1 /*
2  *  SuperH Ethernet device driver
3  *
4  *  Copyright (C) 2006-2008 Nobuhiro Iwamatsu
5  *  Copyright (C) 2008-2009 Renesas Solutions Corp.
6  *
7  *  This program is free software; you can redistribute it and/or modify it
8  *  under the terms and conditions of the GNU General Public License,
9  *  version 2, as published by the Free Software Foundation.
10  *
11  *  This program is distributed in the hope it will be useful, but WITHOUT
12  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  *  more details.
15  *  You should have received a copy of the GNU General Public License along with
16  *  this program; if not, write to the Free Software Foundation, Inc.,
17  *  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  *  The full GNU General Public License is included in this distribution in
20  *  the file called "COPYING".
21  */
22 
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/spinlock.h>
27 #include <linux/interrupt.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/etherdevice.h>
30 #include <linux/delay.h>
31 #include <linux/platform_device.h>
32 #include <linux/mdio-bitbang.h>
33 #include <linux/netdevice.h>
34 #include <linux/phy.h>
35 #include <linux/cache.h>
36 #include <linux/io.h>
37 #include <linux/interrupt.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/slab.h>
40 #include <linux/ethtool.h>
41 #include <linux/if_vlan.h>
42 #include <linux/sh_eth.h>
43 
44 #include "sh_eth.h"
45 
46 #define SH_ETH_DEF_MSG_ENABLE \
47 		(NETIF_MSG_LINK	| \
48 		NETIF_MSG_TIMER	| \
49 		NETIF_MSG_RX_ERR| \
50 		NETIF_MSG_TX_ERR)
51 
52 /* There is CPU dependent code */
53 #if defined(CONFIG_CPU_SUBTYPE_SH7724)
54 #define SH_ETH_RESET_DEFAULT	1
sh_eth_set_duplex(struct net_device * ndev)55 static void sh_eth_set_duplex(struct net_device *ndev)
56 {
57 	struct sh_eth_private *mdp = netdev_priv(ndev);
58 
59 	if (mdp->duplex) /* Full */
60 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
61 	else		/* Half */
62 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
63 }
64 
sh_eth_set_rate(struct net_device * ndev)65 static void sh_eth_set_rate(struct net_device *ndev)
66 {
67 	struct sh_eth_private *mdp = netdev_priv(ndev);
68 
69 	switch (mdp->speed) {
70 	case 10: /* 10BASE */
71 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
72 		break;
73 	case 100:/* 100BASE */
74 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
75 		break;
76 	default:
77 		break;
78 	}
79 }
80 
81 /* SH7724 */
82 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
83 	.set_duplex	= sh_eth_set_duplex,
84 	.set_rate	= sh_eth_set_rate,
85 
86 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
87 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
88 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
89 
90 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
91 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
92 			  EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
93 	.tx_error_check	= EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
94 
95 	.apr		= 1,
96 	.mpr		= 1,
97 	.tpauser	= 1,
98 	.hw_swap	= 1,
99 	.rpadir		= 1,
100 	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
101 };
102 #elif defined(CONFIG_CPU_SUBTYPE_SH7757)
103 #define SH_ETH_HAS_BOTH_MODULES	1
104 #define SH_ETH_HAS_TSU	1
sh_eth_set_duplex(struct net_device * ndev)105 static void sh_eth_set_duplex(struct net_device *ndev)
106 {
107 	struct sh_eth_private *mdp = netdev_priv(ndev);
108 
109 	if (mdp->duplex) /* Full */
110 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
111 	else		/* Half */
112 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
113 }
114 
sh_eth_set_rate(struct net_device * ndev)115 static void sh_eth_set_rate(struct net_device *ndev)
116 {
117 	struct sh_eth_private *mdp = netdev_priv(ndev);
118 
119 	switch (mdp->speed) {
120 	case 10: /* 10BASE */
121 		sh_eth_write(ndev, 0, RTRATE);
122 		break;
123 	case 100:/* 100BASE */
124 		sh_eth_write(ndev, 1, RTRATE);
125 		break;
126 	default:
127 		break;
128 	}
129 }
130 
131 /* SH7757 */
132 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
133 	.set_duplex		= sh_eth_set_duplex,
134 	.set_rate		= sh_eth_set_rate,
135 
136 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
137 	.rmcr_value	= 0x00000001,
138 
139 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
140 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
141 			  EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
142 	.tx_error_check	= EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
143 
144 	.apr		= 1,
145 	.mpr		= 1,
146 	.tpauser	= 1,
147 	.hw_swap	= 1,
148 	.no_ade		= 1,
149 	.rpadir		= 1,
150 	.rpadir_value   = 2 << 16,
151 };
152 
153 #define SH_GIGA_ETH_BASE	0xfee00000
154 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
155 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
sh_eth_chip_reset_giga(struct net_device * ndev)156 static void sh_eth_chip_reset_giga(struct net_device *ndev)
157 {
158 	int i;
159 	unsigned long mahr[2], malr[2];
160 
161 	/* save MAHR and MALR */
162 	for (i = 0; i < 2; i++) {
163 		malr[i] = ioread32((void *)GIGA_MALR(i));
164 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
165 	}
166 
167 	/* reset device */
168 	iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
169 	mdelay(1);
170 
171 	/* restore MAHR and MALR */
172 	for (i = 0; i < 2; i++) {
173 		iowrite32(malr[i], (void *)GIGA_MALR(i));
174 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
175 	}
176 }
177 
178 static int sh_eth_is_gether(struct sh_eth_private *mdp);
sh_eth_reset(struct net_device * ndev)179 static void sh_eth_reset(struct net_device *ndev)
180 {
181 	struct sh_eth_private *mdp = netdev_priv(ndev);
182 	int cnt = 100;
183 
184 	if (sh_eth_is_gether(mdp)) {
185 		sh_eth_write(ndev, 0x03, EDSR);
186 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
187 				EDMR);
188 		while (cnt > 0) {
189 			if (!(sh_eth_read(ndev, EDMR) & 0x3))
190 				break;
191 			mdelay(1);
192 			cnt--;
193 		}
194 		if (cnt < 0)
195 			printk(KERN_ERR "Device reset fail\n");
196 
197 		/* Table Init */
198 		sh_eth_write(ndev, 0x0, TDLAR);
199 		sh_eth_write(ndev, 0x0, TDFAR);
200 		sh_eth_write(ndev, 0x0, TDFXR);
201 		sh_eth_write(ndev, 0x0, TDFFR);
202 		sh_eth_write(ndev, 0x0, RDLAR);
203 		sh_eth_write(ndev, 0x0, RDFAR);
204 		sh_eth_write(ndev, 0x0, RDFXR);
205 		sh_eth_write(ndev, 0x0, RDFFR);
206 	} else {
207 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
208 				EDMR);
209 		mdelay(3);
210 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
211 				EDMR);
212 	}
213 }
214 
sh_eth_set_duplex_giga(struct net_device * ndev)215 static void sh_eth_set_duplex_giga(struct net_device *ndev)
216 {
217 	struct sh_eth_private *mdp = netdev_priv(ndev);
218 
219 	if (mdp->duplex) /* Full */
220 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
221 	else		/* Half */
222 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
223 }
224 
sh_eth_set_rate_giga(struct net_device * ndev)225 static void sh_eth_set_rate_giga(struct net_device *ndev)
226 {
227 	struct sh_eth_private *mdp = netdev_priv(ndev);
228 
229 	switch (mdp->speed) {
230 	case 10: /* 10BASE */
231 		sh_eth_write(ndev, 0x00000000, GECMR);
232 		break;
233 	case 100:/* 100BASE */
234 		sh_eth_write(ndev, 0x00000010, GECMR);
235 		break;
236 	case 1000: /* 1000BASE */
237 		sh_eth_write(ndev, 0x00000020, GECMR);
238 		break;
239 	default:
240 		break;
241 	}
