* TX and RX csum */
851 		priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
852 		priv->dma_cap.rx_coe_type1 =
853 			(hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
854 		priv->dma_cap.rx_coe_type2 =
855 			(hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
856 		priv->dma_cap.rxfifo_over_2048 =
857 			(hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
858 		/* TX and RX number of channels */
859 		priv->dma_cap.number_rx_channel =
860 			(hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
861 		priv->dma_cap.number_tx_channel =
862 			(hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
863 		/* Alternate (enhanced) DESC mode*/
864 		priv->dma_cap.enh_desc =
865 			(hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
866 
867 	}
868 
869 	return hw_cap;
870 }
871 
stmmac_check_ether_addr(struct stmmac_priv * priv)872 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
873 {
874 	/* verify if the MAC address is valid, in case of failures it
875 	 * generates a random MAC address */
876 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
877 		priv->hw->mac->get_umac_addr((void __iomem *)
878 					     priv->dev->base_addr,
879 					     priv->dev->dev_addr, 0);
880 		if  (!is_valid_ether_addr(priv->dev->dev_addr))
881 			random_ether_addr(priv->dev->dev_addr);
882 	}
883 	pr_warning("%s: device MAC address %pM\n", priv->dev->name,
884 						   priv->dev->dev_addr);
885 }
886 
887 /**
888  *  stmmac_open - open entry point of the driver
889  *  @dev : pointer to the device structure.
890  *  Description:
891  *  This function is the open entry point of the driver.
892  *  Return value:
893  *  0 on success and an appropriate (-)ve integer as defined in errno.h
894  *  file on failure.
895  */
stmmac_open(struct net_device * dev)896 static int stmmac_open(struct net_device *dev)
897 {
898 	struct stmmac_priv *priv = netdev_priv(dev);
899 	int ret;
900 
901 	stmmac_check_ether_addr(priv);
902 
903 	/* MDIO bus Registration */
904 	ret = stmmac_mdio_register(dev);
905 	if (ret < 0) {
906 		pr_debug("%s: MDIO bus (id: %d) registration failed",
907 			 __func__, priv->plat->bus_id);
908 		return ret;
909 	}
910 
911 #ifdef CONFIG_STMMAC_TIMER
912 	priv->tm = kzalloc(sizeof(struct stmmac_timer *), GFP_KERNEL);
913 	if (unlikely(priv->tm == NULL)) {
914 		pr_err("%s: ERROR: timer memory alloc failed\n", __func__);
915 		return -ENOMEM;
916 	}
917 	priv->tm->freq = tmrate;
918 
919 	/* Test if the external timer can be actually used.
920 	 * In case of failure continue without timer. */
921 	if (unlikely((stmmac_open_ext_timer(dev, priv->tm)) < 0)) {
922 		pr_warning("stmmaceth: cannot attach the external timer.\n");
923 		priv->tm->freq = 0;
924 		priv->tm->timer_start = stmmac_no_timer_started;
925 		priv->tm->timer_stop = stmmac_no_timer_stopped;
926 	} else
927 		priv->tm->enable = 1;
928 #endif
929 	ret = stmmac_init_phy(dev);
930 	if (unlikely(ret)) {
931 		pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
932 		goto open_error;
933 	}
934 
935 	/* Create and initialize the TX/RX descriptors chains. */
936 	priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
937 	priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
938 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
939 	init_dma_desc_rings(dev);
940 
941 	/* DMA initialization and SW reset */
942 	ret = priv->hw->dma->init(priv->ioaddr, priv->plat->pbl,
943 				  priv->dma_tx_phy, priv->dma_rx_phy);
944 	if (ret < 0) {
945 		pr_err("%s: DMA initialization failed\n", __func__);
946 		goto open_error;
947 	}
948 
949 	/* Copy the MAC addr into the HW  */
950 	priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
951 
952 	/* If required, perform hw setup of the bus. */
953 	if (priv->plat->bus_setup)
954 		priv->plat->bus_setup(priv->ioaddr);
955 
956 	/* Initialize the MAC Core */
957 	priv->hw->mac->core_init(priv->ioaddr);
958 
959 	/* Request the IRQ lines */
960 	ret = request_irq(dev->irq, stmmac_interrupt,
961 			 IRQF_SHARED, dev->name, dev);
962 	if (unlikely(ret < 0)) {
963 		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
964 		       __func__, dev->irq, ret);
965 		goto open_error;
966 	}
967 
968 	/* Request the Wake IRQ in case of another line is used for WoL */
969 	if (priv->wol_irq != dev->irq) {
970 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
971 				  IRQF_SHARED, dev->name, dev);
972 		if (unlikely(ret < 0)) {
973 			pr_err("%s: ERROR: allocating the ext WoL IRQ %d "
974 			       "(error: %d)\n",	__func__, priv->wol_irq, ret);
975 			goto open_error_wolirq;
976 		}
977 	}
978 
979 	/* Enable the MAC Rx/Tx */
980 	stmmac_set_mac(priv->ioaddr, true);
981 
982 	/* Set the HW DMA mode and the COE */
983 	stmmac_dma_operation_mode(priv);
984 
985 	/* Extra statistics */
986 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
987 	priv->xstats.threshold = tc;
988 
989 	stmmac_mmc_setup(priv);
990 
991 #ifdef CONFIG_STMMAC_DEBUG_FS
992 	ret = stmmac_init_fs(dev);
993 	if (ret < 0)
994 		pr_warning("%s: failed debugFS registration\n", __func__);
995 #endif
996 	/* Start the ball rolling... */
997 	DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
998 	priv->hw->dma->start_tx(priv->ioaddr);
999 	priv->hw->dma->start_rx(priv->ioaddr);
1000 
1001 #ifdef CONFIG_STMMAC_TIMER
1002 	priv->tm->timer_start(tmrate);
1003 #endif
1004 
1005 	/* Dump DMA/MAC registers */
1006 	if (netif_msg_hw(priv)) {
1007 		priv->hw->mac->dump_regs(priv->ioaddr);
1008 		priv->hw->dma->dump_regs(priv->ioaddr);
1009 	}
1010 
1011 	if (priv->phydev)
1012 		phy_start(priv->phydev);
1013 
1014 	napi_enable(&priv->napi);
1015 	skb_queue_head_init(&priv->rx_recycle);
1016 	netif_start_queue(dev);
1017 
1018 	return 0;
1019 
1020 open_error_wolirq:
1021 	free_irq(dev->irq, dev);
1022 
1023 open_error:
1024 #ifdef CONFIG_STMMAC_TIMER
1025 	kfree(priv->tm);
1026 #endif
1027 	if (priv->phydev)
1028 		phy_disconnect(priv->phydev);
1029 
1030 	return ret;
1031 }
1032 
1033 /**
1034  *  stmmac_release - close entry point of the driver
1035  *  @dev : device pointer.
