1 /* drivers/net/ks8851.c
2  *
3  * Copyright 2009 Simtec Electronics
4  *	http://www.simtec.co.uk/
5  *	Ben Dooks <ben@simtec.co.uk>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #define DEBUG
15 
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/netdevice.h>
20 #include <linux/etherdevice.h>
21 #include <linux/ethtool.h>
22 #include <linux/cache.h>
23 #include <linux/crc32.h>
24 #include <linux/mii.h>
25 #include <linux/eeprom_93cx6.h>
26 
27 #include <linux/spi/spi.h>
28 
29 #include "ks8851.h"
30 
31 /**
32  * struct ks8851_rxctrl - KS8851 driver rx control
33  * @mchash: Multicast hash-table data.
34  * @rxcr1: KS_RXCR1 register setting
35  * @rxcr2: KS_RXCR2 register setting
36  *
37  * Representation of the settings needs to control the receive filtering
38  * such as the multicast hash-filter and the receive register settings. This
39  * is used to make the job of working out if the receive settings change and
40  * then issuing the new settings to the worker that will send the necessary
41  * commands.
42  */
43 struct ks8851_rxctrl {
44 	u16	mchash[4];
45 	u16	rxcr1;
46 	u16	rxcr2;
47 };
48 
49 /**
50  * union ks8851_tx_hdr - tx header data
51  * @txb: The header as bytes
52  * @txw: The header as 16bit, little-endian words
53  *
54  * A dual representation of the tx header data to allow
55  * access to individual bytes, and to allow 16bit accesses
56  * with 16bit alignment.
57  */
58 union ks8851_tx_hdr {
59 	u8	txb[6];
60 	__le16	txw[3];
61 };
62 
63 /**
64  * struct ks8851_net - KS8851 driver private data
65  * @netdev: The network device we're bound to
66  * @spidev: The spi device we're bound to.
67  * @lock: Lock to ensure that the device is not accessed when busy.
68  * @statelock: Lock on this structure for tx list.
69  * @mii: The MII state information for the mii calls.
70  * @rxctrl: RX settings for @rxctrl_work.
71  * @tx_work: Work queue for tx packets
72  * @irq_work: Work queue for servicing interrupts
73  * @rxctrl_work: Work queue for updating RX mode and multicast lists
74  * @txq: Queue of packets for transmission.
75  * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
76  * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
77  * @txh: Space for generating packet TX header in DMA-able data
78  * @rxd: Space for receiving SPI data, in DMA-able space.
79  * @txd: Space for transmitting SPI data, in DMA-able space.
80  * @msg_enable: The message flags controlling driver output (see ethtool).
81  * @fid: Incrementing frame id tag.
82  * @rc_ier: Cached copy of KS_IER.
83  * @rc_ccr: Cached copy of KS_CCR.
84  * @rc_rxqcr: Cached copy of KS_RXQCR.
85  * @eeprom_size: Companion eeprom size in Bytes, 0 if no eeprom
86  * @eeprom: 93CX6 EEPROM state for accessing on-board EEPROM.
87  *
88  * The @lock ensures that the chip is protected when certain operations are
89  * in progress. When the read or write packet transfer is in progress, most
90  * of the chip registers are not ccessible until the transfer is finished and
91  * the DMA has been de-asserted.
92  *
93  * The @statelock is used to protect information in the structure which may
94  * need to be accessed via several sources, such as the network driver layer
95  * or one of the work queues.
96  *
97  * We align the buffers we may use for rx/tx to ensure that if the SPI driver
98  * wants to DMA map them, it will not have any problems with data the driver
99  * modifies.
100  */
101 struct ks8851_net {
102 	struct net_device	*netdev;
103 	struct spi_device	*spidev;
104 	struct mutex		lock;
105 	spinlock_t		statelock;
106 
107 	union ks8851_tx_hdr	txh ____cacheline_aligned;
108 	u8			rxd[8];
109 	u8			txd[8];
110 
111 	u32			msg_enable ____cacheline_aligned;
112 	u16			tx_space;
113 	u8			fid;
114 
115 	u16			rc_ier;
116 	u16			rc_rxqcr;
117 	u16			rc_ccr;
118 	u16			eeprom_size;
119 
120 	struct mii_if_info	mii;
121 	struct ks8851_rxctrl	rxctrl;
122 
123 	struct work_struct	tx_work;
124 	struct work_struct	irq_work;
125 	struct work_struct	rxctrl_work;
126 
127 	struct sk_buff_head	txq;
128 
129 	struct spi_message	spi_msg1;
130 	struct spi_message	spi_msg2;
131 	struct spi_transfer	spi_xfer1;
132 	struct spi_transfer	spi_xfer2[2];
133 
134 	struct eeprom_93cx6	eeprom;
135 };
136 
137 static int msg_enable;
138 
139 /* shift for byte-enable data */
140 #define BYTE_EN(_x)	((_x) << 2)
141 
142 /* turn register number and byte-enable mask into data for start of packet */
143 #define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg)  << (8+2) | (_reg) >> 6)
144 
145 /* SPI register read/write calls.
146  *
147  * All these calls issue SPI transactions to access the chip's registers. They
148  * all require that the necessary lock is held to prevent accesses when the
149  * chip is busy transferring packet data (RX/TX FIFO accesses).
150  */
151 
152 /**
153  * ks8851_wrreg16 - write 16bit register value to chip
154  * @ks: The chip state
155  * @reg: The register address
156  * @val: The value to write
157  *
158  * Issue a write to put the value @val into the register specified in @reg.
159  */
ks8851_wrreg16(struct ks8851_net * ks,unsigned reg,unsigned val)160 static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val)
161 {
162 	struct spi_transfer *xfer = &ks->spi_xfer1;
163 	struct spi_message *msg = &ks->spi_msg1;
164 	__le16 txb[2];
165 	int ret;
166 
167 	txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
168 	txb[1] = cpu_to_le16(val);
169 
170 	xfer->tx_buf = txb;
171 	xfer->rx_buf = NULL;
172 	xfer->len = 4;
173 
174 	ret = spi_sync(ks->spidev, msg);
175 	if (ret < 0)
176 		netdev_err(ks->netdev, "spi_sync() failed\n");
177 }
178 
179 /**
180  * ks8851_wrreg8 - write 8bit register value to chip
181  * @ks: The chip state
182  * @reg: The register address
183  * @val: The value to write
184  *
185  * Issue a write to put the value @val into the register specified in @reg.
186  */
ks8851_wrreg8(struct ks8851_net * ks,unsigned reg,unsigned val)187 static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val)
188 {
189 	struct spi_transfer *xfer = &ks->spi_xfer1;
190 	struct spi_message *msg = &ks->spi_msg1;
191 	__le16 txb[2];
192 	int ret;
193 	int bit;
194 
195 	bit = 1 << (reg & 3);
196 
197 	txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR);
198 	txb[1] = val;
199 
200 	xfer->tx_buf = txb;
201 	xfer->rx_buf = NULL;
202 	xfer->len = 3;
203 
204 	ret = spi_sync(ks->spidev, msg);
205 	if (ret < 0)
206 		netdev_err(ks->netdev, "spi_sync() failed\n");
207 }
208 
209 /**
210  * ks8851_rx_1msg - select whether to use one or two messages for spi read
211  * @ks: The device structure
212  *
213  * Return whether to generate a single message with a tx and rx buffer
214  * supplied to spi_sync(), or alternatively send the tx and rx buffers
215  * as separate messages.
