1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2011 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 /*
30  * 82562G 10/100 Network Connection
31  * 82562G-2 10/100 Network Connection
32  * 82562GT 10/100 Network Connection
33  * 82562GT-2 10/100 Network Connection
34  * 82562V 10/100 Network Connection
35  * 82562V-2 10/100 Network Connection
36  * 82566DC-2 Gigabit Network Connection
37  * 82566DC Gigabit Network Connection
38  * 82566DM-2 Gigabit Network Connection
39  * 82566DM Gigabit Network Connection
40  * 82566MC Gigabit Network Connection
41  * 82566MM Gigabit Network Connection
42  * 82567LM Gigabit Network Connection
43  * 82567LF Gigabit Network Connection
44  * 82567V Gigabit Network Connection
45  * 82567LM-2 Gigabit Network Connection
46  * 82567LF-2 Gigabit Network Connection
47  * 82567V-2 Gigabit Network Connection
48  * 82567LF-3 Gigabit Network Connection
49  * 82567LM-3 Gigabit Network Connection
50  * 82567LM-4 Gigabit Network Connection
51  * 82577LM Gigabit Network Connection
52  * 82577LC Gigabit Network Connection
53  * 82578DM Gigabit Network Connection
54  * 82578DC Gigabit Network Connection
55  * 82579LM Gigabit Network Connection
56  * 82579V Gigabit Network Connection
57  */
58 
59 #include "e1000.h"
60 
61 #define ICH_FLASH_GFPREG		0x0000
62 #define ICH_FLASH_HSFSTS		0x0004
63 #define ICH_FLASH_HSFCTL		0x0006
64 #define ICH_FLASH_FADDR			0x0008
65 #define ICH_FLASH_FDATA0		0x0010
66 #define ICH_FLASH_PR0			0x0074
67 
68 #define ICH_FLASH_READ_COMMAND_TIMEOUT	500
69 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT	500
70 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT	3000000
71 #define ICH_FLASH_LINEAR_ADDR_MASK	0x00FFFFFF
72 #define ICH_FLASH_CYCLE_REPEAT_COUNT	10
73 
74 #define ICH_CYCLE_READ			0
75 #define ICH_CYCLE_WRITE			2
76 #define ICH_CYCLE_ERASE			3
77 
78 #define FLASH_GFPREG_BASE_MASK		0x1FFF
79 #define FLASH_SECTOR_ADDR_SHIFT		12
80 
81 #define ICH_FLASH_SEG_SIZE_256		256
82 #define ICH_FLASH_SEG_SIZE_4K		4096
83 #define ICH_FLASH_SEG_SIZE_8K		8192
84 #define ICH_FLASH_SEG_SIZE_64K		65536
85 
86 
87 #define E1000_ICH_FWSM_RSPCIPHY	0x00000040 /* Reset PHY on PCI Reset */
88 /* FW established a valid mode */
89 #define E1000_ICH_FWSM_FW_VALID		0x00008000
90 
91 #define E1000_ICH_MNG_IAMT_MODE		0x2
92 
93 #define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
94 				 (ID_LED_DEF1_OFF2 <<  8) | \
95 				 (ID_LED_DEF1_ON2  <<  4) | \
96 				 (ID_LED_DEF1_DEF2))
97 
98 #define E1000_ICH_NVM_SIG_WORD		0x13
99 #define E1000_ICH_NVM_SIG_MASK		0xC000
100 #define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
101 #define E1000_ICH_NVM_SIG_VALUE         0x80
102 
103 #define E1000_ICH8_LAN_INIT_TIMEOUT	1500
104 
105 #define E1000_FEXTNVM_SW_CONFIG		1
106 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
107 
108 #define E1000_FEXTNVM4_BEACON_DURATION_MASK    0x7
109 #define E1000_FEXTNVM4_BEACON_DURATION_8USEC   0x7
110 #define E1000_FEXTNVM4_BEACON_DURATION_16USEC  0x3
111 
112 #define PCIE_ICH8_SNOOP_ALL		PCIE_NO_SNOOP_ALL
113 
114 #define E1000_ICH_RAR_ENTRIES		7
115 
116 #define PHY_PAGE_SHIFT 5
117 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
118 			   ((reg) & MAX_PHY_REG_ADDRESS))
119 #define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
120 #define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
121 
122 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS	0x0002
123 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
124 #define IGP3_VR_CTRL_MODE_SHUTDOWN	0x0200
125 
126 #define HV_LED_CONFIG		PHY_REG(768, 30) /* LED Configuration */
127 
128 #define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
129 
130 /* SMBus Address Phy Register */
131 #define HV_SMB_ADDR            PHY_REG(768, 26)
132 #define HV_SMB_ADDR_MASK       0x007F
133 #define HV_SMB_ADDR_PEC_EN     0x0200
134 #define HV_SMB_ADDR_VALID      0x0080
135 
136 /* PHY Power Management Control */
137 #define HV_PM_CTRL		PHY_REG(770, 17)
138 
139 /* PHY Low Power Idle Control */
140 #define I82579_LPI_CTRL				PHY_REG(772, 20)
141 #define I82579_LPI_CTRL_ENABLE_MASK		0x6000
142 #define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT	0x80
143 
144 /* EMI Registers */
145 #define I82579_EMI_ADDR         0x10
146 #define I82579_EMI_DATA         0x11
147 #define I82579_LPI_UPDATE_TIMER 0x4805	/* in 40ns units + 40 ns base value */
148 
149 /* Strapping Option Register - RO */
150 #define E1000_STRAP                     0x0000C
151 #define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
152 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
153 
154 /* OEM Bits Phy Register */
155 #define HV_OEM_BITS            PHY_REG(768, 25)
156 #define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
157 #define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
158 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
159 
160 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
161 #define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
162 
163 /* KMRN Mode Control */
164 #define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
165 #define HV_KMRN_MDIO_SLOW      0x0400
166 
167 /* KMRN FIFO Control and Status */
168 #define HV_KMRN_FIFO_CTRLSTA                  PHY_REG(770, 16)
169 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK    0x7000
170 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT   12
171 
172 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
173 /* Offset 04h HSFSTS */
174 union ich8_hws_flash_status {
175 	struct ich8_hsfsts {
176 		u16 flcdone    :1; /* bit 0 Flash Cycle Done */
177 		u16 flcerr     :1; /* bit 1 Flash Cycle Error */
178 		u16 dael       :1; /* bit 2 Direct Access error Log */
179 		u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
180 		u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
181 		u16 reserved1  :2; /* bit 13:6 Reserved */
182 		u16 reserved2  :6; /* bit 13:6 Reserved */
183 		u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
184 		u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
185 	} hsf_status;
186 	u16 regval;
187 };
188 
189 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
190 /* Offset 06h FLCTL */
191 union ich8_hws_flash_ctrl {
192 	struct ich8_hsflctl {
193 		u16 flcgo      :1;   /* 0 Flash Cycle Go */
194 		u16 flcycle    :2;   /* 2:1 Flash Cycle */
195 		u16 reserved   :5;   /* 7:3 Reserved  */
196 		u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
197 		u16 flockdn    :6;   /* 15:10 Reserved */
198 	} hsf_ctrl;
199 	u16 regval;
200 };
201 
202 /* ICH Flash Region Access Permissions */
203 union ich8_hws_flash_regacc {
204 	struct ich8_flracc {
205 		u32 grra      :8; /* 0:7 GbE region Read Access */
206 		u32 grwa      :8; /* 8:15 GbE region Write Access */
207 		u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
208 		u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
209 	} hsf_flregacc;
210 	u16 regval;
211 };
212 
213 /* ICH Flash Protected Region */
214 union ich8_flash_protected_range {
215 	struct ich8_pr {
216 		u32 base:13;     /* 0:12 Protected Range Base */
217 		u32 reserved1:2; /* 13:14 Reserved */
218 		u32 rpe:1;       /* 15 Read Protection Enable */
219 		u32 limit:13;    /* 16:28 Protected Range Limit */
220 		u32 reserved2:2; /* 29:30 Reserved */
221 		u32 wpe:1;       /* 31 Write Protection Enable */
222 	} range;
223 	u32 regval;
224 };
225 
226 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
227 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
228 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
229 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
230 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
231 						u32 offset, u8 byte);
232 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
233 					 u8 *data);
234 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
235 					 u16 *data);
236 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
237 					 u8 size, u16 *data);
238 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
239 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
240 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
241 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
242 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
243 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
244 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
245 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
246 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
247 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
248 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
249 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
250 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
251 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
252 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
253 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
254 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
255 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
256 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
257 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
258 
__er16flash(struct e1000_hw * hw,unsigned long reg)259 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
260 {
261 	return readw(hw->flash_address + reg);
262 }
263 
__er32flash(struct e1000_hw * hw,unsigned long reg)264 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
265 {
266 	return readl(hw->flash_address + reg);
267 }
268 
__ew16flash(struct e1000_hw * hw,unsigned long reg,u16 val)269 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
270 {
271 	writew(val, hw->flash_address + reg);
272 }
273 
__ew32flash(struct e1000_hw * hw,unsigned long reg,u32 val)274 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
275 {
276 	writel(val, hw->flash_address + reg);
277 }
278 
279 #define er16flash(reg)		__er16flash(hw, (reg))
280 #define er32flash(reg)		__er32flash(hw, (reg))
281 #define ew16flash(reg,val)	__ew16flash(hw, (reg), (val))
282 #define ew32flash(reg,val)	__ew32flash(hw, (reg), (val))
283 
e1000_toggle_lanphypc_value_ich8lan(struct e1000_hw * hw)284 static void e1000_toggle_lanphypc_value_ich8lan(struct e1000_hw *hw)
285 {
286 	u32 ctrl;
287 
288 	ctrl = er32(CTRL);
289 	ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE;
290 	ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
291 	ew32(CTRL, ctrl);
292 	e1e_flush();
293 	udelay(10);
294 	ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
295 	ew32(CTRL, ctrl);
296 }
297 
298 /**
299  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
300  *  @hw: pointer to the HW structure
301  *
302  *  Initialize family-specific PHY parameters and function pointers.
303  **/
e1000_init_phy_params_pchlan(struct e1000_hw * hw)304 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
305 {
306 	struct e1000_phy_info *phy = &hw->phy;
307 	u32 fwsm;
308 	s32 ret_val = 0;
309 
310 	phy->addr                     = 1;
311 	phy->reset_delay_us           = 100;
312 
313 	phy->ops.set_page             = e1000_set_page_igp;
314 	phy->ops.read_reg             = e1000_read_phy_reg_hv;
315 	phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
316 	phy->ops.read_reg_page        = e1000_read_phy_reg_page_hv;
317 	phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
318 	phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
319 	phy->ops.write_reg            = e1000_write_phy_reg_hv;
320 	phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
321 	phy->ops.write_reg_page       = e1000_write_phy_reg_page_hv;
322 	phy->ops.power_up             = e1000_power_up_phy_copper;
323 	phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
324 	phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
325 
326 	/*
327 	 * The MAC-PHY interconnect may still be in SMBus mode
328 	 * after Sx->S0.  If the manageability engine (ME) is
329 	 * disabled, then toggle the LANPHYPC Value bit to force
330 	 * the interconnect to PCIe mode.
331 	 */
332 	fwsm = er32(FWSM);
333 	if (!(fwsm & E1000_ICH_FWSM_FW_VALID) && !e1000_check_reset_block(hw)) {
334 		e1000_toggle_lanphypc_value_ich8lan(hw);
335 		msleep(50);
336 
337 		/*
338 		 * Gate automatic PHY configuration by hardware on
339 		 * non-managed 82579
340 		 */
341 		if (hw->mac.type == e1000_pch2lan)
342 			e1000_gate_hw_phy_config_ich8lan(hw, true);
343 	}
344 
345 	/*
346 	 * Reset the PHY before any access to it.  Doing so, ensures that
347 	 * the PHY is in a known good state before we read/write PHY registers.
348 	 * The generic reset is sufficient here, because we haven't determined
349 	 * the PHY type yet.
350 	 */
351 	ret_val = e1000e_phy_hw_reset_generic(hw);
352 	if (ret_val)
353 		goto out;
354 
355 	/* Ungate automatic PHY configuration on non-managed 82579 */
356 	if ((hw->mac.type == e1000_pch2lan) &&
357 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
358 		usleep_range(10000, 20000);
359 		e1000_gate_hw_phy_config_ich8lan(hw, false);
360 	}
361 
362 	phy->id = e1000_phy_unknown;
363 	switch (hw->mac.type) {
364 	default:
365 		ret_val = e1000e_get_phy_id(hw);
366 		if (ret_val)
367 			goto out;
368 		if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
369 			break;
370 		/* fall-through */
371 	case e1000_pch2lan:
372 		/*
373 		 * In case the PHY needs to be in mdio slow mode,
374 		 * set slow mode and try to get the PHY id again.
375 		 */
376 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
377 		if (ret_val)
378 			goto out;
379 		ret_val = e1000e_get_phy_id(hw);
380 		if (ret_val)
381 			goto out;
382 		break;
383 	}
384 	phy->type = e1000e_get_phy_type_from_id(phy->id);
385 
386 	switch (phy->type) {
387 	case e1000_phy_82577:
388 	case e1000_phy_82579:
389 		phy->ops.check_polarity = e1000_check_polarity_82577;
390 		phy->ops.force_speed_duplex =
391 		    e1000_phy_force_speed_duplex_82577;
392 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
393 		phy->ops.get_info = e1000_get_phy_info_82577;
394 		phy->ops.commit = e1000e_phy_sw_reset;
395 		break;
396 	case e1000_phy_82578:
397 		phy->ops.check_polarity = e1000_check_polarity_m88;
398 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
399 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
400 		phy->ops.get_info = e1000e_get_phy_info_m88;
401 		break;
402 	default:
403 		ret_val = -E1000_ERR_PHY;
404 		break;
405 	}
406 
407 out:
408 	return ret_val;
409 }
410 
411 /**
412  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
413  *  @hw: pointer to the HW structure
414  *
415  *  Initialize family-specific PHY parameters and function pointers.
416  **/
e1000_init_phy_params_ich8lan(struct e1000_hw * hw)417 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
418 {
419 	struct e1000_phy_info *phy = &hw->phy;
420 	s32 ret_val;
421 	u16 i = 0;
422 
423 	phy->addr			= 1;
424 	phy->reset_delay_us		= 100;
425 
426 	phy->ops.power_up               = e1000_power_up_phy_copper;
427 	phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
428 
429 	/*
430 	 * We may need to do this twice - once for IGP and if that fails,
431 	 * we'll set BM func pointers and try again
432 	 */
433 	ret_val = e1000e_determine_phy_address(hw);
434 	if (ret_val) {
435 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
436 		phy->ops.read_reg  = e1000e_read_phy_reg_bm;
437 		ret_val = e1000e_determine_phy_address(hw);
438 		if (ret_val) {
439 			e_dbg("Cannot determine PHY addr. Erroring out\n");
440 			return ret_val;
441 		}
442 	}
443 
444 	phy->id = 0;
445 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
446 	       (i++ < 100)) {
447 		usleep_range(1000, 2000);
448 		ret_val = e1000e_get_phy_id(hw);
449 		if (ret_val)
450 			return ret_val;
451 	}
452 
453 	/* Verify phy id */
454 	switch (phy->id) {
455 	case IGP03E1000_E_PHY_ID:
456 		phy->type = e1000_phy_igp_3;
457 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
458 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
459 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
460 		phy->ops.get_info = e1000e_get_phy_info_igp;
461 		phy->ops.check_polarity = e1000_check_polarity_igp;
462 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
463 		break;
464 	case IFE_E_PHY_ID:
465 	case IFE_PLUS_E_PHY_ID:
466 	case IFE_C_E_PHY_ID:
467 		phy->type = e1000_phy_ife;
468 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
469 		phy->ops.get_info = e1000_get_phy_info_ife;
470 		phy->ops.check_polarity = e1000_check_polarity_ife;
471 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
472 		break;
473 	case BME1000_E_PHY_ID:
474 		phy->type = e1000_phy_bm;
475 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
476 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
477 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
478 		phy->ops.commit = e1000e_phy_sw_reset;
479 		phy->ops.get_info = e1000e_get_phy_info_m88;
480 		phy->ops.check_polarity = e1000_check_polarity_m88;
481 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
482 		break;
483 	default:
484 		return -E1000_ERR_PHY;
485 		break;
486 	}
487 
488 	return 0;
489 }
490 
491 /**
492  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
493  *  @hw: pointer to the HW structure
494  *
495  *  Initialize family-specific NVM parameters and function
496  *  pointers.
