1 /* bnx2x_main.c: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2007-2011 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 * UDP CSUM errata workaround by Arik Gendelman
13 * Slowpath and fastpath rework by Vladislav Zolotarov
14 * Statistics and Link management by Yitchak Gertner
15 *
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h> /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if.h>
43 #include <linux/if_vlan.h>
44 #include <net/ip.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/checksum.h>
48 #include <net/ip6_checksum.h>
49 #include <linux/workqueue.h>
50 #include <linux/crc32.h>
51 #include <linux/crc32c.h>
52 #include <linux/prefetch.h>
53 #include <linux/zlib.h>
54 #include <linux/io.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_dcb.h"
63 #include "bnx2x_sp.h"
64
65 #include <linux/firmware.h>
66 #include "bnx2x_fw_file_hdr.h"
67 /* FW files */
68 #define FW_FILE_VERSION \
69 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
70 __stringify(BCM_5710_FW_MINOR_VERSION) "." \
71 __stringify(BCM_5710_FW_REVISION_VERSION) "." \
72 __stringify(BCM_5710_FW_ENGINEERING_VERSION)
73 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
74 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
76
77 /* Time in jiffies before concluding the transmitter is hung */
78 #define TX_TIMEOUT (5*HZ)
79
80 static char version[] __devinitdata =
81 "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
82 DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
83
84 MODULE_AUTHOR("Eliezer Tamir");
85 MODULE_DESCRIPTION("Broadcom NetXtreme II "
86 "BCM57710/57711/57711E/"
87 "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
88 "57840/57840_MF Driver");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(DRV_MODULE_VERSION);
91 MODULE_FIRMWARE(FW_FILE_NAME_E1);
92 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
93 MODULE_FIRMWARE(FW_FILE_NAME_E2);
94
95 static int multi_mode = 1;
96 module_param(multi_mode, int, 0);
97 MODULE_PARM_DESC(multi_mode, " Multi queue mode "
98 "(0 Disable; 1 Enable (default))");
99
100 int num_queues;
101 module_param(num_queues, int, 0);
102 MODULE_PARM_DESC(num_queues, " Number of queues for multi_mode=1"
103 " (default is as a number of CPUs)");
104
105 static int disable_tpa;
106 module_param(disable_tpa, int, 0);
107 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
108
109 #define INT_MODE_INTx 1
110 #define INT_MODE_MSI 2
111 static int int_mode;
112 module_param(int_mode, int, 0);
113 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
114 "(1 INT#x; 2 MSI)");
115
116 static int dropless_fc;
117 module_param(dropless_fc, int, 0);
118 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
119
120 static int mrrs = -1;
121 module_param(mrrs, int, 0);
122 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
123
124 static int debug;
125 module_param(debug, int, 0);
126 MODULE_PARM_DESC(debug, " Default debug msglevel");
127
128
129
130 struct workqueue_struct *bnx2x_wq;
131
132 enum bnx2x_board_type {
133 BCM57710 = 0,
134 BCM57711,
135 BCM57711E,
136 BCM57712,
137 BCM57712_MF,
138 BCM57800,
139 BCM57800_MF,
140 BCM57810,
141 BCM57810_MF,
142 BCM57840,
143 BCM57840_MF
144 };
145
146 /* indexed by board_type, above */
147 static struct {
148 char *name;
149 } board_info[] __devinitdata = {
150 { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
151 { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
152 { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
153 { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
154 { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
155 { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
156 { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
157 { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
158 { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
159 { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
160 { "Broadcom NetXtreme II BCM57840 10/20 Gigabit "
161 "Ethernet Multi Function"}
162 };
163
164 #ifndef PCI_DEVICE_ID_NX2_57710
165 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710
166 #endif
167 #ifndef PCI_DEVICE_ID_NX2_57711
168 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711
169 #endif
170 #ifndef PCI_DEVICE_ID_NX2_57711E
171 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E
172 #endif
173 #ifndef PCI_DEVICE_ID_NX2_57712
174 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712
175 #endif
176 #ifndef PCI_DEVICE_ID_NX2_57712_MF
177 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF
178 #endif
179 #ifndef PCI_DEVICE_ID_NX2_57800
180 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800
181 #endif
182 #ifndef PCI_DEVICE_ID_NX2_57800_MF
183 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF
184 #endif
185 #ifndef PCI_DEVICE_ID_NX2_57810
186 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810
187 #endif
188 #ifndef PCI_DEVICE_ID_NX2_57810_MF
189 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF
190 #endif
191 #ifndef PCI_DEVICE_ID_NX2_57840
192 #define PCI_DEVICE_ID_NX2_57840 CHIP_NUM_57840
193 #endif
194 #ifndef PCI_DEVICE_ID_NX2_57840_MF
195 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF
196 #endif
197 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
198 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
199 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
200 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
201 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
202 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
203 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
204 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
205 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
206 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
207 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840), BCM57840 },
208 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
209 { 0 }
210 };
211
212 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
213
214 /****************************************************************************
215 * General service functions
216 ****************************************************************************/
217
__storm_memset_dma_mapping(struct bnx2x * bp,u32 addr,dma_addr_t mapping)218 static inline void __storm_memset_dma_mapping(struct bnx2x *bp,
219 u32 addr, dma_addr_t mapping)
220 {
221 REG_WR(bp, addr, U64_LO(mapping));
222 REG_WR(bp, addr + 4, U64_HI(mapping));
223 }
224
storm_memset_spq_addr(struct bnx2x * bp,dma_addr_t mapping,u16 abs_fid)225 static inline void storm_memset_spq_addr(struct bnx2x *bp,
226 dma_addr_t mapping, u16 abs_fid)
227 {
228 u32 addr = XSEM_REG_FAST_MEMORY +
229 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
230
231 __storm_memset_dma_mapping(bp, addr, mapping);
232 }
233
storm_memset_vf_to_pf(struct bnx2x * bp,u16 abs_fid,u16 pf_id)234 static inline void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
235 u16 pf_id)
236 {
237 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
238 pf_id);
239 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
240 pf_id);
241 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
242 pf_id);
243 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
244 pf_id);
245 }
246
storm_memset_func_en(struct bnx2x * bp,u16 abs_fid,u8 enable)247 static inline void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
248 u8 enable)
249 {
250 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
251 enable);
252 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
253 enable);
254 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
255 enable);
256 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
257 enable);
258 }
259
storm_memset_eq_data(struct bnx2x * bp,struct event_ring_data * eq_data,u16 pfid)260 static inline void storm_memset_eq_data(struct bnx2x *bp,
261 struct event_ring_data *eq_data,
262 u16 pfid)
263 {
264 size_t size = sizeof(struct event_ring_data);
265
266 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
267
268 __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
269 }
270
storm_memset_eq_prod(struct bnx2x * bp,u16 eq_prod,u16 pfid)271 static inline void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
272 u16 pfid)
273 {
274 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
275 REG_WR16(bp, addr, eq_prod);
276 }
277
278 /* used only at init
279 * locking is done by mcp
280 */
bnx2x_reg_wr_ind(struct bnx2x * bp,u32 addr,u32 val)281 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
282 {
283 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
284 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
285 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
286 PCICFG_VENDOR_ID_OFFSET);
287 }
288
bnx2x_reg_rd_ind(struct bnx2x * bp,u32 addr)289 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
290 {
291 u32 val;
292
293 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
294 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
295 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
296 PCICFG_VENDOR_ID_OFFSET);
297
298 return val;
299 }
300
301 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]"
302 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]"
303 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]"
304 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]"
305 #define DMAE_DP_DST_NONE "dst_addr [none]"
306
bnx2x_dp_dmae(struct bnx2x * bp,struct dmae_command * dmae,int msglvl)307 static void bnx2x_dp_dmae(struct bnx2x *bp, struct dmae_command *dmae,
308 int msglvl)
309 {
310 u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
311
312 switch (dmae->opcode & DMAE_COMMAND_DST) {
313 case DMAE_CMD_DST_PCI:
314 if (src_type == DMAE_CMD_SRC_PCI)
315 DP(msglvl, "DMAE: opcode 0x%08x\n"
316 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
317 "comp_addr [%x:%08x], comp_val 0x%08x\n",
318 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
319 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
320 dmae->comp_addr_hi, dmae->comp_addr_lo,
321 dmae->comp_val);
322 else
323 DP(msglvl, "DMAE: opcode 0x%08x\n"
324 "src [%08x], len [%d*4], dst [%x:%08x]\n"
325 "comp_addr [%x:%08x], comp_val 0x%08x\n",
326 dmae->opcode, dmae->src_addr_lo >> 2,
327 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
328 dmae->comp_addr_hi, dmae->comp_addr_lo,
329 dmae->comp_val);
330 break;
331 case DMAE_CMD_DST_GRC:
332 if (src_type == DMAE_CMD_SRC_PCI)
333 DP(msglvl, "DMAE: opcode 0x%08x\n"
334 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
335 "comp_addr [%x:%08x], comp_val 0x%08x\n",
336 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
337 dmae->len, dmae->dst_addr_lo >> 2,
338 dmae->comp_addr_hi, dmae->comp_addr_lo,
339 dmae->comp_val);
340 else
341 DP(msglvl, "DMAE: opcode 0x%08x\n"
342 "src [%08x], len [%d*4], dst [%08x]\n"
343 "comp_addr [%x:%08x], comp_val 0x%08x\n",
344 dmae->opcode, dmae->src_addr_lo >> 2,
345 dmae->len, dmae->dst_addr_lo >> 2,
346 dmae->comp_addr_hi, dmae->comp_addr_lo,
347 dmae->comp_val);
348 break;
349 default:
350 if (src_type == DMAE_CMD_SRC_PCI)
351 DP(msglvl, "DMAE: opcode 0x%08x\n"
352 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n"
353 "comp_addr [%x:%08x] comp_val 0x%08x\n",
354 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
355 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
356 dmae->comp_val);
357 else
358 DP(msglvl, "DMAE: opcode 0x%08x\n"
359 "src_addr [%08x] len [%d * 4] dst_addr [none]\n"
360 "comp_addr [%x:%08x] comp_val 0x%08x\n",
361 dmae->opcode, dmae->src_addr_lo >> 2,
362 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
363 dmae->comp_val);
364 break;
365 }
366
367 }
368
369 /* copy command into DMAE command memory and set DMAE command go */
bnx2x_post_dmae(struct bnx2x * bp,struct dmae_command * dmae,int idx)370 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
371 {
372 u32 cmd_offset;
373 int i;
374
375 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
376 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
377 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
378
379 DP(BNX2X_MSG_OFF, "DMAE cmd[%d].%d (0x%08x) : 0x%08x\n",
380 idx, i, cmd_offset + i*4, *(((u32 *)dmae) + i));
381 }
382 REG_WR(bp, dmae_reg_go_c[idx], 1);
383 }
384
bnx2x_dmae_opcode_add_comp(u32 opcode,u8 comp_type)385 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
386 {
387 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
388 DMAE_CMD_C_ENABLE);
389 }
390
bnx2x_dmae_opcode_clr_src_reset(u32 opcode)391 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
392 {
393 return opcode & ~DMAE_CMD_SRC_RESET;
394 }
395
bnx2x_dmae_opcode(struct bnx2x * bp,u8 src_type,u8 dst_type,bool with_comp,u8 comp_type)396 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
397 bool with_comp, u8 comp_type)
398 {
399 u32 opcode = 0;
400
401 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
402 (dst_type << DMAE_COMMAND_DST_SHIFT));
403
404 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
405
406 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
407 opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
408 (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
409 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
410
411 #ifdef __BIG_ENDIAN
412 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
413 #else
414 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
415 #endif
416 if (with_comp)
417 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
418 return opcode;
419 }
420
bnx2x_prep_dmae_with_comp(struct bnx2x * bp,struct dmae_command * dmae,u8 src_type,u8 dst_type)421 static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
422 struct dmae_command *dmae,
423 u8 src_type, u8 dst_type)
424 {
425 memset(dmae, 0, sizeof(struct dmae_command));
426
427 /* set the opcode */
428 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
429 true, DMAE_COMP_PCI);
430
431 /* fill in the completion parameters */
432 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
433 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
434 dmae->comp_val = DMAE_COMP_VAL;
435 }
436
437 /* issue a dmae command over the init-channel and wailt for completion */
bnx2x_issue_dmae_with_comp(struct bnx2x * bp,struct dmae_command * dmae)438 static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
439 struct dmae_command *dmae)
440 {
441 u32 *wb_comp = bnx2x_sp(bp, wb_comp);
442 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
443 int rc = 0;
444
445 DP(BNX2X_MSG_OFF, "data before [0x%08x 0x%08x 0x%08x 0x%08x]\n",
446 bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
447 bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
448
449 /*
450 * Lock the dmae channel. Disable BHs to prevent a dead-lock
451 * as long as this code is called both from syscall context and
452 * from ndo_set_rx_mode() flow that may be called from BH.
