1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2011 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include "e1000.h"
30 
31 enum e1000_mng_mode {
32 	e1000_mng_mode_none = 0,
33 	e1000_mng_mode_asf,
34 	e1000_mng_mode_pt,
35 	e1000_mng_mode_ipmi,
36 	e1000_mng_mode_host_if_only
37 };
38 
39 #define E1000_FACTPS_MNGCG		0x20000000
40 
41 /* Intel(R) Active Management Technology signature */
42 #define E1000_IAMT_SIGNATURE		0x544D4149
43 
44 /**
45  *  e1000e_get_bus_info_pcie - Get PCIe bus information
46  *  @hw: pointer to the HW structure
47  *
48  *  Determines and stores the system bus information for a particular
49  *  network interface.  The following bus information is determined and stored:
50  *  bus speed, bus width, type (PCIe), and PCIe function.
51  **/
e1000e_get_bus_info_pcie(struct e1000_hw * hw)52 s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
53 {
54 	struct e1000_mac_info *mac = &hw->mac;
55 	struct e1000_bus_info *bus = &hw->bus;
56 	struct e1000_adapter *adapter = hw->adapter;
57 	u16 pcie_link_status, cap_offset;
58 
59 	cap_offset = adapter->pdev->pcie_cap;
60 	if (!cap_offset) {
61 		bus->width = e1000_bus_width_unknown;
62 	} else {
63 		pci_read_config_word(adapter->pdev,
64 				     cap_offset + PCIE_LINK_STATUS,
65 				     &pcie_link_status);
66 		bus->width = (enum e1000_bus_width)((pcie_link_status &
67 						     PCIE_LINK_WIDTH_MASK) >>
68 						    PCIE_LINK_WIDTH_SHIFT);
69 	}
70 
71 	mac->ops.set_lan_id(hw);
72 
73 	return 0;
74 }
75 
76 /**
77  *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
78  *
79  *  @hw: pointer to the HW structure
80  *
81  *  Determines the LAN function id by reading memory-mapped registers
82  *  and swaps the port value if requested.
83  **/
e1000_set_lan_id_multi_port_pcie(struct e1000_hw * hw)84 void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
85 {
86 	struct e1000_bus_info *bus = &hw->bus;
87 	u32 reg;
88 
89 	/*
90 	 * The status register reports the correct function number
91 	 * for the device regardless of function swap state.
92 	 */
93 	reg = er32(STATUS);
94 	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
95 }
96 
97 /**
98  *  e1000_set_lan_id_single_port - Set LAN id for a single port device
99  *  @hw: pointer to the HW structure
100  *
101  *  Sets the LAN function id to zero for a single port device.
102  **/
e1000_set_lan_id_single_port(struct e1000_hw * hw)103 void e1000_set_lan_id_single_port(struct e1000_hw *hw)
104 {
105 	struct e1000_bus_info *bus = &hw->bus;
106 
107 	bus->func = 0;
108 }
109 
110 /**
111  *  e1000_clear_vfta_generic - Clear VLAN filter table
112  *  @hw: pointer to the HW structure
113  *
114  *  Clears the register array which contains the VLAN filter table by
115  *  setting all the values to 0.
116  **/
e1000_clear_vfta_generic(struct e1000_hw * hw)117 void e1000_clear_vfta_generic(struct e1000_hw *hw)
118 {
119 	u32 offset;
120 
121 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
122 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
123 		e1e_flush();
124 	}
125 }
126 
127 /**
128  *  e1000_write_vfta_generic - Write value to VLAN filter table
129  *  @hw: pointer to the HW structure
130  *  @offset: register offset in VLAN filter table
131  *  @value: register value written to VLAN filter table
132  *
133  *  Writes value at the given offset in the register array which stores
134  *  the VLAN filter table.
135  **/
e1000_write_vfta_generic(struct e1000_hw * hw,u32 offset,u32 value)136 void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
137 {
138 	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
139 	e1e_flush();
140 }
141 
142 /**
143  *  e1000e_init_rx_addrs - Initialize receive address's
144  *  @hw: pointer to the HW structure
145  *  @rar_count: receive address registers
146  *
147  *  Setup the receive address registers by setting the base receive address
148  *  register to the devices MAC address and clearing all the other receive
149  *  address registers to 0.
150  **/
e1000e_init_rx_addrs(struct e1000_hw * hw,u16 rar_count)151 void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
152 {
153 	u32 i;
154 	u8 mac_addr[ETH_ALEN] = {0};
155 
156 	/* Setup the receive address */
157 	e_dbg("Programming MAC Address into RAR[0]\n");
158 
159 	e1000e_rar_set(hw, hw->mac.addr, 0);
160 
161 	/* Zero out the other (rar_entry_count - 1) receive addresses */
162 	e_dbg("Clearing RAR[1-%u]\n", rar_count-1);
163 	for (i = 1; i < rar_count; i++)
164 		e1000e_rar_set(hw, mac_addr, i);
165 }
166 
167 /**
168  *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
169  *  @hw: pointer to the HW structure
170  *
171  *  Checks the nvm for an alternate MAC address.  An alternate MAC address
172  *  can be setup by pre-boot software and must be treated like a permanent
173  *  address and must override the actual permanent MAC address. If an
174  *  alternate MAC address is found it is programmed into RAR0, replacing
175  *  the permanent address that was installed into RAR0 by the Si on reset.
176  *  This function will return SUCCESS unless it encounters an error while
177  *  reading the EEPROM.
178  **/
e1000_check_alt_mac_addr_generic(struct e1000_hw * hw)179 s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
180 {
181 	u32 i;
182 	s32 ret_val = 0;
183 	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
184 	u8 alt_mac_addr[ETH_ALEN];
185 
186 	ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
187 	if (ret_val)
188 		goto out;
189 
190 	/* Check for LOM (vs. NIC) or one of two valid mezzanine cards */
191 	if (!((nvm_data & NVM_COMPAT_LOM) ||
192 	      (hw->adapter->pdev->device == E1000_DEV_ID_82571EB_SERDES_DUAL) ||
193 	      (hw->adapter->pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD) ||
194 	      (hw->adapter->pdev->device == E1000_DEV_ID_82571EB_SERDES)))
195 		goto out;
196 
197 	ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
198 	                         &nvm_alt_mac_addr_offset);
199 	if (ret_val) {
200 		e_dbg("NVM Read Error\n");
201 		goto out;
202 	}
203 
204 	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
205 	    (nvm_alt_mac_addr_offset == 0x0000))
206 		/* There is no Alternate MAC Address */
207 		goto out;
208 
209 	if (hw->bus.func == E1000_FUNC_1)
210 		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
211 	for (i = 0; i < ETH_ALEN; i += 2) {
212 		offset = nvm_alt_mac_addr_offset + (i >> 1);
213 		ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
214 		if (ret_val) {
215 			e_dbg("NVM Read Error\n");
216 			goto out;
217 		}
218 
219 		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
220 		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
221 	}
222 
223 	/* if multicast bit is set, the alternate address will not be used */
224 	if (is_multicast_ether_addr(alt_mac_addr)) {
225 		e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
226 		goto out;
227 	}
228 
229 	/*
230 	 * We have a valid alternate MAC address, and we want to treat it the
231 	 * same as the normal permanent MAC address stored by the HW into the
232 	 * RAR. Do this by mapping this address into RAR0.
233 	 */
234 	e1000e_rar_set(hw, alt_mac_addr, 0);
235 
236 out:
237 	return ret_val;
238 }
239 
240 /**
241  *  e1000e_rar_set - Set receive address register
242  *  @hw: pointer to the HW structure
243  *  @addr: pointer to the receive address
244  *  @index: receive address array register
245  *
246  *  Sets the receive address array register at index to the address passed
247  *  in by addr.
248  **/
e1000e_rar_set(struct e1000_hw * hw,u8 * addr,u32 index)249 void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
250 {
251 	u32 rar_low, rar_high;
252 
253 	/*
254 	 * HW expects these in little endian so we reverse the byte order
255 	 * from network order (big endian) to little endian
256 	 */
257 	rar_low = ((u32) addr[0] |
258 		   ((u32) addr[1] << 8) |
259 		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
260 
261 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
262 
263 	/* If MAC address zero, no need to set the AV bit */
264 	if (rar_low || rar_high)
265 		rar_high |= E1000_RAH_AV;
266 
267 	/*
268 	 * Some bridges will combine consecutive 32-bit writes into
269 	 * a single burst write, which will malfunction on some parts.
270 	 * The flushes avoid this.
271 	 */
272 	ew32(RAL(index), rar_low);
273 	e1e_flush();
274 	ew32(RAH(index), rar_high);
275 	e1e_flush();
276 }
277 
278 /**
279  *  e1000_hash_mc_addr - Generate a multicast hash value
280  *  @hw: pointer to the HW structure
281  *  @mc_addr: pointer to a multicast address
282  *
283  *  Generates a multicast address hash value which is used to determine
284  *  the multicast filter table array address and new table value.  See
285  *  e1000_mta_set_generic()
286  **/
e1000_hash_mc_addr(struct e1000_hw * hw,u8 * mc_addr)287 static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
288 {
289 	u32 hash_value, hash_mask;
290 	u8 bit_shift = 0;
291 
292 	/* Register count multiplied by bits per register */
293 	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
294 
295 	/*
296 	 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
297 	 * where 0xFF would still fall within the hash mask.
298 	 */
299 	while (hash_mask >> bit_shift != 0xFF)
300 		bit_shift++;
301 
302 	/*
303 	 * The portion of the address that is used for the hash table
304 	 * is determined by the mc_filter_type setting.
305 	 * The algorithm is such that there is a total of 8 bits of shifting.
306 	 * The bit_shift for a mc_filter_type of 0 represents the number of
307 	 * left-shifts where the MSB of mc_addr[5] would still fall within
308 	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
309 	 * of 8 bits of shifting, then mc_addr[4] will shift right the
310 	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
311 	 * cases are a variation of this algorithm...essentially raising the
312 	 * number of bits to shift mc_addr[5] left, while still keeping the
313 	 * 8-bit shifting total.
314 	 *
315 	 * For example, given the following Destination MAC Address and an
316 	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
317 	 * we can see that the bit_shift for case 0 is 4.  These are the hash
318 	 * values resulting from each mc_filter_type...
319 	 * [0] [1] [2] [3] [4] [5]
320 	 * 01  AA  00  12  34  56
321 	 * LSB		 MSB
322 	 *
323 	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
324 	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
325 	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
326 	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
327 	 */
328 	switch (hw->mac.mc_filter_type) {
329 	default:
330 	case 0:
331 		break;
332 	case 1:
333 		bit_shift += 1;
334 		break;
335 	case 2:
336 		bit_shift += 2;
337 		break;
338 	case 3:
339 		bit_shift += 4;
340 		break;
341 	}
342 
343 	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
344 				  (((u16) mc_addr[5]) << bit_shift)));
345 
346 	return hash_value;
347 }
348 
349 /**
350  *  e1000e_update_mc_addr_list_generic - Update Multicast addresses
351  *  @hw: pointer to the HW structure
352  *  @mc_addr_list: array of multicast addresses to program
353  *  @mc_addr_count: number of multicast addresses to program
354  *
355  *  Updates entire Multicast Table Array.
356  *  The caller must have a packed mc_addr_list of multicast addresses.
