1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2011 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/socket.h>
12 #include <linux/in.h>
13 #include <linux/slab.h>
14 #include <linux/ip.h>
15 #include <linux/tcp.h>
16 #include <linux/udp.h>
17 #include <linux/prefetch.h>
18 #include <linux/moduleparam.h>
19 #include <net/ip.h>
20 #include <net/checksum.h>
21 #include "net_driver.h"
22 #include "efx.h"
23 #include "nic.h"
24 #include "selftest.h"
25 #include "workarounds.h"
26 
27 /* Number of RX descriptors pushed at once. */
28 #define EFX_RX_BATCH  8
29 
30 /* Maximum size of a buffer sharing a page */
31 #define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state))
32 
33 /* Size of buffer allocated for skb header area. */
34 #define EFX_SKB_HEADERS  64u
35 
36 /*
37  * rx_alloc_method - RX buffer allocation method
38  *
39  * This driver supports two methods for allocating and using RX buffers:
40  * each RX buffer may be backed by an skb or by an order-n page.
41  *
42  * When GRO is in use then the second method has a lower overhead,
43  * since we don't have to allocate then free skbs on reassembled frames.
44  *
45  * Values:
46  *   - RX_ALLOC_METHOD_AUTO = 0
47  *   - RX_ALLOC_METHOD_SKB  = 1
48  *   - RX_ALLOC_METHOD_PAGE = 2
49  *
50  * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count
51  * controlled by the parameters below.
52  *
53  *   - Since pushing and popping descriptors are separated by the rx_queue
54  *     size, so the watermarks should be ~rxd_size.
55  *   - The performance win by using page-based allocation for GRO is less
56  *     than the performance hit of using page-based allocation of non-GRO,
57  *     so the watermarks should reflect this.
58  *
59  * Per channel we maintain a single variable, updated by each channel:
60  *
61  *   rx_alloc_level += (gro_performed ? RX_ALLOC_FACTOR_GRO :
62  *                      RX_ALLOC_FACTOR_SKB)
63  * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which
64  * limits the hysteresis), and update the allocation strategy:
65  *
66  *   rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_GRO ?
67  *                      RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB)
68  */
69 static int rx_alloc_method = RX_ALLOC_METHOD_AUTO;
70 
71 #define RX_ALLOC_LEVEL_GRO 0x2000
72 #define RX_ALLOC_LEVEL_MAX 0x3000
73 #define RX_ALLOC_FACTOR_GRO 1
74 #define RX_ALLOC_FACTOR_SKB (-2)
75 
76 /* This is the percentage fill level below which new RX descriptors
77  * will be added to the RX descriptor ring.
78  */
79 static unsigned int rx_refill_threshold = 90;
80 
81 /* This is the percentage fill level to which an RX queue will be refilled
82  * when the "RX refill threshold" is reached.
83  */
84 static unsigned int rx_refill_limit = 95;
85 
86 /*
87  * RX maximum head room required.
88  *
89  * This must be at least 1 to prevent overflow and at least 2 to allow
90  * pipelined receives.
91  */
92 #define EFX_RXD_HEAD_ROOM 2
93 
94 /* Offset of ethernet header within page */
efx_rx_buf_offset(struct efx_nic * efx,struct efx_rx_buffer * buf)95 static inline unsigned int efx_rx_buf_offset(struct efx_nic *efx,
96 					     struct efx_rx_buffer *buf)
97 {
98 	/* Offset is always within one page, so we don't need to consider
99 	 * the page order.
