1 /*******************************************************************************
2 
3   Intel(R) 82576 Virtual Function Linux driver
4   Copyright(c) 2009 - 2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/pci.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/delay.h>
37 #include <linux/netdevice.h>
38 #include <linux/tcp.h>
39 #include <linux/ipv6.h>
40 #include <linux/slab.h>
41 #include <net/checksum.h>
42 #include <net/ip6_checksum.h>
43 #include <linux/mii.h>
44 #include <linux/ethtool.h>
45 #include <linux/if_vlan.h>
46 #include <linux/prefetch.h>
47 
48 #include "igbvf.h"
49 
50 #define DRV_VERSION "2.0.1-k"
51 char igbvf_driver_name[] = "igbvf";
52 const char igbvf_driver_version[] = DRV_VERSION;
53 static const char igbvf_driver_string[] =
54 		  "Intel(R) Gigabit Virtual Function Network Driver";
55 static const char igbvf_copyright[] =
56 		  "Copyright (c) 2009 - 2012 Intel Corporation.";
57 
58 static int igbvf_poll(struct napi_struct *napi, int budget);
59 static void igbvf_reset(struct igbvf_adapter *);
60 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
61 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
62 
63 static struct igbvf_info igbvf_vf_info = {
64 	.mac                    = e1000_vfadapt,
65 	.flags                  = 0,
66 	.pba                    = 10,
67 	.init_ops               = e1000_init_function_pointers_vf,
68 };
69 
70 static struct igbvf_info igbvf_i350_vf_info = {
71 	.mac			= e1000_vfadapt_i350,
72 	.flags			= 0,
73 	.pba			= 10,
74 	.init_ops		= e1000_init_function_pointers_vf,
75 };
76 
77 static const struct igbvf_info *igbvf_info_tbl[] = {
78 	[board_vf]              = &igbvf_vf_info,
79 	[board_i350_vf]		= &igbvf_i350_vf_info,
80 };
81 
82 /**
83  * igbvf_desc_unused - calculate if we have unused descriptors
84  **/
igbvf_desc_unused(struct igbvf_ring * ring)85 static int igbvf_desc_unused(struct igbvf_ring *ring)
86 {
87 	if (ring->next_to_clean > ring->next_to_use)
88 		return ring->next_to_clean - ring->next_to_use - 1;
89 
90 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
91 }
92 
93 /**
94  * igbvf_receive_skb - helper function to handle Rx indications
95  * @adapter: board private structure
96  * @status: descriptor status field as written by hardware
97  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
98  * @skb: pointer to sk_buff to be indicated to stack
99  **/
igbvf_receive_skb(struct igbvf_adapter * adapter,struct net_device * netdev,struct sk_buff * skb,u32 status,u16 vlan)100 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
101                               struct net_device *netdev,
102                               struct sk_buff *skb,
103                               u32 status, u16 vlan)
104 {
105 	if (status & E1000_RXD_STAT_VP) {
106 		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
107 		if (test_bit(vid, adapter->active_vlans))
108 			__vlan_hwaccel_put_tag(skb, vid);
109 	}
110 	netif_receive_skb(skb);
111 }
112 
igbvf_rx_checksum_adv(struct igbvf_adapter * adapter,u32 status_err,struct sk_buff * skb)113 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
114                                          u32 status_err, struct sk_buff *skb)
115 {
116 	skb_checksum_none_assert(skb);
117 
118 	/* Ignore Checksum bit is set or checksum is disabled through ethtool */
119 	if ((status_err & E1000_RXD_STAT_IXSM) ||
120 	    (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
121 		return;
122 
123 	/* TCP/UDP checksum error bit is set */
124 	if (status_err &
125 	    (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
126 		/* let the stack verify checksum errors */
127 		adapter->hw_csum_err++;
128 		return;
129 	}
130 
131 	/* It must be a TCP or UDP packet with a valid checksum */
132 	if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
133 		skb->ip_summed = CHECKSUM_UNNECESSARY;
134 
135 	adapter->hw_csum_good++;
136 }
137 
138 /**
139  * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
140  * @rx_ring: address of ring structure to repopulate
141  * @cleaned_count: number of buffers to repopulate
142  **/
igbvf_alloc_rx_buffers(struct igbvf_ring * rx_ring,int cleaned_count)143 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
144                                    int cleaned_count)
145 {
146 	struct igbvf_adapter *adapter = rx_ring->adapter;
147 	struct net_device *netdev = adapter->netdev;
148 	struct pci_dev *pdev = adapter->pdev;
149 	union e1000_adv_rx_desc *rx_desc;
150 	struct igbvf_buffer *buffer_info;
151 	struct sk_buff *skb;
152 	unsigned int i;
153 	int bufsz;
154 
155 	i = rx_ring->next_to_use;
156 	buffer_info = &rx_ring->buffer_info[i];
157 
158 	if (adapter->rx_ps_hdr_size)
159 		bufsz = adapter->rx_ps_hdr_size;
160 	else
161 		bufsz = adapter->rx_buffer_len;
162 
163 	while (cleaned_count--) {
164 		rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
165 
166 		if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
167 			if (!buffer_info->page) {
168 				buffer_info->page = alloc_page(GFP_ATOMIC);
169 				if (!buffer_info->page) {
170 					adapter->alloc_rx_buff_failed++;
171 					goto no_buffers;
172 				}
173 				buffer_info->page_offset = 0;
174 			} else {
175 				buffer_info->page_offset ^= PAGE_SIZE / 2;
176 			}
177 			buffer_info->page_dma =
178 				dma_map_page(&pdev->dev, buffer_info->page,
179 				             buffer_info->page_offset,
180 				             PAGE_SIZE / 2,
181 					     DMA_FROM_DEVICE);
182 		}
183 
184 		if (!buffer_info->skb) {
185 			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
186 			if (!skb) {
187 				adapter->alloc_rx_buff_failed++;
188 				goto no_buffers;
189 			}
190 
191 			buffer_info->skb = skb;
192 			buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
193 			                                  bufsz,
194 							  DMA_FROM_DEVICE);
195 		}
196 		/* Refresh the desc even if buffer_addrs didn't change because
197 		 * each write-back erases this info. */
198 		if (adapter->rx_ps_hdr_size) {
199 			rx_desc->read.pkt_addr =
200 			     cpu_to_le64(buffer_info->page_dma);
201 			rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
202 		} else {
203 			rx_desc->read.pkt_addr =
204 			     cpu_to_le64(buffer_info->dma);
205 			rx_desc->read.hdr_addr = 0;
206 		}
207 
208 		i++;
209 		if (i == rx_ring->count)
210 			i = 0;
211 		buffer_info = &rx_ring->buffer_info[i];
212 	}
213 
214 no_buffers:
215 	if (rx_ring->next_to_use != i) {
216 		rx_ring->next_to_use = i;
217 		if (i == 0)
218 			i = (rx_ring->count - 1);
219 		else
220 			i--;
221 
222 		/* Force memory writes to complete before letting h/w
223 		 * know there are new descriptors to fetch.  (Only
224 		 * applicable for weak-ordered memory model archs,
225 		 * such as IA-64). */
226 		wmb();
227 		writel(i, adapter->hw.hw_addr + rx_ring->tail);
228 	}
229 }
230 
231 /**
232  * igbvf_clean_rx_irq - Send received data up the network stack; legacy
233  * @adapter: board private structure
234  *
235  * the return value indicates whether actual cleaning was done, there
236  * is no guarantee that everything was cleaned
237  **/
igbvf_clean_rx_irq(struct igbvf_adapter * adapter,int * work_done,int work_to_do)238 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
239                                int *work_done, int work_to_do)
240 {
241 	struct igbvf_ring *rx_ring = adapter->rx_ring;
242 	struct net_device *netdev = adapter->netdev;
243 	struct pci_dev *pdev = adapter->pdev;
244 	union e1000_adv_rx_desc *rx_desc, *next_rxd;
245 	struct igbvf_buffer *buffer_info, *next_buffer;
246 	struct sk_buff *skb;
247 	bool cleaned = false;
248 	int cleaned_count = 0;
249 	unsigned int total_bytes = 0, total_packets = 0;
250 	unsigned int i;
251 	u32 length, hlen, staterr;
252 
253 	i = rx_ring->next_to_clean;
254 	rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
255 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
256 
257 	while (staterr & E1000_RXD_STAT_DD) {
258 		if (*work_done >= work_to_do)
259 			break;
260 		(*work_done)++;
261 		rmb(); /* read descriptor and rx_buffer_info after status DD */
262 
263 		buffer_info = &rx_ring->buffer_info[i];
264 
265 		/* HW will not DMA in data larger than the given buffer, even
266 		 * if it parses the (NFS, of course) header to be larger.  In
267 		 * that case, it fills the header buffer and spills the rest
268 		 * into the page.
269 		 */
270 		hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
271 		  E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
272 		if (hlen > adapter->rx_ps_hdr_size)
273 			hlen = adapter->rx_ps_hdr_size;
274 
275 		length = le16_to_cpu(rx_desc->wb.upper.length);
276 		cleaned = true;
277 		cleaned_count++;
278 
279 		skb = buffer_info->skb;
280 		prefetch(skb->data - NET_IP_ALIGN);
281 		buffer_info->skb = NULL;
282 		if (!adapter->rx_ps_hdr_size) {
283 			dma_unmap_single(&pdev->dev, buffer_info->dma,
284 			                 adapter->rx_buffer_len,
285 					 DMA_FROM_DEVICE);
286 			buffer_info->dma = 0;
287 			skb_put(skb, length);
288 			goto send_up;
289 		}
290 
291 		if (!skb_shinfo(skb)->nr_frags) {
292 			dma_unmap_single(&pdev->dev, buffer_info->dma,
293 			                 adapter->rx_ps_hdr_size,
294 					 DMA_FROM_DEVICE);
295 			skb_put(skb, hlen);
296 		}
297 
298 		if (length) {
299 			dma_unmap_page(&pdev->dev, buffer_info->page_dma,
300 			               PAGE_SIZE / 2,
301 				       DMA_FROM_DEVICE);
302 			buffer_info->page_dma = 0;
303 
304 			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
305 			                   buffer_info->page,
306 			                   buffer_info->page_offset,
307 			                   length);
308 
309 			if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
310 			    (page_count(buffer_info->page) != 1))
311 				buffer_info->page = NULL;
312 			else
313 				get_page(buffer_info->page);
314 
315 			skb->len += length;
316 			skb->data_len += length;
317 			skb->truesize += PAGE_SIZE / 2;
318 		}
319 send_up:
320 		i++;
321 		if (i == rx_ring->count)
322 			i = 0;
323 		next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
324 		prefetch(next_rxd);
325 		next_buffer = &rx_ring->buffer_info[i];
326 
327 		if (!(staterr & E1000_RXD_STAT_EOP)) {
328 			buffer_info->skb = next_buffer->skb;
329 			buffer_info->dma = next_buffer->dma;
330 			next_buffer->skb = skb;
331 			next_buffer->dma = 0;
332 			goto next_desc;
333 		}
334 
335 		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
336 			dev_kfree_skb_irq(skb);
337 			goto next_desc;
338 		}
339 
340 		total_bytes += skb->len;
341 		total_packets++;
342 
343 		igbvf_rx_checksum_adv(adapter, staterr, skb);
344 
345 		skb->protocol = eth_type_trans(skb, netdev);
346 
347 		igbvf_receive_skb(adapter, netdev, skb, staterr,
348 		                  rx_desc->wb.upper.vlan);
349 
350 next_desc:
351 		rx_desc->wb.upper.status_error = 0;
352 
353 		/* return some buffers to hardware, one at a time is too slow */
354 		if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
355 			igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
356 			cleaned_count = 0;
357 		}
358 
359 		/* use prefetched values */
360 		rx_desc = next_rxd;
361 		buffer_info = next_buffer;
362 
363 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
364 	}
365 
366 	rx_ring->next_to_clean = i;
367 	cleaned_count = igbvf_desc_unused(rx_ring);
368 
369 	if (cleaned_count)
