1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2010 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include <linux/slab.h>
19 #include "net_driver.h"
20 #include "bitfield.h"
21 #include "efx.h"
22 #include "mac.h"
23 #include "spi.h"
24 #include "nic.h"
25 #include "regs.h"
26 #include "io.h"
27 #include "phy.h"
28 #include "workarounds.h"
29 
30 /* Hardware control for SFC4000 (aka Falcon). */
31 
32 static const unsigned int
33 /* "Large" EEPROM device: Atmel AT25640 or similar
34  * 8 KB, 16-bit address, 32 B write block */
35 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
36 		     | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
37 		     | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
38 /* Default flash device: Atmel AT25F1024
39  * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
40 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
41 		      | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
42 		      | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
43 		      | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
44 		      | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
45 
46 /**************************************************************************
47  *
48  * I2C bus - this is a bit-bashing interface using GPIO pins
49  * Note that it uses the output enables to tristate the outputs
50  * SDA is the data pin and SCL is the clock
51  *
52  **************************************************************************
53  */
falcon_setsda(void * data,int state)54 static void falcon_setsda(void *data, int state)
55 {
56 	struct efx_nic *efx = (struct efx_nic *)data;
57 	efx_oword_t reg;
58 
59 	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
60 	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
61 	efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
62 }
63 
falcon_setscl(void * data,int state)64 static void falcon_setscl(void *data, int state)
65 {
66 	struct efx_nic *efx = (struct efx_nic *)data;
67 	efx_oword_t reg;
68 
69 	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
70 	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
71 	efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
72 }
73 
falcon_getsda(void * data)74 static int falcon_getsda(void *data)
75 {
76 	struct efx_nic *efx = (struct efx_nic *)data;
77 	efx_oword_t reg;
78 
79 	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
80 	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
81 }
82 
falcon_getscl(void * data)83 static int falcon_getscl(void *data)
84 {
85 	struct efx_nic *efx = (struct efx_nic *)data;
86 	efx_oword_t reg;
87 
88 	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
89 	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
90 }
91 
92 static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
93 	.setsda		= falcon_setsda,
94 	.setscl		= falcon_setscl,
95 	.getsda		= falcon_getsda,
96 	.getscl		= falcon_getscl,
97 	.udelay		= 5,
98 	/* Wait up to 50 ms for slave to let us pull SCL high */
99 	.timeout	= DIV_ROUND_UP(HZ, 20),
100 };
101 
falcon_push_irq_moderation(struct efx_channel * channel)102 static void falcon_push_irq_moderation(struct efx_channel *channel)
103 {
104 	efx_dword_t timer_cmd;
105 	struct efx_nic *efx = channel->efx;
106 
107 	BUILD_BUG_ON(EFX_IRQ_MOD_MAX > (1 << FRF_AB_TC_TIMER_VAL_WIDTH));
108 
109 	/* Set timer register */
110 	if (channel->irq_moderation) {
111 		EFX_POPULATE_DWORD_2(timer_cmd,
112 				     FRF_AB_TC_TIMER_MODE,
113 				     FFE_BB_TIMER_MODE_INT_HLDOFF,
114 				     FRF_AB_TC_TIMER_VAL,
115 				     channel->irq_moderation - 1);
116 	} else {
117 		EFX_POPULATE_DWORD_2(timer_cmd,
118 				     FRF_AB_TC_TIMER_MODE,
119 				     FFE_BB_TIMER_MODE_DIS,
120 				     FRF_AB_TC_TIMER_VAL, 0);
121 	}
122 	BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
123 	efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
124 			       channel->channel);
125 }
126 
127 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
128 
falcon_prepare_flush(struct efx_nic * efx)129 static void falcon_prepare_flush(struct efx_nic *efx)
130 {
131 	falcon_deconfigure_mac_wrapper(efx);
132 
133 	/* Wait for the tx and rx fifo's to get to the next packet boundary
134 	 * (~1ms without back-pressure), then to drain the remainder of the
135 	 * fifo's at data path speeds (negligible), with a healthy margin. */
136 	msleep(10);
137 }
138 
139 /* Acknowledge a legacy interrupt from Falcon
140  *
141  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
142  *
143  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
144  * BIU. Interrupt acknowledge is read sensitive so must write instead
145  * (then read to ensure the BIU collector is flushed)
146  *
147  * NB most hardware supports MSI interrupts
148  */
falcon_irq_ack_a1(struct efx_nic * efx)149 inline void falcon_irq_ack_a1(struct efx_nic *efx)
150 {
151 	efx_dword_t reg;
152 
153 	EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
154 	efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
155 	efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
156 }
157 
158 
falcon_legacy_interrupt_a1(int irq,void * dev_id)159 irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
160 {
161 	struct efx_nic *efx = dev_id;
162 	efx_oword_t *int_ker = efx->irq_status.addr;
163 	int syserr;
164 	int queues;
165 
166 	/* Check to see if this is our interrupt.  If it isn't, we
167 	 * exit without having touched the hardware.
168 	 */
169 	if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
170 		netif_vdbg(efx, intr, efx->net_dev,
171 			   "IRQ %d on CPU %d not for me\n", irq,
172 			   raw_smp_processor_id());
173 		return IRQ_NONE;
174 	}
175 	efx->last_irq_cpu = raw_smp_processor_id();
176 	netif_vdbg(efx, intr, efx->net_dev,
177 		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
178 		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
179 
180 	/* Determine interrupting queues, clear interrupt status
181 	 * register and acknowledge the device interrupt.
182 	 */
183 	BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
184 	queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
185 
186 	/* Check to see if we have a serious error condition */
187 	if (queues & (1U << efx->fatal_irq_level)) {
188 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
189 		if (unlikely(syserr))
190 			return efx_nic_fatal_interrupt(efx);
191 	}
192 
193 	EFX_ZERO_OWORD(*int_ker);
194 	wmb(); /* Ensure the vector is cleared before interrupt ack */
195 	falcon_irq_ack_a1(efx);
196 
197 	if (queues & 1)
198 		efx_schedule_channel(efx_get_channel(efx, 0));
199 	if (queues & 2)
200 		efx_schedule_channel(efx_get_channel(efx, 1));
201 	return IRQ_HANDLED;
202 }
203 /**************************************************************************
204  *
205  * EEPROM/flash
206  *
207  **************************************************************************
208  */
209 
210 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
211 
falcon_spi_poll(struct efx_nic * efx)212 static int falcon_spi_poll(struct efx_nic *efx)
213 {
214 	efx_oword_t reg;
215 	efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
216 	return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
217 }
218 
219 /* Wait for SPI command completion */
falcon_spi_wait(struct efx_nic * efx)220 static int falcon_spi_wait(struct efx_nic *efx)
221 {
222 	/* Most commands will finish quickly, so we start polling at
223 	 * very short intervals.  Sometimes the command may have to
224 	 * wait for VPD or expansion ROM access outside of our
225 	 * control, so we allow up to 100 ms. */
226 	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
227 	int i;
228 
229 	for (i = 0; i < 10; i++) {
230 		if (!falcon_spi_poll(efx))
231 			return 0;
232 		udelay(10);
233 	}
234 
235 	for (;;) {
