1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
2 /*
3 Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
4
5 Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 Copyright 2001 Manfred Spraul [natsemi.c]
8 Copyright 1999-2001 by Donald Becker. [natsemi.c]
9 Written 1997-2001 by Donald Becker. [8139too.c]
10 Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
11
12 This software may be used and distributed according to the terms of
13 the GNU General Public License (GPL), incorporated herein by reference.
14 Drivers based on or derived from this code fall under the GPL and must
15 retain the authorship, copyright and license notice. This file is not
16 a complete program and may only be used when the entire operating
17 system is licensed under the GPL.
18
19 See the file COPYING in this distribution for more information.
20
21 Contributors:
22
23 Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 PCI suspend/resume - Felipe Damasio <felipewd@terra.com.br>
25 LinkChg interrupt - Felipe Damasio <felipewd@terra.com.br>
26
27 TODO:
28 * Test Tx checksumming thoroughly
29
30 Low priority TODO:
31 * Complete reset on PciErr
32 * Consider Rx interrupt mitigation using TimerIntr
33 * Investigate using skb->priority with h/w VLAN priority
34 * Investigate using High Priority Tx Queue with skb->priority
35 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
36 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
37 * Implement Tx software interrupt mitigation via
38 Tx descriptor bit
39 * The real minimum of CP_MIN_MTU is 4 bytes. However,
40 for this to be supported, one must(?) turn on packet padding.
41 * Support external MII transceivers (patch available)
42
43 NOTES:
44 * TX checksumming is considered experimental. It is off by
45 default, use ethtool to turn it on.
46
47 */
48
49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50
51 #define DRV_NAME "8139cp"
52 #define DRV_VERSION "1.3"
53 #define DRV_RELDATE "Mar 22, 2004"
54
55
56 #include <linux/module.h>
57 #include <linux/moduleparam.h>
58 #include <linux/kernel.h>
59 #include <linux/compiler.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/init.h>
63 #include <linux/interrupt.h>
64 #include <linux/pci.h>
65 #include <linux/dma-mapping.h>
66 #include <linux/delay.h>
67 #include <linux/ethtool.h>
68 #include <linux/gfp.h>
69 #include <linux/mii.h>
70 #include <linux/if_vlan.h>
71 #include <linux/crc32.h>
72 #include <linux/in.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <linux/udp.h>
76 #include <linux/cache.h>
77 #include <asm/io.h>
78 #include <asm/irq.h>
79 #include <asm/uaccess.h>
80
81 /* These identify the driver base version and may not be removed. */
82 static char version[] =
83 DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
84
85 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
86 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
87 MODULE_VERSION(DRV_VERSION);
88 MODULE_LICENSE("GPL");
89
90 static int debug = -1;
91 module_param(debug, int, 0);
92 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
93
94 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
95 The RTL chips use a 64 element hash table based on the Ethernet CRC. */
96 static int multicast_filter_limit = 32;
97 module_param(multicast_filter_limit, int, 0);
98 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
99
100 #define CP_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
101 NETIF_MSG_PROBE | \
102 NETIF_MSG_LINK)
103 #define CP_NUM_STATS 14 /* struct cp_dma_stats, plus one */
104 #define CP_STATS_SIZE 64 /* size in bytes of DMA stats block */
105 #define CP_REGS_SIZE (0xff + 1)
106 #define CP_REGS_VER 1 /* version 1 */
107 #define CP_RX_RING_SIZE 64
108 #define CP_TX_RING_SIZE 64
109 #define CP_RING_BYTES \
110 ((sizeof(struct cp_desc) * CP_RX_RING_SIZE) + \
111 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) + \
112 CP_STATS_SIZE)
113 #define NEXT_TX(N) (((N) + 1) & (CP_TX_RING_SIZE - 1))
114 #define NEXT_RX(N) (((N) + 1) & (CP_RX_RING_SIZE - 1))
115 #define TX_BUFFS_AVAIL(CP) \
116 (((CP)->tx_tail <= (CP)->tx_head) ? \
117 (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head : \
118 (CP)->tx_tail - (CP)->tx_head - 1)
119
120 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
121 #define CP_INTERNAL_PHY 32
122
123 /* The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024, 7==end of packet. */
124 #define RX_FIFO_THRESH 5 /* Rx buffer level before first PCI xfer. */
125 #define RX_DMA_BURST 4 /* Maximum PCI burst, '4' is 256 */
126 #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
127 #define TX_EARLY_THRESH 256 /* Early Tx threshold, in bytes */
128
129 /* Time in jiffies before concluding the transmitter is hung. */
130 #define TX_TIMEOUT (6*HZ)
131
132 /* hardware minimum and maximum for a single frame's data payload */
133 #define CP_MIN_MTU 60 /* TODO: allow lower, but pad */
134 #define CP_MAX_MTU 4096
135
136 enum {
137 /* NIC register offsets */
138 MAC0 = 0x00, /* Ethernet hardware address. */
139 MAR0 = 0x08, /* Multicast filter. */
140 StatsAddr = 0x10, /* 64-bit start addr of 64-byte DMA stats blk */
141 TxRingAddr = 0x20, /* 64-bit start addr of Tx ring */
142 HiTxRingAddr = 0x28, /* 64-bit start addr of high priority Tx ring */
143 Cmd = 0x37, /* Command register */
144 IntrMask = 0x3C, /* Interrupt mask */
145 IntrStatus = 0x3E, /* Interrupt status */
146 TxConfig = 0x40, /* Tx configuration */
147 ChipVersion = 0x43, /* 8-bit chip version, inside TxConfig */
148 RxConfig = 0x44, /* Rx configuration */
149 RxMissed = 0x4C, /* 24 bits valid, write clears */
150 Cfg9346 = 0x50, /* EEPROM select/control; Cfg reg [un]lock */
151 Config1 = 0x52, /* Config1 */
152 Config3 = 0x59, /* Config3 */
153 Config4 = 0x5A, /* Config4 */
154 MultiIntr = 0x5C, /* Multiple interrupt select */
155 BasicModeCtrl = 0x62, /* MII BMCR */
156 BasicModeStatus = 0x64, /* MII BMSR */
157 NWayAdvert = 0x66, /* MII ADVERTISE */
158 NWayLPAR = 0x68, /* MII LPA */
159 NWayExpansion = 0x6A, /* MII Expansion */
160 Config5 = 0xD8, /* Config5 */
161 TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */
162 RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */
163 CpCmd = 0xE0, /* C+ Command register (C+ mode only) */
164 IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */
165 RxRingAddr = 0xE4, /* 64-bit start addr of Rx ring */
166 TxThresh = 0xEC, /* Early Tx threshold */
167 OldRxBufAddr = 0x30, /* DMA address of Rx ring buffer (C mode) */
168 OldTSD0 = 0x10, /* DMA address of first Tx desc (C mode) */
169
170 /* Tx and Rx status descriptors */
171 DescOwn = (1 << 31), /* Descriptor is owned by NIC */
172 RingEnd = (1 << 30), /* End of descriptor ring */
173 FirstFrag = (1 << 29), /* First segment of a packet */
174 LastFrag = (1 << 28), /* Final segment of a packet */
175 LargeSend = (1 << 27), /* TCP Large Send Offload (TSO) */
176 MSSShift = 16, /* MSS value position */
177 MSSMask = 0xfff, /* MSS value: 11 bits */
178 TxError = (1 << 23), /* Tx error summary */
179 RxError = (1 << 20), /* Rx error summary */
180 IPCS = (1 << 18), /* Calculate IP checksum */
181 UDPCS = (1 << 17), /* Calculate UDP/IP checksum */
182 TCPCS = (1 << 16), /* Calculate TCP/IP checksum */
183 TxVlanTag = (1 << 17), /* Add VLAN tag */
184 RxVlanTagged = (1 << 16), /* Rx VLAN tag available */
185 IPFail = (1 << 15), /* IP checksum failed */
186 UDPFail = (1 << 14), /* UDP/IP checksum failed */
187 TCPFail = (1 << 13), /* TCP/IP checksum failed */
188 NormalTxPoll = (1 << 6), /* One or more normal Tx packets to send */
189 PID1 = (1 << 17), /* 2 protocol id bits: 0==non-IP, */
190 PID0 = (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
191 RxProtoTCP = 1,
192 RxProtoUDP = 2,
193 RxProtoIP = 3,
194 TxFIFOUnder = (1 << 25), /* Tx FIFO underrun */
195 TxOWC = (1 << 22), /* Tx Out-of-window collision */
196 TxLinkFail = (1 << 21), /* Link failed during Tx of packet */
197 TxMaxCol = (1 << 20), /* Tx aborted due to excessive collisions */
198 TxColCntShift = 16, /* Shift, to get 4-bit Tx collision cnt */
199 TxColCntMask = 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
200 RxErrFrame = (1 << 27), /* Rx frame alignment error */
201 RxMcast = (1 << 26), /* Rx multicast packet rcv'd */
202 RxErrCRC = (1 << 18), /* Rx CRC error */
203 RxErrRunt = (1 << 19), /* Rx error, packet < 64 bytes */
204 RxErrLong = (1 << 21), /* Rx error, packet > 4096 bytes */
205 RxErrFIFO = (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
206
207 /* StatsAddr register */
208 DumpStats = (1 << 3), /* Begin stats dump */
209
210 /* RxConfig register */
211 RxCfgFIFOShift = 13, /* Shift, to get Rx FIFO thresh value */
212 RxCfgDMAShift = 8, /* Shift, to get Rx Max DMA value */
213 AcceptErr = 0x20, /* Accept packets with CRC errors */
214 AcceptRunt = 0x10, /* Accept runt (<64 bytes) packets */
215 AcceptBroadcast = 0x08, /* Accept broadcast packets */
216 AcceptMulticast = 0x04, /* Accept multicast packets */
217 AcceptMyPhys = 0x02, /* Accept pkts with our MAC as dest */