370 		igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
371 
372 	adapter->total_rx_packets += total_packets;
373 	adapter->total_rx_bytes += total_bytes;
374 	adapter->net_stats.rx_bytes += total_bytes;
375 	adapter->net_stats.rx_packets += total_packets;
376 	return cleaned;
377 }
378 
igbvf_put_txbuf(struct igbvf_adapter * adapter,struct igbvf_buffer * buffer_info)379 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
380                             struct igbvf_buffer *buffer_info)
381 {
382 	if (buffer_info->dma) {
383 		if (buffer_info->mapped_as_page)
384 			dma_unmap_page(&adapter->pdev->dev,
385 				       buffer_info->dma,
386 				       buffer_info->length,
387 				       DMA_TO_DEVICE);
388 		else
389 			dma_unmap_single(&adapter->pdev->dev,
390 					 buffer_info->dma,
391 					 buffer_info->length,
392 					 DMA_TO_DEVICE);
393 		buffer_info->dma = 0;
394 	}
395 	if (buffer_info->skb) {
396 		dev_kfree_skb_any(buffer_info->skb);
397 		buffer_info->skb = NULL;
398 	}
399 	buffer_info->time_stamp = 0;
400 }
401 
402 /**
403  * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
404  * @adapter: board private structure
405  *
406  * Return 0 on success, negative on failure
407  **/
igbvf_setup_tx_resources(struct igbvf_adapter * adapter,struct igbvf_ring * tx_ring)408 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
409                              struct igbvf_ring *tx_ring)
410 {
411 	struct pci_dev *pdev = adapter->pdev;
412 	int size;
413 
414 	size = sizeof(struct igbvf_buffer) * tx_ring->count;
415 	tx_ring->buffer_info = vzalloc(size);
416 	if (!tx_ring->buffer_info)
417 		goto err;
418 
419 	/* round up to nearest 4K */
420 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
421 	tx_ring->size = ALIGN(tx_ring->size, 4096);
422 
423 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
424 					   &tx_ring->dma, GFP_KERNEL);
425 
426 	if (!tx_ring->desc)
427 		goto err;
428 
429 	tx_ring->adapter = adapter;
430 	tx_ring->next_to_use = 0;
431 	tx_ring->next_to_clean = 0;
432 
433 	return 0;
434 err:
435 	vfree(tx_ring->buffer_info);
436 	dev_err(&adapter->pdev->dev,
437 	        "Unable to allocate memory for the transmit descriptor ring\n");
438 	return -ENOMEM;
439 }
440 
441 /**
442  * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
443  * @adapter: board private structure
444  *
445  * Returns 0 on success, negative on failure
446  **/
igbvf_setup_rx_resources(struct igbvf_adapter * adapter,struct igbvf_ring * rx_ring)447 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
448 			     struct igbvf_ring *rx_ring)
449 {
450 	struct pci_dev *pdev = adapter->pdev;
451 	int size, desc_len;
452 
453 	size = sizeof(struct igbvf_buffer) * rx_ring->count;
454 	rx_ring->buffer_info = vzalloc(size);
455 	if (!rx_ring->buffer_info)
456 		goto err;
457 
458 	desc_len = sizeof(union e1000_adv_rx_desc);
459 
460 	/* Round up to nearest 4K */
461 	rx_ring->size = rx_ring->count * desc_len;
462 	rx_ring->size = ALIGN(rx_ring->size, 4096);
463 
464 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
465 					   &rx_ring->dma, GFP_KERNEL);
466 
467 	if (!rx_ring->desc)
468 		goto err;
469 
470 	rx_ring->next_to_clean = 0;
471 	rx_ring->next_to_use = 0;
472 
473 	rx_ring->adapter = adapter;
474 
475 	return 0;
476 
477 err:
478 	vfree(rx_ring->buffer_info);
479 	rx_ring->buffer_info = NULL;
480 	dev_err(&adapter->pdev->dev,
481 	        "Unable to allocate memory for the receive descriptor ring\n");
482 	return -ENOMEM;
483 }
484 
485 /**
486  * igbvf_clean_tx_ring - Free Tx Buffers
487  * @tx_ring: ring to be cleaned
488  **/
igbvf_clean_tx_ring(struct igbvf_ring * tx_ring)489 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
490 {
491 	struct igbvf_adapter *adapter = tx_ring->adapter;
492 	struct igbvf_buffer *buffer_info;
493 	unsigned long size;
494 	unsigned int i;
495 
496 	if (!tx_ring->buffer_info)
497 		return;
498 
499 	/* Free all the Tx ring sk_buffs */
500 	for (i = 0; i < tx_ring->count; i++) {
501 		buffer_info = &tx_ring->buffer_info[i];
502 		igbvf_put_txbuf(adapter, buffer_info);
503 	}
504 
505 	size = sizeof(struct igbvf_buffer) * tx_ring->count;
506 	memset(tx_ring->buffer_info, 0, size);
507 
508 	/* Zero out the descriptor ring */
509 	memset(tx_ring->desc, 0, tx_ring->size);
510 
511 	tx_ring->next_to_use = 0;
512 	tx_ring->next_to_clean = 0;
513 
514 	writel(0, adapter->hw.hw_addr + tx_ring->head);
515 	writel(0, adapter->hw.hw_addr + tx_ring->tail);
516 }
517 
518 /**
519  * igbvf_free_tx_resources - Free Tx Resources per Queue
520  * @tx_ring: ring to free resources from
521  *
522  * Free all transmit software resources
523  **/
igbvf_free_tx_resources(struct igbvf_ring * tx_ring)524 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
525 {
526 	struct pci_dev *pdev = tx_ring->adapter->pdev;
527 
528 	igbvf_clean_tx_ring(tx_ring);
529 
530 	vfree(tx_ring->buffer_info);
531 	tx_ring->buffer_info = NULL;
532 
533 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
534 			  tx_ring->dma);
535 
536 	tx_ring->desc = NULL;
537 }
538 
539 /**
540  * igbvf_clean_rx_ring - Free Rx Buffers per Queue
541  * @adapter: board private structure
542  **/
igbvf_clean_rx_ring(struct igbvf_ring * rx_ring)543 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
544 {
545 	struct igbvf_adapter *adapter = rx_ring->adapter;
546 	struct igbvf_buffer *buffer_info;
547 	struct pci_dev *pdev = adapter->pdev;
548 	unsigned long size;
549 	unsigned int i;
550 
551 	if (!rx_ring->buffer_info)
552 		return;
553 
554 	/* Free all the Rx ring sk_buffs */
555 	for (i = 0; i < rx_ring->count; i++) {
556 		buffer_info = &rx_ring->buffer_info[i];
557 		if (buffer_info->dma) {
558 			if (adapter->rx_ps_hdr_size){
559 				dma_unmap_single(&pdev->dev, buffer_info->dma,
560 				                 adapter->rx_ps_hdr_size,
561 						 DMA_FROM_DEVICE);
562 			} else {
563 				dma_unmap_single(&pdev->dev, buffer_info->dma,
564 				                 adapter->rx_buffer_len,
565 						 DMA_FROM_DEVICE);
566 			}
567 			buffer_info->dma = 0;
568 		}
569 
570 		if (buffer_info->skb) {
571 			dev_kfree_skb(buffer_info->skb);
572 			buffer_info->skb = NULL;
573 		}
574 
575 		if (buffer_info->page) {
576 			if (buffer_info->page_dma)
577 				dma_unmap_page(&pdev->dev,
578 					       buffer_info->page_dma,
579 				               PAGE_SIZE / 2,
580 					       DMA_FROM_DEVICE);
581 			put_page(buffer_info->page);
582 			buffer_info->page = NULL;
583 			buffer_info->page_dma = 0;
584 			buffer_info->page_offset = 0;
585 		}
586 	}
587 
588 	size = sizeof(struct igbvf_buffer) * rx_ring->count;
589 	memset(rx_ring->buffer_info, 0, size);
590 
591 	/* Zero out the descriptor ring */
592 	memset(rx_ring->desc, 0, rx_ring->size);
593 
594 	rx_ring->next_to_clean = 0;
595 	rx_ring->next_to_use = 0;
596 
597 	writel(0, adapter->hw.hw_addr + rx_ring->head);
598 	writel(0, adapter->hw.hw_addr + rx_ring->tail);
599 }
600 
601 /**
602  * igbvf_free_rx_resources - Free Rx Resources
603  * @rx_ring: ring to clean the resources from
604  *
605  * Free all receive software resources
606  **/
607 
igbvf_free_rx_resources(struct igbvf_ring * rx_ring)608 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
609 {
610 	struct pci_dev *pdev = rx_ring->adapter->pdev;
611 
612 	igbvf_clean_rx_ring(rx_ring);
613 
614 	vfree(rx_ring->buffer_info);
615 	rx_ring->buffer_info = NULL;
616 
617 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
618 	                  rx_ring->dma);
619 	rx_ring->desc = NULL;
620 }
621 
622 /**
623  * igbvf_update_itr - update the dynamic ITR value based on statistics
624  * @adapter: pointer to adapter
625  * @itr_setting: current adapter->itr
626  * @packets: the number of packets during this measurement interval
627  * @bytes: the number of bytes during this measurement interval
628  *
629  *      Stores a new ITR value based on packets and byte
630  *      counts during the last interrupt.  The advantage of per interrupt
631  *      computation is faster updates and more accurate ITR for the current
632  *      traffic pattern.  Constants in this function were computed
633  *      based on theoretical maximum wire speed and thresholds were set based
634  *      on testing data as well as attempting to minimize response time
635  *      while increasing bulk throughput.  This functionality is controlled
636  *      by the InterruptThrottleRate module parameter.
637  **/
igbvf_update_itr(struct igbvf_adapter * adapter,u16 itr_setting,int packets,int bytes)638 static unsigned int igbvf_update_itr(struct igbvf_adapter *adapter,
639                                      u16 itr_setting, int packets,
640                                      int bytes)
641 {
642 	unsigned int retval = itr_setting;
643 
644 	if (packets == 0)
645 		goto update_itr_done;
646 
647 	switch (itr_setting) {
648 	case lowest_latency:
649 		/* handle TSO and jumbo frames */
650 		if (bytes/packets > 8000)
651 			retval = bulk_latency;
652 		else if ((packets < 5) && (bytes > 512))
653 			retval = low_latency;
654 		break;
655 	case low_latency:  /* 50 usec aka 20000 ints/s */
656 		if (bytes > 10000) {
657 			/* this if handles the TSO accounting */
658 			if (bytes/packets > 8000)
659 				retval = bulk_latency;
660 			else if ((packets < 10) || ((bytes/packets) > 1200))
661 				retval = bulk_latency;
662 			else if ((packets > 35))
663 				retval = lowest_latency;
664 		} else if (bytes/packets > 2000) {
665 			retval = bulk_latency;
666 		} else if (packets <= 2 && bytes < 512) {
667 			retval = lowest_latency;
668 		}
669 		break;
670 	case bulk_latency: /* 250 usec aka 4000 ints/s */
671 		if (bytes > 25000) {
672 			if (packets > 35)
673 				retval = low_latency;
674 		} else if (bytes < 6000) {
675 			retval = low_latency;
676 		}
677 		break;
678 	}
679 
680 update_itr_done:
681 	return retval;
682 }
683 
igbvf_set_itr(struct igbvf_adapter * adapter)684 static void igbvf_set_itr(struct igbvf_adapter *adapter)
685 {
686 	struct e1000_hw *hw = &adapter->hw;
687 	u16 current_itr;
688 	u32 new_itr = adapter->itr;
689 
690 	adapter->tx_itr = igbvf_update_itr(adapter, adapter->tx_itr,
691 	                                   adapter->total_tx_packets,
692 	                                   adapter->total_tx_bytes);
693 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
694 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
695 		adapter->tx_itr = low_latency;
696 
697 	adapter->rx_itr = igbvf_update_itr(adapter, adapter->rx_itr,
698 	                                   adapter->total_rx_packets,
699 	                                   adapter->total_rx_bytes);
700 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
701 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
702 		adapter->rx_itr = low_latency;
703 
704 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
705 
706 	switch (current_itr) {
707 	/* counts and packets in update_itr are dependent on these numbers */
708 	case lowest_latency:
709 		new_itr = 70000;
710 		break;
711 	case low_latency:
712 		new_itr = 20000; /* aka hwitr = ~200 */
713 		break;
714 	case bulk_latency:
715 		new_itr = 4000;
716 		break;
717 	default:
718 		break;
719 	}
720 
721 	if (new_itr != adapter->itr) {
722 		/*
723 		 * this attempts to bias the interrupt rate towards Bulk
724 		 * by adding intermediate steps when interrupt rate is
725 		 * increasing
726 		 */
727 		new_itr = new_itr > adapter->itr ?