453 */
454 spin_lock_bh(&bp->dmae_lock);
455
456 /* reset completion */
457 *wb_comp = 0;
458
459 /* post the command on the channel used for initializations */
460 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
461
462 /* wait for completion */
463 udelay(5);
464 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
465 DP(BNX2X_MSG_OFF, "wb_comp 0x%08x\n", *wb_comp);
466
467 if (!cnt) {
468 BNX2X_ERR("DMAE timeout!\n");
469 rc = DMAE_TIMEOUT;
470 goto unlock;
471 }
472 cnt--;
473 udelay(50);
474 }
475 if (*wb_comp & DMAE_PCI_ERR_FLAG) {
476 BNX2X_ERR("DMAE PCI error!\n");
477 rc = DMAE_PCI_ERROR;
478 }
479
480 DP(BNX2X_MSG_OFF, "data after [0x%08x 0x%08x 0x%08x 0x%08x]\n",
481 bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
482 bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
483
484 unlock:
485 spin_unlock_bh(&bp->dmae_lock);
486 return rc;
487 }
488
bnx2x_write_dmae(struct bnx2x * bp,dma_addr_t dma_addr,u32 dst_addr,u32 len32)489 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
490 u32 len32)
491 {
492 struct dmae_command dmae;
493
494 if (!bp->dmae_ready) {
495 u32 *data = bnx2x_sp(bp, wb_data[0]);
496
497 DP(BNX2X_MSG_OFF, "DMAE is not ready (dst_addr %08x len32 %d)"
498 " using indirect\n", dst_addr, len32);
499 bnx2x_init_ind_wr(bp, dst_addr, data, len32);
500 return;
501 }
502
503 /* set opcode and fixed command fields */
504 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
505
506 /* fill in addresses and len */
507 dmae.src_addr_lo = U64_LO(dma_addr);
508 dmae.src_addr_hi = U64_HI(dma_addr);
509 dmae.dst_addr_lo = dst_addr >> 2;
510 dmae.dst_addr_hi = 0;
511 dmae.len = len32;
512
513 bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
514
515 /* issue the command and wait for completion */
516 bnx2x_issue_dmae_with_comp(bp, &dmae);
517 }
518
bnx2x_read_dmae(struct bnx2x * bp,u32 src_addr,u32 len32)519 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
520 {
521 struct dmae_command dmae;
522
523 if (!bp->dmae_ready) {
524 u32 *data = bnx2x_sp(bp, wb_data[0]);
525 int i;
526
527 DP(BNX2X_MSG_OFF, "DMAE is not ready (src_addr %08x len32 %d)"
528 " using indirect\n", src_addr, len32);
529 for (i = 0; i < len32; i++)
530 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
531 return;
532 }
533
534 /* set opcode and fixed command fields */
535 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
536
537 /* fill in addresses and len */
538 dmae.src_addr_lo = src_addr >> 2;
539 dmae.src_addr_hi = 0;
540 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
541 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
542 dmae.len = len32;
543
544 bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
545
546 /* issue the command and wait for completion */
547 bnx2x_issue_dmae_with_comp(bp, &dmae);
548 }
549
bnx2x_write_dmae_phys_len(struct bnx2x * bp,dma_addr_t phys_addr,u32 addr,u32 len)550 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
551 u32 addr, u32 len)
552 {
553 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
554 int offset = 0;
555
556 while (len > dmae_wr_max) {
557 bnx2x_write_dmae(bp, phys_addr + offset,
558 addr + offset, dmae_wr_max);
559 offset += dmae_wr_max * 4;
560 len -= dmae_wr_max;
561 }
562
563 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
564 }
565
566 /* used only for slowpath so not inlined */
bnx2x_wb_wr(struct bnx2x * bp,int reg,u32 val_hi,u32 val_lo)567 static void bnx2x_wb_wr(struct bnx2x *bp, int reg, u32 val_hi, u32 val_lo)
568 {
569 u32 wb_write[2];
570
571 wb_write[0] = val_hi;
572 wb_write[1] = val_lo;
573 REG_WR_DMAE(bp, reg, wb_write, 2);
574 }
575
576 #ifdef USE_WB_RD
bnx2x_wb_rd(struct bnx2x * bp,int reg)577 static u64 bnx2x_wb_rd(struct bnx2x *bp, int reg)
578 {
579 u32 wb_data[2];
580
581 REG_RD_DMAE(bp, reg, wb_data, 2);
582
583 return HILO_U64(wb_data[0], wb_data[1]);
584 }
585 #endif
586
bnx2x_mc_assert(struct bnx2x * bp)587 static int bnx2x_mc_assert(struct bnx2x *bp)
588 {
589 char last_idx;
590 int i, rc = 0;
591 u32 row0, row1, row2, row3;
592
593 /* XSTORM */
594 last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
595 XSTORM_ASSERT_LIST_INDEX_OFFSET);
596 if (last_idx)
597 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
598
599 /* print the asserts */
600 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
601
602 row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
603 XSTORM_ASSERT_LIST_OFFSET(i));
604 row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
605 XSTORM_ASSERT_LIST_OFFSET(i) + 4);
606 row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
607 XSTORM_ASSERT_LIST_OFFSET(i) + 8);
608 row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
609 XSTORM_ASSERT_LIST_OFFSET(i) + 12);
610
611 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
612 BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x"
613 " 0x%08x 0x%08x 0x%08x\n",
614 i, row3, row2, row1, row0);
615 rc++;
616 } else {
617 break;
618 }
619 }
620
621 /* TSTORM */
622 last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
623 TSTORM_ASSERT_LIST_INDEX_OFFSET);
624 if (last_idx)
625 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
626
627 /* print the asserts */
628 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
629
630 row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
631 TSTORM_ASSERT_LIST_OFFSET(i));
632 row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
633 TSTORM_ASSERT_LIST_OFFSET(i) + 4);
634 row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
635 TSTORM_ASSERT_LIST_OFFSET(i) + 8);
636 row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
637 TSTORM_ASSERT_LIST_OFFSET(i) + 12);
638
639 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
640 BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x"
641 " 0x%08x 0x%08x 0x%08x\n",
642 i, row3, row2, row1, row0);
643 rc++;
644 } else {
645 break;
646 }
647 }
648
649 /* CSTORM */
650 last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
651 CSTORM_ASSERT_LIST_INDEX_OFFSET);
652 if (last_idx)
653 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
654
655 /* print the asserts */
656 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
657
658 row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
659 CSTORM_ASSERT_LIST_OFFSET(i));
660 row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
661 CSTORM_ASSERT_LIST_OFFSET(i) + 4);
662 row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
663 CSTORM_ASSERT_LIST_OFFSET(i) + 8);
664 row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
665 CSTORM_ASSERT_LIST_OFFSET(i) + 12);
666
667 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
668 BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x"
669 " 0x%08x 0x%08x 0x%08x\n",
670 i, row3, row2, row1, row0);
671 rc++;
672 } else {
673 break;
674 }
675 }
676
677 /* USTORM */
678 last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
679 USTORM_ASSERT_LIST_INDEX_OFFSET);
680 if (last_idx)
681 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
682
683 /* print the asserts */
684 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
685
686 row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
687 USTORM_ASSERT_LIST_OFFSET(i));
688 row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
689 USTORM_ASSERT_LIST_OFFSET(i) + 4);
690 row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
691 USTORM_ASSERT_LIST_OFFSET(i) + 8);
692 row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
693 USTORM_ASSERT_LIST_OFFSET(i) + 12);
694
695 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
696 BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x"
697 " 0x%08x 0x%08x 0x%08x\n",
698 i, row3, row2, row1, row0);
699 rc++;
700 } else {
701 break;
702 }
703 }
704
705 return rc;
706 }
707
bnx2x_fw_dump_lvl(struct bnx2x * bp,const char * lvl)708 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
709 {
710 u32 addr, val;
711 u32 mark, offset;
712 __be32 data[9];
713 int word;
714 u32 trace_shmem_base;
715 if (BP_NOMCP(bp)) {
716 BNX2X_ERR("NO MCP - can not dump\n");
717 return;
718 }
719 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
720 (bp->common.bc_ver & 0xff0000) >> 16,
721 (bp->common.bc_ver & 0xff00) >> 8,
722 (bp->common.bc_ver & 0xff));
723
724 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
725 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
726 printk("%s" "MCP PC at 0x%x\n", lvl, val);
727
728 if (BP_PATH(bp) == 0)
729 trace_shmem_base = bp->common.shmem_base;
730 else
731 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
732 addr = trace_shmem_base - 0x0800 + 4;
733 mark = REG_RD(bp, addr);
734 mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
735 + ((mark + 0x3) & ~0x3) - 0x08000000;
736 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
737
738 printk("%s", lvl);
739 for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
740 for (word = 0; word < 8; word++)
741 data[word] = htonl(REG_RD(bp, offset + 4*word));
742 data[8] = 0x0;
743 pr_cont("%s", (char *)data);
744 }
745 for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
746 for (word = 0; word < 8; word++)
747 data[word] = htonl(REG_RD(bp, offset + 4*word));
748 data[8] = 0x0;
749 pr_cont("%s", (char *)data);
750 }
751 printk("%s" "end of fw dump\n", lvl);
752 }
753
bnx2x_fw_dump(struct bnx2x * bp)754 static inline void bnx2x_fw_dump(struct bnx2x *bp)
755 {
756 bnx2x_fw_dump_lvl(bp, KERN_ERR);
757 }
758
bnx2x_panic_dump(struct bnx2x * bp)759 void bnx2x_panic_dump(struct bnx2x *bp)
760 {
761 int i;
762 u16 j;
763 struct hc_sp_status_block_data sp_sb_data;
764 int func = BP_FUNC(bp);
765 #ifdef BNX2X_STOP_ON_ERROR
766 u16 start = 0, end = 0;
767 u8 cos;
768 #endif
769
770 bp->stats_state = STATS_STATE_DISABLED;
771 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
772
773 BNX2X_ERR("begin crash dump -----------------\n");
774
775 /* Indices */
776 /* Common */
777 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x)"
778 " spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
779 bp->def_idx, bp->def_att_idx, bp->attn_state,
780 bp->spq_prod_idx, bp->stats_counter);
781 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n",
782 bp->def_status_blk->atten_status_block.attn_bits,
783 bp->def_status_blk->atten_status_block.attn_bits_ack,
784 bp->def_status_blk->atten_status_block.status_block_id,
785 bp->def_status_blk->atten_status_block.attn_bits_index);
786 BNX2X_ERR(" def (");
787 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
788 pr_cont("0x%x%s",
789 bp->def_status_blk->sp_sb.index_values[i],
790 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " ");
791
792 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
793 *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
794 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
795 i*sizeof(u32));
796
797 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n",
798 sp_sb_data.igu_sb_id,
799 sp_sb_data.igu_seg_id,
800 sp_sb_data.p_func.pf_id,
801 sp_sb_data.p_func.vnic_id,
802 sp_sb_data.p_func.vf_id,
803 sp_sb_data.p_func.vf_valid,
804 sp_sb_data.state);
805
806
807 for_each_eth_queue(bp, i) {
808 struct bnx2x_fastpath *fp = &bp->fp[i];
809 int loop;
810 struct hc_status_block_data_e2 sb_data_e2;
811 struct hc_status_block_data_e1x sb_data_e1x;
812 struct hc_status_block_sm *hc_sm_p =
813 CHIP_IS_E1x(bp) ?
814 sb_data_e1x.common.state_machine :
815 sb_data_e2.common.state_machine;
816 struct hc_index_data *hc_index_p =
817 CHIP_IS_E1x(bp) ?
818 sb_data_e1x.index_data :
819 sb_data_e2.index_data;
820 u8 data_size, cos;
821 u32 *sb_data_p;
822 struct bnx2x_fp_txdata txdata;
823
824 /* Rx */
825 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x)"
826 " rx_comp_prod(0x%x)"
827 " rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n",
828 i, fp->rx_bd_prod, fp->rx_bd_cons,
829 fp->rx_comp_prod,
830 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
831 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x)"
832 " fp_hc_idx(0x%x)\n",
833 fp->rx_sge_prod, fp->last_max_sge,
834 le16_to_cpu(fp->fp_hc_idx));
835
836 /* Tx */
837 for_each_cos_in_tx_queue(fp, cos)
838 {
839 txdata = fp->txdata[cos];
840 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x)"
841 " tx_bd_prod(0x%x) tx_bd_cons(0x%x)"
842 " *tx_cons_sb(0x%x)\n",
843 i, txdata.tx_pkt_prod,
844 txdata.tx_pkt_cons, txdata.tx_bd_prod,
845 txdata.tx_bd_cons,
846 le16_to_cpu(*txdata.tx_cons_sb));
847 }
848
849 loop = CHIP_IS_E1x(bp) ?
850 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
851
852 /* host sb data */
853
854 #ifdef BCM_CNIC
855 if (IS_FCOE_FP(fp))
856 continue;
857 #endif
858 BNX2X_ERR(" run indexes (");
859 for (j = 0; j < HC_SB_MAX_SM; j++)
860 pr_cont("0x%x%s",
861 fp->sb_running_index[j],
862 (j == HC_SB_MAX_SM - 1) ? ")" : " ");
863
864 BNX2X_ERR(" indexes (");
865 for (j = 0; j < loop; j++)
866 pr_cont("0x%x%s",
867 fp->sb_index_values[j],
868 (j == loop - 1) ? ")" : " ");
869 /* fw sb data */
870 data_size = CHIP_IS_E1x(bp) ?
871 sizeof(struct hc_status_block_data_e1x) :
872 sizeof(struct hc_status_block_data_e2);
873 data_size /= sizeof(u32);
874 sb_data_p = CHIP_IS_E1x(bp) ?
875 (u32 *)&sb_data_e1x :
876 (u32 *)&sb_data_e2;
877 /* copy sb data in here */
878 for (j = 0; j < data_size; j++)
879 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
880 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
881 j * sizeof(u32));
882
883 if (!CHIP_IS_E1x(bp)) {
884 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) "
885 "vnic_id(0x%x) same_igu_sb_1b(0x%x) "
886 "state(0x%x)\n",
887 sb_data_e2.common.p_func.pf_id,
888 sb_data_e2.common.p_func.vf_id,
889 sb_data_e2.common.p_func.vf_valid,
890 sb_data_e2.common.p_func.vnic_id,
891 sb_data_e2.common.same_igu_sb_1b,
892 sb_data_e2.common.state);
893 } else {
894 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) "
895 "vnic_id(0x%x) same_igu_sb_1b(0x%x) "
896 "state(0x%x)\n",
897 sb_data_e1x.common.p_func.pf_id,
898 sb_data_e1x.common.p_func.vf_id,
899 sb_data_e1x.common.p_func.vf_valid,
900 sb_data_e1x.common.p_func.vnic_id,
901 sb_data_e1x.common.same_igu_sb_1b,
902 sb_data_e1x.common.state);
903 }
904
905 /* SB_SMs data */
906 for (j = 0; j < HC_SB_MAX_SM; j++) {
907 pr_cont("SM[%d] __flags (0x%x) "
908 "igu_sb_id (0x%x) igu_seg_id(0x%x) "
909 "time_to_expire (0x%x) "
910 "timer_value(0x%x)\n", j,
911 hc_sm_p[j].__flags,
912 hc_sm_p[j].igu_sb_id,
913 hc_sm_p[j].igu_seg_id,
914 hc_sm_p[j].time_to_expire,
915 hc_sm_p[j].timer_value);
916 }
917
918 /* Indecies data */
919 for (j = 0; j < loop; j++) {
920 pr_cont("INDEX[%d] flags (0x%x) "
921 "timeout (0x%x)\n", j,
922 hc_index_p[j].flags,
923 hc_index_p[j].timeout);
924 }
925 }
926
927 #ifdef BNX2X_STOP_ON_ERROR
928 /* Rings */
929 /* Rx */
930 for_each_rx_queue(bp, i) {
931 struct bnx2x_fastpath *fp = &bp->fp[i];
932
933 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
934 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
935 for (j = start; j != end; j = RX_BD(j + 1)) {
936 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
937 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
938
939 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n",
940 i, j, rx_bd[1], rx_bd[0], sw_bd->data);
941 }
942
943 start = RX_SGE(fp->rx_sge_prod);
944 end = RX_SGE(fp->last_max_sge);
945 for (j = start; j != end; j = RX_SGE(j + 1)) {
946 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
947 struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
948
949 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n",
950 i, j, rx_sge[1], rx_sge[0], sw_page->page);
951 }
952
953 start = RCQ_BD(fp->rx_comp_cons - 10);
954 end = RCQ_BD(fp->rx_comp_cons + 503);
955 for (j = start; j != end; j = RCQ_BD(j + 1)) {
956 u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
957
958 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
959 i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
960 }
961 }
962
963 /* Tx */
964 for_each_tx_queue(bp, i) {
965 struct bnx2x_fastpath *fp = &bp->fp[i];
966 for_each_cos_in_tx_queue(fp, cos) {
967 struct bnx2x_fp_txdata *txdata = &fp->txdata[cos];
968
969 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
970 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
971 for (j = start; j != end; j = TX_BD(j + 1)) {
972 struct sw_tx_bd *sw_bd =
973 &txdata->tx_buf_ring[j];
974
975 BNX2X_ERR("fp%d: txdata %d, "
976 "packet[%x]=[%p,%x]\n",
977 i, cos, j, sw_bd->skb,
978 sw_bd->first_bd);
979 }
980
981 start = TX_BD(txdata->tx_bd_cons - 10);
982 end = TX_BD(txdata->tx_bd_cons + 254);
983 for (j = start; j != end; j = TX_BD(j + 1)) {
984 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
985
986 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]="
987 "[%x:%x:%x:%x]\n",
988 i, cos, j, tx_bd[0], tx_bd[1],
989 tx_bd[2], tx_bd[3]);
990 }
991 }
992 }
993 #endif
994 bnx2x_fw_dump(bp);
995 bnx2x_mc_assert(bp);
996 BNX2X_ERR("end crash dump -----------------\n");
997 }
998
999 /*
1000 * FLR Support for E2
1001 *
1002 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1003 * initialization.
1004 */
1005 #define FLR_WAIT_USEC 10000 /* 10 miliseconds */
1006 #define FLR_WAIT_INTERAVAL 50 /* usec */
1007 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERAVAL) /* 200 */
1008
1009 struct pbf_pN_buf_regs {
1010 int pN;
1011 u32 init_crd;
1012 u32 crd;
1013 u32 crd_freed;
1014 };
1015
1016 struct pbf_pN_cmd_regs {
1017 int pN;
1018 u32 lines_occup;
1019 u32 lines_freed;
1020 };
1021
bnx2x_pbf_pN_buf_flushed(struct bnx2x * bp,struct pbf_pN_buf_regs * regs,u32 poll_count)1022 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1023 struct pbf_pN_buf_regs *regs,
1024 u32 poll_count)
1025 {
1026 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1027 u32 cur_cnt = poll_count;
1028
1029 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1030 crd = crd_start = REG_RD(bp, regs->crd);
1031 init_crd = REG_RD(bp, regs->init_crd);
1032
1033 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1034 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd);
1035 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1036
1037 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1038 (init_crd - crd_start))) {
1039 if (cur_cnt--) {
1040 udelay(FLR_WAIT_INTERAVAL);
1041 crd = REG_RD(bp, regs->crd);
1042 crd_freed = REG_RD(bp, regs->crd_freed);
1043 } else {
1044 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1045 regs->pN);
1046 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n",
1047 regs->pN, crd);
1048 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1049 regs->pN, crd_freed);
1050 break;
1051 }
1052 }
1053 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1054 poll_count-cur_cnt, FLR_WAIT_INTERAVAL, regs->pN);
1055 }
1056
bnx2x_pbf_pN_cmd_flushed(struct bnx2x * bp,struct pbf_pN_cmd_regs * regs,u32 poll_count)1057 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1058 struct pbf_pN_cmd_regs *regs,
1059 u32 poll_count)
1060 {
1061 u32 occup, to_free, freed, freed_start;
1062 u32 cur_cnt = poll_count;
1063
1064 occup = to_free = REG_RD(bp, regs->lines_occup);
1065 freed = freed_start = REG_RD(bp, regs->lines_freed);
1066
1067 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
1068 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1069
1070 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1071 if (cur_cnt--) {
1072 udelay(FLR_WAIT_INTERAVAL);
1073 occup = REG_RD(bp, regs->lines_occup);
1074 freed = REG_RD(bp, regs->lines_freed);
1075 } else {
1076 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1077 regs->pN);
1078 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n",
1079 regs->pN, occup);
1080 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1081 regs->pN, freed);
1082 break;
1083 }
1084 }
1085 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1086 poll_count-cur_cnt, FLR_WAIT_INTERAVAL, regs->pN);
1087 }
1088
bnx2x_flr_clnup_reg_poll(struct bnx2x * bp,u32 reg,u32 expected,u32 poll_count)1089 static inline u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1090 u32 expected, u32 poll_count)
1091 {
1092 u32 cur_cnt = poll_count;
1093 u32 val;
1094
1095 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1096 udelay(FLR_WAIT_INTERAVAL);
1097
1098 return val;
1099 }
1100
bnx2x_flr_clnup_poll_hw_counter(struct bnx2x * bp,u32 reg,char * msg,u32 poll_cnt)1101 static inline int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1102 char *msg, u32 poll_cnt)
1103 {
1104 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1105 if (val != 0) {
1106 BNX2X_ERR("%s usage count=%d\n", msg, val);
1107 return 1;
1108 }
1109 return 0;
1110 }
1111
bnx2x_flr_clnup_poll_count(struct bnx2x * bp)1112 static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1113 {
1114 /* adjust polling timeout */
1115 if (CHIP_REV_IS_EMUL(bp))
1116 return FLR_POLL_CNT * 2000;
1117
1118 if (CHIP_REV_IS_FPGA(bp))
1119 return FLR_POLL_CNT * 120;
1120
1121 return FLR_POLL_CNT;
1122 }
1123
bnx2x_tx_hw_flushed(struct bnx2x * bp,u32 poll_count)1124 static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1125 {
1126 struct pbf_pN_cmd_regs cmd_regs[] = {
1127 {0, (CHIP_IS_E3B0(bp)) ?
1128 PBF_REG_TQ_OCCUPANCY_Q0 :
1129 PBF_REG_P0_TQ_OCCUPANCY,
1130 (CHIP_IS_E3B0(bp)) ?
1131 PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1132 PBF_REG_P0_TQ_LINES_FREED_CNT},
1133 {1, (CHIP_IS_E3B0(bp)) ?
1134 PBF_REG_TQ_OCCUPANCY_Q1 :
1135 PBF_REG_P1_TQ_OCCUPANCY,
1136 (CHIP_IS_E3B0(bp)) ?
1137 PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1138 PBF_REG_P1_TQ_LINES_FREED_CNT},
1139 {4, (CHIP_IS_E3B0(bp)) ?
1140 PBF_REG_TQ_OCCUPANCY_LB_Q :
1141 PBF_REG_P4_TQ_OCCUPANCY,
1142 (CHIP_IS_E3B0(bp)) ?