1036  *  Description:
1037  *  This is the stop entry point of the driver.
1038  */
stmmac_release(struct net_device * dev)1039 static int stmmac_release(struct net_device *dev)
1040 {
1041 	struct stmmac_priv *priv = netdev_priv(dev);
1042 
1043 	/* Stop and disconnect the PHY */
1044 	if (priv->phydev) {
1045 		phy_stop(priv->phydev);
1046 		phy_disconnect(priv->phydev);
1047 		priv->phydev = NULL;
1048 	}
1049 
1050 	netif_stop_queue(dev);
1051 
1052 #ifdef CONFIG_STMMAC_TIMER
1053 	/* Stop and release the timer */
1054 	stmmac_close_ext_timer();
1055 	if (priv->tm != NULL)
1056 		kfree(priv->tm);
1057 #endif
1058 	napi_disable(&priv->napi);
1059 	skb_queue_purge(&priv->rx_recycle);
1060 
1061 	/* Free the IRQ lines */
1062 	free_irq(dev->irq, dev);
1063 	if (priv->wol_irq != dev->irq)
1064 		free_irq(priv->wol_irq, dev);
1065 
1066 	/* Stop TX/RX DMA and clear the descriptors */
1067 	priv->hw->dma->stop_tx(priv->ioaddr);
1068 	priv->hw->dma->stop_rx(priv->ioaddr);
1069 
1070 	/* Release and free the Rx/Tx resources */
1071 	free_dma_desc_resources(priv);
1072 
1073 	/* Disable the MAC Rx/Tx */
1074 	stmmac_set_mac(priv->ioaddr, false);
1075 
1076 	netif_carrier_off(dev);
1077 
1078 #ifdef CONFIG_STMMAC_DEBUG_FS
1079 	stmmac_exit_fs();
1080 #endif
1081 	stmmac_mdio_unregister(dev);
1082 
1083 	return 0;
1084 }
1085 
1086 /**
1087  *  stmmac_xmit:
1088  *  @skb : the socket buffer
1089  *  @dev : device pointer
1090  *  Description : Tx entry point of the driver.
1091  */
stmmac_xmit(struct sk_buff * skb,struct net_device * dev)1092 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1093 {
1094 	struct stmmac_priv *priv = netdev_priv(dev);
1095 	unsigned int txsize = priv->dma_tx_size;
1096 	unsigned int entry;
1097 	int i, csum_insertion = 0;
1098 	int nfrags = skb_shinfo(skb)->nr_frags;
1099 	struct dma_desc *desc, *first;
1100 	unsigned int nopaged_len = skb_headlen(skb);
1101 
1102 	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1103 		if (!netif_queue_stopped(dev)) {
1104 			netif_stop_queue(dev);
1105 			/* This is a hard error, log it. */
1106 			pr_err("%s: BUG! Tx Ring full when queue awake\n",
1107 				__func__);
1108 		}
1109 		return NETDEV_TX_BUSY;
1110 	}
1111 
1112 	spin_lock(&priv->tx_lock);
1113 
1114 	entry = priv->cur_tx % txsize;
1115 
1116 #ifdef STMMAC_XMIT_DEBUG
1117 	if ((skb->len > ETH_FRAME_LEN) || nfrags)
1118 		pr_info("stmmac xmit:\n"
1119 		       "\tskb addr %p - len: %d - nopaged_len: %d\n"
1120 		       "\tn_frags: %d - ip_summed: %d - %s gso\n",
1121 		       skb, skb->len, nopaged_len, nfrags, skb->ip_summed,
1122 		       !skb_is_gso(skb) ? "isn't" : "is");
1123 #endif
1124 
1125 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1126 
1127 	desc = priv->dma_tx + entry;
1128 	first = desc;
1129 
1130 #ifdef STMMAC_XMIT_DEBUG
1131 	if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1132 		pr_debug("stmmac xmit: skb len: %d, nopaged_len: %d,\n"
1133 		       "\t\tn_frags: %d, ip_summed: %d\n",
1134 		       skb->len, nopaged_len, nfrags, skb->ip_summed);
1135 #endif
1136 	priv->tx_skbuff[entry] = skb;
1137 
1138 	if (priv->hw->ring->is_jumbo_frm(skb->len, priv->plat->enh_desc)) {
1139 		entry = priv->hw->ring->jumbo_frm(priv, skb, csum_insertion);
1140 		desc = priv->dma_tx + entry;
1141 	} else {
1142 		desc->des2 = dma_map_single(priv->device, skb->data,
1143 					nopaged_len, DMA_TO_DEVICE);
1144 		priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1145 						csum_insertion);
1146 	}
1147 
1148 	for (i = 0; i < nfrags; i++) {
1149 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1150 		int len = skb_frag_size(frag);
1151 
1152 		entry = (++priv->cur_tx) % txsize;
1153 		desc = priv->dma_tx + entry;
1154 
1155 		TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1156 		desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1157 					      DMA_TO_DEVICE);
1158 		priv->tx_skbuff[entry] = NULL;
1159 		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion);
1160 		wmb();
1161 		priv->hw->desc->set_tx_owner(desc);
1162 	}
1163 
1164 	/* Interrupt on completition only for the latest segment */
1165 	priv->hw->desc->close_tx_desc(desc);
1166 
1167 #ifdef CONFIG_STMMAC_TIMER
1168 	/* Clean IC while using timer */
1169 	if (likely(priv->tm->enable))
1170 		priv->hw->desc->clear_tx_ic(desc);
1171 #endif
1172 
1173 	wmb();
1174 
1175 	/* To avoid raise condition */
1176 	priv->hw->desc->set_tx_owner(first);
1177 
1178 	priv->cur_tx++;
1179 
1180 #ifdef STMMAC_XMIT_DEBUG
1181 	if (netif_msg_pktdata(priv)) {
1182 		pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
1183 		       "first=%p, nfrags=%d\n",
1184 		       (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
1185 		       entry, first, nfrags);