242 }
243 
244 /* SH7757(GETHERC) */
245 static struct sh_eth_cpu_data sh_eth_my_cpu_data_giga = {
246 	.chip_reset	= sh_eth_chip_reset_giga,
247 	.set_duplex	= sh_eth_set_duplex_giga,
248 	.set_rate	= sh_eth_set_rate_giga,
249 
250 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
251 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
252 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
253 
254 	.tx_check	= EESR_TC1 | EESR_FTC,
255 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
256 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
257 			  EESR_ECI,
258 	.tx_error_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
259 			  EESR_TFE,
260 	.fdr_value	= 0x0000072f,
261 	.rmcr_value	= 0x00000001,
262 
263 	.apr		= 1,
264 	.mpr		= 1,
265 	.tpauser	= 1,
266 	.bculr		= 1,
267 	.hw_swap	= 1,
268 	.rpadir		= 1,
269 	.rpadir_value   = 2 << 16,
270 	.no_trimd	= 1,
271 	.no_ade		= 1,
272 };
273 
sh_eth_get_cpu_data(struct sh_eth_private * mdp)274 static struct sh_eth_cpu_data *sh_eth_get_cpu_data(struct sh_eth_private *mdp)
275 {
276 	if (sh_eth_is_gether(mdp))
277 		return &sh_eth_my_cpu_data_giga;
278 	else
279 		return &sh_eth_my_cpu_data;
280 }
281 
282 #elif defined(CONFIG_CPU_SUBTYPE_SH7763)
283 #define SH_ETH_HAS_TSU	1
sh_eth_chip_reset(struct net_device * ndev)284 static void sh_eth_chip_reset(struct net_device *ndev)
285 {
286 	struct sh_eth_private *mdp = netdev_priv(ndev);
287 
288 	/* reset device */
289 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
290 	mdelay(1);
291 }
292 
sh_eth_reset(struct net_device * ndev)293 static void sh_eth_reset(struct net_device *ndev)
294 {
295 	int cnt = 100;
296 
297 	sh_eth_write(ndev, EDSR_ENALL, EDSR);
298 	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
299 	while (cnt > 0) {
300 		if (!(sh_eth_read(ndev, EDMR) & 0x3))
301 			break;
302 		mdelay(1);
303 		cnt--;
304 	}
305 	if (cnt == 0)
306 		printk(KERN_ERR "Device reset fail\n");
307 
308 	/* Table Init */
309 	sh_eth_write(ndev, 0x0, TDLAR);
310 	sh_eth_write(ndev, 0x0, TDFAR);
311 	sh_eth_write(ndev, 0x0, TDFXR);
312 	sh_eth_write(ndev, 0x0, TDFFR);
313 	sh_eth_write(ndev, 0x0, RDLAR);
314 	sh_eth_write(ndev, 0x0, RDFAR);
315 	sh_eth_write(ndev, 0x0, RDFXR);
316 	sh_eth_write(ndev, 0x0, RDFFR);
317 }
318 
sh_eth_set_duplex(struct net_device * ndev)319 static void sh_eth_set_duplex(struct net_device *ndev)
320 {
321 	struct sh_eth_private *mdp = netdev_priv(ndev);
322 
323 	if (mdp->duplex) /* Full */
324 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
325 	else		/* Half */
326 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
327 }
328 
sh_eth_set_rate(struct net_device * ndev)329 static void sh_eth_set_rate(struct net_device *ndev)
330 {
331 	struct sh_eth_private *mdp = netdev_priv(ndev);
332 
333 	switch (mdp->speed) {
334 	case 10: /* 10BASE */
335 		sh_eth_write(ndev, GECMR_10, GECMR);
336 		break;
337 	case 100:/* 100BASE */
338 		sh_eth_write(ndev, GECMR_100, GECMR);
339 		break;
340 	case 1000: /* 1000BASE */
341 		sh_eth_write(ndev, GECMR_1000, GECMR);
342 		break;
343 	default:
344 		break;
345 	}
346 }
347 
348 /* sh7763 */
349 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
350 	.chip_reset	= sh_eth_chip_reset,
351 	.set_duplex	= sh_eth_set_duplex,
352 	.set_rate	= sh_eth_set_rate,
353 
354 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
355 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
356 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
357 
358 	.tx_check	= EESR_TC1 | EESR_FTC,
359 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
360 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
361 			  EESR_ECI,
362 	.tx_error_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
363 			  EESR_TFE,
364 
365 	.apr		= 1,
366 	.mpr		= 1,
367 	.tpauser	= 1,
368 	.bculr		= 1,
369 	.hw_swap	= 1,
370 	.no_trimd	= 1,
371 	.no_ade		= 1,
372 	.tsu		= 1,
373 };
374 
375 #elif defined(CONFIG_CPU_SUBTYPE_SH7619)
376 #define SH_ETH_RESET_DEFAULT	1
377 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
378 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
379 
380 	.apr		= 1,
381 	.mpr		= 1,
382 	.tpauser	= 1,
383 	.hw_swap	= 1,
384 };
385 #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
386 #define SH_ETH_RESET_DEFAULT	1
387 #define SH_ETH_HAS_TSU	1
388 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
389 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
390 	.tsu		= 1,
391 };
392 #endif
393 
sh_eth_set_default_cpu_data(struct sh_eth_cpu_data * cd)394 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
395 {
396 	if (!cd->ecsr_value)
397 		cd->ecsr_value = DEFAULT_ECSR_INIT;
398 
399 	if (!cd->ecsipr_value)
400 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
401 
402 	if (!cd->fcftr_value)
403 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
404 				  DEFAULT_FIFO_F_D_RFD;
405 
406 	if (!cd->fdr_value)
407 		cd->fdr_value = DEFAULT_FDR_INIT;
408 
409 	if (!cd->rmcr_value)
410 		cd->rmcr_value = DEFAULT_RMCR_VALUE;
411 
412 	if (!cd->tx_check)
413 		cd->tx_check = DEFAULT_TX_CHECK;
414 
415 	if (!cd->eesr_err_check)
416 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
417 
418 	if (!cd->tx_error_check)
419 		cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
420 }
421 
422 #if defined(SH_ETH_RESET_DEFAULT)
423 /* Chip Reset */
sh_eth_reset(struct net_device * ndev)424 static void sh_eth_reset(struct net_device *ndev)
425 {
426 	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER, EDMR);
427 	mdelay(3);
428 	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER, EDMR);
429 }
430 #endif
431 
432 #if defined(CONFIG_CPU_SH4)
sh_eth_set_receive_align(struct sk_buff * skb)433 static void sh_eth_set_receive_align(struct sk_buff *skb)
434 {
435 	int reserve;
436 
437 	reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
438 	if (reserve)
439 		skb_reserve(skb, reserve);
440 }
441 #else
sh_eth_set_receive_align(struct sk_buff * skb)442 static void sh_eth_set_receive_align(struct sk_buff *skb)
443 {
444 	skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
445 }
446 #endif
447 
448 
449 /* CPU <-> EDMAC endian convert */
cpu_to_edmac(struct sh_eth_private * mdp,u32 x)450 static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
451 {
452 	switch (mdp->edmac_endian) {
453 	case EDMAC_LITTLE_ENDIAN:
454 		return cpu_to_le32(x);
455 	case EDMAC_BIG_ENDIAN:
456 		return cpu_to_be32(x);
457 	}
458 	return x;
459 }
460 
edmac_to_cpu(struct sh_eth_private * mdp,u32 x)461 static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
462 {
463 	switch (mdp->edmac_endian) {
464 	case EDMAC_LITTLE_ENDIAN:
465 		return le32_to_cpu(x);
466 	case EDMAC_BIG_ENDIAN:
467 		return be32_to_cpu(x);
468 	}
469 	return x;
470 }
471 
472 /*
473  * Program the hardware MAC address from dev->dev_addr.
474  */
update_mac_address(struct net_device * ndev)475 static void update_mac_address(struct net_device *ndev)
476 {
477 	sh_eth_write(ndev,
478 		(ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
479 		(ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
480 	sh_eth_write(ndev,
481 		(ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
482 }
483 
484 /*
485  * Get MAC address from SuperH MAC address register
486  *
487  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
488  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
489  * When you want use this device, you must set MAC address in bootloader.