218 AcceptAllPhys = 0x01, /* Accept all pkts w/ physical dest */
219
220 /* IntrMask / IntrStatus registers */
221 PciErr = (1 << 15), /* System error on the PCI bus */
222 TimerIntr = (1 << 14), /* Asserted when TCTR reaches TimerInt value */
223 LenChg = (1 << 13), /* Cable length change */
224 SWInt = (1 << 8), /* Software-requested interrupt */
225 TxEmpty = (1 << 7), /* No Tx descriptors available */
226 RxFIFOOvr = (1 << 6), /* Rx FIFO Overflow */
227 LinkChg = (1 << 5), /* Packet underrun, or link change */
228 RxEmpty = (1 << 4), /* No Rx descriptors available */
229 TxErr = (1 << 3), /* Tx error */
230 TxOK = (1 << 2), /* Tx packet sent */
231 RxErr = (1 << 1), /* Rx error */
232 RxOK = (1 << 0), /* Rx packet received */
233 IntrResvd = (1 << 10), /* reserved, according to RealTek engineers,
234 but hardware likes to raise it */
235
236 IntrAll = PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
237 RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
238 RxErr | RxOK | IntrResvd,
239
240 /* C mode command register */
241 CmdReset = (1 << 4), /* Enable to reset; self-clearing */
242 RxOn = (1 << 3), /* Rx mode enable */
243 TxOn = (1 << 2), /* Tx mode enable */
244
245 /* C+ mode command register */
246 RxVlanOn = (1 << 6), /* Rx VLAN de-tagging enable */
247 RxChkSum = (1 << 5), /* Rx checksum offload enable */
248 PCIDAC = (1 << 4), /* PCI Dual Address Cycle (64-bit PCI) */
249 PCIMulRW = (1 << 3), /* Enable PCI read/write multiple */
250 CpRxOn = (1 << 1), /* Rx mode enable */
251 CpTxOn = (1 << 0), /* Tx mode enable */
252
253 /* Cfg9436 EEPROM control register */
254 Cfg9346_Lock = 0x00, /* Lock ConfigX/MII register access */
255 Cfg9346_Unlock = 0xC0, /* Unlock ConfigX/MII register access */
256
257 /* TxConfig register */
258 IFG = (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
259 TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */
260
261 /* Early Tx Threshold register */
262 TxThreshMask = 0x3f, /* Mask bits 5-0 */
263 TxThreshMax = 2048, /* Max early Tx threshold */
264
265 /* Config1 register */
266 DriverLoaded = (1 << 5), /* Software marker, driver is loaded */
267 LWACT = (1 << 4), /* LWAKE active mode */
268 PMEnable = (1 << 0), /* Enable various PM features of chip */
269
270 /* Config3 register */
271 PARMEnable = (1 << 6), /* Enable auto-loading of PHY parms */
272 MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */
273 LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */
274
275 /* Config4 register */
276 LWPTN = (1 << 1), /* LWAKE Pattern */
277 LWPME = (1 << 4), /* LANWAKE vs PMEB */
278
279 /* Config5 register */
280 BWF = (1 << 6), /* Accept Broadcast wakeup frame */
281 MWF = (1 << 5), /* Accept Multicast wakeup frame */
282 UWF = (1 << 4), /* Accept Unicast wakeup frame */
283 LANWake = (1 << 1), /* Enable LANWake signal */
284 PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */
285
286 cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
287 cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
288 cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
289 };
290
291 static const unsigned int cp_rx_config =
292 (RX_FIFO_THRESH << RxCfgFIFOShift) |
293 (RX_DMA_BURST << RxCfgDMAShift);
294
295 struct cp_desc {
296 __le32 opts1;
297 __le32 opts2;
298 __le64 addr;
299 };
300
301 struct cp_dma_stats {
302 __le64 tx_ok;
303 __le64 rx_ok;
304 __le64 tx_err;
305 __le32 rx_err;
306 __le16 rx_fifo;
307 __le16 frame_align;
308 __le32 tx_ok_1col;
309 __le32 tx_ok_mcol;
310 __le64 rx_ok_phys;
311 __le64 rx_ok_bcast;
312 __le32 rx_ok_mcast;
313 __le16 tx_abort;
314 __le16 tx_underrun;
315 } __packed;
316
317 struct cp_extra_stats {
318 unsigned long rx_frags;
319 };
320
321 struct cp_private {
322 void __iomem *regs;
323 struct net_device *dev;
324 spinlock_t lock;
325 u32 msg_enable;
326
327 struct napi_struct napi;
328
329 struct pci_dev *pdev;
330 u32 rx_config;
331 u16 cpcmd;
332
333 struct cp_extra_stats cp_stats;
334
335 unsigned rx_head ____cacheline_aligned;
336 unsigned rx_tail;
337 struct cp_desc *rx_ring;
338 struct sk_buff *rx_skb[CP_RX_RING_SIZE];
339
340 unsigned tx_head ____cacheline_aligned;
341 unsigned tx_tail;
342 struct cp_desc *tx_ring;
343 struct sk_buff *tx_skb[CP_TX_RING_SIZE];
344
345 unsigned rx_buf_sz;
346 unsigned wol_enabled : 1; /* Is Wake-on-LAN enabled? */
347
348 dma_addr_t ring_dma;
349
350 struct mii_if_info mii_if;
351 };
352
353 #define cpr8(reg) readb(cp->regs + (reg))
354 #define cpr16(reg) readw(cp->regs + (reg))
355 #define cpr32(reg) readl(cp->regs + (reg))
356 #define cpw8(reg,val) writeb((val), cp->regs + (reg))
357 #define cpw16(reg,val) writew((val), cp->regs + (reg))
358 #define cpw32(reg,val) writel((val), cp->regs + (reg))
359 #define cpw8_f(reg,val) do { \
360 writeb((val), cp->regs + (reg)); \
361 readb(cp->regs + (reg)); \
362 } while (0)
363 #define cpw16_f(reg,val) do { \
364 writew((val), cp->regs + (reg)); \
365 readw(cp->regs + (reg)); \
366 } while (0)
367 #define cpw32_f(reg,val) do { \
368 writel((val), cp->regs + (reg)); \
369 readl(cp->regs + (reg)); \
370 } while (0)
371
372
373 static void __cp_set_rx_mode (struct net_device *dev);
374 static void cp_tx (struct cp_private *cp);
375 static void cp_clean_rings (struct cp_private *cp);
376 #ifdef CONFIG_NET_POLL_CONTROLLER
377 static void cp_poll_controller(struct net_device *dev);
378 #endif
379 static int cp_get_eeprom_len(struct net_device *dev);
380 static int cp_get_eeprom(struct net_device *dev,
381 struct ethtool_eeprom *eeprom, u8 *data);
382 static int cp_set_eeprom(struct net_device *dev,
383 struct ethtool_eeprom *eeprom, u8 *data);
384
385 static DEFINE_PCI_DEVICE_TABLE(cp_pci_tbl) = {
386 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, PCI_DEVICE_ID_REALTEK_8139), },
387 { PCI_DEVICE(PCI_VENDOR_ID_TTTECH, PCI_DEVICE_ID_TTTECH_MC322), },
388 { },
389 };
390 MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
391
392 static struct {
393 const char str[ETH_GSTRING_LEN];
394 } ethtool_stats_keys[] = {
395 { "tx_ok" },
396 { "rx_ok" },
397 { "tx_err" },
398 { "rx_err" },
399 { "rx_fifo" },
400 { "frame_align" },
401 { "tx_ok_1col" },
402 { "tx_ok_mcol" },
403 { "rx_ok_phys" },
404 { "rx_ok_bcast" },
405 { "rx_ok_mcast" },
406 { "tx_abort" },
407 { "tx_underrun" },
408 { "rx_frags" },
409 };
410
411
cp_set_rxbufsize(struct cp_private * cp)412 static inline void cp_set_rxbufsize (struct cp_private *cp)
413 {
414 unsigned int mtu = cp->dev->mtu;
415
416 if (mtu > ETH_DATA_LEN)
417 /* MTU + ethernet header + FCS + optional VLAN tag */
418 cp->rx_buf_sz = mtu + ETH_HLEN + 8;
419 else
420 cp->rx_buf_sz = PKT_BUF_SZ;
421 }
422
cp_rx_skb(struct cp_private * cp,struct sk_buff * skb,struct cp_desc * desc)423 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
424 struct cp_desc *desc)
425 {
426 u32 opts2 = le32_to_cpu(desc->opts2);
427
428 skb->protocol = eth_type_trans (skb, cp->dev);
429
430 cp->dev->stats.rx_packets++;
431 cp->dev->stats.rx_bytes += skb->len;
432
433 if (opts2 & RxVlanTagged)
434 __vlan_hwaccel_put_tag(skb, swab16(opts2 & 0xffff));
435
436 napi_gro_receive(&cp->napi, skb);
437 }
438
cp_rx_err_acct(struct cp_private * cp,unsigned rx_tail,u32 status,u32 len)439 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
440 u32 status, u32 len)
441 {
442 netif_dbg(cp, rx_err, cp->dev, "rx err, slot %d status 0x%x len %d\n",
443 rx_tail, status, len);
444 cp->dev->stats.rx_errors++;
445 if (status & RxErrFrame)
446 cp->dev->stats.rx_frame_errors++;
447 if (status & RxErrCRC)
448 cp->dev->stats.rx_crc_errors++;
449 if ((status & RxErrRunt) || (status & RxErrLong))
450 cp->dev->stats.rx_length_errors++;
451 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
452 cp->dev->stats.rx_length_errors++;
453 if (status & RxErrFIFO)
454 cp->dev->stats.rx_fifo_errors++;
455 }
456
cp_rx_csum_ok(u32 status)457 static inline unsigned int cp_rx_csum_ok (u32 status)
458 {
459 unsigned int protocol = (status >> 16) & 0x3;
460
461 if (((protocol == RxProtoTCP) && !(status & TCPFail)) ||
462 ((protocol == RxProtoUDP) && !(status & UDPFail)))
463 return 1;
464 else
465 return 0;
466 }
467
cp_rx_poll(struct napi_struct * napi,int budget)468 static int cp_rx_poll(struct napi_struct *napi, int budget)
469 {
470 struct cp_private *cp = container_of(napi, struct cp_private, napi);
471 struct net_device *dev = cp->dev;
472 unsigned int rx_tail = cp->rx_tail;
473 int rx;
474
475 rx_status_loop:
476 rx = 0;
477 cpw16(IntrStatus, cp_rx_intr_mask);
478
479 while (1) {
480 u32 status, len;
481 dma_addr_t mapping;
482 struct sk_buff *skb, *new_skb;
483 struct cp_desc *desc;
484 const unsigned buflen = cp->rx_buf_sz;
485
486 skb = cp->rx_skb[rx_tail];
487 BUG_ON(!skb);
488
489 desc = &cp->rx_ring[rx_tail];
490 status = le32_to_cpu(desc->opts1);
491 if (status & DescOwn)
492 break;
493
494 len = (status & 0x1fff) - 4;
495 mapping = le64_to_cpu(desc->addr);
496
497 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
498 /* we don't support incoming fragmented frames.