357  **/
e1000e_update_mc_addr_list_generic(struct e1000_hw * hw,u8 * mc_addr_list,u32 mc_addr_count)358 void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
359 					u8 *mc_addr_list, u32 mc_addr_count)
360 {
361 	u32 hash_value, hash_bit, hash_reg;
362 	int i;
363 
364 	/* clear mta_shadow */
365 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
366 
367 	/* update mta_shadow from mc_addr_list */
368 	for (i = 0; (u32) i < mc_addr_count; i++) {
369 		hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
370 
371 		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
372 		hash_bit = hash_value & 0x1F;
373 
374 		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
375 		mc_addr_list += (ETH_ALEN);
376 	}
377 
378 	/* replace the entire MTA table */
379 	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
380 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
381 	e1e_flush();
382 }
383 
384 /**
385  *  e1000e_clear_hw_cntrs_base - Clear base hardware counters
386  *  @hw: pointer to the HW structure
387  *
388  *  Clears the base hardware counters by reading the counter registers.
389  **/
e1000e_clear_hw_cntrs_base(struct e1000_hw * hw)390 void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
391 {
392 	er32(CRCERRS);
393 	er32(SYMERRS);
394 	er32(MPC);
395 	er32(SCC);
396 	er32(ECOL);
397 	er32(MCC);
398 	er32(LATECOL);
399 	er32(COLC);
400 	er32(DC);
401 	er32(SEC);
402 	er32(RLEC);
403 	er32(XONRXC);
404 	er32(XONTXC);
405 	er32(XOFFRXC);
406 	er32(XOFFTXC);
407 	er32(FCRUC);
408 	er32(GPRC);
409 	er32(BPRC);
410 	er32(MPRC);
411 	er32(GPTC);
412 	er32(GORCL);
413 	er32(GORCH);
414 	er32(GOTCL);
415 	er32(GOTCH);
416 	er32(RNBC);
417 	er32(RUC);
418 	er32(RFC);
419 	er32(ROC);
420 	er32(RJC);
421 	er32(TORL);
422 	er32(TORH);
423 	er32(TOTL);
424 	er32(TOTH);
425 	er32(TPR);
426 	er32(TPT);
427 	er32(MPTC);
428 	er32(BPTC);
429 }
430 
431 /**
432  *  e1000e_check_for_copper_link - Check for link (Copper)
433  *  @hw: pointer to the HW structure
434  *
435  *  Checks to see of the link status of the hardware has changed.  If a
436  *  change in link status has been detected, then we read the PHY registers
437  *  to get the current speed/duplex if link exists.
438  **/
e1000e_check_for_copper_link(struct e1000_hw * hw)439 s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
440 {
441 	struct e1000_mac_info *mac = &hw->mac;
442 	s32 ret_val;
443 	bool link;
444 
445 	/*
446 	 * We only want to go out to the PHY registers to see if Auto-Neg
447 	 * has completed and/or if our link status has changed.  The
448 	 * get_link_status flag is set upon receiving a Link Status
449 	 * Change or Rx Sequence Error interrupt.
450 	 */
451 	if (!mac->get_link_status)
452 		return 0;
453 
454 	/*
455 	 * First we want to see if the MII Status Register reports
456 	 * link.  If so, then we want to get the current speed/duplex
457 	 * of the PHY.
458 	 */
459 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
460 	if (ret_val)
461 		return ret_val;
462 
463 	if (!link)
464 		return ret_val; /* No link detected */
465 
466 	mac->get_link_status = false;
467 
468 	/*
469 	 * Check if there was DownShift, must be checked
470 	 * immediately after link-up
471 	 */
472 	e1000e_check_downshift(hw);
473 
474 	/*
475 	 * If we are forcing speed/duplex, then we simply return since
476 	 * we have already determined whether we have link or not.
477 	 */
478 	if (!mac->autoneg) {
479 		ret_val = -E1000_ERR_CONFIG;
480 		return ret_val;
481 	}
482 
483 	/*
484 	 * Auto-Neg is enabled.  Auto Speed Detection takes care
485 	 * of MAC speed/duplex configuration.  So we only need to
486 	 * configure Collision Distance in the MAC.
487 	 */
488 	e1000e_config_collision_dist(hw);
489 
490 	/*
491 	 * Configure Flow Control now that Auto-Neg has completed.
492 	 * First, we need to restore the desired flow control
493 	 * settings because we may have had to re-autoneg with a
494 	 * different link partner.
495 	 */
496 	ret_val = e1000e_config_fc_after_link_up(hw);
497 	if (ret_val)
498 		e_dbg("Error configuring flow control\n");
499 
500 	return ret_val;
501 }
502 
503 /**
504  *  e1000e_check_for_fiber_link - Check for link (Fiber)
505  *  @hw: pointer to the HW structure
506  *
507  *  Checks for link up on the hardware.  If link is not up and we have
508  *  a signal, then we need to force link up.
509  **/
e1000e_check_for_fiber_link(struct e1000_hw * hw)510 s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
511 {
512 	struct e1000_mac_info *mac = &hw->mac;
513 	u32 rxcw;
514 	u32 ctrl;
515 	u32 status;
516 	s32 ret_val;
517 
518 	ctrl = er32(CTRL);
519 	status = er32(STATUS);
520 	rxcw = er32(RXCW);
521 
522 	/*
523 	 * If we don't have link (auto-negotiation failed or link partner
524 	 * cannot auto-negotiate), the cable is plugged in (we have signal),
525 	 * and our link partner is not trying to auto-negotiate with us (we
526 	 * are receiving idles or data), we need to force link up. We also
527 	 * need to give auto-negotiation time to complete, in case the cable
528 	 * was just plugged in. The autoneg_failed flag does this.
529 	 */
530 	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
531 	if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
532 	    (!(rxcw & E1000_RXCW_C))) {
533 		if (mac->autoneg_failed == 0) {
534 			mac->autoneg_failed = 1;
535 			return 0;
536 		}
537 		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
538 
539 		/* Disable auto-negotiation in the TXCW register */
540 		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
541 
542 		/* Force link-up and also force full-duplex. */
543 		ctrl = er32(CTRL);
544 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
545 		ew32(CTRL, ctrl);
546 
547 		/* Configure Flow Control after forcing link up. */
548 		ret_val = e1000e_config_fc_after_link_up(hw);
549 		if (ret_val) {
550 			e_dbg("Error configuring flow control\n");
551 			return ret_val;
552 		}
553 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
554 		/*
555 		 * If we are forcing link and we are receiving /C/ ordered
556 		 * sets, re-enable auto-negotiation in the TXCW register
557 		 * and disable forced link in the Device Control register
558 		 * in an attempt to auto-negotiate with our link partner.
559 		 */
560 		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
561 		ew32(TXCW, mac->txcw);
562 		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
563 
564 		mac->serdes_has_link = true;
565 	}
566 
567 	return 0;
568 }
569 
570 /**
571  *  e1000e_check_for_serdes_link - Check for link (Serdes)
572  *  @hw: pointer to the HW structure
573  *
574  *  Checks for link up on the hardware.  If link is not up and we have
575  *  a signal, then we need to force link up.
576  **/
e1000e_check_for_serdes_link(struct e1000_hw * hw)577 s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
578 {
579 	struct e1000_mac_info *mac = &hw->mac;
580 	u32 rxcw;
581 	u32 ctrl;
582 	u32 status;
583 	s32 ret_val;
584 
585 	ctrl = er32(CTRL);
586 	status = er32(STATUS);
587 	rxcw = er32(RXCW);
588 
589 	/*
590 	 * If we don't have link (auto-negotiation failed or link partner
591 	 * cannot auto-negotiate), and our link partner is not trying to
592 	 * auto-negotiate with us (we are receiving idles or data),
593 	 * we need to force link up. We also need to give auto-negotiation
594 	 * time to complete.
595 	 */
596 	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
597 	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
598 		if (mac->autoneg_failed == 0) {
599 			mac->autoneg_failed = 1;
600 			return 0;
601 		}
602 		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
603 
604 		/* Disable auto-negotiation in the TXCW register */
605 		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
606 
607 		/* Force link-up and also force full-duplex. */
608 		ctrl = er32(CTRL);
609 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
610 		ew32(CTRL, ctrl);
611 
612 		/* Configure Flow Control after forcing link up. */
613 		ret_val = e1000e_config_fc_after_link_up(hw);
614 		if (ret_val) {
615 			e_dbg("Error configuring flow control\n");
616 			return ret_val;
617 		}
618 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
619 		/*
620 		 * If we are forcing link and we are receiving /C/ ordered
621 		 * sets, re-enable auto-negotiation in the TXCW register
622 		 * and disable forced link in the Device Control register
623 		 * in an attempt to auto-negotiate with our link partner.
624 		 */
625 		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
626 		ew32(TXCW, mac->txcw);
627 		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
628 
629 		mac->serdes_has_link = true;
630 	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
631 		/*
632 		 * If we force link for non-auto-negotiation switch, check
633 		 * link status based on MAC synchronization for internal
634 		 * serdes media type.
635 		 */
636 		/* SYNCH bit and IV bit are sticky. */
637 		udelay(10);
638 		rxcw = er32(RXCW);
639 		if (rxcw & E1000_RXCW_SYNCH) {
640 			if (!(rxcw & E1000_RXCW_IV)) {
641 				mac->serdes_has_link = true;
642 				e_dbg("SERDES: Link up - forced.\n");
643 			}
644 		} else {
645 			mac->serdes_has_link = false;
646 			e_dbg("SERDES: Link down - force failed.\n");
647 		}
648 	}
649 
650 	if (E1000_TXCW_ANE & er32(TXCW)) {
651 		status = er32(STATUS);
652 		if (status & E1000_STATUS_LU) {
653 			/* SYNCH bit and IV bit are sticky, so reread rxcw.  */
654 			udelay(10);
655 			rxcw = er32(RXCW);
656 			if (rxcw & E1000_RXCW_SYNCH) {
657 				if (!(rxcw & E1000_RXCW_IV)) {
658 					mac->serdes_has_link = true;
659 					e_dbg("SERDES: Link up - autoneg "
660 					   "completed successfully.\n");
661 				} else {
662 					mac->serdes_has_link = false;
663 					e_dbg("SERDES: Link down - invalid"
664 					   "codewords detected in autoneg.\n");
665 				}
666 			} else {
667 				mac->serdes_has_link = false;
668 				e_dbg("SERDES: Link down - no sync.\n");
669 			}
670 		} else {
671 			mac->serdes_has_link = false;
672 			e_dbg("SERDES: Link down - autoneg failed\n");
673 		}
674 	}
675 
676 	return 0;
677 }
678 
679 /**
680  *  e1000_set_default_fc_generic - Set flow control default values
681  *  @hw: pointer to the HW structure
682  *
683  *  Read the EEPROM for the default values for flow control and store the
684  *  values.
685  **/
e1000_set_default_fc_generic(struct e1000_hw * hw)686 static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
687 {
688 	s32 ret_val;
689 	u16 nvm_data;
690 
691 	/*
692 	 * Read and store word 0x0F of the EEPROM. This word contains bits
693 	 * that determine the hardware's default PAUSE (flow control) mode,
694 	 * a bit that determines whether the HW defaults to enabling or
695 	 * disabling auto-negotiation, and the direction of the
696 	 * SW defined pins. If there is no SW over-ride of the flow
697 	 * control setting, then the variable hw->fc will
698 	 * be initialized based on a value in the EEPROM.