490  *
491  */
read_mac_address(struct net_device * ndev,unsigned char * mac)492 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
493 {
494 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
495 		memcpy(ndev->dev_addr, mac, 6);
496 	} else {
497 		ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
498 		ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
499 		ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
500 		ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
501 		ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
502 		ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
503 	}
504 }
505 
sh_eth_is_gether(struct sh_eth_private * mdp)506 static int sh_eth_is_gether(struct sh_eth_private *mdp)
507 {
508 	if (mdp->reg_offset == sh_eth_offset_gigabit)
509 		return 1;
510 	else
511 		return 0;
512 }
513 
sh_eth_get_edtrr_trns(struct sh_eth_private * mdp)514 static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
515 {
516 	if (sh_eth_is_gether(mdp))
517 		return EDTRR_TRNS_GETHER;
518 	else
519 		return EDTRR_TRNS_ETHER;
520 }
521 
522 struct bb_info {
523 	void (*set_gate)(void *addr);
524 	struct mdiobb_ctrl ctrl;
525 	void *addr;
526 	u32 mmd_msk;/* MMD */
527 	u32 mdo_msk;
528 	u32 mdi_msk;
529 	u32 mdc_msk;
530 };
531 
532 /* PHY bit set */
bb_set(void * addr,u32 msk)533 static void bb_set(void *addr, u32 msk)
534 {
535 	iowrite32(ioread32(addr) | msk, addr);
536 }
537 
538 /* PHY bit clear */
bb_clr(void * addr,u32 msk)539 static void bb_clr(void *addr, u32 msk)
540 {
541 	iowrite32((ioread32(addr) & ~msk), addr);
542 }
543 
544 /* PHY bit read */
bb_read(void * addr,u32 msk)545 static int bb_read(void *addr, u32 msk)
546 {
547 	return (ioread32(addr) & msk) != 0;
548 }
549 
550 /* Data I/O pin control */
sh_mmd_ctrl(struct mdiobb_ctrl * ctrl,int bit)551 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
552 {
553 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
554 
555 	if (bitbang->set_gate)
556 		bitbang->set_gate(bitbang->addr);
557 
558 	if (bit)
559 		bb_set(bitbang->addr, bitbang->mmd_msk);
560 	else
561 		bb_clr(bitbang->addr, bitbang->mmd_msk);
562 }
563 
564 /* Set bit data*/
sh_set_mdio(struct mdiobb_ctrl * ctrl,int bit)565 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
566 {
567 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
568 
569 	if (bitbang->set_gate)
570 		bitbang->set_gate(bitbang->addr);
571 
572 	if (bit)
573 		bb_set(bitbang->addr, bitbang->mdo_msk);
574 	else
575 		bb_clr(bitbang->addr, bitbang->mdo_msk);
576 }
577 
578 /* Get bit data*/
sh_get_mdio(struct mdiobb_ctrl * ctrl)579 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
580 {
581 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
582 
583 	if (bitbang->set_gate)
584 		bitbang->set_gate(bitbang->addr);
585 
586 	return bb_read(bitbang->addr, bitbang->mdi_msk);
587 }
588 
589 /* MDC pin control */
sh_mdc_ctrl(struct mdiobb_ctrl * ctrl,int bit)590 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
591 {
592 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
593 
594 	if (bitbang->set_gate)
595 		bitbang->set_gate(bitbang->addr);
596 
597 	if (bit)
598 		bb_set(bitbang->addr, bitbang->mdc_msk);
599 	else
600 		bb_clr(bitbang->addr, bitbang->mdc_msk);
601 }
602 
603 /* mdio bus control struct */
604 static struct mdiobb_ops bb_ops = {
605 	.owner = THIS_MODULE,
606 	.set_mdc = sh_mdc_ctrl,
607 	.set_mdio_dir = sh_mmd_ctrl,
608 	.set_mdio_data = sh_set_mdio,
609 	.get_mdio_data = sh_get_mdio,
610 };
611 
612 /* free skb and descriptor buffer */
sh_eth_ring_free(struct net_device * ndev)613 static void sh_eth_ring_free(struct net_device *ndev)
614 {
615 	struct sh_eth_private *mdp = netdev_priv(ndev);
616 	int i;
617 
618 	/* Free Rx skb ringbuffer */
619 	if (mdp->rx_skbuff) {
620 		for (i = 0; i < RX_RING_SIZE; i++) {
621 			if (mdp->rx_skbuff[i])
622 				dev_kfree_skb(mdp->rx_skbuff[i]);
623 		}
624 	}
625 	kfree(mdp->rx_skbuff);
626 
627 	/* Free Tx skb ringbuffer */
628 	if (mdp->tx_skbuff) {
629 		for (i = 0; i < TX_RING_SIZE; i++) {
630 			if (mdp->tx_skbuff[i])
631 				dev_kfree_skb(mdp->tx_skbuff[i]);
632 		}
633 	}
634 	kfree(mdp->tx_skbuff);
635 }
636 
637 /* format skb and descriptor buffer */
sh_eth_ring_format(struct net_device * ndev)638 static void sh_eth_ring_format(struct net_device *ndev)
639 {
640 	struct sh_eth_private *mdp = netdev_priv(ndev);
641 	int i;
642 	struct sk_buff *skb;
643 	struct sh_eth_rxdesc *rxdesc = NULL;
644 	struct sh_eth_txdesc *txdesc = NULL;
645 	int rx_ringsize = sizeof(*rxdesc) * RX_RING_SIZE;
646 	int tx_ringsize = sizeof(*txdesc) * TX_RING_SIZE;
647 
648 	mdp->cur_rx = mdp->cur_tx = 0;
649 	mdp->dirty_rx = mdp->dirty_tx = 0;
650 
651 	memset(mdp->rx_ring, 0, rx_ringsize);
652 
653 	/* build Rx ring buffer */
654 	for (i = 0; i < RX_RING_SIZE; i++) {
655 		/* skb */
656 		mdp->rx_skbuff[i] = NULL;
657 		skb = dev_alloc_skb(mdp->rx_buf_sz);
658 		mdp->rx_skbuff[i] = skb;
659 		if (skb == NULL)
660 			break;
661 		dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
662 				DMA_FROM_DEVICE);
663 		skb->dev = ndev; /* Mark as being used by this device. */
664 		sh_eth_set_receive_align(skb);
665 
666 		/* RX descriptor */
667 		rxdesc = &mdp->rx_ring[i];
668 		rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
669 		rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
670 
671 		/* The size of the buffer is 16 byte boundary. */
672 		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
673 		/* Rx descriptor address set */
674 		if (i == 0) {
675 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
676 			if (sh_eth_is_gether(mdp))
677 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
678 		}
679 	}
680 
681 	mdp->dirty_rx = (u32) (i - RX_RING_SIZE);
682 
683 	/* Mark the last entry as wrapping the ring. */
684 	rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
685 
686 	memset(mdp->tx_ring, 0, tx_ringsize);
687 
688 	/* build Tx ring buffer */
689 	for (i = 0; i < TX_RING_SIZE; i++) {
690 		mdp->tx_skbuff[i] = NULL;
691 		txdesc = &mdp->tx_ring[i];
692 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
693 		txdesc->buffer_length = 0;
694 		if (i == 0) {
695 			/* Tx descriptor address set */
696 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
697 			if (sh_eth_is_gether(mdp))
698 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
699 		}
700 	}
701 
702 	txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
703 }
704 
705 /* Get skb and descriptor buffer */
sh_eth_ring_init(struct net_device * ndev)706 static int sh_eth_ring_init(struct net_device *ndev)
707 {
708 	struct sh_eth_private *mdp = netdev_priv(ndev);
709 	int rx_ringsize, tx_ringsize, ret = 0;
710 
711 	/*
712 	 * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
713 	 * card needs room to do 8 byte alignment, +2 so we can reserve
714 	 * the first 2 bytes, and +16 gets room for the status word from the
715 	 * card.