499 * instead, we attempt to ensure that the
500 * pre-allocated RX skbs are properly sized such
501 * that RX fragments are never encountered
502 */
503 cp_rx_err_acct(cp, rx_tail, status, len);
504 dev->stats.rx_dropped++;
505 cp->cp_stats.rx_frags++;
506 goto rx_next;
507 }
508
509 if (status & (RxError | RxErrFIFO)) {
510 cp_rx_err_acct(cp, rx_tail, status, len);
511 goto rx_next;
512 }
513
514 netif_dbg(cp, rx_status, dev, "rx slot %d status 0x%x len %d\n",
515 rx_tail, status, len);
516
517 new_skb = netdev_alloc_skb_ip_align(dev, buflen);
518 if (!new_skb) {
519 dev->stats.rx_dropped++;
520 goto rx_next;
521 }
522
523 dma_unmap_single(&cp->pdev->dev, mapping,
524 buflen, PCI_DMA_FROMDEVICE);
525
526 /* Handle checksum offloading for incoming packets. */
527 if (cp_rx_csum_ok(status))
528 skb->ip_summed = CHECKSUM_UNNECESSARY;
529 else
530 skb_checksum_none_assert(skb);
531
532 skb_put(skb, len);
533
534 mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen,
535 PCI_DMA_FROMDEVICE);
536 cp->rx_skb[rx_tail] = new_skb;
537
538 cp_rx_skb(cp, skb, desc);
539 rx++;
540
541 rx_next:
542 cp->rx_ring[rx_tail].opts2 = 0;
543 cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
544 if (rx_tail == (CP_RX_RING_SIZE - 1))
545 desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
546 cp->rx_buf_sz);
547 else
548 desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
549 rx_tail = NEXT_RX(rx_tail);
550
551 if (rx >= budget)
552 break;
553 }
554
555 cp->rx_tail = rx_tail;
556
557 /* if we did not reach work limit, then we're done with
558 * this round of polling
559 */
560 if (rx < budget) {
561 unsigned long flags;
562
563 if (cpr16(IntrStatus) & cp_rx_intr_mask)
564 goto rx_status_loop;
565
566 napi_gro_flush(napi);
567 spin_lock_irqsave(&cp->lock, flags);
568 __napi_complete(napi);
569 cpw16_f(IntrMask, cp_intr_mask);
570 spin_unlock_irqrestore(&cp->lock, flags);
571 }
572
573 return rx;
574 }
575
cp_interrupt(int irq,void * dev_instance)576 static irqreturn_t cp_interrupt (int irq, void *dev_instance)
577 {
578 struct net_device *dev = dev_instance;
579 struct cp_private *cp;
580 u16 status;
581
582 if (unlikely(dev == NULL))
583 return IRQ_NONE;
584 cp = netdev_priv(dev);
585
586 status = cpr16(IntrStatus);
587 if (!status || (status == 0xFFFF))
588 return IRQ_NONE;
589
590 netif_dbg(cp, intr, dev, "intr, status %04x cmd %02x cpcmd %04x\n",
591 status, cpr8(Cmd), cpr16(CpCmd));
592
593 cpw16(IntrStatus, status & ~cp_rx_intr_mask);
594
595 spin_lock(&cp->lock);
596
597 /* close possible race's with dev_close */
598 if (unlikely(!netif_running(dev))) {
599 cpw16(IntrMask, 0);
600 spin_unlock(&cp->lock);
601 return IRQ_HANDLED;
602 }
603
604 if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
605 if (napi_schedule_prep(&cp->napi)) {
606 cpw16_f(IntrMask, cp_norx_intr_mask);
607 __napi_schedule(&cp->napi);
608 }
609
610 if (status & (TxOK | TxErr | TxEmpty | SWInt))
611 cp_tx(cp);
612 if (status & LinkChg)
613 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
614
615 spin_unlock(&cp->lock);
616
617 if (status & PciErr) {
618 u16 pci_status;
619
620 pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
621 pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
622 netdev_err(dev, "PCI bus error, status=%04x, PCI status=%04x\n",
623 status, pci_status);
624
625 /* TODO: reset hardware */
626 }
627
628 return IRQ_HANDLED;
629 }
630
631 #ifdef CONFIG_NET_POLL_CONTROLLER
632 /*
633 * Polling receive - used by netconsole and other diagnostic tools
634 * to allow network i/o with interrupts disabled.
635 */
cp_poll_controller(struct net_device * dev)636 static void cp_poll_controller(struct net_device *dev)
637 {
638 disable_irq(dev->irq);
639 cp_interrupt(dev->irq, dev);
640 enable_irq(dev->irq);
641 }
642 #endif
643
cp_tx(struct cp_private * cp)644 static void cp_tx (struct cp_private *cp)
645 {
646 unsigned tx_head = cp->tx_head;
647 unsigned tx_tail = cp->tx_tail;
648
649 while (tx_tail != tx_head) {
650 struct cp_desc *txd = cp->tx_ring + tx_tail;
651 struct sk_buff *skb;
652 u32 status;
653
654 rmb();
655 status = le32_to_cpu(txd->opts1);
656 if (status & DescOwn)
657 break;
658
659 skb = cp->tx_skb[tx_tail];
660 BUG_ON(!skb);
661
662 dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
663 le32_to_cpu(txd->opts1) & 0xffff,
664 PCI_DMA_TODEVICE);
665
666 if (status & LastFrag) {
667 if (status & (TxError | TxFIFOUnder)) {
668 netif_dbg(cp, tx_err, cp->dev,
669 "tx err, status 0x%x\n", status);
670 cp->dev->stats.tx_errors++;
671 if (status & TxOWC)
672 cp->dev->stats.tx_window_errors++;
673 if (status & TxMaxCol)
674 cp->dev->stats.tx_aborted_errors++;
675 if (status & TxLinkFail)
676 cp->dev->stats.tx_carrier_errors++;
677 if (status & TxFIFOUnder)
678 cp->dev->stats.tx_fifo_errors++;
679 } else {
680 cp->dev->stats.collisions +=
681 ((status >> TxColCntShift) & TxColCntMask);
682 cp->dev->stats.tx_packets++;
683 cp->dev->stats.tx_bytes += skb->len;
684 netif_dbg(cp, tx_done, cp->dev,
685 "tx done, slot %d\n", tx_tail);
686 }
687 dev_kfree_skb_irq(skb);
688 }
689
690 cp->tx_skb[tx_tail] = NULL;
691
692 tx_tail = NEXT_TX(tx_tail);
693 }
694
695 cp->tx_tail = tx_tail;
696
697 if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
698 netif_wake_queue(cp->dev);
699 }
700
cp_tx_vlan_tag(struct sk_buff * skb)701 static inline u32 cp_tx_vlan_tag(struct sk_buff *skb)
702 {
703 return vlan_tx_tag_present(skb) ?