216  *
217  * Depending on the hardware in use, a single message may be more efficient
218  * on interrupts or work done by the driver.
219  *
220  * This currently always returns true until we add some per-device data passed
221  * from the platform code to specify which mode is better.
222  */
ks8851_rx_1msg(struct ks8851_net * ks)223 static inline bool ks8851_rx_1msg(struct ks8851_net *ks)
224 {
225 	return true;
226 }
227 
228 /**
229  * ks8851_rdreg - issue read register command and return the data
230  * @ks: The device state
231  * @op: The register address and byte enables in message format.
232  * @rxb: The RX buffer to return the result into
233  * @rxl: The length of data expected.
234  *
235  * This is the low level read call that issues the necessary spi message(s)
236  * to read data from the register specified in @op.
237  */
ks8851_rdreg(struct ks8851_net * ks,unsigned op,u8 * rxb,unsigned rxl)238 static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
239 			 u8 *rxb, unsigned rxl)
240 {
241 	struct spi_transfer *xfer;
242 	struct spi_message *msg;
243 	__le16 *txb = (__le16 *)ks->txd;
244 	u8 *trx = ks->rxd;
245 	int ret;
246 
247 	txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
248 
249 	if (ks8851_rx_1msg(ks)) {
250 		msg = &ks->spi_msg1;
251 		xfer = &ks->spi_xfer1;
252 
253 		xfer->tx_buf = txb;
254 		xfer->rx_buf = trx;
255 		xfer->len = rxl + 2;
256 	} else {
257 		msg = &ks->spi_msg2;
258 		xfer = ks->spi_xfer2;
259 
260 		xfer->tx_buf = txb;
261 		xfer->rx_buf = NULL;
262 		xfer->len = 2;
263 
264 		xfer++;
265 		xfer->tx_buf = NULL;
266 		xfer->rx_buf = trx;
267 		xfer->len = rxl;
268 	}
269 
270 	ret = spi_sync(ks->spidev, msg);
271 	if (ret < 0)
272 		netdev_err(ks->netdev, "read: spi_sync() failed\n");
273 	else if (ks8851_rx_1msg(ks))
274 		memcpy(rxb, trx + 2, rxl);
275 	else
276 		memcpy(rxb, trx, rxl);
277 }
278 
279 /**
280  * ks8851_rdreg8 - read 8 bit register from device
281  * @ks: The chip information
282  * @reg: The register address
283  *
284  * Read a 8bit register from the chip, returning the result
285 */
ks8851_rdreg8(struct ks8851_net * ks,unsigned reg)286 static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
287 {
288 	u8 rxb[1];
289 
290 	ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
291 	return rxb[0];
292 }
293 
294 /**
295  * ks8851_rdreg16 - read 16 bit register from device
296  * @ks: The chip information
297  * @reg: The register address
298  *
299  * Read a 16bit register from the chip, returning the result
300 */
ks8851_rdreg16(struct ks8851_net * ks,unsigned reg)301 static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg)
302 {
303 	__le16 rx = 0;
304 
305 	ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
306 	return le16_to_cpu(rx);
307 }
308 
309 /**
310  * ks8851_rdreg32 - read 32 bit register from device
311  * @ks: The chip information
312  * @reg: The register address
313  *
314  * Read a 32bit register from the chip.
315  *
316  * Note, this read requires the address be aligned to 4 bytes.
317 */
ks8851_rdreg32(struct ks8851_net * ks,unsigned reg)318 static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
319 {
320 	__le32 rx = 0;
321 
322 	WARN_ON(reg & 3);
323 
324 	ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
325 	return le32_to_cpu(rx);
326 }
327 
328 /**
329  * ks8851_soft_reset - issue one of the soft reset to the device
330  * @ks: The device state.
331  * @op: The bit(s) to set in the GRR
332  *
333  * Issue the relevant soft-reset command to the device's GRR register
334  * specified by @op.
335  *
336  * Note, the delays are in there as a caution to ensure that the reset
337  * has time to take effect and then complete. Since the datasheet does
338  * not currently specify the exact sequence, we have chosen something
339  * that seems to work with our device.
340  */
ks8851_soft_reset(struct ks8851_net * ks,unsigned op)341 static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
342 {
343 	ks8851_wrreg16(ks, KS_GRR, op);
344 	mdelay(1);	/* wait a short time to effect reset */
345 	ks8851_wrreg16(ks, KS_GRR, 0);
346 	mdelay(1);	/* wait for condition to clear */
347 }
348 
349 /**
350  * ks8851_set_powermode - set power mode of the device
351  * @ks: The device state
352  * @pwrmode: The power mode value to write to KS_PMECR.
353  *
354  * Change the power mode of the chip.
355  */
ks8851_set_powermode(struct ks8851_net * ks,unsigned pwrmode)356 static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
357 {
358 	unsigned pmecr;
359 
360 	netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
361 
362 	pmecr = ks8851_rdreg16(ks, KS_PMECR);
363 	pmecr &= ~PMECR_PM_MASK;
364 	pmecr |= pwrmode;
365 
366 	ks8851_wrreg16(ks, KS_PMECR, pmecr);
367 }
368 
369 /**
370  * ks8851_write_mac_addr - write mac address to device registers
371  * @dev: The network device
372  *
373  * Update the KS8851 MAC address registers from the address in @dev.
374  *
375  * This call assumes that the chip is not running, so there is no need to
376  * shutdown the RXQ process whilst setting this.
377 */
ks8851_write_mac_addr(struct net_device * dev)378 static int ks8851_write_mac_addr(struct net_device *dev)
379 {
380 	struct ks8851_net *ks = netdev_priv(dev);
381 	int i;
382 
383 	mutex_lock(&ks->lock);
384 
385 	/*
386 	 * Wake up chip in case it was powered off when stopped; otherwise,
387 	 * the first write to the MAC address does not take effect.
388 	 */
389 	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
390 	for (i = 0; i < ETH_ALEN; i++)
391 		ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]);
392 	if (!netif_running(dev))
393 		ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
394 
395 	mutex_unlock(&ks->lock);
396 
397 	return 0;
398 }
399 
400 /**
401  * ks8851_read_mac_addr - read mac address from device registers
402  * @dev: The network device
403  *
404  * Update our copy of the KS8851 MAC address from the registers of @dev.