100 	 */
101 	return (((__force unsigned long) buf->dma_addr & (PAGE_SIZE - 1)) +
102 		efx->type->rx_buffer_hash_size);
103 }
efx_rx_buf_size(struct efx_nic * efx)104 static inline unsigned int efx_rx_buf_size(struct efx_nic *efx)
105 {
106 	return PAGE_SIZE << efx->rx_buffer_order;
107 }
108 
efx_rx_buf_eh(struct efx_nic * efx,struct efx_rx_buffer * buf)109 static u8 *efx_rx_buf_eh(struct efx_nic *efx, struct efx_rx_buffer *buf)
110 {
111 	if (buf->is_page)
112 		return page_address(buf->u.page) + efx_rx_buf_offset(efx, buf);
113 	else
114 		return ((u8 *)buf->u.skb->data +
115 			efx->type->rx_buffer_hash_size);
116 }
117 
efx_rx_buf_hash(const u8 * eh)118 static inline u32 efx_rx_buf_hash(const u8 *eh)
119 {
120 	/* The ethernet header is always directly after any hash. */
121 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0
122 	return __le32_to_cpup((const __le32 *)(eh - 4));
123 #else
124 	const u8 *data = eh - 4;
125 	return ((u32)data[0]       |
126 		(u32)data[1] << 8  |
127 		(u32)data[2] << 16 |
128 		(u32)data[3] << 24);
129 #endif
130 }
131 
132 /**
133  * efx_init_rx_buffers_skb - create EFX_RX_BATCH skb-based RX buffers
134  *
135  * @rx_queue:		Efx RX queue
136  *
137  * This allocates EFX_RX_BATCH skbs, maps them for DMA, and populates a
138  * struct efx_rx_buffer for each one. Return a negative error code or 0
139  * on success. May fail having only inserted fewer than EFX_RX_BATCH
140  * buffers.
141  */
efx_init_rx_buffers_skb(struct efx_rx_queue * rx_queue)142 static int efx_init_rx_buffers_skb(struct efx_rx_queue *rx_queue)
143 {
144 	struct efx_nic *efx = rx_queue->efx;
145 	struct net_device *net_dev = efx->net_dev;
146 	struct efx_rx_buffer *rx_buf;
147 	struct sk_buff *skb;
148 	int skb_len = efx->rx_buffer_len;
149 	unsigned index, count;
150 
151 	for (count = 0; count < EFX_RX_BATCH; ++count) {
152 		index = rx_queue->added_count & rx_queue->ptr_mask;
153 		rx_buf = efx_rx_buffer(rx_queue, index);
154 
155 		rx_buf->u.skb = skb = netdev_alloc_skb(net_dev, skb_len);
156 		if (unlikely(!skb))
157 			return -ENOMEM;
158 
159 		/* Adjust the SKB for padding */
160 		skb_reserve(skb, NET_IP_ALIGN);
161 		rx_buf->len = skb_len - NET_IP_ALIGN;
162 		rx_buf->is_page = false;
163 
164 		rx_buf->dma_addr = pci_map_single(efx->pci_dev,
165 						  skb->data, rx_buf->len,
166 						  PCI_DMA_FROMDEVICE);
167 		if (unlikely(pci_dma_mapping_error(efx->pci_dev,
168 						   rx_buf->dma_addr))) {
169 			dev_kfree_skb_any(skb);
170 			rx_buf->u.skb = NULL;
171 			return -EIO;
172 		}
173 
174 		++rx_queue->added_count;
175 		++rx_queue->alloc_skb_count;
176 	}
177 
178 	return 0;
179 }
180 
181 /**
182  * efx_init_rx_buffers_page - create EFX_RX_BATCH page-based RX buffers
183  *
184  * @rx_queue:		Efx RX queue
185  *
186  * This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA,
187  * and populates struct efx_rx_buffers for each one. Return a negative error
188  * code or 0 on success. If a single page can be split between two buffers,
189  * then the page will either be inserted fully, or not at at all.