704 TxVlanTag | swab16(vlan_tx_tag_get(skb)) : 0x00;
705 }
706
cp_start_xmit(struct sk_buff * skb,struct net_device * dev)707 static netdev_tx_t cp_start_xmit (struct sk_buff *skb,
708 struct net_device *dev)
709 {
710 struct cp_private *cp = netdev_priv(dev);
711 unsigned entry;
712 u32 eor, flags;
713 unsigned long intr_flags;
714 __le32 opts2;
715 int mss = 0;
716
717 spin_lock_irqsave(&cp->lock, intr_flags);
718
719 /* This is a hard error, log it. */
720 if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
721 netif_stop_queue(dev);
722 spin_unlock_irqrestore(&cp->lock, intr_flags);
723 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
724 return NETDEV_TX_BUSY;
725 }
726
727 entry = cp->tx_head;
728 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
729 mss = skb_shinfo(skb)->gso_size;
730
731 opts2 = cpu_to_le32(cp_tx_vlan_tag(skb));
732
733 if (skb_shinfo(skb)->nr_frags == 0) {
734 struct cp_desc *txd = &cp->tx_ring[entry];
735 u32 len;
736 dma_addr_t mapping;
737
738 len = skb->len;
739 mapping = dma_map_single(&cp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
740 txd->opts2 = opts2;
741 txd->addr = cpu_to_le64(mapping);
742 wmb();
743
744 flags = eor | len | DescOwn | FirstFrag | LastFrag;
745
746 if (mss)
747 flags |= LargeSend | ((mss & MSSMask) << MSSShift);
748 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
749 const struct iphdr *ip = ip_hdr(skb);
750 if (ip->protocol == IPPROTO_TCP)
751 flags |= IPCS | TCPCS;
752 else if (ip->protocol == IPPROTO_UDP)
753 flags |= IPCS | UDPCS;
754 else
755 WARN_ON(1); /* we need a WARN() */
756 }
757
758 txd->opts1 = cpu_to_le32(flags);
759 wmb();
760
761 cp->tx_skb[entry] = skb;
762 entry = NEXT_TX(entry);
763 } else {
764 struct cp_desc *txd;
765 u32 first_len, first_eor;
766 dma_addr_t first_mapping;
767 int frag, first_entry = entry;
768 const struct iphdr *ip = ip_hdr(skb);
769
770 /* We must give this initial chunk to the device last.
771 * Otherwise we could race with the device.
772 */
773 first_eor = eor;
774 first_len = skb_headlen(skb);
775 first_mapping = dma_map_single(&cp->pdev->dev, skb->data,
776 first_len, PCI_DMA_TODEVICE);
777 cp->tx_skb[entry] = skb;
778 entry = NEXT_TX(entry);
779
780 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
781 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
782 u32 len;
783 u32 ctrl;
784 dma_addr_t mapping;
785
786 len = skb_frag_size(this_frag);
787 mapping = dma_map_single(&cp->pdev->dev,
788 skb_frag_address(this_frag),
789 len, PCI_DMA_TODEVICE);
790 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
791
792 ctrl = eor | len | DescOwn;
793
794 if (mss)
795 ctrl |= LargeSend |
796 ((mss & MSSMask) << MSSShift);
797 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
798 if (ip->protocol == IPPROTO_TCP)
799 ctrl |= IPCS | TCPCS;
800 else if (ip->protocol == IPPROTO_UDP)
801 ctrl |= IPCS | UDPCS;
802 else
803 BUG();
804 }
805
806 if (frag == skb_shinfo(skb)->nr_frags - 1)
807 ctrl |= LastFrag;
808
809 txd = &cp->tx_ring[entry];
810 txd->opts2 = opts2;
811 txd->addr = cpu_to_le64(mapping);
812 wmb();
813
814 txd->opts1 = cpu_to_le32(ctrl);
815 wmb();
816
817 cp->tx_skb[entry] = skb;
818 entry = NEXT_TX(entry);
819 }
820
821 txd = &cp->tx_ring[first_entry];
822 txd->opts2 = opts2;
823 txd->addr = cpu_to_le64(first_mapping);
824 wmb();
825
826 if (skb->ip_summed == CHECKSUM_PARTIAL) {
827 if (ip->protocol == IPPROTO_TCP)
828 txd->opts1 = cpu_to_le32(first_eor | first_len |
829 FirstFrag | DescOwn |
830 IPCS | TCPCS);
831 else if (ip->protocol == IPPROTO_UDP)
832 txd->opts1 = cpu_to_le32(first_eor | first_len |
833 FirstFrag | DescOwn |
834 IPCS | UDPCS);
835 else
836 BUG();
837 } else
838 txd->opts1 = cpu_to_le32(first_eor | first_len |
839 FirstFrag | DescOwn);
840 wmb();
841 }
842 cp->tx_head = entry;
843 netif_dbg(cp, tx_queued, cp->dev, "tx queued, slot %d, skblen %d\n",
844 entry, skb->len);
845 if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
846 netif_stop_queue(dev);
847
848 spin_unlock_irqrestore(&cp->lock, intr_flags);
849
850 cpw8(TxPoll, NormalTxPoll);
851
852 return NETDEV_TX_OK;
853 }
854
855 /* Set or clear the multicast filter for this adaptor.
856 This routine is not state sensitive and need not be SMP locked. */
857
__cp_set_rx_mode(struct net_device * dev)858 static void __cp_set_rx_mode (struct net_device *dev)
859 {
860 struct cp_private *cp = netdev_priv(dev);
861 u32 mc_filter[2]; /* Multicast hash filter */
862 int rx_mode;
863
864 /* Note: do not reorder, GCC is clever about common statements. */
865 if (dev->flags & IFF_PROMISC) {
866 /* Unconditionally log net taps. */
867 rx_mode =
868 AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
869 AcceptAllPhys;
870 mc_filter[1] = mc_filter[0] = 0xffffffff;
871 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
872 (dev->flags & IFF_ALLMULTI)) {
873 /* Too many to filter perfectly -- accept all multicasts. */
874 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
875 mc_filter[1] = mc_filter[0] = 0xffffffff;
876 } else {
877 struct netdev_hw_addr *ha;
878 rx_mode = AcceptBroadcast | AcceptMyPhys;
879 mc_filter[1] = mc_filter[0] = 0;
880 netdev_for_each_mc_addr(ha, dev) {
881 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
882
883 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
884 rx_mode |= AcceptMulticast;
885 }
886 }
887
888 /* We can safely update without stopping the chip. */
889 cp->rx_config = cp_rx_config | rx_mode;
890 cpw32_f(RxConfig, cp->rx_config);
891
892 cpw32_f (MAR0 + 0, mc_filter[0]);
893 cpw32_f (MAR0 + 4, mc_filter[1]);
894 }
895
cp_set_rx_mode(struct net_device * dev)896 static void cp_set_rx_mode (struct net_device *dev)
897 {
898 unsigned long flags;
899 struct cp_private *cp = netdev_priv(dev);
900
901 spin_lock_irqsave (&cp->lock, flags);
902 __cp_set_rx_mode(dev);
903 spin_unlock_irqrestore (&cp->lock, flags);
904 }
905
__cp_get_stats(struct cp_private * cp)906 static void __cp_get_stats(struct cp_private *cp)
907 {
908 /* only lower 24 bits valid; write any value to clear */
909 cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
910 cpw32 (RxMissed, 0);
911 }
912
cp_get_stats(struct net_device * dev)913 static struct net_device_stats *cp_get_stats(struct net_device *dev)
914 {
915 struct cp_private *cp = netdev_priv(dev);
916 unsigned long flags;
917
918 /* The chip only need report frame silently dropped. */
919 spin_lock_irqsave(&cp->lock, flags);
920 if (netif_running(dev) && netif_device_present(dev))
921 __cp_get_stats(cp);
922 spin_unlock_irqrestore(&cp->lock, flags);
923
924 return &dev->stats;
925 }
926
cp_stop_hw(struct cp_private * cp)927 static void cp_stop_hw (struct cp_private *cp)
928 {
929 cpw16(IntrStatus, ~(cpr16(IntrStatus)));
930 cpw16_f(IntrMask, 0);
931 cpw8(Cmd, 0);
932 cpw16_f(CpCmd, 0);
933 cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
934
935 cp->rx_tail = 0;
936 cp->tx_head = cp->tx_tail = 0;
937 }
938
cp_reset_hw(struct cp_private * cp)939 static void cp_reset_hw (struct cp_private *cp)
940 {
941 unsigned work = 1000;
942
943 cpw8(Cmd, CmdReset);
944
945 while (work--) {
946 if (!(cpr8(Cmd) & CmdReset))
947 return;
948
949 schedule_timeout_uninterruptible(10);
950 }
951
952 netdev_err(cp->dev, "hardware reset timeout\n");
953 }
954
cp_start_hw(struct cp_private * cp)955 static inline void cp_start_hw (struct cp_private *cp)
956 {
957 cpw16(CpCmd, cp->cpcmd);
958 cpw8(Cmd, RxOn | TxOn);
959 }
960
cp_init_hw(struct cp_private * cp)961 static void cp_init_hw (struct cp_private *cp)
962 {
963 struct net_device *dev = cp->dev;