699 	 */
700 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
701 
702 	if (ret_val) {
703 		e_dbg("NVM Read Error\n");
704 		return ret_val;
705 	}
706 
707 	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
708 		hw->fc.requested_mode = e1000_fc_none;
709 	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
710 		 NVM_WORD0F_ASM_DIR)
711 		hw->fc.requested_mode = e1000_fc_tx_pause;
712 	else
713 		hw->fc.requested_mode = e1000_fc_full;
714 
715 	return 0;
716 }
717 
718 /**
719  *  e1000e_setup_link - Setup flow control and link settings
720  *  @hw: pointer to the HW structure
721  *
722  *  Determines which flow control settings to use, then configures flow
723  *  control.  Calls the appropriate media-specific link configuration
724  *  function.  Assuming the adapter has a valid link partner, a valid link
725  *  should be established.  Assumes the hardware has previously been reset
726  *  and the transmitter and receiver are not enabled.
727  **/
e1000e_setup_link(struct e1000_hw * hw)728 s32 e1000e_setup_link(struct e1000_hw *hw)
729 {
730 	struct e1000_mac_info *mac = &hw->mac;
731 	s32 ret_val;
732 
733 	/*
734 	 * In the case of the phy reset being blocked, we already have a link.
735 	 * We do not need to set it up again.
736 	 */
737 	if (e1000_check_reset_block(hw))
738 		return 0;
739 
740 	/*
741 	 * If requested flow control is set to default, set flow control
742 	 * based on the EEPROM flow control settings.
743 	 */
744 	if (hw->fc.requested_mode == e1000_fc_default) {
745 		ret_val = e1000_set_default_fc_generic(hw);
746 		if (ret_val)
747 			return ret_val;
748 	}
749 
750 	/*
751 	 * Save off the requested flow control mode for use later.  Depending
752 	 * on the link partner's capabilities, we may or may not use this mode.
753 	 */
754 	hw->fc.current_mode = hw->fc.requested_mode;
755 
756 	e_dbg("After fix-ups FlowControl is now = %x\n",
757 		hw->fc.current_mode);
758 
759 	/* Call the necessary media_type subroutine to configure the link. */
760 	ret_val = mac->ops.setup_physical_interface(hw);
761 	if (ret_val)
762 		return ret_val;
763 
764 	/*
765 	 * Initialize the flow control address, type, and PAUSE timer
766 	 * registers to their default values.  This is done even if flow
767 	 * control is disabled, because it does not hurt anything to
768 	 * initialize these registers.
769 	 */
770 	e_dbg("Initializing the Flow Control address, type and timer regs\n");
771 	ew32(FCT, FLOW_CONTROL_TYPE);
772 	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
773 	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
774 
775 	ew32(FCTTV, hw->fc.pause_time);
776 
777 	return e1000e_set_fc_watermarks(hw);
778 }
779 
780 /**
781  *  e1000_commit_fc_settings_generic - Configure flow control
782  *  @hw: pointer to the HW structure
783  *
784  *  Write the flow control settings to the Transmit Config Word Register (TXCW)
785  *  base on the flow control settings in e1000_mac_info.
786  **/
e1000_commit_fc_settings_generic(struct e1000_hw * hw)787 static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
788 {
789 	struct e1000_mac_info *mac = &hw->mac;
790 	u32 txcw;
791 
792 	/*
793 	 * Check for a software override of the flow control settings, and
794 	 * setup the device accordingly.  If auto-negotiation is enabled, then
795 	 * software will have to set the "PAUSE" bits to the correct value in
796 	 * the Transmit Config Word Register (TXCW) and re-start auto-
797 	 * negotiation.  However, if auto-negotiation is disabled, then
798 	 * software will have to manually configure the two flow control enable
799 	 * bits in the CTRL register.
800 	 *
801 	 * The possible values of the "fc" parameter are:
802 	 *      0:  Flow control is completely disabled
803 	 *      1:  Rx flow control is enabled (we can receive pause frames,
804 	 *          but not send pause frames).
805 	 *      2:  Tx flow control is enabled (we can send pause frames but we
806 	 *          do not support receiving pause frames).
807 	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
808 	 */
809 	switch (hw->fc.current_mode) {
810 	case e1000_fc_none:
811 		/* Flow control completely disabled by a software over-ride. */
812 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
813 		break;
814 	case e1000_fc_rx_pause:
815 		/*
816 		 * Rx Flow control is enabled and Tx Flow control is disabled
817 		 * by a software over-ride. Since there really isn't a way to
818 		 * advertise that we are capable of Rx Pause ONLY, we will
819 		 * advertise that we support both symmetric and asymmetric Rx
820 		 * PAUSE.  Later, we will disable the adapter's ability to send
821 		 * PAUSE frames.
822 		 */
823 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
824 		break;
825 	case e1000_fc_tx_pause:
826 		/*
827 		 * Tx Flow control is enabled, and Rx Flow control is disabled,
828 		 * by a software over-ride.
829 		 */
830 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
831 		break;
832 	case e1000_fc_full:
833 		/*
834 		 * Flow control (both Rx and Tx) is enabled by a software
835 		 * over-ride.
836 		 */
837 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
838 		break;
839 	default:
840 		e_dbg("Flow control param set incorrectly\n");
841 		return -E1000_ERR_CONFIG;
842 		break;
843 	}
844 
845 	ew32(TXCW, txcw);
846 	mac->txcw = txcw;
847 
848 	return 0;
849 }
850 
851 /**
852  *  e1000_poll_fiber_serdes_link_generic - Poll for link up
853  *  @hw: pointer to the HW structure
854  *
855  *  Polls for link up by reading the status register, if link fails to come
856  *  up with auto-negotiation, then the link is forced if a signal is detected.
857  **/
e1000_poll_fiber_serdes_link_generic(struct e1000_hw * hw)858 static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
859 {
860 	struct e1000_mac_info *mac = &hw->mac;
861 	u32 i, status;
862 	s32 ret_val;
863 
864 	/*
865 	 * If we have a signal (the cable is plugged in, or assumed true for
866 	 * serdes media) then poll for a "Link-Up" indication in the Device
867 	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
868 	 * seconds (Auto-negotiation should complete in less than 500
869 	 * milliseconds even if the other end is doing it in SW).
870 	 */
871 	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
872 		usleep_range(10000, 20000);
873 		status = er32(STATUS);
874 		if (status & E1000_STATUS_LU)
875 			break;
876 	}
877 	if (i == FIBER_LINK_UP_LIMIT) {
878 		e_dbg("Never got a valid link from auto-neg!!!\n");
879 		mac->autoneg_failed = 1;
880 		/*
881 		 * AutoNeg failed to achieve a link, so we'll call
882 		 * mac->check_for_link. This routine will force the
883 		 * link up if we detect a signal. This will allow us to
884 		 * communicate with non-autonegotiating link partners.
885 		 */
886 		ret_val = mac->ops.check_for_link(hw);
887 		if (ret_val) {
888 			e_dbg("Error while checking for link\n");
889 			return ret_val;
890 		}
891 		mac->autoneg_failed = 0;
892 	} else {
893 		mac->autoneg_failed = 0;
894 		e_dbg("Valid Link Found\n");
895 	}
896 
897 	return 0;
898 }
899 
900 /**
901  *  e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
902  *  @hw: pointer to the HW structure
903  *
904  *  Configures collision distance and flow control for fiber and serdes
905  *  links.  Upon successful setup, poll for link.
906  **/
e1000e_setup_fiber_serdes_link(struct e1000_hw * hw)907 s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
908 {
909 	u32 ctrl;
910 	s32 ret_val;
911 
912 	ctrl = er32(CTRL);
913 
914 	/* Take the link out of reset */
915 	ctrl &= ~E1000_CTRL_LRST;
916 
917 	e1000e_config_collision_dist(hw);
918 
919 	ret_val = e1000_commit_fc_settings_generic(hw);
920 	if (ret_val)
921 		return ret_val;
922 
923 	/*
924 	 * Since auto-negotiation is enabled, take the link out of reset (the
925 	 * link will be in reset, because we previously reset the chip). This
926 	 * will restart auto-negotiation.  If auto-negotiation is successful
927 	 * then the link-up status bit will be set and the flow control enable
928 	 * bits (RFCE and TFCE) will be set according to their negotiated value.
929 	 */
930 	e_dbg("Auto-negotiation enabled\n");
931 
932 	ew32(CTRL, ctrl);
933 	e1e_flush();
934 	usleep_range(1000, 2000);
935 
936 	/*
937 	 * For these adapters, the SW definable pin 1 is set when the optics
938 	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
939 	 * indication.
940 	 */
941 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
942 	    (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
943 		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
944 	} else {
945 		e_dbg("No signal detected\n");
946 	}
947 
948 	return 0;
949 }
950 
951 /**
952  *  e1000e_config_collision_dist - Configure collision distance
953  *  @hw: pointer to the HW structure
954  *
955  *  Configures the collision distance to the default value and is used
956  *  during link setup. Currently no func pointer exists and all
957  *  implementations are handled in the generic version of this function.
958  **/
e1000e_config_collision_dist(struct e1000_hw * hw)959 void e1000e_config_collision_dist(struct e1000_hw *hw)
960 {
961 	u32 tctl;
962 
963 	tctl = er32(TCTL);
964 
965 	tctl &= ~E1000_TCTL_COLD;
966 	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
967 
968 	ew32(TCTL, tctl);
969 	e1e_flush();
970 }
971 
972 /**
973  *  e1000e_set_fc_watermarks - Set flow control high/low watermarks
974  *  @hw: pointer to the HW structure
975  *
976  *  Sets the flow control high/low threshold (watermark) registers.  If
977  *  flow control XON frame transmission is enabled, then set XON frame
978  *  transmission as well.
979  **/
e1000e_set_fc_watermarks(struct e1000_hw * hw)980 s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
981 {
982 	u32 fcrtl = 0, fcrth = 0;
983 
984 	/*
985 	 * Set the flow control receive threshold registers.  Normally,
986 	 * these registers will be set to a default threshold that may be
987 	 * adjusted later by the driver's runtime code.  However, if the
988 	 * ability to transmit pause frames is not enabled, then these
989 	 * registers will be set to 0.
990 	 */
991 	if (hw->fc.current_mode & e1000_fc_tx_pause) {
992 		/*
993 		 * We need to set up the Receive Threshold high and low water
994 		 * marks as well as (optionally) enabling the transmission of
995 		 * XON frames.
996 		 */
997 		fcrtl = hw->fc.low_water;
998 		fcrtl |= E1000_FCRTL_XONE;
999 		fcrth = hw->fc.high_water;
1000 	}
1001 	ew32(FCRTL, fcrtl);
1002 	ew32(FCRTH, fcrth);
1003 
1004 	return 0;
1005 }
1006 
1007 /**
1008  *  e1000e_force_mac_fc - Force the MAC's flow control settings
1009  *  @hw: pointer to the HW structure
1010  *
1011  *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
1012  *  device control register to reflect the adapter settings.  TFCE and RFCE
1013  *  need to be explicitly set by software when a copper PHY is used because
1014  *  autonegotiation is managed by the PHY rather than the MAC.  Software must
1015  *  also configure these bits when link is forced on a fiber connection.
1016  **/
e1000e_force_mac_fc(struct e1000_hw * hw)1017 s32 e1000e_force_mac_fc(struct e1000_hw *hw)
1018 {
1019 	u32 ctrl;
1020 
1021 	ctrl = er32(CTRL);
1022 
1023 	/*
1024 	 * Because we didn't get link via the internal auto-negotiation
1025 	 * mechanism (we either forced link or we got link via PHY
1026 	 * auto-neg), we have to manually enable/disable transmit an
1027 	 * receive flow control.
1028 	 *
1029 	 * The "Case" statement below enables/disable flow control
1030 	 * according to the "hw->fc.current_mode" parameter.
1031 	 *
1032 	 * The possible values of the "fc" parameter are:
1033 	 *      0:  Flow control is completely disabled
1034 	 *      1:  Rx flow control is enabled (we can receive pause
1035 	 *          frames but not send pause frames).