1186 		display_ring(priv->dma_tx, txsize);
1187 		pr_info(">>> frame to be transmitted: ");
1188 		print_pkt(skb->data, skb->len);
1189 	}
1190 #endif
1191 	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1192 		TX_DBG("%s: stop transmitted packets\n", __func__);
1193 		netif_stop_queue(dev);
1194 	}
1195 
1196 	dev->stats.tx_bytes += skb->len;
1197 
1198 	skb_tx_timestamp(skb);
1199 
1200 	priv->hw->dma->enable_dma_transmission(priv->ioaddr);
1201 
1202 	spin_unlock(&priv->tx_lock);
1203 
1204 	return NETDEV_TX_OK;
1205 }
1206 
stmmac_rx_refill(struct stmmac_priv * priv)1207 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1208 {
1209 	unsigned int rxsize = priv->dma_rx_size;
1210 	int bfsize = priv->dma_buf_sz;
1211 	struct dma_desc *p = priv->dma_rx;
1212 
1213 	for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1214 		unsigned int entry = priv->dirty_rx % rxsize;
1215 		if (likely(priv->rx_skbuff[entry] == NULL)) {
1216 			struct sk_buff *skb;
1217 
1218 			skb = __skb_dequeue(&priv->rx_recycle);
1219 			if (skb == NULL)
1220 				skb = netdev_alloc_skb_ip_align(priv->dev,
1221 								bfsize);
1222 
1223 			if (unlikely(skb == NULL))
1224 				break;
1225 
1226 			priv->rx_skbuff[entry] = skb;
1227 			priv->rx_skbuff_dma[entry] =
1228 			    dma_map_single(priv->device, skb->data, bfsize,
1229 					   DMA_FROM_DEVICE);
1230 
1231 			(p + entry)->des2 = priv->rx_skbuff_dma[entry];
1232 
1233 			if (unlikely(priv->plat->has_gmac))
1234 				priv->hw->ring->refill_desc3(bfsize, p + entry);
1235 
1236 			RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
1237 		}
1238 		wmb();
1239 		priv->hw->desc->set_rx_owner(p + entry);
1240 	}
1241 }
1242 
stmmac_rx(struct stmmac_priv * priv,int limit)1243 static int stmmac_rx(struct stmmac_priv *priv, int limit)
1244 {
1245 	unsigned int rxsize = priv->dma_rx_size;
1246 	unsigned int entry = priv->cur_rx % rxsize;
1247 	unsigned int next_entry;
1248 	unsigned int count = 0;
1249 	struct dma_desc *p = priv->dma_rx + entry;
1250 	struct dma_desc *p_next;
1251 
1252 #ifdef STMMAC_RX_DEBUG
1253 	if (netif_msg_hw(priv)) {
1254 		pr_debug(">>> stmmac_rx: descriptor ring:\n");
1255 		display_ring(priv->dma_rx, rxsize);
1256 	}
1257 #endif
1258 	count = 0;
1259 	while (!priv->hw->desc->get_rx_owner(p)) {
1260 		int status;
1261 
1262 		if (count >= limit)
1263 			break;
1264 
1265 		count++;
1266 
1267 		next_entry = (++priv->cur_rx) % rxsize;
1268 		p_next = priv->dma_rx + next_entry;
1269 		prefetch(p_next);
1270 
1271 		/* read the status of the incoming frame */
1272 		status = (priv->hw->desc->rx_status(&priv->dev->stats,
1273 						    &priv->xstats, p));
1274 		if (unlikely(status == discard_frame))
1275 			priv->dev->stats.rx_errors++;
1276 		else {
1277 			struct sk_buff *skb;
1278 			int frame_len;
1279 
1280 			frame_len = priv->hw->desc->get_rx_frame_len(p);
1281 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
1282 			 * Type frames (LLC/LLC-SNAP) */
1283 			if (unlikely(status != llc_snap))
1284 				frame_len -= ETH_FCS_LEN;
1285 #ifdef STMMAC_RX_DEBUG
1286 			if (frame_len > ETH_FRAME_LEN)
1287 				pr_debug("\tRX frame size %d, COE status: %d\n",
1288 					frame_len, status);
1289 
1290 			if (netif_msg_hw(priv))
1291 				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
1292 					p, entry, p->des2);
1293 #endif
1294 			skb = priv->rx_skbuff[entry];
1295 			if (unlikely(!skb)) {
1296 				pr_err("%s: Inconsistent Rx descriptor chain\n",
1297 					priv->dev->name);
1298 				priv->dev->stats.rx_dropped++;
1299 				break;
1300 			}
1301 			prefetch(skb->data - NET_IP_ALIGN);
1302 			priv->rx_skbuff[entry] = NULL;
1303 
1304 			skb_put(skb, frame_len);
1305 			dma_unmap_single(priv->device,
1306 					 priv->rx_skbuff_dma[entry],
1307 					 priv->dma_buf_sz, DMA_FROM_DEVICE);
1308 #ifdef STMMAC_RX_DEBUG
1309 			if (netif_msg_pktdata(priv)) {
1310 				pr_info(" frame received (%dbytes)", frame_len);
1311 				print_pkt(skb->data, frame_len);
1312 			}
1313 #endif
1314 			skb->protocol = eth_type_trans(skb, priv->dev);
1315 
1316 			if (unlikely(!priv->rx_coe)) {
1317 				/* No RX COE for old mac10/100 devices */
1318 				skb_checksum_none_assert(skb);
1319 				netif_receive_skb(skb);
1320 			} else {
1321 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1322 				napi_gro_receive(&priv->napi, skb);
1323 			}
1324 
1325 			priv->dev->stats.rx_packets++;
1326 			priv->dev->stats.rx_bytes += frame_len;
1327 		}
1328 		entry = next_entry;
1329 		p = p_next;	/* use prefetched values */
1330 	}
1331 
1332 	stmmac_rx_refill(priv);
1333 
1334 	priv->xstats.rx_pkt_n += count;
1335 
1336 	return count;
1337 }
1338 
1339 /**
1340  *  stmmac_poll - stmmac poll method (NAPI)
1341  *  @napi : pointer to the napi structure.