964 dma_addr_t ring_dma;
965
966 cp_reset_hw(cp);
967
968 cpw8_f (Cfg9346, Cfg9346_Unlock);
969
970 /* Restore our idea of the MAC address. */
971 cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
972 cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
973
974 cp_start_hw(cp);
975 cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
976
977 __cp_set_rx_mode(dev);
978 cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
979
980 cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
981 /* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
982 cpw8(Config3, PARMEnable);
983 cp->wol_enabled = 0;
984
985 cpw8(Config5, cpr8(Config5) & PMEStatus);
986
987 cpw32_f(HiTxRingAddr, 0);
988 cpw32_f(HiTxRingAddr + 4, 0);
989
990 ring_dma = cp->ring_dma;
991 cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
992 cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
993
994 ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
995 cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
996 cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
997
998 cpw16(MultiIntr, 0);
999
1000 cpw16_f(IntrMask, cp_intr_mask);
1001
1002 cpw8_f(Cfg9346, Cfg9346_Lock);
1003 }
1004
cp_refill_rx(struct cp_private * cp)1005 static int cp_refill_rx(struct cp_private *cp)
1006 {
1007 struct net_device *dev = cp->dev;
1008 unsigned i;
1009
1010 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1011 struct sk_buff *skb;
1012 dma_addr_t mapping;
1013
1014 skb = netdev_alloc_skb_ip_align(dev, cp->rx_buf_sz);
1015 if (!skb)
1016 goto err_out;
1017
1018 mapping = dma_map_single(&cp->pdev->dev, skb->data,
1019 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1020 cp->rx_skb[i] = skb;
1021
1022 cp->rx_ring[i].opts2 = 0;
1023 cp->rx_ring[i].addr = cpu_to_le64(mapping);
1024 if (i == (CP_RX_RING_SIZE - 1))
1025 cp->rx_ring[i].opts1 =
1026 cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1027 else
1028 cp->rx_ring[i].opts1 =
1029 cpu_to_le32(DescOwn | cp->rx_buf_sz);
1030 }
1031
1032 return 0;
1033
1034 err_out:
1035 cp_clean_rings(cp);
1036 return -ENOMEM;
1037 }
1038
cp_init_rings_index(struct cp_private * cp)1039 static void cp_init_rings_index (struct cp_private *cp)
1040 {
1041 cp->rx_tail = 0;
1042 cp->tx_head = cp->tx_tail = 0;
1043 }
1044
cp_init_rings(struct cp_private * cp)1045 static int cp_init_rings (struct cp_private *cp)
1046 {
1047 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1048 cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1049
1050 cp_init_rings_index(cp);
1051
1052 return cp_refill_rx (cp);
1053 }
1054
cp_alloc_rings(struct cp_private * cp)1055 static int cp_alloc_rings (struct cp_private *cp)
1056 {
1057 void *mem;
1058
1059 mem = dma_alloc_coherent(&cp->pdev->dev, CP_RING_BYTES,
1060 &cp->ring_dma, GFP_KERNEL);
1061 if (!mem)
1062 return -ENOMEM;
1063
1064 cp->rx_ring = mem;
1065 cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1066
1067 return cp_init_rings(cp);
1068 }
1069
cp_clean_rings(struct cp_private * cp)1070 static void cp_clean_rings (struct cp_private *cp)
1071 {
1072 struct cp_desc *desc;
1073 unsigned i;
1074
1075 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1076 if (cp->rx_skb[i]) {
1077 desc = cp->rx_ring + i;
1078 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1079 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1080 dev_kfree_skb(cp->rx_skb[i]);
1081 }
1082 }
1083
1084 for (i = 0; i < CP_TX_RING_SIZE; i++) {
1085 if (cp->tx_skb[i]) {
1086 struct sk_buff *skb = cp->tx_skb[i];
1087
1088 desc = cp->tx_ring + i;
1089 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1090 le32_to_cpu(desc->opts1) & 0xffff,
1091 PCI_DMA_TODEVICE);
1092 if (le32_to_cpu(desc->opts1) & LastFrag)
1093 dev_kfree_skb(skb);
1094 cp->dev->stats.tx_dropped++;
1095 }
1096 }
1097
1098 memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1099 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1100
1101 memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1102 memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1103 }
1104
cp_free_rings(struct cp_private * cp)1105 static void cp_free_rings (struct cp_private *cp)
1106 {
1107 cp_clean_rings(cp);
1108 dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring,
1109 cp->ring_dma);
1110 cp->rx_ring = NULL;
1111 cp->tx_ring = NULL;
1112 }
1113
cp_open(struct net_device * dev)1114 static int cp_open (struct net_device *dev)
1115 {
1116 struct cp_private *cp = netdev_priv(dev);
1117 int rc;
1118
1119 netif_dbg(cp, ifup, dev, "enabling interface\n");
1120
1121 rc = cp_alloc_rings(cp);
1122 if (rc)
1123 return rc;
1124
1125 napi_enable(&cp->napi);
1126
1127 cp_init_hw(cp);
1128
1129 rc = request_irq(dev->irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1130 if (rc)
1131 goto err_out_hw;
1132
1133 netif_carrier_off(dev);
1134 mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1135 netif_start_queue(dev);
1136
1137 return 0;
1138
1139 err_out_hw:
1140 napi_disable(&cp->napi);
1141 cp_stop_hw(cp);
1142 cp_free_rings(cp);
1143 return rc;
1144 }
1145
cp_close(struct net_device * dev)1146 static int cp_close (struct net_device *dev)
1147 {
1148 struct cp_private *cp = netdev_priv(dev);
1149 unsigned long flags;
1150
1151 napi_disable(&cp->napi);
1152
1153 netif_dbg(cp, ifdown, dev, "disabling interface\n");
1154
1155 spin_lock_irqsave(&cp->lock, flags);
1156
1157 netif_stop_queue(dev);
1158 netif_carrier_off(dev);
1159
1160 cp_stop_hw(cp);
1161
1162 spin_unlock_irqrestore(&cp->lock, flags);
1163
1164 free_irq(dev->irq, dev);
1165
1166 cp_free_rings(cp);
1167 return 0;
1168 }
1169
cp_tx_timeout(struct net_device * dev)1170 static void cp_tx_timeout(struct net_device *dev)
1171 {
1172 struct cp_private *cp = netdev_priv(dev);
1173 unsigned long flags;
1174 int rc;
1175
1176 netdev_warn(dev, "Transmit timeout, status %2x %4x %4x %4x\n",
1177 cpr8(Cmd), cpr16(CpCmd),
1178 cpr16(IntrStatus), cpr16(IntrMask));
1179
1180 spin_lock_irqsave(&cp->lock, flags);
1181
1182 cp_stop_hw(cp);
1183 cp_clean_rings(cp);
1184 rc = cp_init_rings(cp);
1185 cp_start_hw(cp);
1186
1187 netif_wake_queue(dev);
1188
1189 spin_unlock_irqrestore(&cp->lock, flags);
1190 }
1191
1192 #ifdef BROKEN
cp_change_mtu(struct net_device * dev,int new_mtu)1193 static int cp_change_mtu(struct net_device *dev, int new_mtu)
1194 {
1195 struct cp_private *cp = netdev_priv(dev);
1196 int rc;
1197 unsigned long flags;
1198
1199 /* check for invalid MTU, according to hardware limits */
1200 if (new_mtu < CP_MIN_MTU || new_mtu > CP_MAX_MTU)
1201 return -EINVAL;
1202
1203 /* if network interface not up, no need for complexity */
1204 if (!netif_running(dev)) {
1205 dev->mtu = new_mtu;
1206 cp_set_rxbufsize(cp); /* set new rx buf size */
1207 return 0;
1208 }
1209
1210 spin_lock_irqsave(&cp->lock, flags);
1211
1212 cp_stop_hw(cp); /* stop h/w and free rings */
1213 cp_clean_rings(cp);
1214
1215 dev->mtu = new_mtu;
1216 cp_set_rxbufsize(cp); /* set new rx buf size */
1217
1218 rc = cp_init_rings(cp); /* realloc and restart h/w */
1219 cp_start_hw(cp);
1220
1221 spin_unlock_irqrestore(&cp->lock, flags);
1222
1223 return rc;
1224 }
1225 #endif /* BROKEN */
1226
1227 static const char mii_2_8139_map[8] = {
1228 BasicModeCtrl,
1229 BasicModeStatus,
1230 0,
1231 0,
1232 NWayAdvert,
1233 NWayLPAR,
1234 NWayExpansion,
1235 0
1236 };
1237
mdio_read(struct net_device * dev,int phy_id,int location)1238 static int mdio_read(struct net_device *dev, int phy_id, int location)
1239 {
1240 struct cp_private *cp = netdev_priv(dev);
1241
1242 return location < 8 && mii_2_8139_map[location] ?