1036 	 *      2:  Tx flow control is enabled (we can send pause frames
1037 	 *          frames but we do not receive pause frames).
1038 	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
1039 	 *  other:  No other values should be possible at this point.
1040 	 */
1041 	e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
1042 
1043 	switch (hw->fc.current_mode) {
1044 	case e1000_fc_none:
1045 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
1046 		break;
1047 	case e1000_fc_rx_pause:
1048 		ctrl &= (~E1000_CTRL_TFCE);
1049 		ctrl |= E1000_CTRL_RFCE;
1050 		break;
1051 	case e1000_fc_tx_pause:
1052 		ctrl &= (~E1000_CTRL_RFCE);
1053 		ctrl |= E1000_CTRL_TFCE;
1054 		break;
1055 	case e1000_fc_full:
1056 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
1057 		break;
1058 	default:
1059 		e_dbg("Flow control param set incorrectly\n");
1060 		return -E1000_ERR_CONFIG;
1061 	}
1062 
1063 	ew32(CTRL, ctrl);
1064 
1065 	return 0;
1066 }
1067 
1068 /**
1069  *  e1000e_config_fc_after_link_up - Configures flow control after link
1070  *  @hw: pointer to the HW structure
1071  *
1072  *  Checks the status of auto-negotiation after link up to ensure that the
1073  *  speed and duplex were not forced.  If the link needed to be forced, then
1074  *  flow control needs to be forced also.  If auto-negotiation is enabled
1075  *  and did not fail, then we configure flow control based on our link
1076  *  partner.
1077  **/
e1000e_config_fc_after_link_up(struct e1000_hw * hw)1078 s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
1079 {
1080 	struct e1000_mac_info *mac = &hw->mac;
1081 	s32 ret_val = 0;
1082 	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1083 	u16 speed, duplex;
1084 
1085 	/*
1086 	 * Check for the case where we have fiber media and auto-neg failed
1087 	 * so we had to force link.  In this case, we need to force the
1088 	 * configuration of the MAC to match the "fc" parameter.
1089 	 */
1090 	if (mac->autoneg_failed) {
1091 		if (hw->phy.media_type == e1000_media_type_fiber ||
1092 		    hw->phy.media_type == e1000_media_type_internal_serdes)
1093 			ret_val = e1000e_force_mac_fc(hw);
1094 	} else {
1095 		if (hw->phy.media_type == e1000_media_type_copper)
1096 			ret_val = e1000e_force_mac_fc(hw);
1097 	}
1098 
1099 	if (ret_val) {
1100 		e_dbg("Error forcing flow control settings\n");
1101 		return ret_val;
1102 	}
1103 
1104 	/*
1105 	 * Check for the case where we have copper media and auto-neg is
1106 	 * enabled.  In this case, we need to check and see if Auto-Neg
1107 	 * has completed, and if so, how the PHY and link partner has
1108 	 * flow control configured.
1109 	 */
1110 	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1111 		/*
1112 		 * Read the MII Status Register and check to see if AutoNeg
1113 		 * has completed.  We read this twice because this reg has
1114 		 * some "sticky" (latched) bits.
1115 		 */
1116 		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1117 		if (ret_val)
1118 			return ret_val;
1119 		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1120 		if (ret_val)
1121 			return ret_val;
1122 
1123 		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
1124 			e_dbg("Copper PHY and Auto Neg "
1125 				 "has not completed.\n");
1126 			return ret_val;
1127 		}
1128 
1129 		/*
1130 		 * The AutoNeg process has completed, so we now need to
1131 		 * read both the Auto Negotiation Advertisement
1132 		 * Register (Address 4) and the Auto_Negotiation Base
1133 		 * Page Ability Register (Address 5) to determine how
1134 		 * flow control was negotiated.
1135 		 */
1136 		ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
1137 		if (ret_val)
1138 			return ret_val;
1139 		ret_val =
1140 		    e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
1141 		if (ret_val)
1142 			return ret_val;
1143 
1144 		/*
1145 		 * Two bits in the Auto Negotiation Advertisement Register
1146 		 * (Address 4) and two bits in the Auto Negotiation Base
1147 		 * Page Ability Register (Address 5) determine flow control
1148 		 * for both the PHY and the link partner.  The following
1149 		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1150 		 * 1999, describes these PAUSE resolution bits and how flow
1151 		 * control is determined based upon these settings.
1152 		 * NOTE:  DC = Don't Care
1153 		 *
1154 		 *   LOCAL DEVICE  |   LINK PARTNER
1155 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1156 		 *-------|---------|-------|---------|--------------------
1157 		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1158 		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1159 		 *   0   |    1    |   1   |    0    | e1000_fc_none
1160 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1161 		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1162 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1163 		 *   1   |    1    |   0   |    0    | e1000_fc_none
1164 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1165 		 *
1166 		 * Are both PAUSE bits set to 1?  If so, this implies
1167 		 * Symmetric Flow Control is enabled at both ends.  The
1168 		 * ASM_DIR bits are irrelevant per the spec.
1169 		 *
1170 		 * For Symmetric Flow Control:
1171 		 *
1172 		 *   LOCAL DEVICE  |   LINK PARTNER
1173 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1174 		 *-------|---------|-------|---------|--------------------
1175 		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
1176 		 *
1177 		 */
1178 		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1179 		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
1180 			/*
1181 			 * Now we need to check if the user selected Rx ONLY
1182 			 * of pause frames.  In this case, we had to advertise
1183 			 * FULL flow control because we could not advertise Rx
1184 			 * ONLY. Hence, we must now check to see if we need to
1185 			 * turn OFF the TRANSMISSION of PAUSE frames.
1186 			 */
1187 			if (hw->fc.requested_mode == e1000_fc_full) {
1188 				hw->fc.current_mode = e1000_fc_full;
1189 				e_dbg("Flow Control = FULL.\r\n");
1190 			} else {
1191 				hw->fc.current_mode = e1000_fc_rx_pause;
1192 				e_dbg("Flow Control = "
1193 				      "Rx PAUSE frames only.\r\n");
1194 			}
1195 		}
1196 		/*
1197 		 * For receiving PAUSE frames ONLY.
1198 		 *
1199 		 *   LOCAL DEVICE  |   LINK PARTNER
1200 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1201 		 *-------|---------|-------|---------|--------------------
1202 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1203 		 */
1204 		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1205 			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1206 			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1207 			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1208 			hw->fc.current_mode = e1000_fc_tx_pause;
1209 			e_dbg("Flow Control = Tx PAUSE frames only.\r\n");
1210 		}
1211 		/*
1212 		 * For transmitting PAUSE frames ONLY.
1213 		 *
1214 		 *   LOCAL DEVICE  |   LINK PARTNER
1215 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1216 		 *-------|---------|-------|---------|--------------------
1217 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1218 		 */
1219 		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1220 			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1221 			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1222 			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1223 			hw->fc.current_mode = e1000_fc_rx_pause;
1224 			e_dbg("Flow Control = Rx PAUSE frames only.\r\n");
1225 		} else {
1226 			/*
1227 			 * Per the IEEE spec, at this point flow control
1228 			 * should be disabled.
1229 			 */
1230 			hw->fc.current_mode = e1000_fc_none;
1231 			e_dbg("Flow Control = NONE.\r\n");
1232 		}
1233 
1234 		/*
1235 		 * Now we need to do one last check...  If we auto-
1236 		 * negotiated to HALF DUPLEX, flow control should not be
1237 		 * enabled per IEEE 802.3 spec.
1238 		 */
1239 		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1240 		if (ret_val) {
1241 			e_dbg("Error getting link speed and duplex\n");
1242 			return ret_val;
1243 		}
1244 
1245 		if (duplex == HALF_DUPLEX)
1246 			hw->fc.current_mode = e1000_fc_none;
1247 
1248 		/*
1249 		 * Now we call a subroutine to actually force the MAC
1250 		 * controller to use the correct flow control settings.
1251 		 */
1252 		ret_val = e1000e_force_mac_fc(hw);
1253 		if (ret_val) {
1254 			e_dbg("Error forcing flow control settings\n");
1255 			return ret_val;
1256 		}
1257 	}
1258 
1259 	return 0;
1260 }
1261 
1262 /**
1263  *  e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1264  *  @hw: pointer to the HW structure
1265  *  @speed: stores the current speed
1266  *  @duplex: stores the current duplex
1267  *
1268  *  Read the status register for the current speed/duplex and store the current
1269  *  speed and duplex for copper connections.
1270  **/
e1000e_get_speed_and_duplex_copper(struct e1000_hw * hw,u16 * speed,u16 * duplex)1271 s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex)
1272 {
1273 	u32 status;
1274 
1275 	status = er32(STATUS);
1276 	if (status & E1000_STATUS_SPEED_1000)
1277 		*speed = SPEED_1000;
1278 	else if (status & E1000_STATUS_SPEED_100)
1279 		*speed = SPEED_100;
1280 	else
1281 		*speed = SPEED_10;
1282 
1283 	if (status & E1000_STATUS_FD)
1284 		*duplex = FULL_DUPLEX;
1285 	else
1286 		*duplex = HALF_DUPLEX;
1287 
1288 	e_dbg("%u Mbps, %s Duplex\n",
1289 	      *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
1290 	      *duplex == FULL_DUPLEX ? "Full" : "Half");
1291 
1292 	return 0;
1293 }
1294 
1295 /**
1296  *  e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1297  *  @hw: pointer to the HW structure
1298  *  @speed: stores the current speed
1299  *  @duplex: stores the current duplex
1300  *
1301  *  Sets the speed and duplex to gigabit full duplex (the only possible option)
1302  *  for fiber/serdes links.
1303  **/
e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw * hw,u16 * speed,u16 * duplex)1304 s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex)
1305 {
1306 	*speed = SPEED_1000;
1307 	*duplex = FULL_DUPLEX;
1308 
1309 	return 0;
1310 }
1311 
1312 /**
1313  *  e1000e_get_hw_semaphore - Acquire hardware semaphore
1314  *  @hw: pointer to the HW structure
1315  *
1316  *  Acquire the HW semaphore to access the PHY or NVM
1317  **/
e1000e_get_hw_semaphore(struct e1000_hw * hw)1318 s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1319 {
1320 	u32 swsm;
1321 	s32 timeout = hw->nvm.word_size + 1;
1322 	s32 i = 0;
1323 
1324 	/* Get the SW semaphore */
1325 	while (i < timeout) {
1326 		swsm = er32(SWSM);
1327 		if (!(swsm & E1000_SWSM_SMBI))
1328 			break;
1329 
1330 		udelay(50);
1331 		i++;
1332 	}
1333 
1334 	if (i == timeout) {
1335 		e_dbg("Driver can't access device - SMBI bit is set.\n");
1336 		return -E1000_ERR_NVM;
1337 	}
1338 
1339 	/* Get the FW semaphore. */
1340 	for (i = 0; i < timeout; i++) {
1341 		swsm = er32(SWSM);
1342 		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1343 
1344 		/* Semaphore acquired if bit latched */
1345 		if (er32(SWSM) & E1000_SWSM_SWESMBI)
1346 			break;
1347 
1348 		udelay(50);
1349 	}
1350 
1351 	if (i == timeout) {
1352 		/* Release semaphores */
1353 		e1000e_put_hw_semaphore(hw);
1354 		e_dbg("Driver can't access the NVM\n");
1355 		return -E1000_ERR_NVM;
1356 	}
1357 
1358 	return 0;
1359 }
1360 
1361 /**
1362  *  e1000e_put_hw_semaphore - Release hardware semaphore
1363  *  @hw: pointer to the HW structure
1364  *
1365  *  Release hardware semaphore used to access the PHY or NVM
1366  **/
e1000e_put_hw_semaphore(struct e1000_hw * hw)1367 void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1368 {
1369 	u32 swsm;
1370 
1371 	swsm = er32(SWSM);
1372 	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1373 	ew32(SWSM, swsm);
1374 }
1375 
1376 /**
1377  *  e1000e_get_auto_rd_done - Check for auto read completion
1378  *  @hw: pointer to the HW structure
1379  *
1380  *  Check EEPROM for Auto Read done bit.