728 		             min(adapter->itr + (new_itr >> 2), new_itr) :
729 		             new_itr;
730 		adapter->itr = new_itr;
731 		adapter->rx_ring->itr_val = 1952;
732 
733 		if (adapter->msix_entries)
734 			adapter->rx_ring->set_itr = 1;
735 		else
736 			ew32(ITR, 1952);
737 	}
738 }
739 
740 /**
741  * igbvf_clean_tx_irq - Reclaim resources after transmit completes
742  * @adapter: board private structure
743  * returns true if ring is completely cleaned
744  **/
igbvf_clean_tx_irq(struct igbvf_ring * tx_ring)745 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
746 {
747 	struct igbvf_adapter *adapter = tx_ring->adapter;
748 	struct net_device *netdev = adapter->netdev;
749 	struct igbvf_buffer *buffer_info;
750 	struct sk_buff *skb;
751 	union e1000_adv_tx_desc *tx_desc, *eop_desc;
752 	unsigned int total_bytes = 0, total_packets = 0;
753 	unsigned int i, eop, count = 0;
754 	bool cleaned = false;
755 
756 	i = tx_ring->next_to_clean;
757 	eop = tx_ring->buffer_info[i].next_to_watch;
758 	eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
759 
760 	while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
761 	       (count < tx_ring->count)) {
762 		rmb();	/* read buffer_info after eop_desc status */
763 		for (cleaned = false; !cleaned; count++) {
764 			tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
765 			buffer_info = &tx_ring->buffer_info[i];
766 			cleaned = (i == eop);
767 			skb = buffer_info->skb;
768 
769 			if (skb) {
770 				unsigned int segs, bytecount;
771 
772 				/* gso_segs is currently only valid for tcp */
773 				segs = skb_shinfo(skb)->gso_segs ?: 1;
774 				/* multiply data chunks by size of headers */
775 				bytecount = ((segs - 1) * skb_headlen(skb)) +
776 				            skb->len;
777 				total_packets += segs;
778 				total_bytes += bytecount;
779 			}
780 
781 			igbvf_put_txbuf(adapter, buffer_info);
782 			tx_desc->wb.status = 0;
783 
784 			i++;
785 			if (i == tx_ring->count)
786 				i = 0;
787 		}
788 		eop = tx_ring->buffer_info[i].next_to_watch;
789 		eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
790 	}
791 
792 	tx_ring->next_to_clean = i;
793 
794 	if (unlikely(count &&
795 	             netif_carrier_ok(netdev) &&
796 	             igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
797 		/* Make sure that anybody stopping the queue after this
798 		 * sees the new next_to_clean.
799 		 */
800 		smp_mb();
801 		if (netif_queue_stopped(netdev) &&
802 		    !(test_bit(__IGBVF_DOWN, &adapter->state))) {
803 			netif_wake_queue(netdev);
804 			++adapter->restart_queue;
805 		}
806 	}
807 
808 	adapter->net_stats.tx_bytes += total_bytes;
809 	adapter->net_stats.tx_packets += total_packets;
810 	return count < tx_ring->count;
811 }
812 
igbvf_msix_other(int irq,void * data)813 static irqreturn_t igbvf_msix_other(int irq, void *data)
814 {
815 	struct net_device *netdev = data;
816 	struct igbvf_adapter *adapter = netdev_priv(netdev);
817 	struct e1000_hw *hw = &adapter->hw;
818 
819 	adapter->int_counter1++;
820 
821 	netif_carrier_off(netdev);
822 	hw->mac.get_link_status = 1;
823 	if (!test_bit(__IGBVF_DOWN, &adapter->state))
824 		mod_timer(&adapter->watchdog_timer, jiffies + 1);
825 
826 	ew32(EIMS, adapter->eims_other);
827 
828 	return IRQ_HANDLED;
829 }
830 
igbvf_intr_msix_tx(int irq,void * data)831 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
832 {
833 	struct net_device *netdev = data;
834 	struct igbvf_adapter *adapter = netdev_priv(netdev);
835 	struct e1000_hw *hw = &adapter->hw;
836 	struct igbvf_ring *tx_ring = adapter->tx_ring;
837 
838 
839 	adapter->total_tx_bytes = 0;
840 	adapter->total_tx_packets = 0;
841 
842 	/* auto mask will automatically reenable the interrupt when we write
843 	 * EICS */
844 	if (!igbvf_clean_tx_irq(tx_ring))
845 		/* Ring was not completely cleaned, so fire another interrupt */
846 		ew32(EICS, tx_ring->eims_value);
847 	else
848 		ew32(EIMS, tx_ring->eims_value);
849 
850 	return IRQ_HANDLED;
851 }
852 
igbvf_intr_msix_rx(int irq,void * data)853 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
854 {
855 	struct net_device *netdev = data;
856 	struct igbvf_adapter *adapter = netdev_priv(netdev);
857 
858 	adapter->int_counter0++;
859 
860 	/* Write the ITR value calculated at the end of the
861 	 * previous interrupt.
862 	 */
863 	if (adapter->rx_ring->set_itr) {
864 		writel(adapter->rx_ring->itr_val,
865 		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
866 		adapter->rx_ring->set_itr = 0;
867 	}
868 
869 	if (napi_schedule_prep(&adapter->rx_ring->napi)) {
870 		adapter->total_rx_bytes = 0;
871 		adapter->total_rx_packets = 0;
872 		__napi_schedule(&adapter->rx_ring->napi);
873 	}
874 
875 	return IRQ_HANDLED;
876 }
877 
878 #define IGBVF_NO_QUEUE -1
879 
igbvf_assign_vector(struct igbvf_adapter * adapter,int rx_queue,int tx_queue,int msix_vector)880 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
881                                 int tx_queue, int msix_vector)
882 {
883 	struct e1000_hw *hw = &adapter->hw;
884 	u32 ivar, index;
885 
886 	/* 82576 uses a table-based method for assigning vectors.
887 	   Each queue has a single entry in the table to which we write
888 	   a vector number along with a "valid" bit.  Sadly, the layout
889 	   of the table is somewhat counterintuitive. */
890 	if (rx_queue > IGBVF_NO_QUEUE) {
891 		index = (rx_queue >> 1);
892 		ivar = array_er32(IVAR0, index);
893 		if (rx_queue & 0x1) {
894 			/* vector goes into third byte of register */
895 			ivar = ivar & 0xFF00FFFF;
896 			ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
897 		} else {
898 			/* vector goes into low byte of register */
899 			ivar = ivar & 0xFFFFFF00;
900 			ivar |= msix_vector | E1000_IVAR_VALID;
901 		}
902 		adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
903 		array_ew32(IVAR0, index, ivar);
904 	}
905 	if (tx_queue > IGBVF_NO_QUEUE) {
906 		index = (tx_queue >> 1);
907 		ivar = array_er32(IVAR0, index);
908 		if (tx_queue & 0x1) {
909 			/* vector goes into high byte of register */
910 			ivar = ivar & 0x00FFFFFF;
911 			ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
912 		} else {
913 			/* vector goes into second byte of register */
914 			ivar = ivar & 0xFFFF00FF;
915 			ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
916 		}
917 		adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
918 		array_ew32(IVAR0, index, ivar);
919 	}
920 }
921 
922 /**
923  * igbvf_configure_msix - Configure MSI-X hardware
924  *
925  * igbvf_configure_msix sets up the hardware to properly
926  * generate MSI-X interrupts.
927  **/
igbvf_configure_msix(struct igbvf_adapter * adapter)928 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
929 {
930 	u32 tmp;
931 	struct e1000_hw *hw = &adapter->hw;
932 	struct igbvf_ring *tx_ring = adapter->tx_ring;
933 	struct igbvf_ring *rx_ring = adapter->rx_ring;
934 	int vector = 0;
935 
936 	adapter->eims_enable_mask = 0;
937 
938 	igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
939 	adapter->eims_enable_mask |= tx_ring->eims_value;
940 	if (tx_ring->itr_val)
941 		writel(tx_ring->itr_val,
942 		       hw->hw_addr + tx_ring->itr_register);
943 	else
944 		writel(1952, hw->hw_addr + tx_ring->itr_register);
945 
946 	igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
947 	adapter->eims_enable_mask |= rx_ring->eims_value;
948 	if (rx_ring->itr_val)
949 		writel(rx_ring->itr_val,
950 		       hw->hw_addr + rx_ring->itr_register);
951 	else
952 		writel(1952, hw->hw_addr + rx_ring->itr_register);
953 
954 	/* set vector for other causes, i.e. link changes */
955 
956 	tmp = (vector++ | E1000_IVAR_VALID);
957 
958 	ew32(IVAR_MISC, tmp);
959 
960 	adapter->eims_enable_mask = (1 << (vector)) - 1;
961 	adapter->eims_other = 1 << (vector - 1);
962 	e1e_flush();
963 }
964 
igbvf_reset_interrupt_capability(struct igbvf_adapter * adapter)965 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
966 {
967 	if (adapter->msix_entries) {
968 		pci_disable_msix(adapter->pdev);
969 		kfree(adapter->msix_entries);
970 		adapter->msix_entries = NULL;
971 	}
972 }
973 
974 /**
975  * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
976  *
977  * Attempt to configure interrupts using the best available
978  * capabilities of the hardware and kernel.
979  **/
igbvf_set_interrupt_capability(struct igbvf_adapter * adapter)980 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
981 {
982 	int err = -ENOMEM;
983 	int i;
984 
985 	/* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
986 	adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
987 	                                GFP_KERNEL);
988 	if (adapter->msix_entries) {
989 		for (i = 0; i < 3; i++)
990 			adapter->msix_entries[i].entry = i;
991 
992 		err = pci_enable_msix(adapter->pdev,
993 		                      adapter->msix_entries, 3);
994 	}
995 
996 	if (err) {
997 		/* MSI-X failed */
998 		dev_err(&adapter->pdev->dev,
999 		        "Failed to initialize MSI-X interrupts.\n");
1000 		igbvf_reset_interrupt_capability(adapter);
1001 	}
1002 }
1003 
1004 /**
1005  * igbvf_request_msix - Initialize MSI-X interrupts
1006  *
1007  * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1008  * kernel.
1009  **/
igbvf_request_msix(struct igbvf_adapter * adapter)1010 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1011 {
1012 	struct net_device *netdev = adapter->netdev;
1013 	int err = 0, vector = 0;
1014 
1015 	if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1016 		sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1017 		sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1018 	} else {
1019 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1020 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1021 	}
1022 
1023 	err = request_irq(adapter->msix_entries[vector].vector,
1024 	                  igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1025 	                  netdev);
1026 	if (err)
1027 		goto out;
1028 
1029 	adapter->tx_ring->itr_register = E1000_EITR(vector);
1030 	adapter->tx_ring->itr_val = 1952;
1031 	vector++;
1032 
1033 	err = request_irq(adapter->msix_entries[vector].vector,
1034 	                  igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1035 	                  netdev);
1036 	if (err)
1037 		goto out;
1038 
1039 	adapter->rx_ring->itr_register = E1000_EITR(vector);
1040 	adapter->rx_ring->itr_val = 1952;
1041 	vector++;
1042 
1043 	err = request_irq(adapter->msix_entries[vector].vector,
1044 	                  igbvf_msix_other, 0, netdev->name, netdev);
1045 	if (err)
1046 		goto out;
1047 
1048 	igbvf_configure_msix(adapter);
1049 	return 0;
1050 out:
1051 	return err;
1052 }
1053 
1054 /**
1055  * igbvf_alloc_queues - Allocate memory for all rings
1056  * @adapter: board private structure to initialize
1057  **/
igbvf_alloc_queues(struct igbvf_adapter * adapter)1058 static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter)
1059 {
1060 	struct net_device *netdev = adapter->netdev;
1061 
1062 	adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1063 	if (!adapter->tx_ring)
1064 		return -ENOMEM;
1065 
1066 	adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1067 	if (!adapter->rx_ring) {
1068 		kfree(adapter->tx_ring);
1069 		return -ENOMEM;
1070 	}
1071 
1072 	netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1073 
1074 	return 0;
1075 }
1076 
1077 /**
1078  * igbvf_request_irq - initialize interrupts
1079  *
1080  * Attempts to configure interrupts using the best available
1081  * capabilities of the hardware and kernel.