1243 readw(cp->regs + mii_2_8139_map[location]) : 0;
1244 }
1245
1246
mdio_write(struct net_device * dev,int phy_id,int location,int value)1247 static void mdio_write(struct net_device *dev, int phy_id, int location,
1248 int value)
1249 {
1250 struct cp_private *cp = netdev_priv(dev);
1251
1252 if (location == 0) {
1253 cpw8(Cfg9346, Cfg9346_Unlock);
1254 cpw16(BasicModeCtrl, value);
1255 cpw8(Cfg9346, Cfg9346_Lock);
1256 } else if (location < 8 && mii_2_8139_map[location])
1257 cpw16(mii_2_8139_map[location], value);
1258 }
1259
1260 /* Set the ethtool Wake-on-LAN settings */
netdev_set_wol(struct cp_private * cp,const struct ethtool_wolinfo * wol)1261 static int netdev_set_wol (struct cp_private *cp,
1262 const struct ethtool_wolinfo *wol)
1263 {
1264 u8 options;
1265
1266 options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1267 /* If WOL is being disabled, no need for complexity */
1268 if (wol->wolopts) {
1269 if (wol->wolopts & WAKE_PHY) options |= LinkUp;
1270 if (wol->wolopts & WAKE_MAGIC) options |= MagicPacket;
1271 }
1272
1273 cpw8 (Cfg9346, Cfg9346_Unlock);
1274 cpw8 (Config3, options);
1275 cpw8 (Cfg9346, Cfg9346_Lock);
1276
1277 options = 0; /* Paranoia setting */
1278 options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1279 /* If WOL is being disabled, no need for complexity */
1280 if (wol->wolopts) {
1281 if (wol->wolopts & WAKE_UCAST) options |= UWF;
1282 if (wol->wolopts & WAKE_BCAST) options |= BWF;
1283 if (wol->wolopts & WAKE_MCAST) options |= MWF;
1284 }
1285
1286 cpw8 (Config5, options);
1287
1288 cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1289
1290 return 0;
1291 }
1292
1293 /* Get the ethtool Wake-on-LAN settings */
netdev_get_wol(struct cp_private * cp,struct ethtool_wolinfo * wol)1294 static void netdev_get_wol (struct cp_private *cp,
1295 struct ethtool_wolinfo *wol)
1296 {
1297 u8 options;
1298
1299 wol->wolopts = 0; /* Start from scratch */
1300 wol->supported = WAKE_PHY | WAKE_BCAST | WAKE_MAGIC |
1301 WAKE_MCAST | WAKE_UCAST;
1302 /* We don't need to go on if WOL is disabled */
1303 if (!cp->wol_enabled) return;
1304
1305 options = cpr8 (Config3);
1306 if (options & LinkUp) wol->wolopts |= WAKE_PHY;
1307 if (options & MagicPacket) wol->wolopts |= WAKE_MAGIC;
1308
1309 options = 0; /* Paranoia setting */
1310 options = cpr8 (Config5);
1311 if (options & UWF) wol->wolopts |= WAKE_UCAST;
1312 if (options & BWF) wol->wolopts |= WAKE_BCAST;
1313 if (options & MWF) wol->wolopts |= WAKE_MCAST;
1314 }
1315
cp_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1316 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1317 {
1318 struct cp_private *cp = netdev_priv(dev);
1319
1320 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1321 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1322 strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
1323 }
1324
cp_get_ringparam(struct net_device * dev,struct ethtool_ringparam * ring)1325 static void cp_get_ringparam(struct net_device *dev,
1326 struct ethtool_ringparam *ring)
1327 {
1328 ring->rx_max_pending = CP_RX_RING_SIZE;
1329 ring->tx_max_pending = CP_TX_RING_SIZE;
1330 ring->rx_pending = CP_RX_RING_SIZE;
1331 ring->tx_pending = CP_TX_RING_SIZE;
1332 }
1333
cp_get_regs_len(struct net_device * dev)1334 static int cp_get_regs_len(struct net_device *dev)
1335 {
1336 return CP_REGS_SIZE;
1337 }
1338
cp_get_sset_count(struct net_device * dev,int sset)1339 static int cp_get_sset_count (struct net_device *dev, int sset)
1340 {
1341 switch (sset) {
1342 case ETH_SS_STATS:
1343 return CP_NUM_STATS;
1344 default:
1345 return -EOPNOTSUPP;
1346 }
1347 }
1348
cp_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)1349 static int cp_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1350 {
1351 struct cp_private *cp = netdev_priv(dev);
1352 int rc;
1353 unsigned long flags;
1354
1355 spin_lock_irqsave(&cp->lock, flags);
1356 rc = mii_ethtool_gset(&cp->mii_if, cmd);
1357 spin_unlock_irqrestore(&cp->lock, flags);
1358
1359 return rc;
1360 }
1361
cp_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)1362 static int cp_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1363 {
1364 struct cp_private *cp = netdev_priv(dev);
1365 int rc;
1366 unsigned long flags;
1367
1368 spin_lock_irqsave(&cp->lock, flags);
1369 rc = mii_ethtool_sset(&cp->mii_if, cmd);
1370 spin_unlock_irqrestore(&cp->lock, flags);
1371
1372 return rc;
1373 }
1374
cp_nway_reset(struct net_device * dev)1375 static int cp_nway_reset(struct net_device *dev)
1376 {
1377 struct cp_private *cp = netdev_priv(dev);
1378 return mii_nway_restart(&cp->mii_if);
1379 }
1380
cp_get_msglevel(struct net_device * dev)1381 static u32 cp_get_msglevel(struct net_device *dev)
1382 {
1383 struct cp_private *cp = netdev_priv(dev);
1384 return cp->msg_enable;
1385 }
1386
cp_set_msglevel(struct net_device * dev,u32 value)1387 static void cp_set_msglevel(struct net_device *dev, u32 value)
1388 {
1389 struct cp_private *cp = netdev_priv(dev);
1390 cp->msg_enable = value;
1391 }
1392
cp_set_features(struct net_device * dev,netdev_features_t features)1393 static int cp_set_features(struct net_device *dev, netdev_features_t features)
1394 {
1395 struct cp_private *cp = netdev_priv(dev);
1396 unsigned long flags;
1397
1398 if (!((dev->features ^ features) & NETIF_F_RXCSUM))
1399 return 0;
1400
1401 spin_lock_irqsave(&cp->lock, flags);
1402
1403 if (features & NETIF_F_RXCSUM)
1404 cp->cpcmd |= RxChkSum;
1405 else
1406 cp->cpcmd &= ~RxChkSum;
1407
1408 if (features & NETIF_F_HW_VLAN_RX)
1409 cp->cpcmd |= RxVlanOn;
1410 else
1411 cp->cpcmd &= ~RxVlanOn;
1412
1413 cpw16_f(CpCmd, cp->cpcmd);
1414 spin_unlock_irqrestore(&cp->lock, flags);
1415
1416 return 0;
1417 }
1418
cp_get_regs(struct net_device * dev,struct ethtool_regs * regs,void * p)1419 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1420 void *p)
1421 {
1422 struct cp_private *cp = netdev_priv(dev);
1423 unsigned long flags;
1424
1425 if (regs->len < CP_REGS_SIZE)
1426 return /* -EINVAL */;
1427
1428 regs->version = CP_REGS_VER;
1429
1430 spin_lock_irqsave(&cp->lock, flags);
1431 memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1432 spin_unlock_irqrestore(&cp->lock, flags);
1433 }
1434
cp_get_wol(struct net_device * dev,struct ethtool_wolinfo * wol)1435 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1436 {
1437 struct cp_private *cp = netdev_priv(dev);
1438 unsigned long flags;
1439
1440 spin_lock_irqsave (&cp->lock, flags);
1441 netdev_get_wol (cp, wol);
1442 spin_unlock_irqrestore (&cp->lock, flags);
1443 }
1444
cp_set_wol(struct net_device * dev,struct ethtool_wolinfo * wol)1445 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1446 {
1447 struct cp_private *cp = netdev_priv(dev);
1448 unsigned long flags;
1449 int rc;
1450
1451 spin_lock_irqsave (&cp->lock, flags);
1452 rc = netdev_set_wol (cp, wol);
1453 spin_unlock_irqrestore (&cp->lock, flags);
1454
1455 return rc;
1456 }
1457
cp_get_strings(struct net_device * dev,u32 stringset,u8 * buf)1458 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1459 {
1460 switch (stringset) {
1461 case ETH_SS_STATS:
1462 memcpy(buf, ðtool_stats_keys, sizeof(ethtool_stats_keys));
1463 break;
1464 default:
1465 BUG();
1466 break;
1467 }
1468 }
1469
cp_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * estats,u64 * tmp_stats)1470 static void cp_get_ethtool_stats (struct net_device *dev,
1471 struct ethtool_stats *estats, u64 *tmp_stats)
1472 {
1473 struct cp_private *cp = netdev_priv(dev);
1474 struct cp_dma_stats *nic_stats;
1475 dma_addr_t dma;
1476 int i;
1477
1478 nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats),
1479 &dma, GFP_KERNEL);
1480 if (!nic_stats)
1481 return;
1482
1483 /* begin NIC statistics dump */
1484 cpw32(StatsAddr + 4, (u64)dma >> 32);
1485 cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats);
1486 cpr32(StatsAddr);
1487
1488 for (i = 0; i < 1000; i++) {
1489 if ((cpr32(StatsAddr) & DumpStats) == 0)
1490 break;
1491 udelay(10);
1492 }
1493 cpw32(StatsAddr, 0);
1494 cpw32(StatsAddr + 4, 0);
1495 cpr32(StatsAddr);
1496
1497 i = 0;
1498 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1499 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1500 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1501 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1502 tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1503 tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1504 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1505 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1506 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1507 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1508 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1509 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1510 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1511 tmp_stats[i++] = cp->cp_stats.rx_frags;
1512 BUG_ON(i != CP_NUM_STATS);
1513
1514 dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma);
1515 }
1516
1517 static const struct ethtool_ops cp_ethtool_ops = {
1518 .get_drvinfo = cp_get_drvinfo,
1519 .get_regs_len = cp_get_regs_len,
1520 .get_sset_count = cp_get_sset_count,
1521 .get_settings = cp_get_settings,
1522 .set_settings = cp_set_settings,
1523 .nway_reset = cp_nway_reset,
1524 .get_link = ethtool_op_get_link,
1525 .get_msglevel = cp_get_msglevel,
1526 .set_msglevel = cp_set_msglevel,
1527 .get_regs = cp_get_regs,
1528 .get_wol = cp_get_wol,
1529 .set_wol = cp_set_wol,
1530 .get_strings = cp_get_strings,
1531 .get_ethtool_stats = cp_get_ethtool_stats,
1532 .get_eeprom_len = cp_get_eeprom_len,
1533 .get_eeprom = cp_get_eeprom,
1534 .set_eeprom = cp_set_eeprom,
1535 .get_ringparam = cp_get_ringparam,
1536 };
1537
cp_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1538 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1539 {
1540 struct cp_private *cp = netdev_priv(dev);
1541 int rc;
1542 unsigned long flags;
1543
1544 if (!netif_running(dev))
1545 return -EINVAL;
1546
1547 spin_lock_irqsave(&cp->lock, flags);
1548 rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1549 spin_unlock_irqrestore(&cp->lock, flags);
1550 return rc;
1551 }
1552
cp_set_mac_address(struct net_device * dev,void * p)1553 static int cp_set_mac_address(struct net_device *dev, void *p)
1554 {
1555 struct cp_private *cp = netdev_priv(dev);
1556 struct sockaddr *addr = p;
1557
1558 if (!is_valid_ether_addr(addr->sa_data))
1559 return -EADDRNOTAVAIL;
1560
1561 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1562
1563 spin_lock_irq(&cp->lock);
1564
1565 cpw8_f(Cfg9346, Cfg9346_Unlock);
1566 cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1567 cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1568 cpw8_f(Cfg9346, Cfg9346_Lock);
1569
1570 spin_unlock_irq(&cp->lock);
1571
1572 return 0;
1573 }
1574
1575 /* Serial EEPROM section. */
1576
1577 /* EEPROM_Ctrl bits. */
1578 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
1579 #define EE_CS 0x08 /* EEPROM chip select. */
1580 #define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */
1581 #define EE_WRITE_0 0x00
1582 #define EE_WRITE_1 0x02
1583 #define EE_DATA_READ 0x01 /* EEPROM chip data out. */
1584 #define EE_ENB (0x80 | EE_CS)
1585
1586 /* Delay between EEPROM clock transitions.