1342  *  @budget : maximum number of packets that the current CPU can receive from
1343  *	      all interfaces.
1344  *  Description :
1345  *   This function implements the the reception process.
1346  *   Also it runs the TX completion thread
1347  */
stmmac_poll(struct napi_struct * napi,int budget)1348 static int stmmac_poll(struct napi_struct *napi, int budget)
1349 {
1350 	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
1351 	int work_done = 0;
1352 
1353 	priv->xstats.poll_n++;
1354 	stmmac_tx(priv);
1355 	work_done = stmmac_rx(priv, budget);
1356 
1357 	if (work_done < budget) {
1358 		napi_complete(napi);
1359 		stmmac_enable_irq(priv);
1360 	}
1361 	return work_done;
1362 }
1363 
1364 /**
1365  *  stmmac_tx_timeout
1366  *  @dev : Pointer to net device structure
1367  *  Description: this function is called when a packet transmission fails to
1368  *   complete within a reasonable tmrate. The driver will mark the error in the
1369  *   netdev structure and arrange for the device to be reset to a sane state
1370  *   in order to transmit a new packet.
1371  */
stmmac_tx_timeout(struct net_device * dev)1372 static void stmmac_tx_timeout(struct net_device *dev)
1373 {
1374 	struct stmmac_priv *priv = netdev_priv(dev);
1375 
1376 	/* Clear Tx resources and restart transmitting again */
1377 	stmmac_tx_err(priv);
1378 }
1379 
1380 /* Configuration changes (passed on by ifconfig) */
stmmac_config(struct net_device * dev,struct ifmap * map)1381 static int stmmac_config(struct net_device *dev, struct ifmap *map)
1382 {
1383 	if (dev->flags & IFF_UP)	/* can't act on a running interface */
1384 		return -EBUSY;
1385 
1386 	/* Don't allow changing the I/O address */
1387 	if (map->base_addr != dev->base_addr) {
1388 		pr_warning("%s: can't change I/O address\n", dev->name);
1389 		return -EOPNOTSUPP;
1390 	}
1391 
1392 	/* Don't allow changing the IRQ */
1393 	if (map->irq != dev->irq) {
1394 		pr_warning("%s: can't change IRQ number %d\n",
1395 		       dev->name, dev->irq);
1396 		return -EOPNOTSUPP;
1397 	}
1398 
1399 	/* ignore other fields */
1400 	return 0;
1401 }
1402 
1403 /**
1404  *  stmmac_set_rx_mode - entry point for multicast addressing
1405  *  @dev : pointer to the device structure
1406  *  Description:
1407  *  This function is a driver entry point which gets called by the kernel
1408  *  whenever multicast addresses must be enabled/disabled.
1409  *  Return value:
1410  *  void.
1411  */
stmmac_set_rx_mode(struct net_device * dev)1412 static void stmmac_set_rx_mode(struct net_device *dev)
1413 {
1414 	struct stmmac_priv *priv = netdev_priv(dev);
1415 
1416 	spin_lock(&priv->lock);
1417 	priv->hw->mac->set_filter(dev);
1418 	spin_unlock(&priv->lock);
1419 }
1420 
1421 /**
1422  *  stmmac_change_mtu - entry point to change MTU size for the device.
1423  *  @dev : device pointer.
1424  *  @new_mtu : the new MTU size for the device.
1425  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
1426  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
1427  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
1428  *  Return value:
1429  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1430  *  file on failure.