1082  **/
igbvf_request_irq(struct igbvf_adapter * adapter)1083 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1084 {
1085 	int err = -1;
1086 
1087 	/* igbvf supports msi-x only */
1088 	if (adapter->msix_entries)
1089 		err = igbvf_request_msix(adapter);
1090 
1091 	if (!err)
1092 		return err;
1093 
1094 	dev_err(&adapter->pdev->dev,
1095 	        "Unable to allocate interrupt, Error: %d\n", err);
1096 
1097 	return err;
1098 }
1099 
igbvf_free_irq(struct igbvf_adapter * adapter)1100 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1101 {
1102 	struct net_device *netdev = adapter->netdev;
1103 	int vector;
1104 
1105 	if (adapter->msix_entries) {
1106 		for (vector = 0; vector < 3; vector++)
1107 			free_irq(adapter->msix_entries[vector].vector, netdev);
1108 	}
1109 }
1110 
1111 /**
1112  * igbvf_irq_disable - Mask off interrupt generation on the NIC
1113  **/
igbvf_irq_disable(struct igbvf_adapter * adapter)1114 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1115 {
1116 	struct e1000_hw *hw = &adapter->hw;
1117 
1118 	ew32(EIMC, ~0);
1119 
1120 	if (adapter->msix_entries)
1121 		ew32(EIAC, 0);
1122 }
1123 
1124 /**
1125  * igbvf_irq_enable - Enable default interrupt generation settings
1126  **/
igbvf_irq_enable(struct igbvf_adapter * adapter)1127 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1128 {
1129 	struct e1000_hw *hw = &adapter->hw;
1130 
1131 	ew32(EIAC, adapter->eims_enable_mask);
1132 	ew32(EIAM, adapter->eims_enable_mask);
1133 	ew32(EIMS, adapter->eims_enable_mask);
1134 }
1135 
1136 /**
1137  * igbvf_poll - NAPI Rx polling callback
1138  * @napi: struct associated with this polling callback
1139  * @budget: amount of packets driver is allowed to process this poll
1140  **/
igbvf_poll(struct napi_struct * napi,int budget)1141 static int igbvf_poll(struct napi_struct *napi, int budget)
1142 {
1143 	struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1144 	struct igbvf_adapter *adapter = rx_ring->adapter;
1145 	struct e1000_hw *hw = &adapter->hw;
1146 	int work_done = 0;
1147 
1148 	igbvf_clean_rx_irq(adapter, &work_done, budget);
1149 
1150 	/* If not enough Rx work done, exit the polling mode */
1151 	if (work_done < budget) {
1152 		napi_complete(napi);
1153 
1154 		if (adapter->itr_setting & 3)
1155 			igbvf_set_itr(adapter);
1156 
1157 		if (!test_bit(__IGBVF_DOWN, &adapter->state))
1158 			ew32(EIMS, adapter->rx_ring->eims_value);
1159 	}
1160 
1161 	return work_done;
1162 }
1163 
1164 /**
1165  * igbvf_set_rlpml - set receive large packet maximum length
1166  * @adapter: board private structure
1167  *
1168  * Configure the maximum size of packets that will be received
1169  */
igbvf_set_rlpml(struct igbvf_adapter * adapter)1170 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1171 {
1172 	int max_frame_size;
1173 	struct e1000_hw *hw = &adapter->hw;
1174 
1175 	max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1176 	e1000_rlpml_set_vf(hw, max_frame_size);
1177 }
1178 
igbvf_vlan_rx_add_vid(struct net_device * netdev,u16 vid)1179 static int igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1180 {
1181 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1182 	struct e1000_hw *hw = &adapter->hw;
1183 
1184 	if (hw->mac.ops.set_vfta(hw, vid, true)) {
1185 		dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1186 		return -EINVAL;
1187 	}
1188 	set_bit(vid, adapter->active_vlans);
1189 	return 0;
1190 }
1191 
igbvf_vlan_rx_kill_vid(struct net_device * netdev,u16 vid)1192 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1193 {
1194 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1195 	struct e1000_hw *hw = &adapter->hw;
1196 
1197 	if (hw->mac.ops.set_vfta(hw, vid, false)) {
1198 		dev_err(&adapter->pdev->dev,
1199 		        "Failed to remove vlan id %d\n", vid);
1200 		return -EINVAL;
1201 	}
1202 	clear_bit(vid, adapter->active_vlans);
1203 	return 0;
1204 }
1205 
igbvf_restore_vlan(struct igbvf_adapter * adapter)1206 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1207 {
1208 	u16 vid;
1209 
1210 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1211 		igbvf_vlan_rx_add_vid(adapter->netdev, vid);
1212 }
1213 
1214 /**
1215  * igbvf_configure_tx - Configure Transmit Unit after Reset
1216  * @adapter: board private structure
1217  *
1218  * Configure the Tx unit of the MAC after a reset.
1219  **/
igbvf_configure_tx(struct igbvf_adapter * adapter)1220 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1221 {
1222 	struct e1000_hw *hw = &adapter->hw;
1223 	struct igbvf_ring *tx_ring = adapter->tx_ring;
1224 	u64 tdba;
1225 	u32 txdctl, dca_txctrl;
1226 
1227 	/* disable transmits */
1228 	txdctl = er32(TXDCTL(0));
1229 	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1230 	e1e_flush();
1231 	msleep(10);
1232 
1233 	/* Setup the HW Tx Head and Tail descriptor pointers */
1234 	ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1235 	tdba = tx_ring->dma;
1236 	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1237 	ew32(TDBAH(0), (tdba >> 32));
1238 	ew32(TDH(0), 0);
1239 	ew32(TDT(0), 0);
1240 	tx_ring->head = E1000_TDH(0);
1241 	tx_ring->tail = E1000_TDT(0);
1242 
1243 	/* Turn off Relaxed Ordering on head write-backs.  The writebacks
1244 	 * MUST be delivered in order or it will completely screw up
1245 	 * our bookeeping.
1246 	 */
1247 	dca_txctrl = er32(DCA_TXCTRL(0));
1248 	dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1249 	ew32(DCA_TXCTRL(0), dca_txctrl);
1250 
1251 	/* enable transmits */
1252 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1253 	ew32(TXDCTL(0), txdctl);
1254 
1255 	/* Setup Transmit Descriptor Settings for eop descriptor */
1256 	adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1257 
1258 	/* enable Report Status bit */
1259 	adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1260 }
1261 
1262 /**
1263  * igbvf_setup_srrctl - configure the receive control registers
1264  * @adapter: Board private structure
1265  **/
igbvf_setup_srrctl(struct igbvf_adapter * adapter)1266 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1267 {
1268 	struct e1000_hw *hw = &adapter->hw;
1269 	u32 srrctl = 0;
1270 
1271 	srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1272 	            E1000_SRRCTL_BSIZEHDR_MASK |
1273 	            E1000_SRRCTL_BSIZEPKT_MASK);
1274 
1275 	/* Enable queue drop to avoid head of line blocking */
1276 	srrctl |= E1000_SRRCTL_DROP_EN;
1277 
1278 	/* Setup buffer sizes */
1279 	srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1280 	          E1000_SRRCTL_BSIZEPKT_SHIFT;
1281 
1282 	if (adapter->rx_buffer_len < 2048) {
1283 		adapter->rx_ps_hdr_size = 0;
1284 		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1285 	} else {
1286 		adapter->rx_ps_hdr_size = 128;
1287 		srrctl |= adapter->rx_ps_hdr_size <<
1288 		          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1289 		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1290 	}
1291 
1292 	ew32(SRRCTL(0), srrctl);
1293 }
1294 
1295 /**
1296  * igbvf_configure_rx - Configure Receive Unit after Reset
1297  * @adapter: board private structure
1298  *
1299  * Configure the Rx unit of the MAC after a reset.
1300  **/
igbvf_configure_rx(struct igbvf_adapter * adapter)1301 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1302 {
1303 	struct e1000_hw *hw = &adapter->hw;
1304 	struct igbvf_ring *rx_ring = adapter->rx_ring;
1305 	u64 rdba;
1306 	u32 rdlen, rxdctl;
1307 
1308 	/* disable receives */
1309 	rxdctl = er32(RXDCTL(0));
1310 	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1311 	e1e_flush();
1312 	msleep(10);
1313 
1314 	rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1315 
1316 	/*
1317 	 * Setup the HW Rx Head and Tail Descriptor Pointers and
1318 	 * the Base and Length of the Rx Descriptor Ring
1319 	 */
1320 	rdba = rx_ring->dma;
1321 	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1322 	ew32(RDBAH(0), (rdba >> 32));
1323 	ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1324 	rx_ring->head = E1000_RDH(0);
1325 	rx_ring->tail = E1000_RDT(0);
1326 	ew32(RDH(0), 0);
1327 	ew32(RDT(0), 0);
1328 
1329 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1330 	rxdctl &= 0xFFF00000;
1331 	rxdctl |= IGBVF_RX_PTHRESH;
1332 	rxdctl |= IGBVF_RX_HTHRESH << 8;
1333 	rxdctl |= IGBVF_RX_WTHRESH << 16;
1334 
1335 	igbvf_set_rlpml(adapter);
1336 
1337 	/* enable receives */
1338 	ew32(RXDCTL(0), rxdctl);
1339 }
1340 
1341 /**
1342  * igbvf_set_multi - Multicast and Promiscuous mode set
1343  * @netdev: network interface device structure
1344  *
1345  * The set_multi entry point is called whenever the multicast address
1346  * list or the network interface flags are updated.  This routine is
1347  * responsible for configuring the hardware for proper multicast,
1348  * promiscuous mode, and all-multi behavior.
1349  **/
igbvf_set_multi(struct net_device * netdev)1350 static void igbvf_set_multi(struct net_device *netdev)
1351 {
1352 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1353 	struct e1000_hw *hw = &adapter->hw;
1354 	struct netdev_hw_addr *ha;
1355 	u8  *mta_list = NULL;
1356 	int i;
1357 
1358 	if (!netdev_mc_empty(netdev)) {
1359 		mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
1360 		if (!mta_list) {
1361 			dev_err(&adapter->pdev->dev,
1362 			        "failed to allocate multicast filter list\n");
1363 			return;
1364 		}
1365 	}
1366 
1367 	/* prepare a packed array of only addresses. */
1368 	i = 0;
1369 	netdev_for_each_mc_addr(ha, netdev)
1370 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1371 
1372 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1373 	kfree(mta_list);
1374 }
1375 
1376 /**
1377  * igbvf_configure - configure the hardware for Rx and Tx
1378  * @adapter: private board structure
1379  **/
igbvf_configure(struct igbvf_adapter * adapter)1380 static void igbvf_configure(struct igbvf_adapter *adapter)
1381 {
1382 	igbvf_set_multi(adapter->netdev);
1383 
1384 	igbvf_restore_vlan(adapter);
1385 
1386 	igbvf_configure_tx(adapter);
1387 	igbvf_setup_srrctl(adapter);
1388 	igbvf_configure_rx(adapter);
1389 	igbvf_alloc_rx_buffers(adapter->rx_ring,
1390 	                       igbvf_desc_unused(adapter->rx_ring));
1391 }
1392 
1393 /* igbvf_reset - bring the hardware into a known good state
1394  *
1395  * This function boots the hardware and enables some settings that
1396  * require a configuration cycle of the hardware - those cannot be
1397  * set/changed during runtime. After reset the device needs to be
1398  * properly configured for Rx, Tx etc.