1143 PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1144 PBF_REG_P4_TQ_LINES_FREED_CNT}
1145 };
1146
1147 struct pbf_pN_buf_regs buf_regs[] = {
1148 {0, (CHIP_IS_E3B0(bp)) ?
1149 PBF_REG_INIT_CRD_Q0 :
1150 PBF_REG_P0_INIT_CRD ,
1151 (CHIP_IS_E3B0(bp)) ?
1152 PBF_REG_CREDIT_Q0 :
1153 PBF_REG_P0_CREDIT,
1154 (CHIP_IS_E3B0(bp)) ?
1155 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1156 PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1157 {1, (CHIP_IS_E3B0(bp)) ?
1158 PBF_REG_INIT_CRD_Q1 :
1159 PBF_REG_P1_INIT_CRD,
1160 (CHIP_IS_E3B0(bp)) ?
1161 PBF_REG_CREDIT_Q1 :
1162 PBF_REG_P1_CREDIT,
1163 (CHIP_IS_E3B0(bp)) ?
1164 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1165 PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1166 {4, (CHIP_IS_E3B0(bp)) ?
1167 PBF_REG_INIT_CRD_LB_Q :
1168 PBF_REG_P4_INIT_CRD,
1169 (CHIP_IS_E3B0(bp)) ?
1170 PBF_REG_CREDIT_LB_Q :
1171 PBF_REG_P4_CREDIT,
1172 (CHIP_IS_E3B0(bp)) ?
1173 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1174 PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1175 };
1176
1177 int i;
1178
1179 /* Verify the command queues are flushed P0, P1, P4 */
1180 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1181 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1182
1183
1184 /* Verify the transmission buffers are flushed P0, P1, P4 */
1185 for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1186 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1187 }
1188
1189 #define OP_GEN_PARAM(param) \
1190 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1191
1192 #define OP_GEN_TYPE(type) \
1193 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1194
1195 #define OP_GEN_AGG_VECT(index) \
1196 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1197
1198
bnx2x_send_final_clnup(struct bnx2x * bp,u8 clnup_func,u32 poll_cnt)1199 static inline int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func,
1200 u32 poll_cnt)
1201 {
1202 struct sdm_op_gen op_gen = {0};
1203
1204 u32 comp_addr = BAR_CSTRORM_INTMEM +
1205 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1206 int ret = 0;
1207
1208 if (REG_RD(bp, comp_addr)) {
1209 BNX2X_ERR("Cleanup complete is not 0\n");
1210 return 1;
1211 }
1212
1213 op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1214 op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1215 op_gen.command |= OP_GEN_AGG_VECT(clnup_func);
1216 op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1217
1218 DP(BNX2X_MSG_SP, "FW Final cleanup\n");
1219 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command);
1220
1221 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1222 BNX2X_ERR("FW final cleanup did not succeed\n");
1223 ret = 1;
1224 }
1225 /* Zero completion for nxt FLR */
1226 REG_WR(bp, comp_addr, 0);
1227
1228 return ret;
1229 }
1230
bnx2x_is_pcie_pending(struct pci_dev * dev)1231 static inline u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1232 {
1233 int pos;
1234 u16 status;
1235
1236 pos = pci_pcie_cap(dev);
1237 if (!pos)
1238 return false;
1239
1240 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
1241 return status & PCI_EXP_DEVSTA_TRPND;
1242 }
1243
1244 /* PF FLR specific routines
1245 */
bnx2x_poll_hw_usage_counters(struct bnx2x * bp,u32 poll_cnt)1246 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1247 {
1248
1249 /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1250 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1251 CFC_REG_NUM_LCIDS_INSIDE_PF,
1252 "CFC PF usage counter timed out",
1253 poll_cnt))
1254 return 1;
1255
1256
1257 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1258 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1259 DORQ_REG_PF_USAGE_CNT,
1260 "DQ PF usage counter timed out",
1261 poll_cnt))
1262 return 1;
1263
1264 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1265 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1266 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1267 "QM PF usage counter timed out",
1268 poll_cnt))
1269 return 1;
1270
1271 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1272 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1273 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1274 "Timers VNIC usage counter timed out",
1275 poll_cnt))
1276 return 1;
1277 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1278 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1279 "Timers NUM_SCANS usage counter timed out",
1280 poll_cnt))
1281 return 1;
1282
1283 /* Wait DMAE PF usage counter to zero */
1284 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1285 dmae_reg_go_c[INIT_DMAE_C(bp)],
1286 "DMAE dommand register timed out",
1287 poll_cnt))
1288 return 1;
1289
1290 return 0;
1291 }
1292
bnx2x_hw_enable_status(struct bnx2x * bp)1293 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1294 {
1295 u32 val;
1296
1297 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1298 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1299
1300 val = REG_RD(bp, PBF_REG_DISABLE_PF);
1301 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1302
1303 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1304 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1305
1306 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1307 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1308
1309 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1310 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1311
1312 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1313 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1314
1315 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1316 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1317
1318 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1319 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1320 val);
1321 }
1322
bnx2x_pf_flr_clnup(struct bnx2x * bp)1323 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1324 {
1325 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1326
1327 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1328
1329 /* Re-enable PF target read access */
1330 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1331
1332 /* Poll HW usage counters */
1333 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1334 return -EBUSY;
1335
1336 /* Zero the igu 'trailing edge' and 'leading edge' */
1337
1338 /* Send the FW cleanup command */
1339 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1340 return -EBUSY;
1341
1342 /* ATC cleanup */
1343
1344 /* Verify TX hw is flushed */
1345 bnx2x_tx_hw_flushed(bp, poll_cnt);
1346
1347 /* Wait 100ms (not adjusted according to platform) */
1348 msleep(100);
1349
1350 /* Verify no pending pci transactions */
1351 if (bnx2x_is_pcie_pending(bp->pdev))
1352 BNX2X_ERR("PCIE Transactions still pending\n");
1353
1354 /* Debug */
1355 bnx2x_hw_enable_status(bp);
1356
1357 /*
1358 * Master enable - Due to WB DMAE writes performed before this
1359 * register is re-initialized as part of the regular function init
1360 */
1361 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1362
1363 return 0;
1364 }
1365
bnx2x_hc_int_enable(struct bnx2x * bp)1366 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1367 {
1368 int port = BP_PORT(bp);
1369 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1370 u32 val = REG_RD(bp, addr);
1371 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1372 int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1373
1374 if (msix) {
1375 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1376 HC_CONFIG_0_REG_INT_LINE_EN_0);
1377 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1378 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1379 } else if (msi) {
1380 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1381 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1382 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1383 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1384 } else {
1385 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1386 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1387 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1388 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1389
1390 if (!CHIP_IS_E1(bp)) {
1391 DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1392 val, port, addr);
1393
1394 REG_WR(bp, addr, val);
1395
1396 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1397 }
1398 }
1399
1400 if (CHIP_IS_E1(bp))
1401 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1402
1403 DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
1404 val, port, addr, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1405
1406 REG_WR(bp, addr, val);
1407 /*
1408 * Ensure that HC_CONFIG is written before leading/trailing edge config
1409 */
1410 mmiowb();
1411 barrier();
1412
1413 if (!CHIP_IS_E1(bp)) {
1414 /* init leading/trailing edge */
1415 if (IS_MF(bp)) {
1416 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1417 if (bp->port.pmf)
1418 /* enable nig and gpio3 attention */
1419 val |= 0x1100;
1420 } else
1421 val = 0xffff;
1422
1423 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1424 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1425 }
1426
1427 /* Make sure that interrupts are indeed enabled from here on */
1428 mmiowb();
1429 }
1430
bnx2x_igu_int_enable(struct bnx2x * bp)1431 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1432 {
1433 u32 val;
1434 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1435 int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1436
1437 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1438
1439 if (msix) {
1440 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1441 IGU_PF_CONF_SINGLE_ISR_EN);
1442 val |= (IGU_PF_CONF_FUNC_EN |
1443 IGU_PF_CONF_MSI_MSIX_EN |
1444 IGU_PF_CONF_ATTN_BIT_EN);
1445 } else if (msi) {
1446 val &= ~IGU_PF_CONF_INT_LINE_EN;
1447 val |= (IGU_PF_CONF_FUNC_EN |
1448 IGU_PF_CONF_MSI_MSIX_EN |
1449 IGU_PF_CONF_ATTN_BIT_EN |
1450 IGU_PF_CONF_SINGLE_ISR_EN);
1451 } else {
1452 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1453 val |= (IGU_PF_CONF_FUNC_EN |
1454 IGU_PF_CONF_INT_LINE_EN |
1455 IGU_PF_CONF_ATTN_BIT_EN |
1456 IGU_PF_CONF_SINGLE_ISR_EN);
1457 }
1458
1459 DP(NETIF_MSG_INTR, "write 0x%x to IGU mode %s\n",
1460 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1461
1462 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1463
1464 barrier();
1465
1466 /* init leading/trailing edge */
1467 if (IS_MF(bp)) {
1468 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1469 if (bp->port.pmf)
1470 /* enable nig and gpio3 attention */
1471 val |= 0x1100;
1472 } else
1473 val = 0xffff;
1474
1475 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1476 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1477
1478 /* Make sure that interrupts are indeed enabled from here on */
1479 mmiowb();
1480 }
1481
bnx2x_int_enable(struct bnx2x * bp)1482 void bnx2x_int_enable(struct bnx2x *bp)
1483 {
1484 if (bp->common.int_block == INT_BLOCK_HC)
1485 bnx2x_hc_int_enable(bp);
1486 else
1487 bnx2x_igu_int_enable(bp);
1488 }
1489
bnx2x_hc_int_disable(struct bnx2x * bp)1490 static void bnx2x_hc_int_disable(struct bnx2x *bp)
1491 {
1492 int port = BP_PORT(bp);
1493 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1494 u32 val = REG_RD(bp, addr);
1495
1496 /*
1497 * in E1 we must use only PCI configuration space to disable
1498 * MSI/MSIX capablility
1499 * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
1500 */
1501 if (CHIP_IS_E1(bp)) {
1502 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
1503 * Use mask register to prevent from HC sending interrupts
1504 * after we exit the function
1505 */
1506 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
1507
1508 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1509 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1510 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1511 } else
1512 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1513 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1514 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1515 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1516
1517 DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1518 val, port, addr);
1519
1520 /* flush all outstanding writes */
1521 mmiowb();
1522
1523 REG_WR(bp, addr, val);
1524 if (REG_RD(bp, addr) != val)
1525 BNX2X_ERR("BUG! proper val not read from IGU!\n");
1526 }
1527
bnx2x_igu_int_disable(struct bnx2x * bp)1528 static void bnx2x_igu_int_disable(struct bnx2x *bp)
1529 {
1530 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1531
1532 val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
1533 IGU_PF_CONF_INT_LINE_EN |
1534 IGU_PF_CONF_ATTN_BIT_EN);
1535
1536 DP(NETIF_MSG_INTR, "write %x to IGU\n", val);
1537
1538 /* flush all outstanding writes */
1539 mmiowb();
1540
1541 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1542 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
1543 BNX2X_ERR("BUG! proper val not read from IGU!\n");
1544 }
1545
bnx2x_int_disable(struct bnx2x * bp)1546 void bnx2x_int_disable(struct bnx2x *bp)
1547 {
1548 if (bp->common.int_block == INT_BLOCK_HC)
1549 bnx2x_hc_int_disable(bp);
1550 else
1551 bnx2x_igu_int_disable(bp);
1552 }
1553
bnx2x_int_disable_sync(struct bnx2x * bp,int disable_hw)1554 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1555 {
1556 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1557 int i, offset;
1558
1559 if (disable_hw)
1560 /* prevent the HW from sending interrupts */
1561 bnx2x_int_disable(bp);
1562
1563 /* make sure all ISRs are done */
1564 if (msix) {
1565 synchronize_irq(bp->msix_table[0].vector);
1566 offset = 1;
1567 #ifdef BCM_CNIC
1568 offset++;
1569 #endif
1570 for_each_eth_queue(bp, i)
1571 synchronize_irq(bp->msix_table[offset++].vector);
1572 } else
1573 synchronize_irq(bp->pdev->irq);
1574
1575 /* make sure sp_task is not running */
1576 cancel_delayed_work(&bp->sp_task);
1577 cancel_delayed_work(&bp->period_task);
1578 flush_workqueue(bnx2x_wq);
1579 }
1580
1581 /* fast path */
1582
1583 /*
1584 * General service functions
1585 */
1586
1587 /* Return true if succeeded to acquire the lock */
bnx2x_trylock_hw_lock(struct bnx2x * bp,u32 resource)1588 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1589 {
1590 u32 lock_status;
1591 u32 resource_bit = (1 << resource);
1592 int func = BP_FUNC(bp);
1593 u32 hw_lock_control_reg;
1594
1595 DP(NETIF_MSG_HW, "Trying to take a lock on resource %d\n", resource);
1596
1597 /* Validating that the resource is within range */
1598 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1599 DP(NETIF_MSG_HW,
1600 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1601 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1602 return false;
1603 }
1604
1605 if (func <= 5)
1606 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1607 else
1608 hw_lock_control_reg =
1609 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1610
1611 /* Try to acquire the lock */
1612 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1613 lock_status = REG_RD(bp, hw_lock_control_reg);
1614 if (lock_status & resource_bit)
1615 return true;
1616
1617 DP(NETIF_MSG_HW, "Failed to get a lock on resource %d\n", resource);
1618 return false;
1619 }
1620
1621 /**
1622 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1623 *
1624 * @bp: driver handle
1625 *
1626 * Returns the recovery leader resource id according to the engine this function
1627 * belongs to. Currently only only 2 engines is supported.
1628 */
bnx2x_get_leader_lock_resource(struct bnx2x * bp)1629 static inline int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1630 {
1631 if (BP_PATH(bp))
1632 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1633 else
1634 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1635 }
1636
1637 /**
1638 * bnx2x_trylock_leader_lock- try to aquire a leader lock.
1639 *
1640 * @bp: driver handle
1641 *
1642 * Tries to aquire a leader lock for cuurent engine.
1643 */
bnx2x_trylock_leader_lock(struct bnx2x * bp)1644 static inline bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1645 {
1646 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1647 }
1648
1649 #ifdef BCM_CNIC
1650 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1651 #endif
1652
bnx2x_sp_event(struct bnx2x_fastpath * fp,union eth_rx_cqe * rr_cqe)1653 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1654 {
1655 struct bnx2x *bp = fp->bp;
1656 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1657 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1658 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1659 struct bnx2x_queue_sp_obj *q_obj = &fp->q_obj;
1660
1661 DP(BNX2X_MSG_SP,
1662 "fp %d cid %d got ramrod #%d state is %x type is %d\n",
1663 fp->index, cid, command, bp->state,
1664 rr_cqe->ramrod_cqe.ramrod_type);
1665
1666 switch (command) {
1667 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1668 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1669 drv_cmd = BNX2X_Q_CMD_UPDATE;
1670 break;
1671
1672 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1673 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1674 drv_cmd = BNX2X_Q_CMD_SETUP;
1675 break;
1676
1677 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1678 DP(NETIF_MSG_IFUP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1679 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1680 break;
1681
1682 case (RAMROD_CMD_ID_ETH_HALT):
1683 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1684 drv_cmd = BNX2X_Q_CMD_HALT;
1685 break;
1686
1687 case (RAMROD_CMD_ID_ETH_TERMINATE):
1688 DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
1689 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1690 break;
1691
1692 case (RAMROD_CMD_ID_ETH_EMPTY):
1693 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1694 drv_cmd = BNX2X_Q_CMD_EMPTY;
1695 break;
1696
1697 default:
1698 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1699 command, fp->index);
1700 return;
1701 }
1702
1703 if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1704 q_obj->complete_cmd(bp, q_obj, drv_cmd))
1705 /* q_obj->complete_cmd() failure means that this was
1706 * an unexpected completion.
1707 *
1708 * In this case we don't want to increase the bp->spq_left
1709 * because apparently we haven't sent this command the first
1710 * place.