1431  */
stmmac_change_mtu(struct net_device * dev,int new_mtu)1432 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
1433 {
1434 	struct stmmac_priv *priv = netdev_priv(dev);
1435 	int max_mtu;
1436 
1437 	if (netif_running(dev)) {
1438 		pr_err("%s: must be stopped to change its MTU\n", dev->name);
1439 		return -EBUSY;
1440 	}
1441 
1442 	if (priv->plat->enh_desc)
1443 		max_mtu = JUMBO_LEN;
1444 	else
1445 		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
1446 
1447 	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
1448 		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
1449 		return -EINVAL;
1450 	}
1451 
1452 	dev->mtu = new_mtu;
1453 	netdev_update_features(dev);
1454 
1455 	return 0;
1456 }
1457 
stmmac_fix_features(struct net_device * dev,netdev_features_t features)1458 static netdev_features_t stmmac_fix_features(struct net_device *dev,
1459 	netdev_features_t features)
1460 {
1461 	struct stmmac_priv *priv = netdev_priv(dev);
1462 
1463 	if (!priv->rx_coe)
1464 		features &= ~NETIF_F_RXCSUM;
1465 	if (!priv->plat->tx_coe)
1466 		features &= ~NETIF_F_ALL_CSUM;
1467 
1468 	/* Some GMAC devices have a bugged Jumbo frame support that
1469 	 * needs to have the Tx COE disabled for oversized frames
1470 	 * (due to limited buffer sizes). In this case we disable
1471 	 * the TX csum insertionin the TDES and not use SF. */
1472 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
1473 		features &= ~NETIF_F_ALL_CSUM;
1474 
1475 	return features;
1476 }
1477 
stmmac_interrupt(int irq,void * dev_id)1478 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
1479 {
1480 	struct net_device *dev = (struct net_device *)dev_id;
1481 	struct stmmac_priv *priv = netdev_priv(dev);
1482 
1483 	if (unlikely(!dev)) {
1484 		pr_err("%s: invalid dev pointer\n", __func__);
1485 		return IRQ_NONE;
1486 	}
1487 
1488 	if (priv->plat->has_gmac)
1489 		/* To handle GMAC own interrupts */
1490 		priv->hw->mac->host_irq_status((void __iomem *) dev->base_addr);
1491 
1492 	stmmac_dma_interrupt(priv);
1493 
1494 	return IRQ_HANDLED;
1495 }
1496 
1497 #ifdef CONFIG_NET_POLL_CONTROLLER
1498 /* Polling receive - used by NETCONSOLE and other diagnostic tools
1499  * to allow network I/O with interrupts disabled. */
stmmac_poll_controller(struct net_device * dev)1500 static void stmmac_poll_controller(struct net_device *dev)
1501 {
1502 	disable_irq(dev->irq);
1503 	stmmac_interrupt(dev->irq, dev);
1504 	enable_irq(dev->irq);
1505 }
1506 #endif
1507 
1508 /**
1509  *  stmmac_ioctl - Entry point for the Ioctl
1510  *  @dev: Device pointer.
1511  *  @rq: An IOCTL specefic structure, that can contain a pointer to
1512  *  a proprietary structure used to pass information to the driver.
1513  *  @cmd: IOCTL command
1514  *  Description:
1515  *  Currently there are no special functionality supported in IOCTL, just the
1516  *  phy_mii_ioctl(...) can be invoked.
1517  */
stmmac_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1518 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1519 {
1520 	struct stmmac_priv *priv = netdev_priv(dev);
1521 	int ret;
1522 
1523 	if (!netif_running(dev))
1524 		return -EINVAL;
1525 
1526 	if (!priv->phydev)
1527 		return -EINVAL;
1528 
1529 	ret = phy_mii_ioctl(priv->phydev, rq, cmd);
1530 
1531 	return ret;
1532 }
1533 
1534 #ifdef CONFIG_STMMAC_DEBUG_FS
1535 static struct dentry *stmmac_fs_dir;
1536 static struct dentry *stmmac_rings_status;
1537 static struct dentry *stmmac_dma_cap;
1538 
stmmac_sysfs_ring_read(struct seq_file * seq,void * v)1539 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
1540 {
1541 	struct tmp_s {
1542 		u64 a;
1543 		unsigned int b;
1544 		unsigned int c;
1545 	};
1546 	int i;
1547 	struct net_device *dev = seq->private;
1548 	struct stmmac_priv *priv = netdev_priv(dev);
1549 
1550 	seq_printf(seq, "=======================\n");
1551 	seq_printf(seq, " RX descriptor ring\n");
1552 	seq_printf(seq, "=======================\n");
1553 
1554 	for (i = 0; i < priv->dma_rx_size; i++) {
1555 		struct tmp_s *x = (struct tmp_s *)(priv->dma_rx + i);
1556 		seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
1557 			   i, (unsigned int)(x->a),
1558 			   (unsigned int)((x->a) >> 32), x->b, x->c);
1559 		seq_printf(seq, "\n");
1560 	}
1561 
1562 	seq_printf(seq, "\n");
1563 	seq_printf(seq, "=======================\n");
1564 	seq_printf(seq, "  TX descriptor ring\n");
1565 	seq_printf(seq, "=======================\n");
1566 
1567 	for (i = 0; i < priv->dma_tx_size; i++) {
1568 		struct tmp_s *x = (struct tmp_s *)(priv->dma_tx + i);
1569 		seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
1570 			   i, (unsigned int)(x->a),
1571 			   (unsigned int)((x->a) >> 32), x->b, x->c);
1572 		seq_printf(seq, "\n");
1573 	}
1574 
1575 	return 0;
1576 }
1577 
stmmac_sysfs_ring_open(struct inode * inode,struct file * file)1578 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
1579 {
1580 	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
1581 }
1582 
1583 static const struct file_operations stmmac_rings_status_fops = {
1584 	.owner = THIS_MODULE,
1585 	.open = stmmac_sysfs_ring_open,
1586 	.read = seq_read,
1587 	.llseek = seq_lseek,
1588 	.release = seq_release,
1589 };
1590 
stmmac_sysfs_dma_cap_read(struct seq_file * seq,void * v)1591 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
1592 {
1593 	struct net_device *dev = seq->private;
1594 	struct stmmac_priv *priv = netdev_priv(dev);
1595 
1596 	if (!priv->hw_cap_support) {
1597 		seq_printf(seq, "DMA HW features not supported\n");
1598 		return 0;
1599 	}
1600 
1601 	seq_printf(seq, "==============================\n");
1602 	seq_printf(seq, "\tDMA HW features\n");
1603 	seq_printf(seq, "==============================\n");
1604 
1605 	seq_printf(seq, "\t10/100 Mbps %s\n",
1606 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
1607 	seq_printf(seq, "\t1000 Mbps %s\n",