405 */
ks8851_read_mac_addr(struct net_device * dev)406 static void ks8851_read_mac_addr(struct net_device *dev)
407 {
408 	struct ks8851_net *ks = netdev_priv(dev);
409 	int i;
410 
411 	mutex_lock(&ks->lock);
412 
413 	for (i = 0; i < ETH_ALEN; i++)
414 		dev->dev_addr[i] = ks8851_rdreg8(ks, KS_MAR(i));
415 
416 	mutex_unlock(&ks->lock);
417 }
418 
419 /**
420  * ks8851_init_mac - initialise the mac address
421  * @ks: The device structure
422  *
423  * Get or create the initial mac address for the device and then set that
424  * into the station address register. If there is an EEPROM present, then
425  * we try that. If no valid mac address is found we use random_ether_addr()
426  * to create a new one.
427  */
ks8851_init_mac(struct ks8851_net * ks)428 static void ks8851_init_mac(struct ks8851_net *ks)
429 {
430 	struct net_device *dev = ks->netdev;
431 
432 	/* first, try reading what we've got already */
433 	if (ks->rc_ccr & CCR_EEPROM) {
434 		ks8851_read_mac_addr(dev);
435 		if (is_valid_ether_addr(dev->dev_addr))
436 			return;
437 
438 		netdev_err(ks->netdev, "invalid mac address read %pM\n",
439 				dev->dev_addr);
440 	}
441 
442 	random_ether_addr(dev->dev_addr);
443 	ks8851_write_mac_addr(dev);
444 }
445 
446 /**
447  * ks8851_irq - device interrupt handler
448  * @irq: Interrupt number passed from the IRQ hnalder.
449  * @pw: The private word passed to register_irq(), our struct ks8851_net.
450  *
451  * Disable the interrupt from happening again until we've processed the
452  * current status by scheduling ks8851_irq_work().
453  */
ks8851_irq(int irq,void * pw)454 static irqreturn_t ks8851_irq(int irq, void *pw)
455 {
456 	struct ks8851_net *ks = pw;
457 
458 	disable_irq_nosync(irq);
459 	schedule_work(&ks->irq_work);
460 	return IRQ_HANDLED;
461 }
462 
463 /**
464  * ks8851_rdfifo - read data from the receive fifo
465  * @ks: The device state.
466  * @buff: The buffer address
467  * @len: The length of the data to read
468  *
469  * Issue an RXQ FIFO read command and read the @len amount of data from
470  * the FIFO into the buffer specified by @buff.
471  */
ks8851_rdfifo(struct ks8851_net * ks,u8 * buff,unsigned len)472 static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
473 {
474 	struct spi_transfer *xfer = ks->spi_xfer2;
475 	struct spi_message *msg = &ks->spi_msg2;
476 	u8 txb[1];
477 	int ret;
478 
479 	netif_dbg(ks, rx_status, ks->netdev,
480 		  "%s: %d@%p\n", __func__, len, buff);
481 
482 	/* set the operation we're issuing */
483 	txb[0] = KS_SPIOP_RXFIFO;
484 
485 	xfer->tx_buf = txb;
486 	xfer->rx_buf = NULL;
487 	xfer->len = 1;
488 
489 	xfer++;
490 	xfer->rx_buf = buff;
491 	xfer->tx_buf = NULL;
492 	xfer->len = len;
493 
494 	ret = spi_sync(ks->spidev, msg);
495 	if (ret < 0)
496 		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
497 }
498 
499 /**
500  * ks8851_dbg_dumpkkt - dump initial packet contents to debug
501  * @ks: The device state
502  * @rxpkt: The data for the received packet
503  *
504  * Dump the initial data from the packet to dev_dbg().
505 */
ks8851_dbg_dumpkkt(struct ks8851_net * ks,u8 * rxpkt)506 static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
507 {
508 	netdev_dbg(ks->netdev,
509 		   "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
510 		   rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
511 		   rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
512 		   rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
513 }
514 
515 /**
516  * ks8851_rx_pkts - receive packets from the host
517  * @ks: The device information.
518  *
519  * This is called from the IRQ work queue when the system detects that there
520  * are packets in the receive queue. Find out how many packets there are and
521  * read them from the FIFO.
522  */
ks8851_rx_pkts(struct ks8851_net * ks)523 static void ks8851_rx_pkts(struct ks8851_net *ks)
524 {
525 	struct sk_buff *skb;
526 	unsigned rxfc;
527 	unsigned rxlen;
528 	unsigned rxstat;
529 	u32 rxh;
530 	u8 *rxpkt;
531 
532 	rxfc = ks8851_rdreg8(ks, KS_RXFC);
533 
534 	netif_dbg(ks, rx_status, ks->netdev,
535 		  "%s: %d packets\n", __func__, rxfc);
536 
537 	/* Currently we're issuing a read per packet, but we could possibly
538 	 * improve the code by issuing a single read, getting the receive
539 	 * header, allocating the packet and then reading the packet data
540 	 * out in one go.
541 	 *
542 	 * This form of operation would require us to hold the SPI bus'
543 	 * chipselect low during the entie transaction to avoid any
544 	 * reset to the data stream coming from the chip.
545 	 */
546 
547 	for (; rxfc != 0; rxfc--) {
548 		rxh = ks8851_rdreg32(ks, KS_RXFHSR);
549 		rxstat = rxh & 0xffff;
550 		rxlen = rxh >> 16;
551 
552 		netif_dbg(ks, rx_status, ks->netdev,
553 			  "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
554 
555 		/* the length of the packet includes the 32bit CRC */
556 
557 		/* set dma read address */
558 		ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
559 
560 		/* start the packet dma process, and set auto-dequeue rx */
561 		ks8851_wrreg16(ks, KS_RXQCR,
562 			       ks->rc_rxqcr | RXQCR_SDA | RXQCR_ADRFE);
563 
564 		if (rxlen > 4) {
565 			unsigned int rxalign;
566 
567 			rxlen -= 4;
568 			rxalign = ALIGN(rxlen, 4);
569 			skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
570 			if (skb) {
571 
572 				/* 4 bytes of status header + 4 bytes of
573 				 * garbage: we put them before ethernet
574 				 * header, so that they are copied,
575 				 * but ignored.
576 				 */
577 
578 				rxpkt = skb_put(skb, rxlen) - 8;
579 
580 				ks8851_rdfifo(ks, rxpkt, rxalign + 8);
581 
582 				if (netif_msg_pktdata(ks))
583 					ks8851_dbg_dumpkkt(ks, rxpkt);
584 
585 				skb->protocol = eth_type_trans(skb, ks->netdev);
586 				netif_rx_ni(skb);
587 
588 				ks->netdev->stats.rx_packets++;
589 				ks->netdev->stats.rx_bytes += rxlen;
590 			}
591 		}
592 
593 		ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
594 	}
595 }
596 
597 /**
598  * ks8851_irq_work - work queue handler for dealing with interrupt requests
599  * @work: The work structure that was scheduled by schedule_work()
600  *
601  * This is the handler invoked when the ks8851_irq() is called to find out
602  * what happened, as we cannot allow ourselves to sleep whilst waiting for
603  * anything other process has the chip's lock.
604  *
605  * Read the interrupt status, work out what needs to be done and then clear
606  * any of the interrupts that are not needed.