1711 */
1712 #ifdef BNX2X_STOP_ON_ERROR
1713 bnx2x_panic();
1714 #else
1715 return;
1716 #endif
1717
1718 smp_mb__before_atomic_inc();
1719 atomic_inc(&bp->cq_spq_left);
1720 /* push the change in bp->spq_left and towards the memory */
1721 smp_mb__after_atomic_inc();
1722
1723 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1724
1725 return;
1726 }
1727
bnx2x_update_rx_prod(struct bnx2x * bp,struct bnx2x_fastpath * fp,u16 bd_prod,u16 rx_comp_prod,u16 rx_sge_prod)1728 void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
1729 u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod)
1730 {
1731 u32 start = BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset;
1732
1733 bnx2x_update_rx_prod_gen(bp, fp, bd_prod, rx_comp_prod, rx_sge_prod,
1734 start);
1735 }
1736
bnx2x_interrupt(int irq,void * dev_instance)1737 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1738 {
1739 struct bnx2x *bp = netdev_priv(dev_instance);
1740 u16 status = bnx2x_ack_int(bp);
1741 u16 mask;
1742 int i;
1743 u8 cos;
1744
1745 /* Return here if interrupt is shared and it's not for us */
1746 if (unlikely(status == 0)) {
1747 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1748 return IRQ_NONE;
1749 }
1750 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status);
1751
1752 #ifdef BNX2X_STOP_ON_ERROR
1753 if (unlikely(bp->panic))
1754 return IRQ_HANDLED;
1755 #endif
1756
1757 for_each_eth_queue(bp, i) {
1758 struct bnx2x_fastpath *fp = &bp->fp[i];
1759
1760 mask = 0x2 << (fp->index + CNIC_PRESENT);
1761 if (status & mask) {
1762 /* Handle Rx or Tx according to SB id */
1763 prefetch(fp->rx_cons_sb);
1764 for_each_cos_in_tx_queue(fp, cos)
1765 prefetch(fp->txdata[cos].tx_cons_sb);
1766 prefetch(&fp->sb_running_index[SM_RX_ID]);
1767 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1768 status &= ~mask;
1769 }
1770 }
1771
1772 #ifdef BCM_CNIC
1773 mask = 0x2;
1774 if (status & (mask | 0x1)) {
1775 struct cnic_ops *c_ops = NULL;
1776
1777 if (likely(bp->state == BNX2X_STATE_OPEN)) {
1778 rcu_read_lock();
1779 c_ops = rcu_dereference(bp->cnic_ops);
1780 if (c_ops)
1781 c_ops->cnic_handler(bp->cnic_data, NULL);
1782 rcu_read_unlock();
1783 }
1784
1785 status &= ~mask;
1786 }
1787 #endif
1788
1789 if (unlikely(status & 0x1)) {
1790 queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1791
1792 status &= ~0x1;
1793 if (!status)
1794 return IRQ_HANDLED;
1795 }
1796
1797 if (unlikely(status))
1798 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1799 status);
1800
1801 return IRQ_HANDLED;
1802 }
1803
1804 /* Link */
1805
1806 /*
1807 * General service functions
1808 */
1809
bnx2x_acquire_hw_lock(struct bnx2x * bp,u32 resource)1810 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1811 {
1812 u32 lock_status;
1813 u32 resource_bit = (1 << resource);
1814 int func = BP_FUNC(bp);
1815 u32 hw_lock_control_reg;
1816 int cnt;
1817
1818 /* Validating that the resource is within range */
1819 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1820 DP(NETIF_MSG_HW,
1821 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1822 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1823 return -EINVAL;
1824 }
1825
1826 if (func <= 5) {
1827 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1828 } else {
1829 hw_lock_control_reg =
1830 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1831 }
1832
1833 /* Validating that the resource is not already taken */
1834 lock_status = REG_RD(bp, hw_lock_control_reg);
1835 if (lock_status & resource_bit) {
1836 DP(NETIF_MSG_HW, "lock_status 0x%x resource_bit 0x%x\n",
1837 lock_status, resource_bit);
1838 return -EEXIST;
1839 }
1840
1841 /* Try for 5 second every 5ms */
1842 for (cnt = 0; cnt < 1000; cnt++) {
1843 /* Try to acquire the lock */
1844 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1845 lock_status = REG_RD(bp, hw_lock_control_reg);
1846 if (lock_status & resource_bit)
1847 return 0;
1848
1849 msleep(5);
1850 }
1851 DP(NETIF_MSG_HW, "Timeout\n");
1852 return -EAGAIN;
1853 }
1854
bnx2x_release_leader_lock(struct bnx2x * bp)1855 int bnx2x_release_leader_lock(struct bnx2x *bp)
1856 {
1857 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1858 }
1859
bnx2x_release_hw_lock(struct bnx2x * bp,u32 resource)1860 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1861 {
1862 u32 lock_status;
1863 u32 resource_bit = (1 << resource);
1864 int func = BP_FUNC(bp);
1865 u32 hw_lock_control_reg;
1866
1867 DP(NETIF_MSG_HW, "Releasing a lock on resource %d\n", resource);
1868
1869 /* Validating that the resource is within range */
1870 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1871 DP(NETIF_MSG_HW,
1872 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1873 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1874 return -EINVAL;
1875 }
1876
1877 if (func <= 5) {
1878 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1879 } else {
1880 hw_lock_control_reg =
1881 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1882 }
1883
1884 /* Validating that the resource is currently taken */
1885 lock_status = REG_RD(bp, hw_lock_control_reg);
1886 if (!(lock_status & resource_bit)) {
1887 DP(NETIF_MSG_HW, "lock_status 0x%x resource_bit 0x%x\n",
1888 lock_status, resource_bit);
1889 return -EFAULT;
1890 }
1891
1892 REG_WR(bp, hw_lock_control_reg, resource_bit);
1893 return 0;
1894 }
1895
1896
bnx2x_get_gpio(struct bnx2x * bp,int gpio_num,u8 port)1897 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1898 {
1899 /* The GPIO should be swapped if swap register is set and active */
1900 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1901 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1902 int gpio_shift = gpio_num +
1903 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1904 u32 gpio_mask = (1 << gpio_shift);
1905 u32 gpio_reg;
1906 int value;
1907
1908 if (gpio_num > MISC_REGISTERS_GPIO_3) {
1909 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1910 return -EINVAL;
1911 }
1912
1913 /* read GPIO value */
1914 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1915
1916 /* get the requested pin value */
1917 if ((gpio_reg & gpio_mask) == gpio_mask)
1918 value = 1;
1919 else
1920 value = 0;
1921
1922 DP(NETIF_MSG_LINK, "pin %d value 0x%x\n", gpio_num, value);
1923
1924 return value;
1925 }
1926
bnx2x_set_gpio(struct bnx2x * bp,int gpio_num,u32 mode,u8 port)1927 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1928 {
1929 /* The GPIO should be swapped if swap register is set and active */
1930 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1931 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1932 int gpio_shift = gpio_num +
1933 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1934 u32 gpio_mask = (1 << gpio_shift);
1935 u32 gpio_reg;
1936
1937 if (gpio_num > MISC_REGISTERS_GPIO_3) {
1938 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1939 return -EINVAL;
1940 }
1941
1942 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1943 /* read GPIO and mask except the float bits */
1944 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1945
1946 switch (mode) {
1947 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1948 DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output low\n",
1949 gpio_num, gpio_shift);
1950 /* clear FLOAT and set CLR */
1951 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1952 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1953 break;
1954
1955 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1956 DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output high\n",
1957 gpio_num, gpio_shift);
1958 /* clear FLOAT and set SET */
1959 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1960 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1961 break;
1962
1963 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1964 DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> input\n",
1965 gpio_num, gpio_shift);
1966 /* set FLOAT */
1967 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1968 break;
1969
1970 default:
1971 break;
1972 }
1973
1974 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1975 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1976
1977 return 0;
1978 }
1979
bnx2x_set_mult_gpio(struct bnx2x * bp,u8 pins,u32 mode)1980 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
1981 {
1982 u32 gpio_reg = 0;
1983 int rc = 0;
1984
1985 /* Any port swapping should be handled by caller. */
1986
1987 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1988 /* read GPIO and mask except the float bits */
1989 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1990 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1991 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
1992 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
1993
1994 switch (mode) {
1995 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1996 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
1997 /* set CLR */
1998 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
1999 break;
2000
2001 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2002 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2003 /* set SET */
2004 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2005 break;
2006
2007 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2008 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2009 /* set FLOAT */
2010 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2011 break;
2012
2013 default:
2014 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2015 rc = -EINVAL;
2016 break;
2017 }
2018
2019 if (rc == 0)
2020 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2021
2022 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2023
2024 return rc;
2025 }
2026
bnx2x_set_gpio_int(struct bnx2x * bp,int gpio_num,u32 mode,u8 port)2027 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2028 {
2029 /* The GPIO should be swapped if swap register is set and active */
2030 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2031 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2032 int gpio_shift = gpio_num +
2033 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2034 u32 gpio_mask = (1 << gpio_shift);
2035 u32 gpio_reg;
2036
2037 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2038 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2039 return -EINVAL;
2040 }
2041
2042 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2043 /* read GPIO int */
2044 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2045
2046 switch (mode) {
2047 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2048 DP(NETIF_MSG_LINK, "Clear GPIO INT %d (shift %d) -> "
2049 "output low\n", gpio_num, gpio_shift);
2050 /* clear SET and set CLR */
2051 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2052 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2053 break;
2054
2055 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2056 DP(NETIF_MSG_LINK, "Set GPIO INT %d (shift %d) -> "
2057 "output high\n", gpio_num, gpio_shift);
2058 /* clear CLR and set SET */
2059 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2060 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2061 break;
2062
2063 default:
2064 break;
2065 }
2066
2067 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2068 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2069
2070 return 0;
2071 }
2072
bnx2x_set_spio(struct bnx2x * bp,int spio_num,u32 mode)2073 static int bnx2x_set_spio(struct bnx2x *bp, int spio_num, u32 mode)
2074 {
2075 u32 spio_mask = (1 << spio_num);
2076 u32 spio_reg;
2077
2078 if ((spio_num < MISC_REGISTERS_SPIO_4) ||
2079 (spio_num > MISC_REGISTERS_SPIO_7)) {
2080 BNX2X_ERR("Invalid SPIO %d\n", spio_num);
2081 return -EINVAL;
2082 }
2083
2084 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2085 /* read SPIO and mask except the float bits */
2086 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_REGISTERS_SPIO_FLOAT);
2087
2088 switch (mode) {
2089 case MISC_REGISTERS_SPIO_OUTPUT_LOW:
2090 DP(NETIF_MSG_LINK, "Set SPIO %d -> output low\n", spio_num);
2091 /* clear FLOAT and set CLR */
2092 spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2093 spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_CLR_POS);
2094 break;
2095
2096 case MISC_REGISTERS_SPIO_OUTPUT_HIGH:
2097 DP(NETIF_MSG_LINK, "Set SPIO %d -> output high\n", spio_num);
2098 /* clear FLOAT and set SET */
2099 spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2100 spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_SET_POS);
2101 break;
2102
2103 case MISC_REGISTERS_SPIO_INPUT_HI_Z:
2104 DP(NETIF_MSG_LINK, "Set SPIO %d -> input\n", spio_num);
2105 /* set FLOAT */
2106 spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2107 break;
2108
2109 default:
2110 break;
2111 }
2112
2113 REG_WR(bp, MISC_REG_SPIO, spio_reg);
2114 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2115
2116 return 0;
2117 }
2118
bnx2x_calc_fc_adv(struct bnx2x * bp)2119 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2120 {
2121 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2122 switch (bp->link_vars.ieee_fc &
2123 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2124 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2125 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2126 ADVERTISED_Pause);
2127 break;
2128
2129 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2130 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2131 ADVERTISED_Pause);
2132 break;
2133
2134 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2135 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2136 break;
2137
2138 default:
2139 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2140 ADVERTISED_Pause);
2141 break;
2142 }
2143 }
2144
bnx2x_initial_phy_init(struct bnx2x * bp,int load_mode)2145 u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2146 {
2147 if (!BP_NOMCP(bp)) {
2148 u8 rc;
2149 int cfx_idx = bnx2x_get_link_cfg_idx(bp);
2150 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2151 /*
2152 * Initialize link parameters structure variables
2153 * It is recommended to turn off RX FC for jumbo frames
2154 * for better performance
2155 */
2156 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2157 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2158 else
2159 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2160
2161 bnx2x_acquire_phy_lock(bp);
2162
2163 if (load_mode == LOAD_DIAG) {
2164 struct link_params *lp = &bp->link_params;
2165 lp->loopback_mode = LOOPBACK_XGXS;
2166 /* do PHY loopback at 10G speed, if possible */
2167 if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2168 if (lp->speed_cap_mask[cfx_idx] &
2169 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2170 lp->req_line_speed[cfx_idx] =
2171 SPEED_10000;
2172 else
2173 lp->req_line_speed[cfx_idx] =
2174 SPEED_1000;
2175 }
2176 }
2177
2178 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2179
2180 bnx2x_release_phy_lock(bp);
2181
2182 bnx2x_calc_fc_adv(bp);
2183
2184 if (CHIP_REV_IS_SLOW(bp) && bp->link_vars.link_up) {
2185 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2186 bnx2x_link_report(bp);
2187 } else
2188 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2189 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2190 return rc;
2191 }
2192 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2193 return -EINVAL;
2194 }
2195
bnx2x_link_set(struct bnx2x * bp)2196 void bnx2x_link_set(struct bnx2x *bp)
2197 {
2198 if (!BP_NOMCP(bp)) {
2199 bnx2x_acquire_phy_lock(bp);
2200 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2201 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2202 bnx2x_release_phy_lock(bp);
2203
2204 bnx2x_calc_fc_adv(bp);
2205 } else
2206 BNX2X_ERR("Bootcode is missing - can not set link\n");
2207 }
2208
bnx2x__link_reset(struct bnx2x * bp)2209 static void bnx2x__link_reset(struct bnx2x *bp)
2210 {
2211 if (!BP_NOMCP(bp)) {
2212 bnx2x_acquire_phy_lock(bp);
2213 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2214 bnx2x_release_phy_lock(bp);
2215 } else
2216 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2217 }
2218
bnx2x_link_test(struct bnx2x * bp,u8 is_serdes)2219 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2220 {
2221 u8 rc = 0;
2222
2223 if (!BP_NOMCP(bp)) {
2224 bnx2x_acquire_phy_lock(bp);
2225 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2226 is_serdes);
2227 bnx2x_release_phy_lock(bp);
2228 } else
2229 BNX2X_ERR("Bootcode is missing - can not test link\n");
2230
2231 return rc;
2232 }
2233
bnx2x_init_port_minmax(struct bnx2x * bp)2234 static void bnx2x_init_port_minmax(struct bnx2x *bp)
2235 {
2236 u32 r_param = bp->link_vars.line_speed / 8;
2237 u32 fair_periodic_timeout_usec;
2238 u32 t_fair;
2239
2240 memset(&(bp->cmng.rs_vars), 0,
2241 sizeof(struct rate_shaping_vars_per_port));
2242 memset(&(bp->cmng.fair_vars), 0, sizeof(struct fairness_vars_per_port));
2243
2244 /* 100 usec in SDM ticks = 25 since each tick is 4 usec */
2245 bp->cmng.rs_vars.rs_periodic_timeout = RS_PERIODIC_TIMEOUT_USEC / 4;
2246
2247 /* this is the threshold below which no timer arming will occur
2248 1.25 coefficient is for the threshold to be a little bigger
2249 than the real time, to compensate for timer in-accuracy */
2250 bp->cmng.rs_vars.rs_threshold =
2251 (RS_PERIODIC_TIMEOUT_USEC * r_param * 5) / 4;
2252
2253 /* resolution of fairness timer */
2254 fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
2255 /* for 10G it is 1000usec. for 1G it is 10000usec. */
2256 t_fair = T_FAIR_COEF / bp->link_vars.line_speed;
2257
2258 /* this is the threshold below which we won't arm the timer anymore */
2259 bp->cmng.fair_vars.fair_threshold = QM_ARB_BYTES;
2260
2261 /* we multiply by 1e3/8 to get bytes/msec.
2262 We don't want the credits to pass a credit
2263 of the t_fair*FAIR_MEM (algorithm resolution) */
2264 bp->cmng.fair_vars.upper_bound = r_param * t_fair * FAIR_MEM;
2265 /* since each tick is 4 usec */
2266 bp->cmng.fair_vars.fairness_timeout = fair_periodic_timeout_usec / 4;
2267 }
2268
2269 /* Calculates the sum of vn_min_rates.
2270 It's needed for further normalizing of the min_rates.
2271 Returns:
2272 sum of vn_min_rates.
2273 or
2274 0 - if all the min_rates are 0.
2275 In the later case fainess algorithm should be deactivated.
2276 If not all min_rates are zero then those that are zeroes will be set to 1.
2277 */
bnx2x_calc_vn_weight_sum(struct bnx2x * bp)2278 static void bnx2x_calc_vn_weight_sum(struct bnx2x *bp)
2279 {
2280 int all_zero = 1;
2281 int vn;
2282
2283 bp->vn_weight_sum = 0;
2284 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2285 u32 vn_cfg = bp->mf_config[vn];
2286 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2287 FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2288
2289 /* Skip hidden vns */
2290 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2291 continue;
2292
2293 /* If min rate is zero - set it to 1 */
2294 if (!vn_min_rate)
2295 vn_min_rate = DEF_MIN_RATE;
2296 else
2297 all_zero = 0;
2298
2299 bp->vn_weight_sum += vn_min_rate;
2300 }
2301
2302 /* if ETS or all min rates are zeros - disable fairness */
2303 if (BNX2X_IS_ETS_ENABLED(bp)) {
2304 bp->cmng.flags.cmng_enables &=
2305 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2306 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2307 } else if (all_zero) {
2308 bp->cmng.flags.cmng_enables &=
2309 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2310 DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2311 " fairness will be disabled\n");
2312 } else
2313 bp->cmng.flags.cmng_enables |=
2314 CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2315 }
2316
bnx2x_init_vn_minmax(struct bnx2x * bp,int vn)2317 static void bnx2x_init_vn_minmax(struct bnx2x *bp, int vn)
2318 {
2319 struct rate_shaping_vars_per_vn m_rs_vn;
2320 struct fairness_vars_per_vn m_fair_vn;
2321 u32 vn_cfg = bp->mf_config[vn];
2322 int func = func_by_vn(bp, vn);
2323 u16 vn_min_rate, vn_max_rate;
2324 int i;
2325
2326 /* If function is hidden - set min and max to zeroes */
2327 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
2328 vn_min_rate = 0;
2329 vn_max_rate = 0;
2330
2331 } else {
2332 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2333
2334 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2335 FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2336 /* If fairness is enabled (not all min rates are zeroes) and
2337 if current min rate is zero - set it to 1.
2338 This is a requirement of the algorithm. */
2339 if (bp->vn_weight_sum && (vn_min_rate == 0))
2340 vn_min_rate = DEF_MIN_RATE;
2341
2342 if (IS_MF_SI(bp))
2343 /* maxCfg in percents of linkspeed */
2344 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2345 else
2346 /* maxCfg is absolute in 100Mb units */
2347 vn_max_rate = maxCfg * 100;
2348 }
2349
2350 DP(NETIF_MSG_IFUP,
2351 "func %d: vn_min_rate %d vn_max_rate %d vn_weight_sum %d\n",
2352 func, vn_min_rate, vn_max_rate, bp->vn_weight_sum);
2353
2354 memset(&m_rs_vn, 0, sizeof(struct rate_shaping_vars_per_vn));
2355 memset(&m_fair_vn, 0, sizeof(struct fairness_vars_per_vn));
2356
2357 /* global vn counter - maximal Mbps for this vn */
2358 m_rs_vn.vn_counter.rate = vn_max_rate;
2359
2360 /* quota - number of bytes transmitted in this period */
2361 m_rs_vn.vn_counter.quota =
2362 (vn_max_rate * RS_PERIODIC_TIMEOUT_USEC) / 8;
2363
2364 if (bp->vn_weight_sum) {
2365 /* credit for each period of the fairness algorithm:
2366 number of bytes in T_FAIR (the vn share the port rate).