1587 No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1588 */
1589
1590 #define eeprom_delay() readb(ee_addr)
1591
1592 /* The EEPROM commands include the alway-set leading bit. */
1593 #define EE_EXTEND_CMD (4)
1594 #define EE_WRITE_CMD (5)
1595 #define EE_READ_CMD (6)
1596 #define EE_ERASE_CMD (7)
1597
1598 #define EE_EWDS_ADDR (0)
1599 #define EE_WRAL_ADDR (1)
1600 #define EE_ERAL_ADDR (2)
1601 #define EE_EWEN_ADDR (3)
1602
1603 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1604
eeprom_cmd_start(void __iomem * ee_addr)1605 static void eeprom_cmd_start(void __iomem *ee_addr)
1606 {
1607 writeb (EE_ENB & ~EE_CS, ee_addr);
1608 writeb (EE_ENB, ee_addr);
1609 eeprom_delay ();
1610 }
1611
eeprom_cmd(void __iomem * ee_addr,int cmd,int cmd_len)1612 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1613 {
1614 int i;
1615
1616 /* Shift the command bits out. */
1617 for (i = cmd_len - 1; i >= 0; i--) {
1618 int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1619 writeb (EE_ENB | dataval, ee_addr);
1620 eeprom_delay ();
1621 writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1622 eeprom_delay ();
1623 }
1624 writeb (EE_ENB, ee_addr);
1625 eeprom_delay ();
1626 }
1627
eeprom_cmd_end(void __iomem * ee_addr)1628 static void eeprom_cmd_end(void __iomem *ee_addr)
1629 {
1630 writeb (~EE_CS, ee_addr);
1631 eeprom_delay ();
1632 }
1633
eeprom_extend_cmd(void __iomem * ee_addr,int extend_cmd,int addr_len)1634 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1635 int addr_len)
1636 {
1637 int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1638
1639 eeprom_cmd_start(ee_addr);
1640 eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1641 eeprom_cmd_end(ee_addr);
1642 }
1643
read_eeprom(void __iomem * ioaddr,int location,int addr_len)1644 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1645 {
1646 int i;
1647 u16 retval = 0;
1648 void __iomem *ee_addr = ioaddr + Cfg9346;
1649 int read_cmd = location | (EE_READ_CMD << addr_len);
1650
1651 eeprom_cmd_start(ee_addr);
1652 eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1653
1654 for (i = 16; i > 0; i--) {
1655 writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1656 eeprom_delay ();
1657 retval =
1658 (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1659 0);
1660 writeb (EE_ENB, ee_addr);
1661 eeprom_delay ();
1662 }
1663
1664 eeprom_cmd_end(ee_addr);
1665
1666 return retval;
1667 }
1668
write_eeprom(void __iomem * ioaddr,int location,u16 val,int addr_len)1669 static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1670 int addr_len)
1671 {
1672 int i;
1673 void __iomem *ee_addr = ioaddr + Cfg9346;
1674 int write_cmd = location | (EE_WRITE_CMD << addr_len);
1675
1676 eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1677
1678 eeprom_cmd_start(ee_addr);
1679 eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1680 eeprom_cmd(ee_addr, val, 16);
1681 eeprom_cmd_end(ee_addr);
1682
1683 eeprom_cmd_start(ee_addr);
1684 for (i = 0; i < 20000; i++)
1685 if (readb(ee_addr) & EE_DATA_READ)
1686 break;
1687 eeprom_cmd_end(ee_addr);
1688
1689 eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1690 }
1691
cp_get_eeprom_len(struct net_device * dev)1692 static int cp_get_eeprom_len(struct net_device *dev)
1693 {
1694 struct cp_private *cp = netdev_priv(dev);
1695 int size;
1696
1697 spin_lock_irq(&cp->lock);
1698 size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1699 spin_unlock_irq(&cp->lock);
1700
1701 return size;
1702 }
1703
cp_get_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)1704 static int cp_get_eeprom(struct net_device *dev,
1705 struct ethtool_eeprom *eeprom, u8 *data)
1706 {
1707 struct cp_private *cp = netdev_priv(dev);
1708 unsigned int addr_len;
1709 u16 val;
1710 u32 offset = eeprom->offset >> 1;
1711 u32 len = eeprom->len;
1712 u32 i = 0;
1713
1714 eeprom->magic = CP_EEPROM_MAGIC;
1715
1716 spin_lock_irq(&cp->lock);
1717
1718 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1719
1720 if (eeprom->offset & 1) {
1721 val = read_eeprom(cp->regs, offset, addr_len);
1722 data[i++] = (u8)(val >> 8);
1723 offset++;
1724 }
1725
1726 while (i < len - 1) {
1727 val = read_eeprom(cp->regs, offset, addr_len);
1728 data[i++] = (u8)val;
1729 data[i++] = (u8)(val >> 8);
1730 offset++;
1731 }
1732
1733 if (i < len) {
1734 val = read_eeprom(cp->regs, offset, addr_len);
1735 data[i] = (u8)val;
1736 }
1737
1738 spin_unlock_irq(&cp->lock);
1739 return 0;
1740 }
1741
cp_set_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)1742 static int cp_set_eeprom(struct net_device *dev,
1743 struct ethtool_eeprom *eeprom, u8 *data)
1744 {
1745 struct cp_private *cp = netdev_priv(dev);
1746 unsigned int addr_len;
1747 u16 val;
1748 u32 offset = eeprom->offset >> 1;
1749 u32 len = eeprom->len;
1750 u32 i = 0;
1751
1752 if (eeprom->magic != CP_EEPROM_MAGIC)
1753 return -EINVAL;
1754
1755 spin_lock_irq(&cp->lock);
1756
1757 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1758
1759 if (eeprom->offset & 1) {
1760 val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1761 val |= (u16)data[i++] << 8;
1762 write_eeprom(cp->regs, offset, val, addr_len);
1763 offset++;
1764 }
1765
1766 while (i < len - 1) {
1767 val = (u16)data[i++];
1768 val |= (u16)data[i++] << 8;
1769 write_eeprom(cp->regs, offset, val, addr_len);
1770 offset++;
1771 }
1772
1773 if (i < len) {
1774 val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1775 val |= (u16)data[i];
1776 write_eeprom(cp->regs, offset, val, addr_len);
1777 }
1778
1779 spin_unlock_irq(&cp->lock);
1780 return 0;
1781 }
1782
1783 /* Put the board into D3cold state and wait for WakeUp signal */
cp_set_d3_state(struct cp_private * cp)1784 static void cp_set_d3_state (struct cp_private *cp)
1785 {
1786 pci_enable_wake (cp->pdev, 0, 1); /* Enable PME# generation */
1787 pci_set_power_state (cp->pdev, PCI_D3hot);
1788 }
1789
1790 static const struct net_device_ops cp_netdev_ops = {
1791 .ndo_open = cp_open,
1792 .ndo_stop = cp_close,
1793 .ndo_validate_addr = eth_validate_addr,
1794 .ndo_set_mac_address = cp_set_mac_address,
1795 .ndo_set_rx_mode = cp_set_rx_mode,
1796 .ndo_get_stats = cp_get_stats,
1797 .ndo_do_ioctl = cp_ioctl,
1798 .ndo_start_xmit = cp_start_xmit,
1799 .ndo_tx_timeout = cp_tx_timeout,
1800 .ndo_set_features = cp_set_features,
1801 #ifdef BROKEN
1802 .ndo_change_mtu = cp_change_mtu,
1803 #endif
1804
1805 #ifdef CONFIG_NET_POLL_CONTROLLER
1806 .ndo_poll_controller = cp_poll_controller,
1807 #endif
1808 };
1809
cp_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)1810 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1811 {
1812 struct net_device *dev;
1813 struct cp_private *cp;
1814 int rc;
1815 void __iomem *regs;
1816 resource_size_t pciaddr;
1817 unsigned int addr_len, i, pci_using_dac;
1818
1819 #ifndef MODULE
1820 static int version_printed;
1821 if (version_printed++ == 0)