1399  */
igbvf_reset(struct igbvf_adapter * adapter)1400 static void igbvf_reset(struct igbvf_adapter *adapter)
1401 {
1402 	struct e1000_mac_info *mac = &adapter->hw.mac;
1403 	struct net_device *netdev = adapter->netdev;
1404 	struct e1000_hw *hw = &adapter->hw;
1405 
1406 	/* Allow time for pending master requests to run */
1407 	if (mac->ops.reset_hw(hw))
1408 		dev_err(&adapter->pdev->dev, "PF still resetting\n");
1409 
1410 	mac->ops.init_hw(hw);
1411 
1412 	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1413 		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1414 		       netdev->addr_len);
1415 		memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1416 		       netdev->addr_len);
1417 	}
1418 
1419 	adapter->last_reset = jiffies;
1420 }
1421 
igbvf_up(struct igbvf_adapter * adapter)1422 int igbvf_up(struct igbvf_adapter *adapter)
1423 {
1424 	struct e1000_hw *hw = &adapter->hw;
1425 
1426 	/* hardware has been reset, we need to reload some things */
1427 	igbvf_configure(adapter);
1428 
1429 	clear_bit(__IGBVF_DOWN, &adapter->state);
1430 
1431 	napi_enable(&adapter->rx_ring->napi);
1432 	if (adapter->msix_entries)
1433 		igbvf_configure_msix(adapter);
1434 
1435 	/* Clear any pending interrupts. */
1436 	er32(EICR);
1437 	igbvf_irq_enable(adapter);
1438 
1439 	/* start the watchdog */
1440 	hw->mac.get_link_status = 1;
1441 	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1442 
1443 
1444 	return 0;
1445 }
1446 
igbvf_down(struct igbvf_adapter * adapter)1447 void igbvf_down(struct igbvf_adapter *adapter)
1448 {
1449 	struct net_device *netdev = adapter->netdev;
1450 	struct e1000_hw *hw = &adapter->hw;
1451 	u32 rxdctl, txdctl;
1452 
1453 	/*
1454 	 * signal that we're down so the interrupt handler does not
1455 	 * reschedule our watchdog timer
1456 	 */
1457 	set_bit(__IGBVF_DOWN, &adapter->state);
1458 
1459 	/* disable receives in the hardware */
1460 	rxdctl = er32(RXDCTL(0));
1461 	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1462 
1463 	netif_stop_queue(netdev);
1464 
1465 	/* disable transmits in the hardware */
1466 	txdctl = er32(TXDCTL(0));
1467 	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1468 
1469 	/* flush both disables and wait for them to finish */
1470 	e1e_flush();
1471 	msleep(10);
1472 
1473 	napi_disable(&adapter->rx_ring->napi);
1474 
1475 	igbvf_irq_disable(adapter);
1476 
1477 	del_timer_sync(&adapter->watchdog_timer);
1478 
1479 	netif_carrier_off(netdev);
1480 
1481 	/* record the stats before reset*/
1482 	igbvf_update_stats(adapter);
1483 
1484 	adapter->link_speed = 0;
1485 	adapter->link_duplex = 0;
1486 
1487 	igbvf_reset(adapter);
1488 	igbvf_clean_tx_ring(adapter->tx_ring);
1489 	igbvf_clean_rx_ring(adapter->rx_ring);
1490 }
1491 
igbvf_reinit_locked(struct igbvf_adapter * adapter)1492 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1493 {
1494 	might_sleep();
1495 	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1496 		msleep(1);
1497 	igbvf_down(adapter);
1498 	igbvf_up(adapter);
1499 	clear_bit(__IGBVF_RESETTING, &adapter->state);
1500 }
1501 
1502 /**
1503  * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1504  * @adapter: board private structure to initialize
1505  *
1506  * igbvf_sw_init initializes the Adapter private data structure.
1507  * Fields are initialized based on PCI device information and
1508  * OS network device settings (MTU size).
1509  **/
igbvf_sw_init(struct igbvf_adapter * adapter)1510 static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter)
1511 {
1512 	struct net_device *netdev = adapter->netdev;
1513 	s32 rc;
1514 
1515 	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1516 	adapter->rx_ps_hdr_size = 0;
1517 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1518 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1519 
1520 	adapter->tx_int_delay = 8;
1521 	adapter->tx_abs_int_delay = 32;
1522 	adapter->rx_int_delay = 0;
1523 	adapter->rx_abs_int_delay = 8;
1524 	adapter->itr_setting = 3;
1525 	adapter->itr = 20000;
1526 
1527 	/* Set various function pointers */
1528 	adapter->ei->init_ops(&adapter->hw);
1529 
1530 	rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1531 	if (rc)
1532 		return rc;
1533 
1534 	rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1535 	if (rc)
1536 		return rc;
1537 
1538 	igbvf_set_interrupt_capability(adapter);
1539 
1540 	if (igbvf_alloc_queues(adapter))
1541 		return -ENOMEM;
1542 
1543 	spin_lock_init(&adapter->tx_queue_lock);
1544 
1545 	/* Explicitly disable IRQ since the NIC can be in any state. */
1546 	igbvf_irq_disable(adapter);
1547 
1548 	spin_lock_init(&adapter->stats_lock);
1549 
1550 	set_bit(__IGBVF_DOWN, &adapter->state);
1551 	return 0;
1552 }
1553 
igbvf_initialize_last_counter_stats(struct igbvf_adapter * adapter)1554 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1555 {
1556 	struct e1000_hw *hw = &adapter->hw;
1557 
1558 	adapter->stats.last_gprc = er32(VFGPRC);
1559 	adapter->stats.last_gorc = er32(VFGORC);
1560 	adapter->stats.last_gptc = er32(VFGPTC);
1561 	adapter->stats.last_gotc = er32(VFGOTC);
1562 	adapter->stats.last_mprc = er32(VFMPRC);
1563 	adapter->stats.last_gotlbc = er32(VFGOTLBC);
1564 	adapter->stats.last_gptlbc = er32(VFGPTLBC);
1565 	adapter->stats.last_gorlbc = er32(VFGORLBC);
1566 	adapter->stats.last_gprlbc = er32(VFGPRLBC);
1567 
1568 	adapter->stats.base_gprc = er32(VFGPRC);
1569 	adapter->stats.base_gorc = er32(VFGORC);
1570 	adapter->stats.base_gptc = er32(VFGPTC);
1571 	adapter->stats.base_gotc = er32(VFGOTC);
1572 	adapter->stats.base_mprc = er32(VFMPRC);
1573 	adapter->stats.base_gotlbc = er32(VFGOTLBC);
1574 	adapter->stats.base_gptlbc = er32(VFGPTLBC);
1575 	adapter->stats.base_gorlbc = er32(VFGORLBC);
1576 	adapter->stats.base_gprlbc = er32(VFGPRLBC);
1577 }
1578 
1579 /**
1580  * igbvf_open - Called when a network interface is made active
1581  * @netdev: network interface device structure
1582  *
1583  * Returns 0 on success, negative value on failure
1584  *
1585  * The open entry point is called when a network interface is made
1586  * active by the system (IFF_UP).  At this point all resources needed
1587  * for transmit and receive operations are allocated, the interrupt
1588  * handler is registered with the OS, the watchdog timer is started,
1589  * and the stack is notified that the interface is ready.
1590  **/
igbvf_open(struct net_device * netdev)1591 static int igbvf_open(struct net_device *netdev)
1592 {
1593 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1594 	struct e1000_hw *hw = &adapter->hw;
1595 	int err;
1596 
1597 	/* disallow open during test */
1598 	if (test_bit(__IGBVF_TESTING, &adapter->state))
1599 		return -EBUSY;
1600 
1601 	/* allocate transmit descriptors */
1602 	err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1603 	if (err)
1604 		goto err_setup_tx;
1605 
1606 	/* allocate receive descriptors */
1607 	err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1608 	if (err)
1609 		goto err_setup_rx;
1610 
1611 	/*
1612 	 * before we allocate an interrupt, we must be ready to handle it.
1613 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1614 	 * as soon as we call pci_request_irq, so we have to setup our
1615 	 * clean_rx handler before we do so.
1616 	 */
1617 	igbvf_configure(adapter);
1618 
1619 	err = igbvf_request_irq(adapter);
1620 	if (err)
1621 		goto err_req_irq;
1622 
1623 	/* From here on the code is the same as igbvf_up() */
1624 	clear_bit(__IGBVF_DOWN, &adapter->state);
1625 
1626 	napi_enable(&adapter->rx_ring->napi);
1627 
1628 	/* clear any pending interrupts */
1629 	er32(EICR);
1630 
1631 	igbvf_irq_enable(adapter);
1632 
1633 	/* start the watchdog */
1634 	hw->mac.get_link_status = 1;
1635 	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1636 
1637 	return 0;
1638 
1639 err_req_irq:
1640 	igbvf_free_rx_resources(adapter->rx_ring);
1641 err_setup_rx:
1642 	igbvf_free_tx_resources(adapter->tx_ring);
1643 err_setup_tx:
1644 	igbvf_reset(adapter);
1645 
1646 	return err;
1647 }
1648 
1649 /**
1650  * igbvf_close - Disables a network interface
1651  * @netdev: network interface device structure
1652  *
1653  * Returns 0, this is not allowed to fail
1654  *
1655  * The close entry point is called when an interface is de-activated
1656  * by the OS.  The hardware is still under the drivers control, but
1657  * needs to be disabled.  A global MAC reset is issued to stop the
1658  * hardware, and all transmit and receive resources are freed.
1659  **/
igbvf_close(struct net_device * netdev)1660 static int igbvf_close(struct net_device *netdev)
1661 {
1662 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1663 
1664 	WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1665 	igbvf_down(adapter);
1666 
1667 	igbvf_free_irq(adapter);
1668 
1669 	igbvf_free_tx_resources(adapter->tx_ring);
1670 	igbvf_free_rx_resources(adapter->rx_ring);
1671 
1672 	return 0;
1673 }
1674 /**
1675  * igbvf_set_mac - Change the Ethernet Address of the NIC
1676  * @netdev: network interface device structure
1677  * @p: pointer to an address structure
1678  *
1679  * Returns 0 on success, negative on failure
1680  **/
igbvf_set_mac(struct net_device * netdev,void * p)1681 static int igbvf_set_mac(struct net_device *netdev, void *p)
1682 {
1683 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1684 	struct e1000_hw *hw = &adapter->hw;
1685 	struct sockaddr *addr = p;
1686 
1687 	if (!is_valid_ether_addr(addr->sa_data))
1688 		return -EADDRNOTAVAIL;
1689 
1690 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1691 
1692 	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1693 
1694 	if (memcmp(addr->sa_data, hw->mac.addr, 6))
1695 		return -EADDRNOTAVAIL;
1696 
1697 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1698 
1699 	return 0;
1700 }
1701 
1702 #define UPDATE_VF_COUNTER(reg, name)                                    \
1703 	{                                                               \
1704 		u32 current_counter = er32(reg);                        \
1705 		if (current_counter < adapter->stats.last_##name)       \
1706 			adapter->stats.name += 0x100000000LL;           \
1707 		adapter->stats.last_##name = current_counter;           \
1708 		adapter->stats.name &= 0xFFFFFFFF00000000LL;            \
1709 		adapter->stats.name |= current_counter;                 \
1710 	}
1711 
1712 /**
1713  * igbvf_update_stats - Update the board statistics counters
1714  * @adapter: board private structure
1715 **/
igbvf_update_stats(struct igbvf_adapter * adapter)1716 void igbvf_update_stats(struct igbvf_adapter *adapter)
1717 {
1718 	struct e1000_hw *hw = &adapter->hw;
1719 	struct pci_dev *pdev = adapter->pdev;
1720 
1721 	/*
1722 	 * Prevent stats update while adapter is being reset, link is down
1723 	 * or if the pci connection is down.
1724 	 */
1725 	if (adapter->link_speed == 0)
1726 		return;
1727 
1728 	if (test_bit(__IGBVF_RESETTING, &adapter->state))
1729 		return;
1730 
1731 	if (pci_channel_offline(pdev))
1732 		return;
1733 
1734 	UPDATE_VF_COUNTER(VFGPRC, gprc);
1735 	UPDATE_VF_COUNTER(VFGORC, gorc);
1736 	UPDATE_VF_COUNTER(VFGPTC, gptc);
1737 	UPDATE_VF_COUNTER(VFGOTC, gotc);
1738 	UPDATE_VF_COUNTER(VFMPRC, mprc);
1739 	UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1740 	UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1741 	UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1742 	UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1743 
1744 	/* Fill out the OS statistics structure */
1745 	adapter->net_stats.multicast = adapter->stats.mprc;
1746 }
1747 
igbvf_print_link_info(struct igbvf_adapter * adapter)1748 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1749 {
1750 	dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1751 		 adapter->link_speed,
1752 		 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1753 }
1754 
igbvf_has_link(struct igbvf_adapter * adapter)1755 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1756 {
1757 	struct e1000_hw *hw = &adapter->hw;
1758 	s32 ret_val = E1000_SUCCESS;
1759 	bool link_active;
1760 
1761 	/* If interface is down, stay link down */
1762 	if (test_bit(__IGBVF_DOWN, &adapter->state))
1763 		return false;
1764 
1765 	ret_val = hw->mac.ops.check_for_link(hw);
1766 	link_active = !hw->mac.get_link_status;
1767 
1768 	/* if check for link returns error we will need to reset */
1769 	if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1770 		schedule_work(&adapter->reset_task);
1771 
1772 	return link_active;
1773 }
1774 
1775 /**
1776  * igbvf_watchdog - Timer Call-back
1777  * @data: pointer to adapter cast into an unsigned long
1778  **/
igbvf_watchdog(unsigned long data)1779 static void igbvf_watchdog(unsigned long data)
1780 {
1781 	struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1782 
1783 	/* Do the rest outside of interrupt context */
1784 	schedule_work(&adapter->watchdog_task);
1785 }
1786 
igbvf_watchdog_task(struct work_struct * work)1787 static void igbvf_watchdog_task(struct work_struct *work)
1788 {
1789 	struct igbvf_adapter *adapter = container_of(work,
1790 	                                             struct igbvf_adapter,
1791 	                                             watchdog_task);
1792 	struct net_device *netdev = adapter->netdev;
1793 	struct e1000_mac_info *mac = &adapter->hw.mac;
1794 	struct igbvf_ring *tx_ring = adapter->tx_ring;
1795 	struct e1000_hw *hw = &adapter->hw;
1796 	u32 link;
1797 	int tx_pending = 0;
1798 
1799 	link = igbvf_has_link(adapter);
1800 
1801 	if (link) {
1802 		if (!netif_carrier_ok(netdev)) {
1803 			mac->ops.get_link_up_info(&adapter->hw,
1804 			                          &adapter->link_speed,
1805 			                          &adapter->link_duplex);
1806 			igbvf_print_link_info(adapter);
1807 
1808 			netif_carrier_on(netdev);
1809 			netif_wake_queue(netdev);
1810 		}
1811 	} else {
1812 		if (netif_carrier_ok(netdev)) {
1813 			adapter->link_speed = 0;
1814 			adapter->link_duplex = 0;
1815 			dev_info(&adapter->pdev->dev, "Link is Down\n");
1816 			netif_carrier_off(netdev);
1817 			netif_stop_queue(netdev);
1818 		}
1819 	}
1820 
1821 	if (netif_carrier_ok(netdev)) {
1822 		igbvf_update_stats(adapter);
1823 	} else {
1824 		tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1825 		              tx_ring->count);
1826 		if (tx_pending) {
1827 			/*
1828 			 * We've lost link, so the controller stops DMA,
1829 			 * but we've got queued Tx work that's never going
1830 			 * to get done, so reset controller to flush Tx.