2367 vn_weight_sum should not be larger than 10000, thus
2368 T_FAIR_COEF / (8 * vn_weight_sum) will always be greater
2369 than zero */
2370 m_fair_vn.vn_credit_delta =
2371 max_t(u32, (vn_min_rate * (T_FAIR_COEF /
2372 (8 * bp->vn_weight_sum))),
2373 (bp->cmng.fair_vars.fair_threshold +
2374 MIN_ABOVE_THRESH));
2375 DP(NETIF_MSG_IFUP, "m_fair_vn.vn_credit_delta %d\n",
2376 m_fair_vn.vn_credit_delta);
2377 }
2378
2379 /* Store it to internal memory */
2380 for (i = 0; i < sizeof(struct rate_shaping_vars_per_vn)/4; i++)
2381 REG_WR(bp, BAR_XSTRORM_INTMEM +
2382 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func) + i * 4,
2383 ((u32 *)(&m_rs_vn))[i]);
2384
2385 for (i = 0; i < sizeof(struct fairness_vars_per_vn)/4; i++)
2386 REG_WR(bp, BAR_XSTRORM_INTMEM +
2387 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func) + i * 4,
2388 ((u32 *)(&m_fair_vn))[i]);
2389 }
2390
bnx2x_get_cmng_fns_mode(struct bnx2x * bp)2391 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2392 {
2393 if (CHIP_REV_IS_SLOW(bp))
2394 return CMNG_FNS_NONE;
2395 if (IS_MF(bp))
2396 return CMNG_FNS_MINMAX;
2397
2398 return CMNG_FNS_NONE;
2399 }
2400
bnx2x_read_mf_cfg(struct bnx2x * bp)2401 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2402 {
2403 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2404
2405 if (BP_NOMCP(bp))
2406 return; /* what should be the default bvalue in this case */
2407
2408 /* For 2 port configuration the absolute function number formula
2409 * is:
2410 * abs_func = 2 * vn + BP_PORT + BP_PATH
2411 *
2412 * and there are 4 functions per port
2413 *
2414 * For 4 port configuration it is
2415 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2416 *
2417 * and there are 2 functions per port
2418 */
2419 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2420 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2421
2422 if (func >= E1H_FUNC_MAX)
2423 break;
2424
2425 bp->mf_config[vn] =
2426 MF_CFG_RD(bp, func_mf_config[func].config);
2427 }
2428 }
2429
bnx2x_cmng_fns_init(struct bnx2x * bp,u8 read_cfg,u8 cmng_type)2430 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2431 {
2432
2433 if (cmng_type == CMNG_FNS_MINMAX) {
2434 int vn;
2435
2436 /* clear cmng_enables */
2437 bp->cmng.flags.cmng_enables = 0;
2438
2439 /* read mf conf from shmem */
2440 if (read_cfg)
2441 bnx2x_read_mf_cfg(bp);
2442
2443 /* Init rate shaping and fairness contexts */
2444 bnx2x_init_port_minmax(bp);
2445
2446 /* vn_weight_sum and enable fairness if not 0 */
2447 bnx2x_calc_vn_weight_sum(bp);
2448
2449 /* calculate and set min-max rate for each vn */
2450 if (bp->port.pmf)
2451 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2452 bnx2x_init_vn_minmax(bp, vn);
2453
2454 /* always enable rate shaping and fairness */
2455 bp->cmng.flags.cmng_enables |=
2456 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2457 if (!bp->vn_weight_sum)
2458 DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2459 " fairness will be disabled\n");
2460 return;
2461 }
2462
2463 /* rate shaping and fairness are disabled */
2464 DP(NETIF_MSG_IFUP,
2465 "rate shaping and fairness are disabled\n");
2466 }
2467
2468 /* This function is called upon link interrupt */
bnx2x_link_attn(struct bnx2x * bp)2469 static void bnx2x_link_attn(struct bnx2x *bp)
2470 {
2471 /* Make sure that we are synced with the current statistics */
2472 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2473
2474 bnx2x_link_update(&bp->link_params, &bp->link_vars);
2475
2476 if (bp->link_vars.link_up) {
2477
2478 /* dropless flow control */
2479 if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2480 int port = BP_PORT(bp);
2481 u32 pause_enabled = 0;
2482
2483 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2484 pause_enabled = 1;
2485
2486 REG_WR(bp, BAR_USTRORM_INTMEM +
2487 USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2488 pause_enabled);
2489 }
2490
2491 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2492 struct host_port_stats *pstats;
2493
2494 pstats = bnx2x_sp(bp, port_stats);
2495 /* reset old mac stats */
2496 memset(&(pstats->mac_stx[0]), 0,
2497 sizeof(struct mac_stx));
2498 }
2499 if (bp->state == BNX2X_STATE_OPEN)
2500 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2501 }
2502
2503 if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2504 int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2505
2506 if (cmng_fns != CMNG_FNS_NONE) {
2507 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2508 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2509 } else
2510 /* rate shaping and fairness are disabled */
2511 DP(NETIF_MSG_IFUP,
2512 "single function mode without fairness\n");
2513 }
2514
2515 __bnx2x_link_report(bp);
2516
2517 if (IS_MF(bp))
2518 bnx2x_link_sync_notify(bp);
2519 }
2520
bnx2x__link_status_update(struct bnx2x * bp)2521 void bnx2x__link_status_update(struct bnx2x *bp)
2522 {
2523 if (bp->state != BNX2X_STATE_OPEN)
2524 return;
2525
2526 /* read updated dcb configuration */
2527 bnx2x_dcbx_pmf_update(bp);
2528
2529 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2530
2531 if (bp->link_vars.link_up)
2532 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2533 else
2534 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2535
2536 /* indicate link status */
2537 bnx2x_link_report(bp);
2538 }
2539
bnx2x_pmf_update(struct bnx2x * bp)2540 static void bnx2x_pmf_update(struct bnx2x *bp)
2541 {
2542 int port = BP_PORT(bp);
2543 u32 val;
2544
2545 bp->port.pmf = 1;
2546 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2547
2548 /*
2549 * We need the mb() to ensure the ordering between the writing to
2550 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2551 */
2552 smp_mb();
2553
2554 /* queue a periodic task */
2555 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2556
2557 bnx2x_dcbx_pmf_update(bp);
2558
2559 /* enable nig attention */
2560 val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2561 if (bp->common.int_block == INT_BLOCK_HC) {
2562 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2563 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2564 } else if (!CHIP_IS_E1x(bp)) {
2565 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2566 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2567 }
2568
2569 bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2570 }
2571
2572 /* end of Link */
2573
2574 /* slow path */
2575
2576 /*
2577 * General service functions
2578 */
2579
2580 /* send the MCP a request, block until there is a reply */
bnx2x_fw_command(struct bnx2x * bp,u32 command,u32 param)2581 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2582 {
2583 int mb_idx = BP_FW_MB_IDX(bp);
2584 u32 seq;
2585 u32 rc = 0;
2586 u32 cnt = 1;
2587 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2588
2589 mutex_lock(&bp->fw_mb_mutex);
2590 seq = ++bp->fw_seq;
2591 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2592 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2593
2594 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2595 (command | seq), param);
2596
2597 do {
2598 /* let the FW do it's magic ... */
2599 msleep(delay);
2600
2601 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2602
2603 /* Give the FW up to 5 second (500*10ms) */
2604 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2605
2606 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2607 cnt*delay, rc, seq);
2608
2609 /* is this a reply to our command? */
2610 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2611 rc &= FW_MSG_CODE_MASK;
2612 else {
2613 /* FW BUG! */
2614 BNX2X_ERR("FW failed to respond!\n");
2615 bnx2x_fw_dump(bp);
2616 rc = 0;
2617 }
2618 mutex_unlock(&bp->fw_mb_mutex);
2619
2620 return rc;
2621 }
2622
2623
bnx2x_func_init(struct bnx2x * bp,struct bnx2x_func_init_params * p)2624 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2625 {
2626 if (CHIP_IS_E1x(bp)) {
2627 struct tstorm_eth_function_common_config tcfg = {0};
2628
2629 storm_memset_func_cfg(bp, &tcfg, p->func_id);
2630 }
2631
2632 /* Enable the function in the FW */
2633 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2634 storm_memset_func_en(bp, p->func_id, 1);
2635
2636 /* spq */
2637 if (p->func_flgs & FUNC_FLG_SPQ) {
2638 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2639 REG_WR(bp, XSEM_REG_FAST_MEMORY +
2640 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2641 }
2642 }
2643
2644 /**
2645 * bnx2x_get_tx_only_flags - Return common flags
2646 *
2647 * @bp device handle
2648 * @fp queue handle
2649 * @zero_stats TRUE if statistics zeroing is needed
2650 *
2651 * Return the flags that are common for the Tx-only and not normal connections.
2652 */
bnx2x_get_common_flags(struct bnx2x * bp,struct bnx2x_fastpath * fp,bool zero_stats)2653 static inline unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2654 struct bnx2x_fastpath *fp,
2655 bool zero_stats)
2656 {
2657 unsigned long flags = 0;
2658
2659 /* PF driver will always initialize the Queue to an ACTIVE state */
2660 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2661
2662 /* tx only connections collect statistics (on the same index as the
2663 * parent connection). The statistics are zeroed when the parent
2664 * connection is initialized.
2665 */
2666
2667 __set_bit(BNX2X_Q_FLG_STATS, &flags);
2668 if (zero_stats)
2669 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2670
2671
2672 return flags;
2673 }
2674
bnx2x_get_q_flags(struct bnx2x * bp,struct bnx2x_fastpath * fp,bool leading)2675 static inline unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2676 struct bnx2x_fastpath *fp,
2677 bool leading)
2678 {
2679 unsigned long flags = 0;
2680
2681 /* calculate other queue flags */
2682 if (IS_MF_SD(bp))
2683 __set_bit(BNX2X_Q_FLG_OV, &flags);
2684
2685 if (IS_FCOE_FP(fp))
2686 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
2687
2688 if (!fp->disable_tpa) {
2689 __set_bit(BNX2X_Q_FLG_TPA, &flags);
2690 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2691 }
2692
2693 if (leading) {
2694 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
2695 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
2696 }
2697
2698 /* Always set HW VLAN stripping */
2699 __set_bit(BNX2X_Q_FLG_VLAN, &flags);
2700
2701
2702 return flags | bnx2x_get_common_flags(bp, fp, true);
2703 }
2704
bnx2x_pf_q_prep_general(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_general_setup_params * gen_init,u8 cos)2705 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
2706 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
2707 u8 cos)
2708 {
2709 gen_init->stat_id = bnx2x_stats_id(fp);
2710 gen_init->spcl_id = fp->cl_id;
2711
2712 /* Always use mini-jumbo MTU for FCoE L2 ring */
2713 if (IS_FCOE_FP(fp))
2714 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2715 else
2716 gen_init->mtu = bp->dev->mtu;
2717
2718 gen_init->cos = cos;
2719 }
2720
bnx2x_pf_rx_q_prep(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct rxq_pause_params * pause,struct bnx2x_rxq_setup_params * rxq_init)2721 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
2722 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
2723 struct bnx2x_rxq_setup_params *rxq_init)
2724 {
2725 u8 max_sge = 0;
2726 u16 sge_sz = 0;
2727 u16 tpa_agg_size = 0;
2728
2729 if (!fp->disable_tpa) {
2730 pause->sge_th_lo = SGE_TH_LO(bp);
2731 pause->sge_th_hi = SGE_TH_HI(bp);
2732
2733 /* validate SGE ring has enough to cross high threshold */
2734 WARN_ON(bp->dropless_fc &&
2735 pause->sge_th_hi + FW_PREFETCH_CNT >
2736 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
2737
2738 tpa_agg_size = min_t(u32,
2739 (min_t(u32, 8, MAX_SKB_FRAGS) *
2740 SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
2741 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
2742 SGE_PAGE_SHIFT;
2743 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
2744 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
2745 sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
2746 0xffff);
2747 }
2748
2749 /* pause - not for e1 */
2750 if (!CHIP_IS_E1(bp)) {
2751 pause->bd_th_lo = BD_TH_LO(bp);
2752 pause->bd_th_hi = BD_TH_HI(bp);
2753
2754 pause->rcq_th_lo = RCQ_TH_LO(bp);
2755 pause->rcq_th_hi = RCQ_TH_HI(bp);
2756 /*
2757 * validate that rings have enough entries to cross
2758 * high thresholds
2759 */
2760 WARN_ON(bp->dropless_fc &&
2761 pause->bd_th_hi + FW_PREFETCH_CNT >
2762 bp->rx_ring_size);
2763 WARN_ON(bp->dropless_fc &&
2764 pause->rcq_th_hi + FW_PREFETCH_CNT >
2765 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
2766
2767 pause->pri_map = 1;
2768 }
2769
2770 /* rxq setup */
2771 rxq_init->dscr_map = fp->rx_desc_mapping;
2772 rxq_init->sge_map = fp->rx_sge_mapping;
2773 rxq_init->rcq_map = fp->rx_comp_mapping;
2774 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
2775
2776 /* This should be a maximum number of data bytes that may be
2777 * placed on the BD (not including paddings).
2778 */
2779 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
2780 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
2781
2782 rxq_init->cl_qzone_id = fp->cl_qzone_id;
2783 rxq_init->tpa_agg_sz = tpa_agg_size;
2784 rxq_init->sge_buf_sz = sge_sz;
2785 rxq_init->max_sges_pkt = max_sge;
2786 rxq_init->rss_engine_id = BP_FUNC(bp);
2787
2788 /* Maximum number or simultaneous TPA aggregation for this Queue.
2789 *
2790 * For PF Clients it should be the maximum avaliable number.
2791 * VF driver(s) may want to define it to a smaller value.
2792 */
2793 rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
2794
2795 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
2796 rxq_init->fw_sb_id = fp->fw_sb_id;
2797
2798 if (IS_FCOE_FP(fp))
2799 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
2800 else
2801 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
2802 }
2803
bnx2x_pf_tx_q_prep(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_txq_setup_params * txq_init,u8 cos)2804 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
2805 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
2806 u8 cos)
2807 {
2808 txq_init->dscr_map = fp->txdata[cos].tx_desc_mapping;
2809 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
2810 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
2811 txq_init->fw_sb_id = fp->fw_sb_id;
2812
2813 /*
2814 * set the tss leading client id for TX classfication ==
2815 * leading RSS client id
2816 */
2817 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
2818
2819 if (IS_FCOE_FP(fp)) {
2820 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
2821 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
2822 }
2823 }
2824
bnx2x_pf_init(struct bnx2x * bp)2825 static void bnx2x_pf_init(struct bnx2x *bp)
2826 {
2827 struct bnx2x_func_init_params func_init = {0};
2828 struct event_ring_data eq_data = { {0} };
2829 u16 flags;
2830
2831 if (!CHIP_IS_E1x(bp)) {
2832 /* reset IGU PF statistics: MSIX + ATTN */
2833 /* PF */
2834 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2835 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2836 (CHIP_MODE_IS_4_PORT(bp) ?
2837 BP_FUNC(bp) : BP_VN(bp))*4, 0);
2838 /* ATTN */
2839 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2840 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2841 BNX2X_IGU_STAS_MSG_PF_CNT*4 +
2842 (CHIP_MODE_IS_4_PORT(bp) ?
2843 BP_FUNC(bp) : BP_VN(bp))*4, 0);
2844 }
2845
2846 /* function setup flags */
2847 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
2848
2849 /* This flag is relevant for E1x only.
2850 * E2 doesn't have a TPA configuration in a function level.
2851 */
2852 flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
2853
2854 func_init.func_flgs = flags;
2855 func_init.pf_id = BP_FUNC(bp);
2856 func_init.func_id = BP_FUNC(bp);
2857 func_init.spq_map = bp->spq_mapping;
2858 func_init.spq_prod = bp->spq_prod_idx;
2859
2860 bnx2x_func_init(bp, &func_init);
2861
2862 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
2863
2864 /*
2865 * Congestion management values depend on the link rate
2866 * There is no active link so initial link rate is set to 10 Gbps.
2867 * When the link comes up The congestion management values are
2868 * re-calculated according to the actual link rate.
2869 */
2870 bp->link_vars.line_speed = SPEED_10000;
2871 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
2872
2873 /* Only the PMF sets the HW */
2874 if (bp->port.pmf)
2875 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2876
2877 /* init Event Queue */
2878 eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
2879 eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
2880 eq_data.producer = bp->eq_prod;
2881 eq_data.index_id = HC_SP_INDEX_EQ_CONS;
2882 eq_data.sb_id = DEF_SB_ID;
2883 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
2884 }
2885
2886
bnx2x_e1h_disable(struct bnx2x * bp)2887 static void bnx2x_e1h_disable(struct bnx2x *bp)
2888 {
2889 int port = BP_PORT(bp);
2890
2891 bnx2x_tx_disable(bp);
2892
2893 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
2894 }
2895
bnx2x_e1h_enable(struct bnx2x * bp)2896 static void bnx2x_e1h_enable(struct bnx2x *bp)
2897 {
2898 int port = BP_PORT(bp);
2899
2900 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
2901
2902 /* Tx queue should be only reenabled */
2903 netif_tx_wake_all_queues(bp->dev);
2904
2905 /*
2906 * Should not call netif_carrier_on since it will be called if the link
2907 * is up when checking for link state
2908 */
2909 }
2910
2911 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
2912
bnx2x_drv_info_ether_stat(struct bnx2x * bp)2913 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
2914 {
2915 struct eth_stats_info *ether_stat =
2916 &bp->slowpath->drv_info_to_mcp.ether_stat;
2917
2918 /* leave last char as NULL */
2919 memcpy(ether_stat->version, DRV_MODULE_VERSION,
2920 ETH_STAT_INFO_VERSION_LEN - 1);
2921
2922 bp->fp[0].mac_obj.get_n_elements(bp, &bp->fp[0].mac_obj,
2923 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
2924 ether_stat->mac_local);
2925
2926 ether_stat->mtu_size = bp->dev->mtu;
2927
2928 if (bp->dev->features & NETIF_F_RXCSUM)
2929 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
2930 if (bp->dev->features & NETIF_F_TSO)
2931 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
2932 ether_stat->feature_flags |= bp->common.boot_mode;
2933
2934 ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
2935
2936 ether_stat->txq_size = bp->tx_ring_size;
2937 ether_stat->rxq_size = bp->rx_ring_size;
2938 }
2939
bnx2x_drv_info_fcoe_stat(struct bnx2x * bp)2940 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
2941 {
2942 #ifdef BCM_CNIC
2943 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
2944 struct fcoe_stats_info *fcoe_stat =
2945 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
2946
2947 memcpy(fcoe_stat->mac_local, bp->fip_mac, ETH_ALEN);
2948
2949 fcoe_stat->qos_priority =
2950 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
2951
2952 /* insert FCoE stats from ramrod response */
2953 if (!NO_FCOE(bp)) {
2954 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
2955 &bp->fw_stats_data->queue_stats[FCOE_IDX].