607  */
ks8851_irq_work(struct work_struct * work)608 static void ks8851_irq_work(struct work_struct *work)
609 {
610 	struct ks8851_net *ks = container_of(work, struct ks8851_net, irq_work);
611 	unsigned status;
612 	unsigned handled = 0;
613 
614 	mutex_lock(&ks->lock);
615 
616 	status = ks8851_rdreg16(ks, KS_ISR);
617 
618 	netif_dbg(ks, intr, ks->netdev,
619 		  "%s: status 0x%04x\n", __func__, status);
620 
621 	if (status & IRQ_LCI) {
622 		/* should do something about checking link status */
623 		handled |= IRQ_LCI;
624 	}
625 
626 	if (status & IRQ_LDI) {
627 		u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
628 		pmecr &= ~PMECR_WKEVT_MASK;
629 		ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
630 
631 		handled |= IRQ_LDI;
632 	}
633 
634 	if (status & IRQ_RXPSI)
635 		handled |= IRQ_RXPSI;
636 
637 	if (status & IRQ_TXI) {
638 		handled |= IRQ_TXI;
639 
640 		/* no lock here, tx queue should have been stopped */
641 
642 		/* update our idea of how much tx space is available to the
643 		 * system */
644 		ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
645 
646 		netif_dbg(ks, intr, ks->netdev,
647 			  "%s: txspace %d\n", __func__, ks->tx_space);
648 	}
649 
650 	if (status & IRQ_RXI)
651 		handled |= IRQ_RXI;
652 
653 	if (status & IRQ_SPIBEI) {
654 		dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__);
655 		handled |= IRQ_SPIBEI;
656 	}
657 
658 	ks8851_wrreg16(ks, KS_ISR, handled);
659 
660 	if (status & IRQ_RXI) {
661 		/* the datasheet says to disable the rx interrupt during
662 		 * packet read-out, however we're masking the interrupt
663 		 * from the device so do not bother masking just the RX
664 		 * from the device. */
665 
666 		ks8851_rx_pkts(ks);
667 	}
668 
669 	/* if something stopped the rx process, probably due to wanting
670 	 * to change the rx settings, then do something about restarting
671 	 * it. */
672 	if (status & IRQ_RXPSI) {
673 		struct ks8851_rxctrl *rxc = &ks->rxctrl;
674 
675 		/* update the multicast hash table */
676 		ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
677 		ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
678 		ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
679 		ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
680 
681 		ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
682 		ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
683 	}
684 
685 	mutex_unlock(&ks->lock);
686 
687 	if (status & IRQ_TXI)
688 		netif_wake_queue(ks->netdev);
689 
690 	enable_irq(ks->netdev->irq);
691 }
692 
693 /**
694  * calc_txlen - calculate size of message to send packet
695  * @len: Length of data
696  *
697  * Returns the size of the TXFIFO message needed to send
698  * this packet.
699  */
calc_txlen(unsigned len)700 static inline unsigned calc_txlen(unsigned len)
701 {
702 	return ALIGN(len + 4, 4);
703 }
704 
705 /**
706  * ks8851_wrpkt - write packet to TX FIFO
707  * @ks: The device state.
708  * @txp: The sk_buff to transmit.
709  * @irq: IRQ on completion of the packet.
710  *
711  * Send the @txp to the chip. This means creating the relevant packet header
712  * specifying the length of the packet and the other information the chip
713  * needs, such as IRQ on completion. Send the header and the packet data to
714  * the device.
715  */
ks8851_wrpkt(struct ks8851_net * ks,struct sk_buff * txp,bool irq)716 static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
717 {
718 	struct spi_transfer *xfer = ks->spi_xfer2;
719 	struct spi_message *msg = &ks->spi_msg2;
720 	unsigned fid = 0;
721 	int ret;
722 
723 	netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
724 		  __func__, txp, txp->len, txp->data, irq);
725 
726 	fid = ks->fid++;
727 	fid &= TXFR_TXFID_MASK;
728 
729 	if (irq)
730 		fid |= TXFR_TXIC;	/* irq on completion */
731 
732 	/* start header at txb[1] to align txw entries */
733 	ks->txh.txb[1] = KS_SPIOP_TXFIFO;
734 	ks->txh.txw[1] = cpu_to_le16(fid);
735 	ks->txh.txw[2] = cpu_to_le16(txp->len);
736 
737 	xfer->tx_buf = &ks->txh.txb[1];
738 	xfer->rx_buf = NULL;
739 	xfer->len = 5;
740 
741 	xfer++;
742 	xfer->tx_buf = txp->data;
743 	xfer->rx_buf = NULL;
744 	xfer->len = ALIGN(txp->len, 4);
745 
746 	ret = spi_sync(ks->spidev, msg);
747 	if (ret < 0)
748 		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
749 }
750 
751 /**
752  * ks8851_done_tx - update and then free skbuff after transmitting
753  * @ks: The device state
754  * @txb: The buffer transmitted
755  */
ks8851_done_tx(struct ks8851_net * ks,struct sk_buff * txb)756 static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
757 {
758 	struct net_device *dev = ks->netdev;
759 
760 	dev->stats.tx_bytes += txb->len;
761 	dev->stats.tx_packets++;
762 
763 	dev_kfree_skb(txb);
764 }
765 
766 /**
767  * ks8851_tx_work - process tx packet(s)
768  * @work: The work strucutre what was scheduled.
769  *
770  * This is called when a number of packets have been scheduled for
771  * transmission and need to be sent to the device.
772  */
ks8851_tx_work(struct work_struct * work)773 static void ks8851_tx_work(struct work_struct *work)
774 {
775 	struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work);
776 	struct sk_buff *txb;
777 	bool last = skb_queue_empty(&ks->txq);
778 
779 	mutex_lock(&ks->lock);
780 
781 	while (!last) {
782 		txb = skb_dequeue(&ks->txq);
783 		last = skb_queue_empty(&ks->txq);
784 
785 		if (txb != NULL) {
786 			ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
787 			ks8851_wrpkt(ks, txb, last);
788 			ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
789 			ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
790 
791 			ks8851_done_tx(ks, txb);
792 		}
793 	}
794 
795 	mutex_unlock(&ks->lock);
796 }
797 
798 /**
799  * ks8851_net_open - open network device
800  * @dev: The network device being opened.
801  *
802  * Called when the network device is marked active, such as a user executing
803  * 'ifconfig up' on the device.