497  **/
e1000_init_nvm_params_ich8lan(struct e1000_hw * hw)498 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
499 {
500 	struct e1000_nvm_info *nvm = &hw->nvm;
501 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
502 	u32 gfpreg, sector_base_addr, sector_end_addr;
503 	u16 i;
504 
505 	/* Can't read flash registers if the register set isn't mapped. */
506 	if (!hw->flash_address) {
507 		e_dbg("ERROR: Flash registers not mapped\n");
508 		return -E1000_ERR_CONFIG;
509 	}
510 
511 	nvm->type = e1000_nvm_flash_sw;
512 
513 	gfpreg = er32flash(ICH_FLASH_GFPREG);
514 
515 	/*
516 	 * sector_X_addr is a "sector"-aligned address (4096 bytes)
517 	 * Add 1 to sector_end_addr since this sector is included in
518 	 * the overall size.
519 	 */
520 	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
521 	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
522 
523 	/* flash_base_addr is byte-aligned */
524 	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
525 
526 	/*
527 	 * find total size of the NVM, then cut in half since the total
528 	 * size represents two separate NVM banks.
529 	 */
530 	nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
531 				<< FLASH_SECTOR_ADDR_SHIFT;
532 	nvm->flash_bank_size /= 2;
533 	/* Adjust to word count */
534 	nvm->flash_bank_size /= sizeof(u16);
535 
536 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
537 
538 	/* Clear shadow ram */
539 	for (i = 0; i < nvm->word_size; i++) {
540 		dev_spec->shadow_ram[i].modified = false;
541 		dev_spec->shadow_ram[i].value    = 0xFFFF;
542 	}
543 
544 	return 0;
545 }
546 
547 /**
548  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
549  *  @hw: pointer to the HW structure
550  *
551  *  Initialize family-specific MAC parameters and function
552  *  pointers.
553  **/
e1000_init_mac_params_ich8lan(struct e1000_adapter * adapter)554 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
555 {
556 	struct e1000_hw *hw = &adapter->hw;
557 	struct e1000_mac_info *mac = &hw->mac;
558 
559 	/* Set media type function pointer */
560 	hw->phy.media_type = e1000_media_type_copper;
561 
562 	/* Set mta register count */
563 	mac->mta_reg_count = 32;
564 	/* Set rar entry count */
565 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
566 	if (mac->type == e1000_ich8lan)
567 		mac->rar_entry_count--;
568 	/* FWSM register */
569 	mac->has_fwsm = true;
570 	/* ARC subsystem not supported */
571 	mac->arc_subsystem_valid = false;
572 	/* Adaptive IFS supported */
573 	mac->adaptive_ifs = true;
574 
575 	/* LED operations */
576 	switch (mac->type) {
577 	case e1000_ich8lan:
578 	case e1000_ich9lan:
579 	case e1000_ich10lan:
580 		/* check management mode */
581 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
582 		/* ID LED init */
583 		mac->ops.id_led_init = e1000e_id_led_init;
584 		/* blink LED */
585 		mac->ops.blink_led = e1000e_blink_led_generic;
586 		/* setup LED */
587 		mac->ops.setup_led = e1000e_setup_led_generic;
588 		/* cleanup LED */
589 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
590 		/* turn on/off LED */
591 		mac->ops.led_on = e1000_led_on_ich8lan;
592 		mac->ops.led_off = e1000_led_off_ich8lan;
593 		break;
594 	case e1000_pchlan:
595 	case e1000_pch2lan:
596 		/* check management mode */
597 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
598 		/* ID LED init */
599 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
600 		/* setup LED */
601 		mac->ops.setup_led = e1000_setup_led_pchlan;
602 		/* cleanup LED */
603 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
604 		/* turn on/off LED */
605 		mac->ops.led_on = e1000_led_on_pchlan;
606 		mac->ops.led_off = e1000_led_off_pchlan;
607 		break;
608 	default:
609 		break;
610 	}
611 
612 	/* Enable PCS Lock-loss workaround for ICH8 */
613 	if (mac->type == e1000_ich8lan)
614 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
615 
616 	/* Gate automatic PHY configuration by hardware on managed 82579 */
617 	if ((mac->type == e1000_pch2lan) &&
618 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
619 		e1000_gate_hw_phy_config_ich8lan(hw, true);
620 
621 	return 0;
622 }
623 
624 /**
625  *  e1000_set_eee_pchlan - Enable/disable EEE support
626  *  @hw: pointer to the HW structure
627  *
628  *  Enable/disable EEE based on setting in dev_spec structure.  The bits in
629  *  the LPI Control register will remain set only if/when link is up.
630  **/
e1000_set_eee_pchlan(struct e1000_hw * hw)631 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
632 {
633 	s32 ret_val = 0;
634 	u16 phy_reg;
635 
636 	if (hw->phy.type != e1000_phy_82579)
637 		goto out;
638 
639 	ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
640 	if (ret_val)
641 		goto out;
642 
643 	if (hw->dev_spec.ich8lan.eee_disable)
644 		phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
645 	else
646 		phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
647 
648 	ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
649 out:
650 	return ret_val;
651 }
652 
653 /**
654  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
655  *  @hw: pointer to the HW structure
656  *
657  *  Checks to see of the link status of the hardware has changed.  If a
658  *  change in link status has been detected, then we read the PHY registers
659  *  to get the current speed/duplex if link exists.
660  **/
e1000_check_for_copper_link_ich8lan(struct e1000_hw * hw)661 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
662 {
663 	struct e1000_mac_info *mac = &hw->mac;
664 	s32 ret_val;
665 	bool link;
666 	u16 phy_reg;
667 
668 	/*
669 	 * We only want to go out to the PHY registers to see if Auto-Neg
670 	 * has completed and/or if our link status has changed.  The
671 	 * get_link_status flag is set upon receiving a Link Status
672 	 * Change or Rx Sequence Error interrupt.
673 	 */
674 	if (!mac->get_link_status) {
675 		ret_val = 0;
676 		goto out;
677 	}
678 
679 	/*
680 	 * First we want to see if the MII Status Register reports
681 	 * link.  If so, then we want to get the current speed/duplex
682 	 * of the PHY.
683 	 */
684 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
685 	if (ret_val)
686 		goto out;
687 
688 	if (hw->mac.type == e1000_pchlan) {
689 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
690 		if (ret_val)
691 			goto out;
692 	}
693 
694 	if (!link)
695 		goto out; /* No link detected */
696 
697 	mac->get_link_status = false;
698 
699 	switch (hw->mac.type) {
700 	case e1000_pch2lan:
701 		ret_val = e1000_k1_workaround_lv(hw);
702 		if (ret_val)
703 			goto out;
704 		/* fall-thru */
705 	case e1000_pchlan:
706 		if (hw->phy.type == e1000_phy_82578) {
707 			ret_val = e1000_link_stall_workaround_hv(hw);
708 			if (ret_val)
709 				goto out;
710 		}
711 
712 		/*
713 		 * Workaround for PCHx parts in half-duplex:
714 		 * Set the number of preambles removed from the packet
715 		 * when it is passed from the PHY to the MAC to prevent
716 		 * the MAC from misinterpreting the packet type.
717 		 */
718 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
719 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
720 
721 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
722 			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
723 
724 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
725 		break;
726 	default:
727 		break;
728 	}
729 
730 	/*
731 	 * Check if there was DownShift, must be checked
732 	 * immediately after link-up
733 	 */
734 	e1000e_check_downshift(hw);
735 
736 	/* Enable/Disable EEE after link up */
737 	ret_val = e1000_set_eee_pchlan(hw);
738 	if (ret_val)
739 		goto out;
740 
741 	/*
742 	 * If we are forcing speed/duplex, then we simply return since
743 	 * we have already determined whether we have link or not.
744 	 */
745 	if (!mac->autoneg) {
746 		ret_val = -E1000_ERR_CONFIG;
747 		goto out;
748 	}
749 
750 	/*
751 	 * Auto-Neg is enabled.  Auto Speed Detection takes care
752 	 * of MAC speed/duplex configuration.  So we only need to
753 	 * configure Collision Distance in the MAC.
754 	 */
755 	e1000e_config_collision_dist(hw);
756 
757 	/*
758 	 * Configure Flow Control now that Auto-Neg has completed.
759 	 * First, we need to restore the desired flow control
760 	 * settings because we may have had to re-autoneg with a
761 	 * different link partner.
762 	 */
763 	ret_val = e1000e_config_fc_after_link_up(hw);
764 	if (ret_val)
765 		e_dbg("Error configuring flow control\n");
766 
767 out:
768 	return ret_val;
769 }
770 
e1000_get_variants_ich8lan(struct e1000_adapter * adapter)771 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
772 {
773 	struct e1000_hw *hw = &adapter->hw;
774 	s32 rc;
775 
776 	rc = e1000_init_mac_params_ich8lan(adapter);
777 	if (rc)
778 		return rc;
779 
780 	rc = e1000_init_nvm_params_ich8lan(hw);
781 	if (rc)
782 		return rc;
783 
784 	switch (hw->mac.type) {
785 	case e1000_ich8lan:
786 	case e1000_ich9lan:
787 	case e1000_ich10lan:
788 		rc = e1000_init_phy_params_ich8lan(hw);
789 		break;
790 	case e1000_pchlan:
791 	case e1000_pch2lan:
792 		rc = e1000_init_phy_params_pchlan(hw);
793 		break;
794 	default:
795 		break;
796 	}
797 	if (rc)
798 		return rc;
799 
800 	/*
801 	 * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
802 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
803 	 */
804 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
805 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
806 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
807 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
808 		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
809 
810 		hw->mac.ops.blink_led = NULL;
811 	}
812 
813 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
814 	    (adapter->hw.phy.type != e1000_phy_ife))
815 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
816 
817 	/* Enable workaround for 82579 w/ ME enabled */
818 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
819 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
820 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
821 
822 	/* Disable EEE by default until IEEE802.3az spec is finalized */
823 	if (adapter->flags2 & FLAG2_HAS_EEE)
824 		adapter->hw.dev_spec.ich8lan.eee_disable = true;
825 
826 	return 0;
827 }
828 
829 static DEFINE_MUTEX(nvm_mutex);
830 
831 /**
832  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
833  *  @hw: pointer to the HW structure
834  *
835  *  Acquires the mutex for performing NVM operations.
836  **/
e1000_acquire_nvm_ich8lan(struct e1000_hw * hw)837 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
838 {
839 	mutex_lock(&nvm_mutex);
840 
841 	return 0;
842 }
843 
844 /**
845  *  e1000_release_nvm_ich8lan - Release NVM mutex
846  *  @hw: pointer to the HW structure
847  *
848  *  Releases the mutex used while performing NVM operations.
849  **/
e1000_release_nvm_ich8lan(struct e1000_hw * hw)850 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
851 {
852 	mutex_unlock(&nvm_mutex);
853 }
854 
855 /**
856  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
857  *  @hw: pointer to the HW structure
858  *
859  *  Acquires the software control flag for performing PHY and select
860  *  MAC CSR accesses.
861  **/
e1000_acquire_swflag_ich8lan(struct e1000_hw * hw)862 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
863 {
864 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
865 	s32 ret_val = 0;
866 
867 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
868 			     &hw->adapter->state)) {
869 		e_dbg("contention for Phy access\n");
870 		return -E1000_ERR_PHY;
871 	}
872 
873 	while (timeout) {
874 		extcnf_ctrl = er32(EXTCNF_CTRL);
875 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
876 			break;
877 
878 		mdelay(1);
879 		timeout--;
880 	}
881 
882 	if (!timeout) {
883 		e_dbg("SW has already locked the resource.\n");
884 		ret_val = -E1000_ERR_CONFIG;
885 		goto out;
886 	}
887 
888 	timeout = SW_FLAG_TIMEOUT;
889 
890 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
891 	ew32(EXTCNF_CTRL, extcnf_ctrl);
892 
893 	while (timeout) {
894 		extcnf_ctrl = er32(EXTCNF_CTRL);
895 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
896 			break;
897 
898 		mdelay(1);
899 		timeout--;
900 	}
901 
902 	if (!timeout) {
903 		e_dbg("Failed to acquire the semaphore, FW or HW has it: "
904 		      "FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
905 		      er32(FWSM), extcnf_ctrl);
906 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
907 		ew32(EXTCNF_CTRL, extcnf_ctrl);
908 		ret_val = -E1000_ERR_CONFIG;
909 		goto out;
910 	}
911 
912 out:
913 	if (ret_val)
914 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
915 
916 	return ret_val;
917 }
918 
919 /**
920  *  e1000_release_swflag_ich8lan - Release software control flag
921  *  @hw: pointer to the HW structure
922  *
923  *  Releases the software control flag for performing PHY and select
924  *  MAC CSR accesses.
925  **/
e1000_release_swflag_ich8lan(struct e1000_hw * hw)926 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
927 {
928 	u32 extcnf_ctrl;
929 
930 	extcnf_ctrl = er32(EXTCNF_CTRL);
931 
932 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
933 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
934 		ew32(EXTCNF_CTRL, extcnf_ctrl);
935 	} else {
936 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
937 	}
938 
939 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
940 }
941 
942 /**
943  *  e1000_check_mng_mode_ich8lan - Checks management mode
944  *  @hw: pointer to the HW structure
945  *
946  *  This checks if the adapter has any manageability enabled.
947  *  This is a function pointer entry point only called by read/write
948  *  routines for the PHY and NVM parts.
949  **/
e1000_check_mng_mode_ich8lan(struct e1000_hw * hw)950 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
951 {
952 	u32 fwsm;
953 
954 	fwsm = er32(FWSM);
955 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
956 	       ((fwsm & E1000_FWSM_MODE_MASK) ==
957 		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
958 }
959 
960 /**
961  *  e1000_check_mng_mode_pchlan - Checks management mode
962  *  @hw: pointer to the HW structure
963  *
964  *  This checks if the adapter has iAMT enabled.
965  *  This is a function pointer entry point only called by read/write
966  *  routines for the PHY and NVM parts.
967  **/
e1000_check_mng_mode_pchlan(struct e1000_hw * hw)968 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
969 {
970 	u32 fwsm;
971 
972 	fwsm = er32(FWSM);
973 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
974 	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
975 }
976 
977 /**
978  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
979  *  @hw: pointer to the HW structure
980  *
981  *  Checks if firmware is blocking the reset of the PHY.
982  *  This is a function pointer entry point only called by
983  *  reset routines.
984  **/
e1000_check_reset_block_ich8lan(struct e1000_hw * hw)985 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
986 {
987 	u32 fwsm;
988 
989 	fwsm = er32(FWSM);
990 
991 	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
992 }
993 
994 /**
995  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
996  *  @hw: pointer to the HW structure
997  *
998  *  Assumes semaphore already acquired.
999  *
1000  **/
e1000_write_smbus_addr(struct e1000_hw * hw)1001 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1002 {
1003 	u16 phy_data;
1004 	u32 strap = er32(STRAP);
1005 	s32 ret_val = 0;
1006 
1007 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1008 
1009 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1010 	if (ret_val)
1011 		goto out;
1012 
1013 	phy_data &= ~HV_SMB_ADDR_MASK;
1014 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1015 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1016 	ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1017 
1018 out:
1019 	return ret_val;
1020 }
1021 
1022 /**
1023  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1024  *  @hw:   pointer to the HW structure
1025  *
1026  *  SW should configure the LCD from the NVM extended configuration region
1027  *  as a workaround for certain parts.
1028  **/
e1000_sw_lcd_config_ich8lan(struct e1000_hw * hw)1029 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1030 {
1031 	struct e1000_phy_info *phy = &hw->phy;
1032 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1033 	s32 ret_val = 0;
1034 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
1035 
1036 	/*
1037 	 * Initialize the PHY from the NVM on ICH platforms.  This
1038 	 * is needed due to an issue where the NVM configuration is
1039 	 * not properly autoloaded after power transitions.
1040 	 * Therefore, after each PHY reset, we will load the
1041 	 * configuration data out of the NVM manually.
1042 	 */
1043 	switch (hw->mac.type) {
1044 	case e1000_ich8lan:
1045 		if (phy->type != e1000_phy_igp_3)
1046 			return ret_val;
1047 
1048 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1049 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1050 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1051 			break;
1052 		}
1053 		/* Fall-thru */
1054 	case e1000_pchlan:
1055 	case e1000_pch2lan:
1056 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1057 		break;
1058 	default:
1059 		return ret_val;
1060 	}
1061 
1062 	ret_val = hw->phy.ops.acquire(hw);
1063 	if (ret_val)
1064 		return ret_val;
1065 
1066 	data = er32(FEXTNVM);
1067 	if (!(data & sw_cfg_mask))
1068 		goto out;
1069 
1070 	/*
1071 	 * Make sure HW does not configure LCD from PHY
1072 	 * extended configuration before SW configuration
1073 	 */
1074 	data = er32(EXTCNF_CTRL);
1075 	if (!(hw->mac.type == e1000_pch2lan)) {
1076 		if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
1077 			goto out;
1078 	}
1079 
1080 	cnf_size = er32(EXTCNF_SIZE);
1081 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1082 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1083 	if (!cnf_size)
1084 		goto out;
1085 
1086 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1087 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1088 
1089 	if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
1090 	    (hw->mac.type == e1000_pchlan)) ||
1091 	     (hw->mac.type == e1000_pch2lan)) {
1092 		/*
1093 		 * HW configures the SMBus address and LEDs when the
1094 		 * OEM and LCD Write Enable bits are set in the NVM.