716 	 */
717 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
718 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
719 	if (mdp->cd->rpadir)
720 		mdp->rx_buf_sz += NET_IP_ALIGN;
721 
722 	/* Allocate RX and TX skb rings */
723 	mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * RX_RING_SIZE,
724 				GFP_KERNEL);
725 	if (!mdp->rx_skbuff) {
726 		dev_err(&ndev->dev, "Cannot allocate Rx skb\n");
727 		ret = -ENOMEM;
728 		return ret;
729 	}
730 
731 	mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * TX_RING_SIZE,
732 				GFP_KERNEL);
733 	if (!mdp->tx_skbuff) {
734 		dev_err(&ndev->dev, "Cannot allocate Tx skb\n");
735 		ret = -ENOMEM;
736 		goto skb_ring_free;
737 	}
738 
739 	/* Allocate all Rx descriptors. */
740 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
741 	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
742 			GFP_KERNEL);
743 
744 	if (!mdp->rx_ring) {
745 		dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n",
746 			rx_ringsize);
747 		ret = -ENOMEM;
748 		goto desc_ring_free;
749 	}
750 
751 	mdp->dirty_rx = 0;
752 
753 	/* Allocate all Tx descriptors. */
754 	tx_ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
755 	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
756 			GFP_KERNEL);
757 	if (!mdp->tx_ring) {
758 		dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n",
759 			tx_ringsize);
760 		ret = -ENOMEM;
761 		goto desc_ring_free;
762 	}
763 	return ret;
764 
765 desc_ring_free:
766 	/* free DMA buffer */
767 	dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
768 
769 skb_ring_free:
770 	/* Free Rx and Tx skb ring buffer */
771 	sh_eth_ring_free(ndev);
772 
773 	return ret;
774 }
775 
sh_eth_dev_init(struct net_device * ndev)776 static int sh_eth_dev_init(struct net_device *ndev)
777 {
778 	int ret = 0;
779 	struct sh_eth_private *mdp = netdev_priv(ndev);
780 	u_int32_t rx_int_var, tx_int_var;
781 	u32 val;
782 
783 	/* Soft Reset */
784 	sh_eth_reset(ndev);
785 
786 	/* Descriptor format */
787 	sh_eth_ring_format(ndev);
788 	if (mdp->cd->rpadir)
789 		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
790 
791 	/* all sh_eth int mask */
792 	sh_eth_write(ndev, 0, EESIPR);
793 
794 #if defined(__LITTLE_ENDIAN__)
795 	if (mdp->cd->hw_swap)
796 		sh_eth_write(ndev, EDMR_EL, EDMR);
797 	else
798 #endif
799 		sh_eth_write(ndev, 0, EDMR);
800 
801 	/* FIFO size set */
802 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
803 	sh_eth_write(ndev, 0, TFTR);
804 
805 	/* Frame recv control */
806 	sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
807 
808 	rx_int_var = mdp->rx_int_var = DESC_I_RINT8 | DESC_I_RINT5;
809 	tx_int_var = mdp->tx_int_var = DESC_I_TINT2;
810 	sh_eth_write(ndev, rx_int_var | tx_int_var, TRSCER);
811 
812 	if (mdp->cd->bculr)
813 		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
814 
815 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
816 
817 	if (!mdp->cd->no_trimd)
818 		sh_eth_write(ndev, 0, TRIMD);
819 
820 	/* Recv frame limit set register */
821 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
822 		     RFLR);
823 
824 	sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
825 	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
826 
827 	/* PAUSE Prohibition */
828 	val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
829 		ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
830 
831 	sh_eth_write(ndev, val, ECMR);
832 
833 	if (mdp->cd->set_rate)
834 		mdp->cd->set_rate(ndev);
835 
836 	/* E-MAC Status Register clear */
837 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
838 
839 	/* E-MAC Interrupt Enable register */
840 	sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
841 
842 	/* Set MAC address */
843 	update_mac_address(ndev);
844 
845 	/* mask reset */
846 	if (mdp->cd->apr)
847 		sh_eth_write(ndev, APR_AP, APR);
848 	if (mdp->cd->mpr)
849 		sh_eth_write(ndev, MPR_MP, MPR);
850 	if (mdp->cd->tpauser)
851 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
852 
853 	/* Setting the Rx mode will start the Rx process. */
854 	sh_eth_write(ndev, EDRRR_R, EDRRR);
855 
856 	netif_start_queue(ndev);
857 
858 	return ret;
859 }
860 
861 /* free Tx skb function */
sh_eth_txfree(struct net_device * ndev)862 static int sh_eth_txfree(struct net_device *ndev)
863 {
864 	struct sh_eth_private *mdp = netdev_priv(ndev);
865 	struct sh_eth_txdesc *txdesc;
866 	int freeNum = 0;
867 	int entry = 0;
868 
869 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
870 		entry = mdp->dirty_tx % TX_RING_SIZE;
871 		txdesc = &mdp->tx_ring[entry];
872 		if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
873 			break;
874 		/* Free the original skb. */
875 		if (mdp->tx_skbuff[entry]) {
876 			dma_unmap_single(&ndev->dev, txdesc->addr,
877 					 txdesc->buffer_length, DMA_TO_DEVICE);
878 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
879 			mdp->tx_skbuff[entry] = NULL;
880 			freeNum++;
881 		}
882 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
883 		if (entry >= TX_RING_SIZE - 1)
884 			txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
885 
886 		mdp->stats.tx_packets++;
887 		mdp->stats.tx_bytes += txdesc->buffer_length;
888 	}
889 	return freeNum;
890 }
891 
892 /* Packet receive function */
sh_eth_rx(struct net_device * ndev)893 static int sh_eth_rx(struct net_device *ndev)
894 {
895 	struct sh_eth_private *mdp = netdev_priv(ndev);
896 	struct sh_eth_rxdesc *rxdesc;
897 
898 	int entry = mdp->cur_rx % RX_RING_SIZE;
899 	int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx;
900 	struct sk_buff *skb;
901 	u16 pkt_len = 0;
902 	u32 desc_status;
903 
904 	rxdesc = &mdp->rx_ring[entry];
905 	while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
906 		desc_status = edmac_to_cpu(mdp, rxdesc->status);
907 		pkt_len = rxdesc->frame_length;
908 
909 		if (--boguscnt < 0)
910 			break;
911 
912 		if (!(desc_status & RDFEND))
913 			mdp->stats.rx_length_errors++;
914 
915 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
916 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
917 			mdp->stats.rx_errors++;
918 			if (desc_status & RD_RFS1)
919 				mdp->stats.rx_crc_errors++;
920 			if (desc_status & RD_RFS2)
921 				mdp->stats.rx_frame_errors++;
922 			if (desc_status & RD_RFS3)
923 				mdp->stats.rx_length_errors++;
924 			if (desc_status & RD_RFS4)
925 				mdp->stats.rx_length_errors++;
926 			if (desc_status & RD_RFS6)
927 				mdp->stats.rx_missed_errors++;
928 			if (desc_status & RD_RFS10)
929 				mdp->stats.rx_over_errors++;
930 		} else {
931 			if (!mdp->cd->hw_swap)
932 				sh_eth_soft_swap(
933 					phys_to_virt(ALIGN(rxdesc->addr, 4)),
934 					pkt_len + 2);
935 			skb = mdp->rx_skbuff[entry];
936 			mdp->rx_skbuff[entry] = NULL;
937 			if (mdp->cd->rpadir)
938 				skb_reserve(skb, NET_IP_ALIGN);
939 			skb_put(skb, pkt_len);
940 			skb->protocol = eth_type_trans(skb, ndev);
941 			netif_rx(skb);
942 			mdp->stats.rx_packets++;
943 			mdp->stats.rx_bytes += pkt_len;
944 		}
945 		rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
946 		entry = (++mdp->cur_rx) % RX_RING_SIZE;
947 		rxdesc = &mdp->rx_ring[entry];
948 	}
949 
950 	/* Refill the Rx ring buffers. */
951 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
952 		entry = mdp->dirty_rx % RX_RING_SIZE;
953 		rxdesc = &mdp->rx_ring[entry];
954 		/* The size of the buffer is 16 byte boundary. */
955 		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
956 
957 		if (mdp->rx_skbuff[entry] == NULL) {
958 			skb = dev_alloc_skb(mdp->rx_buf_sz);
959 			mdp->rx_skbuff[entry] = skb;
960 			if (skb == NULL)
961 				break;	/* Better luck next round. */
962 			dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
963 					DMA_FROM_DEVICE);
964 			skb->dev = ndev;