1608 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
1609 	seq_printf(seq, "\tHalf duple %s\n",
1610 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
1611 	seq_printf(seq, "\tHash Filter: %s\n",
1612 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
1613 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
1614 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
1615 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
1616 		   (priv->dma_cap.pcs) ? "Y" : "N");
1617 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
1618 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
1619 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
1620 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
1621 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
1622 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
1623 	seq_printf(seq, "\tRMON module: %s\n",
1624 		   (priv->dma_cap.rmon) ? "Y" : "N");
1625 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
1626 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
1627 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
1628 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
1629 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
1630 		   (priv->dma_cap.eee) ? "Y" : "N");
1631 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
1632 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
1633 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
1634 	seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
1635 		   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
1636 	seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
1637 		   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
1638 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
1639 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
1640 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
1641 		   priv->dma_cap.number_rx_channel);
1642 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
1643 		   priv->dma_cap.number_tx_channel);
1644 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
1645 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
1646 
1647 	return 0;
1648 }
1649 
stmmac_sysfs_dma_cap_open(struct inode * inode,struct file * file)1650 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
1651 {
1652 	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
1653 }
1654 
1655 static const struct file_operations stmmac_dma_cap_fops = {
1656 	.owner = THIS_MODULE,
1657 	.open = stmmac_sysfs_dma_cap_open,
1658 	.read = seq_read,
1659 	.llseek = seq_lseek,
1660 	.release = seq_release,
1661 };
1662 
stmmac_init_fs(struct net_device * dev)1663 static int stmmac_init_fs(struct net_device *dev)
1664 {
1665 	/* Create debugfs entries */
1666 	stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
1667 
1668 	if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
1669 		pr_err("ERROR %s, debugfs create directory failed\n",
1670 		       STMMAC_RESOURCE_NAME);
1671 
1672 		return -ENOMEM;
1673 	}
1674 
1675 	/* Entry to report DMA RX/TX rings */
1676 	stmmac_rings_status = debugfs_create_file("descriptors_status",
1677 					   S_IRUGO, stmmac_fs_dir, dev,
1678 					   &stmmac_rings_status_fops);
1679 
1680 	if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
1681 		pr_info("ERROR creating stmmac ring debugfs file\n");
1682 		debugfs_remove(stmmac_fs_dir);
1683 
1684 		return -ENOMEM;
1685 	}
1686 
1687 	/* Entry to report the DMA HW features */
1688 	stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
1689 					     dev, &stmmac_dma_cap_fops);
1690 
1691 	if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
1692 		pr_info("ERROR creating stmmac MMC debugfs file\n");
1693 		debugfs_remove(stmmac_rings_status);
1694 		debugfs_remove(stmmac_fs_dir);
1695 
1696 		return -ENOMEM;
1697 	}
1698 
1699 	return 0;
1700 }
1701 
stmmac_exit_fs(void)1702 static void stmmac_exit_fs(void)
1703 {
1704 	debugfs_remove(stmmac_rings_status);
1705 	debugfs_remove(stmmac_dma_cap);
1706 	debugfs_remove(stmmac_fs_dir);
1707 }
1708 #endif /* CONFIG_STMMAC_DEBUG_FS */
1709 
1710 static const struct net_device_ops stmmac_netdev_ops = {
1711 	.ndo_open = stmmac_open,
1712 	.ndo_start_xmit = stmmac_xmit,
1713 	.ndo_stop = stmmac_release,
1714 	.ndo_change_mtu = stmmac_change_mtu,
1715 	.ndo_fix_features = stmmac_fix_features,
1716 	.ndo_set_rx_mode = stmmac_set_rx_mode,
1717 	.ndo_tx_timeout = stmmac_tx_timeout,
1718 	.ndo_do_ioctl = stmmac_ioctl,
1719 	.ndo_set_config = stmmac_config,
1720 #ifdef CONFIG_NET_POLL_CONTROLLER
1721 	.ndo_poll_controller = stmmac_poll_controller,
1722 #endif
1723 	.ndo_set_mac_address = eth_mac_addr,
1724 };
1725 
1726 /**
1727  *  stmmac_hw_init - Init the MAC device
1728  *  @priv : pointer to the private device structure.
1729  *  Description: this function detects which MAC device
1730  *  (GMAC/MAC10-100) has to attached, checks the HW capability
1731  *  (if supported) and sets the driver's features (for example
1732  *  to use the ring or chaine mode or support the normal/enh
1733  *  descriptor structure).
1734  */
stmmac_hw_init(struct stmmac_priv * priv)1735 static int stmmac_hw_init(struct stmmac_priv *priv)
1736 {
1737 	int ret = 0;
1738 	struct mac_device_info *mac;
1739 
1740 	/* Identify the MAC HW device */
1741 	if (priv->plat->has_gmac)
1742 		mac = dwmac1000_setup(priv->ioaddr);
1743 	else
1744 		mac = dwmac100_setup(priv->ioaddr);
1745 	if (!mac)
1746 		return -ENOMEM;
1747 
1748 	priv->hw = mac;
1749 
1750 	/* To use the chained or ring mode */
1751 	priv->hw->ring = &ring_mode_ops;
1752 
1753 	/* Get and dump the chip ID */
1754 	stmmac_get_synopsys_id(priv);
1755 
1756 	/* Get the HW capability (new GMAC newer than 3.50a) */
1757 	priv->hw_cap_support = stmmac_get_hw_features(priv);
1758 	if (priv->hw_cap_support) {
1759 		pr_info(" DMA HW capability register supported");
1760 
1761 		/* We can override some gmac/dma configuration fields: e.g.