1095 		 * When both NVM bits are cleared, SW will configure
1096 		 * them instead.
1097 		 */
1098 		ret_val = e1000_write_smbus_addr(hw);
1099 		if (ret_val)
1100 			goto out;
1101 
1102 		data = er32(LEDCTL);
1103 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1104 							(u16)data);
1105 		if (ret_val)
1106 			goto out;
1107 	}
1108 
1109 	/* Configure LCD from extended configuration region. */
1110 
1111 	/* cnf_base_addr is in DWORD */
1112 	word_addr = (u16)(cnf_base_addr << 1);
1113 
1114 	for (i = 0; i < cnf_size; i++) {
1115 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1116 					 &reg_data);
1117 		if (ret_val)
1118 			goto out;
1119 
1120 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1121 					 1, &reg_addr);
1122 		if (ret_val)
1123 			goto out;
1124 
1125 		/* Save off the PHY page for future writes. */
1126 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1127 			phy_page = reg_data;
1128 			continue;
1129 		}
1130 
1131 		reg_addr &= PHY_REG_MASK;
1132 		reg_addr |= phy_page;
1133 
1134 		ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
1135 						    reg_data);
1136 		if (ret_val)
1137 			goto out;
1138 	}
1139 
1140 out:
1141 	hw->phy.ops.release(hw);
1142 	return ret_val;
1143 }
1144 
1145 /**
1146  *  e1000_k1_gig_workaround_hv - K1 Si workaround
1147  *  @hw:   pointer to the HW structure
1148  *  @link: link up bool flag
1149  *
1150  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1151  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
1152  *  If link is down, the function will restore the default K1 setting located
1153  *  in the NVM.
1154  **/
e1000_k1_gig_workaround_hv(struct e1000_hw * hw,bool link)1155 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1156 {
1157 	s32 ret_val = 0;
1158 	u16 status_reg = 0;
1159 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1160 
1161 	if (hw->mac.type != e1000_pchlan)
1162 		goto out;
1163 
1164 	/* Wrap the whole flow with the sw flag */
1165 	ret_val = hw->phy.ops.acquire(hw);
1166 	if (ret_val)
1167 		goto out;
1168 
1169 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1170 	if (link) {
1171 		if (hw->phy.type == e1000_phy_82578) {
1172 			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
1173 			                                          &status_reg);
1174 			if (ret_val)
1175 				goto release;
1176 
1177 			status_reg &= BM_CS_STATUS_LINK_UP |
1178 			              BM_CS_STATUS_RESOLVED |
1179 			              BM_CS_STATUS_SPEED_MASK;
1180 
1181 			if (status_reg == (BM_CS_STATUS_LINK_UP |
1182 			                   BM_CS_STATUS_RESOLVED |
1183 			                   BM_CS_STATUS_SPEED_1000))
1184 				k1_enable = false;
1185 		}
1186 
1187 		if (hw->phy.type == e1000_phy_82577) {
1188 			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
1189 			                                          &status_reg);
1190 			if (ret_val)
1191 				goto release;
1192 
1193 			status_reg &= HV_M_STATUS_LINK_UP |
1194 			              HV_M_STATUS_AUTONEG_COMPLETE |
1195 			              HV_M_STATUS_SPEED_MASK;
1196 
1197 			if (status_reg == (HV_M_STATUS_LINK_UP |
1198 			                   HV_M_STATUS_AUTONEG_COMPLETE |
1199 			                   HV_M_STATUS_SPEED_1000))
1200 				k1_enable = false;
1201 		}
1202 
1203 		/* Link stall fix for link up */
1204 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1205 		                                           0x0100);
1206 		if (ret_val)
1207 			goto release;
1208 
1209 	} else {
1210 		/* Link stall fix for link down */
1211 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1212 		                                           0x4100);
1213 		if (ret_val)
1214 			goto release;
1215 	}
1216 
1217 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1218 
1219 release:
1220 	hw->phy.ops.release(hw);
1221 out:
1222 	return ret_val;
1223 }
1224 
1225 /**
1226  *  e1000_configure_k1_ich8lan - Configure K1 power state
1227  *  @hw: pointer to the HW structure
1228  *  @enable: K1 state to configure
1229  *
1230  *  Configure the K1 power state based on the provided parameter.
1231  *  Assumes semaphore already acquired.
1232  *
1233  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1234  **/
e1000_configure_k1_ich8lan(struct e1000_hw * hw,bool k1_enable)1235 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1236 {
1237 	s32 ret_val = 0;
1238 	u32 ctrl_reg = 0;
1239 	u32 ctrl_ext = 0;
1240 	u32 reg = 0;
1241 	u16 kmrn_reg = 0;
1242 
1243 	ret_val = e1000e_read_kmrn_reg_locked(hw,
1244 	                                     E1000_KMRNCTRLSTA_K1_CONFIG,
1245 	                                     &kmrn_reg);
1246 	if (ret_val)
1247 		goto out;
1248 
1249 	if (k1_enable)
1250 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1251 	else
1252 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1253 
1254 	ret_val = e1000e_write_kmrn_reg_locked(hw,
1255 	                                      E1000_KMRNCTRLSTA_K1_CONFIG,
1256 	                                      kmrn_reg);
1257 	if (ret_val)
1258 		goto out;
1259 
1260 	udelay(20);
1261 	ctrl_ext = er32(CTRL_EXT);
1262 	ctrl_reg = er32(CTRL);
1263 
1264 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1265 	reg |= E1000_CTRL_FRCSPD;
1266 	ew32(CTRL, reg);
1267 
1268 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1269 	e1e_flush();
1270 	udelay(20);
1271 	ew32(CTRL, ctrl_reg);
1272 	ew32(CTRL_EXT, ctrl_ext);
1273 	e1e_flush();
1274 	udelay(20);
1275 
1276 out:
1277 	return ret_val;
1278 }
1279 
1280 /**
1281  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1282  *  @hw:       pointer to the HW structure
1283  *  @d0_state: boolean if entering d0 or d3 device state
1284  *
1285  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1286  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1287  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1288  **/
e1000_oem_bits_config_ich8lan(struct e1000_hw * hw,bool d0_state)1289 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1290 {
1291 	s32 ret_val = 0;
1292 	u32 mac_reg;
1293 	u16 oem_reg;
1294 
1295 	if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
1296 		return ret_val;
1297 
1298 	ret_val = hw->phy.ops.acquire(hw);
1299 	if (ret_val)
1300 		return ret_val;
1301 
1302 	if (!(hw->mac.type == e1000_pch2lan)) {
1303 		mac_reg = er32(EXTCNF_CTRL);
1304 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1305 			goto out;
1306 	}
1307 
1308 	mac_reg = er32(FEXTNVM);
1309 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1310 		goto out;
1311 
1312 	mac_reg = er32(PHY_CTRL);
1313 
1314 	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1315 	if (ret_val)
1316 		goto out;
1317 
1318 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1319 
1320 	if (d0_state) {
1321 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1322 			oem_reg |= HV_OEM_BITS_GBE_DIS;
1323 
1324 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1325 			oem_reg |= HV_OEM_BITS_LPLU;
1326 
1327 		/* Set Restart auto-neg to activate the bits */
1328 		if (!e1000_check_reset_block(hw))
1329 			oem_reg |= HV_OEM_BITS_RESTART_AN;
1330 	} else {
1331 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
1332 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
1333 			oem_reg |= HV_OEM_BITS_GBE_DIS;
1334 
1335 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
1336 			       E1000_PHY_CTRL_NOND0A_LPLU))
1337 			oem_reg |= HV_OEM_BITS_LPLU;
1338 	}
1339 
1340 	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
1341 
1342 out:
1343 	hw->phy.ops.release(hw);
1344 
1345 	return ret_val;
1346 }
1347 
1348 
1349 /**
1350  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1351  *  @hw:   pointer to the HW structure
1352  **/
e1000_set_mdio_slow_mode_hv(struct e1000_hw * hw)1353 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1354 {
1355 	s32 ret_val;
1356 	u16 data;
1357 
1358 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1359 	if (ret_val)
1360 		return ret_val;
1361 
1362 	data |= HV_KMRN_MDIO_SLOW;
1363 
1364 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1365 
1366 	return ret_val;
1367 }
1368 
1369 /**
1370  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1371  *  done after every PHY reset.
1372  **/
e1000_hv_phy_workarounds_ich8lan(struct e1000_hw * hw)1373 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1374 {
1375 	s32 ret_val = 0;
1376 	u16 phy_data;
1377 
1378 	if (hw->mac.type != e1000_pchlan)
1379 		return ret_val;
1380 
1381 	/* Set MDIO slow mode before any other MDIO access */
1382 	if (hw->phy.type == e1000_phy_82577) {
1383 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
1384 		if (ret_val)
1385 			goto out;
1386 	}
1387 
1388 	if (((hw->phy.type == e1000_phy_82577) &&
1389 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1390 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1391 		/* Disable generation of early preamble */
1392 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1393 		if (ret_val)
1394 			return ret_val;
1395 
1396 		/* Preamble tuning for SSC */
1397 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1398 		if (ret_val)
1399 			return ret_val;
1400 	}
1401 
1402 	if (hw->phy.type == e1000_phy_82578) {
1403 		/*
1404 		 * Return registers to default by doing a soft reset then
1405 		 * writing 0x3140 to the control register.
1406 		 */
1407 		if (hw->phy.revision < 2) {
1408 			e1000e_phy_sw_reset(hw);
1409 			ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1410 		}
1411 	}
1412 
1413 	/* Select page 0 */
1414 	ret_val = hw->phy.ops.acquire(hw);
1415 	if (ret_val)
1416 		return ret_val;
1417 
1418 	hw->phy.addr = 1;
1419 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1420 	hw->phy.ops.release(hw);
1421 	if (ret_val)
1422 		goto out;
1423 
1424 	/*
1425 	 * Configure the K1 Si workaround during phy reset assuming there is
1426 	 * link so that it disables K1 if link is in 1Gbps.
1427 	 */
1428 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
1429 	if (ret_val)
1430 		goto out;
1431 
1432 	/* Workaround for link disconnects on a busy hub in half duplex */
1433 	ret_val = hw->phy.ops.acquire(hw);
1434 	if (ret_val)
1435 		goto out;
1436 	ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1437 	if (ret_val)
1438 		goto release;
1439 	ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
1440 					       phy_data & 0x00FF);
1441 release:
1442 	hw->phy.ops.release(hw);
1443 out:
1444 	return ret_val;
1445 }
1446 
1447 /**
1448  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1449  *  @hw:   pointer to the HW structure
1450  **/
e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw * hw)1451 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1452 {
1453 	u32 mac_reg;
1454 	u16 i, phy_reg = 0;
1455 	s32 ret_val;
1456 
1457 	ret_val = hw->phy.ops.acquire(hw);
1458 	if (ret_val)
1459 		return;
1460 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1461 	if (ret_val)
1462 		goto release;
1463 
1464 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1465 	for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1466 		mac_reg = er32(RAL(i));
1467 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1468 					   (u16)(mac_reg & 0xFFFF));
1469 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1470 					   (u16)((mac_reg >> 16) & 0xFFFF));
1471 
1472 		mac_reg = er32(RAH(i));
1473 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1474 					   (u16)(mac_reg & 0xFFFF));
1475 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1476 					   (u16)((mac_reg & E1000_RAH_AV)
1477 						 >> 16));
1478 	}
1479 
1480 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1481 
1482 release:
1483 	hw->phy.ops.release(hw);
1484 }
1485 
1486 /**
1487  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1488  *  with 82579 PHY
1489  *  @hw: pointer to the HW structure
1490  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
1491  **/
e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw * hw,bool enable)1492 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1493 {
1494 	s32 ret_val = 0;
1495 	u16 phy_reg, data;
1496 	u32 mac_reg;
1497 	u16 i;
1498 
1499 	if (hw->mac.type != e1000_pch2lan)
1500 		goto out;
1501 
1502 	/* disable Rx path while enabling/disabling workaround */
1503 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1504 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1505 	if (ret_val)
1506 		goto out;
1507 
1508 	if (enable) {
1509 		/*
1510 		 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1511 		 * SHRAL/H) and initial CRC values to the MAC
1512 		 */
1513 		for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1514 			u8 mac_addr[ETH_ALEN] = {0};
1515 			u32 addr_high, addr_low;
1516 
1517 			addr_high = er32(RAH(i));
1518 			if (!(addr_high & E1000_RAH_AV))
1519 				continue;
1520 			addr_low = er32(RAL(i));
1521 			mac_addr[0] = (addr_low & 0xFF);
1522 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
1523 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
1524 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
1525 			mac_addr[4] = (addr_high & 0xFF);
1526 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
1527 
1528 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1529 		}
1530 
1531 		/* Write Rx addresses to the PHY */
1532 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1533 
1534 		/* Enable jumbo frame workaround in the MAC */
1535 		mac_reg = er32(FFLT_DBG);
1536 		mac_reg &= ~(1 << 14);
1537 		mac_reg |= (7 << 15);
1538 		ew32(FFLT_DBG, mac_reg);
1539 
1540 		mac_reg = er32(RCTL);
1541 		mac_reg |= E1000_RCTL_SECRC;
1542 		ew32(RCTL, mac_reg);
1543 
1544 		ret_val = e1000e_read_kmrn_reg(hw,
1545 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1546 						&data);
1547 		if (ret_val)
1548 			goto out;
1549 		ret_val = e1000e_write_kmrn_reg(hw,
1550 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1551 						data | (1 << 0));
1552 		if (ret_val)
1553 			goto out;
1554 		ret_val = e1000e_read_kmrn_reg(hw,
1555 						E1000_KMRNCTRLSTA_HD_CTRL,
1556 						&data);
1557 		if (ret_val)
1558 			goto out;
1559 		data &= ~(0xF << 8);
1560 		data |= (0xB << 8);
1561 		ret_val = e1000e_write_kmrn_reg(hw,
1562 						E1000_KMRNCTRLSTA_HD_CTRL,
1563 						data);
1564 		if (ret_val)
1565 			goto out;
1566 
1567 		/* Enable jumbo frame workaround in the PHY */
1568 		e1e_rphy(hw, PHY_REG(769, 23), &data);
1569 		data &= ~(0x7F << 5);
1570 		data |= (0x37 << 5);
1571 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1572 		if (ret_val)
1573 			goto out;
1574 		e1e_rphy(hw, PHY_REG(769, 16), &data);
1575 		data &= ~(1 << 13);
1576 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1577 		if (ret_val)
1578 			goto out;
1579 		e1e_rphy(hw, PHY_REG(776, 20), &data);
1580 		data &= ~(0x3FF << 2);
1581 		data |= (0x1A << 2);
1582 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1583 		if (ret_val)
1584 			goto out;
1585 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
1586 		if (ret_val)
1587 			goto out;
1588 		e1e_rphy(hw, HV_PM_CTRL, &data);
1589 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1590 		if (ret_val)
1591 			goto out;
1592 	} else {
1593 		/* Write MAC register values back to h/w defaults */
1594 		mac_reg = er32(FFLT_DBG);
1595 		mac_reg &= ~(0xF << 14);
1596 		ew32(FFLT_DBG, mac_reg);
1597 
1598 		mac_reg = er32(RCTL);
1599 		mac_reg &= ~E1000_RCTL_SECRC;
1600 		ew32(RCTL, mac_reg);
1601 
1602 		ret_val = e1000e_read_kmrn_reg(hw,
1603 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1604 						&data);
1605 		if (ret_val)
1606 			goto out;
1607 		ret_val = e1000e_write_kmrn_reg(hw,
1608 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1609 						data & ~(1 << 0));
1610 		if (ret_val)
1611 			goto out;
1612 		ret_val = e1000e_read_kmrn_reg(hw,
1613 						E1000_KMRNCTRLSTA_HD_CTRL,
1614 						&data);
1615 		if (ret_val)
1616 			goto out;
1617 		data &= ~(0xF << 8);
1618 		data |= (0xB << 8);
1619 		ret_val = e1000e_write_kmrn_reg(hw,
1620 						E1000_KMRNCTRLSTA_HD_CTRL,
1621 						data);
1622 		if (ret_val)
1623 			goto out;
1624 
1625 		/* Write PHY register values back to h/w defaults */
1626 		e1e_rphy(hw, PHY_REG(769, 23), &data);
1627 		data &= ~(0x7F << 5);
1628 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1629 		if (ret_val)
1630 			goto out;
1631 		e1e_rphy(hw, PHY_REG(769, 16), &data);
1632 		data |= (1 << 13);
1633 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1634 		if (ret_val)
1635 			goto out;
1636 		e1e_rphy(hw, PHY_REG(776, 20), &data);
1637 		data &= ~(0x3FF << 2);
1638 		data |= (0x8 << 2);
1639 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1640 		if (ret_val)
1641 			goto out;
1642 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1643 		if (ret_val)
1644 			goto out;
1645 		e1e_rphy(hw, HV_PM_CTRL, &data);
1646 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1647 		if (ret_val)
1648 			goto out;
1649 	}
1650 
1651 	/* re-enable Rx path after enabling/disabling workaround */
1652 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
1653 
1654 out:
1655 	return ret_val;
1656 }
1657 
1658 /**
1659  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1660  *  done after every PHY reset.