2956 tstorm_queue_statistics;
2957
2958 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
2959 &bp->fw_stats_data->queue_stats[FCOE_IDX].
2960 xstorm_queue_statistics;
2961
2962 struct fcoe_statistics_params *fw_fcoe_stat =
2963 &bp->fw_stats_data->fcoe;
2964
2965 ADD_64(fcoe_stat->rx_bytes_hi, 0, fcoe_stat->rx_bytes_lo,
2966 fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
2967
2968 ADD_64(fcoe_stat->rx_bytes_hi,
2969 fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
2970 fcoe_stat->rx_bytes_lo,
2971 fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
2972
2973 ADD_64(fcoe_stat->rx_bytes_hi,
2974 fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
2975 fcoe_stat->rx_bytes_lo,
2976 fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
2977
2978 ADD_64(fcoe_stat->rx_bytes_hi,
2979 fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
2980 fcoe_stat->rx_bytes_lo,
2981 fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
2982
2983 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2984 fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
2985
2986 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2987 fcoe_q_tstorm_stats->rcv_ucast_pkts);
2988
2989 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2990 fcoe_q_tstorm_stats->rcv_bcast_pkts);
2991
2992 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2993 fcoe_q_tstorm_stats->rcv_mcast_pkts);
2994
2995 ADD_64(fcoe_stat->tx_bytes_hi, 0, fcoe_stat->tx_bytes_lo,
2996 fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
2997
2998 ADD_64(fcoe_stat->tx_bytes_hi,
2999 fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3000 fcoe_stat->tx_bytes_lo,
3001 fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3002
3003 ADD_64(fcoe_stat->tx_bytes_hi,
3004 fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3005 fcoe_stat->tx_bytes_lo,
3006 fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3007
3008 ADD_64(fcoe_stat->tx_bytes_hi,
3009 fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3010 fcoe_stat->tx_bytes_lo,
3011 fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3012
3013 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3014 fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3015
3016 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3017 fcoe_q_xstorm_stats->ucast_pkts_sent);
3018
3019 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3020 fcoe_q_xstorm_stats->bcast_pkts_sent);
3021
3022 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3023 fcoe_q_xstorm_stats->mcast_pkts_sent);
3024 }
3025
3026 /* ask L5 driver to add data to the struct */
3027 bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3028 #endif
3029 }
3030
bnx2x_drv_info_iscsi_stat(struct bnx2x * bp)3031 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3032 {
3033 #ifdef BCM_CNIC
3034 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3035 struct iscsi_stats_info *iscsi_stat =
3036 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3037
3038 memcpy(iscsi_stat->mac_local, bp->cnic_eth_dev.iscsi_mac, ETH_ALEN);
3039
3040 iscsi_stat->qos_priority =
3041 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3042
3043 /* ask L5 driver to add data to the struct */
3044 bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3045 #endif
3046 }
3047
3048 /* called due to MCP event (on pmf):
3049 * reread new bandwidth configuration
3050 * configure FW
3051 * notify others function about the change
3052 */
bnx2x_config_mf_bw(struct bnx2x * bp)3053 static inline void bnx2x_config_mf_bw(struct bnx2x *bp)
3054 {
3055 if (bp->link_vars.link_up) {
3056 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3057 bnx2x_link_sync_notify(bp);
3058 }
3059 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3060 }
3061
bnx2x_set_mf_bw(struct bnx2x * bp)3062 static inline void bnx2x_set_mf_bw(struct bnx2x *bp)
3063 {
3064 bnx2x_config_mf_bw(bp);
3065 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3066 }
3067
bnx2x_handle_drv_info_req(struct bnx2x * bp)3068 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3069 {
3070 enum drv_info_opcode op_code;
3071 u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3072
3073 /* if drv_info version supported by MFW doesn't match - send NACK */
3074 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3075 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3076 return;
3077 }
3078
3079 op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3080 DRV_INFO_CONTROL_OP_CODE_SHIFT;
3081
3082 memset(&bp->slowpath->drv_info_to_mcp, 0,
3083 sizeof(union drv_info_to_mcp));
3084
3085 switch (op_code) {
3086 case ETH_STATS_OPCODE:
3087 bnx2x_drv_info_ether_stat(bp);
3088 break;
3089 case FCOE_STATS_OPCODE:
3090 bnx2x_drv_info_fcoe_stat(bp);
3091 break;
3092 case ISCSI_STATS_OPCODE:
3093 bnx2x_drv_info_iscsi_stat(bp);
3094 break;
3095 default:
3096 /* if op code isn't supported - send NACK */
3097 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3098 return;
3099 }
3100
3101 /* if we got drv_info attn from MFW then these fields are defined in
3102 * shmem2 for sure
3103 */
3104 SHMEM2_WR(bp, drv_info_host_addr_lo,
3105 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3106 SHMEM2_WR(bp, drv_info_host_addr_hi,
3107 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3108
3109 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3110 }
3111
bnx2x_dcc_event(struct bnx2x * bp,u32 dcc_event)3112 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3113 {
3114 DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3115
3116 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3117
3118 /*
3119 * This is the only place besides the function initialization
3120 * where the bp->flags can change so it is done without any
3121 * locks
3122 */
3123 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3124 DP(NETIF_MSG_IFDOWN, "mf_cfg function disabled\n");
3125 bp->flags |= MF_FUNC_DIS;
3126
3127 bnx2x_e1h_disable(bp);
3128 } else {
3129 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
3130 bp->flags &= ~MF_FUNC_DIS;
3131
3132 bnx2x_e1h_enable(bp);
3133 }
3134 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3135 }
3136 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3137 bnx2x_config_mf_bw(bp);
3138 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3139 }
3140
3141 /* Report results to MCP */
3142 if (dcc_event)
3143 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3144 else
3145 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3146 }
3147
3148 /* must be called under the spq lock */
bnx2x_sp_get_next(struct bnx2x * bp)3149 static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3150 {
3151 struct eth_spe *next_spe = bp->spq_prod_bd;
3152
3153 if (bp->spq_prod_bd == bp->spq_last_bd) {
3154 bp->spq_prod_bd = bp->spq;
3155 bp->spq_prod_idx = 0;
3156 DP(NETIF_MSG_TIMER, "end of spq\n");
3157 } else {
3158 bp->spq_prod_bd++;
3159 bp->spq_prod_idx++;
3160 }
3161 return next_spe;
3162 }
3163
3164 /* must be called under the spq lock */
bnx2x_sp_prod_update(struct bnx2x * bp)3165 static inline void bnx2x_sp_prod_update(struct bnx2x *bp)
3166 {
3167 int func = BP_FUNC(bp);
3168
3169 /*
3170 * Make sure that BD data is updated before writing the producer:
3171 * BD data is written to the memory, the producer is read from the
3172 * memory, thus we need a full memory barrier to ensure the ordering.
3173 */
3174 mb();
3175
3176 REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3177 bp->spq_prod_idx);
3178 mmiowb();
3179 }
3180
3181 /**
3182 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3183 *
3184 * @cmd: command to check
3185 * @cmd_type: command type
3186 */
bnx2x_is_contextless_ramrod(int cmd,int cmd_type)3187 static inline bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3188 {
3189 if ((cmd_type == NONE_CONNECTION_TYPE) ||
3190 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3191 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3192 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3193 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3194 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3195 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3196 return true;
3197 else
3198 return false;
3199
3200 }
3201
3202
3203 /**
3204 * bnx2x_sp_post - place a single command on an SP ring
3205 *
3206 * @bp: driver handle
3207 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
3208 * @cid: SW CID the command is related to
3209 * @data_hi: command private data address (high 32 bits)
3210 * @data_lo: command private data address (low 32 bits)
3211 * @cmd_type: command type (e.g. NONE, ETH)
3212 *
3213 * SP data is handled as if it's always an address pair, thus data fields are
3214 * not swapped to little endian in upper functions. Instead this function swaps
3215 * data as if it's two u32 fields.
3216 */
bnx2x_sp_post(struct bnx2x * bp,int command,int cid,u32 data_hi,u32 data_lo,int cmd_type)3217 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3218 u32 data_hi, u32 data_lo, int cmd_type)
3219 {
3220 struct eth_spe *spe;
3221 u16 type;
3222 bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3223
3224 #ifdef BNX2X_STOP_ON_ERROR
3225 if (unlikely(bp->panic))
3226 return -EIO;
3227 #endif
3228
3229 spin_lock_bh(&bp->spq_lock);
3230
3231 if (common) {
3232 if (!atomic_read(&bp->eq_spq_left)) {
3233 BNX2X_ERR("BUG! EQ ring full!\n");
3234 spin_unlock_bh(&bp->spq_lock);
3235 bnx2x_panic();
3236 return -EBUSY;
3237 }
3238 } else if (!atomic_read(&bp->cq_spq_left)) {
3239 BNX2X_ERR("BUG! SPQ ring full!\n");
3240 spin_unlock_bh(&bp->spq_lock);
3241 bnx2x_panic();
3242 return -EBUSY;
3243 }
3244
3245 spe = bnx2x_sp_get_next(bp);
3246
3247 /* CID needs port number to be encoded int it */
3248 spe->hdr.conn_and_cmd_data =
3249 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3250 HW_CID(bp, cid));
3251
3252 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3253
3254 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3255 SPE_HDR_FUNCTION_ID);
3256
3257 spe->hdr.type = cpu_to_le16(type);
3258
3259 spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3260 spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3261
3262 /*
3263 * It's ok if the actual decrement is issued towards the memory
3264 * somewhere between the spin_lock and spin_unlock. Thus no
3265 * more explict memory barrier is needed.
3266 */
3267 if (common)
3268 atomic_dec(&bp->eq_spq_left);
3269 else
3270 atomic_dec(&bp->cq_spq_left);
3271
3272
3273 DP(BNX2X_MSG_SP/*NETIF_MSG_TIMER*/,
3274 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) "
3275 "type(0x%x) left (CQ, EQ) (%x,%x)\n",
3276 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3277 (u32)(U64_LO(bp->spq_mapping) +
3278 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3279 HW_CID(bp, cid), data_hi, data_lo, type,
3280 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3281
3282 bnx2x_sp_prod_update(bp);
3283 spin_unlock_bh(&bp->spq_lock);
3284 return 0;
3285 }
3286
3287 /* acquire split MCP access lock register */
bnx2x_acquire_alr(struct bnx2x * bp)3288 static int bnx2x_acquire_alr(struct bnx2x *bp)
3289 {
3290 u32 j, val;
3291 int rc = 0;
3292
3293 might_sleep();
3294 for (j = 0; j < 1000; j++) {
3295 val = (1UL << 31);
3296 REG_WR(bp, GRCBASE_MCP + 0x9c, val);
3297 val = REG_RD(bp, GRCBASE_MCP + 0x9c);
3298 if (val & (1L << 31))
3299 break;
3300
3301 msleep(5);
3302 }
3303 if (!(val & (1L << 31))) {
3304 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3305 rc = -EBUSY;
3306 }
3307
3308 return rc;
3309 }
3310
3311 /* release split MCP access lock register */
bnx2x_release_alr(struct bnx2x * bp)3312 static void bnx2x_release_alr(struct bnx2x *bp)
3313 {
3314 REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
3315 }
3316
3317 #define BNX2X_DEF_SB_ATT_IDX 0x0001
3318 #define BNX2X_DEF_SB_IDX 0x0002
3319
bnx2x_update_dsb_idx(struct bnx2x * bp)3320 static inline u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3321 {
3322 struct host_sp_status_block *def_sb = bp->def_status_blk;
3323 u16 rc = 0;
3324
3325 barrier(); /* status block is written to by the chip */
3326 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3327 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3328 rc |= BNX2X_DEF_SB_ATT_IDX;
3329 }
3330
3331 if (bp->def_idx != def_sb->sp_sb.running_index) {
3332 bp->def_idx = def_sb->sp_sb.running_index;
3333 rc |= BNX2X_DEF_SB_IDX;
3334 }
3335
3336 /* Do not reorder: indecies reading should complete before handling */
3337 barrier();
3338 return rc;
3339 }
3340
3341 /*
3342 * slow path service functions
3343 */
3344
bnx2x_attn_int_asserted(struct bnx2x * bp,u32 asserted)3345 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3346 {
3347 int port = BP_PORT(bp);
3348 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3349 MISC_REG_AEU_MASK_ATTN_FUNC_0;
3350 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3351 NIG_REG_MASK_INTERRUPT_PORT0;
3352 u32 aeu_mask;
3353 u32 nig_mask = 0;
3354 u32 reg_addr;
3355
3356 if (bp->attn_state & asserted)
3357 BNX2X_ERR("IGU ERROR\n");
3358
3359 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3360 aeu_mask = REG_RD(bp, aeu_addr);
3361
3362 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n",
3363 aeu_mask, asserted);
3364 aeu_mask &= ~(asserted & 0x3ff);
3365 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3366
3367 REG_WR(bp, aeu_addr, aeu_mask);
3368 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3369
3370 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3371 bp->attn_state |= asserted;
3372 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3373
3374 if (asserted & ATTN_HARD_WIRED_MASK) {
3375 if (asserted & ATTN_NIG_FOR_FUNC) {
3376
3377 bnx2x_acquire_phy_lock(bp);
3378
3379 /* save nig interrupt mask */
3380 nig_mask = REG_RD(bp, nig_int_mask_addr);
3381
3382 /* If nig_mask is not set, no need to call the update
3383 * function.
3384 */
3385 if (nig_mask) {
3386 REG_WR(bp, nig_int_mask_addr, 0);
3387
3388 bnx2x_link_attn(bp);
3389 }
3390
3391 /* handle unicore attn? */
3392 }
3393 if (asserted & ATTN_SW_TIMER_4_FUNC)
3394 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3395
3396 if (asserted & GPIO_2_FUNC)
3397 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3398
3399 if (asserted & GPIO_3_FUNC)
3400 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3401
3402 if (asserted & GPIO_4_FUNC)
3403 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3404
3405 if (port == 0) {
3406 if (asserted & ATTN_GENERAL_ATTN_1) {
3407 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3408 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3409 }
3410 if (asserted & ATTN_GENERAL_ATTN_2) {
3411 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3412 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3413 }
3414 if (asserted & ATTN_GENERAL_ATTN_3) {
3415 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3416 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3417 }
3418 } else {
3419 if (asserted & ATTN_GENERAL_ATTN_4) {
3420 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3421 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3422 }
3423 if (asserted & ATTN_GENERAL_ATTN_5) {
3424 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3425 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3426 }
3427 if (asserted & ATTN_GENERAL_ATTN_6) {
3428 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3429 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3430 }
3431 }
3432
3433 } /* if hardwired */
3434
3435 if (bp->common.int_block == INT_BLOCK_HC)
3436 reg_addr = (HC_REG_COMMAND_REG + port*32 +
3437 COMMAND_REG_ATTN_BITS_SET);
3438 else
3439 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3440
3441 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3442 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3443 REG_WR(bp, reg_addr, asserted);
3444
3445 /* now set back the mask */
3446 if (asserted & ATTN_NIG_FOR_FUNC) {
3447 REG_WR(bp, nig_int_mask_addr, nig_mask);
3448 bnx2x_release_phy_lock(bp);
3449 }
3450 }
3451
bnx2x_fan_failure(struct bnx2x * bp)3452 static inline void bnx2x_fan_failure(struct bnx2x *bp)
3453 {
3454 int port = BP_PORT(bp);
3455 u32 ext_phy_config;
3456 /* mark the failure */
3457 ext_phy_config =
3458 SHMEM_RD(bp,
3459 dev_info.port_hw_config[port].external_phy_config);
3460
3461 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3462 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3463 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3464 ext_phy_config);
3465
3466 /* log the failure */
3467 netdev_err(bp->dev, "Fan Failure on Network Controller has caused"
3468 " the driver to shutdown the card to prevent permanent"
3469 " damage. Please contact OEM Support for assistance\n");
3470
3471 /*
3472 * Scheudle device reset (unload)
3473 * This is due to some boards consuming sufficient power when driver is
3474 * up to overheat if fan fails.