190  */
efx_init_rx_buffers_page(struct efx_rx_queue * rx_queue)191 static int efx_init_rx_buffers_page(struct efx_rx_queue *rx_queue)
192 {
193 	struct efx_nic *efx = rx_queue->efx;
194 	struct efx_rx_buffer *rx_buf;
195 	struct page *page;
196 	void *page_addr;
197 	struct efx_rx_page_state *state;
198 	dma_addr_t dma_addr;
199 	unsigned index, count;
200 
201 	/* We can split a page between two buffers */
202 	BUILD_BUG_ON(EFX_RX_BATCH & 1);
203 
204 	for (count = 0; count < EFX_RX_BATCH; ++count) {
205 		page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
206 				   efx->rx_buffer_order);
207 		if (unlikely(page == NULL))
208 			return -ENOMEM;
209 		dma_addr = pci_map_page(efx->pci_dev, page, 0,
210 					efx_rx_buf_size(efx),
211 					PCI_DMA_FROMDEVICE);
212 		if (unlikely(pci_dma_mapping_error(efx->pci_dev, dma_addr))) {
213 			__free_pages(page, efx->rx_buffer_order);
214 			return -EIO;
215 		}
216 		page_addr = page_address(page);
217 		state = page_addr;
218 		state->refcnt = 0;
219 		state->dma_addr = dma_addr;
220 
221 		page_addr += sizeof(struct efx_rx_page_state);
222 		dma_addr += sizeof(struct efx_rx_page_state);
223 
224 	split:
225 		index = rx_queue->added_count & rx_queue->ptr_mask;
226 		rx_buf = efx_rx_buffer(rx_queue, index);
227 		rx_buf->dma_addr = dma_addr + EFX_PAGE_IP_ALIGN;
228 		rx_buf->u.page = page;
229 		rx_buf->len = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN;
230 		rx_buf->is_page = true;
231 		++rx_queue->added_count;
232 		++rx_queue->alloc_page_count;
233 		++state->refcnt;
234 
235 		if ((~count & 1) && (efx->rx_buffer_len <= EFX_RX_HALF_PAGE)) {
236 			/* Use the second half of the page */
237 			get_page(page);
238 			dma_addr += (PAGE_SIZE >> 1);
239 			page_addr += (PAGE_SIZE >> 1);
240 			++count;
241 			goto split;
242 		}
243 	}
244 
245 	return 0;
246 }
247 
efx_unmap_rx_buffer(struct efx_nic * efx,struct efx_rx_buffer * rx_buf)248 static void efx_unmap_rx_buffer(struct efx_nic *efx,
249 				struct efx_rx_buffer *rx_buf)
250 {
251 	if (rx_buf->is_page && rx_buf->u.page) {
252 		struct efx_rx_page_state *state;
253 
254 		state = page_address(rx_buf->u.page);
255 		if (--state->refcnt == 0) {
256 			pci_unmap_page(efx->pci_dev,
257 				       state->dma_addr,
258 				       efx_rx_buf_size(efx),
259 				       PCI_DMA_FROMDEVICE);
260 		}
261 	} else if (!rx_buf->is_page && rx_buf->u.skb) {
262 		pci_unmap_single(efx->pci_dev, rx_buf->dma_addr,
263 				 rx_buf->len, PCI_DMA_FROMDEVICE);
264 	}
265 }
266 
efx_free_rx_buffer(struct efx_nic * efx,struct efx_rx_buffer * rx_buf)267 static void efx_free_rx_buffer(struct efx_nic *efx,
268 			       struct efx_rx_buffer *rx_buf)
269 {
270 	if (rx_buf->is_page && rx_buf->u.page) {
271 		__free_pages(rx_buf->u.page, efx->rx_buffer_order);
272 		rx_buf->u.page = NULL;
273 	} else if (!rx_buf->is_page && rx_buf->u.skb) {
274 		dev_kfree_skb_any(rx_buf->u.skb);
275 		rx_buf->u.skb = NULL;
276 	}
277 }
278 
efx_fini_rx_buffer(struct efx_rx_queue * rx_queue,struct efx_rx_buffer * rx_buf)279 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
280 			       struct efx_rx_buffer *rx_buf)
281 {
282 	efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
283 	efx_free_rx_buffer(rx_queue->efx, rx_buf);
284 }
285 
286 /* Attempt to resurrect the other receive buffer that used to share this page,
287  * which had previously been passed up to the kernel and freed. */
efx_resurrect_rx_buffer(struct efx_rx_queue * rx_queue,struct efx_rx_buffer * rx_buf)288 static void efx_resurrect_rx_buffer(struct efx_rx_queue *rx_queue,
289 				    struct efx_rx_buffer *rx_buf)
290 {
291 	struct efx_rx_page_state *state = page_address(rx_buf->u.page);
292 	struct efx_rx_buffer *new_buf;
293 	unsigned fill_level, index;
294 
295 	/* +1 because efx_rx_packet() incremented removed_count. +1 because
296 	 * we'd like to insert an additional descriptor whilst leaving
297 	 * EFX_RXD_HEAD_ROOM for the non-recycle path */
298 	fill_level = (rx_queue->added_count - rx_queue->removed_count + 2);
299 	if (unlikely(fill_level > rx_queue->max_fill)) {
300 		/* We could place "state" on a list, and drain the list in
301 		 * efx_fast_push_rx_descriptors(). For now, this will do. */
302 		return;
303 	}
304 
305 	++state->refcnt;
306 	get_page(rx_buf->u.page);
307 
308 	index = rx_queue->added_count & rx_queue->ptr_mask;
309 	new_buf = efx_rx_buffer(rx_queue, index);
310 	new_buf->dma_addr = rx_buf->dma_addr ^ (PAGE_SIZE >> 1);
311 	new_buf->u.page = rx_buf->u.page;
312 	new_buf->len = rx_buf->len;
313 	new_buf->is_page = true;
314 	++rx_queue->added_count;
315 }
316 
317 /* Recycle the given rx buffer directly back into the rx_queue. There is