1661  **/
e1000_lv_phy_workarounds_ich8lan(struct e1000_hw * hw)1662 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1663 {
1664 	s32 ret_val = 0;
1665 
1666 	if (hw->mac.type != e1000_pch2lan)
1667 		goto out;
1668 
1669 	/* Set MDIO slow mode before any other MDIO access */
1670 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
1671 
1672 out:
1673 	return ret_val;
1674 }
1675 
1676 /**
1677  *  e1000_k1_gig_workaround_lv - K1 Si workaround
1678  *  @hw:   pointer to the HW structure
1679  *
1680  *  Workaround to set the K1 beacon duration for 82579 parts
1681  **/
e1000_k1_workaround_lv(struct e1000_hw * hw)1682 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
1683 {
1684 	s32 ret_val = 0;
1685 	u16 status_reg = 0;
1686 	u32 mac_reg;
1687 	u16 phy_reg;
1688 
1689 	if (hw->mac.type != e1000_pch2lan)
1690 		goto out;
1691 
1692 	/* Set K1 beacon duration based on 1Gbps speed or otherwise */
1693 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
1694 	if (ret_val)
1695 		goto out;
1696 
1697 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
1698 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
1699 		mac_reg = er32(FEXTNVM4);
1700 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1701 
1702 		ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
1703 		if (ret_val)
1704 			goto out;
1705 
1706 		if (status_reg & HV_M_STATUS_SPEED_1000) {
1707 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1708 			phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1709 		} else {
1710 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
1711 			phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1712 		}
1713 		ew32(FEXTNVM4, mac_reg);
1714 		ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
1715 	}
1716 
1717 out:
1718 	return ret_val;
1719 }
1720 
1721 /**
1722  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
1723  *  @hw:   pointer to the HW structure
1724  *  @gate: boolean set to true to gate, false to ungate
1725  *
1726  *  Gate/ungate the automatic PHY configuration via hardware; perform
1727  *  the configuration via software instead.
1728  **/
e1000_gate_hw_phy_config_ich8lan(struct e1000_hw * hw,bool gate)1729 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
1730 {
1731 	u32 extcnf_ctrl;
1732 
1733 	if (hw->mac.type != e1000_pch2lan)
1734 		return;
1735 
1736 	extcnf_ctrl = er32(EXTCNF_CTRL);
1737 
1738 	if (gate)
1739 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1740 	else
1741 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1742 
1743 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1744 	return;
1745 }
1746 
1747 /**
1748  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
1749  *  @hw: pointer to the HW structure
1750  *
1751  *  Check the appropriate indication the MAC has finished configuring the
1752  *  PHY after a software reset.
1753  **/
e1000_lan_init_done_ich8lan(struct e1000_hw * hw)1754 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1755 {
1756 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1757 
1758 	/* Wait for basic configuration completes before proceeding */
1759 	do {
1760 		data = er32(STATUS);
1761 		data &= E1000_STATUS_LAN_INIT_DONE;
1762 		udelay(100);
1763 	} while ((!data) && --loop);
1764 
1765 	/*
1766 	 * If basic configuration is incomplete before the above loop
1767 	 * count reaches 0, loading the configuration from NVM will
1768 	 * leave the PHY in a bad state possibly resulting in no link.
1769 	 */
1770 	if (loop == 0)
1771 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1772 
1773 	/* Clear the Init Done bit for the next init event */
1774 	data = er32(STATUS);
1775 	data &= ~E1000_STATUS_LAN_INIT_DONE;
1776 	ew32(STATUS, data);
1777 }
1778 
1779 /**
1780  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
1781  *  @hw: pointer to the HW structure
1782  **/
e1000_post_phy_reset_ich8lan(struct e1000_hw * hw)1783 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
1784 {
1785 	s32 ret_val = 0;
1786 	u16 reg;
1787 
1788 	if (e1000_check_reset_block(hw))
1789 		goto out;
1790 
1791 	/* Allow time for h/w to get to quiescent state after reset */
1792 	usleep_range(10000, 20000);
1793 
1794 	/* Perform any necessary post-reset workarounds */
1795 	switch (hw->mac.type) {
1796 	case e1000_pchlan:
1797 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1798 		if (ret_val)
1799 			goto out;
1800 		break;
1801 	case e1000_pch2lan:
1802 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
1803 		if (ret_val)
1804 			goto out;
1805 		break;
1806 	default:
1807 		break;
1808 	}
1809 
1810 	/* Clear the host wakeup bit after lcd reset */
1811 	if (hw->mac.type >= e1000_pchlan) {
1812 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
1813 		reg &= ~BM_WUC_HOST_WU_BIT;
1814 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
1815 	}
1816 
1817 	/* Configure the LCD with the extended configuration region in NVM */
1818 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
1819 	if (ret_val)
1820 		goto out;
1821 
1822 	/* Configure the LCD with the OEM bits in NVM */
1823 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1824 
1825 	if (hw->mac.type == e1000_pch2lan) {
1826 		/* Ungate automatic PHY configuration on non-managed 82579 */
1827 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
1828 			usleep_range(10000, 20000);
1829 			e1000_gate_hw_phy_config_ich8lan(hw, false);
1830 		}
1831 
1832 		/* Set EEE LPI Update Timer to 200usec */
1833 		ret_val = hw->phy.ops.acquire(hw);
1834 		if (ret_val)
1835 			goto out;
1836 		ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
1837 						       I82579_LPI_UPDATE_TIMER);
1838 		if (ret_val)
1839 			goto release;
1840 		ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
1841 						       0x1387);
1842 release:
1843 		hw->phy.ops.release(hw);
1844 	}
1845 
1846 out:
1847 	return ret_val;
1848 }
1849 
1850 /**
1851  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1852  *  @hw: pointer to the HW structure
1853  *
1854  *  Resets the PHY
1855  *  This is a function pointer entry point called by drivers
1856  *  or other shared routines.
1857  **/
e1000_phy_hw_reset_ich8lan(struct e1000_hw * hw)1858 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1859 {
1860 	s32 ret_val = 0;
1861 
1862 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
1863 	if ((hw->mac.type == e1000_pch2lan) &&
1864 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1865 		e1000_gate_hw_phy_config_ich8lan(hw, true);
1866 
1867 	ret_val = e1000e_phy_hw_reset_generic(hw);
1868 	if (ret_val)
1869 		goto out;
1870 
1871 	ret_val = e1000_post_phy_reset_ich8lan(hw);
1872 
1873 out:
1874 	return ret_val;
1875 }
1876 
1877 /**
1878  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1879  *  @hw: pointer to the HW structure
1880  *  @active: true to enable LPLU, false to disable
1881  *
1882  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
1883  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1884  *  the phy speed. This function will manually set the LPLU bit and restart
1885  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
1886  *  since it configures the same bit.
1887  **/
e1000_set_lplu_state_pchlan(struct e1000_hw * hw,bool active)1888 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1889 {
1890 	s32 ret_val = 0;
1891 	u16 oem_reg;
1892 
1893 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1894 	if (ret_val)
1895 		goto out;
1896 
1897 	if (active)
1898 		oem_reg |= HV_OEM_BITS_LPLU;
1899 	else
1900 		oem_reg &= ~HV_OEM_BITS_LPLU;
1901 
1902 	oem_reg |= HV_OEM_BITS_RESTART_AN;
1903 	ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1904 
1905 out:
1906 	return ret_val;
1907 }
1908 
1909 /**
1910  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1911  *  @hw: pointer to the HW structure
1912  *  @active: true to enable LPLU, false to disable
1913  *
1914  *  Sets the LPLU D0 state according to the active flag.  When
1915  *  activating LPLU this function also disables smart speed
1916  *  and vice versa.  LPLU will not be activated unless the
1917  *  device autonegotiation advertisement meets standards of
1918  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1919  *  This is a function pointer entry point only called by
1920  *  PHY setup routines.
1921  **/
e1000_set_d0_lplu_state_ich8lan(struct e1000_hw * hw,bool active)1922 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1923 {
1924 	struct e1000_phy_info *phy = &hw->phy;
1925 	u32 phy_ctrl;
1926 	s32 ret_val = 0;
1927 	u16 data;
1928 
1929 	if (phy->type == e1000_phy_ife)
1930 		return ret_val;
1931 
1932 	phy_ctrl = er32(PHY_CTRL);
1933 
1934 	if (active) {
1935 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1936 		ew32(PHY_CTRL, phy_ctrl);
1937 
1938 		if (phy->type != e1000_phy_igp_3)
1939 			return 0;
1940 
1941 		/*
1942 		 * Call gig speed drop workaround on LPLU before accessing
1943 		 * any PHY registers
1944 		 */
1945 		if (hw->mac.type == e1000_ich8lan)
1946 			e1000e_gig_downshift_workaround_ich8lan(hw);
1947 
1948 		/* When LPLU is enabled, we should disable SmartSpeed */
1949 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1950 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1951 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1952 		if (ret_val)
1953 			return ret_val;
1954 	} else {
1955 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1956 		ew32(PHY_CTRL, phy_ctrl);
1957 
1958 		if (phy->type != e1000_phy_igp_3)
1959 			return 0;
1960 
1961 		/*
1962 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1963 		 * during Dx states where the power conservation is most
1964 		 * important.  During driver activity we should enable
1965 		 * SmartSpeed, so performance is maintained.
1966 		 */
1967 		if (phy->smart_speed == e1000_smart_speed_on) {
1968 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1969 					   &data);
1970 			if (ret_val)
1971 				return ret_val;
1972 
1973 			data |= IGP01E1000_PSCFR_SMART_SPEED;
1974 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1975 					   data);
1976 			if (ret_val)
1977 				return ret_val;
1978 		} else if (phy->smart_speed == e1000_smart_speed_off) {
1979 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1980 					   &data);
1981 			if (ret_val)
1982 				return ret_val;
1983 
1984 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1985 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1986 					   data);
1987 			if (ret_val)
1988 				return ret_val;
1989 		}
1990 	}
1991 
1992 	return 0;
1993 }
1994 
1995 /**
1996  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1997  *  @hw: pointer to the HW structure
1998  *  @active: true to enable LPLU, false to disable
1999  *
2000  *  Sets the LPLU D3 state according to the active flag.  When
2001  *  activating LPLU this function also disables smart speed
2002  *  and vice versa.  LPLU will not be activated unless the
2003  *  device autonegotiation advertisement meets standards of
2004  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2005  *  This is a function pointer entry point only called by
2006  *  PHY setup routines.
2007  **/
e1000_set_d3_lplu_state_ich8lan(struct e1000_hw * hw,bool active)2008 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2009 {
2010 	struct e1000_phy_info *phy = &hw->phy;
2011 	u32 phy_ctrl;
2012 	s32 ret_val;
2013 	u16 data;
2014 
2015 	phy_ctrl = er32(PHY_CTRL);
2016 
2017 	if (!active) {
2018 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2019 		ew32(PHY_CTRL, phy_ctrl);
2020 
2021 		if (phy->type != e1000_phy_igp_3)
2022 			return 0;
2023 
2024 		/*
2025 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2026 		 * during Dx states where the power conservation is most
2027 		 * important.  During driver activity we should enable
2028 		 * SmartSpeed, so performance is maintained.
2029 		 */
2030 		if (phy->smart_speed == e1000_smart_speed_on) {
2031 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2032 					   &data);
2033 			if (ret_val)
2034 				return ret_val;
2035 
2036 			data |= IGP01E1000_PSCFR_SMART_SPEED;
2037 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2038 					   data);
2039 			if (ret_val)
2040 				return ret_val;
2041 		} else if (phy->smart_speed == e1000_smart_speed_off) {
2042 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2043 					   &data);
2044 			if (ret_val)
2045 				return ret_val;
2046 
2047 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2048 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2049 					   data);
2050 			if (ret_val)
2051 				return ret_val;
2052 		}
2053 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2054 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2055 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2056 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2057 		ew32(PHY_CTRL, phy_ctrl);
2058 
2059 		if (phy->type != e1000_phy_igp_3)
2060 			return 0;
2061 
2062 		/*
2063 		 * Call gig speed drop workaround on LPLU before accessing
2064 		 * any PHY registers
2065 		 */
2066 		if (hw->mac.type == e1000_ich8lan)
2067 			e1000e_gig_downshift_workaround_ich8lan(hw);
2068 
2069 		/* When LPLU is enabled, we should disable SmartSpeed */
2070 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2071 		if (ret_val)
2072 			return ret_val;
2073 
2074 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2075 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2076 	}
2077 
2078 	return 0;
2079 }
2080 
2081 /**
2082  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2083  *  @hw: pointer to the HW structure
2084  *  @bank:  pointer to the variable that returns the active bank
2085  *
2086  *  Reads signature byte from the NVM using the flash access registers.
2087  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2088  **/
e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw * hw,u32 * bank)2089 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2090 {
2091 	u32 eecd;
2092 	struct e1000_nvm_info *nvm = &hw->nvm;
2093 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2094 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2095 	u8 sig_byte = 0;
2096 	s32 ret_val = 0;
2097 
2098 	switch (hw->mac.type) {
2099 	case e1000_ich8lan:
2100 	case e1000_ich9lan:
2101 		eecd = er32(EECD);
2102 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2103 		    E1000_EECD_SEC1VAL_VALID_MASK) {
2104 			if (eecd & E1000_EECD_SEC1VAL)
2105 				*bank = 1;
2106 			else
2107 				*bank = 0;
2108 
2109 			return 0;
2110 		}
2111 		e_dbg("Unable to determine valid NVM bank via EEC - "
2112 		       "reading flash signature\n");
2113 		/* fall-thru */
2114 	default:
2115 		/* set bank to 0 in case flash read fails */
2116 		*bank = 0;
2117 
2118 		/* Check bank 0 */
2119 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2120 		                                        &sig_byte);
2121 		if (ret_val)
2122 			return ret_val;
2123 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2124 		    E1000_ICH_NVM_SIG_VALUE) {
2125 			*bank = 0;
2126 			return 0;
2127 		}
2128 
2129 		/* Check bank 1 */
2130 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2131 		                                        bank1_offset,
2132 		                                        &sig_byte);
2133 		if (ret_val)
2134 			return ret_val;
2135 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2136 		    E1000_ICH_NVM_SIG_VALUE) {
2137 			*bank = 1;
2138 			return 0;
2139 		}
2140 
2141 		e_dbg("ERROR: No valid NVM bank present\n");
2142 		return -E1000_ERR_NVM;
2143 	}
2144 
2145 	return 0;
2146 }
2147 
2148 /**
2149  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
2150  *  @hw: pointer to the HW structure
2151  *  @offset: The offset (in bytes) of the word(s) to read.
2152  *  @words: Size of data to read in words
2153  *  @data: Pointer to the word(s) to read at offset.
2154  *
2155  *  Reads a word(s) from the NVM using the flash access registers.