1831 			 * (Do the reset outside of interrupt context).
1832 			 */
1833 			adapter->tx_timeout_count++;
1834 			schedule_work(&adapter->reset_task);
1835 		}
1836 	}
1837 
1838 	/* Cause software interrupt to ensure Rx ring is cleaned */
1839 	ew32(EICS, adapter->rx_ring->eims_value);
1840 
1841 	/* Reset the timer */
1842 	if (!test_bit(__IGBVF_DOWN, &adapter->state))
1843 		mod_timer(&adapter->watchdog_timer,
1844 			  round_jiffies(jiffies + (2 * HZ)));
1845 }
1846 
1847 #define IGBVF_TX_FLAGS_CSUM             0x00000001
1848 #define IGBVF_TX_FLAGS_VLAN             0x00000002
1849 #define IGBVF_TX_FLAGS_TSO              0x00000004
1850 #define IGBVF_TX_FLAGS_IPV4             0x00000008
1851 #define IGBVF_TX_FLAGS_VLAN_MASK        0xffff0000
1852 #define IGBVF_TX_FLAGS_VLAN_SHIFT       16
1853 
igbvf_tso(struct igbvf_adapter * adapter,struct igbvf_ring * tx_ring,struct sk_buff * skb,u32 tx_flags,u8 * hdr_len)1854 static int igbvf_tso(struct igbvf_adapter *adapter,
1855                      struct igbvf_ring *tx_ring,
1856                      struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1857 {
1858 	struct e1000_adv_tx_context_desc *context_desc;
1859 	unsigned int i;
1860 	int err;
1861 	struct igbvf_buffer *buffer_info;
1862 	u32 info = 0, tu_cmd = 0;
1863 	u32 mss_l4len_idx, l4len;
1864 	*hdr_len = 0;
1865 
1866 	if (skb_header_cloned(skb)) {
1867 		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1868 		if (err) {
1869 			dev_err(&adapter->pdev->dev,
1870 			        "igbvf_tso returning an error\n");
1871 			return err;
1872 		}
1873 	}
1874 
1875 	l4len = tcp_hdrlen(skb);
1876 	*hdr_len += l4len;
1877 
1878 	if (skb->protocol == htons(ETH_P_IP)) {
1879 		struct iphdr *iph = ip_hdr(skb);
1880 		iph->tot_len = 0;
1881 		iph->check = 0;
1882 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1883 		                                         iph->daddr, 0,
1884 		                                         IPPROTO_TCP,
1885 		                                         0);
1886 	} else if (skb_is_gso_v6(skb)) {
1887 		ipv6_hdr(skb)->payload_len = 0;
1888 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1889 		                                       &ipv6_hdr(skb)->daddr,
1890 		                                       0, IPPROTO_TCP, 0);
1891 	}
1892 
1893 	i = tx_ring->next_to_use;
1894 
1895 	buffer_info = &tx_ring->buffer_info[i];
1896 	context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1897 	/* VLAN MACLEN IPLEN */
1898 	if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1899 		info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1900 	info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1901 	*hdr_len += skb_network_offset(skb);
1902 	info |= (skb_transport_header(skb) - skb_network_header(skb));
1903 	*hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1904 	context_desc->vlan_macip_lens = cpu_to_le32(info);
1905 
1906 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1907 	tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1908 
1909 	if (skb->protocol == htons(ETH_P_IP))
1910 		tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1911 	tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1912 
1913 	context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1914 
1915 	/* MSS L4LEN IDX */
1916 	mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1917 	mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1918 
1919 	context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1920 	context_desc->seqnum_seed = 0;
1921 
1922 	buffer_info->time_stamp = jiffies;
1923 	buffer_info->next_to_watch = i;
1924 	buffer_info->dma = 0;
1925 	i++;
1926 	if (i == tx_ring->count)
1927 		i = 0;
1928 
1929 	tx_ring->next_to_use = i;
1930 
1931 	return true;
1932 }
1933 
igbvf_tx_csum(struct igbvf_adapter * adapter,struct igbvf_ring * tx_ring,struct sk_buff * skb,u32 tx_flags)1934 static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1935                                  struct igbvf_ring *tx_ring,
1936                                  struct sk_buff *skb, u32 tx_flags)
1937 {
1938 	struct e1000_adv_tx_context_desc *context_desc;
1939 	unsigned int i;
1940 	struct igbvf_buffer *buffer_info;
1941 	u32 info = 0, tu_cmd = 0;
1942 
1943 	if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
1944 	    (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
1945 		i = tx_ring->next_to_use;
1946 		buffer_info = &tx_ring->buffer_info[i];
1947 		context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1948 
1949 		if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1950 			info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1951 
1952 		info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1953 		if (skb->ip_summed == CHECKSUM_PARTIAL)
1954 			info |= (skb_transport_header(skb) -
1955 			         skb_network_header(skb));
1956 
1957 
1958 		context_desc->vlan_macip_lens = cpu_to_le32(info);
1959 
1960 		tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1961 
1962 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1963 			switch (skb->protocol) {
1964 			case __constant_htons(ETH_P_IP):
1965 				tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1966 				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
1967 					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1968 				break;
1969 			case __constant_htons(ETH_P_IPV6):
1970 				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
1971 					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1972 				break;
1973 			default:
1974 				break;
1975 			}
1976 		}
1977 
1978 		context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1979 		context_desc->seqnum_seed = 0;
1980 		context_desc->mss_l4len_idx = 0;
1981 
1982 		buffer_info->time_stamp = jiffies;
1983 		buffer_info->next_to_watch = i;
1984 		buffer_info->dma = 0;
1985 		i++;
1986 		if (i == tx_ring->count)
1987 			i = 0;
1988 		tx_ring->next_to_use = i;
1989 
1990 		return true;
1991 	}
1992 
1993 	return false;
1994 }
1995 
igbvf_maybe_stop_tx(struct net_device * netdev,int size)1996 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
1997 {
1998 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1999 
2000 	/* there is enough descriptors then we don't need to worry  */
2001 	if (igbvf_desc_unused(adapter->tx_ring) >= size)
2002 		return 0;
2003 
2004 	netif_stop_queue(netdev);
2005 
2006 	smp_mb();
2007 
2008 	/* We need to check again just in case room has been made available */
2009 	if (igbvf_desc_unused(adapter->tx_ring) < size)
2010 		return -EBUSY;
2011 
2012 	netif_wake_queue(netdev);
2013 
2014 	++adapter->restart_queue;
2015 	return 0;
2016 }
2017 
2018 #define IGBVF_MAX_TXD_PWR       16
2019 #define IGBVF_MAX_DATA_PER_TXD  (1 << IGBVF_MAX_TXD_PWR)
2020 
igbvf_tx_map_adv(struct igbvf_adapter * adapter,struct igbvf_ring * tx_ring,struct sk_buff * skb,unsigned int first)2021 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2022                                    struct igbvf_ring *tx_ring,
2023                                    struct sk_buff *skb,
2024                                    unsigned int first)
2025 {
2026 	struct igbvf_buffer *buffer_info;
2027 	struct pci_dev *pdev = adapter->pdev;
2028 	unsigned int len = skb_headlen(skb);
2029 	unsigned int count = 0, i;
2030 	unsigned int f;
2031 
2032 	i = tx_ring->next_to_use;
2033 
2034 	buffer_info = &tx_ring->buffer_info[i];
2035 	BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2036 	buffer_info->length = len;
2037 	/* set time_stamp *before* dma to help avoid a possible race */
2038 	buffer_info->time_stamp = jiffies;
2039 	buffer_info->next_to_watch = i;
2040 	buffer_info->mapped_as_page = false;
2041 	buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2042 					  DMA_TO_DEVICE);
2043 	if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2044 		goto dma_error;
2045 
2046 
2047 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2048 		const struct skb_frag_struct *frag;
2049 
2050 		count++;
2051 		i++;
2052 		if (i == tx_ring->count)
2053 			i = 0;
2054 
2055 		frag = &skb_shinfo(skb)->frags[f];
2056 		len = skb_frag_size(frag);
2057 
2058 		buffer_info = &tx_ring->buffer_info[i];
2059 		BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2060 		buffer_info->length = len;
2061 		buffer_info->time_stamp = jiffies;
2062 		buffer_info->next_to_watch = i;
2063 		buffer_info->mapped_as_page = true;
2064 		buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2065 						DMA_TO_DEVICE);
2066 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2067 			goto dma_error;
2068 	}
2069 
2070 	tx_ring->buffer_info[i].skb = skb;
2071 	tx_ring->buffer_info[first].next_to_watch = i;
2072 
2073 	return ++count;
2074 
2075 dma_error:
2076 	dev_err(&pdev->dev, "TX DMA map failed\n");
2077 
2078 	/* clear timestamp and dma mappings for failed buffer_info mapping */
2079 	buffer_info->dma = 0;
2080 	buffer_info->time_stamp = 0;
2081 	buffer_info->length = 0;
2082 	buffer_info->next_to_watch = 0;
2083 	buffer_info->mapped_as_page = false;
2084 	if (count)
2085 		count--;
2086 
2087 	/* clear timestamp and dma mappings for remaining portion of packet */
2088 	while (count--) {
2089 		if (i==0)
2090 			i += tx_ring->count;
2091 		i--;
2092 		buffer_info = &tx_ring->buffer_info[i];
2093 		igbvf_put_txbuf(adapter, buffer_info);
2094 	}
2095 
2096 	return 0;
2097 }
2098 
igbvf_tx_queue_adv(struct igbvf_adapter * adapter,struct igbvf_ring * tx_ring,int tx_flags,int count,u32 paylen,u8 hdr_len)2099 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2100                                       struct igbvf_ring *tx_ring,
2101                                       int tx_flags, int count, u32 paylen,
2102                                       u8 hdr_len)
2103 {
2104 	union e1000_adv_tx_desc *tx_desc = NULL;
2105 	struct igbvf_buffer *buffer_info;
2106 	u32 olinfo_status = 0, cmd_type_len;
2107 	unsigned int i;
2108 
2109 	cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2110 	                E1000_ADVTXD_DCMD_DEXT);
2111 
2112 	if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2113 		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2114 
2115 	if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2116 		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2117 
2118 		/* insert tcp checksum */
2119 		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2120 
2121 		/* insert ip checksum */
2122 		if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2123 			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2124 
2125 	} else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2126 		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2127 	}
2128 
2129 	olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2130 
2131 	i = tx_ring->next_to_use;
2132 	while (count--) {
2133 		buffer_info = &tx_ring->buffer_info[i];
2134 		tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2135 		tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2136 		tx_desc->read.cmd_type_len =
2137 		         cpu_to_le32(cmd_type_len | buffer_info->length);
2138 		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2139 		i++;
2140 		if (i == tx_ring->count)
2141 			i = 0;
2142 	}
2143 
2144 	tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2145 	/* Force memory writes to complete before letting h/w
2146 	 * know there are new descriptors to fetch.  (Only
2147 	 * applicable for weak-ordered memory model archs,
2148 	 * such as IA-64). */
2149 	wmb();
2150 
2151 	tx_ring->next_to_use = i;
2152 	writel(i, adapter->hw.hw_addr + tx_ring->tail);
2153 	/* we need this if more than one processor can write to our tail
2154 	 * at a time, it syncronizes IO on IA64/Altix systems */
2155 	mmiowb();
2156 }
2157 
igbvf_xmit_frame_ring_adv(struct sk_buff * skb,struct net_device * netdev,struct igbvf_ring * tx_ring)2158 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2159 					     struct net_device *netdev,
2160 					     struct igbvf_ring *tx_ring)
2161 {
2162 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2163 	unsigned int first, tx_flags = 0;
2164 	u8 hdr_len = 0;
2165 	int count = 0;
2166 	int tso = 0;
2167 
2168 	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2169 		dev_kfree_skb_any(skb);
2170 		return NETDEV_TX_OK;
2171 	}
2172 
2173 	if (skb->len <= 0) {
2174 		dev_kfree_skb_any(skb);
2175 		return NETDEV_TX_OK;
2176 	}
2177 
2178 	/*
2179 	 * need: count + 4 desc gap to keep tail from touching
2180          *       + 2 desc gap to keep tail from touching head,
2181          *       + 1 desc for skb->data,
2182          *       + 1 desc for context descriptor,
2183 	 * head, otherwise try next time
2184 	 */
2185 	if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2186 		/* this is a hard error */
2187 		return NETDEV_TX_BUSY;
2188 	}
2189 
2190 	if (vlan_tx_tag_present(skb)) {
2191 		tx_flags |= IGBVF_TX_FLAGS_VLAN;
2192 		tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2193 	}
2194 
2195 	if (skb->protocol == htons(ETH_P_IP))
2196 		tx_flags |= IGBVF_TX_FLAGS_IPV4;
2197 
2198 	first = tx_ring->next_to_use;
2199 
2200 	tso = skb_is_gso(skb) ?