965 			sh_eth_set_receive_align(skb);
966 
967 			skb_checksum_none_assert(skb);
968 			rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
969 		}
970 		if (entry >= RX_RING_SIZE - 1)
971 			rxdesc->status |=
972 				cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
973 		else
974 			rxdesc->status |=
975 				cpu_to_edmac(mdp, RD_RACT | RD_RFP);
976 	}
977 
978 	/* Restart Rx engine if stopped. */
979 	/* If we don't need to check status, don't. -KDU */
980 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R))
981 		sh_eth_write(ndev, EDRRR_R, EDRRR);
982 
983 	return 0;
984 }
985 
sh_eth_rcv_snd_disable(struct net_device * ndev)986 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
987 {
988 	/* disable tx and rx */
989 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
990 		~(ECMR_RE | ECMR_TE), ECMR);
991 }
992 
sh_eth_rcv_snd_enable(struct net_device * ndev)993 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
994 {
995 	/* enable tx and rx */
996 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
997 		(ECMR_RE | ECMR_TE), ECMR);
998 }
999 
1000 /* error control function */
sh_eth_error(struct net_device * ndev,int intr_status)1001 static void sh_eth_error(struct net_device *ndev, int intr_status)
1002 {
1003 	struct sh_eth_private *mdp = netdev_priv(ndev);
1004 	u32 felic_stat;
1005 	u32 link_stat;
1006 	u32 mask;
1007 
1008 	if (intr_status & EESR_ECI) {
1009 		felic_stat = sh_eth_read(ndev, ECSR);
1010 		sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1011 		if (felic_stat & ECSR_ICD)
1012 			mdp->stats.tx_carrier_errors++;
1013 		if (felic_stat & ECSR_LCHNG) {
1014 			/* Link Changed */
1015 			if (mdp->cd->no_psr || mdp->no_ether_link) {
1016 				if (mdp->link == PHY_DOWN)
1017 					link_stat = 0;
1018 				else
1019 					link_stat = PHY_ST_LINK;
1020 			} else {
1021 				link_stat = (sh_eth_read(ndev, PSR));
1022 				if (mdp->ether_link_active_low)
1023 					link_stat = ~link_stat;
1024 			}
1025 			if (!(link_stat & PHY_ST_LINK))
1026 				sh_eth_rcv_snd_disable(ndev);
1027 			else {
1028 				/* Link Up */
1029 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1030 					  ~DMAC_M_ECI, EESIPR);
1031 				/*clear int */
1032 				sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1033 					  ECSR);
1034 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1035 					  DMAC_M_ECI, EESIPR);
1036 				/* enable tx and rx */
1037 				sh_eth_rcv_snd_enable(ndev);
1038 			}
1039 		}
1040 	}
1041 
1042 	if (intr_status & EESR_TWB) {
1043 		/* Write buck end. unused write back interrupt */
1044 		if (intr_status & EESR_TABT)	/* Transmit Abort int */
1045 			mdp->stats.tx_aborted_errors++;
1046 			if (netif_msg_tx_err(mdp))
1047 				dev_err(&ndev->dev, "Transmit Abort\n");
1048 	}
1049 
1050 	if (intr_status & EESR_RABT) {
1051 		/* Receive Abort int */
1052 		if (intr_status & EESR_RFRMER) {
1053 			/* Receive Frame Overflow int */
1054 			mdp->stats.rx_frame_errors++;
1055 			if (netif_msg_rx_err(mdp))
1056 				dev_err(&ndev->dev, "Receive Abort\n");
1057 		}
1058 	}
1059 
1060 	if (intr_status & EESR_TDE) {
1061 		/* Transmit Descriptor Empty int */
1062 		mdp->stats.tx_fifo_errors++;
1063 		if (netif_msg_tx_err(mdp))
1064 			dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
1065 	}
1066 
1067 	if (intr_status & EESR_TFE) {
1068 		/* FIFO under flow */
1069 		mdp->stats.tx_fifo_errors++;
1070 		if (netif_msg_tx_err(mdp))
1071 			dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
1072 	}
1073 
1074 	if (intr_status & EESR_RDE) {
1075 		/* Receive Descriptor Empty int */
1076 		mdp->stats.rx_over_errors++;
1077 
1078 		if (sh_eth_read(ndev, EDRRR) ^ EDRRR_R)
1079 			sh_eth_write(ndev, EDRRR_R, EDRRR);
1080 		if (netif_msg_rx_err(mdp))
1081 			dev_err(&ndev->dev, "Receive Descriptor Empty\n");
1082 	}
1083 
1084 	if (intr_status & EESR_RFE) {
1085 		/* Receive FIFO Overflow int */
1086 		mdp->stats.rx_fifo_errors++;
1087 		if (netif_msg_rx_err(mdp))
1088 			dev_err(&ndev->dev, "Receive FIFO Overflow\n");
1089 	}
1090 
1091 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1092 		/* Address Error */
1093 		mdp->stats.tx_fifo_errors++;
1094 		if (netif_msg_tx_err(mdp))
1095 			dev_err(&ndev->dev, "Address Error\n");
1096 	}
1097 
1098 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1099 	if (mdp->cd->no_ade)
1100 		mask &= ~EESR_ADE;
1101 	if (intr_status & mask) {
1102 		/* Tx error */
1103 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1104 		/* dmesg */
1105 		dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
1106 				intr_status, mdp->cur_tx);
1107 		dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1108 				mdp->dirty_tx, (u32) ndev->state, edtrr);
1109 		/* dirty buffer free */
1110 		sh_eth_txfree(ndev);
1111 
1112 		/* SH7712 BUG */
1113 		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1114 			/* tx dma start */
1115 			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1116 		}
1117 		/* wakeup */
1118 		netif_wake_queue(ndev);
1119 	}
1120 }
1121 
sh_eth_interrupt(int irq,void * netdev)1122 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1123 {
1124 	struct net_device *ndev = netdev;
1125 	struct sh_eth_private *mdp = netdev_priv(ndev);
1126 	struct sh_eth_cpu_data *cd = mdp->cd;
1127 	irqreturn_t ret = IRQ_NONE;
1128 	u32 intr_status = 0;
1129 
1130 	spin_lock(&mdp->lock);
1131 
1132 	/* Get interrpt stat */
1133 	intr_status = sh_eth_read(ndev, EESR);
1134 	/* Clear interrupt */
1135 	if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
1136 			EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
1137 			cd->tx_check | cd->eesr_err_check)) {
1138 		sh_eth_write(ndev, intr_status, EESR);
1139 		ret = IRQ_HANDLED;
1140 	} else
1141 		goto other_irq;
1142 
1143 	if (intr_status & (EESR_FRC | /* Frame recv*/
1144 			EESR_RMAF | /* Multi cast address recv*/
1145 			EESR_RRF  | /* Bit frame recv */
1146 			EESR_RTLF | /* Long frame recv*/
1147 			EESR_RTSF | /* short frame recv */
1148 			EESR_PRE  | /* PHY-LSI recv error */
1149 			EESR_CERF)){ /* recv frame CRC error */
1150 		sh_eth_rx(ndev);
1151 	}
1152 
1153 	/* Tx Check */
1154 	if (intr_status & cd->tx_check) {
1155 		sh_eth_txfree(ndev);
1156 		netif_wake_queue(ndev);
1157 	}
1158 
1159 	if (intr_status & cd->eesr_err_check)
1160 		sh_eth_error(ndev, intr_status);
1161 
1162 other_irq:
1163 	spin_unlock(&mdp->lock);
1164 
1165 	return ret;
1166 }
1167 
sh_eth_timer(unsigned long data)1168 static void sh_eth_timer(unsigned long data)
1169 {
1170 	struct net_device *ndev = (struct net_device *)data;
1171 	struct sh_eth_private *mdp = netdev_priv(ndev);
1172 
1173 	mod_timer(&mdp->timer, jiffies + (10 * HZ));
1174 }
1175 
1176 /* PHY state control function */
sh_eth_adjust_link(struct net_device * ndev)1177 static void sh_eth_adjust_link(struct net_device *ndev)
1178 {
1179 	struct sh_eth_private *mdp = netdev_priv(ndev);
1180 	struct phy_device *phydev = mdp->phydev;
1181 	int new_state = 0;
1182 
1183 	if (phydev->link != PHY_DOWN) {
1184 		if (phydev->duplex != mdp->duplex) {
1185 			new_state = 1;
1186 			mdp->duplex = phydev->duplex;
1187 			if (mdp->cd->set_duplex)
1188 				mdp->cd->set_duplex(ndev);
1189 		}
1190 
1191 		if (phydev->speed != mdp->speed) {
1192 			new_state = 1;
1193 			mdp->speed = phydev->speed;
1194 			if (mdp->cd->set_rate)
1195 				mdp->cd->set_rate(ndev);
1196 		}
1197 		if (mdp->link == PHY_DOWN) {
1198 			sh_eth_write(ndev,
1199 				(sh_eth_read(ndev, ECMR) & ~ECMR_TXF), ECMR);
1200 			new_state = 1;
1201 			mdp->link = phydev->link;
1202 		}
1203 	} else if (mdp->link) {
1204 		new_state = 1;
1205 		mdp->link = PHY_DOWN;
1206 		mdp->speed = 0;
1207 		mdp->duplex = -1;
1208 	}
1209 
1210 	if (new_state && netif_msg_link(mdp))