318  * always room to add this buffer, because we've just popped a buffer. */
efx_recycle_rx_buffer(struct efx_channel * channel,struct efx_rx_buffer * rx_buf)319 static void efx_recycle_rx_buffer(struct efx_channel *channel,
320 				  struct efx_rx_buffer *rx_buf)
321 {
322 	struct efx_nic *efx = channel->efx;
323 	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
324 	struct efx_rx_buffer *new_buf;
325 	unsigned index;
326 
327 	if (rx_buf->is_page && efx->rx_buffer_len <= EFX_RX_HALF_PAGE &&
328 	    page_count(rx_buf->u.page) == 1)
329 		efx_resurrect_rx_buffer(rx_queue, rx_buf);
330 
331 	index = rx_queue->added_count & rx_queue->ptr_mask;
332 	new_buf = efx_rx_buffer(rx_queue, index);
333 
334 	memcpy(new_buf, rx_buf, sizeof(*new_buf));
335 	rx_buf->u.page = NULL;
336 	++rx_queue->added_count;
337 }
338 
339 /**
340  * efx_fast_push_rx_descriptors - push new RX descriptors quickly
341  * @rx_queue:		RX descriptor queue
342  * This will aim to fill the RX descriptor queue up to
343  * @rx_queue->@fast_fill_limit. If there is insufficient atomic
344  * memory to do so, a slow fill will be scheduled.
345  *
346  * The caller must provide serialisation (none is used here). In practise,
347  * this means this function must run from the NAPI handler, or be called
348  * when NAPI is disabled.
349  */
efx_fast_push_rx_descriptors(struct efx_rx_queue * rx_queue)350 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
351 {
352 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
353 	unsigned fill_level;
354 	int space, rc = 0;
355 
356 	/* Calculate current fill level, and exit if we don't need to fill */
357 	fill_level = (rx_queue->added_count - rx_queue->removed_count);
358 	EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
359 	if (fill_level >= rx_queue->fast_fill_trigger)
360 		goto out;
361 
362 	/* Record minimum fill level */
363 	if (unlikely(fill_level < rx_queue->min_fill)) {
364 		if (fill_level)
365 			rx_queue->min_fill = fill_level;
366 	}
367 
368 	space = rx_queue->fast_fill_limit - fill_level;
369 	if (space < EFX_RX_BATCH)
370 		goto out;
371 
372 	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
373 		   "RX queue %d fast-filling descriptor ring from"
374 		   " level %d to level %d using %s allocation\n",
375 		   efx_rx_queue_index(rx_queue), fill_level,
376 		   rx_queue->fast_fill_limit,
377 		   channel->rx_alloc_push_pages ? "page" : "skb");
378 
379 	do {
380 		if (channel->rx_alloc_push_pages)
381 			rc = efx_init_rx_buffers_page(rx_queue);
382 		else
383 			rc = efx_init_rx_buffers_skb(rx_queue);
384 		if (unlikely(rc)) {
385 			/* Ensure that we don't leave the rx queue empty */
386 			if (rx_queue->added_count == rx_queue->removed_count)
387 				efx_schedule_slow_fill(rx_queue);
388 			goto out;
389 		}
390 	} while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH);
391 
392 	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
393 		   "RX queue %d fast-filled descriptor ring "
394 		   "to level %d\n", efx_rx_queue_index(rx_queue),
395 		   rx_queue->added_count - rx_queue->removed_count);
396 
397  out:
398 	if (rx_queue->notified_count != rx_queue->added_count)
399 		efx_nic_notify_rx_desc(rx_queue);
400 }
401 
efx_rx_slow_fill(unsigned long context)402 void efx_rx_slow_fill(unsigned long context)
403 {
404 	struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
405 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
406 
407 	/* Post an event to cause NAPI to run and refill the queue */
408 	efx_nic_generate_fill_event(channel);
409 	++rx_queue->slow_fill_count;
410 }
411 
efx_rx_packet__check_len(struct efx_rx_queue * rx_queue,struct efx_rx_buffer * rx_buf,int len,bool * discard,bool * leak_packet)412 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
413 				     struct efx_rx_buffer *rx_buf,
414 				     int len, bool *discard,
415 				     bool *leak_packet)
416 {
417 	struct efx_nic *efx = rx_queue->efx;
418 	unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
419 
420 	if (likely(len <= max_len))
421 		return;
422 
423 	/* The packet must be discarded, but this is only a fatal error
424 	 * if the caller indicated it was
425 	 */
426 	*discard = true;
427 
428 	if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
429 		if (net_ratelimit())
430 			netif_err(efx, rx_err, efx->net_dev,
431 				  " RX queue %d seriously overlength "
432 				  "RX event (0x%x > 0x%x+0x%x). Leaking\n",
433 				  efx_rx_queue_index(rx_queue), len, max_len,
434 				  efx->type->rx_buffer_padding);
435 		/* If this buffer was skb-allocated, then the meta
436 		 * data at the end of the skb will be trashed. So
437 		 * we have no choice but to leak the fragment.