2201 		igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2202 	if (unlikely(tso < 0)) {
2203 		dev_kfree_skb_any(skb);
2204 		return NETDEV_TX_OK;
2205 	}
2206 
2207 	if (tso)
2208 		tx_flags |= IGBVF_TX_FLAGS_TSO;
2209 	else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2210 	         (skb->ip_summed == CHECKSUM_PARTIAL))
2211 		tx_flags |= IGBVF_TX_FLAGS_CSUM;
2212 
2213 	/*
2214 	 * count reflects descriptors mapped, if 0 then mapping error
2215 	 * has occurred and we need to rewind the descriptor queue
2216 	 */
2217 	count = igbvf_tx_map_adv(adapter, tx_ring, skb, first);
2218 
2219 	if (count) {
2220 		igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2221 		                   skb->len, hdr_len);
2222 		/* Make sure there is space in the ring for the next send. */
2223 		igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2224 	} else {
2225 		dev_kfree_skb_any(skb);
2226 		tx_ring->buffer_info[first].time_stamp = 0;
2227 		tx_ring->next_to_use = first;
2228 	}
2229 
2230 	return NETDEV_TX_OK;
2231 }
2232 
igbvf_xmit_frame(struct sk_buff * skb,struct net_device * netdev)2233 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2234 				    struct net_device *netdev)
2235 {
2236 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2237 	struct igbvf_ring *tx_ring;
2238 
2239 	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2240 		dev_kfree_skb_any(skb);
2241 		return NETDEV_TX_OK;
2242 	}
2243 
2244 	tx_ring = &adapter->tx_ring[0];
2245 
2246 	return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2247 }
2248 
2249 /**
2250  * igbvf_tx_timeout - Respond to a Tx Hang
2251  * @netdev: network interface device structure
2252  **/
igbvf_tx_timeout(struct net_device * netdev)2253 static void igbvf_tx_timeout(struct net_device *netdev)
2254 {
2255 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2256 
2257 	/* Do the reset outside of interrupt context */
2258 	adapter->tx_timeout_count++;
2259 	schedule_work(&adapter->reset_task);
2260 }
2261 
igbvf_reset_task(struct work_struct * work)2262 static void igbvf_reset_task(struct work_struct *work)
2263 {
2264 	struct igbvf_adapter *adapter;
2265 	adapter = container_of(work, struct igbvf_adapter, reset_task);
2266 
2267 	igbvf_reinit_locked(adapter);
2268 }
2269 
2270 /**
2271  * igbvf_get_stats - Get System Network Statistics
2272  * @netdev: network interface device structure
2273  *
2274  * Returns the address of the device statistics structure.
2275  * The statistics are actually updated from the timer callback.
2276  **/
igbvf_get_stats(struct net_device * netdev)2277 static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2278 {
2279 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2280 
2281 	/* only return the current stats */
2282 	return &adapter->net_stats;
2283 }
2284 
2285 /**
2286  * igbvf_change_mtu - Change the Maximum Transfer Unit
2287  * @netdev: network interface device structure
2288  * @new_mtu: new value for maximum frame size
2289  *
2290  * Returns 0 on success, negative on failure
2291  **/
igbvf_change_mtu(struct net_device * netdev,int new_mtu)2292 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2293 {
2294 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2295 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2296 
2297 	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2298 		dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2299 		return -EINVAL;
2300 	}
2301 
2302 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2303 	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2304 		dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2305 		return -EINVAL;
2306 	}
2307 
2308 	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2309 		msleep(1);
2310 	/* igbvf_down has a dependency on max_frame_size */
2311 	adapter->max_frame_size = max_frame;
2312 	if (netif_running(netdev))
2313 		igbvf_down(adapter);
2314 
2315 	/*
2316 	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2317 	 * means we reserve 2 more, this pushes us to allocate from the next
2318 	 * larger slab size.
2319 	 * i.e. RXBUFFER_2048 --> size-4096 slab
2320 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
2321 	 * fragmented skbs
2322 	 */
2323 
2324 	if (max_frame <= 1024)
2325 		adapter->rx_buffer_len = 1024;
2326 	else if (max_frame <= 2048)
2327 		adapter->rx_buffer_len = 2048;
2328 	else
2329 #if (PAGE_SIZE / 2) > 16384
2330 		adapter->rx_buffer_len = 16384;
2331 #else
2332 		adapter->rx_buffer_len = PAGE_SIZE / 2;
2333 #endif
2334 
2335 
2336 	/* adjust allocation if LPE protects us, and we aren't using SBP */
2337 	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2338 	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2339 		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2340 		                         ETH_FCS_LEN;
2341 
2342 	dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2343 	         netdev->mtu, new_mtu);
2344 	netdev->mtu = new_mtu;
2345 
2346 	if (netif_running(netdev))
2347 		igbvf_up(adapter);
2348 	else
2349 		igbvf_reset(adapter);
2350 
2351 	clear_bit(__IGBVF_RESETTING, &adapter->state);
2352 
2353 	return 0;
2354 }
2355 
igbvf_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)2356 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2357 {
2358 	switch (cmd) {
2359 	default:
2360 		return -EOPNOTSUPP;
2361 	}
2362 }
2363 
igbvf_suspend(struct pci_dev * pdev,pm_message_t state)2364 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2365 {
2366 	struct net_device *netdev = pci_get_drvdata(pdev);
2367 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2368 #ifdef CONFIG_PM
2369 	int retval = 0;
2370 #endif
2371 
2372 	netif_device_detach(netdev);
2373 
2374 	if (netif_running(netdev)) {
2375 		WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2376 		igbvf_down(adapter);
2377 		igbvf_free_irq(adapter);
2378 	}
2379 
2380 #ifdef CONFIG_PM
2381 	retval = pci_save_state(pdev);
2382 	if (retval)
2383 		return retval;
2384 #endif
2385 
2386 	pci_disable_device(pdev);
2387 
2388 	return 0;
2389 }
2390 
2391 #ifdef CONFIG_PM
igbvf_resume(struct pci_dev * pdev)2392 static int igbvf_resume(struct pci_dev *pdev)
2393 {
2394 	struct net_device *netdev = pci_get_drvdata(pdev);
2395 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2396 	u32 err;
2397 
2398 	pci_restore_state(pdev);
2399 	err = pci_enable_device_mem(pdev);
2400 	if (err) {
2401 		dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2402 		return err;
2403 	}
2404 
2405 	pci_set_master(pdev);
2406 
2407 	if (netif_running(netdev)) {
2408 		err = igbvf_request_irq(adapter);
2409 		if (err)
2410 			return err;
2411 	}
2412 
2413 	igbvf_reset(adapter);
2414 
2415 	if (netif_running(netdev))
2416 		igbvf_up(adapter);
2417 
2418 	netif_device_attach(netdev);
2419 
2420 	return 0;
2421 }
2422 #endif
2423 
igbvf_shutdown(struct pci_dev * pdev)2424 static void igbvf_shutdown(struct pci_dev *pdev)
2425 {
2426 	igbvf_suspend(pdev, PMSG_SUSPEND);
2427 }
2428 
2429 #ifdef CONFIG_NET_POLL_CONTROLLER
2430 /*
2431  * Polling 'interrupt' - used by things like netconsole to send skbs
2432  * without having to re-enable interrupts. It's not called while
2433  * the interrupt routine is executing.
2434  */
igbvf_netpoll(struct net_device * netdev)2435 static void igbvf_netpoll(struct net_device *netdev)
2436 {
2437 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2438 
2439 	disable_irq(adapter->pdev->irq);
2440 
2441 	igbvf_clean_tx_irq(adapter->tx_ring);
2442 
2443 	enable_irq(adapter->pdev->irq);
2444 }
2445 #endif
2446 
2447 /**
2448  * igbvf_io_error_detected - called when PCI error is detected
2449  * @pdev: Pointer to PCI device
2450  * @state: The current pci connection state
2451  *
2452  * This function is called after a PCI bus error affecting
2453  * this device has been detected.
2454  */
igbvf_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)2455 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2456                                                 pci_channel_state_t state)
2457 {
2458 	struct net_device *netdev = pci_get_drvdata(pdev);
2459 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2460 
2461 	netif_device_detach(netdev);
2462 
2463 	if (state == pci_channel_io_perm_failure)
2464 		return PCI_ERS_RESULT_DISCONNECT;
2465 
2466 	if (netif_running(netdev))
2467 		igbvf_down(adapter);
2468 	pci_disable_device(pdev);
2469 
2470 	/* Request a slot slot reset. */
2471 	return PCI_ERS_RESULT_NEED_RESET;
2472 }
2473 
2474 /**
2475  * igbvf_io_slot_reset - called after the pci bus has been reset.
2476  * @pdev: Pointer to PCI device
2477  *
2478  * Restart the card from scratch, as if from a cold-boot. Implementation
2479  * resembles the first-half of the igbvf_resume routine.
2480  */
igbvf_io_slot_reset(struct pci_dev * pdev)2481 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2482 {
2483 	struct net_device *netdev = pci_get_drvdata(pdev);
2484 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2485 
2486 	if (pci_enable_device_mem(pdev)) {
2487 		dev_err(&pdev->dev,
2488 			"Cannot re-enable PCI device after reset.\n");
2489 		return PCI_ERS_RESULT_DISCONNECT;
2490 	}
2491 	pci_set_master(pdev);
2492 
2493 	igbvf_reset(adapter);
2494 
2495 	return PCI_ERS_RESULT_RECOVERED;
2496 }
2497 
2498 /**
2499  * igbvf_io_resume - called when traffic can start flowing again.
2500  * @pdev: Pointer to PCI device
2501  *
2502  * This callback is called when the error recovery driver tells us that
2503  * its OK to resume normal operation. Implementation resembles the
2504  * second-half of the igbvf_resume routine.