1211 		phy_print_status(phydev);
1212 }
1213 
1214 /* PHY init function */
sh_eth_phy_init(struct net_device * ndev)1215 static int sh_eth_phy_init(struct net_device *ndev)
1216 {
1217 	struct sh_eth_private *mdp = netdev_priv(ndev);
1218 	char phy_id[MII_BUS_ID_SIZE + 3];
1219 	struct phy_device *phydev = NULL;
1220 
1221 	snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1222 		mdp->mii_bus->id , mdp->phy_id);
1223 
1224 	mdp->link = PHY_DOWN;
1225 	mdp->speed = 0;
1226 	mdp->duplex = -1;
1227 
1228 	/* Try connect to PHY */
1229 	phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1230 				0, mdp->phy_interface);
1231 	if (IS_ERR(phydev)) {
1232 		dev_err(&ndev->dev, "phy_connect failed\n");
1233 		return PTR_ERR(phydev);
1234 	}
1235 
1236 	dev_info(&ndev->dev, "attached phy %i to driver %s\n",
1237 		phydev->addr, phydev->drv->name);
1238 
1239 	mdp->phydev = phydev;
1240 
1241 	return 0;
1242 }
1243 
1244 /* PHY control start function */
sh_eth_phy_start(struct net_device * ndev)1245 static int sh_eth_phy_start(struct net_device *ndev)
1246 {
1247 	struct sh_eth_private *mdp = netdev_priv(ndev);
1248 	int ret;
1249 
1250 	ret = sh_eth_phy_init(ndev);
1251 	if (ret)
1252 		return ret;
1253 
1254 	/* reset phy - this also wakes it from PDOWN */
1255 	phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
1256 	phy_start(mdp->phydev);
1257 
1258 	return 0;
1259 }
1260 
sh_eth_get_settings(struct net_device * ndev,struct ethtool_cmd * ecmd)1261 static int sh_eth_get_settings(struct net_device *ndev,
1262 			struct ethtool_cmd *ecmd)
1263 {
1264 	struct sh_eth_private *mdp = netdev_priv(ndev);
1265 	unsigned long flags;
1266 	int ret;
1267 
1268 	spin_lock_irqsave(&mdp->lock, flags);
1269 	ret = phy_ethtool_gset(mdp->phydev, ecmd);
1270 	spin_unlock_irqrestore(&mdp->lock, flags);
1271 
1272 	return ret;
1273 }
1274 
sh_eth_set_settings(struct net_device * ndev,struct ethtool_cmd * ecmd)1275 static int sh_eth_set_settings(struct net_device *ndev,
1276 		struct ethtool_cmd *ecmd)
1277 {
1278 	struct sh_eth_private *mdp = netdev_priv(ndev);
1279 	unsigned long flags;
1280 	int ret;
1281 
1282 	spin_lock_irqsave(&mdp->lock, flags);
1283 
1284 	/* disable tx and rx */
1285 	sh_eth_rcv_snd_disable(ndev);
1286 
1287 	ret = phy_ethtool_sset(mdp->phydev, ecmd);
1288 	if (ret)
1289 		goto error_exit;
1290 
1291 	if (ecmd->duplex == DUPLEX_FULL)
1292 		mdp->duplex = 1;
1293 	else
1294 		mdp->duplex = 0;
1295 
1296 	if (mdp->cd->set_duplex)
1297 		mdp->cd->set_duplex(ndev);
1298 
1299 error_exit:
1300 	mdelay(1);
1301 
1302 	/* enable tx and rx */
1303 	sh_eth_rcv_snd_enable(ndev);
1304 
1305 	spin_unlock_irqrestore(&mdp->lock, flags);
1306 
1307 	return ret;
1308 }
1309 
sh_eth_nway_reset(struct net_device * ndev)1310 static int sh_eth_nway_reset(struct net_device *ndev)
1311 {
1312 	struct sh_eth_private *mdp = netdev_priv(ndev);
1313 	unsigned long flags;
1314 	int ret;
1315 
1316 	spin_lock_irqsave(&mdp->lock, flags);
1317 	ret = phy_start_aneg(mdp->phydev);
1318 	spin_unlock_irqrestore(&mdp->lock, flags);
1319 
1320 	return ret;
1321 }
1322 
sh_eth_get_msglevel(struct net_device * ndev)1323 static u32 sh_eth_get_msglevel(struct net_device *ndev)
1324 {
1325 	struct sh_eth_private *mdp = netdev_priv(ndev);
1326 	return mdp->msg_enable;
1327 }
1328 
sh_eth_set_msglevel(struct net_device * ndev,u32 value)1329 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
1330 {
1331 	struct sh_eth_private *mdp = netdev_priv(ndev);
1332 	mdp->msg_enable = value;
1333 }
1334 
1335 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
1336 	"rx_current", "tx_current",
1337 	"rx_dirty", "tx_dirty",
1338 };
1339 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
1340 
sh_eth_get_sset_count(struct net_device * netdev,int sset)1341 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
1342 {
1343 	switch (sset) {
1344 	case ETH_SS_STATS:
1345 		return SH_ETH_STATS_LEN;
1346 	default:
1347 		return -EOPNOTSUPP;
1348 	}
1349 }
1350 
sh_eth_get_ethtool_stats(struct net_device * ndev,struct ethtool_stats * stats,u64 * data)1351 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
1352 			struct ethtool_stats *stats, u64 *data)
1353 {
1354 	struct sh_eth_private *mdp = netdev_priv(ndev);
1355 	int i = 0;
1356 
1357 	/* device-specific stats */
1358 	data[i++] = mdp->cur_rx;
1359 	data[i++] = mdp->cur_tx;
1360 	data[i++] = mdp->dirty_rx;
1361 	data[i++] = mdp->dirty_tx;
1362 }
1363 
sh_eth_get_strings(struct net_device * ndev,u32 stringset,u8 * data)1364 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1365 {
1366 	switch (stringset) {
1367 	case ETH_SS_STATS:
1368 		memcpy(data, *sh_eth_gstrings_stats,
1369 					sizeof(sh_eth_gstrings_stats));
1370 		break;
1371 	}
1372 }
1373 
1374 static const struct ethtool_ops sh_eth_ethtool_ops = {
1375 	.get_settings	= sh_eth_get_settings,
1376 	.set_settings	= sh_eth_set_settings,
1377 	.nway_reset	= sh_eth_nway_reset,
1378 	.get_msglevel	= sh_eth_get_msglevel,
1379 	.set_msglevel	= sh_eth_set_msglevel,
1380 	.get_link	= ethtool_op_get_link,
1381 	.get_strings	= sh_eth_get_strings,
1382 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
1383 	.get_sset_count     = sh_eth_get_sset_count,
1384 };
1385 
1386 /* network device open function */
sh_eth_open(struct net_device * ndev)1387 static int sh_eth_open(struct net_device *ndev)
1388 {
1389 	int ret = 0;
1390 	struct sh_eth_private *mdp = netdev_priv(ndev);
1391 
1392 	pm_runtime_get_sync(&mdp->pdev->dev);
1393 
1394 	ret = request_irq(ndev->irq, sh_eth_interrupt,
1395 #if defined(CONFIG_CPU_SUBTYPE_SH7763) || \
1396 	defined(CONFIG_CPU_SUBTYPE_SH7764) || \
1397 	defined(CONFIG_CPU_SUBTYPE_SH7757)
1398 				IRQF_SHARED,
1399 #else
1400 				0,
1401 #endif
1402 				ndev->name, ndev);
1403 	if (ret) {
1404 		dev_err(&ndev->dev, "Can not assign IRQ number\n");
1405 		return ret;
1406 	}
1407 
1408 	/* Descriptor set */
1409 	ret = sh_eth_ring_init(ndev);
1410 	if (ret)
1411 		goto out_free_irq;
1412 
1413 	/* device init */
1414 	ret = sh_eth_dev_init(ndev);
1415 	if (ret)
1416 		goto out_free_irq;
1417 
1418 	/* PHY control start*/
1419 	ret = sh_eth_phy_start(ndev);
1420 	if (ret)
1421 		goto out_free_irq;
1422 
1423 	/* Set the timer to check for link beat. */
1424 	init_timer(&mdp->timer);
1425 	mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
1426 	setup_timer(&mdp->timer, sh_eth_timer, (unsigned long)ndev);
1427 
1428 	return ret;
1429 
1430 out_free_irq:
1431 	free_irq(ndev->irq, ndev);
1432 	pm_runtime_put_sync(&mdp->pdev->dev);
1433 	return ret;
1434 }
1435 
1436 /* Timeout function */
sh_eth_tx_timeout(struct net_device * ndev)1437 static void sh_eth_tx_timeout(struct net_device *ndev)
1438 {
1439 	struct sh_eth_private *mdp = netdev_priv(ndev);
1440 	struct sh_eth_rxdesc *rxdesc;
1441 	int i;
1442 
1443 	netif_stop_queue(ndev);
1444 
1445 	if (netif_msg_timer(mdp))
1446 		dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
1447 	       " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
1448 
1449 	/* tx_errors count up */
1450 	mdp->stats.tx_errors++;
1451 
1452 	/* timer off */
1453 	del_timer_sync(&mdp->timer);
1454 
1455 	/* Free all the skbuffs in the Rx queue. */
1456 	for (i = 0; i < RX_RING_SIZE; i++) {
1457 		rxdesc = &mdp->rx_ring[i];
1458 		rxdesc->status = 0;
1459 		rxdesc->addr = 0xBADF00D0;
1460 		if (mdp->rx_skbuff[i])
1461 			dev_kfree_skb(mdp->rx_skbuff[i]);
1462 		mdp->rx_skbuff[i] = NULL;
1463 	}
1464 	for (i = 0; i < TX_RING_SIZE; i++) {
1465 		if (mdp->tx_skbuff[i])
1466 			dev_kfree_skb(mdp->tx_skbuff[i]);
1467 		mdp->tx_skbuff[i] = NULL;
1468 	}
1469 
1470 	/* device init */
1471 	sh_eth_dev_init(ndev);
1472 
1473 	/* timer on */
1474 	mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