438 		 */
439 		*leak_packet = !rx_buf->is_page;
440 		efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
441 	} else {
442 		if (net_ratelimit())
443 			netif_err(efx, rx_err, efx->net_dev,
444 				  " RX queue %d overlength RX event "
445 				  "(0x%x > 0x%x)\n",
446 				  efx_rx_queue_index(rx_queue), len, max_len);
447 	}
448 
449 	efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
450 }
451 
452 /* Pass a received packet up through the generic GRO stack
453  *
454  * Handles driverlink veto, and passes the fragment up via
455  * the appropriate GRO method
456  */
efx_rx_packet_gro(struct efx_channel * channel,struct efx_rx_buffer * rx_buf,const u8 * eh,bool checksummed)457 static void efx_rx_packet_gro(struct efx_channel *channel,
458 			      struct efx_rx_buffer *rx_buf,
459 			      const u8 *eh, bool checksummed)
460 {
461 	struct napi_struct *napi = &channel->napi_str;
462 	gro_result_t gro_result;
463 
464 	/* Pass the skb/page into the GRO engine */
465 	if (rx_buf->is_page) {
466 		struct efx_nic *efx = channel->efx;
467 		struct page *page = rx_buf->u.page;
468 		struct sk_buff *skb;
469 
470 		rx_buf->u.page = NULL;
471 
472 		skb = napi_get_frags(napi);
473 		if (!skb) {
474 			put_page(page);
475 			return;
476 		}
477 
478 		if (efx->net_dev->features & NETIF_F_RXHASH)
479 			skb->rxhash = efx_rx_buf_hash(eh);
480 
481 		skb_fill_page_desc(skb, 0, page,
482 				   efx_rx_buf_offset(efx, rx_buf), rx_buf->len);
483 
484 		skb->len = rx_buf->len;
485 		skb->data_len = rx_buf->len;
486 		skb->truesize += rx_buf->len;
487 		skb->ip_summed =
488 			checksummed ? CHECKSUM_UNNECESSARY : CHECKSUM_NONE;
489 
490 		skb_record_rx_queue(skb, channel->channel);
491 
492 		gro_result = napi_gro_frags(napi);
493 	} else {
494 		struct sk_buff *skb = rx_buf->u.skb;
495 
496 		EFX_BUG_ON_PARANOID(!checksummed);
497 		rx_buf->u.skb = NULL;
498 		skb->ip_summed = CHECKSUM_UNNECESSARY;
499 
500 		gro_result = napi_gro_receive(napi, skb);
501 	}
502 
503 	if (gro_result == GRO_NORMAL) {
504 		channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
505 	} else if (gro_result != GRO_DROP) {
506 		channel->rx_alloc_level += RX_ALLOC_FACTOR_GRO;
507 		channel->irq_mod_score += 2;
508 	}
509 }
510 
efx_rx_packet(struct efx_rx_queue * rx_queue,unsigned int index,unsigned int len,bool checksummed,bool discard)511 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
512 		   unsigned int len, bool checksummed, bool discard)
513 {
514 	struct efx_nic *efx = rx_queue->efx;
515 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
516 	struct efx_rx_buffer *rx_buf;
517 	bool leak_packet = false;
518 
519 	rx_buf = efx_rx_buffer(rx_queue, index);
520 
521 	/* This allows the refill path to post another buffer.