2156  **/
e1000_read_nvm_ich8lan(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)2157 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2158 				  u16 *data)
2159 {
2160 	struct e1000_nvm_info *nvm = &hw->nvm;
2161 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2162 	u32 act_offset;
2163 	s32 ret_val = 0;
2164 	u32 bank = 0;
2165 	u16 i, word;
2166 
2167 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2168 	    (words == 0)) {
2169 		e_dbg("nvm parameter(s) out of bounds\n");
2170 		ret_val = -E1000_ERR_NVM;
2171 		goto out;
2172 	}
2173 
2174 	nvm->ops.acquire(hw);
2175 
2176 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2177 	if (ret_val) {
2178 		e_dbg("Could not detect valid bank, assuming bank 0\n");
2179 		bank = 0;
2180 	}
2181 
2182 	act_offset = (bank) ? nvm->flash_bank_size : 0;
2183 	act_offset += offset;
2184 
2185 	ret_val = 0;
2186 	for (i = 0; i < words; i++) {
2187 		if (dev_spec->shadow_ram[offset+i].modified) {
2188 			data[i] = dev_spec->shadow_ram[offset+i].value;
2189 		} else {
2190 			ret_val = e1000_read_flash_word_ich8lan(hw,
2191 								act_offset + i,
2192 								&word);
2193 			if (ret_val)
2194 				break;
2195 			data[i] = word;
2196 		}
2197 	}
2198 
2199 	nvm->ops.release(hw);
2200 
2201 out:
2202 	if (ret_val)
2203 		e_dbg("NVM read error: %d\n", ret_val);
2204 
2205 	return ret_val;
2206 }
2207 
2208 /**
2209  *  e1000_flash_cycle_init_ich8lan - Initialize flash
2210  *  @hw: pointer to the HW structure
2211  *
2212  *  This function does initial flash setup so that a new read/write/erase cycle
2213  *  can be started.
2214  **/
e1000_flash_cycle_init_ich8lan(struct e1000_hw * hw)2215 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2216 {
2217 	union ich8_hws_flash_status hsfsts;
2218 	s32 ret_val = -E1000_ERR_NVM;
2219 
2220 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2221 
2222 	/* Check if the flash descriptor is valid */
2223 	if (hsfsts.hsf_status.fldesvalid == 0) {
2224 		e_dbg("Flash descriptor invalid.  "
2225 			 "SW Sequencing must be used.\n");
2226 		return -E1000_ERR_NVM;
2227 	}
2228 
2229 	/* Clear FCERR and DAEL in hw status by writing 1 */
2230 	hsfsts.hsf_status.flcerr = 1;
2231 	hsfsts.hsf_status.dael = 1;
2232 
2233 	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2234 
2235 	/*
2236 	 * Either we should have a hardware SPI cycle in progress
2237 	 * bit to check against, in order to start a new cycle or
2238 	 * FDONE bit should be changed in the hardware so that it
2239 	 * is 1 after hardware reset, which can then be used as an
2240 	 * indication whether a cycle is in progress or has been
2241 	 * completed.
2242 	 */
2243 
2244 	if (hsfsts.hsf_status.flcinprog == 0) {
2245 		/*
2246 		 * There is no cycle running at present,
2247 		 * so we can start a cycle.
2248 		 * Begin by setting Flash Cycle Done.
2249 		 */
2250 		hsfsts.hsf_status.flcdone = 1;
2251 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2252 		ret_val = 0;
2253 	} else {
2254 		s32 i = 0;
2255 
2256 		/*
2257 		 * Otherwise poll for sometime so the current
2258 		 * cycle has a chance to end before giving up.
2259 		 */
2260 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2261 			hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
2262 			if (hsfsts.hsf_status.flcinprog == 0) {
2263 				ret_val = 0;
2264 				break;
2265 			}
2266 			udelay(1);
2267 		}
2268 		if (ret_val == 0) {
2269 			/*
2270 			 * Successful in waiting for previous cycle to timeout,
2271 			 * now set the Flash Cycle Done.
2272 			 */
2273 			hsfsts.hsf_status.flcdone = 1;
2274 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2275 		} else {
2276 			e_dbg("Flash controller busy, cannot get access\n");
2277 		}
2278 	}
2279 
2280 	return ret_val;
2281 }
2282 
2283 /**
2284  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2285  *  @hw: pointer to the HW structure
2286  *  @timeout: maximum time to wait for completion
2287  *
2288  *  This function starts a flash cycle and waits for its completion.
2289  **/
e1000_flash_cycle_ich8lan(struct e1000_hw * hw,u32 timeout)2290 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2291 {
2292 	union ich8_hws_flash_ctrl hsflctl;
2293 	union ich8_hws_flash_status hsfsts;
2294 	s32 ret_val = -E1000_ERR_NVM;
2295 	u32 i = 0;
2296 
2297 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2298 	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2299 	hsflctl.hsf_ctrl.flcgo = 1;
2300 	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2301 
2302 	/* wait till FDONE bit is set to 1 */
2303 	do {
2304 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2305 		if (hsfsts.hsf_status.flcdone == 1)
2306 			break;
2307 		udelay(1);
2308 	} while (i++ < timeout);
2309 
2310 	if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
2311 		return 0;
2312 
2313 	return ret_val;
2314 }
2315 
2316 /**
2317  *  e1000_read_flash_word_ich8lan - Read word from flash
2318  *  @hw: pointer to the HW structure
2319  *  @offset: offset to data location
2320  *  @data: pointer to the location for storing the data
2321  *
2322  *  Reads the flash word at offset into data.  Offset is converted
2323  *  to bytes before read.
2324  **/
e1000_read_flash_word_ich8lan(struct e1000_hw * hw,u32 offset,u16 * data)2325 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2326 					 u16 *data)
2327 {
2328 	/* Must convert offset into bytes. */
2329 	offset <<= 1;
2330 
2331 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2332 }
2333 
2334 /**
2335  *  e1000_read_flash_byte_ich8lan - Read byte from flash
2336  *  @hw: pointer to the HW structure
2337  *  @offset: The offset of the byte to read.
2338  *  @data: Pointer to a byte to store the value read.
2339  *
2340  *  Reads a single byte from the NVM using the flash access registers.
2341  **/
e1000_read_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 * data)2342 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2343 					 u8 *data)
2344 {
2345 	s32 ret_val;
2346 	u16 word = 0;
2347 
2348 	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2349 	if (ret_val)
2350 		return ret_val;
2351 
2352 	*data = (u8)word;
2353 
2354 	return 0;
2355 }
2356 
2357 /**
2358  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
2359  *  @hw: pointer to the HW structure
2360  *  @offset: The offset (in bytes) of the byte or word to read.
2361  *  @size: Size of data to read, 1=byte 2=word
2362  *  @data: Pointer to the word to store the value read.
2363  *
2364  *  Reads a byte or word from the NVM using the flash access registers.
2365  **/
e1000_read_flash_data_ich8lan(struct e1000_hw * hw,u32 offset,u8 size,u16 * data)2366 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2367 					 u8 size, u16 *data)
2368 {
2369 	union ich8_hws_flash_status hsfsts;
2370 	union ich8_hws_flash_ctrl hsflctl;
2371 	u32 flash_linear_addr;
2372 	u32 flash_data = 0;
2373 	s32 ret_val = -E1000_ERR_NVM;
2374 	u8 count = 0;
2375 
2376 	if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2377 		return -E1000_ERR_NVM;
2378 
2379 	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2380 			    hw->nvm.flash_base_addr;
2381 
2382 	do {
2383 		udelay(1);
2384 		/* Steps */
2385 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
2386 		if (ret_val != 0)
2387 			break;
2388 
2389 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2390 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2391 		hsflctl.hsf_ctrl.fldbcount = size - 1;
2392 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2393 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2394 
2395 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2396 
2397 		ret_val = e1000_flash_cycle_ich8lan(hw,
2398 						ICH_FLASH_READ_COMMAND_TIMEOUT);
2399 
2400 		/*
2401 		 * Check if FCERR is set to 1, if set to 1, clear it
2402 		 * and try the whole sequence a few more times, else
2403 		 * read in (shift in) the Flash Data0, the order is
2404 		 * least significant byte first msb to lsb
2405 		 */
2406 		if (ret_val == 0) {
2407 			flash_data = er32flash(ICH_FLASH_FDATA0);
2408 			if (size == 1)
2409 				*data = (u8)(flash_data & 0x000000FF);
2410 			else if (size == 2)
2411 				*data = (u16)(flash_data & 0x0000FFFF);
2412 			break;
2413 		} else {
2414 			/*
2415 			 * If we've gotten here, then things are probably
2416 			 * completely hosed, but if the error condition is
2417 			 * detected, it won't hurt to give it another try...
2418 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2419 			 */
2420 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2421 			if (hsfsts.hsf_status.flcerr == 1) {
2422 				/* Repeat for some time before giving up. */
2423 				continue;
2424 			} else if (hsfsts.hsf_status.flcdone == 0) {
2425 				e_dbg("Timeout error - flash cycle "
2426 					 "did not complete.\n");
2427 				break;
2428 			}
2429 		}
2430 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2431 
2432 	return ret_val;
2433 }
2434 
2435 /**
2436  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
2437  *  @hw: pointer to the HW structure
2438  *  @offset: The offset (in bytes) of the word(s) to write.
2439  *  @words: Size of data to write in words
2440  *  @data: Pointer to the word(s) to write at offset.
2441  *
2442  *  Writes a byte or word to the NVM using the flash access registers.
2443  **/
e1000_write_nvm_ich8lan(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)2444 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2445 				   u16 *data)
2446 {
2447 	struct e1000_nvm_info *nvm = &hw->nvm;
2448 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2449 	u16 i;
2450 
2451 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2452 	    (words == 0)) {
2453 		e_dbg("nvm parameter(s) out of bounds\n");
2454 		return -E1000_ERR_NVM;
2455 	}
2456 
2457 	nvm->ops.acquire(hw);
2458 
2459 	for (i = 0; i < words; i++) {
2460 		dev_spec->shadow_ram[offset+i].modified = true;
2461 		dev_spec->shadow_ram[offset+i].value = data[i];
2462 	}
2463 
2464 	nvm->ops.release(hw);
2465 
2466 	return 0;
2467 }
2468 
2469 /**
2470  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2471  *  @hw: pointer to the HW structure
2472  *
2473  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
2474  *  which writes the checksum to the shadow ram.  The changes in the shadow
2475  *  ram are then committed to the EEPROM by processing each bank at a time
2476  *  checking for the modified bit and writing only the pending changes.
2477  *  After a successful commit, the shadow ram is cleared and is ready for
2478  *  future writes.
2479  **/
e1000_update_nvm_checksum_ich8lan(struct e1000_hw * hw)2480 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2481 {
2482 	struct e1000_nvm_info *nvm = &hw->nvm;
2483 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2484 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2485 	s32 ret_val;
2486 	u16 data;
2487 
2488 	ret_val = e1000e_update_nvm_checksum_generic(hw);
2489 	if (ret_val)
2490 		goto out;
2491 
2492 	if (nvm->type != e1000_nvm_flash_sw)
2493 		goto out;
2494 
2495 	nvm->ops.acquire(hw);
2496 
2497 	/*
2498 	 * We're writing to the opposite bank so if we're on bank 1,
2499 	 * write to bank 0 etc.  We also need to erase the segment that
2500 	 * is going to be written
2501 	 */
2502 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2503 	if (ret_val) {
2504 		e_dbg("Could not detect valid bank, assuming bank 0\n");
2505 		bank = 0;
2506 	}
2507 
2508 	if (bank == 0) {
2509 		new_bank_offset = nvm->flash_bank_size;
2510 		old_bank_offset = 0;
2511 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2512 		if (ret_val)
2513 			goto release;
2514 	} else {
2515 		old_bank_offset = nvm->flash_bank_size;
2516 		new_bank_offset = 0;
2517 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2518 		if (ret_val)
2519 			goto release;
2520 	}
2521 
2522 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2523 		/*
2524 		 * Determine whether to write the value stored
2525 		 * in the other NVM bank or a modified value stored
2526 		 * in the shadow RAM
2527 		 */
2528 		if (dev_spec->shadow_ram[i].modified) {
2529 			data = dev_spec->shadow_ram[i].value;
2530 		} else {
2531 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
2532 			                                        old_bank_offset,
2533 			                                        &data);
2534 			if (ret_val)
2535 				break;
2536 		}
2537 
2538 		/*
2539 		 * If the word is 0x13, then make sure the signature bits
2540 		 * (15:14) are 11b until the commit has completed.
2541 		 * This will allow us to write 10b which indicates the
2542 		 * signature is valid.  We want to do this after the write
2543 		 * has completed so that we don't mark the segment valid
2544 		 * while the write is still in progress
2545 		 */
2546 		if (i == E1000_ICH_NVM_SIG_WORD)
2547 			data |= E1000_ICH_NVM_SIG_MASK;
2548 
2549 		/* Convert offset to bytes. */
2550 		act_offset = (i + new_bank_offset) << 1;
2551 
2552 		udelay(100);
2553 		/* Write the bytes to the new bank. */
2554 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2555 							       act_offset,
2556 							       (u8)data);
2557 		if (ret_val)
2558 			break;
2559 
2560 		udelay(100);
2561 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2562 							  act_offset + 1,
2563 							  (u8)(data >> 8));
2564 		if (ret_val)
2565 			break;
2566 	}
2567 
2568 	/*
2569 	 * Don't bother writing the segment valid bits if sector
2570 	 * programming failed.
2571 	 */
2572 	if (ret_val) {
2573 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2574 		e_dbg("Flash commit failed.\n");
2575 		goto release;
2576 	}
2577 
2578 	/*
2579 	 * Finally validate the new segment by setting bit 15:14
2580 	 * to 10b in word 0x13 , this can be done without an
2581 	 * erase as well since these bits are 11 to start with
2582 	 * and we need to change bit 14 to 0b
2583 	 */
2584 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2585 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2586 	if (ret_val)
2587 		goto release;
2588 
2589 	data &= 0xBFFF;
2590 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2591 						       act_offset * 2 + 1,
2592 						       (u8)(data >> 8));
2593 	if (ret_val)
2594 		goto release;
2595 
2596 	/*
2597 	 * And invalidate the previously valid segment by setting
2598 	 * its signature word (0x13) high_byte to 0b. This can be
2599 	 * done without an erase because flash erase sets all bits
2600 	 * to 1's. We can write 1's to 0's without an erase
2601 	 */
2602 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2603 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2604 	if (ret_val)
2605 		goto release;
2606 
2607 	/* Great!  Everything worked, we can now clear the cached entries. */
2608 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2609 		dev_spec->shadow_ram[i].modified = false;
2610 		dev_spec->shadow_ram[i].value = 0xFFFF;
2611 	}
2612 
2613 release:
2614 	nvm->ops.release(hw);
2615 
2616 	/*
2617 	 * Reload the EEPROM, or else modifications will not appear
2618 	 * until after the next adapter reset.
2619 	 */
2620 	if (!ret_val) {
2621 		e1000e_reload_nvm(hw);
2622 		usleep_range(10000, 20000);
2623 	}
2624 
2625 out:
2626 	if (ret_val)
2627 		e_dbg("NVM update error: %d\n", ret_val);
2628 
2629 	return ret_val;
2630 }
2631 
2632 /**
2633  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2634  *  @hw: pointer to the HW structure
2635  *
2636  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2637  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
2638  *  calculated, in which case we need to calculate the checksum and set bit 6.
2639  **/
e1000_validate_nvm_checksum_ich8lan(struct e1000_hw * hw)2640 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2641 {
2642 	s32 ret_val;
2643 	u16 data;
2644 
2645 	/*
2646 	 * Read 0x19 and check bit 6.  If this bit is 0, the checksum
2647 	 * needs to be fixed.  This bit is an indication that the NVM
2648 	 * was prepared by OEM software and did not calculate the
2649 	 * checksum...a likely scenario.
2650 	 */
2651 	ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2652 	if (ret_val)
2653 		return ret_val;
2654 
2655 	if ((data & 0x40) == 0) {
2656 		data |= 0x40;
2657 		ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2658 		if (ret_val)
2659 			return ret_val;
2660 		ret_val = e1000e_update_nvm_checksum(hw);
2661 		if (ret_val)
2662 			return ret_val;
2663 	}
2664 
2665 	return e1000e_validate_nvm_checksum_generic(hw);
2666 }
2667 
2668 /**
2669  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2670  *  @hw: pointer to the HW structure
2671  *
2672  *  To prevent malicious write/erase of the NVM, set it to be read-only
2673  *  so that the hardware ignores all write/erase cycles of the NVM via
2674  *  the flash control registers.  The shadow-ram copy of the NVM will
2675  *  still be updated, however any updates to this copy will not stick
2676  *  across driver reloads.
2677  **/
e1000e_write_protect_nvm_ich8lan(struct e1000_hw * hw)2678 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2679 {
2680 	struct e1000_nvm_info *nvm = &hw->nvm;
2681 	union ich8_flash_protected_range pr0;
2682 	union ich8_hws_flash_status hsfsts;
2683 	u32 gfpreg;
2684 
2685 	nvm->ops.acquire(hw);
2686 
2687 	gfpreg = er32flash(ICH_FLASH_GFPREG);
2688 
2689 	/* Write-protect GbE Sector of NVM */
2690 	pr0.regval = er32flash(ICH_FLASH_PR0);
2691 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2692 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2693 	pr0.range.wpe = true;
2694 	ew32flash(ICH_FLASH_PR0, pr0.regval);
2695 
2696 	/*
2697 	 * Lock down a subset of GbE Flash Control Registers, e.g.