236 		if (!falcon_spi_poll(efx))
237 			return 0;
238 		if (time_after_eq(jiffies, timeout)) {
239 			netif_err(efx, hw, efx->net_dev,
240 				  "timed out waiting for SPI\n");
241 			return -ETIMEDOUT;
242 		}
243 		schedule_timeout_uninterruptible(1);
244 	}
245 }
246 
falcon_spi_cmd(struct efx_nic * efx,const struct efx_spi_device * spi,unsigned int command,int address,const void * in,void * out,size_t len)247 int falcon_spi_cmd(struct efx_nic *efx, const struct efx_spi_device *spi,
248 		   unsigned int command, int address,
249 		   const void *in, void *out, size_t len)
250 {
251 	bool addressed = (address >= 0);
252 	bool reading = (out != NULL);
253 	efx_oword_t reg;
254 	int rc;
255 
256 	/* Input validation */
257 	if (len > FALCON_SPI_MAX_LEN)
258 		return -EINVAL;
259 
260 	/* Check that previous command is not still running */
261 	rc = falcon_spi_poll(efx);
262 	if (rc)
263 		return rc;
264 
265 	/* Program address register, if we have an address */
266 	if (addressed) {
267 		EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
268 		efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
269 	}
270 
271 	/* Program data register, if we have data */
272 	if (in != NULL) {
273 		memcpy(&reg, in, len);
274 		efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
275 	}
276 
277 	/* Issue read/write command */
278 	EFX_POPULATE_OWORD_7(reg,
279 			     FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
280 			     FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
281 			     FRF_AB_EE_SPI_HCMD_DABCNT, len,
282 			     FRF_AB_EE_SPI_HCMD_READ, reading,
283 			     FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
284 			     FRF_AB_EE_SPI_HCMD_ADBCNT,
285 			     (addressed ? spi->addr_len : 0),
286 			     FRF_AB_EE_SPI_HCMD_ENC, command);
287 	efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
288 
289 	/* Wait for read/write to complete */
290 	rc = falcon_spi_wait(efx);
291 	if (rc)
292 		return rc;
293 
294 	/* Read data */
295 	if (out != NULL) {
296 		efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
297 		memcpy(out, &reg, len);
298 	}
299 
300 	return 0;
301 }
302 
303 static size_t
falcon_spi_write_limit(const struct efx_spi_device * spi,size_t start)304 falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
305 {
306 	return min(FALCON_SPI_MAX_LEN,
307 		   (spi->block_size - (start & (spi->block_size - 1))));
308 }
309 
310 static inline u8
efx_spi_munge_command(const struct efx_spi_device * spi,const u8 command,const unsigned int address)311 efx_spi_munge_command(const struct efx_spi_device *spi,
312 		      const u8 command, const unsigned int address)
313 {
314 	return command | (((address >> 8) & spi->munge_address) << 3);
315 }
316 
317 /* Wait up to 10 ms for buffered write completion */
318 int
falcon_spi_wait_write(struct efx_nic * efx,const struct efx_spi_device * spi)319 falcon_spi_wait_write(struct efx_nic *efx, const struct efx_spi_device *spi)
320 {
321 	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
322 	u8 status;
323 	int rc;
324 
325 	for (;;) {
326 		rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
327 				    &status, sizeof(status));
328 		if (rc)
329 			return rc;
330 		if (!(status & SPI_STATUS_NRDY))
331 			return 0;
332 		if (time_after_eq(jiffies, timeout)) {
333 			netif_err(efx, hw, efx->net_dev,
334 				  "SPI write timeout on device %d"
335 				  " last status=0x%02x\n",
336 				  spi->device_id, status);
337 			return -ETIMEDOUT;
338 		}
339 		schedule_timeout_uninterruptible(1);
340 	}
341 }
342 
falcon_spi_read(struct efx_nic * efx,const struct efx_spi_device * spi,loff_t start,size_t len,size_t * retlen,u8 * buffer)343 int falcon_spi_read(struct efx_nic *efx, const struct efx_spi_device *spi,
344 		    loff_t start, size_t len, size_t *retlen, u8 *buffer)
345 {
346 	size_t block_len, pos = 0;
347 	unsigned int command;
348 	int rc = 0;
349 
350 	while (pos < len) {
351 		block_len = min(len - pos, FALCON_SPI_MAX_LEN);
352 
353 		command = efx_spi_munge_command(spi, SPI_READ, start + pos);
354 		rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
355 				    buffer + pos, block_len);
356 		if (rc)
357 			break;
358 		pos += block_len;
359 
360 		/* Avoid locking up the system */
361 		cond_resched();
362 		if (signal_pending(current)) {
363 			rc = -EINTR;
364 			break;
365 		}
366 	}
367 
368 	if (retlen)
369 		*retlen = pos;
370 	return rc;
371 }
372 
373 int
falcon_spi_write(struct efx_nic * efx,const struct efx_spi_device * spi,loff_t start,size_t len,size_t * retlen,const u8 * buffer)374 falcon_spi_write(struct efx_nic *efx, const struct efx_spi_device *spi,
375 		 loff_t start, size_t len, size_t *retlen, const u8 *buffer)
376 {
377 	u8 verify_buffer[FALCON_SPI_MAX_LEN];
378 	size_t block_len, pos = 0;
379 	unsigned int command;
380 	int rc = 0;
381 
382 	while (pos < len) {
383 		rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
384 		if (rc)
385 			break;
386 
387 		block_len = min(len - pos,
388 				falcon_spi_write_limit(spi, start + pos));
389 		command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
390 		rc = falcon_spi_cmd(efx, spi, command, start + pos,
391 				    buffer + pos, NULL, block_len);
392 		if (rc)
393 			break;
394 
395 		rc = falcon_spi_wait_write(efx, spi);
396 		if (rc)
397 			break;
398 
399 		command = efx_spi_munge_command(spi, SPI_READ, start + pos);
400 		rc = falcon_spi_cmd(efx, spi, command, start + pos,
401 				    NULL, verify_buffer, block_len);
402 		if (memcmp(verify_buffer, buffer + pos, block_len)) {
403 			rc = -EIO;
404 			break;
405 		}
406 
407 		pos += block_len;
408 
409 		/* Avoid locking up the system */
410 		cond_resched();
411 		if (signal_pending(current)) {
412 			rc = -EINTR;
413 			break;
414 		}
415 	}
416 
417 	if (retlen)
418 		*retlen = pos;
419 	return rc;
420 }
421 
422 /**************************************************************************
423  *
424  * MAC wrapper
425  *
426  **************************************************************************
427  */
428 
falcon_push_multicast_hash(struct efx_nic * efx)429 static void falcon_push_multicast_hash(struct efx_nic *efx)
430 {
431 	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
432 
433 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
434 
435 	efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
436 	efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
437 }
438 
falcon_reset_macs(struct efx_nic * efx)439 static void falcon_reset_macs(struct efx_nic *efx)
440 {
441 	struct falcon_nic_data *nic_data = efx->nic_data;
442 	efx_oword_t reg, mac_ctrl;
443 	int count;
444 
445 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
446 		/* It's not safe to use GLB_CTL_REG to reset the
447 		 * macs, so instead use the internal MAC resets
448 		 */
449 		EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
450 		efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
451 
452 		for (count = 0; count < 10000; count++) {
453 			efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
454 			if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
455 			    0)
456 				return;
457 			udelay(10);
458 		}
459 
460 		netif_err(efx, hw, efx->net_dev,
461 			  "timed out waiting for XMAC core reset\n");
462 	}
463 
464 	/* Mac stats will fail whist the TX fifo is draining */
465 	WARN_ON(nic_data->stats_disable_count == 0);
466 
467 	efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
468 	EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
469 	efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
470 
471 	efx_reado(efx, &reg, FR_AB_GLB_CTL);
472 	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
473 	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
474 	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
475 	efx_writeo(efx, &reg, FR_AB_GLB_CTL);