1381  **/
e1000e_get_auto_rd_done(struct e1000_hw * hw)1382 s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1383 {
1384 	s32 i = 0;
1385 
1386 	while (i < AUTO_READ_DONE_TIMEOUT) {
1387 		if (er32(EECD) & E1000_EECD_AUTO_RD)
1388 			break;
1389 		usleep_range(1000, 2000);
1390 		i++;
1391 	}
1392 
1393 	if (i == AUTO_READ_DONE_TIMEOUT) {
1394 		e_dbg("Auto read by HW from NVM has not completed.\n");
1395 		return -E1000_ERR_RESET;
1396 	}
1397 
1398 	return 0;
1399 }
1400 
1401 /**
1402  *  e1000e_valid_led_default - Verify a valid default LED config
1403  *  @hw: pointer to the HW structure
1404  *  @data: pointer to the NVM (EEPROM)
1405  *
1406  *  Read the EEPROM for the current default LED configuration.  If the
1407  *  LED configuration is not valid, set to a valid LED configuration.
1408  **/
e1000e_valid_led_default(struct e1000_hw * hw,u16 * data)1409 s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1410 {
1411 	s32 ret_val;
1412 
1413 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1414 	if (ret_val) {
1415 		e_dbg("NVM Read Error\n");
1416 		return ret_val;
1417 	}
1418 
1419 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1420 		*data = ID_LED_DEFAULT;
1421 
1422 	return 0;
1423 }
1424 
1425 /**
1426  *  e1000e_id_led_init -
1427  *  @hw: pointer to the HW structure
1428  *
1429  **/
e1000e_id_led_init(struct e1000_hw * hw)1430 s32 e1000e_id_led_init(struct e1000_hw *hw)
1431 {
1432 	struct e1000_mac_info *mac = &hw->mac;
1433 	s32 ret_val;
1434 	const u32 ledctl_mask = 0x000000FF;
1435 	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1436 	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1437 	u16 data, i, temp;
1438 	const u16 led_mask = 0x0F;
1439 
1440 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1441 	if (ret_val)
1442 		return ret_val;
1443 
1444 	mac->ledctl_default = er32(LEDCTL);
1445 	mac->ledctl_mode1 = mac->ledctl_default;
1446 	mac->ledctl_mode2 = mac->ledctl_default;
1447 
1448 	for (i = 0; i < 4; i++) {
1449 		temp = (data >> (i << 2)) & led_mask;
1450 		switch (temp) {
1451 		case ID_LED_ON1_DEF2:
1452 		case ID_LED_ON1_ON2:
1453 		case ID_LED_ON1_OFF2:
1454 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1455 			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1456 			break;
1457 		case ID_LED_OFF1_DEF2:
1458 		case ID_LED_OFF1_ON2:
1459 		case ID_LED_OFF1_OFF2:
1460 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1461 			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1462 			break;
1463 		default:
1464 			/* Do nothing */
1465 			break;
1466 		}
1467 		switch (temp) {
1468 		case ID_LED_DEF1_ON2:
1469 		case ID_LED_ON1_ON2:
1470 		case ID_LED_OFF1_ON2:
1471 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1472 			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1473 			break;
1474 		case ID_LED_DEF1_OFF2:
1475 		case ID_LED_ON1_OFF2:
1476 		case ID_LED_OFF1_OFF2:
1477 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1478 			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1479 			break;
1480 		default:
1481 			/* Do nothing */
1482 			break;
1483 		}
1484 	}
1485 
1486 	return 0;
1487 }
1488 
1489 /**
1490  *  e1000e_setup_led_generic - Configures SW controllable LED
1491  *  @hw: pointer to the HW structure
1492  *
1493  *  This prepares the SW controllable LED for use and saves the current state
1494  *  of the LED so it can be later restored.
1495  **/
e1000e_setup_led_generic(struct e1000_hw * hw)1496 s32 e1000e_setup_led_generic(struct e1000_hw *hw)
1497 {
1498 	u32 ledctl;
1499 
1500 	if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
1501 		return -E1000_ERR_CONFIG;
1502 
1503 	if (hw->phy.media_type == e1000_media_type_fiber) {
1504 		ledctl = er32(LEDCTL);
1505 		hw->mac.ledctl_default = ledctl;
1506 		/* Turn off LED0 */
1507 		ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
1508 		            E1000_LEDCTL_LED0_BLINK |
1509 		            E1000_LEDCTL_LED0_MODE_MASK);
1510 		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1511 		           E1000_LEDCTL_LED0_MODE_SHIFT);
1512 		ew32(LEDCTL, ledctl);
1513 	} else if (hw->phy.media_type == e1000_media_type_copper) {
1514 		ew32(LEDCTL, hw->mac.ledctl_mode1);
1515 	}
1516 
1517 	return 0;
1518 }
1519 
1520 /**
1521  *  e1000e_cleanup_led_generic - Set LED config to default operation
1522  *  @hw: pointer to the HW structure
1523  *
1524  *  Remove the current LED configuration and set the LED configuration
1525  *  to the default value, saved from the EEPROM.
1526  **/
e1000e_cleanup_led_generic(struct e1000_hw * hw)1527 s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1528 {
1529 	ew32(LEDCTL, hw->mac.ledctl_default);
1530 	return 0;
1531 }
1532 
1533 /**
1534  *  e1000e_blink_led_generic - Blink LED
1535  *  @hw: pointer to the HW structure
1536  *
1537  *  Blink the LEDs which are set to be on.
1538  **/
e1000e_blink_led_generic(struct e1000_hw * hw)1539 s32 e1000e_blink_led_generic(struct e1000_hw *hw)
1540 {
1541 	u32 ledctl_blink = 0;
1542 	u32 i;
1543 
1544 	if (hw->phy.media_type == e1000_media_type_fiber) {
1545 		/* always blink LED0 for PCI-E fiber */
1546 		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1547 		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1548 	} else {
1549 		/*
1550 		 * set the blink bit for each LED that's "on" (0x0E)
1551 		 * in ledctl_mode2
1552 		 */
1553 		ledctl_blink = hw->mac.ledctl_mode2;
1554 		for (i = 0; i < 4; i++)
1555 			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1556 			    E1000_LEDCTL_MODE_LED_ON)
1557 				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1558 						 (i * 8));
1559 	}
1560 
1561 	ew32(LEDCTL, ledctl_blink);
1562 
1563 	return 0;
1564 }
1565 
1566 /**
1567  *  e1000e_led_on_generic - Turn LED on
1568  *  @hw: pointer to the HW structure
1569  *
1570  *  Turn LED on.
1571  **/
e1000e_led_on_generic(struct e1000_hw * hw)1572 s32 e1000e_led_on_generic(struct e1000_hw *hw)
1573 {
1574 	u32 ctrl;
1575 
1576 	switch (hw->phy.media_type) {
1577 	case e1000_media_type_fiber:
1578 		ctrl = er32(CTRL);
1579 		ctrl &= ~E1000_CTRL_SWDPIN0;
1580 		ctrl |= E1000_CTRL_SWDPIO0;
1581 		ew32(CTRL, ctrl);
1582 		break;
1583 	case e1000_media_type_copper:
1584 		ew32(LEDCTL, hw->mac.ledctl_mode2);
1585 		break;
1586 	default:
1587 		break;
1588 	}
1589 
1590 	return 0;
1591 }
1592 
1593 /**
1594  *  e1000e_led_off_generic - Turn LED off
1595  *  @hw: pointer to the HW structure
1596  *
1597  *  Turn LED off.
1598  **/
e1000e_led_off_generic(struct e1000_hw * hw)1599 s32 e1000e_led_off_generic(struct e1000_hw *hw)
1600 {
1601 	u32 ctrl;
1602 
1603 	switch (hw->phy.media_type) {
1604 	case e1000_media_type_fiber:
1605 		ctrl = er32(CTRL);
1606 		ctrl |= E1000_CTRL_SWDPIN0;
1607 		ctrl |= E1000_CTRL_SWDPIO0;
1608 		ew32(CTRL, ctrl);
1609 		break;
1610 	case e1000_media_type_copper:
1611 		ew32(LEDCTL, hw->mac.ledctl_mode1);
1612 		break;
1613 	default:
1614 		break;
1615 	}
1616 
1617 	return 0;
1618 }
1619 
1620 /**
1621  *  e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1622  *  @hw: pointer to the HW structure
1623  *  @no_snoop: bitmap of snoop events
1624  *
1625  *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1626  **/
e1000e_set_pcie_no_snoop(struct e1000_hw * hw,u32 no_snoop)1627 void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1628 {
1629 	u32 gcr;
1630 
1631 	if (no_snoop) {
1632 		gcr = er32(GCR);
1633 		gcr &= ~(PCIE_NO_SNOOP_ALL);
1634 		gcr |= no_snoop;
1635 		ew32(GCR, gcr);
1636 	}
1637 }
1638 
1639 /**
1640  *  e1000e_disable_pcie_master - Disables PCI-express master access
1641  *  @hw: pointer to the HW structure
1642  *
1643  *  Returns 0 if successful, else returns -10
1644  *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1645  *  the master requests to be disabled.
1646  *
1647  *  Disables PCI-Express master access and verifies there are no pending
1648  *  requests.
1649  **/
e1000e_disable_pcie_master(struct e1000_hw * hw)1650 s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1651 {
1652 	u32 ctrl;
1653 	s32 timeout = MASTER_DISABLE_TIMEOUT;
1654 
1655 	ctrl = er32(CTRL);
1656 	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1657 	ew32(CTRL, ctrl);
1658 
1659 	while (timeout) {
1660 		if (!(er32(STATUS) &
1661 		      E1000_STATUS_GIO_MASTER_ENABLE))
1662 			break;
1663 		udelay(100);
1664 		timeout--;
1665 	}
1666 
1667 	if (!timeout) {
1668 		e_dbg("Master requests are pending.\n");
1669 		return -E1000_ERR_MASTER_REQUESTS_PENDING;
1670 	}
1671 
1672 	return 0;
1673 }
1674 
1675 /**
1676  *  e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1677  *  @hw: pointer to the HW structure
1678  *
1679  *  Reset the Adaptive Interframe Spacing throttle to default values.
1680  **/
e1000e_reset_adaptive(struct e1000_hw * hw)1681 void e1000e_reset_adaptive(struct e1000_hw *hw)
1682 {
1683 	struct e1000_mac_info *mac = &hw->mac;
1684 
1685 	if (!mac->adaptive_ifs) {
1686 		e_dbg("Not in Adaptive IFS mode!\n");
1687 		goto out;
1688 	}
1689 
1690 	mac->current_ifs_val = 0;
1691 	mac->ifs_min_val = IFS_MIN;
1692 	mac->ifs_max_val = IFS_MAX;
1693 	mac->ifs_step_size = IFS_STEP;
1694 	mac->ifs_ratio = IFS_RATIO;
1695 
1696 	mac->in_ifs_mode = false;
1697 	ew32(AIT, 0);
1698 out:
1699 	return;
1700 }
1701 
1702 /**
1703  *  e1000e_update_adaptive - Update Adaptive Interframe Spacing
1704  *  @hw: pointer to the HW structure
1705  *
1706  *  Update the Adaptive Interframe Spacing Throttle value based on the
1707  *  time between transmitted packets and time between collisions.