2698 	 * PR0 to prevent the write-protection from being lifted.
2699 	 * Once FLOCKDN is set, the registers protected by it cannot
2700 	 * be written until FLOCKDN is cleared by a hardware reset.
2701 	 */
2702 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2703 	hsfsts.hsf_status.flockdn = true;
2704 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2705 
2706 	nvm->ops.release(hw);
2707 }
2708 
2709 /**
2710  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2711  *  @hw: pointer to the HW structure
2712  *  @offset: The offset (in bytes) of the byte/word to read.
2713  *  @size: Size of data to read, 1=byte 2=word
2714  *  @data: The byte(s) to write to the NVM.
2715  *
2716  *  Writes one/two bytes to the NVM using the flash access registers.
2717  **/
e1000_write_flash_data_ich8lan(struct e1000_hw * hw,u32 offset,u8 size,u16 data)2718 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2719 					  u8 size, u16 data)
2720 {
2721 	union ich8_hws_flash_status hsfsts;
2722 	union ich8_hws_flash_ctrl hsflctl;
2723 	u32 flash_linear_addr;
2724 	u32 flash_data = 0;
2725 	s32 ret_val;
2726 	u8 count = 0;
2727 
2728 	if (size < 1 || size > 2 || data > size * 0xff ||
2729 	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
2730 		return -E1000_ERR_NVM;
2731 
2732 	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2733 			    hw->nvm.flash_base_addr;
2734 
2735 	do {
2736 		udelay(1);
2737 		/* Steps */
2738 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
2739 		if (ret_val)
2740 			break;
2741 
2742 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2743 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2744 		hsflctl.hsf_ctrl.fldbcount = size -1;
2745 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2746 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2747 
2748 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2749 
2750 		if (size == 1)
2751 			flash_data = (u32)data & 0x00FF;
2752 		else
2753 			flash_data = (u32)data;
2754 
2755 		ew32flash(ICH_FLASH_FDATA0, flash_data);
2756 
2757 		/*
2758 		 * check if FCERR is set to 1 , if set to 1, clear it
2759 		 * and try the whole sequence a few more times else done
2760 		 */
2761 		ret_val = e1000_flash_cycle_ich8lan(hw,
2762 					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2763 		if (!ret_val)
2764 			break;
2765 
2766 		/*
2767 		 * If we're here, then things are most likely
2768 		 * completely hosed, but if the error condition
2769 		 * is detected, it won't hurt to give it another
2770 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2771 		 */
2772 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2773 		if (hsfsts.hsf_status.flcerr == 1)
2774 			/* Repeat for some time before giving up. */
2775 			continue;
2776 		if (hsfsts.hsf_status.flcdone == 0) {
2777 			e_dbg("Timeout error - flash cycle "
2778 				 "did not complete.");
2779 			break;
2780 		}
2781 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2782 
2783 	return ret_val;
2784 }
2785 
2786 /**
2787  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2788  *  @hw: pointer to the HW structure
2789  *  @offset: The index of the byte to read.
2790  *  @data: The byte to write to the NVM.
2791  *
2792  *  Writes a single byte to the NVM using the flash access registers.
2793  **/
e1000_write_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 data)2794 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2795 					  u8 data)
2796 {
2797 	u16 word = (u16)data;
2798 
2799 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2800 }
2801 
2802 /**
2803  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2804  *  @hw: pointer to the HW structure
2805  *  @offset: The offset of the byte to write.
2806  *  @byte: The byte to write to the NVM.
2807  *
2808  *  Writes a single byte to the NVM using the flash access registers.
2809  *  Goes through a retry algorithm before giving up.
2810  **/
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 byte)2811 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2812 						u32 offset, u8 byte)
2813 {
2814 	s32 ret_val;
2815 	u16 program_retries;
2816 
2817 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2818 	if (!ret_val)
2819 		return ret_val;
2820 
2821 	for (program_retries = 0; program_retries < 100; program_retries++) {
2822 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
2823 		udelay(100);
2824 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2825 		if (!ret_val)
2826 			break;
2827 	}
2828 	if (program_retries == 100)
2829 		return -E1000_ERR_NVM;
2830 
2831 	return 0;
2832 }
2833 
2834 /**
2835  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2836  *  @hw: pointer to the HW structure
2837  *  @bank: 0 for first bank, 1 for second bank, etc.
2838  *
2839  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2840  *  bank N is 4096 * N + flash_reg_addr.
2841  **/
e1000_erase_flash_bank_ich8lan(struct e1000_hw * hw,u32 bank)2842 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2843 {
2844 	struct e1000_nvm_info *nvm = &hw->nvm;
2845 	union ich8_hws_flash_status hsfsts;
2846 	union ich8_hws_flash_ctrl hsflctl;
2847 	u32 flash_linear_addr;
2848 	/* bank size is in 16bit words - adjust to bytes */
2849 	u32 flash_bank_size = nvm->flash_bank_size * 2;
2850 	s32 ret_val;
2851 	s32 count = 0;
2852 	s32 j, iteration, sector_size;
2853 
2854 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2855 
2856 	/*
2857 	 * Determine HW Sector size: Read BERASE bits of hw flash status
2858 	 * register
2859 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
2860 	 *     consecutive sectors.  The start index for the nth Hw sector
2861 	 *     can be calculated as = bank * 4096 + n * 256
2862 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2863 	 *     The start index for the nth Hw sector can be calculated
2864 	 *     as = bank * 4096
2865 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2866 	 *     (ich9 only, otherwise error condition)
2867 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2868 	 */
2869 	switch (hsfsts.hsf_status.berasesz) {
2870 	case 0:
2871 		/* Hw sector size 256 */
2872 		sector_size = ICH_FLASH_SEG_SIZE_256;
2873 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2874 		break;
2875 	case 1:
2876 		sector_size = ICH_FLASH_SEG_SIZE_4K;
2877 		iteration = 1;
2878 		break;
2879 	case 2:
2880 		sector_size = ICH_FLASH_SEG_SIZE_8K;
2881 		iteration = 1;
2882 		break;
2883 	case 3:
2884 		sector_size = ICH_FLASH_SEG_SIZE_64K;
2885 		iteration = 1;
2886 		break;
2887 	default:
2888 		return -E1000_ERR_NVM;
2889 	}
2890 
2891 	/* Start with the base address, then add the sector offset. */
2892 	flash_linear_addr = hw->nvm.flash_base_addr;
2893 	flash_linear_addr += (bank) ? flash_bank_size : 0;
2894 
2895 	for (j = 0; j < iteration ; j++) {
2896 		do {
2897 			/* Steps */
2898 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
2899 			if (ret_val)
2900 				return ret_val;
2901 
2902 			/*
2903 			 * Write a value 11 (block Erase) in Flash
2904 			 * Cycle field in hw flash control
2905 			 */
2906 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2907 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2908 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2909 
2910 			/*
2911 			 * Write the last 24 bits of an index within the
2912 			 * block into Flash Linear address field in Flash
2913 			 * Address.
2914 			 */
2915 			flash_linear_addr += (j * sector_size);
2916 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2917 
2918 			ret_val = e1000_flash_cycle_ich8lan(hw,
2919 					       ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2920 			if (ret_val == 0)
2921 				break;
2922 
2923 			/*
2924 			 * Check if FCERR is set to 1.  If 1,
2925 			 * clear it and try the whole sequence
2926 			 * a few more times else Done
2927 			 */
2928 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2929 			if (hsfsts.hsf_status.flcerr == 1)
2930 				/* repeat for some time before giving up */
2931 				continue;
2932 			else if (hsfsts.hsf_status.flcdone == 0)
2933 				return ret_val;
2934 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2935 	}
2936 
2937 	return 0;
2938 }
2939 
2940 /**
2941  *  e1000_valid_led_default_ich8lan - Set the default LED settings
2942  *  @hw: pointer to the HW structure
2943  *  @data: Pointer to the LED settings
2944  *
2945  *  Reads the LED default settings from the NVM to data.  If the NVM LED
2946  *  settings is all 0's or F's, set the LED default to a valid LED default
2947  *  setting.
2948  **/
e1000_valid_led_default_ich8lan(struct e1000_hw * hw,u16 * data)2949 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2950 {
2951 	s32 ret_val;
2952 
2953 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2954 	if (ret_val) {
2955 		e_dbg("NVM Read Error\n");
2956 		return ret_val;
2957 	}
2958 
2959 	if (*data == ID_LED_RESERVED_0000 ||
2960 	    *data == ID_LED_RESERVED_FFFF)
2961 		*data = ID_LED_DEFAULT_ICH8LAN;
2962 
2963 	return 0;
2964 }
2965 
2966 /**
2967  *  e1000_id_led_init_pchlan - store LED configurations
2968  *  @hw: pointer to the HW structure
2969  *
2970  *  PCH does not control LEDs via the LEDCTL register, rather it uses
2971  *  the PHY LED configuration register.
2972  *
2973  *  PCH also does not have an "always on" or "always off" mode which
2974  *  complicates the ID feature.  Instead of using the "on" mode to indicate
2975  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2976  *  use "link_up" mode.  The LEDs will still ID on request if there is no
2977  *  link based on logic in e1000_led_[on|off]_pchlan().
2978  **/
e1000_id_led_init_pchlan(struct e1000_hw * hw)2979 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2980 {
2981 	struct e1000_mac_info *mac = &hw->mac;
2982 	s32 ret_val;
2983 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2984 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2985 	u16 data, i, temp, shift;
2986 
2987 	/* Get default ID LED modes */
2988 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2989 	if (ret_val)
2990 		goto out;
2991 
2992 	mac->ledctl_default = er32(LEDCTL);
2993 	mac->ledctl_mode1 = mac->ledctl_default;
2994 	mac->ledctl_mode2 = mac->ledctl_default;
2995 
2996 	for (i = 0; i < 4; i++) {
2997 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2998 		shift = (i * 5);
2999 		switch (temp) {
3000 		case ID_LED_ON1_DEF2:
3001 		case ID_LED_ON1_ON2:
3002 		case ID_LED_ON1_OFF2:
3003 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3004 			mac->ledctl_mode1 |= (ledctl_on << shift);
3005 			break;
3006 		case ID_LED_OFF1_DEF2:
3007 		case ID_LED_OFF1_ON2:
3008 		case ID_LED_OFF1_OFF2:
3009 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3010 			mac->ledctl_mode1 |= (ledctl_off << shift);
3011 			break;
3012 		default:
3013 			/* Do nothing */
3014 			break;
3015 		}
3016 		switch (temp) {
3017 		case ID_LED_DEF1_ON2:
3018 		case ID_LED_ON1_ON2:
3019 		case ID_LED_OFF1_ON2:
3020 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3021 			mac->ledctl_mode2 |= (ledctl_on << shift);
3022 			break;
3023 		case ID_LED_DEF1_OFF2:
3024 		case ID_LED_ON1_OFF2:
3025 		case ID_LED_OFF1_OFF2:
3026 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3027 			mac->ledctl_mode2 |= (ledctl_off << shift);
3028 			break;
3029 		default:
3030 			/* Do nothing */
3031 			break;
3032 		}
3033 	}
3034 
3035 out:
3036 	return ret_val;
3037 }
3038 
3039 /**
3040  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3041  *  @hw: pointer to the HW structure
3042  *
3043  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3044  *  register, so the the bus width is hard coded.
3045  **/
e1000_get_bus_info_ich8lan(struct e1000_hw * hw)3046 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3047 {
3048 	struct e1000_bus_info *bus = &hw->bus;
3049 	s32 ret_val;
3050 
3051 	ret_val = e1000e_get_bus_info_pcie(hw);
3052 
3053 	/*
3054 	 * ICH devices are "PCI Express"-ish.  They have
3055 	 * a configuration space, but do not contain
3056 	 * PCI Express Capability registers, so bus width
3057 	 * must be hardcoded.
3058 	 */
3059 	if (bus->width == e1000_bus_width_unknown)
3060 		bus->width = e1000_bus_width_pcie_x1;
3061 
3062 	return ret_val;
3063 }
3064 
3065 /**
3066  *  e1000_reset_hw_ich8lan - Reset the hardware
3067  *  @hw: pointer to the HW structure
3068  *
3069  *  Does a full reset of the hardware which includes a reset of the PHY and
3070  *  MAC.
3071  **/
e1000_reset_hw_ich8lan(struct e1000_hw * hw)3072 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3073 {
3074 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3075 	u16 reg;
3076 	u32 ctrl, kab;
3077 	s32 ret_val;
3078 
3079 	/*
3080 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
3081 	 * on the last TLP read/write transaction when MAC is reset.
3082 	 */
3083 	ret_val = e1000e_disable_pcie_master(hw);
3084 	if (ret_val)
3085 		e_dbg("PCI-E Master disable polling has failed.\n");
3086 
3087 	e_dbg("Masking off all interrupts\n");
3088 	ew32(IMC, 0xffffffff);
3089 
3090 	/*
3091 	 * Disable the Transmit and Receive units.  Then delay to allow
3092 	 * any pending transactions to complete before we hit the MAC
3093 	 * with the global reset.
3094 	 */
3095 	ew32(RCTL, 0);
3096 	ew32(TCTL, E1000_TCTL_PSP);
3097 	e1e_flush();
3098 
3099 	usleep_range(10000, 20000);
3100 
3101 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
3102 	if (hw->mac.type == e1000_ich8lan) {
3103 		/* Set Tx and Rx buffer allocation to 8k apiece. */
3104 		ew32(PBA, E1000_PBA_8K);
3105 		/* Set Packet Buffer Size to 16k. */
3106 		ew32(PBS, E1000_PBS_16K);
3107 	}
3108 
3109 	if (hw->mac.type == e1000_pchlan) {
3110 		/* Save the NVM K1 bit setting*/
3111 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
3112 		if (ret_val)
3113 			return ret_val;
3114 
3115 		if (reg & E1000_NVM_K1_ENABLE)
3116 			dev_spec->nvm_k1_enabled = true;
3117 		else
3118 			dev_spec->nvm_k1_enabled = false;
3119 	}
3120 
3121 	ctrl = er32(CTRL);
3122 
3123 	if (!e1000_check_reset_block(hw)) {
3124 		/*
3125 		 * Full-chip reset requires MAC and PHY reset at the same
3126 		 * time to make sure the interface between MAC and the
3127 		 * external PHY is reset.
3128 		 */
3129 		ctrl |= E1000_CTRL_PHY_RST;
3130 
3131 		/*
3132 		 * Gate automatic PHY configuration by hardware on
3133 		 * non-managed 82579
3134 		 */
3135 		if ((hw->mac.type == e1000_pch2lan) &&
3136 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3137 			e1000_gate_hw_phy_config_ich8lan(hw, true);
3138 	}
3139 	ret_val = e1000_acquire_swflag_ich8lan(hw);
3140 	e_dbg("Issuing a global reset to ich8lan\n");
3141 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
3142 	/* cannot issue a flush here because it hangs the hardware */
3143 	msleep(20);
3144 
3145 	if (!ret_val)
3146 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3147 
3148 	if (ctrl & E1000_CTRL_PHY_RST) {
3149 		ret_val = hw->phy.ops.get_cfg_done(hw);
3150 		if (ret_val)
3151 			goto out;
3152 
3153 		ret_val = e1000_post_phy_reset_ich8lan(hw);
3154 		if (ret_val)
3155 			goto out;
3156 	}
3157 
3158 	/*
3159 	 * For PCH, this write will make sure that any noise
3160 	 * will be detected as a CRC error and be dropped rather than show up
3161 	 * as a bad packet to the DMA engine.