476 
477 	count = 0;
478 	while (1) {
479 		efx_reado(efx, &reg, FR_AB_GLB_CTL);
480 		if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
481 		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
482 		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
483 			netif_dbg(efx, hw, efx->net_dev,
484 				  "Completed MAC reset after %d loops\n",
485 				  count);
486 			break;
487 		}
488 		if (count > 20) {
489 			netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
490 			break;
491 		}
492 		count++;
493 		udelay(10);
494 	}
495 
496 	/* Ensure the correct MAC is selected before statistics
497 	 * are re-enabled by the caller */
498 	efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
499 
500 	falcon_setup_xaui(efx);
501 }
502 
falcon_drain_tx_fifo(struct efx_nic * efx)503 void falcon_drain_tx_fifo(struct efx_nic *efx)
504 {
505 	efx_oword_t reg;
506 
507 	if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
508 	    (efx->loopback_mode != LOOPBACK_NONE))
509 		return;
510 
511 	efx_reado(efx, &reg, FR_AB_MAC_CTRL);
512 	/* There is no point in draining more than once */
513 	if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
514 		return;
515 
516 	falcon_reset_macs(efx);
517 }
518 
falcon_deconfigure_mac_wrapper(struct efx_nic * efx)519 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
520 {
521 	efx_oword_t reg;
522 
523 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
524 		return;
525 
526 	/* Isolate the MAC -> RX */
527 	efx_reado(efx, &reg, FR_AZ_RX_CFG);
528 	EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
529 	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
530 
531 	/* Isolate TX -> MAC */
532 	falcon_drain_tx_fifo(efx);
533 }
534 
falcon_reconfigure_mac_wrapper(struct efx_nic * efx)535 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
536 {
537 	struct efx_link_state *link_state = &efx->link_state;
538 	efx_oword_t reg;
539 	int link_speed, isolate;
540 
541 	isolate = !!ACCESS_ONCE(efx->reset_pending);
542 
543 	switch (link_state->speed) {
544 	case 10000: link_speed = 3; break;
545 	case 1000:  link_speed = 2; break;
546 	case 100:   link_speed = 1; break;
547 	default:    link_speed = 0; break;
548 	}
549 	/* MAC_LINK_STATUS controls MAC backpressure but doesn't work
550 	 * as advertised.  Disable to ensure packets are not
551 	 * indefinitely held and TX queue can be flushed at any point
552 	 * while the link is down. */
553 	EFX_POPULATE_OWORD_5(reg,
554 			     FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
555 			     FRF_AB_MAC_BCAD_ACPT, 1,
556 			     FRF_AB_MAC_UC_PROM, efx->promiscuous,
557 			     FRF_AB_MAC_LINK_STATUS, 1, /* always set */
558 			     FRF_AB_MAC_SPEED, link_speed);
559 	/* On B0, MAC backpressure can be disabled and packets get
560 	 * discarded. */
561 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
562 		EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
563 				    !link_state->up || isolate);
564 	}
565 
566 	efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
567 
568 	/* Restore the multicast hash registers. */
569 	falcon_push_multicast_hash(efx);
570 
571 	efx_reado(efx, &reg, FR_AZ_RX_CFG);
572 	/* Enable XOFF signal from RX FIFO (we enabled it during NIC
573 	 * initialisation but it may read back as 0) */
574 	EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
575 	/* Unisolate the MAC -> RX */
576 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
577 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
578 	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
579 }
580 
falcon_stats_request(struct efx_nic * efx)581 static void falcon_stats_request(struct efx_nic *efx)
582 {
583 	struct falcon_nic_data *nic_data = efx->nic_data;
584 	efx_oword_t reg;
585 
586 	WARN_ON(nic_data->stats_pending);
587 	WARN_ON(nic_data->stats_disable_count);
588 
589 	if (nic_data->stats_dma_done == NULL)
590 		return;	/* no mac selected */
591 
592 	*nic_data->stats_dma_done = FALCON_STATS_NOT_DONE;
593 	nic_data->stats_pending = true;
594 	wmb(); /* ensure done flag is clear */
595 
596 	/* Initiate DMA transfer of stats */
597 	EFX_POPULATE_OWORD_2(reg,
598 			     FRF_AB_MAC_STAT_DMA_CMD, 1,
599 			     FRF_AB_MAC_STAT_DMA_ADR,
600 			     efx->stats_buffer.dma_addr);
601 	efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
602 
603 	mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
604 }
605 
falcon_stats_complete(struct efx_nic * efx)606 static void falcon_stats_complete(struct efx_nic *efx)
607 {
608 	struct falcon_nic_data *nic_data = efx->nic_data;
609 
610 	if (!nic_data->stats_pending)
611 		return;
612 
613 	nic_data->stats_pending = false;
614 	if (*nic_data->stats_dma_done == FALCON_STATS_DONE) {
615 		rmb(); /* read the done flag before the stats */
616 		efx->mac_op->update_stats(efx);
617 	} else {
618 		netif_err(efx, hw, efx->net_dev,
619 			  "timed out waiting for statistics\n");
620 	}
621 }
622 
falcon_stats_timer_func(unsigned long context)623 static void falcon_stats_timer_func(unsigned long context)
624 {
625 	struct efx_nic *efx = (struct efx_nic *)context;
626 	struct falcon_nic_data *nic_data = efx->nic_data;
627 
628 	spin_lock(&efx->stats_lock);
629 
630 	falcon_stats_complete(efx);
631 	if (nic_data->stats_disable_count == 0)
632 		falcon_stats_request(efx);
633 
634 	spin_unlock(&efx->stats_lock);
635 }
636 
falcon_loopback_link_poll(struct efx_nic * efx)637 static bool falcon_loopback_link_poll(struct efx_nic *efx)
638 {
639 	struct efx_link_state old_state = efx->link_state;
640 
641 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
642 	WARN_ON(!LOOPBACK_INTERNAL(efx));
643 
644 	efx->link_state.fd = true;
645 	efx->link_state.fc = efx->wanted_fc;
646 	efx->link_state.up = true;
647 	efx->link_state.speed = 10000;
648 
649 	return !efx_link_state_equal(&efx->link_state, &old_state);
650 }
651 
falcon_reconfigure_port(struct efx_nic * efx)652 static int falcon_reconfigure_port(struct efx_nic *efx)
653 {
654 	int rc;
655 
656 	WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
657 
658 	/* Poll the PHY link state *before* reconfiguring it. This means we
659 	 * will pick up the correct speed (in loopback) to select the correct
660 	 * MAC.
661 	 */
662 	if (LOOPBACK_INTERNAL(efx))
663 		falcon_loopback_link_poll(efx);
664 	else
665 		efx->phy_op->poll(efx);
666 
667 	falcon_stop_nic_stats(efx);
668 	falcon_deconfigure_mac_wrapper(efx);
669 
670 	falcon_reset_macs(efx);
671 
672 	efx->phy_op->reconfigure(efx);
673 	rc = efx->mac_op->reconfigure(efx);
674 	BUG_ON(rc);
675 
676 	falcon_start_nic_stats(efx);
677 
678 	/* Synchronise efx->link_state with the kernel */
679 	efx_link_status_changed(efx);
680 
681 	return 0;
682 }
683 
684 /**************************************************************************
685  *
686  * PHY access via GMII
687  *
688  **************************************************************************
689  */
690 
691 /* Wait for GMII access to complete */
falcon_gmii_wait(struct efx_nic * efx)692 static int falcon_gmii_wait(struct efx_nic *efx)
693 {
694 	efx_oword_t md_stat;
695 	int count;
696 
697 	/* wait up to 50ms - taken max from datasheet */
698 	for (count = 0; count < 5000; count++) {
699 		efx_reado(efx, &md_stat, FR_AB_MD_STAT);
700 		if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
701 			if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
702 			    EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
703 				netif_err(efx, hw, efx->net_dev,
704 					  "error from GMII access "
705 					  EFX_OWORD_FMT"\n",
706 					  EFX_OWORD_VAL(md_stat));
707 				return -EIO;
708 			}
709 			return 0;
710 		}
711 		udelay(10);
712 	}
713 	netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
714 	return -ETIMEDOUT;
715 }
716 
717 /* Write an MDIO register of a PHY connected to Falcon. */