1708  **/
e1000e_update_adaptive(struct e1000_hw * hw)1709 void e1000e_update_adaptive(struct e1000_hw *hw)
1710 {
1711 	struct e1000_mac_info *mac = &hw->mac;
1712 
1713 	if (!mac->adaptive_ifs) {
1714 		e_dbg("Not in Adaptive IFS mode!\n");
1715 		goto out;
1716 	}
1717 
1718 	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1719 		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1720 			mac->in_ifs_mode = true;
1721 			if (mac->current_ifs_val < mac->ifs_max_val) {
1722 				if (!mac->current_ifs_val)
1723 					mac->current_ifs_val = mac->ifs_min_val;
1724 				else
1725 					mac->current_ifs_val +=
1726 						mac->ifs_step_size;
1727 				ew32(AIT, mac->current_ifs_val);
1728 			}
1729 		}
1730 	} else {
1731 		if (mac->in_ifs_mode &&
1732 		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1733 			mac->current_ifs_val = 0;
1734 			mac->in_ifs_mode = false;
1735 			ew32(AIT, 0);
1736 		}
1737 	}
1738 out:
1739 	return;
1740 }
1741 
1742 /**
1743  *  e1000_raise_eec_clk - Raise EEPROM clock
1744  *  @hw: pointer to the HW structure
1745  *  @eecd: pointer to the EEPROM
1746  *
1747  *  Enable/Raise the EEPROM clock bit.
1748  **/
e1000_raise_eec_clk(struct e1000_hw * hw,u32 * eecd)1749 static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
1750 {
1751 	*eecd = *eecd | E1000_EECD_SK;
1752 	ew32(EECD, *eecd);
1753 	e1e_flush();
1754 	udelay(hw->nvm.delay_usec);
1755 }
1756 
1757 /**
1758  *  e1000_lower_eec_clk - Lower EEPROM clock
1759  *  @hw: pointer to the HW structure
1760  *  @eecd: pointer to the EEPROM
1761  *
1762  *  Clear/Lower the EEPROM clock bit.
1763  **/
e1000_lower_eec_clk(struct e1000_hw * hw,u32 * eecd)1764 static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
1765 {
1766 	*eecd = *eecd & ~E1000_EECD_SK;
1767 	ew32(EECD, *eecd);
1768 	e1e_flush();
1769 	udelay(hw->nvm.delay_usec);
1770 }
1771 
1772 /**
1773  *  e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
1774  *  @hw: pointer to the HW structure
1775  *  @data: data to send to the EEPROM
1776  *  @count: number of bits to shift out
1777  *
1778  *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
1779  *  "data" parameter will be shifted out to the EEPROM one bit at a time.
1780  *  In order to do this, "data" must be broken down into bits.
1781  **/
e1000_shift_out_eec_bits(struct e1000_hw * hw,u16 data,u16 count)1782 static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
1783 {
1784 	struct e1000_nvm_info *nvm = &hw->nvm;
1785 	u32 eecd = er32(EECD);
1786 	u32 mask;
1787 
1788 	mask = 0x01 << (count - 1);
1789 	if (nvm->type == e1000_nvm_eeprom_spi)
1790 		eecd |= E1000_EECD_DO;
1791 
1792 	do {
1793 		eecd &= ~E1000_EECD_DI;
1794 
1795 		if (data & mask)
1796 			eecd |= E1000_EECD_DI;
1797 
1798 		ew32(EECD, eecd);
1799 		e1e_flush();
1800 
1801 		udelay(nvm->delay_usec);
1802 
1803 		e1000_raise_eec_clk(hw, &eecd);
1804 		e1000_lower_eec_clk(hw, &eecd);
1805 
1806 		mask >>= 1;
1807 	} while (mask);
1808 
1809 	eecd &= ~E1000_EECD_DI;
1810 	ew32(EECD, eecd);
1811 }
1812 
1813 /**
1814  *  e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
1815  *  @hw: pointer to the HW structure
1816  *  @count: number of bits to shift in
1817  *
1818  *  In order to read a register from the EEPROM, we need to shift 'count' bits
1819  *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
1820  *  the EEPROM (setting the SK bit), and then reading the value of the data out
1821  *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
1822  *  always be clear.
1823  **/
e1000_shift_in_eec_bits(struct e1000_hw * hw,u16 count)1824 static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
1825 {
1826 	u32 eecd;
1827 	u32 i;
1828 	u16 data;
1829 
1830 	eecd = er32(EECD);
1831 
1832 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
1833 	data = 0;
1834 
1835 	for (i = 0; i < count; i++) {
1836 		data <<= 1;
1837 		e1000_raise_eec_clk(hw, &eecd);
1838 
1839 		eecd = er32(EECD);
1840 
1841 		eecd &= ~E1000_EECD_DI;
1842 		if (eecd & E1000_EECD_DO)
1843 			data |= 1;
1844 
1845 		e1000_lower_eec_clk(hw, &eecd);
1846 	}
1847 
1848 	return data;
1849 }
1850 
1851 /**
1852  *  e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
1853  *  @hw: pointer to the HW structure
1854  *  @ee_reg: EEPROM flag for polling
1855  *
1856  *  Polls the EEPROM status bit for either read or write completion based
1857  *  upon the value of 'ee_reg'.
1858  **/
e1000e_poll_eerd_eewr_done(struct e1000_hw * hw,int ee_reg)1859 s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
1860 {
1861 	u32 attempts = 100000;
1862 	u32 i, reg = 0;
1863 
1864 	for (i = 0; i < attempts; i++) {
1865 		if (ee_reg == E1000_NVM_POLL_READ)
1866 			reg = er32(EERD);
1867 		else
1868 			reg = er32(EEWR);
1869 
1870 		if (reg & E1000_NVM_RW_REG_DONE)
1871 			return 0;
1872 
1873 		udelay(5);
1874 	}
1875 
1876 	return -E1000_ERR_NVM;
1877 }
1878 
1879 /**
1880  *  e1000e_acquire_nvm - Generic request for access to EEPROM
1881  *  @hw: pointer to the HW structure
1882  *
1883  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1884  *  Return successful if access grant bit set, else clear the request for
1885  *  EEPROM access and return -E1000_ERR_NVM (-1).
1886  **/
e1000e_acquire_nvm(struct e1000_hw * hw)1887 s32 e1000e_acquire_nvm(struct e1000_hw *hw)
1888 {
1889 	u32 eecd = er32(EECD);
1890 	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
1891 
1892 	ew32(EECD, eecd | E1000_EECD_REQ);
1893 	eecd = er32(EECD);
1894 
1895 	while (timeout) {
1896 		if (eecd & E1000_EECD_GNT)
1897 			break;
1898 		udelay(5);
1899 		eecd = er32(EECD);
1900 		timeout--;
1901 	}
1902 
1903 	if (!timeout) {
1904 		eecd &= ~E1000_EECD_REQ;
1905 		ew32(EECD, eecd);
1906 		e_dbg("Could not acquire NVM grant\n");
1907 		return -E1000_ERR_NVM;
1908 	}
1909 
1910 	return 0;
1911 }
1912 
1913 /**
1914  *  e1000_standby_nvm - Return EEPROM to standby state
1915  *  @hw: pointer to the HW structure
1916  *
1917  *  Return the EEPROM to a standby state.
1918  **/
e1000_standby_nvm(struct e1000_hw * hw)1919 static void e1000_standby_nvm(struct e1000_hw *hw)
1920 {
1921 	struct e1000_nvm_info *nvm = &hw->nvm;
1922 	u32 eecd = er32(EECD);
1923 
1924 	if (nvm->type == e1000_nvm_eeprom_spi) {
1925 		/* Toggle CS to flush commands */
1926 		eecd |= E1000_EECD_CS;
1927 		ew32(EECD, eecd);
1928 		e1e_flush();
1929 		udelay(nvm->delay_usec);
1930 		eecd &= ~E1000_EECD_CS;
1931 		ew32(EECD, eecd);
1932 		e1e_flush();
1933 		udelay(nvm->delay_usec);
1934 	}
1935 }
1936 
1937 /**
1938  *  e1000_stop_nvm - Terminate EEPROM command
1939  *  @hw: pointer to the HW structure
1940  *
1941  *  Terminates the current command by inverting the EEPROM's chip select pin.
1942  **/
e1000_stop_nvm(struct e1000_hw * hw)1943 static void e1000_stop_nvm(struct e1000_hw *hw)
1944 {
1945 	u32 eecd;
1946 
1947 	eecd = er32(EECD);
1948 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
1949 		/* Pull CS high */
1950 		eecd |= E1000_EECD_CS;
1951 		e1000_lower_eec_clk(hw, &eecd);
1952 	}
1953 }
1954 
1955 /**
1956  *  e1000e_release_nvm - Release exclusive access to EEPROM
1957  *  @hw: pointer to the HW structure
1958  *
1959  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
1960  **/
e1000e_release_nvm(struct e1000_hw * hw)1961 void e1000e_release_nvm(struct e1000_hw *hw)
1962 {
1963 	u32 eecd;
1964 
1965 	e1000_stop_nvm(hw);
1966 
1967 	eecd = er32(EECD);
1968 	eecd &= ~E1000_EECD_REQ;
1969 	ew32(EECD, eecd);
1970 }
1971 
1972 /**
1973  *  e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
1974  *  @hw: pointer to the HW structure
1975  *
1976  *  Setups the EEPROM for reading and writing.
1977  **/
e1000_ready_nvm_eeprom(struct e1000_hw * hw)1978 static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
1979 {
1980 	struct e1000_nvm_info *nvm = &hw->nvm;
1981 	u32 eecd = er32(EECD);
1982 	u8 spi_stat_reg;
1983 
1984 	if (nvm->type == e1000_nvm_eeprom_spi) {
1985 		u16 timeout = NVM_MAX_RETRY_SPI;
1986 
1987 		/* Clear SK and CS */
1988 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
1989 		ew32(EECD, eecd);
1990 		e1e_flush();
1991 		udelay(1);
1992 
1993 		/*
1994 		 * Read "Status Register" repeatedly until the LSB is cleared.
1995 		 * The EEPROM will signal that the command has been completed
1996 		 * by clearing bit 0 of the internal status register.  If it's
1997 		 * not cleared within 'timeout', then error out.
1998 		 */
1999 		while (timeout) {
2000 			e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
2001 						 hw->nvm.opcode_bits);
2002 			spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
2003 			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
2004 				break;
2005 
2006 			udelay(5);
2007 			e1000_standby_nvm(hw);
2008 			timeout--;
2009 		}
2010 
2011 		if (!timeout) {
2012 			e_dbg("SPI NVM Status error\n");
2013 			return -E1000_ERR_NVM;
2014 		}
2015 	}
2016 
2017 	return 0;
2018 }
2019 
2020 /**
2021  *  e1000e_read_nvm_eerd - Reads EEPROM using EERD register
2022  *  @hw: pointer to the HW structure
2023  *  @offset: offset of word in the EEPROM to read
2024  *  @words: number of words to read
2025  *  @data: word read from the EEPROM
2026  *
2027  *  Reads a 16 bit word from the EEPROM using the EERD register.