1762 		 * enh_desc, tx_coe (e.g. that are passed through the
1763 		 * platform) with the values from the HW capability
1764 		 * register (if supported).
1765 		 */
1766 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
1767 		priv->plat->tx_coe = priv->dma_cap.tx_coe;
1768 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
1769 	} else
1770 		pr_info(" No HW DMA feature register supported");
1771 
1772 	/* Select the enhnaced/normal descriptor structures */
1773 	stmmac_selec_desc_mode(priv);
1774 
1775 	priv->rx_coe = priv->hw->mac->rx_coe(priv->ioaddr);
1776 	if (priv->rx_coe)
1777 		pr_info(" RX Checksum Offload Engine supported\n");
1778 	if (priv->plat->tx_coe)
1779 		pr_info(" TX Checksum insertion supported\n");
1780 
1781 	if (priv->plat->pmt) {
1782 		pr_info(" Wake-Up On Lan supported\n");
1783 		device_set_wakeup_capable(priv->device, 1);
1784 	}
1785 
1786 	return ret;
1787 }
1788 
1789 /**
1790  * stmmac_dvr_probe
1791  * @device: device pointer
1792  * Description: this is the main probe function used to
1793  * call the alloc_etherdev, allocate the priv structure.
1794  */
stmmac_dvr_probe(struct device * device,struct plat_stmmacenet_data * plat_dat,void __iomem * addr)1795 struct stmmac_priv *stmmac_dvr_probe(struct device *device,
1796 				     struct plat_stmmacenet_data *plat_dat,
1797 				     void __iomem *addr)
1798 {
1799 	int ret = 0;
1800 	struct net_device *ndev = NULL;
1801 	struct stmmac_priv *priv;
1802 
1803 	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
1804 	if (!ndev) {
1805 		pr_err("%s: ERROR: allocating the device\n", __func__);
1806 		return NULL;
1807 	}
1808 
1809 	SET_NETDEV_DEV(ndev, device);
1810 
1811 	priv = netdev_priv(ndev);
1812 	priv->device = device;
1813 	priv->dev = ndev;
1814 
1815 	ether_setup(ndev);
1816 
1817 	stmmac_set_ethtool_ops(ndev);
1818 	priv->pause = pause;
1819 	priv->plat = plat_dat;
1820 	priv->ioaddr = addr;
1821 	priv->dev->base_addr = (unsigned long)addr;
1822 
1823 	/* Verify driver arguments */
1824 	stmmac_verify_args();
1825 
1826 	/* Override with kernel parameters if supplied XXX CRS XXX
1827 	 * this needs to have multiple instances */
1828 	if ((phyaddr >= 0) && (phyaddr <= 31))
1829 		priv->plat->phy_addr = phyaddr;
1830 
1831 	/* Init MAC and get the capabilities */
1832 	stmmac_hw_init(priv);
1833 
1834 	ndev->netdev_ops = &stmmac_netdev_ops;
1835 
1836 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1837 			    NETIF_F_RXCSUM;
1838 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
1839 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
1840 #ifdef STMMAC_VLAN_TAG_USED
1841 	/* Both mac100 and gmac support receive VLAN tag detection */
1842 	ndev->features |= NETIF_F_HW_VLAN_RX;
1843 #endif
1844 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
1845 
1846 	if (flow_ctrl)
1847 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
1848 
1849 	netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
1850 
1851 	spin_lock_init(&priv->lock);
1852 	spin_lock_init(&priv->tx_lock);
1853 
1854 	ret = register_netdev(ndev);
1855 	if (ret) {
1856 		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
1857 		goto error;
1858 	}
1859 
1860 	return priv;
1861 
1862 error:
1863 	netif_napi_del(&priv->napi);
1864 
1865 	unregister_netdev(ndev);
1866 	free_netdev(ndev);
1867 
1868 	return NULL;
1869 }
1870 
1871 /**
1872  * stmmac_dvr_remove
1873  * @ndev: net device pointer
1874  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
1875  * changes the link status, releases the DMA descriptor rings.