falcon_mdio_write(struct net_device * net_dev,int prtad,int devad,u16 addr,u16 value)718 static int falcon_mdio_write(struct net_device *net_dev,
719 			     int prtad, int devad, u16 addr, u16 value)
720 {
721 	struct efx_nic *efx = netdev_priv(net_dev);
722 	struct falcon_nic_data *nic_data = efx->nic_data;
723 	efx_oword_t reg;
724 	int rc;
725 
726 	netif_vdbg(efx, hw, efx->net_dev,
727 		   "writing MDIO %d register %d.%d with 0x%04x\n",
728 		    prtad, devad, addr, value);
729 
730 	mutex_lock(&nic_data->mdio_lock);
731 
732 	/* Check MDIO not currently being accessed */
733 	rc = falcon_gmii_wait(efx);
734 	if (rc)
735 		goto out;
736 
737 	/* Write the address/ID register */
738 	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
739 	efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
740 
741 	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
742 			     FRF_AB_MD_DEV_ADR, devad);
743 	efx_writeo(efx, &reg, FR_AB_MD_ID);
744 
745 	/* Write data */
746 	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
747 	efx_writeo(efx, &reg, FR_AB_MD_TXD);
748 
749 	EFX_POPULATE_OWORD_2(reg,
750 			     FRF_AB_MD_WRC, 1,
751 			     FRF_AB_MD_GC, 0);
752 	efx_writeo(efx, &reg, FR_AB_MD_CS);
753 
754 	/* Wait for data to be written */
755 	rc = falcon_gmii_wait(efx);
756 	if (rc) {
757 		/* Abort the write operation */
758 		EFX_POPULATE_OWORD_2(reg,
759 				     FRF_AB_MD_WRC, 0,
760 				     FRF_AB_MD_GC, 1);
761 		efx_writeo(efx, &reg, FR_AB_MD_CS);
762 		udelay(10);
763 	}
764 
765 out:
766 	mutex_unlock(&nic_data->mdio_lock);
767 	return rc;
768 }
769 
770 /* Read an MDIO register of a PHY connected to Falcon. */
falcon_mdio_read(struct net_device * net_dev,int prtad,int devad,u16 addr)771 static int falcon_mdio_read(struct net_device *net_dev,
772 			    int prtad, int devad, u16 addr)
773 {
774 	struct efx_nic *efx = netdev_priv(net_dev);
775 	struct falcon_nic_data *nic_data = efx->nic_data;
776 	efx_oword_t reg;
777 	int rc;
778 
779 	mutex_lock(&nic_data->mdio_lock);
780 
781 	/* Check MDIO not currently being accessed */
782 	rc = falcon_gmii_wait(efx);
783 	if (rc)
784 		goto out;
785 
786 	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
787 	efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
788 
789 	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
790 			     FRF_AB_MD_DEV_ADR, devad);
791 	efx_writeo(efx, &reg, FR_AB_MD_ID);
792 
793 	/* Request data to be read */
794 	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
795 	efx_writeo(efx, &reg, FR_AB_MD_CS);
796 
797 	/* Wait for data to become available */
798 	rc = falcon_gmii_wait(efx);
799 	if (rc == 0) {
800 		efx_reado(efx, &reg, FR_AB_MD_RXD);
801 		rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
802 		netif_vdbg(efx, hw, efx->net_dev,
803 			   "read from MDIO %d register %d.%d, got %04x\n",
804 			   prtad, devad, addr, rc);
805 	} else {
806 		/* Abort the read operation */
807 		EFX_POPULATE_OWORD_2(reg,
808 				     FRF_AB_MD_RIC, 0,
809 				     FRF_AB_MD_GC, 1);
810 		efx_writeo(efx, &reg, FR_AB_MD_CS);
811 
812 		netif_dbg(efx, hw, efx->net_dev,
813 			  "read from MDIO %d register %d.%d, got error %d\n",
814 			  prtad, devad, addr, rc);
815 	}
816 
817 out:
818 	mutex_unlock(&nic_data->mdio_lock);
819 	return rc;
820 }
821 
822 /* This call is responsible for hooking in the MAC and PHY operations */
falcon_probe_port(struct efx_nic * efx)823 static int falcon_probe_port(struct efx_nic *efx)
824 {
825 	struct falcon_nic_data *nic_data = efx->nic_data;
826 	int rc;
827 
828 	switch (efx->phy_type) {
829 	case PHY_TYPE_SFX7101:
830 		efx->phy_op = &falcon_sfx7101_phy_ops;
831 		break;
832 	case PHY_TYPE_QT2022C2:
833 	case PHY_TYPE_QT2025C:
834 		efx->phy_op = &falcon_qt202x_phy_ops;
835 		break;
836 	case PHY_TYPE_TXC43128:
837 		efx->phy_op = &falcon_txc_phy_ops;
838 		break;
839 	default:
840 		netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
841 			  efx->phy_type);
842 		return -ENODEV;
843 	}
844 
845 	/* Fill out MDIO structure and loopback modes */
846 	mutex_init(&nic_data->mdio_lock);
847 	efx->mdio.mdio_read = falcon_mdio_read;
848 	efx->mdio.mdio_write = falcon_mdio_write;
849 	rc = efx->phy_op->probe(efx);
850 	if (rc != 0)
851 		return rc;
852 
853 	/* Initial assumption */
854 	efx->link_state.speed = 10000;
855 	efx->link_state.fd = true;
856 
857 	/* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
858 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
859 		efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
860 	else
861 		efx->wanted_fc = EFX_FC_RX;
862 	if (efx->mdio.mmds & MDIO_DEVS_AN)
863 		efx->wanted_fc |= EFX_FC_AUTO;
864 
865 	/* Allocate buffer for stats */
866 	rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
867 				  FALCON_MAC_STATS_SIZE);
868 	if (rc)
869 		return rc;
870 	netif_dbg(efx, probe, efx->net_dev,
871 		  "stats buffer at %llx (virt %p phys %llx)\n",
872 		  (u64)efx->stats_buffer.dma_addr,
873 		  efx->stats_buffer.addr,
874 		  (u64)virt_to_phys(efx->stats_buffer.addr));
875 	nic_data->stats_dma_done = efx->stats_buffer.addr + XgDmaDone_offset;
876 
877 	return 0;
878 }
879 
falcon_remove_port(struct efx_nic * efx)880 static void falcon_remove_port(struct efx_nic *efx)
881 {
882 	efx->phy_op->remove(efx);
883 	efx_nic_free_buffer(efx, &efx->stats_buffer);
884 }
885 
886 /* Global events are basically PHY events */
887 static bool
falcon_handle_global_event(struct efx_channel * channel,efx_qword_t * event)888 falcon_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
889 {
890 	struct efx_nic *efx = channel->efx;
891 	struct falcon_nic_data *nic_data = efx->nic_data;
892 
893 	if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
894 	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
895 	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
896 		/* Ignored */
897 		return true;
898 
899 	if ((efx_nic_rev(efx) == EFX_REV_FALCON_B0) &&
900 	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
901 		nic_data->xmac_poll_required = true;
902 		return true;
903 	}
904 
905 	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
906 	    EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
907 	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
908 		netif_err(efx, rx_err, efx->net_dev,
909 			  "channel %d seen global RX_RESET event. Resetting.\n",
910 			  channel->channel);
911 
912 		atomic_inc(&efx->rx_reset);
913 		efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
914 				   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
915 		return true;
916 	}
917 
918 	return false;
919 }
920 
921 /**************************************************************************
922  *
923  * Falcon test code
924  *
925  **************************************************************************/
926 
927 static int
falcon_read_nvram(struct efx_nic * efx,struct falcon_nvconfig * nvconfig_out)928 falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
929 {
930 	struct falcon_nic_data *nic_data = efx->nic_data;
931 	struct falcon_nvconfig *nvconfig;
932 	struct efx_spi_device *spi;
933 	void *region;
934 	int rc, magic_num, struct_ver;
935 	__le16 *word, *limit;
936 	u32 csum;
937 
938 	if (efx_spi_present(&nic_data->spi_flash))
939 		spi = &nic_data->spi_flash;
940 	else if (efx_spi_present(&nic_data->spi_eeprom))
941 		spi = &nic_data->spi_eeprom;
942 	else
943 		return -EINVAL;
944 
945 	region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
946 	if (!region)
947 		return -ENOMEM;
948 	nvconfig = region + FALCON_NVCONFIG_OFFSET;
949 
950 	mutex_lock(&nic_data->spi_lock);
951 	rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
952 	mutex_unlock(&nic_data->spi_lock);
953 	if (rc) {
954 		netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
955 			  efx_spi_present(&nic_data->spi_flash) ?