2028  **/
e1000e_read_nvm_eerd(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)2029 s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
2030 {
2031 	struct e1000_nvm_info *nvm = &hw->nvm;
2032 	u32 i, eerd = 0;
2033 	s32 ret_val = 0;
2034 
2035 	/*
2036 	 * A check for invalid values:  offset too large, too many words,
2037 	 * too many words for the offset, and not enough words.
2038 	 */
2039 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
2040 	    (words == 0)) {
2041 		e_dbg("nvm parameter(s) out of bounds\n");
2042 		return -E1000_ERR_NVM;
2043 	}
2044 
2045 	for (i = 0; i < words; i++) {
2046 		eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
2047 		       E1000_NVM_RW_REG_START;
2048 
2049 		ew32(EERD, eerd);
2050 		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
2051 		if (ret_val)
2052 			break;
2053 
2054 		data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
2055 	}
2056 
2057 	return ret_val;
2058 }
2059 
2060 /**
2061  *  e1000e_write_nvm_spi - Write to EEPROM using SPI
2062  *  @hw: pointer to the HW structure
2063  *  @offset: offset within the EEPROM to be written to
2064  *  @words: number of words to write
2065  *  @data: 16 bit word(s) to be written to the EEPROM
2066  *
2067  *  Writes data to EEPROM at offset using SPI interface.
2068  *
2069  *  If e1000e_update_nvm_checksum is not called after this function , the
2070  *  EEPROM will most likely contain an invalid checksum.
2071  **/
e1000e_write_nvm_spi(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)2072 s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
2073 {
2074 	struct e1000_nvm_info *nvm = &hw->nvm;
2075 	s32 ret_val;
2076 	u16 widx = 0;
2077 
2078 	/*
2079 	 * A check for invalid values:  offset too large, too many words,
2080 	 * and not enough words.
2081 	 */
2082 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
2083 	    (words == 0)) {
2084 		e_dbg("nvm parameter(s) out of bounds\n");
2085 		return -E1000_ERR_NVM;
2086 	}
2087 
2088 	ret_val = nvm->ops.acquire(hw);
2089 	if (ret_val)
2090 		return ret_val;
2091 
2092 	while (widx < words) {
2093 		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
2094 
2095 		ret_val = e1000_ready_nvm_eeprom(hw);
2096 		if (ret_val) {
2097 			nvm->ops.release(hw);
2098 			return ret_val;
2099 		}
2100 
2101 		e1000_standby_nvm(hw);
2102 
2103 		/* Send the WRITE ENABLE command (8 bit opcode) */
2104 		e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
2105 					 nvm->opcode_bits);
2106 
2107 		e1000_standby_nvm(hw);
2108 
2109 		/*
2110 		 * Some SPI eeproms use the 8th address bit embedded in the
2111 		 * opcode
2112 		 */
2113 		if ((nvm->address_bits == 8) && (offset >= 128))
2114 			write_opcode |= NVM_A8_OPCODE_SPI;
2115 
2116 		/* Send the Write command (8-bit opcode + addr) */
2117 		e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
2118 		e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
2119 					 nvm->address_bits);
2120 
2121 		/* Loop to allow for up to whole page write of eeprom */
2122 		while (widx < words) {
2123 			u16 word_out = data[widx];
2124 			word_out = (word_out >> 8) | (word_out << 8);
2125 			e1000_shift_out_eec_bits(hw, word_out, 16);
2126 			widx++;
2127 
2128 			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
2129 				e1000_standby_nvm(hw);
2130 				break;
2131 			}
2132 		}
2133 	}
2134 
2135 	usleep_range(10000, 20000);
2136 	nvm->ops.release(hw);
2137 	return 0;
2138 }
2139 
2140 /**
2141  *  e1000_read_pba_string_generic - Read device part number
2142  *  @hw: pointer to the HW structure
2143  *  @pba_num: pointer to device part number
2144  *  @pba_num_size: size of part number buffer
2145  *
2146  *  Reads the product board assembly (PBA) number from the EEPROM and stores
2147  *  the value in pba_num.
2148  **/
e1000_read_pba_string_generic(struct e1000_hw * hw,u8 * pba_num,u32 pba_num_size)2149 s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
2150 				  u32 pba_num_size)
2151 {
2152 	s32 ret_val;
2153 	u16 nvm_data;
2154 	u16 pba_ptr;
2155 	u16 offset;
2156 	u16 length;
2157 
2158 	if (pba_num == NULL) {
2159 		e_dbg("PBA string buffer was null\n");
2160 		ret_val = E1000_ERR_INVALID_ARGUMENT;
2161 		goto out;
2162 	}
2163 
2164 	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
2165 	if (ret_val) {
2166 		e_dbg("NVM Read Error\n");
2167 		goto out;
2168 	}
2169 
2170 	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
2171 	if (ret_val) {
2172 		e_dbg("NVM Read Error\n");
2173 		goto out;
2174 	}
2175 
2176 	/*
2177 	 * if nvm_data is not ptr guard the PBA must be in legacy format which
2178 	 * means pba_ptr is actually our second data word for the PBA number
2179 	 * and we can decode it into an ascii string
2180 	 */
2181 	if (nvm_data != NVM_PBA_PTR_GUARD) {
2182 		e_dbg("NVM PBA number is not stored as string\n");
2183 
2184 		/* we will need 11 characters to store the PBA */
2185 		if (pba_num_size < 11) {
2186 			e_dbg("PBA string buffer too small\n");
2187 			return E1000_ERR_NO_SPACE;
2188 		}
2189 
2190 		/* extract hex string from data and pba_ptr */
2191 		pba_num[0] = (nvm_data >> 12) & 0xF;
2192 		pba_num[1] = (nvm_data >> 8) & 0xF;
2193 		pba_num[2] = (nvm_data >> 4) & 0xF;
2194 		pba_num[3] = nvm_data & 0xF;
2195 		pba_num[4] = (pba_ptr >> 12) & 0xF;
2196 		pba_num[5] = (pba_ptr >> 8) & 0xF;
2197 		pba_num[6] = '-';
2198 		pba_num[7] = 0;
2199 		pba_num[8] = (pba_ptr >> 4) & 0xF;
2200 		pba_num[9] = pba_ptr & 0xF;
2201 
2202 		/* put a null character on the end of our string */
2203 		pba_num[10] = '\0';
2204 
2205 		/* switch all the data but the '-' to hex char */
2206 		for (offset = 0; offset < 10; offset++) {
2207 			if (pba_num[offset] < 0xA)
2208 				pba_num[offset] += '0';
2209 			else if (pba_num[offset] < 0x10)
2210 				pba_num[offset] += 'A' - 0xA;
2211 		}
2212 
2213 		goto out;
2214 	}
2215 
2216 	ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length);
2217 	if (ret_val) {
2218 		e_dbg("NVM Read Error\n");
2219 		goto out;
2220 	}
2221 
2222 	if (length == 0xFFFF || length == 0) {
2223 		e_dbg("NVM PBA number section invalid length\n");
2224 		ret_val = E1000_ERR_NVM_PBA_SECTION;
2225 		goto out;
2226 	}
2227 	/* check if pba_num buffer is big enough */
2228 	if (pba_num_size < (((u32)length * 2) - 1)) {
2229 		e_dbg("PBA string buffer too small\n");
2230 		ret_val = E1000_ERR_NO_SPACE;
2231 		goto out;
2232 	}
2233 
2234 	/* trim pba length from start of string */
2235 	pba_ptr++;
2236 	length--;
2237 
2238 	for (offset = 0; offset < length; offset++) {
2239 		ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data);
2240 		if (ret_val) {
2241 			e_dbg("NVM Read Error\n");
2242 			goto out;
2243 		}
2244 		pba_num[offset * 2] = (u8)(nvm_data >> 8);
2245 		pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
2246 	}
2247 	pba_num[offset * 2] = '\0';
2248 
2249 out:
2250 	return ret_val;
2251 }
2252 
2253 /**
2254  *  e1000_read_mac_addr_generic - Read device MAC address
2255  *  @hw: pointer to the HW structure
2256  *
2257  *  Reads the device MAC address from the EEPROM and stores the value.
2258  *  Since devices with two ports use the same EEPROM, we increment the
2259  *  last bit in the MAC address for the second port.
2260  **/
e1000_read_mac_addr_generic(struct e1000_hw * hw)2261 s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
2262 {
2263 	u32 rar_high;
2264 	u32 rar_low;
2265 	u16 i;
2266 
2267 	rar_high = er32(RAH(0));
2268 	rar_low = er32(RAL(0));
2269 
2270 	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
2271 		hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
2272 
2273 	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
2274 		hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
2275 
2276 	for (i = 0; i < ETH_ALEN; i++)
2277 		hw->mac.addr[i] = hw->mac.perm_addr[i];
2278 
2279 	return 0;
2280 }
2281 
2282 /**
2283  *  e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
2284  *  @hw: pointer to the HW structure
2285  *
2286  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2287  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2288  **/
e1000e_validate_nvm_checksum_generic(struct e1000_hw * hw)2289 s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
2290 {
2291 	s32 ret_val;
2292 	u16 checksum = 0;
2293 	u16 i, nvm_data;
2294 
2295 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
2296 		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
2297 		if (ret_val) {
2298 			e_dbg("NVM Read Error\n");
2299 			return ret_val;
2300 		}
2301 		checksum += nvm_data;
2302 	}
2303 
2304 	if (checksum != (u16) NVM_SUM) {
2305 		e_dbg("NVM Checksum Invalid\n");
2306 		return -E1000_ERR_NVM;
2307 	}
2308 
2309 	return 0;
2310 }
2311 
2312 /**
2313  *  e1000e_update_nvm_checksum_generic - Update EEPROM checksum
2314  *  @hw: pointer to the HW structure
2315  *
2316  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2317  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2318  *  value to the EEPROM.
2319  **/
e1000e_update_nvm_checksum_generic(struct e1000_hw * hw)2320 s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
2321 {
2322 	s32 ret_val;
2323 	u16 checksum = 0;
2324 	u16 i, nvm_data;
2325 
2326 	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
2327 		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
2328 		if (ret_val) {
2329 			e_dbg("NVM Read Error while updating checksum.\n");
2330 			return ret_val;
2331 		}
2332 		checksum += nvm_data;
2333 	}
2334 	checksum = (u16) NVM_SUM - checksum;
2335 	ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
2336 	if (ret_val)
2337 		e_dbg("NVM Write Error while updating checksum.\n");
2338 
2339 	return ret_val;
2340 }
2341 
2342 /**
2343  *  e1000e_reload_nvm - Reloads EEPROM
2344  *  @hw: pointer to the HW structure
2345  *
2346  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
2347  *  extended control register.
2348  **/
e1000e_reload_nvm(struct e1000_hw * hw)2349 void e1000e_reload_nvm(struct e1000_hw *hw)
2350 {
2351 	u32 ctrl_ext;
2352 
2353 	udelay(10);
2354 	ctrl_ext = er32(CTRL_EXT);
2355 	ctrl_ext |= E1000_CTRL_EXT_EE_RST;
2356 	ew32(CTRL_EXT, ctrl_ext);
2357 	e1e_flush();
2358 }
2359 
2360 /**
2361  *  e1000_calculate_checksum - Calculate checksum for buffer
2362  *  @buffer: pointer to EEPROM
2363  *  @length: size of EEPROM to calculate a checksum for
2364  *
2365  *  Calculates the checksum for some buffer on a specified length.  The
2366  *  checksum calculated is returned.