522 	 * EFX_RXD_HEAD_ROOM ensures that the slot we are using
523 	 * isn't overwritten yet.
524 	 */
525 	rx_queue->removed_count++;
526 
527 	/* Validate the length encoded in the event vs the descriptor pushed */
528 	efx_rx_packet__check_len(rx_queue, rx_buf, len,
529 				 &discard, &leak_packet);
530 
531 	netif_vdbg(efx, rx_status, efx->net_dev,
532 		   "RX queue %d received id %x at %llx+%x %s%s\n",
533 		   efx_rx_queue_index(rx_queue), index,
534 		   (unsigned long long)rx_buf->dma_addr, len,
535 		   (checksummed ? " [SUMMED]" : ""),
536 		   (discard ? " [DISCARD]" : ""));
537 
538 	/* Discard packet, if instructed to do so */
539 	if (unlikely(discard)) {
540 		if (unlikely(leak_packet))
541 			channel->n_skbuff_leaks++;
542 		else
543 			efx_recycle_rx_buffer(channel, rx_buf);
544 
545 		/* Don't hold off the previous receive */
546 		rx_buf = NULL;
547 		goto out;
548 	}
549 
550 	/* Release card resources - assumes all RX buffers consumed in-order
551 	 * per RX queue
552 	 */
553 	efx_unmap_rx_buffer(efx, rx_buf);
554 
555 	/* Prefetch nice and early so data will (hopefully) be in cache by
556 	 * the time we look at it.
557 	 */
558 	prefetch(efx_rx_buf_eh(efx, rx_buf));
559 
560 	/* Pipeline receives so that we give time for packet headers to be
561 	 * prefetched into cache.
562 	 */
563 	rx_buf->len = len - efx->type->rx_buffer_hash_size;
564 out:
565 	if (channel->rx_pkt)
566 		__efx_rx_packet(channel,
567 				channel->rx_pkt, channel->rx_pkt_csummed);
568 	channel->rx_pkt = rx_buf;
569 	channel->rx_pkt_csummed = checksummed;
570 }
571 
572 /* Handle a received packet.  Second half: Touches packet payload. */
__efx_rx_packet(struct efx_channel * channel,struct efx_rx_buffer * rx_buf,bool checksummed)573 void __efx_rx_packet(struct efx_channel *channel,
574 		     struct efx_rx_buffer *rx_buf, bool checksummed)
575 {
576 	struct efx_nic *efx = channel->efx;
577 	struct sk_buff *skb;
578 	u8 *eh = efx_rx_buf_eh(efx, rx_buf);
579 
580 	/* If we're in loopback test, then pass the packet directly to the
581 	 * loopback layer, and free the rx_buf here
582 	 */
583 	if (unlikely(efx->loopback_selftest)) {
584 		efx_loopback_rx_packet(efx, eh, rx_buf->len);
585 		efx_free_rx_buffer(efx, rx_buf);
586 		return;
587 	}
588 
589 	if (!rx_buf->is_page) {
590 		skb = rx_buf->u.skb;
591 
592 		prefetch(skb_shinfo(skb));
593 
594 		skb_reserve(skb, efx->type->rx_buffer_hash_size);
595 		skb_put(skb, rx_buf->len);
596 
597 		if (efx->net_dev->features & NETIF_F_RXHASH)
598 			skb->rxhash = efx_rx_buf_hash(eh);
599 
600 		/* Move past the ethernet header. rx_buf->data still points
601 		 * at the ethernet header */
602 		skb->protocol = eth_type_trans(skb, efx->net_dev);
603 
604 		skb_record_rx_queue(skb, channel->channel);
605 	}
606 
607 	if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
608 		checksummed = false;
609 
610 	if (likely(checksummed || rx_buf->is_page)) {
611 		efx_rx_packet_gro(channel, rx_buf, eh, checksummed);
612 		return;
613 	}
614 
615 	/* We now own the SKB */
616 	skb = rx_buf->u.skb;
617 	rx_buf->u.skb = NULL;
618 
619 	/* Set the SKB flags */
620 	skb_checksum_none_assert(skb);
621 
622 	/* Pass the packet up */
623 	netif_receive_skb(skb);
624 
625 	/* Update allocation strategy method */
626 	channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
627 }
628 
efx_rx_strategy(struct efx_channel * channel)629 void efx_rx_strategy(struct efx_channel *channel)
630 {
631 	enum efx_rx_alloc_method method = rx_alloc_method;
632 
633 	/* Only makes sense to use page based allocation if GRO is enabled */
634 	if (!(channel->efx->net_dev->features & NETIF_F_GRO)) {
635 		method = RX_ALLOC_METHOD_SKB;
636 	} else if (method == RX_ALLOC_METHOD_AUTO) {
637 		/* Constrain the rx_alloc_level */
638 		if (channel->rx_alloc_level < 0)
639 			channel->rx_alloc_level = 0;
640 		else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX)
641 			channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX;
642 
643 		/* Decide on the allocation method */
644 		method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_GRO) ?