956 			  "flash" : "EEPROM");
957 		rc = -EIO;
958 		goto out;
959 	}
960 
961 	magic_num = le16_to_cpu(nvconfig->board_magic_num);
962 	struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
963 
964 	rc = -EINVAL;
965 	if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
966 		netif_err(efx, hw, efx->net_dev,
967 			  "NVRAM bad magic 0x%x\n", magic_num);
968 		goto out;
969 	}
970 	if (struct_ver < 2) {
971 		netif_err(efx, hw, efx->net_dev,
972 			  "NVRAM has ancient version 0x%x\n", struct_ver);
973 		goto out;
974 	} else if (struct_ver < 4) {
975 		word = &nvconfig->board_magic_num;
976 		limit = (__le16 *) (nvconfig + 1);
977 	} else {
978 		word = region;
979 		limit = region + FALCON_NVCONFIG_END;
980 	}
981 	for (csum = 0; word < limit; ++word)
982 		csum += le16_to_cpu(*word);
983 
984 	if (~csum & 0xffff) {
985 		netif_err(efx, hw, efx->net_dev,
986 			  "NVRAM has incorrect checksum\n");
987 		goto out;
988 	}
989 
990 	rc = 0;
991 	if (nvconfig_out)
992 		memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
993 
994  out:
995 	kfree(region);
996 	return rc;
997 }
998 
falcon_test_nvram(struct efx_nic * efx)999 static int falcon_test_nvram(struct efx_nic *efx)
1000 {
1001 	return falcon_read_nvram(efx, NULL);
1002 }
1003 
1004 static const struct efx_nic_register_test falcon_b0_register_tests[] = {
1005 	{ FR_AZ_ADR_REGION,
1006 	  EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1007 	{ FR_AZ_RX_CFG,
1008 	  EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1009 	{ FR_AZ_TX_CFG,
1010 	  EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1011 	{ FR_AZ_TX_RESERVED,
1012 	  EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1013 	{ FR_AB_MAC_CTRL,
1014 	  EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1015 	{ FR_AZ_SRM_TX_DC_CFG,
1016 	  EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1017 	{ FR_AZ_RX_DC_CFG,
1018 	  EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1019 	{ FR_AZ_RX_DC_PF_WM,
1020 	  EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1021 	{ FR_BZ_DP_CTRL,
1022 	  EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1023 	{ FR_AB_GM_CFG2,
1024 	  EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1025 	{ FR_AB_GMF_CFG0,
1026 	  EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1027 	{ FR_AB_XM_GLB_CFG,
1028 	  EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1029 	{ FR_AB_XM_TX_CFG,
1030 	  EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1031 	{ FR_AB_XM_RX_CFG,
1032 	  EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1033 	{ FR_AB_XM_RX_PARAM,
1034 	  EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1035 	{ FR_AB_XM_FC,
1036 	  EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1037 	{ FR_AB_XM_ADR_LO,
1038 	  EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1039 	{ FR_AB_XX_SD_CTL,
1040 	  EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1041 };
1042 
falcon_b0_test_registers(struct efx_nic * efx)1043 static int falcon_b0_test_registers(struct efx_nic *efx)
1044 {
1045 	return efx_nic_test_registers(efx, falcon_b0_register_tests,
1046 				      ARRAY_SIZE(falcon_b0_register_tests));
1047 }
1048 
1049 /**************************************************************************
1050  *
1051  * Device reset
1052  *
1053  **************************************************************************
1054  */
1055 
falcon_map_reset_reason(enum reset_type reason)1056 static enum reset_type falcon_map_reset_reason(enum reset_type reason)
1057 {
1058 	switch (reason) {
1059 	case RESET_TYPE_RX_RECOVERY:
1060 	case RESET_TYPE_RX_DESC_FETCH:
1061 	case RESET_TYPE_TX_DESC_FETCH:
1062 	case RESET_TYPE_TX_SKIP:
1063 		/* These can occasionally occur due to hardware bugs.
1064 		 * We try to reset without disrupting the link.
1065 		 */
1066 		return RESET_TYPE_INVISIBLE;
1067 	default:
1068 		return RESET_TYPE_ALL;
1069 	}
1070 }
1071 
falcon_map_reset_flags(u32 * flags)1072 static int falcon_map_reset_flags(u32 *flags)
1073 {
1074 	enum {
1075 		FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
1076 					  ETH_RESET_OFFLOAD | ETH_RESET_MAC),
1077 		FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
1078 		FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
1079 	};
1080 
1081 	if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
1082 		*flags &= ~FALCON_RESET_WORLD;
1083 		return RESET_TYPE_WORLD;
1084 	}
1085 
1086 	if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
1087 		*flags &= ~FALCON_RESET_ALL;
1088 		return RESET_TYPE_ALL;
1089 	}
1090 
1091 	if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
1092 		*flags &= ~FALCON_RESET_INVISIBLE;
1093 		return RESET_TYPE_INVISIBLE;
1094 	}
1095 
1096 	return -EINVAL;
1097 }
1098 
1099 /* Resets NIC to known state.  This routine must be called in process
1100  * context and is allowed to sleep. */
__falcon_reset_hw(struct efx_nic * efx,enum reset_type method)1101 static int __falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1102 {
1103 	struct falcon_nic_data *nic_data = efx->nic_data;
1104 	efx_oword_t glb_ctl_reg_ker;
1105 	int rc;
1106 
1107 	netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1108 		  RESET_TYPE(method));
1109 
1110 	/* Initiate device reset */
1111 	if (method == RESET_TYPE_WORLD) {
1112 		rc = pci_save_state(efx->pci_dev);
1113 		if (rc) {
1114 			netif_err(efx, drv, efx->net_dev,
1115 				  "failed to backup PCI state of primary "
1116 				  "function prior to hardware reset\n");
1117 			goto fail1;
1118 		}
1119 		if (efx_nic_is_dual_func(efx)) {
1120 			rc = pci_save_state(nic_data->pci_dev2);
1121 			if (rc) {
1122 				netif_err(efx, drv, efx->net_dev,
1123 					  "failed to backup PCI state of "
1124 					  "secondary function prior to "
1125 					  "hardware reset\n");
1126 				goto fail2;
1127 			}
1128 		}
1129 
1130 		EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
1131 				     FRF_AB_EXT_PHY_RST_DUR,
1132 				     FFE_AB_EXT_PHY_RST_DUR_10240US,
1133 				     FRF_AB_SWRST, 1);
1134 	} else {
1135 		EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
1136 				     /* exclude PHY from "invisible" reset */
1137 				     FRF_AB_EXT_PHY_RST_CTL,
1138 				     method == RESET_TYPE_INVISIBLE,
1139 				     /* exclude EEPROM/flash and PCIe */
1140 				     FRF_AB_PCIE_CORE_RST_CTL, 1,
1141 				     FRF_AB_PCIE_NSTKY_RST_CTL, 1,
1142 				     FRF_AB_PCIE_SD_RST_CTL, 1,
1143 				     FRF_AB_EE_RST_CTL, 1,
1144 				     FRF_AB_EXT_PHY_RST_DUR,
1145 				     FFE_AB_EXT_PHY_RST_DUR_10240US,
1146 				     FRF_AB_SWRST, 1);
1147 	}
1148 	efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1149 
1150 	netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
1151 	schedule_timeout_uninterruptible(HZ / 20);
1152 
1153 	/* Restore PCI configuration if needed */
1154 	if (method == RESET_TYPE_WORLD) {
1155 		if (efx_nic_is_dual_func(efx))
1156 			pci_restore_state(nic_data->pci_dev2);
1157 		pci_restore_state(efx->pci_dev);
1158 		netif_dbg(efx, drv, efx->net_dev,
1159 			  "successfully restored PCI config\n");
1160 	}
1161 
1162 	/* Assert that reset complete */
1163 	efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1164 	if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
1165 		rc = -ETIMEDOUT;
1166 		netif_err(efx, hw, efx->net_dev,
1167 			  "timed out waiting for hardware reset\n");
1168 		goto fail3;
1169 	}
1170 	netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
1171 
1172 	return 0;
1173 
1174 	/* pci_save_state() and pci_restore_state() MUST be called in pairs */
1175 fail2:
1176 	pci_restore_state(efx->pci_dev);
1177 fail1:
1178 fail3:
1179 	return rc;
1180 }
1181 
falcon_reset_hw(struct efx_nic * efx,enum reset_type method)1182 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1183 {
1184 	struct falcon_nic_data *nic_data = efx->nic_data;
1185 	int rc;
1186 
1187 	mutex_lock(&nic_data->spi_lock);
1188 	rc = __falcon_reset_hw(efx, method);
1189 	mutex_unlock(&nic_data->spi_lock);
1190 
1191 	return rc;
1192 }
1193 
falcon_monitor(struct efx_nic * efx)1194 static void falcon_monitor(struct efx_nic *efx)
1195 {
1196 	bool link_changed;
1197 	int rc;
1198 
1199 	BUG_ON(!mutex_is_locked(&efx->mac_lock));
1200 
1201 	rc = falcon_board(efx)->type->monitor(efx);
1202 	if (rc) {
1203 		netif_err(efx, hw, efx->net_dev,
1204 			  "Board sensor %s; shutting down PHY\n",
1205 			  (rc == -ERANGE) ? "reported fault" : "failed");
1206 		efx->phy_mode |= PHY_MODE_LOW_POWER;
1207 		rc = __efx_reconfigure_port(efx);
1208 		WARN_ON(rc);
1209 	}
1210 
1211 	if (LOOPBACK_INTERNAL(efx))
1212 		link_changed = falcon_loopback_link_poll(efx);
1213 	else
1214 		link_changed = efx->phy_op->poll(efx);
1215 
1216 	if (link_changed) {
1217 		falcon_stop_nic_stats(efx);
1218 		falcon_deconfigure_mac_wrapper(efx);
1219 
1220 		falcon_reset_macs(efx);
1221 		rc = efx->mac_op->reconfigure(efx);
1222 		BUG_ON(rc);
1223 
1224 		falcon_start_nic_stats(efx);
1225 
1226 		efx_link_status_changed(efx);
1227 	}
1228 
1229 	falcon_poll_xmac(efx);
1230 }
1231 
1232 /* Zeroes out the SRAM contents.  This routine must be called in
1233  * process context and is allowed to sleep.