3475 */
3476 smp_mb__before_clear_bit();
3477 set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3478 smp_mb__after_clear_bit();
3479 schedule_delayed_work(&bp->sp_rtnl_task, 0);
3480
3481 }
3482
bnx2x_attn_int_deasserted0(struct bnx2x * bp,u32 attn)3483 static inline void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3484 {
3485 int port = BP_PORT(bp);
3486 int reg_offset;
3487 u32 val;
3488
3489 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3490 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3491
3492 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3493
3494 val = REG_RD(bp, reg_offset);
3495 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3496 REG_WR(bp, reg_offset, val);
3497
3498 BNX2X_ERR("SPIO5 hw attention\n");
3499
3500 /* Fan failure attention */
3501 bnx2x_hw_reset_phy(&bp->link_params);
3502 bnx2x_fan_failure(bp);
3503 }
3504
3505 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3506 bnx2x_acquire_phy_lock(bp);
3507 bnx2x_handle_module_detect_int(&bp->link_params);
3508 bnx2x_release_phy_lock(bp);
3509 }
3510
3511 if (attn & HW_INTERRUT_ASSERT_SET_0) {
3512
3513 val = REG_RD(bp, reg_offset);
3514 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3515 REG_WR(bp, reg_offset, val);
3516
3517 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3518 (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3519 bnx2x_panic();
3520 }
3521 }
3522
bnx2x_attn_int_deasserted1(struct bnx2x * bp,u32 attn)3523 static inline void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3524 {
3525 u32 val;
3526
3527 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3528
3529 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3530 BNX2X_ERR("DB hw attention 0x%x\n", val);
3531 /* DORQ discard attention */
3532 if (val & 0x2)
3533 BNX2X_ERR("FATAL error from DORQ\n");
3534 }
3535
3536 if (attn & HW_INTERRUT_ASSERT_SET_1) {
3537
3538 int port = BP_PORT(bp);
3539 int reg_offset;
3540
3541 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3542 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3543
3544 val = REG_RD(bp, reg_offset);
3545 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3546 REG_WR(bp, reg_offset, val);
3547
3548 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3549 (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3550 bnx2x_panic();
3551 }
3552 }
3553
bnx2x_attn_int_deasserted2(struct bnx2x * bp,u32 attn)3554 static inline void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3555 {
3556 u32 val;
3557
3558 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3559
3560 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3561 BNX2X_ERR("CFC hw attention 0x%x\n", val);
3562 /* CFC error attention */
3563 if (val & 0x2)
3564 BNX2X_ERR("FATAL error from CFC\n");
3565 }
3566
3567 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3568 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3569 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3570 /* RQ_USDMDP_FIFO_OVERFLOW */
3571 if (val & 0x18000)
3572 BNX2X_ERR("FATAL error from PXP\n");
3573
3574 if (!CHIP_IS_E1x(bp)) {
3575 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3576 BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3577 }
3578 }
3579
3580 if (attn & HW_INTERRUT_ASSERT_SET_2) {
3581
3582 int port = BP_PORT(bp);
3583 int reg_offset;
3584
3585 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3586 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3587
3588 val = REG_RD(bp, reg_offset);
3589 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3590 REG_WR(bp, reg_offset, val);
3591
3592 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3593 (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3594 bnx2x_panic();
3595 }
3596 }
3597
bnx2x_attn_int_deasserted3(struct bnx2x * bp,u32 attn)3598 static inline void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3599 {
3600 u32 val;
3601
3602 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3603
3604 if (attn & BNX2X_PMF_LINK_ASSERT) {
3605 int func = BP_FUNC(bp);
3606
3607 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3608 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3609 func_mf_config[BP_ABS_FUNC(bp)].config);
3610 val = SHMEM_RD(bp,
3611 func_mb[BP_FW_MB_IDX(bp)].drv_status);
3612 if (val & DRV_STATUS_DCC_EVENT_MASK)
3613 bnx2x_dcc_event(bp,
3614 (val & DRV_STATUS_DCC_EVENT_MASK));
3615
3616 if (val & DRV_STATUS_SET_MF_BW)
3617 bnx2x_set_mf_bw(bp);
3618
3619 if (val & DRV_STATUS_DRV_INFO_REQ)
3620 bnx2x_handle_drv_info_req(bp);
3621 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3622 bnx2x_pmf_update(bp);
3623
3624 if (bp->port.pmf &&
3625 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3626 bp->dcbx_enabled > 0)
3627 /* start dcbx state machine */
3628 bnx2x_dcbx_set_params(bp,
3629 BNX2X_DCBX_STATE_NEG_RECEIVED);
3630 if (bp->link_vars.periodic_flags &
3631 PERIODIC_FLAGS_LINK_EVENT) {
3632 /* sync with link */
3633 bnx2x_acquire_phy_lock(bp);
3634 bp->link_vars.periodic_flags &=
3635 ~PERIODIC_FLAGS_LINK_EVENT;
3636 bnx2x_release_phy_lock(bp);
3637 if (IS_MF(bp))
3638 bnx2x_link_sync_notify(bp);
3639 bnx2x_link_report(bp);
3640 }
3641 /* Always call it here: bnx2x_link_report() will
3642 * prevent the link indication duplication.
3643 */
3644 bnx2x__link_status_update(bp);
3645 } else if (attn & BNX2X_MC_ASSERT_BITS) {
3646
3647 BNX2X_ERR("MC assert!\n");
3648 bnx2x_mc_assert(bp);
3649 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3650 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3651 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3652 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3653 bnx2x_panic();
3654
3655 } else if (attn & BNX2X_MCP_ASSERT) {
3656
3657 BNX2X_ERR("MCP assert!\n");
3658 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3659 bnx2x_fw_dump(bp);
3660
3661 } else
3662 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
3663 }
3664
3665 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3666 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
3667 if (attn & BNX2X_GRC_TIMEOUT) {
3668 val = CHIP_IS_E1(bp) ? 0 :
3669 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
3670 BNX2X_ERR("GRC time-out 0x%08x\n", val);
3671 }
3672 if (attn & BNX2X_GRC_RSV) {
3673 val = CHIP_IS_E1(bp) ? 0 :
3674 REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
3675 BNX2X_ERR("GRC reserved 0x%08x\n", val);
3676 }
3677 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3678 }
3679 }
3680
3681 /*
3682 * Bits map:
3683 * 0-7 - Engine0 load counter.
3684 * 8-15 - Engine1 load counter.
3685 * 16 - Engine0 RESET_IN_PROGRESS bit.
3686 * 17 - Engine1 RESET_IN_PROGRESS bit.
3687 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function
3688 * on the engine
3689 * 19 - Engine1 ONE_IS_LOADED.
3690 * 20 - Chip reset flow bit. When set none-leader must wait for both engines
3691 * leader to complete (check for both RESET_IN_PROGRESS bits and not for
3692 * just the one belonging to its engine).
3693 *
3694 */
3695 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
3696
3697 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
3698 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0
3699 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
3700 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8
3701 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
3702 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
3703 #define BNX2X_GLOBAL_RESET_BIT 0x00040000
3704
3705 /*
3706 * Set the GLOBAL_RESET bit.
3707 *
3708 * Should be run under rtnl lock
3709 */
bnx2x_set_reset_global(struct bnx2x * bp)3710 void bnx2x_set_reset_global(struct bnx2x *bp)
3711 {
3712 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3713
3714 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
3715 barrier();
3716 mmiowb();
3717 }
3718
3719 /*
3720 * Clear the GLOBAL_RESET bit.
3721 *
3722 * Should be run under rtnl lock
3723 */
bnx2x_clear_reset_global(struct bnx2x * bp)3724 static inline void bnx2x_clear_reset_global(struct bnx2x *bp)
3725 {
3726 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3727
3728 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
3729 barrier();
3730 mmiowb();
3731 }
3732
3733 /*
3734 * Checks the GLOBAL_RESET bit.
3735 *
3736 * should be run under rtnl lock
3737 */
bnx2x_reset_is_global(struct bnx2x * bp)3738 static inline bool bnx2x_reset_is_global(struct bnx2x *bp)
3739 {
3740 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3741
3742 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
3743 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
3744 }
3745
3746 /*
3747 * Clear RESET_IN_PROGRESS bit for the current engine.
3748 *
3749 * Should be run under rtnl lock
3750 */
bnx2x_set_reset_done(struct bnx2x * bp)3751 static inline void bnx2x_set_reset_done(struct bnx2x *bp)
3752 {
3753 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3754 u32 bit = BP_PATH(bp) ?
3755 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3756
3757 /* Clear the bit */
3758 val &= ~bit;
3759 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3760 barrier();
3761 mmiowb();
3762 }
3763
3764 /*
3765 * Set RESET_IN_PROGRESS for the current engine.
3766 *
3767 * should be run under rtnl lock
3768 */
bnx2x_set_reset_in_progress(struct bnx2x * bp)3769 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
3770 {
3771 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3772 u32 bit = BP_PATH(bp) ?
3773 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3774
3775 /* Set the bit */
3776 val |= bit;
3777 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3778 barrier();
3779 mmiowb();
3780 }
3781
3782 /*
3783 * Checks the RESET_IN_PROGRESS bit for the given engine.
3784 * should be run under rtnl lock
3785 */
bnx2x_reset_is_done(struct bnx2x * bp,int engine)3786 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
3787 {
3788 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3789 u32 bit = engine ?
3790 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3791
3792 /* return false if bit is set */
3793 return (val & bit) ? false : true;
3794 }
3795
3796 /*
3797 * Increment the load counter for the current engine.
3798 *
3799 * should be run under rtnl lock
3800 */
bnx2x_inc_load_cnt(struct bnx2x * bp)3801 void bnx2x_inc_load_cnt(struct bnx2x *bp)
3802 {
3803 u32 val1, val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3804 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3805 BNX2X_PATH0_LOAD_CNT_MASK;
3806 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3807 BNX2X_PATH0_LOAD_CNT_SHIFT;
3808
3809 DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3810
3811 /* get the current counter value */
3812 val1 = (val & mask) >> shift;
3813
3814 /* increment... */
3815 val1++;
3816
3817 /* clear the old value */
3818 val &= ~mask;
3819
3820 /* set the new one */
3821 val |= ((val1 << shift) & mask);
3822
3823 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3824 barrier();
3825 mmiowb();
3826 }
3827
3828 /**
3829 * bnx2x_dec_load_cnt - decrement the load counter
3830 *
3831 * @bp: driver handle
3832 *
3833 * Should be run under rtnl lock.
3834 * Decrements the load counter for the current engine. Returns
3835 * the new counter value.
3836 */
bnx2x_dec_load_cnt(struct bnx2x * bp)3837 u32 bnx2x_dec_load_cnt(struct bnx2x *bp)
3838 {
3839 u32 val1, val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3840 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3841 BNX2X_PATH0_LOAD_CNT_MASK;
3842 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3843 BNX2X_PATH0_LOAD_CNT_SHIFT;
3844
3845 DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3846
3847 /* get the current counter value */
3848 val1 = (val & mask) >> shift;
3849
3850 /* decrement... */
3851 val1--;
3852
3853 /* clear the old value */
3854 val &= ~mask;
3855
3856 /* set the new one */
3857 val |= ((val1 << shift) & mask);
3858
3859 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3860 barrier();
3861 mmiowb();
3862
3863 return val1;
3864 }
3865
3866 /*
3867 * Read the load counter for the current engine.
3868 *
3869 * should be run under rtnl lock
3870 */
bnx2x_get_load_cnt(struct bnx2x * bp,int engine)3871 static inline u32 bnx2x_get_load_cnt(struct bnx2x *bp, int engine)
3872 {
3873 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
3874 BNX2X_PATH0_LOAD_CNT_MASK);
3875 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3876 BNX2X_PATH0_LOAD_CNT_SHIFT);
3877 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3878
3879 DP(NETIF_MSG_HW, "GLOB_REG=0x%08x\n", val);
3880
3881 val = (val & mask) >> shift;
3882
3883 DP(NETIF_MSG_HW, "load_cnt for engine %d = %d\n", engine, val);
3884
3885 return val;
3886 }
3887
3888 /*
3889 * Reset the load counter for the current engine.
3890 *
3891 * should be run under rtnl lock
3892 */
bnx2x_clear_load_cnt(struct bnx2x * bp)3893 static inline void bnx2x_clear_load_cnt(struct bnx2x *bp)
3894 {
3895 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3896 u32 mask = (BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3897 BNX2X_PATH0_LOAD_CNT_MASK);
3898
3899 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~mask));
3900 }
3901
_print_next_block(int idx,const char * blk)3902 static inline void _print_next_block(int idx, const char *blk)
3903 {
3904 pr_cont("%s%s", idx ? ", " : "", blk);
3905 }
3906
bnx2x_check_blocks_with_parity0(u32 sig,int par_num,bool print)3907 static inline int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
3908 bool print)
3909 {
3910 int i = 0;
3911 u32 cur_bit = 0;
3912 for (i = 0; sig; i++) {
3913 cur_bit = ((u32)0x1 << i);
3914 if (sig & cur_bit) {
3915 switch (cur_bit) {
3916 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3917 if (print)
3918 _print_next_block(par_num++, "BRB");
3919 break;
3920 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3921 if (print)
3922 _print_next_block(par_num++, "PARSER");
3923 break;
3924 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3925 if (print)
3926 _print_next_block(par_num++, "TSDM");
3927 break;
3928 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3929 if (print)
3930 _print_next_block(par_num++,
3931 "SEARCHER");
3932 break;
3933 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
3934 if (print)
3935 _print_next_block(par_num++, "TCM");
3936 break;
3937 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3938 if (print)
3939 _print_next_block(par_num++, "TSEMI");
3940 break;
3941 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3942 if (print)
3943 _print_next_block(par_num++, "XPB");
3944 break;
3945 }
3946
3947 /* Clear the bit */
3948 sig &= ~cur_bit;
3949 }
3950 }
3951
3952 return par_num;
3953 }
3954
bnx2x_check_blocks_with_parity1(u32 sig,int par_num,bool * global,bool print)3955 static inline int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
3956 bool *global, bool print)
3957 {
3958 int i = 0;
3959 u32 cur_bit = 0;
3960 for (i = 0; sig; i++) {
3961 cur_bit = ((u32)0x1 << i);
3962 if (sig & cur_bit) {
3963 switch (cur_bit) {
3964 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
3965 if (print)
3966 _print_next_block(par_num++, "PBF");
3967 break;
3968 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3969 if (print)
3970 _print_next_block(par_num++, "QM");
3971 break;
3972 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
3973 if (print)
3974 _print_next_block(par_num++, "TM");
3975 break;
3976 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
3977 if (print)
3978 _print_next_block(par_num++, "XSDM");
3979 break;
3980 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
3981 if (print)
3982 _print_next_block(par_num++, "XCM");
3983 break;
3984 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
3985 if (print)
3986 _print_next_block(par_num++, "XSEMI");
3987 break;
3988 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
3989 if (print)
3990 _print_next_block(par_num++,
3991 "DOORBELLQ");
3992 break;
3993 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
3994 if (print)
3995 _print_next_block(par_num++, "NIG");
3996 break;
3997 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
3998 if (print)
3999 _print_next_block(par_num++,
4000 "VAUX PCI CORE");
4001 *global = true;
4002 break;
4003 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4004 if (print)
4005 _print_next_block(par_num++, "DEBUG");
4006 break;
4007 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4008 if (print)
4009 _print_next_block(par_num++, "USDM");
4010 break;
4011 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4012 if (print)
4013 _print_next_block(par_num++, "UCM");
4014 break;
4015 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4016 if (print)
4017 _print_next_block(par_num++, "USEMI");
4018 break;
4019 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4020 if (print)
4021 _print_next_block(par_num++, "UPB");
4022 break;
4023 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4024 if (print)
4025 _print_next_block(par_num++, "CSDM");
4026 break;
4027 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4028 if (print)
4029 _print_next_block(par_num++, "CCM");
4030 break;
4031 }
4032
4033 /* Clear the bit */
4034 sig &= ~cur_bit;
4035 }
4036 }
4037
4038 return par_num;
4039 }
4040
bnx2x_check_blocks_with_parity2(u32 sig,int par_num,bool print)4041 static inline int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
4042 bool print)
4043 {
4044 int i = 0;
4045 u32 cur_bit = 0;
4046 for (i = 0; sig; i++) {
4047 cur_bit = ((u32)0x1 << i);
4048 if (sig & cur_bit) {
4049 switch (cur_bit) {
4050 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4051 if (print)
4052 _print_next_block(par_num++, "CSEMI");
4053 break;
4054 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4055 if (print)
4056 _print_next_block(par_num++, "PXP");
4057 break;
4058 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4059 if (print)
4060 _print_next_block(par_num++,
4061 "PXPPCICLOCKCLIENT");
4062 break;
4063 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4064 if (print)
4065 _print_next_block(par_num++, "CFC");
4066 break;
4067 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4068 if (print)
4069 _print_next_block(par_num++, "CDU");
4070 break;
4071 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4072 if (print)
4073 _print_next_block(par_num++, "DMAE");
4074 break;
4075 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4076 if (print)
4077 _print_next_block(par_num++, "IGU");
4078 break;
4079 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4080 if (print)
4081 _print_next_block(par_num++, "MISC");
4082 break;
4083 }
4084
4085 /* Clear the bit */
4086 sig &= ~cur_bit;
4087 }
4088 }
4089
4090 return par_num;
4091 }
4092
bnx2x_check_blocks_with_parity3(u32 sig,int par_num,bool * global,bool print)4093 static inline int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4094 bool *global, bool print)
4095 {
4096 int i = 0;
4097 u32 cur_bit = 0;
4098 for (i = 0; sig; i++) {
4099 cur_bit = ((u32)0x1 << i);
4100 if (sig & cur_bit) {
4101 switch (cur_bit) {
4102 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4103 if (print)
4104 _print_next_block(par_num++, "MCP ROM");
4105 *global = true;
4106 break;
4107 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4108 if (print)
4109 _print_next_block(par_num++,
4110 "MCP UMP RX");
4111 *global = true;
4112 break;
4113 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4114 if (print)
4115 _print_next_block(par_num++,
4116 "MCP UMP TX");
4117 *global = true;
4118 break;
4119 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4120 if (print)
4121 _print_next_block(par_num++,
4122 "MCP SCPAD");
4123 *global = true;
4124 break;
4125 }
4126
4127 /* Clear the bit */
4128 sig &= ~cur_bit;
4129 }
4130 }
4131
4132 return par_num;
4133 }
4134
bnx2x_check_blocks_with_parity4(u32 sig,int par_num,bool print)4135 static inline int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
4136 bool print)
4137 {
4138 int i = 0;
4139 u32 cur_bit = 0;
4140 for (i = 0; sig; i++) {
4141 cur_bit = ((u32)0x1 << i);
4142 if (sig & cur_bit) {
4143 switch (cur_bit) {
4144 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4145 if (print)
4146 _print_next_block(par_num++, "PGLUE_B");
4147 break;
4148 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4149 if (print)
4150 _print_next_block(par_num++, "ATC");
4151 break;
4152 }
4153
4154 /* Clear the bit */
4155 sig &= ~cur_bit;
4156 }
4157 }
4158
4159 return par_num;
4160 }
4161
bnx2x_parity_attn(struct bnx2x * bp,bool * global,bool print,u32 * sig)4162 static inline bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4163 u32 *sig)
4164 {
4165 if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4166 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4167 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4168 (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4169 (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4170 int par_num = 0;
4171 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention: "
4172 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x "
4173 "[4]:0x%08x\n",
4174 sig[0] & HW_PRTY_ASSERT_SET_0,
4175 sig[1] & HW_PRTY_ASSERT_SET_1,
4176 sig[2] & HW_PRTY_ASSERT_SET_2,
4177 sig[3] & HW_PRTY_ASSERT_SET_3,
4178 sig[4] & HW_PRTY_ASSERT_SET_4);
4179 if (print)
4180 netdev_err(bp->dev,
4181 "Parity errors detected in blocks: ");
4182 par_num = bnx2x_check_blocks_with_parity0(
4183 sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4184 par_num = bnx2x_check_blocks_with_parity1(
4185 sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4186 par_num = bnx2x_check_blocks_with_parity2(
4187 sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4188 par_num = bnx2x_check_blocks_with_parity3(
4189 sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4190 par_num = bnx2x_check_blocks_with_parity4(
4191 sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4192
4193 if (print)
4194 pr_cont("\n");
4195
4196 return true;
4197 } else
4198 return false;
4199 }
4200
4201 /**
4202 * bnx2x_chk_parity_attn - checks for parity attentions.