804  */
ks8851_net_open(struct net_device * dev)805 static int ks8851_net_open(struct net_device *dev)
806 {
807 	struct ks8851_net *ks = netdev_priv(dev);
808 
809 	/* lock the card, even if we may not actually be doing anything
810 	 * else at the moment */
811 	mutex_lock(&ks->lock);
812 
813 	netif_dbg(ks, ifup, ks->netdev, "opening\n");
814 
815 	/* bring chip out of any power saving mode it was in */
816 	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
817 
818 	/* issue a soft reset to the RX/TX QMU to put it into a known
819 	 * state. */
820 	ks8851_soft_reset(ks, GRR_QMU);
821 
822 	/* setup transmission parameters */
823 
824 	ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
825 				     TXCR_TXPE | /* pad to min length */
826 				     TXCR_TXCRC | /* add CRC */
827 				     TXCR_TXFCE)); /* enable flow control */
828 
829 	/* auto-increment tx data, reset tx pointer */
830 	ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
831 
832 	/* setup receiver control */
833 
834 	ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /*  from mac filter */
835 				      RXCR1_RXFCE | /* enable flow control */
836 				      RXCR1_RXBE | /* broadcast enable */
837 				      RXCR1_RXUE | /* unicast enable */
838 				      RXCR1_RXE)); /* enable rx block */
839 
840 	/* transfer entire frames out in one go */
841 	ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
842 
843 	/* set receive counter timeouts */
844 	ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
845 	ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
846 	ks8851_wrreg16(ks, KS_RXFCTR, 10);  /* 10 frames to IRQ */
847 
848 	ks->rc_rxqcr = (RXQCR_RXFCTE |  /* IRQ on frame count exceeded */
849 			RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
850 			RXQCR_RXDTTE);  /* IRQ on time exceeded */
851 
852 	ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
853 
854 	/* clear then enable interrupts */
855 
856 #define STD_IRQ (IRQ_LCI |	/* Link Change */	\
857 		 IRQ_TXI |	/* TX done */		\
858 		 IRQ_RXI |	/* RX done */		\
859 		 IRQ_SPIBEI |	/* SPI bus error */	\
860 		 IRQ_TXPSI |	/* TX process stop */	\
861 		 IRQ_RXPSI)	/* RX process stop */
862 
863 	ks->rc_ier = STD_IRQ;
864 	ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
865 	ks8851_wrreg16(ks, KS_IER, STD_IRQ);
866 
867 	netif_start_queue(ks->netdev);
868 
869 	netif_dbg(ks, ifup, ks->netdev, "network device up\n");
870 
871 	mutex_unlock(&ks->lock);
872 	return 0;
873 }
874 
875 /**
876  * ks8851_net_stop - close network device
877  * @dev: The device being closed.
878  *
879  * Called to close down a network device which has been active. Cancell any
880  * work, shutdown the RX and TX process and then place the chip into a low
881  * power state whilst it is not being used.
882  */
ks8851_net_stop(struct net_device * dev)883 static int ks8851_net_stop(struct net_device *dev)
884 {
885 	struct ks8851_net *ks = netdev_priv(dev);
886 
887 	netif_info(ks, ifdown, dev, "shutting down\n");
888 
889 	netif_stop_queue(dev);
890 
891 	mutex_lock(&ks->lock);
892 
893 	/* stop any outstanding work */
894 	flush_work(&ks->irq_work);
895 	flush_work(&ks->tx_work);
896 	flush_work(&ks->rxctrl_work);
897 
898 	/* turn off the IRQs and ack any outstanding */
899 	ks8851_wrreg16(ks, KS_IER, 0x0000);
900 	ks8851_wrreg16(ks, KS_ISR, 0xffff);
901 
902 	/* shutdown RX process */
903 	ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
904 
905 	/* shutdown TX process */
906 	ks8851_wrreg16(ks, KS_TXCR, 0x0000);
907 
908 	/* set powermode to soft power down to save power */
909 	ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
910 
911 	/* ensure any queued tx buffers are dumped */
912 	while (!skb_queue_empty(&ks->txq)) {
913 		struct sk_buff *txb = skb_dequeue(&ks->txq);
914 
915 		netif_dbg(ks, ifdown, ks->netdev,
916 			  "%s: freeing txb %p\n", __func__, txb);
917 
918 		dev_kfree_skb(txb);
919 	}
920 
921 	mutex_unlock(&ks->lock);
922 	return 0;
923 }
924 
925 /**
926  * ks8851_start_xmit - transmit packet
927  * @skb: The buffer to transmit
928  * @dev: The device used to transmit the packet.
929  *
930  * Called by the network layer to transmit the @skb. Queue the packet for
931  * the device and schedule the necessary work to transmit the packet when
932  * it is free.
933  *
934  * We do this to firstly avoid sleeping with the network device locked,
935  * and secondly so we can round up more than one packet to transmit which
936  * means we can try and avoid generating too many transmit done interrupts.
937  */
ks8851_start_xmit(struct sk_buff * skb,struct net_device * dev)938 static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
939 				     struct net_device *dev)
940 {
941 	struct ks8851_net *ks = netdev_priv(dev);
942 	unsigned needed = calc_txlen(skb->len);
943 	netdev_tx_t ret = NETDEV_TX_OK;
944 
945 	netif_dbg(ks, tx_queued, ks->netdev,
946 		  "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
947 
948 	spin_lock(&ks->statelock);
949 
950 	if (needed > ks->tx_space) {
951 		netif_stop_queue(dev);
952 		ret = NETDEV_TX_BUSY;
953 	} else {
954 		ks->tx_space -= needed;
955 		skb_queue_tail(&ks->txq, skb);
956 	}
957 
958 	spin_unlock(&ks->statelock);
959 	schedule_work(&ks->tx_work);
960 
961 	return ret;
962 }
963 
964 /**
965  * ks8851_rxctrl_work - work handler to change rx mode
966  * @work: The work structure this belongs to.
967  *
968  * Lock the device and issue the necessary changes to the receive mode from
969  * the network device layer. This is done so that we can do this without
970  * having to sleep whilst holding the network device lock.
971  *
972  * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
973  * receive parameters are programmed, we issue a write to disable the RXQ and
974  * then wait for the interrupt handler to be triggered once the RXQ shutdown is
975  * complete. The interrupt handler then writes the new values into the chip.