1475 	add_timer(&mdp->timer);
1476 }
1477 
1478 /* Packet transmit function */
sh_eth_start_xmit(struct sk_buff * skb,struct net_device * ndev)1479 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1480 {
1481 	struct sh_eth_private *mdp = netdev_priv(ndev);
1482 	struct sh_eth_txdesc *txdesc;
1483 	u32 entry;
1484 	unsigned long flags;
1485 
1486 	spin_lock_irqsave(&mdp->lock, flags);
1487 	if ((mdp->cur_tx - mdp->dirty_tx) >= (TX_RING_SIZE - 4)) {
1488 		if (!sh_eth_txfree(ndev)) {
1489 			if (netif_msg_tx_queued(mdp))
1490 				dev_warn(&ndev->dev, "TxFD exhausted.\n");
1491 			netif_stop_queue(ndev);
1492 			spin_unlock_irqrestore(&mdp->lock, flags);
1493 			return NETDEV_TX_BUSY;
1494 		}
1495 	}
1496 	spin_unlock_irqrestore(&mdp->lock, flags);
1497 
1498 	entry = mdp->cur_tx % TX_RING_SIZE;
1499 	mdp->tx_skbuff[entry] = skb;
1500 	txdesc = &mdp->tx_ring[entry];
1501 	/* soft swap. */
1502 	if (!mdp->cd->hw_swap)
1503 		sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
1504 				 skb->len + 2);
1505 	txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
1506 				      DMA_TO_DEVICE);
1507 	if (skb->len < ETHERSMALL)
1508 		txdesc->buffer_length = ETHERSMALL;
1509 	else
1510 		txdesc->buffer_length = skb->len;
1511 
1512 	if (entry >= TX_RING_SIZE - 1)
1513 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
1514 	else
1515 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
1516 
1517 	mdp->cur_tx++;
1518 
1519 	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
1520 		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1521 
1522 	return NETDEV_TX_OK;
1523 }
1524 
1525 /* device close function */
sh_eth_close(struct net_device * ndev)1526 static int sh_eth_close(struct net_device *ndev)
1527 {
1528 	struct sh_eth_private *mdp = netdev_priv(ndev);
1529 	int ringsize;
1530 
1531 	netif_stop_queue(ndev);
1532 
1533 	/* Disable interrupts by clearing the interrupt mask. */
1534 	sh_eth_write(ndev, 0x0000, EESIPR);
1535 
1536 	/* Stop the chip's Tx and Rx processes. */
1537 	sh_eth_write(ndev, 0, EDTRR);
1538 	sh_eth_write(ndev, 0, EDRRR);
1539 
1540 	/* PHY Disconnect */
1541 	if (mdp->phydev) {
1542 		phy_stop(mdp->phydev);
1543 		phy_disconnect(mdp->phydev);
1544 	}
1545 
1546 	free_irq(ndev->irq, ndev);
1547 
1548 	del_timer_sync(&mdp->timer);
1549 
1550 	/* Free all the skbuffs in the Rx queue. */
1551 	sh_eth_ring_free(ndev);
1552 
1553 	/* free DMA buffer */
1554 	ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
1555 	dma_free_coherent(NULL, ringsize, mdp->rx_ring, mdp->rx_desc_dma);
1556 
1557 	/* free DMA buffer */
1558 	ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
1559 	dma_free_coherent(NULL, ringsize, mdp->tx_ring, mdp->tx_desc_dma);
1560 
1561 	pm_runtime_put_sync(&mdp->pdev->dev);
1562 
1563 	return 0;
1564 }
1565 
sh_eth_get_stats(struct net_device * ndev)1566 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
1567 {
1568 	struct sh_eth_private *mdp = netdev_priv(ndev);
1569 
1570 	pm_runtime_get_sync(&mdp->pdev->dev);
1571 
1572 	mdp->stats.tx_dropped += sh_eth_read(ndev, TROCR);
1573 	sh_eth_write(ndev, 0, TROCR);	/* (write clear) */
1574 	mdp->stats.collisions += sh_eth_read(ndev, CDCR);
1575 	sh_eth_write(ndev, 0, CDCR);	/* (write clear) */
1576 	mdp->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
1577 	sh_eth_write(ndev, 0, LCCR);	/* (write clear) */
1578 	if (sh_eth_is_gether(mdp)) {
1579 		mdp->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
1580 		sh_eth_write(ndev, 0, CERCR);	/* (write clear) */
1581 		mdp->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
1582 		sh_eth_write(ndev, 0, CEECR);	/* (write clear) */
1583 	} else {
1584 		mdp->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
1585 		sh_eth_write(ndev, 0, CNDCR);	/* (write clear) */
1586 	}
1587 	pm_runtime_put_sync(&mdp->pdev->dev);
1588 
1589 	return &mdp->stats;
1590 }
1591 
1592 /* ioctl to device funciotn*/
sh_eth_do_ioctl(struct net_device * ndev,struct ifreq * rq,int cmd)1593 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
1594 				int cmd)
1595 {
1596 	struct sh_eth_private *mdp = netdev_priv(ndev);
1597 	struct phy_device *phydev = mdp->phydev;
1598 
1599 	if (!netif_running(ndev))
1600 		return -EINVAL;
1601 
1602 	if (!phydev)
1603 		return -ENODEV;
1604 
1605 	return phy_mii_ioctl(phydev, rq, cmd);
1606 }
1607 
1608 #if defined(SH_ETH_HAS_TSU)
1609 /* Multicast reception directions set */
sh_eth_set_multicast_list(struct net_device * ndev)1610 static void sh_eth_set_multicast_list(struct net_device *ndev)
1611 {
1612 	if (ndev->flags & IFF_PROMISC) {
1613 		/* Set promiscuous. */
1614 		sh_eth_write(ndev, (sh_eth_read(ndev, ECMR) & ~ECMR_MCT) |
1615 				ECMR_PRM, ECMR);
1616 	} else {
1617 		/* Normal, unicast/broadcast-only mode. */
1618 		sh_eth_write(ndev, (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) |
1619 				ECMR_MCT, ECMR);
1620 	}
1621 }
1622 #endif /* SH_ETH_HAS_TSU */
1623 
1624 /* SuperH's TSU register init function */
sh_eth_tsu_init(struct sh_eth_private * mdp)1625 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
1626 {
1627 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
1628 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
1629 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
1630 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
1631 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
1632 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
1633 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
1634 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
1635 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
1636 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
1637 	if (sh_eth_is_gether(mdp)) {
1638 		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
1639 		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
1640 	} else {
1641 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
1642 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
1643 	}
1644 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
1645 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
1646 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
1647 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
1648 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
1649 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
1650 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
1651 }
1652 
1653 /* MDIO bus release function */
sh_mdio_release(struct net_device * ndev)1654 static int sh_mdio_release(struct net_device *ndev)
1655 {
1656 	struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
1657 
1658 	/* unregister mdio bus */
1659 	mdiobus_unregister(bus);
1660 
1661 	/* remove mdio bus info from net_device */
1662 	dev_set_drvdata(&ndev->dev, NULL);
1663 
1664 	/* free interrupts memory */
1665 	kfree(bus->irq);
1666 
1667 	/* free bitbang info */
1668 	free_mdio_bitbang(bus);
1669 
1670 	return 0;
1671 }
1672 
1673 /* MDIO bus init function */
sh_mdio_init(struct net_device * ndev,int id,struct sh_eth_plat_data * pd)1674 static int sh_mdio_init(struct net_device *ndev, int id,
1675 			struct sh_eth_plat_data *pd)
1676 {
1677 	int ret, i;
1678 	struct bb_info *bitbang;
1679 	struct sh_eth_private *mdp = netdev_priv(ndev);
1680 
1681 	/* create bit control struct for PHY */
1682 	bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
1683 	if (!bitbang) {
1684 		ret = -ENOMEM;
1685 		goto out;
1686 	}
1687 
1688 	/* bitbang init */
1689 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
1690 	bitbang->set_gate = pd->set_mdio_gate;
1691 	bitbang->mdi_msk = 0x08;
1692 	bitbang->mdo_msk = 0x04;
1693 	bitbang->mmd_msk = 0x02;/* MMD */
1694 	bitbang->mdc_msk = 0x01;
1695 	bitbang->ctrl.ops = &bb_ops;
1696 