1822 pr_info("%s", version);
1823 #endif
1824
1825 if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1826 pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1827 dev_info(&pdev->dev,
1828 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1829 pdev->vendor, pdev->device, pdev->revision);
1830 return -ENODEV;
1831 }
1832
1833 dev = alloc_etherdev(sizeof(struct cp_private));
1834 if (!dev)
1835 return -ENOMEM;
1836 SET_NETDEV_DEV(dev, &pdev->dev);
1837
1838 cp = netdev_priv(dev);
1839 cp->pdev = pdev;
1840 cp->dev = dev;
1841 cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1842 spin_lock_init (&cp->lock);
1843 cp->mii_if.dev = dev;
1844 cp->mii_if.mdio_read = mdio_read;
1845 cp->mii_if.mdio_write = mdio_write;
1846 cp->mii_if.phy_id = CP_INTERNAL_PHY;
1847 cp->mii_if.phy_id_mask = 0x1f;
1848 cp->mii_if.reg_num_mask = 0x1f;
1849 cp_set_rxbufsize(cp);
1850
1851 rc = pci_enable_device(pdev);
1852 if (rc)
1853 goto err_out_free;
1854
1855 rc = pci_set_mwi(pdev);
1856 if (rc)
1857 goto err_out_disable;
1858
1859 rc = pci_request_regions(pdev, DRV_NAME);
1860 if (rc)
1861 goto err_out_mwi;
1862
1863 pciaddr = pci_resource_start(pdev, 1);
1864 if (!pciaddr) {
1865 rc = -EIO;
1866 dev_err(&pdev->dev, "no MMIO resource\n");
1867 goto err_out_res;
1868 }
1869 if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1870 rc = -EIO;
1871 dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1872 (unsigned long long)pci_resource_len(pdev, 1));
1873 goto err_out_res;
1874 }
1875
1876 /* Configure DMA attributes. */
1877 if ((sizeof(dma_addr_t) > 4) &&
1878 !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1879 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1880 pci_using_dac = 1;
1881 } else {
1882 pci_using_dac = 0;
1883
1884 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1885 if (rc) {
1886 dev_err(&pdev->dev,
1887 "No usable DMA configuration, aborting\n");
1888 goto err_out_res;
1889 }
1890 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1891 if (rc) {
1892 dev_err(&pdev->dev,
1893 "No usable consistent DMA configuration, aborting\n");
1894 goto err_out_res;
1895 }
1896 }
1897
1898 cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1899 PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1900
1901 dev->features |= NETIF_F_RXCSUM;
1902 dev->hw_features |= NETIF_F_RXCSUM;
1903
1904 regs = ioremap(pciaddr, CP_REGS_SIZE);
1905 if (!regs) {
1906 rc = -EIO;
1907 dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1908 (unsigned long long)pci_resource_len(pdev, 1),
1909 (unsigned long long)pciaddr);
1910 goto err_out_res;
1911 }
1912 dev->base_addr = (unsigned long) regs;
1913 cp->regs = regs;
1914
1915 cp_stop_hw(cp);
1916
1917 /* read MAC address from EEPROM */
1918 addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1919 for (i = 0; i < 3; i++)
1920 ((__le16 *) (dev->dev_addr))[i] =
1921 cpu_to_le16(read_eeprom (regs, i + 7, addr_len));
1922 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1923
1924 dev->netdev_ops = &cp_netdev_ops;
1925 netif_napi_add(dev, &cp->napi, cp_rx_poll, 16);
1926 dev->ethtool_ops = &cp_ethtool_ops;
1927 dev->watchdog_timeo = TX_TIMEOUT;
1928
1929 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1930
1931 if (pci_using_dac)
1932 dev->features |= NETIF_F_HIGHDMA;
1933
1934 /* disabled by default until verified */
1935 dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
1936 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1937 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
1938 NETIF_F_HIGHDMA;
1939
1940 dev->irq = pdev->irq;
1941
1942 rc = register_netdev(dev);
1943 if (rc)
1944 goto err_out_iomap;
1945
1946 netdev_info(dev, "RTL-8139C+ at 0x%lx, %pM, IRQ %d\n",
1947 dev->base_addr, dev->dev_addr, dev->irq);
1948
1949 pci_set_drvdata(pdev, dev);
1950
1951 /* enable busmastering and memory-write-invalidate */
1952 pci_set_master(pdev);
1953
1954 if (cp->wol_enabled)
1955 cp_set_d3_state (cp);
1956
1957 return 0;
1958
1959 err_out_iomap:
1960 iounmap(regs);
1961 err_out_res:
1962 pci_release_regions(pdev);
1963 err_out_mwi:
1964 pci_clear_mwi(pdev);
1965 err_out_disable:
1966 pci_disable_device(pdev);
1967 err_out_free:
1968 free_netdev(dev);
1969 return rc;
1970 }
1971
cp_remove_one(struct pci_dev * pdev)1972 static void cp_remove_one (struct pci_dev *pdev)
1973 {
1974 struct net_device *dev = pci_get_drvdata(pdev);
1975 struct cp_private *cp = netdev_priv(dev);
1976
1977 unregister_netdev(dev);
1978 iounmap(cp->regs);
1979 if (cp->wol_enabled)
1980 pci_set_power_state (pdev, PCI_D0);
1981 pci_release_regions(pdev);
1982 pci_clear_mwi(pdev);
1983 pci_disable_device(pdev);
1984 pci_set_drvdata(pdev, NULL);
1985 free_netdev(dev);
1986 }
1987
1988 #ifdef CONFIG_PM
cp_suspend(struct pci_dev * pdev,pm_message_t state)1989 static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
1990 {
1991 struct net_device *dev = pci_get_drvdata(pdev);
1992 struct cp_private *cp = netdev_priv(dev);
1993 unsigned long flags;
1994
1995 if (!netif_running(dev))
1996 return 0;
1997
1998 netif_device_detach (dev);
1999 netif_stop_queue (dev);
2000
2001 spin_lock_irqsave (&cp->lock, flags);
2002
2003 /* Disable Rx and Tx */
2004 cpw16 (IntrMask, 0);
2005 cpw8 (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2006
2007 spin_unlock_irqrestore (&cp->lock, flags);
2008
2009 pci_save_state(pdev);
2010 pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2011 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2012
2013 return 0;
2014 }
2015
cp_resume(struct pci_dev * pdev)2016 static int cp_resume (struct pci_dev *pdev)
2017 {
2018 struct net_device *dev = pci_get_drvdata (pdev);
2019 struct cp_private *cp = netdev_priv(dev);
2020 unsigned long flags;
2021
2022 if (!netif_running(dev))
2023 return 0;
2024
2025 netif_device_attach (dev);
2026
2027 pci_set_power_state(pdev, PCI_D0);
2028 pci_restore_state(pdev);
2029 pci_enable_wake(pdev, PCI_D0, 0);
2030
2031 /* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2032 cp_init_rings_index (cp);
2033 cp_init_hw (cp);
2034 netif_start_queue (dev);
2035
2036 spin_lock_irqsave (&cp->lock, flags);
2037
2038 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2039
2040 spin_unlock_irqrestore (&cp->lock, flags);
2041
2042 return 0;
2043 }
2044 #endif /* CONFIG_PM */
2045
2046 static struct pci_driver cp_driver = {
2047 .name = DRV_NAME,
2048 .id_table = cp_pci_tbl,
2049 .probe = cp_init_one,
2050 .remove = cp_remove_one,
2051 #ifdef CONFIG_PM
2052 .resume = cp_resume,
2053 .suspend = cp_suspend,
2054 #endif
2055 };
2056
cp_init(void)2057 static int __init cp_init (void)
2058 {
2059 #ifdef MODULE
2060 pr_info("%s", version);
2061 #endif
2062 return pci_register_driver(&cp_driver);
2063 }
2064
cp_exit(void)2065 static void __exit cp_exit (void)
2066 {
2067 pci_unregister_driver (&cp_driver);
2068 }
2069
2070 module_init(cp_init);
2071 module_exit(cp_exit);
2072