976  */
ks8851_rxctrl_work(struct work_struct * work)977 static void ks8851_rxctrl_work(struct work_struct *work)
978 {
979 	struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
980 
981 	mutex_lock(&ks->lock);
982 
983 	/* need to shutdown RXQ before modifying filter parameters */
984 	ks8851_wrreg16(ks, KS_RXCR1, 0x00);
985 
986 	mutex_unlock(&ks->lock);
987 }
988 
ks8851_set_rx_mode(struct net_device * dev)989 static void ks8851_set_rx_mode(struct net_device *dev)
990 {
991 	struct ks8851_net *ks = netdev_priv(dev);
992 	struct ks8851_rxctrl rxctrl;
993 
994 	memset(&rxctrl, 0, sizeof(rxctrl));
995 
996 	if (dev->flags & IFF_PROMISC) {
997 		/* interface to receive everything */
998 
999 		rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
1000 	} else if (dev->flags & IFF_ALLMULTI) {
1001 		/* accept all multicast packets */
1002 
1003 		rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
1004 				RXCR1_RXPAFMA | RXCR1_RXMAFMA);
1005 	} else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
1006 		struct netdev_hw_addr *ha;
1007 		u32 crc;
1008 
1009 		/* accept some multicast */
1010 
1011 		netdev_for_each_mc_addr(ha, dev) {
1012 			crc = ether_crc(ETH_ALEN, ha->addr);
1013 			crc >>= (32 - 6);  /* get top six bits */
1014 
1015 			rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
1016 		}
1017 
1018 		rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
1019 	} else {
1020 		/* just accept broadcast / unicast */
1021 		rxctrl.rxcr1 = RXCR1_RXPAFMA;
1022 	}
1023 
1024 	rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
1025 			 RXCR1_RXBE | /* broadcast enable */
1026 			 RXCR1_RXE | /* RX process enable */
1027 			 RXCR1_RXFCE); /* enable flow control */
1028 
1029 	rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
1030 
1031 	/* schedule work to do the actual set of the data if needed */
1032 
1033 	spin_lock(&ks->statelock);
1034 
1035 	if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
1036 		memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
1037 		schedule_work(&ks->rxctrl_work);
1038 	}
1039 
1040 	spin_unlock(&ks->statelock);
1041 }
1042 
ks8851_set_mac_address(struct net_device * dev,void * addr)1043 static int ks8851_set_mac_address(struct net_device *dev, void *addr)
1044 {
1045 	struct sockaddr *sa = addr;
1046 
1047 	if (netif_running(dev))
1048 		return -EBUSY;
1049 
1050 	if (!is_valid_ether_addr(sa->sa_data))
1051 		return -EADDRNOTAVAIL;
1052 
1053 	memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
1054 	return ks8851_write_mac_addr(dev);
1055 }
1056 
ks8851_net_ioctl(struct net_device * dev,struct ifreq * req,int cmd)1057 static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1058 {
1059 	struct ks8851_net *ks = netdev_priv(dev);
1060 
1061 	if (!netif_running(dev))
1062 		return -EINVAL;
1063 
1064 	return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1065 }
1066 
1067 static const struct net_device_ops ks8851_netdev_ops = {
1068 	.ndo_open		= ks8851_net_open,
1069 	.ndo_stop		= ks8851_net_stop,
1070 	.ndo_do_ioctl		= ks8851_net_ioctl,
1071 	.ndo_start_xmit		= ks8851_start_xmit,
1072 	.ndo_set_mac_address	= ks8851_set_mac_address,
1073 	.ndo_set_rx_mode	= ks8851_set_rx_mode,
1074 	.ndo_change_mtu		= eth_change_mtu,
1075 	.ndo_validate_addr	= eth_validate_addr,
1076 };
1077 
1078 /* ethtool support */
1079 
ks8851_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * di)1080 static void ks8851_get_drvinfo(struct net_device *dev,
1081 			       struct ethtool_drvinfo *di)
1082 {
1083 	strlcpy(di->driver, "KS8851", sizeof(di->driver));
1084 	strlcpy(di->version, "1.00", sizeof(di->version));
1085 	strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
1086 }
1087 
ks8851_get_msglevel(struct net_device * dev)1088 static u32 ks8851_get_msglevel(struct net_device *dev)
1089 {
1090 	struct ks8851_net *ks = netdev_priv(dev);
1091 	return ks->msg_enable;
1092 }
1093 
ks8851_set_msglevel(struct net_device * dev,u32 to)1094 static void ks8851_set_msglevel(struct net_device *dev, u32 to)
1095 {
1096 	struct ks8851_net *ks = netdev_priv(dev);
1097 	ks->msg_enable = to;
1098 }
1099 
ks8851_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)1100 static int ks8851_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1101 {
1102 	struct ks8851_net *ks = netdev_priv(dev);
1103 	return mii_ethtool_gset(&ks->mii, cmd);
1104 }
1105 
ks8851_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)1106 static int ks8851_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1107 {
1108 	struct ks8851_net *ks = netdev_priv(dev);
1109 	return mii_ethtool_sset(&ks->mii, cmd);
1110 }
1111 
ks8851_get_link(struct net_device * dev)1112 static u32 ks8851_get_link(struct net_device *dev)
1113 {
1114 	struct ks8851_net *ks = netdev_priv(dev);
1115 	return mii_link_ok(&ks->mii);
1116 }
1117 
ks8851_nway_reset(struct net_device * dev)1118 static int ks8851_nway_reset(struct net_device *dev)
1119 {
1120 	struct ks8851_net *ks = netdev_priv(dev);
1121 	return mii_nway_restart(&ks->mii);
1122 }
1123 
1124 /* EEPROM support */
1125 
ks8851_eeprom_regread(struct eeprom_93cx6 * ee)1126 static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee)
1127 {
1128 	struct ks8851_net *ks = ee->data;
1129 	unsigned val;
1130 
1131 	val = ks8851_rdreg16(ks, KS_EEPCR);
1132 
1133 	ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0;
1134 	ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0;
1135 	ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0;
1136 }
1137 
ks8851_eeprom_regwrite(struct eeprom_93cx6 * ee)1138 static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee)
1139 {
1140 	struct ks8851_net *ks = ee->data;
1141 	unsigned val = EEPCR_EESA;	/* default - eeprom access on */
1142 
1143 	if (ee->drive_data)
1144 		val |= EEPCR_EESRWA;
1145 	if (ee->reg_data_in)
1146 		val |= EEPCR_EEDO;
1147 	if (ee->reg_data_clock)
1148 		val |= EEPCR_EESCK;
1149 	if (ee->reg_chip_select)
1150 		val |= EEPCR_EECS;
1151 
1152 	ks8851_wrreg16(ks, KS_EEPCR, val);
1153 }
1154 
1155 /**
1156  * ks8851_eeprom_claim - claim device EEPROM and activate the interface
1157  * @ks: The network device state.
1158  *
1159  * Check for the presence of an EEPROM, and then activate software access
1160  * to the device.