1234  */
falcon_reset_sram(struct efx_nic * efx)1235 static int falcon_reset_sram(struct efx_nic *efx)
1236 {
1237 	efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
1238 	int count;
1239 
1240 	/* Set the SRAM wake/sleep GPIO appropriately. */
1241 	efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1242 	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
1243 	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
1244 	efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1245 
1246 	/* Initiate SRAM reset */
1247 	EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
1248 			     FRF_AZ_SRM_INIT_EN, 1,
1249 			     FRF_AZ_SRM_NB_SZ, 0);
1250 	efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1251 
1252 	/* Wait for SRAM reset to complete */
1253 	count = 0;
1254 	do {
1255 		netif_dbg(efx, hw, efx->net_dev,
1256 			  "waiting for SRAM reset (attempt %d)...\n", count);
1257 
1258 		/* SRAM reset is slow; expect around 16ms */
1259 		schedule_timeout_uninterruptible(HZ / 50);
1260 
1261 		/* Check for reset complete */
1262 		efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1263 		if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
1264 			netif_dbg(efx, hw, efx->net_dev,
1265 				  "SRAM reset complete\n");
1266 
1267 			return 0;
1268 		}
1269 	} while (++count < 20);	/* wait up to 0.4 sec */
1270 
1271 	netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
1272 	return -ETIMEDOUT;
1273 }
1274 
falcon_spi_device_init(struct efx_nic * efx,struct efx_spi_device * spi_device,unsigned int device_id,u32 device_type)1275 static void falcon_spi_device_init(struct efx_nic *efx,
1276 				  struct efx_spi_device *spi_device,
1277 				  unsigned int device_id, u32 device_type)
1278 {
1279 	if (device_type != 0) {
1280 		spi_device->device_id = device_id;
1281 		spi_device->size =
1282 			1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
1283 		spi_device->addr_len =
1284 			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
1285 		spi_device->munge_address = (spi_device->size == 1 << 9 &&
1286 					     spi_device->addr_len == 1);
1287 		spi_device->erase_command =
1288 			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
1289 		spi_device->erase_size =
1290 			1 << SPI_DEV_TYPE_FIELD(device_type,
1291 						SPI_DEV_TYPE_ERASE_SIZE);
1292 		spi_device->block_size =
1293 			1 << SPI_DEV_TYPE_FIELD(device_type,
1294 						SPI_DEV_TYPE_BLOCK_SIZE);
1295 	} else {
1296 		spi_device->size = 0;
1297 	}
1298 }
1299 
1300 /* Extract non-volatile configuration */
falcon_probe_nvconfig(struct efx_nic * efx)1301 static int falcon_probe_nvconfig(struct efx_nic *efx)
1302 {
1303 	struct falcon_nic_data *nic_data = efx->nic_data;
1304 	struct falcon_nvconfig *nvconfig;
1305 	int rc;
1306 
1307 	nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
1308 	if (!nvconfig)
1309 		return -ENOMEM;
1310 
1311 	rc = falcon_read_nvram(efx, nvconfig);
1312 	if (rc)
1313 		goto out;
1314 
1315 	efx->phy_type = nvconfig->board_v2.port0_phy_type;
1316 	efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
1317 
1318 	if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
1319 		falcon_spi_device_init(
1320 			efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
1321 			le32_to_cpu(nvconfig->board_v3
1322 				    .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
1323 		falcon_spi_device_init(
1324 			efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
1325 			le32_to_cpu(nvconfig->board_v3
1326 				    .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
1327 	}
1328 
1329 	/* Read the MAC addresses */
1330 	memcpy(efx->net_dev->perm_addr, nvconfig->mac_address[0], ETH_ALEN);
1331 
1332 	netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
1333 		  efx->phy_type, efx->mdio.prtad);
1334 
1335 	rc = falcon_probe_board(efx,
1336 				le16_to_cpu(nvconfig->board_v2.board_revision));
1337 out:
1338 	kfree(nvconfig);
1339 	return rc;
1340 }
1341 
1342 /* Probe all SPI devices on the NIC */
falcon_probe_spi_devices(struct efx_nic * efx)1343 static void falcon_probe_spi_devices(struct efx_nic *efx)
1344 {
1345 	struct falcon_nic_data *nic_data = efx->nic_data;
1346 	efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
1347 	int boot_dev;
1348 
1349 	efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
1350 	efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1351 	efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1352 
1353 	if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
1354 		boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
1355 			    FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
1356 		netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
1357 			  boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
1358 			  "flash" : "EEPROM");
1359 	} else {
1360 		/* Disable VPD and set clock dividers to safe
1361 		 * values for initial programming. */
1362 		boot_dev = -1;
1363 		netif_dbg(efx, probe, efx->net_dev,
1364 			  "Booted from internal ASIC settings;"
1365 			  " setting SPI config\n");
1366 		EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
1367 				     /* 125 MHz / 7 ~= 20 MHz */
1368 				     FRF_AB_EE_SF_CLOCK_DIV, 7,
1369 				     /* 125 MHz / 63 ~= 2 MHz */
1370 				     FRF_AB_EE_EE_CLOCK_DIV, 63);
1371 		efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1372 	}
1373 
1374 	mutex_init(&nic_data->spi_lock);
1375 
1376 	if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
1377 		falcon_spi_device_init(efx, &nic_data->spi_flash,
1378 				       FFE_AB_SPI_DEVICE_FLASH,
1379 				       default_flash_type);
1380 	if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
1381 		falcon_spi_device_init(efx, &nic_data->spi_eeprom,
1382 				       FFE_AB_SPI_DEVICE_EEPROM,
1383 				       large_eeprom_type);
1384 }
1385 
falcon_probe_nic(struct efx_nic * efx)1386 static int falcon_probe_nic(struct efx_nic *efx)
1387 {
1388 	struct falcon_nic_data *nic_data;
1389 	struct falcon_board *board;
1390 	int rc;
1391 
1392 	/* Allocate storage for hardware specific data */
1393 	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
1394 	if (!nic_data)
1395 		return -ENOMEM;
1396 	efx->nic_data = nic_data;
1397 
1398 	rc = -ENODEV;
1399 
1400 	if (efx_nic_fpga_ver(efx) != 0) {
1401 		netif_err(efx, probe, efx->net_dev,
1402 			  "Falcon FPGA not supported\n");
1403 		goto fail1;
1404 	}
1405 
1406 	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1407 		efx_oword_t nic_stat;
1408 		struct pci_dev *dev;
1409 		u8 pci_rev = efx->pci_dev->revision;
1410 
1411 		if ((pci_rev == 0xff) || (pci_rev == 0)) {
1412 			netif_err(efx, probe, efx->net_dev,
1413 				  "Falcon rev A0 not supported\n");
1414 			goto fail1;
1415 		}
1416 		efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1417 		if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
1418 			netif_err(efx, probe, efx->net_dev,
1419 				  "Falcon rev A1 1G not supported\n");
1420 			goto fail1;
1421 		}
1422 		if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
1423 			netif_err(efx, probe, efx->net_dev,