3162 	 */
3163 	if (hw->mac.type == e1000_pchlan)
3164 		ew32(CRC_OFFSET, 0x65656565);
3165 
3166 	ew32(IMC, 0xffffffff);
3167 	er32(ICR);
3168 
3169 	kab = er32(KABGTXD);
3170 	kab |= E1000_KABGTXD_BGSQLBIAS;
3171 	ew32(KABGTXD, kab);
3172 
3173 out:
3174 	return ret_val;
3175 }
3176 
3177 /**
3178  *  e1000_init_hw_ich8lan - Initialize the hardware
3179  *  @hw: pointer to the HW structure
3180  *
3181  *  Prepares the hardware for transmit and receive by doing the following:
3182  *   - initialize hardware bits
3183  *   - initialize LED identification
3184  *   - setup receive address registers
3185  *   - setup flow control
3186  *   - setup transmit descriptors
3187  *   - clear statistics
3188  **/
e1000_init_hw_ich8lan(struct e1000_hw * hw)3189 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3190 {
3191 	struct e1000_mac_info *mac = &hw->mac;
3192 	u32 ctrl_ext, txdctl, snoop;
3193 	s32 ret_val;
3194 	u16 i;
3195 
3196 	e1000_initialize_hw_bits_ich8lan(hw);
3197 
3198 	/* Initialize identification LED */
3199 	ret_val = mac->ops.id_led_init(hw);
3200 	if (ret_val)
3201 		e_dbg("Error initializing identification LED\n");
3202 		/* This is not fatal and we should not stop init due to this */
3203 
3204 	/* Setup the receive address. */
3205 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3206 
3207 	/* Zero out the Multicast HASH table */
3208 	e_dbg("Zeroing the MTA\n");
3209 	for (i = 0; i < mac->mta_reg_count; i++)
3210 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3211 
3212 	/*
3213 	 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3214 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
3215 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3216 	 */
3217 	if (hw->phy.type == e1000_phy_82578) {
3218 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3219 		i &= ~BM_WUC_HOST_WU_BIT;
3220 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3221 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
3222 		if (ret_val)
3223 			return ret_val;
3224 	}
3225 
3226 	/* Setup link and flow control */
3227 	ret_val = e1000_setup_link_ich8lan(hw);
3228 
3229 	/* Set the transmit descriptor write-back policy for both queues */
3230 	txdctl = er32(TXDCTL(0));
3231 	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3232 		 E1000_TXDCTL_FULL_TX_DESC_WB;
3233 	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3234 		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3235 	ew32(TXDCTL(0), txdctl);
3236 	txdctl = er32(TXDCTL(1));
3237 	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3238 		 E1000_TXDCTL_FULL_TX_DESC_WB;
3239 	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3240 		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3241 	ew32(TXDCTL(1), txdctl);
3242 
3243 	/*
3244 	 * ICH8 has opposite polarity of no_snoop bits.
3245 	 * By default, we should use snoop behavior.
3246 	 */
3247 	if (mac->type == e1000_ich8lan)
3248 		snoop = PCIE_ICH8_SNOOP_ALL;
3249 	else
3250 		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3251 	e1000e_set_pcie_no_snoop(hw, snoop);
3252 
3253 	ctrl_ext = er32(CTRL_EXT);
3254 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3255 	ew32(CTRL_EXT, ctrl_ext);
3256 
3257 	/*
3258 	 * Clear all of the statistics registers (clear on read).  It is
3259 	 * important that we do this after we have tried to establish link
3260 	 * because the symbol error count will increment wildly if there
3261 	 * is no link.
3262 	 */
3263 	e1000_clear_hw_cntrs_ich8lan(hw);
3264 
3265 	return 0;
3266 }
3267 /**
3268  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3269  *  @hw: pointer to the HW structure
3270  *
3271  *  Sets/Clears required hardware bits necessary for correctly setting up the
3272  *  hardware for transmit and receive.
3273  **/
e1000_initialize_hw_bits_ich8lan(struct e1000_hw * hw)3274 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3275 {
3276 	u32 reg;
3277 
3278 	/* Extended Device Control */
3279 	reg = er32(CTRL_EXT);
3280 	reg |= (1 << 22);
3281 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
3282 	if (hw->mac.type >= e1000_pchlan)
3283 		reg |= E1000_CTRL_EXT_PHYPDEN;
3284 	ew32(CTRL_EXT, reg);
3285 
3286 	/* Transmit Descriptor Control 0 */
3287 	reg = er32(TXDCTL(0));
3288 	reg |= (1 << 22);
3289 	ew32(TXDCTL(0), reg);
3290 
3291 	/* Transmit Descriptor Control 1 */
3292 	reg = er32(TXDCTL(1));
3293 	reg |= (1 << 22);
3294 	ew32(TXDCTL(1), reg);
3295 
3296 	/* Transmit Arbitration Control 0 */
3297 	reg = er32(TARC(0));
3298 	if (hw->mac.type == e1000_ich8lan)
3299 		reg |= (1 << 28) | (1 << 29);
3300 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3301 	ew32(TARC(0), reg);
3302 
3303 	/* Transmit Arbitration Control 1 */
3304 	reg = er32(TARC(1));
3305 	if (er32(TCTL) & E1000_TCTL_MULR)
3306 		reg &= ~(1 << 28);
3307 	else
3308 		reg |= (1 << 28);
3309 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
3310 	ew32(TARC(1), reg);
3311 
3312 	/* Device Status */
3313 	if (hw->mac.type == e1000_ich8lan) {
3314 		reg = er32(STATUS);
3315 		reg &= ~(1 << 31);
3316 		ew32(STATUS, reg);
3317 	}
3318 
3319 	/*
3320 	 * work-around descriptor data corruption issue during nfs v2 udp
3321 	 * traffic, just disable the nfs filtering capability
3322 	 */
3323 	reg = er32(RFCTL);
3324 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3325 	ew32(RFCTL, reg);
3326 }
3327 
3328 /**
3329  *  e1000_setup_link_ich8lan - Setup flow control and link settings
3330  *  @hw: pointer to the HW structure
3331  *
3332  *  Determines which flow control settings to use, then configures flow
3333  *  control.  Calls the appropriate media-specific link configuration
3334  *  function.  Assuming the adapter has a valid link partner, a valid link
3335  *  should be established.  Assumes the hardware has previously been reset
3336  *  and the transmitter and receiver are not enabled.
3337  **/
e1000_setup_link_ich8lan(struct e1000_hw * hw)3338 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3339 {
3340 	s32 ret_val;
3341 
3342 	if (e1000_check_reset_block(hw))
3343 		return 0;
3344 
3345 	/*
3346 	 * ICH parts do not have a word in the NVM to determine
3347 	 * the default flow control setting, so we explicitly
3348 	 * set it to full.
3349 	 */
3350 	if (hw->fc.requested_mode == e1000_fc_default) {
3351 		/* Workaround h/w hang when Tx flow control enabled */
3352 		if (hw->mac.type == e1000_pchlan)
3353 			hw->fc.requested_mode = e1000_fc_rx_pause;
3354 		else
3355 			hw->fc.requested_mode = e1000_fc_full;
3356 	}
3357 
3358 	/*
3359 	 * Save off the requested flow control mode for use later.  Depending
3360 	 * on the link partner's capabilities, we may or may not use this mode.
3361 	 */
3362 	hw->fc.current_mode = hw->fc.requested_mode;
3363 
3364 	e_dbg("After fix-ups FlowControl is now = %x\n",
3365 		hw->fc.current_mode);
3366 
3367 	/* Continue to configure the copper link. */
3368 	ret_val = e1000_setup_copper_link_ich8lan(hw);
3369 	if (ret_val)
3370 		return ret_val;
3371 
3372 	ew32(FCTTV, hw->fc.pause_time);
3373 	if ((hw->phy.type == e1000_phy_82578) ||
3374 	    (hw->phy.type == e1000_phy_82579) ||
3375 	    (hw->phy.type == e1000_phy_82577)) {
3376 		ew32(FCRTV_PCH, hw->fc.refresh_time);
3377 
3378 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3379 				   hw->fc.pause_time);
3380 		if (ret_val)
3381 			return ret_val;
3382 	}
3383 
3384 	return e1000e_set_fc_watermarks(hw);
3385 }
3386 
3387 /**
3388  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3389  *  @hw: pointer to the HW structure
3390  *
3391  *  Configures the kumeran interface to the PHY to wait the appropriate time
3392  *  when polling the PHY, then call the generic setup_copper_link to finish
3393  *  configuring the copper link.
3394  **/
e1000_setup_copper_link_ich8lan(struct e1000_hw * hw)3395 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3396 {
3397 	u32 ctrl;
3398 	s32 ret_val;
3399 	u16 reg_data;
3400 
3401 	ctrl = er32(CTRL);
3402 	ctrl |= E1000_CTRL_SLU;
3403 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3404 	ew32(CTRL, ctrl);
3405 
3406 	/*
3407 	 * Set the mac to wait the maximum time between each iteration
3408 	 * and increase the max iterations when polling the phy;
3409 	 * this fixes erroneous timeouts at 10Mbps.
3410 	 */
3411 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3412 	if (ret_val)
3413 		return ret_val;
3414 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3415 	                               &reg_data);
3416 	if (ret_val)
3417 		return ret_val;
3418 	reg_data |= 0x3F;
3419 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3420 	                                reg_data);
3421 	if (ret_val)
3422 		return ret_val;
3423 
3424 	switch (hw->phy.type) {
3425 	case e1000_phy_igp_3:
3426 		ret_val = e1000e_copper_link_setup_igp(hw);
3427 		if (ret_val)
3428 			return ret_val;
3429 		break;
3430 	case e1000_phy_bm:
3431 	case e1000_phy_82578:
3432 		ret_val = e1000e_copper_link_setup_m88(hw);
3433 		if (ret_val)
3434 			return ret_val;
3435 		break;
3436 	case e1000_phy_82577:
3437 	case e1000_phy_82579:
3438 		ret_val = e1000_copper_link_setup_82577(hw);
3439 		if (ret_val)
3440 			return ret_val;
3441 		break;
3442 	case e1000_phy_ife:
3443 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3444 		if (ret_val)
3445 			return ret_val;
3446 
3447 		reg_data &= ~IFE_PMC_AUTO_MDIX;
3448 
3449 		switch (hw->phy.mdix) {
3450 		case 1:
3451 			reg_data &= ~IFE_PMC_FORCE_MDIX;
3452 			break;
3453 		case 2:
3454 			reg_data |= IFE_PMC_FORCE_MDIX;
3455 			break;
3456 		case 0:
3457 		default:
3458 			reg_data |= IFE_PMC_AUTO_MDIX;
3459 			break;
3460 		}
3461 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3462 		if (ret_val)
3463 			return ret_val;
3464 		break;
3465 	default:
3466 		break;
3467 	}
3468 	return e1000e_setup_copper_link(hw);
3469 }
3470 
3471 /**
3472  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3473  *  @hw: pointer to the HW structure
3474  *  @speed: pointer to store current link speed
3475  *  @duplex: pointer to store the current link duplex
3476  *
3477  *  Calls the generic get_speed_and_duplex to retrieve the current link
3478  *  information and then calls the Kumeran lock loss workaround for links at
3479  *  gigabit speeds.
3480  **/
e1000_get_link_up_info_ich8lan(struct e1000_hw * hw,u16 * speed,u16 * duplex)3481 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3482 					  u16 *duplex)
3483 {
3484 	s32 ret_val;
3485 
3486 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3487 	if (ret_val)
3488 		return ret_val;
3489 
3490 	if ((hw->mac.type == e1000_ich8lan) &&
3491 	    (hw->phy.type == e1000_phy_igp_3) &&
3492 	    (*speed == SPEED_1000)) {
3493 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3494 	}
3495 
3496 	return ret_val;
3497 }
3498 
3499 /**
3500  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3501  *  @hw: pointer to the HW structure
3502  *
3503  *  Work-around for 82566 Kumeran PCS lock loss:
3504  *  On link status change (i.e. PCI reset, speed change) and link is up and
3505  *  speed is gigabit-
3506  *    0) if workaround is optionally disabled do nothing
3507  *    1) wait 1ms for Kumeran link to come up
3508  *    2) check Kumeran Diagnostic register PCS lock loss bit
3509  *    3) if not set the link is locked (all is good), otherwise...
3510  *    4) reset the PHY
3511  *    5) repeat up to 10 times
3512  *  Note: this is only called for IGP3 copper when speed is 1gb.
3513  **/
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw * hw)3514 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3515 {
3516 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3517 	u32 phy_ctrl;
3518 	s32 ret_val;
3519 	u16 i, data;
3520 	bool link;
3521 
3522 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3523 		return 0;
3524 
3525 	/*
3526 	 * Make sure link is up before proceeding.  If not just return.
3527 	 * Attempting this while link is negotiating fouled up link
3528 	 * stability
3529 	 */
3530 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3531 	if (!link)
3532 		return 0;
3533 
3534 	for (i = 0; i < 10; i++) {
3535 		/* read once to clear */
3536 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3537 		if (ret_val)
3538 			return ret_val;
3539 		/* and again to get new status */
3540 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3541 		if (ret_val)
3542 			return ret_val;
3543 
3544 		/* check for PCS lock */
3545 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3546 			return 0;
3547 
3548 		/* Issue PHY reset */
3549 		e1000_phy_hw_reset(hw);
3550 		mdelay(5);
3551 	}
3552 	/* Disable GigE link negotiation */
3553 	phy_ctrl = er32(PHY_CTRL);
3554 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3555 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3556 	ew32(PHY_CTRL, phy_ctrl);
3557 
3558 	/*
3559 	 * Call gig speed drop workaround on Gig disable before accessing
3560 	 * any PHY registers
3561 	 */
3562 	e1000e_gig_downshift_workaround_ich8lan(hw);
3563 
3564 	/* unable to acquire PCS lock */
3565 	return -E1000_ERR_PHY;
3566 }
3567 
3568 /**
3569  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3570  *  @hw: pointer to the HW structure
3571  *  @state: boolean value used to set the current Kumeran workaround state
3572  *
3573  *  If ICH8, set the current Kumeran workaround state (enabled - true
3574  *  /disabled - false).
3575  **/
e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw * hw,bool state)3576 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3577 						 bool state)
3578 {
3579 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3580 
3581 	if (hw->mac.type != e1000_ich8lan) {
3582 		e_dbg("Workaround applies to ICH8 only.\n");
3583 		return;
3584 	}
3585 
3586 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
3587 }
3588 
3589 /**
3590  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3591  *  @hw: pointer to the HW structure
3592  *
3593  *  Workaround for 82566 power-down on D3 entry:
3594  *    1) disable gigabit link
3595  *    2) write VR power-down enable
3596  *    3) read it back
3597  *  Continue if successful, else issue LCD reset and repeat
3598  **/
e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw * hw)3599 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3600 {
3601 	u32 reg;
3602 	u16 data;
3603 	u8  retry = 0;
3604 
3605 	if (hw->phy.type != e1000_phy_igp_3)
3606 		return;
3607 
3608 	/* Try the workaround twice (if needed) */
3609 	do {
3610 		/* Disable link */
3611 		reg = er32(PHY_CTRL);
3612 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3613 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3614 		ew32(PHY_CTRL, reg);
3615 
3616 		/*
3617 		 * Call gig speed drop workaround on Gig disable before
3618 		 * accessing any PHY registers
3619 		 */
3620 		if (hw->mac.type == e1000_ich8lan)
3621 			e1000e_gig_downshift_workaround_ich8lan(hw);
3622 
3623 		/* Write VR power-down enable */
3624 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
3625 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3626 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3627 
3628 		/* Read it back and test */
3629 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
3630 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3631 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3632 			break;
3633 
3634 		/* Issue PHY reset and repeat at most one more time */
3635 		reg = er32(CTRL);
3636 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3637 		retry++;
3638 	} while (retry);
3639 }
3640 
3641 /**
3642  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3643  *  @hw: pointer to the HW structure
3644  *
3645  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3646  *  LPLU, Gig disable, MDIC PHY reset):
3647  *    1) Set Kumeran Near-end loopback
3648  *    2) Clear Kumeran Near-end loopback
3649  *  Should only be called for ICH8[m] devices with any 1G Phy.
3650  **/
e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw * hw)3651 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3652 {
3653 	s32 ret_val;
3654 	u16 reg_data;
3655 
3656 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
3657 		return;
3658 
3659 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3660 				      &reg_data);
3661 	if (ret_val)
3662 		return;
3663 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3664 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3665 				       reg_data);
3666 	if (ret_val)
3667 		return;
3668 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3669 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3670 				       reg_data);
3671 }
3672 
3673 /**
3674  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
3675  *  @hw: pointer to the HW structure
3676  *
3677  *  During S0 to Sx transition, it is possible the link remains at gig
3678  *  instead of negotiating to a lower speed.  Before going to Sx, set
3679  *  'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3680  *  to a lower speed.  For PCH and newer parts, the OEM bits PHY register
3681  *  (LED, GbE disable and LPLU configurations) also needs to be written.
3682  **/
e1000_suspend_workarounds_ich8lan(struct e1000_hw * hw)3683 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
3684 {
3685 	u32 phy_ctrl;
3686 	s32 ret_val;
3687 
3688 	phy_ctrl = er32(PHY_CTRL);
3689 	phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_GBE_DISABLE;
3690 	ew32(PHY_CTRL, phy_ctrl);
3691 
3692 	if (hw->mac.type == e1000_ich8lan)
3693 		e1000e_gig_downshift_workaround_ich8lan(hw);
3694 
3695 	if (hw->mac.type >= e1000_pchlan) {
3696 		e1000_oem_bits_config_ich8lan(hw, false);
3697 		e1000_phy_hw_reset_ich8lan(hw);
3698 		ret_val = hw->phy.ops.acquire(hw);
3699 		if (ret_val)
3700 			return;
3701 		e1000_write_smbus_addr(hw);
3702 		hw->phy.ops.release(hw);
3703 	}
3704 }
3705 
3706 /**
3707  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
3708  *  @hw: pointer to the HW structure
3709  *
3710  *  During Sx to S0 transitions on non-managed devices or managed devices
3711  *  on which PHY resets are not blocked, if the PHY registers cannot be
3712  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
3713  *  the PHY.