1161  */
ks8851_eeprom_claim(struct ks8851_net * ks)1162 static int ks8851_eeprom_claim(struct ks8851_net *ks)
1163 {
1164 	if (!(ks->rc_ccr & CCR_EEPROM))
1165 		return -ENOENT;
1166 
1167 	mutex_lock(&ks->lock);
1168 
1169 	/* start with clock low, cs high */
1170 	ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS);
1171 	return 0;
1172 }
1173 
1174 /**
1175  * ks8851_eeprom_release - release the EEPROM interface
1176  * @ks: The device state
1177  *
1178  * Release the software access to the device EEPROM
1179  */
ks8851_eeprom_release(struct ks8851_net * ks)1180 static void ks8851_eeprom_release(struct ks8851_net *ks)
1181 {
1182 	unsigned val = ks8851_rdreg16(ks, KS_EEPCR);
1183 
1184 	ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA);
1185 	mutex_unlock(&ks->lock);
1186 }
1187 
1188 #define KS_EEPROM_MAGIC (0x00008851)
1189 
ks8851_set_eeprom(struct net_device * dev,struct ethtool_eeprom * ee,u8 * data)1190 static int ks8851_set_eeprom(struct net_device *dev,
1191 			     struct ethtool_eeprom *ee, u8 *data)
1192 {
1193 	struct ks8851_net *ks = netdev_priv(dev);
1194 	int offset = ee->offset;
1195 	int len = ee->len;
1196 	u16 tmp;
1197 
1198 	/* currently only support byte writing */
1199 	if (len != 1)
1200 		return -EINVAL;
1201 
1202 	if (ee->magic != KS_EEPROM_MAGIC)
1203 		return -EINVAL;
1204 
1205 	if (ks8851_eeprom_claim(ks))
1206 		return -ENOENT;
1207 
1208 	eeprom_93cx6_wren(&ks->eeprom, true);
1209 
1210 	/* ethtool currently only supports writing bytes, which means
1211 	 * we have to read/modify/write our 16bit EEPROMs */
1212 
1213 	eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp);
1214 
1215 	if (offset & 1) {
1216 		tmp &= 0xff;
1217 		tmp |= *data << 8;
1218 	} else {
1219 		tmp &= 0xff00;
1220 		tmp |= *data;
1221 	}
1222 
1223 	eeprom_93cx6_write(&ks->eeprom, offset/2, tmp);
1224 	eeprom_93cx6_wren(&ks->eeprom, false);
1225 
1226 	ks8851_eeprom_release(ks);
1227 
1228 	return 0;
1229 }
1230 
ks8851_get_eeprom(struct net_device * dev,struct ethtool_eeprom * ee,u8 * data)1231 static int ks8851_get_eeprom(struct net_device *dev,
1232 			     struct ethtool_eeprom *ee, u8 *data)
1233 {
1234 	struct ks8851_net *ks = netdev_priv(dev);
1235 	int offset = ee->offset;
1236 	int len = ee->len;
1237 
1238 	/* must be 2 byte aligned */
1239 	if (len & 1 || offset & 1)
1240 		return -EINVAL;
1241 
1242 	if (ks8851_eeprom_claim(ks))
1243 		return -ENOENT;
1244 
1245 	ee->magic = KS_EEPROM_MAGIC;
1246 
1247 	eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2);
1248 	ks8851_eeprom_release(ks);
1249 
1250 	return 0;
1251 }
1252 
ks8851_get_eeprom_len(struct net_device * dev)1253 static int ks8851_get_eeprom_len(struct net_device *dev)
1254 {
1255 	struct ks8851_net *ks = netdev_priv(dev);
1256 
1257 	/* currently, we assume it is an 93C46 attached, so return 128 */
1258 	return ks->rc_ccr & CCR_EEPROM ? 128 : 0;
1259 }
1260 
1261 static const struct ethtool_ops ks8851_ethtool_ops = {
1262 	.get_drvinfo	= ks8851_get_drvinfo,
1263 	.get_msglevel	= ks8851_get_msglevel,
1264 	.set_msglevel	= ks8851_set_msglevel,
1265 	.get_settings	= ks8851_get_settings,
1266 	.set_settings	= ks8851_set_settings,
1267 	.get_link	= ks8851_get_link,
1268 	.nway_reset	= ks8851_nway_reset,
1269 	.get_eeprom_len	= ks8851_get_eeprom_len,
1270 	.get_eeprom	= ks8851_get_eeprom,
1271 	.set_eeprom	= ks8851_set_eeprom,
1272 };
1273 
1274 /* MII interface controls */
1275 
1276 /**
1277  * ks8851_phy_reg - convert MII register into a KS8851 register
1278  * @reg: MII register number.
1279  *
1280  * Return the KS8851 register number for the corresponding MII PHY register
1281  * if possible. Return zero if the MII register has no direct mapping to the
1282  * KS8851 register set.
1283  */
ks8851_phy_reg(int reg)1284 static int ks8851_phy_reg(int reg)
1285 {
1286 	switch (reg) {
1287 	case MII_BMCR:
1288 		return KS_P1MBCR;
1289 	case MII_BMSR:
1290 		return KS_P1MBSR;
1291 	case MII_PHYSID1:
1292 		return KS_PHY1ILR;
1293 	case MII_PHYSID2:
1294 		return KS_PHY1IHR;
1295 	case MII_ADVERTISE:
1296 		return KS_P1ANAR;
1297 	case MII_LPA:
1298 		return KS_P1ANLPR;
1299 	}
1300 
1301 	return 0x0;
1302 }
1303 
1304 /**
1305  * ks8851_phy_read - MII interface PHY register read.
1306  * @dev: The network device the PHY is on.
1307  * @phy_addr: Address of PHY (ignored as we only have one)
1308  * @reg: The register to read.
1309  *
1310  * This call reads data from the PHY register specified in @reg. Since the
1311  * device does not support all the MII registers, the non-existent values
1312  * are always returned as zero.
1313  *
1314  * We return zero for unsupported registers as the MII code does not check
1315  * the value returned for any error status, and simply returns it to the
1316  * caller. The mii-tool that the driver was tested with takes any -ve error
1317  * as real PHY capabilities, thus displaying incorrect data to the user.
1318  */
ks8851_phy_read(struct net_device * dev,int phy_addr,int reg)1319 static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
1320 {
1321 	struct ks8851_net *ks = netdev_priv(dev);
1322 	int ksreg;
1323 	int result;
1324 
1325 	ksreg = ks8851_phy_reg(reg);
1326 	if (!ksreg)
1327 		return 0x0;	/* no error return allowed, so use zero */
1328 
1329 	mutex_lock(&ks->lock);
1330 	result = ks8851_rdreg16(ks, ksreg);
1331 	mutex_unlock(&ks->lock);
1332 
1333 	return result;
1334 }
1335 
ks8851_phy_write(struct net_device * dev,int phy,int reg,int value)1336 static void ks8851_phy_write(struct net_device *dev,
1337 			     int phy, int reg, int value)
1338 {
1339 	struct ks8851_net *ks = netdev_priv(dev);
1340 	int ksreg;
1341 
1342 	ksreg = ks8851_phy_reg(reg);
1343 	if (ksreg) {
1344 		mutex_lock(&ks->lock);
1345 		ks8851_wrreg16(ks, ksreg, value);
1346 		mutex_unlock(&ks->lock);
1347 	}
1348 }
1349 
1350 /**
1351  * ks8851_read_selftest - read the selftest memory info.
1352  * @ks: The device state
1353  *
1354  * Read and check the TX/RX memory selftest information.