1424 				  "Falcon rev A1 PCI-X not supported\n");
1425 			goto fail1;
1426 		}
1427 
1428 		dev = pci_dev_get(efx->pci_dev);
1429 		while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
1430 					     PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
1431 					     dev))) {
1432 			if (dev->bus == efx->pci_dev->bus &&
1433 			    dev->devfn == efx->pci_dev->devfn + 1) {
1434 				nic_data->pci_dev2 = dev;
1435 				break;
1436 			}
1437 		}
1438 		if (!nic_data->pci_dev2) {
1439 			netif_err(efx, probe, efx->net_dev,
1440 				  "failed to find secondary function\n");
1441 			rc = -ENODEV;
1442 			goto fail2;
1443 		}
1444 	}
1445 
1446 	/* Now we can reset the NIC */
1447 	rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
1448 	if (rc) {
1449 		netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
1450 		goto fail3;
1451 	}
1452 
1453 	/* Allocate memory for INT_KER */
1454 	rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
1455 	if (rc)
1456 		goto fail4;
1457 	BUG_ON(efx->irq_status.dma_addr & 0x0f);
1458 
1459 	netif_dbg(efx, probe, efx->net_dev,
1460 		  "INT_KER at %llx (virt %p phys %llx)\n",
1461 		  (u64)efx->irq_status.dma_addr,
1462 		  efx->irq_status.addr,
1463 		  (u64)virt_to_phys(efx->irq_status.addr));
1464 
1465 	falcon_probe_spi_devices(efx);
1466 
1467 	/* Read in the non-volatile configuration */
1468 	rc = falcon_probe_nvconfig(efx);
1469 	if (rc) {
1470 		if (rc == -EINVAL)
1471 			netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
1472 		goto fail5;
1473 	}
1474 
1475 	/* Initialise I2C adapter */
1476 	board = falcon_board(efx);
1477 	board->i2c_adap.owner = THIS_MODULE;
1478 	board->i2c_data = falcon_i2c_bit_operations;
1479 	board->i2c_data.data = efx;
1480 	board->i2c_adap.algo_data = &board->i2c_data;
1481 	board->i2c_adap.dev.parent = &efx->pci_dev->dev;
1482 	strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
1483 		sizeof(board->i2c_adap.name));
1484 	rc = i2c_bit_add_bus(&board->i2c_adap);
1485 	if (rc)
1486 		goto fail5;
1487 
1488 	rc = falcon_board(efx)->type->init(efx);
1489 	if (rc) {
1490 		netif_err(efx, probe, efx->net_dev,
1491 			  "failed to initialise board\n");
1492 		goto fail6;
1493 	}
1494 
1495 	nic_data->stats_disable_count = 1;
1496 	setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
1497 		    (unsigned long)efx);
1498 
1499 	return 0;
1500 
1501  fail6:
1502 	BUG_ON(i2c_del_adapter(&board->i2c_adap));
1503 	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1504  fail5:
1505 	efx_nic_free_buffer(efx, &efx->irq_status);
1506  fail4:
1507  fail3:
1508 	if (nic_data->pci_dev2) {
1509 		pci_dev_put(nic_data->pci_dev2);
1510 		nic_data->pci_dev2 = NULL;
1511 	}
1512  fail2:
1513  fail1:
1514 	kfree(efx->nic_data);
1515 	return rc;
1516 }
1517 
falcon_init_rx_cfg(struct efx_nic * efx)1518 static void falcon_init_rx_cfg(struct efx_nic *efx)
1519 {
1520 	/* Prior to Siena the RX DMA engine will split each frame at
1521 	 * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
1522 	 * be so large that that never happens. */
1523 	const unsigned huge_buf_size = (3 * 4096) >> 5;
1524 	/* RX control FIFO thresholds (32 entries) */
1525 	const unsigned ctrl_xon_thr = 20;
1526 	const unsigned ctrl_xoff_thr = 25;
1527 	efx_oword_t reg;
1528 
1529 	efx_reado(efx, &reg, FR_AZ_RX_CFG);
1530 	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1531 		/* Data FIFO size is 5.5K */
1532 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
1533 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
1534 				    huge_buf_size);
1535 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
1536 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
1537 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
1538 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
1539 	} else {
1540 		/* Data FIFO size is 80K; register fields moved */
1541 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
1542 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
1543 				    huge_buf_size);
1544 		/* Send XON and XOFF at ~3 * max MTU away from empty/full */
1545 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
1546 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
1547 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
1548 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
1549 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
1550 
1551 		/* Enable hash insertion. This is broken for the
1552 		 * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
1553 		 * IPv4 hashes. */
1554 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
1555 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
1556 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
1557 	}
1558 	/* Always enable XOFF signal from RX FIFO.  We enable
1559 	 * or disable transmission of pause frames at the MAC. */
1560 	EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1561 	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1562 }
1563 
1564 /* This call performs hardware-specific global initialisation, such as
1565  * defining the descriptor cache sizes and number of RSS channels.
1566  * It does not set up any buffers, descriptor rings or event queues.
1567  */
falcon_init_nic(struct efx_nic * efx)1568 static int falcon_init_nic(struct efx_nic *efx)
1569 {
1570 	efx_oword_t temp;
1571 	int rc;
1572 
1573 	/* Use on-chip SRAM */
1574 	efx_reado(efx, &temp, FR_AB_NIC_STAT);
1575 	EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
1576 	efx_writeo(efx, &temp, FR_AB_NIC_STAT);
1577 
1578 	rc = falcon_reset_sram(efx);
1579 	if (rc)
1580 		return rc;
1581 
1582 	/* Clear the parity enables on the TX data fifos as
1583 	 * they produce false parity errors because of timing issues
1584 	 */
1585 	if (EFX_WORKAROUND_5129(efx)) {
1586 		efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
1587 		EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
1588 		efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
1589 	}
1590 
1591 	if (EFX_WORKAROUND_7244(efx)) {
1592 		efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
1593 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
1594 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
1595 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
1596 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
1597 		efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
1598 	}
1599 
1600 	/* XXX This is documented only for Falcon A0/A1 */
1601 	/* Setup RX.  Wait for descriptor is broken and must
1602 	 * be disabled.  RXDP recovery shouldn't be needed, but is.
1603 	 */
1604 	efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
1605 	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
1606 	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
1607 	if (EFX_WORKAROUND_5583(efx))
1608 		EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
1609 	efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
1610 
1611 	/* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
1612 	 * descriptors (which is bad).