3714  **/
e1000_resume_workarounds_pchlan(struct e1000_hw * hw)3715 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
3716 {
3717 	u32 fwsm;
3718 
3719 	if (hw->mac.type != e1000_pch2lan)
3720 		return;
3721 
3722 	fwsm = er32(FWSM);
3723 	if (!(fwsm & E1000_ICH_FWSM_FW_VALID) || !e1000_check_reset_block(hw)) {
3724 		u16 phy_id1, phy_id2;
3725 		s32 ret_val;
3726 
3727 		ret_val = hw->phy.ops.acquire(hw);
3728 		if (ret_val) {
3729 			e_dbg("Failed to acquire PHY semaphore in resume\n");
3730 			return;
3731 		}
3732 
3733 		/* Test access to the PHY registers by reading the ID regs */
3734 		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_id1);
3735 		if (ret_val)
3736 			goto release;
3737 		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_id2);
3738 		if (ret_val)
3739 			goto release;
3740 
3741 		if (hw->phy.id == ((u32)(phy_id1 << 16) |
3742 				   (u32)(phy_id2 & PHY_REVISION_MASK)))
3743 			goto release;
3744 
3745 		e1000_toggle_lanphypc_value_ich8lan(hw);
3746 
3747 		hw->phy.ops.release(hw);
3748 		msleep(50);
3749 		e1000_phy_hw_reset(hw);
3750 		msleep(50);
3751 		return;
3752 	}
3753 
3754 release:
3755 	hw->phy.ops.release(hw);
3756 
3757 	return;
3758 }
3759 
3760 /**
3761  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
3762  *  @hw: pointer to the HW structure
3763  *
3764  *  Return the LED back to the default configuration.
3765  **/
e1000_cleanup_led_ich8lan(struct e1000_hw * hw)3766 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3767 {
3768 	if (hw->phy.type == e1000_phy_ife)
3769 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3770 
3771 	ew32(LEDCTL, hw->mac.ledctl_default);
3772 	return 0;
3773 }
3774 
3775 /**
3776  *  e1000_led_on_ich8lan - Turn LEDs on
3777  *  @hw: pointer to the HW structure
3778  *
3779  *  Turn on the LEDs.
3780  **/
e1000_led_on_ich8lan(struct e1000_hw * hw)3781 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3782 {
3783 	if (hw->phy.type == e1000_phy_ife)
3784 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3785 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3786 
3787 	ew32(LEDCTL, hw->mac.ledctl_mode2);
3788 	return 0;
3789 }
3790 
3791 /**
3792  *  e1000_led_off_ich8lan - Turn LEDs off
3793  *  @hw: pointer to the HW structure
3794  *
3795  *  Turn off the LEDs.
3796  **/
e1000_led_off_ich8lan(struct e1000_hw * hw)3797 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3798 {
3799 	if (hw->phy.type == e1000_phy_ife)
3800 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3801 				(IFE_PSCL_PROBE_MODE |
3802 				 IFE_PSCL_PROBE_LEDS_OFF));
3803 
3804 	ew32(LEDCTL, hw->mac.ledctl_mode1);
3805 	return 0;
3806 }
3807 
3808 /**
3809  *  e1000_setup_led_pchlan - Configures SW controllable LED
3810  *  @hw: pointer to the HW structure
3811  *
3812  *  This prepares the SW controllable LED for use.
3813  **/
e1000_setup_led_pchlan(struct e1000_hw * hw)3814 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3815 {
3816 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
3817 }
3818 
3819 /**
3820  *  e1000_cleanup_led_pchlan - Restore the default LED operation
3821  *  @hw: pointer to the HW structure
3822  *
3823  *  Return the LED back to the default configuration.
3824  **/
e1000_cleanup_led_pchlan(struct e1000_hw * hw)3825 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3826 {
3827 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
3828 }
3829 
3830 /**
3831  *  e1000_led_on_pchlan - Turn LEDs on
3832  *  @hw: pointer to the HW structure
3833  *
3834  *  Turn on the LEDs.
3835  **/
e1000_led_on_pchlan(struct e1000_hw * hw)3836 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3837 {
3838 	u16 data = (u16)hw->mac.ledctl_mode2;
3839 	u32 i, led;
3840 
3841 	/*
3842 	 * If no link, then turn LED on by setting the invert bit
3843 	 * for each LED that's mode is "link_up" in ledctl_mode2.
3844 	 */
3845 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
3846 		for (i = 0; i < 3; i++) {
3847 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3848 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
3849 			    E1000_LEDCTL_MODE_LINK_UP)
3850 				continue;
3851 			if (led & E1000_PHY_LED0_IVRT)
3852 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3853 			else
3854 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
3855 		}
3856 	}
3857 
3858 	return e1e_wphy(hw, HV_LED_CONFIG, data);
3859 }
3860 
3861 /**
3862  *  e1000_led_off_pchlan - Turn LEDs off
3863  *  @hw: pointer to the HW structure
3864  *
3865  *  Turn off the LEDs.
3866  **/
e1000_led_off_pchlan(struct e1000_hw * hw)3867 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3868 {
3869 	u16 data = (u16)hw->mac.ledctl_mode1;
3870 	u32 i, led;
3871 
3872 	/*
3873 	 * If no link, then turn LED off by clearing the invert bit
3874 	 * for each LED that's mode is "link_up" in ledctl_mode1.
3875 	 */
3876 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
3877 		for (i = 0; i < 3; i++) {
3878 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3879 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
3880 			    E1000_LEDCTL_MODE_LINK_UP)
3881 				continue;
3882 			if (led & E1000_PHY_LED0_IVRT)
3883 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3884 			else
3885 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
3886 		}
3887 	}
3888 
3889 	return e1e_wphy(hw, HV_LED_CONFIG, data);
3890 }
3891 
3892 /**
3893  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
3894  *  @hw: pointer to the HW structure
3895  *
3896  *  Read appropriate register for the config done bit for completion status
3897  *  and configure the PHY through s/w for EEPROM-less parts.
3898  *
3899  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
3900  *  config done bit, so only an error is logged and continues.  If we were
3901  *  to return with error, EEPROM-less silicon would not be able to be reset
3902  *  or change link.
3903  **/
e1000_get_cfg_done_ich8lan(struct e1000_hw * hw)3904 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3905 {
3906 	s32 ret_val = 0;
3907 	u32 bank = 0;
3908 	u32 status;
3909 
3910 	e1000e_get_cfg_done(hw);
3911 
3912 	/* Wait for indication from h/w that it has completed basic config */
3913 	if (hw->mac.type >= e1000_ich10lan) {
3914 		e1000_lan_init_done_ich8lan(hw);
3915 	} else {
3916 		ret_val = e1000e_get_auto_rd_done(hw);
3917 		if (ret_val) {
3918 			/*
3919 			 * When auto config read does not complete, do not
3920 			 * return with an error. This can happen in situations
3921 			 * where there is no eeprom and prevents getting link.
3922 			 */
3923 			e_dbg("Auto Read Done did not complete\n");
3924 			ret_val = 0;
3925 		}
3926 	}
3927 
3928 	/* Clear PHY Reset Asserted bit */
3929 	status = er32(STATUS);
3930 	if (status & E1000_STATUS_PHYRA)
3931 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3932 	else
3933 		e_dbg("PHY Reset Asserted not set - needs delay\n");
3934 
3935 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
3936 	if (hw->mac.type <= e1000_ich9lan) {
3937 		if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3938 		    (hw->phy.type == e1000_phy_igp_3)) {
3939 			e1000e_phy_init_script_igp3(hw);
3940 		}
3941 	} else {
3942 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3943 			/* Maybe we should do a basic PHY config */
3944 			e_dbg("EEPROM not present\n");
3945 			ret_val = -E1000_ERR_CONFIG;
3946 		}
3947 	}
3948 
3949 	return ret_val;
3950 }
3951 
3952 /**
3953  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3954  * @hw: pointer to the HW structure
3955  *
3956  * In the case of a PHY power down to save power, or to turn off link during a
3957  * driver unload, or wake on lan is not enabled, remove the link.
3958  **/
e1000_power_down_phy_copper_ich8lan(struct e1000_hw * hw)3959 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
3960 {
3961 	/* If the management interface is not enabled, then power down */
3962 	if (!(hw->mac.ops.check_mng_mode(hw) ||
3963 	      hw->phy.ops.check_reset_block(hw)))
3964 		e1000_power_down_phy_copper(hw);
3965 }
3966 
3967 /**
3968  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3969  *  @hw: pointer to the HW structure
3970  *
3971  *  Clears hardware counters specific to the silicon family and calls
3972  *  clear_hw_cntrs_generic to clear all general purpose counters.
3973  **/
e1000_clear_hw_cntrs_ich8lan(struct e1000_hw * hw)3974 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3975 {
3976 	u16 phy_data;
3977 	s32 ret_val;
3978 
3979 	e1000e_clear_hw_cntrs_base(hw);
3980 
3981 	er32(ALGNERRC);
3982 	er32(RXERRC);
3983 	er32(TNCRS);
3984 	er32(CEXTERR);
3985 	er32(TSCTC);
3986 	er32(TSCTFC);
3987 
3988 	er32(MGTPRC);
3989 	er32(MGTPDC);
3990 	er32(MGTPTC);
3991 
3992 	er32(IAC);
3993 	er32(ICRXOC);
3994 
3995 	/* Clear PHY statistics registers */
3996 	if ((hw->phy.type == e1000_phy_82578) ||
3997 	    (hw->phy.type == e1000_phy_82579) ||
3998 	    (hw->phy.type == e1000_phy_82577)) {
3999 		ret_val = hw->phy.ops.acquire(hw);
4000 		if (ret_val)
4001 			return;
4002 		ret_val = hw->phy.ops.set_page(hw,
4003 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4004 		if (ret_val)
4005 			goto release;
4006 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4007 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4008 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4009 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4010 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4011 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4012 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4013 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4014 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4015 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4016 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4017 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4018 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4019 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4020 release:
4021 		hw->phy.ops.release(hw);
4022 	}
4023 }
4024 
4025 static const struct e1000_mac_operations ich8_mac_ops = {
4026 	.id_led_init		= e1000e_id_led_init,
4027 	/* check_mng_mode dependent on mac type */
4028 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
4029 	/* cleanup_led dependent on mac type */
4030 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
4031 	.get_bus_info		= e1000_get_bus_info_ich8lan,
4032 	.set_lan_id		= e1000_set_lan_id_single_port,
4033 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
4034 	/* led_on dependent on mac type */
4035 	/* led_off dependent on mac type */
4036 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
4037 	.reset_hw		= e1000_reset_hw_ich8lan,
4038 	.init_hw		= e1000_init_hw_ich8lan,
4039 	.setup_link		= e1000_setup_link_ich8lan,
4040 	.setup_physical_interface= e1000_setup_copper_link_ich8lan,
4041 	/* id_led_init dependent on mac type */
4042 };
4043 
4044 static const struct e1000_phy_operations ich8_phy_ops = {
4045 	.acquire		= e1000_acquire_swflag_ich8lan,
4046 	.check_reset_block	= e1000_check_reset_block_ich8lan,
4047 	.commit			= NULL,
4048 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
4049 	.get_cable_length	= e1000e_get_cable_length_igp_2,
4050 	.read_reg		= e1000e_read_phy_reg_igp,
4051 	.release		= e1000_release_swflag_ich8lan,
4052 	.reset			= e1000_phy_hw_reset_ich8lan,
4053 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
4054 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
4055 	.write_reg		= e1000e_write_phy_reg_igp,
4056 };
4057 
4058 static const struct e1000_nvm_operations ich8_nvm_ops = {
4059 	.acquire		= e1000_acquire_nvm_ich8lan,
4060 	.read		 	= e1000_read_nvm_ich8lan,
4061 	.release		= e1000_release_nvm_ich8lan,
4062 	.update			= e1000_update_nvm_checksum_ich8lan,
4063 	.valid_led_default	= e1000_valid_led_default_ich8lan,
4064 	.validate		= e1000_validate_nvm_checksum_ich8lan,
4065 	.write			= e1000_write_nvm_ich8lan,
4066 };
4067 
4068 const struct e1000_info e1000_ich8_info = {
4069 	.mac			= e1000_ich8lan,
4070 	.flags			= FLAG_HAS_WOL
4071 				  | FLAG_IS_ICH
4072 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4073 				  | FLAG_HAS_AMT
4074 				  | FLAG_HAS_FLASH
4075 				  | FLAG_APME_IN_WUC,
4076 	.pba			= 8,
4077 	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
4078 	.get_variants		= e1000_get_variants_ich8lan,
4079 	.mac_ops		= &ich8_mac_ops,
4080 	.phy_ops		= &ich8_phy_ops,
4081 	.nvm_ops		= &ich8_nvm_ops,
4082 };
4083 
4084 const struct e1000_info e1000_ich9_info = {
4085 	.mac			= e1000_ich9lan,
4086 	.flags			= FLAG_HAS_JUMBO_FRAMES
4087 				  | FLAG_IS_ICH
4088 				  | FLAG_HAS_WOL
4089 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4090 				  | FLAG_HAS_AMT
4091 				  | FLAG_HAS_ERT
4092 				  | FLAG_HAS_FLASH
4093 				  | FLAG_APME_IN_WUC,
4094 	.pba			= 10,
4095 	.max_hw_frame_size	= DEFAULT_JUMBO,
4096 	.get_variants		= e1000_get_variants_ich8lan,
4097 	.mac_ops		= &ich8_mac_ops,
4098 	.phy_ops		= &ich8_phy_ops,
4099 	.nvm_ops		= &ich8_nvm_ops,
4100 };
4101 
4102 const struct e1000_info e1000_ich10_info = {
4103 	.mac			= e1000_ich10lan,
4104 	.flags			= FLAG_HAS_JUMBO_FRAMES
4105 				  | FLAG_IS_ICH
4106 				  | FLAG_HAS_WOL
4107 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4108 				  | FLAG_HAS_AMT
4109 				  | FLAG_HAS_ERT
4110 				  | FLAG_HAS_FLASH
4111 				  | FLAG_APME_IN_WUC,
4112 	.pba			= 10,
4113 	.max_hw_frame_size	= DEFAULT_JUMBO,
4114 	.get_variants		= e1000_get_variants_ich8lan,
4115 	.mac_ops		= &ich8_mac_ops,
4116 	.phy_ops		= &ich8_phy_ops,
4117 	.nvm_ops		= &ich8_nvm_ops,
4118 };
4119 
4120 const struct e1000_info e1000_pch_info = {
4121 	.mac			= e1000_pchlan,
4122 	.flags			= FLAG_IS_ICH
4123 				  | FLAG_HAS_WOL
4124 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4125 				  | FLAG_HAS_AMT
4126 				  | FLAG_HAS_FLASH
4127 				  | FLAG_HAS_JUMBO_FRAMES
4128 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4129 				  | FLAG_APME_IN_WUC,
4130 	.flags2			= FLAG2_HAS_PHY_STATS,
4131 	.pba			= 26,
4132 	.max_hw_frame_size	= 4096,
4133 	.get_variants		= e1000_get_variants_ich8lan,
4134 	.mac_ops		= &ich8_mac_ops,
4135 	.phy_ops		= &ich8_phy_ops,
4136 	.nvm_ops		= &ich8_nvm_ops,
4137 };
4138 
4139 const struct e1000_info e1000_pch2_info = {
4140 	.mac			= e1000_pch2lan,
4141 	.flags			= FLAG_IS_ICH
4142 				  | FLAG_HAS_WOL
4143 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4144 				  | FLAG_HAS_AMT
4145 				  | FLAG_HAS_FLASH
4146 				  | FLAG_HAS_JUMBO_FRAMES
4147 				  | FLAG_APME_IN_WUC,
4148 	.flags2			= FLAG2_HAS_PHY_STATS
4149 				  | FLAG2_HAS_EEE,
4150 	.pba			= 26,
4151 	.max_hw_frame_size	= DEFAULT_JUMBO,
4152 	.get_variants		= e1000_get_variants_ich8lan,
4153 	.mac_ops		= &ich8_mac_ops,
4154 	.phy_ops		= &ich8_phy_ops,
4155 	.nvm_ops		= &ich8_nvm_ops,
4156 };
4157