1355  */
ks8851_read_selftest(struct ks8851_net * ks)1356 static int ks8851_read_selftest(struct ks8851_net *ks)
1357 {
1358 	unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1359 	int ret = 0;
1360 	unsigned rd;
1361 
1362 	rd = ks8851_rdreg16(ks, KS_MBIR);
1363 
1364 	if ((rd & both_done) != both_done) {
1365 		netdev_warn(ks->netdev, "Memory selftest not finished\n");
1366 		return 0;
1367 	}
1368 
1369 	if (rd & MBIR_TXMBFA) {
1370 		netdev_err(ks->netdev, "TX memory selftest fail\n");
1371 		ret |= 1;
1372 	}
1373 
1374 	if (rd & MBIR_RXMBFA) {
1375 		netdev_err(ks->netdev, "RX memory selftest fail\n");
1376 		ret |= 2;
1377 	}
1378 
1379 	return 0;
1380 }
1381 
1382 /* driver bus management functions */
1383 
1384 #ifdef CONFIG_PM
ks8851_suspend(struct spi_device * spi,pm_message_t state)1385 static int ks8851_suspend(struct spi_device *spi, pm_message_t state)
1386 {
1387 	struct ks8851_net *ks = dev_get_drvdata(&spi->dev);
1388 	struct net_device *dev = ks->netdev;
1389 
1390 	if (netif_running(dev)) {
1391 		netif_device_detach(dev);
1392 		ks8851_net_stop(dev);
1393 	}
1394 
1395 	return 0;
1396 }
1397 
ks8851_resume(struct spi_device * spi)1398 static int ks8851_resume(struct spi_device *spi)
1399 {
1400 	struct ks8851_net *ks = dev_get_drvdata(&spi->dev);
1401 	struct net_device *dev = ks->netdev;
1402 
1403 	if (netif_running(dev)) {
1404 		ks8851_net_open(dev);
1405 		netif_device_attach(dev);
1406 	}
1407 
1408 	return 0;
1409 }
1410 #else
1411 #define ks8851_suspend NULL
1412 #define ks8851_resume NULL
1413 #endif
1414 
ks8851_probe(struct spi_device * spi)1415 static int __devinit ks8851_probe(struct spi_device *spi)
1416 {
1417 	struct net_device *ndev;
1418 	struct ks8851_net *ks;
1419 	int ret;
1420 
1421 	ndev = alloc_etherdev(sizeof(struct ks8851_net));
1422 	if (!ndev) {
1423 		dev_err(&spi->dev, "failed to alloc ethernet device\n");
1424 		return -ENOMEM;
1425 	}
1426 
1427 	spi->bits_per_word = 8;
1428 
1429 	ks = netdev_priv(ndev);
1430 
1431 	ks->netdev = ndev;
1432 	ks->spidev = spi;
1433 	ks->tx_space = 6144;
1434 
1435 	mutex_init(&ks->lock);
1436 	spin_lock_init(&ks->statelock);
1437 
1438 	INIT_WORK(&ks->tx_work, ks8851_tx_work);
1439 	INIT_WORK(&ks->irq_work, ks8851_irq_work);
1440 	INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1441 
1442 	/* initialise pre-made spi transfer messages */
1443 
1444 	spi_message_init(&ks->spi_msg1);
1445 	spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);
1446 
1447 	spi_message_init(&ks->spi_msg2);
1448 	spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
1449 	spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);
1450 
1451 	/* setup EEPROM state */
1452 
1453 	ks->eeprom.data = ks;
1454 	ks->eeprom.width = PCI_EEPROM_WIDTH_93C46;
1455 	ks->eeprom.register_read = ks8851_eeprom_regread;
1456 	ks->eeprom.register_write = ks8851_eeprom_regwrite;
1457 
1458 	/* setup mii state */
1459 	ks->mii.dev		= ndev;
1460 	ks->mii.phy_id		= 1,
1461 	ks->mii.phy_id_mask	= 1;
1462 	ks->mii.reg_num_mask	= 0xf;
1463 	ks->mii.mdio_read	= ks8851_phy_read;
1464 	ks->mii.mdio_write	= ks8851_phy_write;
1465 
1466 	dev_info(&spi->dev, "message enable is %d\n", msg_enable);
1467 
1468 	/* set the default message enable */
1469 	ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1470 						     NETIF_MSG_PROBE |
1471 						     NETIF_MSG_LINK));
1472 
1473 	skb_queue_head_init(&ks->txq);
1474 
1475 	SET_ETHTOOL_OPS(ndev, &ks8851_ethtool_ops);
1476 	SET_NETDEV_DEV(ndev, &spi->dev);
1477 
1478 	dev_set_drvdata(&spi->dev, ks);
1479 
1480 	ndev->if_port = IF_PORT_100BASET;
1481 	ndev->netdev_ops = &ks8851_netdev_ops;
1482 	ndev->irq = spi->irq;
1483 
1484 	/* issue a global soft reset to reset the device. */
1485 	ks8851_soft_reset(ks, GRR_GSR);
1486 
1487 	/* simple check for a valid chip being connected to the bus */
1488 
1489 	if ((ks8851_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) {
1490 		dev_err(&spi->dev, "failed to read device ID\n");
1491 		ret = -ENODEV;
1492 		goto err_id;
1493 	}
1494 
1495 	/* cache the contents of the CCR register for EEPROM, etc. */
1496 	ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1497 
1498 	if (ks->rc_ccr & CCR_EEPROM)
1499 		ks->eeprom_size = 128;
1500 	else
1501 		ks->eeprom_size = 0;
1502 
1503 	ks8851_read_selftest(ks);
1504 	ks8851_init_mac(ks);
1505 
1506 	ret = request_irq(spi->irq, ks8851_irq, IRQF_TRIGGER_LOW,
1507 			  ndev->name, ks);
1508 	if (ret < 0) {
1509 		dev_err(&spi->dev, "failed to get irq\n");
1510 		goto err_irq;
1511 	}
1512 
1513 	ret = register_netdev(ndev);
1514 	if (ret) {
1515 		dev_err(&spi->dev, "failed to register network device\n");
1516 		goto err_netdev;
1517 	}
1518 
1519 	netdev_info(ndev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n",
1520 		    CIDER_REV_GET(ks8851_rdreg16(ks, KS_CIDER)),
1521 		    ndev->dev_addr, ndev->irq,
1522 		    ks->rc_ccr & CCR_EEPROM ? "has" : "no");
1523 
1524 	return 0;
1525 
1526 
1527 err_netdev:
1528 	free_irq(ndev->irq, ndev);
1529 
1530 err_id:
1531 err_irq:
1532 	free_netdev(ndev);
1533 	return ret;
1534 }
1535 
ks8851_remove(struct spi_device * spi)1536 static int __devexit ks8851_remove(struct spi_device *spi)
1537 {
1538 	struct ks8851_net *priv = dev_get_drvdata(&spi->dev);
1539 
1540 	if (netif_msg_drv(priv))
1541 		dev_info(&spi->dev, "remove\n");
1542 
1543 	unregister_netdev(priv->netdev);
1544 	free_irq(spi->irq, priv);
1545 	free_netdev(priv->netdev);
1546 
1547 	return 0;
1548 }
1549 
1550 static struct spi_driver ks8851_driver = {
1551 	.driver = {
1552 		.name = "ks8851",
1553 		.owner = THIS_MODULE,
1554 	},
1555 	.probe = ks8851_probe,
1556 	.remove = __devexit_p(ks8851_remove),
1557 	.suspend = ks8851_suspend,
1558 	.resume = ks8851_resume,
1559 };
1560 
ks8851_init(void)1561 static int __init ks8851_init(void)
1562 {
1563 	return spi_register_driver(&ks8851_driver);
1564 }
1565 
ks8851_exit(void)1566 static void __exit ks8851_exit(void)
1567 {
1568 	spi_unregister_driver(&ks8851_driver);
1569 }
1570 
1571 module_init(ks8851_init);
1572 module_exit(ks8851_exit);
1573 
1574 MODULE_DESCRIPTION("KS8851 Network driver");
1575 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1576 MODULE_LICENSE("GPL");
1577 
1578 module_param_named(message, msg_enable, int, 0);
1579 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1580 MODULE_ALIAS("spi:ks8851");
1581