645 			  RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB);
646 	}
647 
648 	/* Push the option */
649 	channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE);
650 }
651 
efx_probe_rx_queue(struct efx_rx_queue * rx_queue)652 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
653 {
654 	struct efx_nic *efx = rx_queue->efx;
655 	unsigned int entries;
656 	int rc;
657 
658 	/* Create the smallest power-of-two aligned ring */
659 	entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
660 	EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
661 	rx_queue->ptr_mask = entries - 1;
662 
663 	netif_dbg(efx, probe, efx->net_dev,
664 		  "creating RX queue %d size %#x mask %#x\n",
665 		  efx_rx_queue_index(rx_queue), efx->rxq_entries,
666 		  rx_queue->ptr_mask);
667 
668 	/* Allocate RX buffers */
669 	rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
670 				   GFP_KERNEL);
671 	if (!rx_queue->buffer)
672 		return -ENOMEM;
673 
674 	rc = efx_nic_probe_rx(rx_queue);
675 	if (rc) {
676 		kfree(rx_queue->buffer);
677 		rx_queue->buffer = NULL;
678 	}
679 	return rc;
680 }
681 
efx_init_rx_queue(struct efx_rx_queue * rx_queue)682 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
683 {
684 	struct efx_nic *efx = rx_queue->efx;
685 	unsigned int max_fill, trigger, limit;
686 
687 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
688 		  "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
689 
690 	/* Initialise ptr fields */
691 	rx_queue->added_count = 0;
692 	rx_queue->notified_count = 0;
693 	rx_queue->removed_count = 0;
694 	rx_queue->min_fill = -1U;
695 
696 	/* Initialise limit fields */
697 	max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
698 	trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
699 	limit = max_fill * min(rx_refill_limit, 100U) / 100U;
700 
701 	rx_queue->max_fill = max_fill;
702 	rx_queue->fast_fill_trigger = trigger;
703 	rx_queue->fast_fill_limit = limit;
704 
705 	/* Set up RX descriptor ring */
706 	efx_nic_init_rx(rx_queue);
707 }
708 
efx_fini_rx_queue(struct efx_rx_queue * rx_queue)709 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
710 {
711 	int i;
712 	struct efx_rx_buffer *rx_buf;
713 
714 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
715 		  "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
716 
717 	del_timer_sync(&rx_queue->slow_fill);
718 	efx_nic_fini_rx(rx_queue);
719 
720 	/* Release RX buffers NB start at index 0 not current HW ptr */
721 	if (rx_queue->buffer) {
722 		for (i = 0; i <= rx_queue->ptr_mask; i++) {
723 			rx_buf = efx_rx_buffer(rx_queue, i);
724 			efx_fini_rx_buffer(rx_queue, rx_buf);
725 		}
726 	}
727 }
728 
efx_remove_rx_queue(struct efx_rx_queue * rx_queue)729 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
730 {
731 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
732 		  "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
733 
734 	efx_nic_remove_rx(rx_queue);
735 
736 	kfree(rx_queue->buffer);
737 	rx_queue->buffer = NULL;
738 }
739 
740 
741 module_param(rx_alloc_method, int, 0644);
742 MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers");
743 
744 module_param(rx_refill_threshold, uint, 0444);
745 MODULE_PARM_DESC(rx_refill_threshold,
746 		 "RX descriptor ring fast/slow fill threshold (%)");
747 
748