1876  */
stmmac_dvr_remove(struct net_device * ndev)1877 int stmmac_dvr_remove(struct net_device *ndev)
1878 {
1879 	struct stmmac_priv *priv = netdev_priv(ndev);
1880 
1881 	pr_info("%s:\n\tremoving driver", __func__);
1882 
1883 	priv->hw->dma->stop_rx(priv->ioaddr);
1884 	priv->hw->dma->stop_tx(priv->ioaddr);
1885 
1886 	stmmac_set_mac(priv->ioaddr, false);
1887 	netif_carrier_off(ndev);
1888 	unregister_netdev(ndev);
1889 	free_netdev(ndev);
1890 
1891 	return 0;
1892 }
1893 
1894 #ifdef CONFIG_PM
stmmac_suspend(struct net_device * ndev)1895 int stmmac_suspend(struct net_device *ndev)
1896 {
1897 	struct stmmac_priv *priv = netdev_priv(ndev);
1898 	int dis_ic = 0;
1899 
1900 	if (!ndev || !netif_running(ndev))
1901 		return 0;
1902 
1903 	if (priv->phydev)
1904 		phy_stop(priv->phydev);
1905 
1906 	spin_lock(&priv->lock);
1907 
1908 	netif_device_detach(ndev);
1909 	netif_stop_queue(ndev);
1910 
1911 #ifdef CONFIG_STMMAC_TIMER
1912 	priv->tm->timer_stop();
1913 	if (likely(priv->tm->enable))
1914 		dis_ic = 1;
1915 #endif
1916 	napi_disable(&priv->napi);
1917 
1918 	/* Stop TX/RX DMA */
1919 	priv->hw->dma->stop_tx(priv->ioaddr);
1920 	priv->hw->dma->stop_rx(priv->ioaddr);
1921 	/* Clear the Rx/Tx descriptors */
1922 	priv->hw->desc->init_rx_desc(priv->dma_rx, priv->dma_rx_size,
1923 				     dis_ic);
1924 	priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
1925 
1926 	/* Enable Power down mode by programming the PMT regs */
1927 	if (device_may_wakeup(priv->device))
1928 		priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
1929 	else
1930 		stmmac_set_mac(priv->ioaddr, false);
1931 
1932 	spin_unlock(&priv->lock);
1933 	return 0;
1934 }
1935 
stmmac_resume(struct net_device * ndev)1936 int stmmac_resume(struct net_device *ndev)
1937 {
1938 	struct stmmac_priv *priv = netdev_priv(ndev);
1939 
1940 	if (!netif_running(ndev))
1941 		return 0;
1942 
1943 	spin_lock(&priv->lock);
1944 
1945 	/* Power Down bit, into the PM register, is cleared
1946 	 * automatically as soon as a magic packet or a Wake-up frame
1947 	 * is received. Anyway, it's better to manually clear
1948 	 * this bit because it can generate problems while resuming
1949 	 * from another devices (e.g. serial console). */
1950 	if (device_may_wakeup(priv->device))
1951 		priv->hw->mac->pmt(priv->ioaddr, 0);
1952 
1953 	netif_device_attach(ndev);
1954 
1955 	/* Enable the MAC and DMA */
1956 	stmmac_set_mac(priv->ioaddr, true);
1957 	priv->hw->dma->start_tx(priv->ioaddr);
1958 	priv->hw->dma->start_rx(priv->ioaddr);
1959 
1960 #ifdef CONFIG_STMMAC_TIMER
1961 	if (likely(priv->tm->enable))
1962 		priv->tm->timer_start(tmrate);
1963 #endif
1964 	napi_enable(&priv->napi);
1965 
1966 	netif_start_queue(ndev);
1967 
1968 	spin_unlock(&priv->lock);
1969 
1970 	if (priv->phydev)
1971 		phy_start(priv->phydev);
1972 
1973 	return 0;
1974 }
1975 
stmmac_freeze(struct net_device * ndev)1976 int stmmac_freeze(struct net_device *ndev)
1977 {
1978 	if (!ndev || !netif_running(ndev))
1979 		return 0;
1980 
1981 	return stmmac_release(ndev);
1982 }
1983 
stmmac_restore(struct net_device * ndev)1984 int stmmac_restore(struct net_device *ndev)
1985 {
1986 	if (!ndev || !netif_running(ndev))
1987 		return 0;
1988 
1989 	return stmmac_open(ndev);
1990 }
1991 #endif /* CONFIG_PM */
1992 
1993 #ifndef MODULE
stmmac_cmdline_opt(char * str)1994 static int __init stmmac_cmdline_opt(char *str)
1995 {
1996 	char *opt;
1997 
1998 	if (!str || !*str)
1999 		return -EINVAL;
2000 	while ((opt = strsep(&str, ",")) != NULL) {
2001 		if (!strncmp(opt, "debug:", 6)) {
2002 			if (strict_strtoul(opt + 6, 0, (unsigned long *)&debug))
2003 				goto err;
2004 		} else if (!strncmp(opt, "phyaddr:", 8)) {
2005 			if (strict_strtoul(opt + 8, 0,
2006 					   (unsigned long *)&phyaddr))
2007 				goto err;
2008 		} else if (!strncmp(opt, "dma_txsize:", 11)) {
2009 			if (strict_strtoul(opt + 11, 0,
2010 					   (unsigned long *)&dma_txsize))
2011 				goto err;
2012 		} else if (!strncmp(opt, "dma_rxsize:", 11)) {
2013 			if (strict_strtoul(opt + 11, 0,
2014 					   (unsigned long *)&dma_rxsize))
2015 				goto err;
2016 		} else if (!strncmp(opt, "buf_sz:", 7)) {
2017 			if (strict_strtoul(opt + 7, 0,
2018 					   (unsigned long *)&buf_sz))
2019 				goto err;
2020 		} else if (!strncmp(opt, "tc:", 3)) {
2021 			if (strict_strtoul(opt + 3, 0, (unsigned long *)&tc))
2022 				goto err;
2023 		} else if (!strncmp(opt, "watchdog:", 9)) {
2024 			if (strict_strtoul(opt + 9, 0,
2025 					   (unsigned long *)&watchdog))
2026 				goto err;
2027 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
2028 			if (strict_strtoul(opt + 10, 0,
2029 					   (unsigned long *)&flow_ctrl))
2030 				goto err;
2031 		} else if (!strncmp(opt, "pause:", 6)) {
2032 			if (strict_strtoul(opt + 6, 0, (unsigned long *)&pause))
2033 				goto err;
2034 #ifdef CONFIG_STMMAC_TIMER
2035 		} else if (!strncmp(opt, "tmrate:", 7)) {
2036 			if (strict_strtoul(opt + 7, 0,
2037 					   (unsigned long *)&tmrate))
2038 				goto err;
2039 #endif
2040 		}
2041 	}
2042 	return 0;
2043 
2044 err:
2045 	pr_err("%s: ERROR broken module parameter conversion", __func__);
2046 	return -EINVAL;
2047 }
2048 
2049 __setup("stmmaceth=", stmmac_cmdline_opt);
2050 #endif
2051 
2052 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
2053 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
2054 MODULE_LICENSE("GPL");
2055