1613 	 */
1614 	efx_reado(efx, &temp, FR_AZ_TX_CFG);
1615 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
1616 	efx_writeo(efx, &temp, FR_AZ_TX_CFG);
1617 
1618 	falcon_init_rx_cfg(efx);
1619 
1620 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1621 		/* Set hash key for IPv4 */
1622 		memcpy(&temp, efx->rx_hash_key, sizeof(temp));
1623 		efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
1624 
1625 		/* Set destination of both TX and RX Flush events */
1626 		EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
1627 		efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
1628 	}
1629 
1630 	efx_nic_init_common(efx);
1631 
1632 	return 0;
1633 }
1634 
falcon_remove_nic(struct efx_nic * efx)1635 static void falcon_remove_nic(struct efx_nic *efx)
1636 {
1637 	struct falcon_nic_data *nic_data = efx->nic_data;
1638 	struct falcon_board *board = falcon_board(efx);
1639 	int rc;
1640 
1641 	board->type->fini(efx);
1642 
1643 	/* Remove I2C adapter and clear it in preparation for a retry */
1644 	rc = i2c_del_adapter(&board->i2c_adap);
1645 	BUG_ON(rc);
1646 	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1647 
1648 	efx_nic_free_buffer(efx, &efx->irq_status);
1649 
1650 	__falcon_reset_hw(efx, RESET_TYPE_ALL);
1651 
1652 	/* Release the second function after the reset */
1653 	if (nic_data->pci_dev2) {
1654 		pci_dev_put(nic_data->pci_dev2);
1655 		nic_data->pci_dev2 = NULL;
1656 	}
1657 
1658 	/* Tear down the private nic state */
1659 	kfree(efx->nic_data);
1660 	efx->nic_data = NULL;
1661 }
1662 
falcon_update_nic_stats(struct efx_nic * efx)1663 static void falcon_update_nic_stats(struct efx_nic *efx)
1664 {
1665 	struct falcon_nic_data *nic_data = efx->nic_data;
1666 	efx_oword_t cnt;
1667 
1668 	if (nic_data->stats_disable_count)
1669 		return;
1670 
1671 	efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
1672 	efx->n_rx_nodesc_drop_cnt +=
1673 		EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
1674 
1675 	if (nic_data->stats_pending &&
1676 	    *nic_data->stats_dma_done == FALCON_STATS_DONE) {
1677 		nic_data->stats_pending = false;
1678 		rmb(); /* read the done flag before the stats */
1679 		efx->mac_op->update_stats(efx);
1680 	}
1681 }
1682 
falcon_start_nic_stats(struct efx_nic * efx)1683 void falcon_start_nic_stats(struct efx_nic *efx)
1684 {
1685 	struct falcon_nic_data *nic_data = efx->nic_data;
1686 
1687 	spin_lock_bh(&efx->stats_lock);
1688 	if (--nic_data->stats_disable_count == 0)
1689 		falcon_stats_request(efx);
1690 	spin_unlock_bh(&efx->stats_lock);
1691 }
1692 
falcon_stop_nic_stats(struct efx_nic * efx)1693 void falcon_stop_nic_stats(struct efx_nic *efx)
1694 {
1695 	struct falcon_nic_data *nic_data = efx->nic_data;
1696 	int i;
1697 
1698 	might_sleep();
1699 
1700 	spin_lock_bh(&efx->stats_lock);
1701 	++nic_data->stats_disable_count;
1702 	spin_unlock_bh(&efx->stats_lock);
1703 
1704 	del_timer_sync(&nic_data->stats_timer);
1705 
1706 	/* Wait enough time for the most recent transfer to
1707 	 * complete. */
1708 	for (i = 0; i < 4 && nic_data->stats_pending; i++) {
1709 		if (*nic_data->stats_dma_done == FALCON_STATS_DONE)
1710 			break;
1711 		msleep(1);
1712 	}
1713 
1714 	spin_lock_bh(&efx->stats_lock);
1715 	falcon_stats_complete(efx);
1716 	spin_unlock_bh(&efx->stats_lock);
1717 }
1718 
falcon_set_id_led(struct efx_nic * efx,enum efx_led_mode mode)1719 static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1720 {
1721 	falcon_board(efx)->type->set_id_led(efx, mode);
1722 }
1723 
1724 /**************************************************************************
1725  *
1726  * Wake on LAN
1727  *
1728  **************************************************************************
1729  */
1730 
falcon_get_wol(struct efx_nic * efx,struct ethtool_wolinfo * wol)1731 static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1732 {
1733 	wol->supported = 0;
1734 	wol->wolopts = 0;
1735 	memset(&wol->sopass, 0, sizeof(wol->sopass));
1736 }
1737 
falcon_set_wol(struct efx_nic * efx,u32 type)1738 static int falcon_set_wol(struct efx_nic *efx, u32 type)
1739 {
1740 	if (type != 0)
1741 		return -EINVAL;
1742 	return 0;
1743 }
1744 
1745 /**************************************************************************
1746  *
1747  * Revision-dependent attributes used by efx.c and nic.c
1748  *
1749  **************************************************************************
1750  */
1751 
1752 const struct efx_nic_type falcon_a1_nic_type = {
1753 	.probe = falcon_probe_nic,
1754 	.remove = falcon_remove_nic,
1755 	.init = falcon_init_nic,
1756 	.fini = efx_port_dummy_op_void,
1757 	.monitor = falcon_monitor,
1758 	.map_reset_reason = falcon_map_reset_reason,
1759 	.map_reset_flags = falcon_map_reset_flags,
1760 	.reset = falcon_reset_hw,
1761 	.probe_port = falcon_probe_port,
1762 	.remove_port = falcon_remove_port,
1763 	.handle_global_event = falcon_handle_global_event,
1764 	.prepare_flush = falcon_prepare_flush,
1765 	.update_stats = falcon_update_nic_stats,
1766 	.start_stats = falcon_start_nic_stats,
1767 	.stop_stats = falcon_stop_nic_stats,
1768 	.set_id_led = falcon_set_id_led,
1769 	.push_irq_moderation = falcon_push_irq_moderation,
1770 	.push_multicast_hash = falcon_push_multicast_hash,
1771 	.reconfigure_port = falcon_reconfigure_port,
1772 	.get_wol = falcon_get_wol,
1773 	.set_wol = falcon_set_wol,
1774 	.resume_wol = efx_port_dummy_op_void,
1775 	.test_nvram = falcon_test_nvram,
1776 	.default_mac_ops = &falcon_xmac_operations,
1777 
1778 	.revision = EFX_REV_FALCON_A1,
1779 	.mem_map_size = 0x20000,
1780 	.txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
1781 	.rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
1782 	.buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
1783 	.evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
1784 	.evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
1785 	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
1786 	.rx_buffer_padding = 0x24,
1787 	.max_interrupt_mode = EFX_INT_MODE_MSI,
1788 	.phys_addr_channels = 4,
1789 	.tx_dc_base = 0x130000,
1790 	.rx_dc_base = 0x100000,
1791 	.offload_features = NETIF_F_IP_CSUM,
1792 };
1793 
1794 const struct efx_nic_type falcon_b0_nic_type = {
1795 	.probe = falcon_probe_nic,
1796 	.remove = falcon_remove_nic,
1797 	.init = falcon_init_nic,
1798 	.fini = efx_port_dummy_op_void,
1799 	.monitor = falcon_monitor,
1800 	.map_reset_reason = falcon_map_reset_reason,
1801 	.map_reset_flags = falcon_map_reset_flags,
1802 	.reset = falcon_reset_hw,
1803 	.probe_port = falcon_probe_port,
1804 	.remove_port = falcon_remove_port,
1805 	.handle_global_event = falcon_handle_global_event,
1806 	.prepare_flush = falcon_prepare_flush,
1807 	.update_stats = falcon_update_nic_stats,
1808 	.start_stats = falcon_start_nic_stats,
1809 	.stop_stats = falcon_stop_nic_stats,
1810 	.set_id_led = falcon_set_id_led,
1811 	.push_irq_moderation = falcon_push_irq_moderation,
1812 	.push_multicast_hash = falcon_push_multicast_hash,
1813 	.reconfigure_port = falcon_reconfigure_port,
1814 	.get_wol = falcon_get_wol,
1815 	.set_wol = falcon_set_wol,
1816 	.resume_wol = efx_port_dummy_op_void,
1817 	.test_registers = falcon_b0_test_registers,
1818 	.test_nvram = falcon_test_nvram,
1819 	.default_mac_ops = &falcon_xmac_operations,
1820 
1821 	.revision = EFX_REV_FALCON_B0,
1822 	/* Map everything up to and including the RSS indirection
1823 	 * table.  Don't map MSI-X table, MSI-X PBA since Linux
1824 	 * requires that they not be mapped.  */
1825 	.mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
1826 			 FR_BZ_RX_INDIRECTION_TBL_STEP *
1827 			 FR_BZ_RX_INDIRECTION_TBL_ROWS),
1828 	.txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
1829 	.rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
1830 	.buf_tbl_base = FR_BZ_BUF_FULL_TBL,
1831 	.evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
1832 	.evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
1833 	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
1834 	.rx_buffer_hash_size = 0x10,
1835 	.rx_buffer_padding = 0,
1836 	.max_interrupt_mode = EFX_INT_MODE_MSIX,
1837 	.phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
1838 				   * interrupt handler only supports 32
1839 				   * channels */
1840 	.tx_dc_base = 0x130000,
1841 	.rx_dc_base = 0x100000,
1842 	.offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
1843 };
1844 
1845