2505  */
igbvf_io_resume(struct pci_dev * pdev)2506 static void igbvf_io_resume(struct pci_dev *pdev)
2507 {
2508 	struct net_device *netdev = pci_get_drvdata(pdev);
2509 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2510 
2511 	if (netif_running(netdev)) {
2512 		if (igbvf_up(adapter)) {
2513 			dev_err(&pdev->dev,
2514 				"can't bring device back up after reset\n");
2515 			return;
2516 		}
2517 	}
2518 
2519 	netif_device_attach(netdev);
2520 }
2521 
igbvf_print_device_info(struct igbvf_adapter * adapter)2522 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2523 {
2524 	struct e1000_hw *hw = &adapter->hw;
2525 	struct net_device *netdev = adapter->netdev;
2526 	struct pci_dev *pdev = adapter->pdev;
2527 
2528 	if (hw->mac.type == e1000_vfadapt_i350)
2529 		dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2530 	else
2531 		dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2532 	dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2533 }
2534 
igbvf_set_features(struct net_device * netdev,netdev_features_t features)2535 static int igbvf_set_features(struct net_device *netdev,
2536 	netdev_features_t features)
2537 {
2538 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2539 
2540 	if (features & NETIF_F_RXCSUM)
2541 		adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2542 	else
2543 		adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2544 
2545 	return 0;
2546 }
2547 
2548 static const struct net_device_ops igbvf_netdev_ops = {
2549 	.ndo_open                       = igbvf_open,
2550 	.ndo_stop                       = igbvf_close,
2551 	.ndo_start_xmit                 = igbvf_xmit_frame,
2552 	.ndo_get_stats                  = igbvf_get_stats,
2553 	.ndo_set_rx_mode		= igbvf_set_multi,
2554 	.ndo_set_mac_address            = igbvf_set_mac,
2555 	.ndo_change_mtu                 = igbvf_change_mtu,
2556 	.ndo_do_ioctl                   = igbvf_ioctl,
2557 	.ndo_tx_timeout                 = igbvf_tx_timeout,
2558 	.ndo_vlan_rx_add_vid            = igbvf_vlan_rx_add_vid,
2559 	.ndo_vlan_rx_kill_vid           = igbvf_vlan_rx_kill_vid,
2560 #ifdef CONFIG_NET_POLL_CONTROLLER
2561 	.ndo_poll_controller            = igbvf_netpoll,
2562 #endif
2563 	.ndo_set_features               = igbvf_set_features,
2564 };
2565 
2566 /**
2567  * igbvf_probe - Device Initialization Routine
2568  * @pdev: PCI device information struct
2569  * @ent: entry in igbvf_pci_tbl
2570  *
2571  * Returns 0 on success, negative on failure
2572  *
2573  * igbvf_probe initializes an adapter identified by a pci_dev structure.
2574  * The OS initialization, configuring of the adapter private structure,
2575  * and a hardware reset occur.
2576  **/
igbvf_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2577 static int __devinit igbvf_probe(struct pci_dev *pdev,
2578                                  const struct pci_device_id *ent)
2579 {
2580 	struct net_device *netdev;
2581 	struct igbvf_adapter *adapter;
2582 	struct e1000_hw *hw;
2583 	const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2584 
2585 	static int cards_found;
2586 	int err, pci_using_dac;
2587 
2588 	err = pci_enable_device_mem(pdev);
2589 	if (err)
2590 		return err;
2591 
2592 	pci_using_dac = 0;
2593 	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2594 	if (!err) {
2595 		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2596 		if (!err)
2597 			pci_using_dac = 1;
2598 	} else {
2599 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2600 		if (err) {
2601 			err = dma_set_coherent_mask(&pdev->dev,
2602 						    DMA_BIT_MASK(32));
2603 			if (err) {
2604 				dev_err(&pdev->dev, "No usable DMA "
2605 				        "configuration, aborting\n");
2606 				goto err_dma;
2607 			}
2608 		}
2609 	}
2610 
2611 	err = pci_request_regions(pdev, igbvf_driver_name);
2612 	if (err)
2613 		goto err_pci_reg;
2614 
2615 	pci_set_master(pdev);
2616 
2617 	err = -ENOMEM;
2618 	netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2619 	if (!netdev)
2620 		goto err_alloc_etherdev;
2621 
2622 	SET_NETDEV_DEV(netdev, &pdev->dev);
2623 
2624 	pci_set_drvdata(pdev, netdev);
2625 	adapter = netdev_priv(netdev);
2626 	hw = &adapter->hw;
2627 	adapter->netdev = netdev;
2628 	adapter->pdev = pdev;
2629 	adapter->ei = ei;
2630 	adapter->pba = ei->pba;
2631 	adapter->flags = ei->flags;
2632 	adapter->hw.back = adapter;
2633 	adapter->hw.mac.type = ei->mac;
2634 	adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
2635 
2636 	/* PCI config space info */
2637 
2638 	hw->vendor_id = pdev->vendor;
2639 	hw->device_id = pdev->device;
2640 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2641 	hw->subsystem_device_id = pdev->subsystem_device;
2642 	hw->revision_id = pdev->revision;
2643 
2644 	err = -EIO;
2645 	adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2646 	                              pci_resource_len(pdev, 0));
2647 
2648 	if (!adapter->hw.hw_addr)
2649 		goto err_ioremap;
2650 
2651 	if (ei->get_variants) {
2652 		err = ei->get_variants(adapter);
2653 		if (err)
2654 			goto err_ioremap;
2655 	}
2656 
2657 	/* setup adapter struct */
2658 	err = igbvf_sw_init(adapter);
2659 	if (err)
2660 		goto err_sw_init;
2661 
2662 	/* construct the net_device struct */
2663 	netdev->netdev_ops = &igbvf_netdev_ops;
2664 
2665 	igbvf_set_ethtool_ops(netdev);
2666 	netdev->watchdog_timeo = 5 * HZ;
2667 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2668 
2669 	adapter->bd_number = cards_found++;
2670 
2671 	netdev->hw_features = NETIF_F_SG |
2672 	                   NETIF_F_IP_CSUM |
2673 			   NETIF_F_IPV6_CSUM |
2674 			   NETIF_F_TSO |
2675 			   NETIF_F_TSO6 |
2676 			   NETIF_F_RXCSUM;
2677 
2678 	netdev->features = netdev->hw_features |
2679 	                   NETIF_F_HW_VLAN_TX |
2680 	                   NETIF_F_HW_VLAN_RX |
2681 	                   NETIF_F_HW_VLAN_FILTER;
2682 
2683 	if (pci_using_dac)
2684 		netdev->features |= NETIF_F_HIGHDMA;
2685 
2686 	netdev->vlan_features |= NETIF_F_TSO;
2687 	netdev->vlan_features |= NETIF_F_TSO6;
2688 	netdev->vlan_features |= NETIF_F_IP_CSUM;
2689 	netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2690 	netdev->vlan_features |= NETIF_F_SG;
2691 
2692 	/*reset the controller to put the device in a known good state */
2693 	err = hw->mac.ops.reset_hw(hw);
2694 	if (err) {
2695 		dev_info(&pdev->dev,
2696 			 "PF still in reset state, assigning new address."
2697 			 " Is the PF interface up?\n");
2698 		dev_hw_addr_random(adapter->netdev, hw->mac.addr);
2699 	} else {
2700 		err = hw->mac.ops.read_mac_addr(hw);
2701 		if (err) {
2702 			dev_err(&pdev->dev, "Error reading MAC address\n");
2703 			goto err_hw_init;
2704 		}
2705 	}
2706 
2707 	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
2708 	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
2709 
2710 	if (!is_valid_ether_addr(netdev->perm_addr)) {
2711 		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
2712 		        netdev->dev_addr);
2713 		err = -EIO;
2714 		goto err_hw_init;
2715 	}
2716 
2717 	setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2718 	            (unsigned long) adapter);
2719 
2720 	INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2721 	INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2722 
2723 	/* ring size defaults */
2724 	adapter->rx_ring->count = 1024;
2725 	adapter->tx_ring->count = 1024;
2726 
2727 	/* reset the hardware with the new settings */
2728 	igbvf_reset(adapter);
2729 
2730 	strcpy(netdev->name, "eth%d");
2731 	err = register_netdev(netdev);
2732 	if (err)
2733 		goto err_hw_init;
2734 
2735 	/* tell the stack to leave us alone until igbvf_open() is called */
2736 	netif_carrier_off(netdev);
2737 	netif_stop_queue(netdev);
2738 
2739 	igbvf_print_device_info(adapter);
2740 
2741 	igbvf_initialize_last_counter_stats(adapter);
2742 
2743 	return 0;
2744 
2745 err_hw_init:
2746 	kfree(adapter->tx_ring);
2747 	kfree(adapter->rx_ring);
2748 err_sw_init:
2749 	igbvf_reset_interrupt_capability(adapter);
2750 	iounmap(adapter->hw.hw_addr);
2751 err_ioremap:
2752 	free_netdev(netdev);
2753 err_alloc_etherdev:
2754 	pci_release_regions(pdev);
2755 err_pci_reg:
2756 err_dma:
2757 	pci_disable_device(pdev);
2758 	return err;
2759 }
2760 
2761 /**
2762  * igbvf_remove - Device Removal Routine
2763  * @pdev: PCI device information struct
2764  *
2765  * igbvf_remove is called by the PCI subsystem to alert the driver
2766  * that it should release a PCI device.  The could be caused by a
2767  * Hot-Plug event, or because the driver is going to be removed from
2768  * memory.
2769  **/
igbvf_remove(struct pci_dev * pdev)2770 static void __devexit igbvf_remove(struct pci_dev *pdev)
2771 {
2772 	struct net_device *netdev = pci_get_drvdata(pdev);
2773 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2774 	struct e1000_hw *hw = &adapter->hw;
2775 
2776 	/*
2777 	 * The watchdog timer may be rescheduled, so explicitly
2778 	 * disable it from being rescheduled.
2779 	 */
2780 	set_bit(__IGBVF_DOWN, &adapter->state);
2781 	del_timer_sync(&adapter->watchdog_timer);
2782 
2783 	cancel_work_sync(&adapter->reset_task);
2784 	cancel_work_sync(&adapter->watchdog_task);
2785 
2786 	unregister_netdev(netdev);
2787 
2788 	igbvf_reset_interrupt_capability(adapter);
2789 
2790 	/*
2791 	 * it is important to delete the napi struct prior to freeing the
2792 	 * rx ring so that you do not end up with null pointer refs
2793 	 */
2794 	netif_napi_del(&adapter->rx_ring->napi);
2795 	kfree(adapter->tx_ring);
2796 	kfree(adapter->rx_ring);
2797 
2798 	iounmap(hw->hw_addr);
2799 	if (hw->flash_address)
2800 		iounmap(hw->flash_address);
2801 	pci_release_regions(pdev);
2802 
2803 	free_netdev(netdev);
2804 
2805 	pci_disable_device(pdev);
2806 }
2807 
2808 /* PCI Error Recovery (ERS) */
2809 static struct pci_error_handlers igbvf_err_handler = {
2810 	.error_detected = igbvf_io_error_detected,
2811 	.slot_reset = igbvf_io_slot_reset,
2812 	.resume = igbvf_io_resume,
2813 };
2814 
2815 static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = {
2816 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2817 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2818 	{ } /* terminate list */
2819 };
2820 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2821 
2822 /* PCI Device API Driver */
2823 static struct pci_driver igbvf_driver = {
2824 	.name     = igbvf_driver_name,
2825 	.id_table = igbvf_pci_tbl,
2826 	.probe    = igbvf_probe,
2827 	.remove   = __devexit_p(igbvf_remove),
2828 #ifdef CONFIG_PM
2829 	/* Power Management Hooks */
2830 	.suspend  = igbvf_suspend,
2831 	.resume   = igbvf_resume,
2832 #endif
2833 	.shutdown = igbvf_shutdown,
2834 	.err_handler = &igbvf_err_handler
2835 };
2836 
2837 /**
2838  * igbvf_init_module - Driver Registration Routine
2839  *
2840  * igbvf_init_module is the first routine called when the driver is
2841  * loaded. All it does is register with the PCI subsystem.
2842  **/
igbvf_init_module(void)2843 static int __init igbvf_init_module(void)
2844 {
2845 	int ret;
2846 	pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2847 	pr_info("%s\n", igbvf_copyright);
2848 
2849 	ret = pci_register_driver(&igbvf_driver);
2850 
2851 	return ret;
2852 }
2853 module_init(igbvf_init_module);
2854 
2855 /**
2856  * igbvf_exit_module - Driver Exit Cleanup Routine
2857  *
2858  * igbvf_exit_module is called just before the driver is removed
2859  * from memory.
2860  **/
igbvf_exit_module(void)2861 static void __exit igbvf_exit_module(void)
2862 {
2863 	pci_unregister_driver(&igbvf_driver);
2864 }
2865 module_exit(igbvf_exit_module);
2866 
2867 
2868 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2869 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2870 MODULE_LICENSE("GPL");
2871 MODULE_VERSION(DRV_VERSION);
2872 
2873 /* netdev.c */
2874