2367  **/
e1000_calculate_checksum(u8 * buffer,u32 length)2368 static u8 e1000_calculate_checksum(u8 *buffer, u32 length)
2369 {
2370 	u32 i;
2371 	u8  sum = 0;
2372 
2373 	if (!buffer)
2374 		return 0;
2375 
2376 	for (i = 0; i < length; i++)
2377 		sum += buffer[i];
2378 
2379 	return (u8) (0 - sum);
2380 }
2381 
2382 /**
2383  *  e1000_mng_enable_host_if - Checks host interface is enabled
2384  *  @hw: pointer to the HW structure
2385  *
2386  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
2387  *
2388  *  This function checks whether the HOST IF is enabled for command operation
2389  *  and also checks whether the previous command is completed.  It busy waits
2390  *  in case of previous command is not completed.
2391  **/
e1000_mng_enable_host_if(struct e1000_hw * hw)2392 static s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
2393 {
2394 	u32 hicr;
2395 	u8 i;
2396 
2397 	if (!(hw->mac.arc_subsystem_valid)) {
2398 		e_dbg("ARC subsystem not valid.\n");
2399 		return -E1000_ERR_HOST_INTERFACE_COMMAND;
2400 	}
2401 
2402 	/* Check that the host interface is enabled. */
2403 	hicr = er32(HICR);
2404 	if ((hicr & E1000_HICR_EN) == 0) {
2405 		e_dbg("E1000_HOST_EN bit disabled.\n");
2406 		return -E1000_ERR_HOST_INTERFACE_COMMAND;
2407 	}
2408 	/* check the previous command is completed */
2409 	for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
2410 		hicr = er32(HICR);
2411 		if (!(hicr & E1000_HICR_C))
2412 			break;
2413 		mdelay(1);
2414 	}
2415 
2416 	if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
2417 		e_dbg("Previous command timeout failed .\n");
2418 		return -E1000_ERR_HOST_INTERFACE_COMMAND;
2419 	}
2420 
2421 	return 0;
2422 }
2423 
2424 /**
2425  *  e1000e_check_mng_mode_generic - check management mode
2426  *  @hw: pointer to the HW structure
2427  *
2428  *  Reads the firmware semaphore register and returns true (>0) if
2429  *  manageability is enabled, else false (0).
2430  **/
e1000e_check_mng_mode_generic(struct e1000_hw * hw)2431 bool e1000e_check_mng_mode_generic(struct e1000_hw *hw)
2432 {
2433 	u32 fwsm = er32(FWSM);
2434 
2435 	return (fwsm & E1000_FWSM_MODE_MASK) ==
2436 		(E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
2437 }
2438 
2439 /**
2440  *  e1000e_enable_tx_pkt_filtering - Enable packet filtering on Tx
2441  *  @hw: pointer to the HW structure
2442  *
2443  *  Enables packet filtering on transmit packets if manageability is enabled
2444  *  and host interface is enabled.
2445  **/
e1000e_enable_tx_pkt_filtering(struct e1000_hw * hw)2446 bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw)
2447 {
2448 	struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
2449 	u32 *buffer = (u32 *)&hw->mng_cookie;
2450 	u32 offset;
2451 	s32 ret_val, hdr_csum, csum;
2452 	u8 i, len;
2453 
2454 	hw->mac.tx_pkt_filtering = true;
2455 
2456 	/* No manageability, no filtering */
2457 	if (!e1000e_check_mng_mode(hw)) {
2458 		hw->mac.tx_pkt_filtering = false;
2459 		goto out;
2460 	}
2461 
2462 	/*
2463 	 * If we can't read from the host interface for whatever
2464 	 * reason, disable filtering.
2465 	 */
2466 	ret_val = e1000_mng_enable_host_if(hw);
2467 	if (ret_val) {
2468 		hw->mac.tx_pkt_filtering = false;
2469 		goto out;
2470 	}
2471 
2472 	/* Read in the header.  Length and offset are in dwords. */
2473 	len    = E1000_MNG_DHCP_COOKIE_LENGTH >> 2;
2474 	offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
2475 	for (i = 0; i < len; i++)
2476 		*(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i);
2477 	hdr_csum = hdr->checksum;
2478 	hdr->checksum = 0;
2479 	csum = e1000_calculate_checksum((u8 *)hdr,
2480 					E1000_MNG_DHCP_COOKIE_LENGTH);
2481 	/*
2482 	 * If either the checksums or signature don't match, then
2483 	 * the cookie area isn't considered valid, in which case we
2484 	 * take the safe route of assuming Tx filtering is enabled.
2485 	 */
2486 	if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) {
2487 		hw->mac.tx_pkt_filtering = true;
2488 		goto out;
2489 	}
2490 
2491 	/* Cookie area is valid, make the final check for filtering. */
2492 	if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) {
2493 		hw->mac.tx_pkt_filtering = false;
2494 		goto out;
2495 	}
2496 
2497 out:
2498 	return hw->mac.tx_pkt_filtering;
2499 }
2500 
2501 /**
2502  *  e1000_mng_write_cmd_header - Writes manageability command header
2503  *  @hw: pointer to the HW structure
2504  *  @hdr: pointer to the host interface command header
2505  *
2506  *  Writes the command header after does the checksum calculation.
2507  **/
e1000_mng_write_cmd_header(struct e1000_hw * hw,struct e1000_host_mng_command_header * hdr)2508 static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
2509 				  struct e1000_host_mng_command_header *hdr)
2510 {
2511 	u16 i, length = sizeof(struct e1000_host_mng_command_header);
2512 
2513 	/* Write the whole command header structure with new checksum. */
2514 
2515 	hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);
2516 
2517 	length >>= 2;
2518 	/* Write the relevant command block into the ram area. */
2519 	for (i = 0; i < length; i++) {
2520 		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i,
2521 					    *((u32 *) hdr + i));
2522 		e1e_flush();
2523 	}
2524 
2525 	return 0;
2526 }
2527 
2528 /**
2529  *  e1000_mng_host_if_write - Write to the manageability host interface
2530  *  @hw: pointer to the HW structure
2531  *  @buffer: pointer to the host interface buffer
2532  *  @length: size of the buffer
2533  *  @offset: location in the buffer to write to
2534  *  @sum: sum of the data (not checksum)
2535  *
2536  *  This function writes the buffer content at the offset given on the host if.
2537  *  It also does alignment considerations to do the writes in most efficient
2538  *  way.  Also fills up the sum of the buffer in *buffer parameter.
2539  **/
e1000_mng_host_if_write(struct e1000_hw * hw,u8 * buffer,u16 length,u16 offset,u8 * sum)2540 static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer,
2541 				   u16 length, u16 offset, u8 *sum)
2542 {
2543 	u8 *tmp;
2544 	u8 *bufptr = buffer;
2545 	u32 data = 0;
2546 	u16 remaining, i, j, prev_bytes;
2547 
2548 	/* sum = only sum of the data and it is not checksum */
2549 
2550 	if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH)
2551 		return -E1000_ERR_PARAM;
2552 
2553 	tmp = (u8 *)&data;
2554 	prev_bytes = offset & 0x3;
2555 	offset >>= 2;
2556 
2557 	if (prev_bytes) {
2558 		data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset);
2559 		for (j = prev_bytes; j < sizeof(u32); j++) {
2560 			*(tmp + j) = *bufptr++;
2561 			*sum += *(tmp + j);
2562 		}
2563 		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data);
2564 		length -= j - prev_bytes;
2565 		offset++;
2566 	}
2567 
2568 	remaining = length & 0x3;
2569 	length -= remaining;
2570 
2571 	/* Calculate length in DWORDs */
2572 	length >>= 2;
2573 
2574 	/*
2575 	 * The device driver writes the relevant command block into the
2576 	 * ram area.
2577 	 */
2578 	for (i = 0; i < length; i++) {
2579 		for (j = 0; j < sizeof(u32); j++) {
2580 			*(tmp + j) = *bufptr++;
2581 			*sum += *(tmp + j);
2582 		}
2583 
2584 		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
2585 	}
2586 	if (remaining) {
2587 		for (j = 0; j < sizeof(u32); j++) {
2588 			if (j < remaining)
2589 				*(tmp + j) = *bufptr++;
2590 			else
2591 				*(tmp + j) = 0;
2592 
2593 			*sum += *(tmp + j);
2594 		}
2595 		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
2596 	}
2597 
2598 	return 0;
2599 }
2600 
2601 /**
2602  *  e1000e_mng_write_dhcp_info - Writes DHCP info to host interface
2603  *  @hw: pointer to the HW structure
2604  *  @buffer: pointer to the host interface
2605  *  @length: size of the buffer
2606  *
2607  *  Writes the DHCP information to the host interface.
2608  **/
e1000e_mng_write_dhcp_info(struct e1000_hw * hw,u8 * buffer,u16 length)2609 s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
2610 {
2611 	struct e1000_host_mng_command_header hdr;
2612 	s32 ret_val;
2613 	u32 hicr;
2614 
2615 	hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
2616 	hdr.command_length = length;
2617 	hdr.reserved1 = 0;
2618 	hdr.reserved2 = 0;
2619 	hdr.checksum = 0;
2620 
2621 	/* Enable the host interface */
2622 	ret_val = e1000_mng_enable_host_if(hw);
2623 	if (ret_val)
2624 		return ret_val;
2625 
2626 	/* Populate the host interface with the contents of "buffer". */
2627 	ret_val = e1000_mng_host_if_write(hw, buffer, length,
2628 					  sizeof(hdr), &(hdr.checksum));
2629 	if (ret_val)
2630 		return ret_val;
2631 
2632 	/* Write the manageability command header */
2633 	ret_val = e1000_mng_write_cmd_header(hw, &hdr);
2634 	if (ret_val)
2635 		return ret_val;
2636 
2637 	/* Tell the ARC a new command is pending. */
2638 	hicr = er32(HICR);
2639 	ew32(HICR, hicr | E1000_HICR_C);
2640 
2641 	return 0;
2642 }
2643 
2644 /**
2645  *  e1000e_enable_mng_pass_thru - Check if management passthrough is needed
2646  *  @hw: pointer to the HW structure
2647  *
2648  *  Verifies the hardware needs to leave interface enabled so that frames can
2649  *  be directed to and from the management interface.
2650  **/
e1000e_enable_mng_pass_thru(struct e1000_hw * hw)2651 bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw)
2652 {
2653 	u32 manc;
2654 	u32 fwsm, factps;
2655 	bool ret_val = false;
2656 
2657 	manc = er32(MANC);
2658 
2659 	if (!(manc & E1000_MANC_RCV_TCO_EN))
2660 		goto out;
2661 
2662 	if (hw->mac.has_fwsm) {
2663 		fwsm = er32(FWSM);
2664 		factps = er32(FACTPS);
2665 
2666 		if (!(factps & E1000_FACTPS_MNGCG) &&
2667 		    ((fwsm & E1000_FWSM_MODE_MASK) ==
2668 		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
2669 			ret_val = true;
2670 			goto out;
2671 		}
2672 	} else if ((hw->mac.type == e1000_82574) ||
2673 		   (hw->mac.type == e1000_82583)) {
2674 		u16 data;
2675 
2676 		factps = er32(FACTPS);
2677 		e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
2678 
2679 		if (!(factps & E1000_FACTPS_MNGCG) &&
2680 		    ((data & E1000_NVM_INIT_CTRL2_MNGM) ==
2681 		     (e1000_mng_mode_pt << 13))) {
2682 			ret_val = true;
2683 			goto out;
2684 		}
2685 	} else if ((manc & E1000_MANC_SMBUS_EN) &&
2686 		    !(manc & E1000_MANC_ASF_EN)) {
2687 			ret_val = true;
2688 			goto out;
2689 	}
2690 
2691 out:
2692 	return ret_val;
2693 }
2694