1697 	/* MII controller setting */
1698 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
1699 	if (!mdp->mii_bus) {
1700 		ret = -ENOMEM;
1701 		goto out_free_bitbang;
1702 	}
1703 
1704 	/* Hook up MII support for ethtool */
1705 	mdp->mii_bus->name = "sh_mii";
1706 	mdp->mii_bus->parent = &ndev->dev;
1707 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1708 		mdp->pdev->name, id);
1709 
1710 	/* PHY IRQ */
1711 	mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
1712 	if (!mdp->mii_bus->irq) {
1713 		ret = -ENOMEM;
1714 		goto out_free_bus;
1715 	}
1716 
1717 	for (i = 0; i < PHY_MAX_ADDR; i++)
1718 		mdp->mii_bus->irq[i] = PHY_POLL;
1719 
1720 	/* regist mdio bus */
1721 	ret = mdiobus_register(mdp->mii_bus);
1722 	if (ret)
1723 		goto out_free_irq;
1724 
1725 	dev_set_drvdata(&ndev->dev, mdp->mii_bus);
1726 
1727 	return 0;
1728 
1729 out_free_irq:
1730 	kfree(mdp->mii_bus->irq);
1731 
1732 out_free_bus:
1733 	free_mdio_bitbang(mdp->mii_bus);
1734 
1735 out_free_bitbang:
1736 	kfree(bitbang);
1737 
1738 out:
1739 	return ret;
1740 }
1741 
sh_eth_get_register_offset(int register_type)1742 static const u16 *sh_eth_get_register_offset(int register_type)
1743 {
1744 	const u16 *reg_offset = NULL;
1745 
1746 	switch (register_type) {
1747 	case SH_ETH_REG_GIGABIT:
1748 		reg_offset = sh_eth_offset_gigabit;
1749 		break;
1750 	case SH_ETH_REG_FAST_SH4:
1751 		reg_offset = sh_eth_offset_fast_sh4;
1752 		break;
1753 	case SH_ETH_REG_FAST_SH3_SH2:
1754 		reg_offset = sh_eth_offset_fast_sh3_sh2;
1755 		break;
1756 	default:
1757 		printk(KERN_ERR "Unknown register type (%d)\n", register_type);
1758 		break;
1759 	}
1760 
1761 	return reg_offset;
1762 }
1763 
1764 static const struct net_device_ops sh_eth_netdev_ops = {
1765 	.ndo_open		= sh_eth_open,
1766 	.ndo_stop		= sh_eth_close,
1767 	.ndo_start_xmit		= sh_eth_start_xmit,
1768 	.ndo_get_stats		= sh_eth_get_stats,
1769 #if defined(SH_ETH_HAS_TSU)
1770 	.ndo_set_rx_mode	= sh_eth_set_multicast_list,
1771 #endif
1772 	.ndo_tx_timeout		= sh_eth_tx_timeout,
1773 	.ndo_do_ioctl		= sh_eth_do_ioctl,
1774 	.ndo_validate_addr	= eth_validate_addr,
1775 	.ndo_set_mac_address	= eth_mac_addr,
1776 	.ndo_change_mtu		= eth_change_mtu,
1777 };
1778 
sh_eth_drv_probe(struct platform_device * pdev)1779 static int sh_eth_drv_probe(struct platform_device *pdev)
1780 {
1781 	int ret, devno = 0;
1782 	struct resource *res;
1783 	struct net_device *ndev = NULL;
1784 	struct sh_eth_private *mdp = NULL;
1785 	struct sh_eth_plat_data *pd;
1786 
1787 	/* get base addr */
1788 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1789 	if (unlikely(res == NULL)) {
1790 		dev_err(&pdev->dev, "invalid resource\n");
1791 		ret = -EINVAL;
1792 		goto out;
1793 	}
1794 
1795 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
1796 	if (!ndev) {
1797 		dev_err(&pdev->dev, "Could not allocate device.\n");
1798 		ret = -ENOMEM;
1799 		goto out;
1800 	}
1801 
1802 	/* The sh Ether-specific entries in the device structure. */
1803 	ndev->base_addr = res->start;
1804 	devno = pdev->id;
1805 	if (devno < 0)
1806 		devno = 0;
1807 
1808 	ndev->dma = -1;
1809 	ret = platform_get_irq(pdev, 0);
1810 	if (ret < 0) {
1811 		ret = -ENODEV;
1812 		goto out_release;
1813 	}
1814 	ndev->irq = ret;
1815 
1816 	SET_NETDEV_DEV(ndev, &pdev->dev);
1817 
1818 	/* Fill in the fields of the device structure with ethernet values. */
1819 	ether_setup(ndev);
1820 
1821 	mdp = netdev_priv(ndev);
1822 	mdp->addr = ioremap(res->start, resource_size(res));
1823 	if (mdp->addr == NULL) {
1824 		ret = -ENOMEM;
1825 		dev_err(&pdev->dev, "ioremap failed.\n");
1826 		goto out_release;
1827 	}
1828 
1829 	spin_lock_init(&mdp->lock);
1830 	mdp->pdev = pdev;
1831 	pm_runtime_enable(&pdev->dev);
1832 	pm_runtime_resume(&pdev->dev);
1833 
1834 	pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
1835 	/* get PHY ID */
1836 	mdp->phy_id = pd->phy;
1837 	mdp->phy_interface = pd->phy_interface;
1838 	/* EDMAC endian */
1839 	mdp->edmac_endian = pd->edmac_endian;
1840 	mdp->no_ether_link = pd->no_ether_link;
1841 	mdp->ether_link_active_low = pd->ether_link_active_low;
1842 	mdp->reg_offset = sh_eth_get_register_offset(pd->register_type);
1843 
1844 	/* set cpu data */
1845 #if defined(SH_ETH_HAS_BOTH_MODULES)
1846 	mdp->cd = sh_eth_get_cpu_data(mdp);
1847 #else
1848 	mdp->cd = &sh_eth_my_cpu_data;
1849 #endif
1850 	sh_eth_set_default_cpu_data(mdp->cd);
1851 
1852 	/* set function */
1853 	ndev->netdev_ops = &sh_eth_netdev_ops;
1854 	SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
1855 	ndev->watchdog_timeo = TX_TIMEOUT;
1856 
1857 	/* debug message level */
1858 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
1859 	mdp->post_rx = POST_RX >> (devno << 1);
1860 	mdp->post_fw = POST_FW >> (devno << 1);
1861 
1862 	/* read and set MAC address */
1863 	read_mac_address(ndev, pd->mac_addr);
1864 
1865 	/* First device only init */
1866 	if (!devno) {
1867 		if (mdp->cd->tsu) {
1868 			struct resource *rtsu;
1869 			rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1870 			if (!rtsu) {
1871 				dev_err(&pdev->dev, "Not found TSU resource\n");
1872 				goto out_release;
1873 			}
1874 			mdp->tsu_addr = ioremap(rtsu->start,
1875 						resource_size(rtsu));
1876 		}
1877 		if (mdp->cd->chip_reset)
1878 			mdp->cd->chip_reset(ndev);
1879 
1880 		if (mdp->cd->tsu) {
1881 			/* TSU init (Init only)*/
1882 			sh_eth_tsu_init(mdp);
1883 		}
1884 	}
1885 
1886 	/* network device register */
1887 	ret = register_netdev(ndev);
1888 	if (ret)
1889 		goto out_release;
1890 
1891 	/* mdio bus init */
1892 	ret = sh_mdio_init(ndev, pdev->id, pd);
1893 	if (ret)
1894 		goto out_unregister;
1895 
1896 	/* print device information */
1897 	pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
1898 	       (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
1899 
1900 	platform_set_drvdata(pdev, ndev);
1901 
1902 	return ret;
1903 
1904 out_unregister:
1905 	unregister_netdev(ndev);
1906 
1907 out_release:
1908 	/* net_dev free */
1909 	if (mdp && mdp->addr)
1910 		iounmap(mdp->addr);
1911 	if (mdp && mdp->tsu_addr)
1912 		iounmap(mdp->tsu_addr);
1913 	if (ndev)
1914 		free_netdev(ndev);
1915 
1916 out:
1917 	return ret;
1918 }
1919 
sh_eth_drv_remove(struct platform_device * pdev)1920 static int sh_eth_drv_remove(struct platform_device *pdev)
1921 {
1922 	struct net_device *ndev = platform_get_drvdata(pdev);
1923 	struct sh_eth_private *mdp = netdev_priv(ndev);
1924 
1925 	iounmap(mdp->tsu_addr);
1926 	sh_mdio_release(ndev);
1927 	unregister_netdev(ndev);
1928 	pm_runtime_disable(&pdev->dev);
1929 	iounmap(mdp->addr);
1930 	free_netdev(ndev);
1931 	platform_set_drvdata(pdev, NULL);
1932 
1933 	return 0;
1934 }
1935 
sh_eth_runtime_nop(struct device * dev)1936 static int sh_eth_runtime_nop(struct device *dev)
1937 {
1938 	/*
1939 	 * Runtime PM callback shared between ->runtime_suspend()
1940 	 * and ->runtime_resume(). Simply returns success.
1941 	 *
1942 	 * This driver re-initializes all registers after
1943 	 * pm_runtime_get_sync() anyway so there is no need
1944 	 * to save and restore registers here.
1945 	 */
1946 	return 0;
1947 }
1948 
1949 static struct dev_pm_ops sh_eth_dev_pm_ops = {
1950 	.runtime_suspend = sh_eth_runtime_nop,
1951 	.runtime_resume = sh_eth_runtime_nop,
1952 };
1953 
1954 static struct platform_driver sh_eth_driver = {
1955 	.probe = sh_eth_drv_probe,
1956 	.remove = sh_eth_drv_remove,
1957 	.driver = {
1958 		   .name = CARDNAME,
1959 		   .pm = &sh_eth_dev_pm_ops,
1960 	},
1961 };
1962 
1963 module_platform_driver(sh_eth_driver);
1964 
1965 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
1966 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
1967 MODULE_LICENSE("GPL v2");
1968