4203 *
4204 * @bp: driver handle
4205 * @global: true if there was a global attention
4206 * @print: show parity attention in syslog
4207 */
bnx2x_chk_parity_attn(struct bnx2x * bp,bool * global,bool print)4208 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4209 {
4210 struct attn_route attn = { {0} };
4211 int port = BP_PORT(bp);
4212
4213 attn.sig[0] = REG_RD(bp,
4214 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4215 port*4);
4216 attn.sig[1] = REG_RD(bp,
4217 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4218 port*4);
4219 attn.sig[2] = REG_RD(bp,
4220 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4221 port*4);
4222 attn.sig[3] = REG_RD(bp,
4223 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4224 port*4);
4225
4226 if (!CHIP_IS_E1x(bp))
4227 attn.sig[4] = REG_RD(bp,
4228 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4229 port*4);
4230
4231 return bnx2x_parity_attn(bp, global, print, attn.sig);
4232 }
4233
4234
bnx2x_attn_int_deasserted4(struct bnx2x * bp,u32 attn)4235 static inline void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4236 {
4237 u32 val;
4238 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4239
4240 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4241 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4242 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4243 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4244 "ADDRESS_ERROR\n");
4245 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4246 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4247 "INCORRECT_RCV_BEHAVIOR\n");
4248 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4249 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4250 "WAS_ERROR_ATTN\n");
4251 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4252 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4253 "VF_LENGTH_VIOLATION_ATTN\n");
4254 if (val &
4255 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4256 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4257 "VF_GRC_SPACE_VIOLATION_ATTN\n");
4258 if (val &
4259 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4260 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4261 "VF_MSIX_BAR_VIOLATION_ATTN\n");
4262 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4263 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4264 "TCPL_ERROR_ATTN\n");
4265 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4266 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4267 "TCPL_IN_TWO_RCBS_ATTN\n");
4268 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4269 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4270 "CSSNOOP_FIFO_OVERFLOW\n");
4271 }
4272 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4273 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4274 BNX2X_ERR("ATC hw attention 0x%x\n", val);
4275 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4276 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4277 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4278 BNX2X_ERR("ATC_ATC_INT_STS_REG"
4279 "_ATC_TCPL_TO_NOT_PEND\n");
4280 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4281 BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4282 "ATC_GPA_MULTIPLE_HITS\n");
4283 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4284 BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4285 "ATC_RCPL_TO_EMPTY_CNT\n");
4286 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4287 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4288 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4289 BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4290 "ATC_IREQ_LESS_THAN_STU\n");
4291 }
4292
4293 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4294 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4295 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4296 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4297 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4298 }
4299
4300 }
4301
bnx2x_attn_int_deasserted(struct bnx2x * bp,u32 deasserted)4302 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4303 {
4304 struct attn_route attn, *group_mask;
4305 int port = BP_PORT(bp);
4306 int index;
4307 u32 reg_addr;
4308 u32 val;
4309 u32 aeu_mask;
4310 bool global = false;
4311
4312 /* need to take HW lock because MCP or other port might also
4313 try to handle this event */
4314 bnx2x_acquire_alr(bp);
4315
4316 if (bnx2x_chk_parity_attn(bp, &global, true)) {
4317 #ifndef BNX2X_STOP_ON_ERROR
4318 bp->recovery_state = BNX2X_RECOVERY_INIT;
4319 schedule_delayed_work(&bp->sp_rtnl_task, 0);
4320 /* Disable HW interrupts */
4321 bnx2x_int_disable(bp);
4322 /* In case of parity errors don't handle attentions so that
4323 * other function would "see" parity errors.
4324 */
4325 #else
4326 bnx2x_panic();
4327 #endif
4328 bnx2x_release_alr(bp);
4329 return;
4330 }
4331
4332 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4333 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4334 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4335 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4336 if (!CHIP_IS_E1x(bp))
4337 attn.sig[4] =
4338 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4339 else
4340 attn.sig[4] = 0;
4341
4342 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4343 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4344
4345 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4346 if (deasserted & (1 << index)) {
4347 group_mask = &bp->attn_group[index];
4348
4349 DP(NETIF_MSG_HW, "group[%d]: %08x %08x "
4350 "%08x %08x %08x\n",
4351 index,
4352 group_mask->sig[0], group_mask->sig[1],
4353 group_mask->sig[2], group_mask->sig[3],
4354 group_mask->sig[4]);
4355
4356 bnx2x_attn_int_deasserted4(bp,
4357 attn.sig[4] & group_mask->sig[4]);
4358 bnx2x_attn_int_deasserted3(bp,
4359 attn.sig[3] & group_mask->sig[3]);
4360 bnx2x_attn_int_deasserted1(bp,
4361 attn.sig[1] & group_mask->sig[1]);
4362 bnx2x_attn_int_deasserted2(bp,
4363 attn.sig[2] & group_mask->sig[2]);
4364 bnx2x_attn_int_deasserted0(bp,
4365 attn.sig[0] & group_mask->sig[0]);
4366 }
4367 }
4368
4369 bnx2x_release_alr(bp);
4370
4371 if (bp->common.int_block == INT_BLOCK_HC)
4372 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4373 COMMAND_REG_ATTN_BITS_CLR);
4374 else
4375 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4376
4377 val = ~deasserted;
4378 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4379 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4380 REG_WR(bp, reg_addr, val);
4381
4382 if (~bp->attn_state & deasserted)
4383 BNX2X_ERR("IGU ERROR\n");
4384
4385 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4386 MISC_REG_AEU_MASK_ATTN_FUNC_0;
4387
4388 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4389 aeu_mask = REG_RD(bp, reg_addr);
4390
4391 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n",
4392 aeu_mask, deasserted);
4393 aeu_mask |= (deasserted & 0x3ff);
4394 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4395
4396 REG_WR(bp, reg_addr, aeu_mask);
4397 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4398
4399 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4400 bp->attn_state &= ~deasserted;
4401 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4402 }
4403
bnx2x_attn_int(struct bnx2x * bp)4404 static void bnx2x_attn_int(struct bnx2x *bp)
4405 {
4406 /* read local copy of bits */
4407 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4408 attn_bits);
4409 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4410 attn_bits_ack);
4411 u32 attn_state = bp->attn_state;
4412
4413 /* look for changed bits */
4414 u32 asserted = attn_bits & ~attn_ack & ~attn_state;
4415 u32 deasserted = ~attn_bits & attn_ack & attn_state;
4416
4417 DP(NETIF_MSG_HW,
4418 "attn_bits %x attn_ack %x asserted %x deasserted %x\n",
4419 attn_bits, attn_ack, asserted, deasserted);
4420
4421 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4422 BNX2X_ERR("BAD attention state\n");
4423
4424 /* handle bits that were raised */
4425 if (asserted)
4426 bnx2x_attn_int_asserted(bp, asserted);
4427
4428 if (deasserted)
4429 bnx2x_attn_int_deasserted(bp, deasserted);
4430 }
4431
bnx2x_igu_ack_sb(struct bnx2x * bp,u8 igu_sb_id,u8 segment,u16 index,u8 op,u8 update)4432 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4433 u16 index, u8 op, u8 update)
4434 {
4435 u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4436
4437 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4438 igu_addr);
4439 }
4440
bnx2x_update_eq_prod(struct bnx2x * bp,u16 prod)4441 static inline void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4442 {
4443 /* No memory barriers */
4444 storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4445 mmiowb(); /* keep prod updates ordered */
4446 }
4447
4448 #ifdef BCM_CNIC
bnx2x_cnic_handle_cfc_del(struct bnx2x * bp,u32 cid,union event_ring_elem * elem)4449 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4450 union event_ring_elem *elem)
4451 {
4452 u8 err = elem->message.error;
4453
4454 if (!bp->cnic_eth_dev.starting_cid ||
4455 (cid < bp->cnic_eth_dev.starting_cid &&
4456 cid != bp->cnic_eth_dev.iscsi_l2_cid))
4457 return 1;
4458
4459 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4460
4461 if (unlikely(err)) {
4462
4463 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4464 cid);
4465 bnx2x_panic_dump(bp);
4466 }
4467 bnx2x_cnic_cfc_comp(bp, cid, err);
4468 return 0;
4469 }
4470 #endif
4471
bnx2x_handle_mcast_eqe(struct bnx2x * bp)4472 static inline void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4473 {
4474 struct bnx2x_mcast_ramrod_params rparam;
4475 int rc;
4476
4477 memset(&rparam, 0, sizeof(rparam));
4478
4479 rparam.mcast_obj = &bp->mcast_obj;
4480
4481 netif_addr_lock_bh(bp->dev);
4482
4483 /* Clear pending state for the last command */
4484 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4485
4486 /* If there are pending mcast commands - send them */
4487 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4488 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4489 if (rc < 0)
4490 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4491 rc);
4492 }
4493
4494 netif_addr_unlock_bh(bp->dev);
4495 }
4496
bnx2x_handle_classification_eqe(struct bnx2x * bp,union event_ring_elem * elem)4497 static inline void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4498 union event_ring_elem *elem)
4499 {
4500 unsigned long ramrod_flags = 0;
4501 int rc = 0;
4502 u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4503 struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4504
4505 /* Always push next commands out, don't wait here */
4506 __set_bit(RAMROD_CONT, &ramrod_flags);
4507
4508 switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
4509 case BNX2X_FILTER_MAC_PENDING:
4510 #ifdef BCM_CNIC
4511 if (cid == BNX2X_ISCSI_ETH_CID)
4512 vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4513 else
4514 #endif
4515 vlan_mac_obj = &bp->fp[cid].mac_obj;
4516
4517 break;
4518 case BNX2X_FILTER_MCAST_PENDING:
4519 /* This is only relevant for 57710 where multicast MACs are
4520 * configured as unicast MACs using the same ramrod.
4521 */
4522 bnx2x_handle_mcast_eqe(bp);
4523 return;
4524 default:
4525 BNX2X_ERR("Unsupported classification command: %d\n",
4526 elem->message.data.eth_event.echo);
4527 return;
4528 }
4529
4530 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4531
4532 if (rc < 0)
4533 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4534 else if (rc > 0)
4535 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4536
4537 }
4538
4539 #ifdef BCM_CNIC
4540 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4541 #endif
4542
bnx2x_handle_rx_mode_eqe(struct bnx2x * bp)4543 static inline void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4544 {
4545 netif_addr_lock_bh(bp->dev);
4546
4547 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4548
4549 /* Send rx_mode command again if was requested */
4550 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4551 bnx2x_set_storm_rx_mode(bp);
4552 #ifdef BCM_CNIC
4553 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4554 &bp->sp_state))
4555 bnx2x_set_iscsi_eth_rx_mode(bp, true);
4556 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
4557 &bp->sp_state))
4558 bnx2x_set_iscsi_eth_rx_mode(bp, false);
4559 #endif
4560
4561 netif_addr_unlock_bh(bp->dev);
4562 }
4563
bnx2x_cid_to_q_obj(struct bnx2x * bp,u32 cid)4564 static inline struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
4565 struct bnx2x *bp, u32 cid)
4566 {
4567 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
4568 #ifdef BCM_CNIC
4569 if (cid == BNX2X_FCOE_ETH_CID)
4570 return &bnx2x_fcoe(bp, q_obj);
4571 else
4572 #endif
4573 return &bnx2x_fp(bp, CID_TO_FP(cid), q_obj);
4574 }
4575
bnx2x_eq_int(struct bnx2x * bp)4576 static void bnx2x_eq_int(struct bnx2x *bp)
4577 {
4578 u16 hw_cons, sw_cons, sw_prod;
4579 union event_ring_elem *elem;
4580 u32 cid;
4581 u8 opcode;
4582 int spqe_cnt = 0;
4583 struct bnx2x_queue_sp_obj *q_obj;
4584 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
4585 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
4586
4587 hw_cons = le16_to_cpu(*bp->eq_cons_sb);
4588
4589 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
4590 * when we get the the next-page we nned to adjust so the loop
4591 * condition below will be met. The next element is the size of a
4592 * regular element and hence incrementing by 1
4593 */
4594 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
4595 hw_cons++;
4596
4597 /* This function may never run in parallel with itself for a
4598 * specific bp, thus there is no need in "paired" read memory
4599 * barrier here.
4600 */
4601 sw_cons = bp->eq_cons;
4602 sw_prod = bp->eq_prod;
4603
4604 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n",
4605 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
4606
4607 for (; sw_cons != hw_cons;
4608 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4609
4610
4611 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
4612
4613 cid = SW_CID(elem->message.data.cfc_del_event.cid);
4614 opcode = elem->message.opcode;
4615
4616
4617 /* handle eq element */
4618 switch (opcode) {
4619 case EVENT_RING_OPCODE_STAT_QUERY:
4620 DP(NETIF_MSG_TIMER, "got statistics comp event %d\n",
4621 bp->stats_comp++);
4622 /* nothing to do with stats comp */
4623 goto next_spqe;
4624
4625 case EVENT_RING_OPCODE_CFC_DEL:
4626 /* handle according to cid range */
4627 /*
4628 * we may want to verify here that the bp state is
4629 * HALTING
4630 */
4631 DP(BNX2X_MSG_SP,
4632 "got delete ramrod for MULTI[%d]\n", cid);
4633 #ifdef BCM_CNIC
4634 if (!bnx2x_cnic_handle_cfc_del(bp, cid, elem))
4635 goto next_spqe;
4636 #endif
4637 q_obj = bnx2x_cid_to_q_obj(bp, cid);
4638
4639 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
4640 break;
4641
4642
4643
4644 goto next_spqe;
4645
4646 case EVENT_RING_OPCODE_STOP_TRAFFIC:
4647 DP(BNX2X_MSG_SP, "got STOP TRAFFIC\n");
4648 if (f_obj->complete_cmd(bp, f_obj,
4649 BNX2X_F_CMD_TX_STOP))
4650 break;
4651 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
4652 goto next_spqe;
4653
4654 case EVENT_RING_OPCODE_START_TRAFFIC:
4655 DP(BNX2X_MSG_SP, "got START TRAFFIC\n");
4656 if (f_obj->complete_cmd(bp, f_obj,
4657 BNX2X_F_CMD_TX_START))
4658 break;
4659 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
4660 goto next_spqe;
4661 case EVENT_RING_OPCODE_FUNCTION_START:
4662 DP(BNX2X_MSG_SP, "got FUNC_START ramrod\n");
4663 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
4664 break;
4665
4666 goto next_spqe;
4667
4668 case EVENT_RING_OPCODE_FUNCTION_STOP:
4669 DP(BNX2X_MSG_SP, "got FUNC_STOP ramrod\n");
4670 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
4671 break;
4672
4673 goto next_spqe;
4674 }
4675
4676 switch (opcode | bp->state) {
4677 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4678 BNX2X_STATE_OPEN):
4679 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4680 BNX2X_STATE_OPENING_WAIT4_PORT):
4681 cid = elem->message.data.eth_event.echo &
4682 BNX2X_SWCID_MASK;
4683 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
4684 cid);
4685 rss_raw->clear_pending(rss_raw);
4686 break;
4687
4688 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4689 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4690 case (EVENT_RING_OPCODE_SET_MAC |
4691 BNX2X_STATE_CLOSING_WAIT4_HALT):
4692 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4693 BNX2X_STATE_OPEN):
4694 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4695 BNX2X_STATE_DIAG):
4696 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4697 BNX2X_STATE_CLOSING_WAIT4_HALT):
4698 DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
4699 bnx2x_handle_classification_eqe(bp, elem);
4700 break;
4701
4702 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4703 BNX2X_STATE_OPEN):
4704 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4705 BNX2X_STATE_DIAG):
4706 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4707 BNX2X_STATE_CLOSING_WAIT4_HALT):
4708 DP(BNX2X_MSG_SP, "got mcast ramrod\n");
4709 bnx2x_handle_mcast_eqe(bp);
4710 break;
4711
4712 case (EVENT_RING_OPCODE_FILTERS_RULES |
4713 BNX2X_STATE_OPEN):
4714 case (EVENT_RING_OPCODE_FILTERS_RULES |
4715 BNX2X_STATE_DIAG):
4716 case (EVENT_RING_OPCODE_FILTERS_RULES |
4717 BNX2X_STATE_CLOSING_WAIT4_HALT):
4718 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
4719 bnx2x_handle_rx_mode_eqe(bp);
4720 break;
4721 default:
4722 /* unknown event log error and continue */
4723 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
4724 elem->message.opcode, bp->state);
4725 }
4726 next_spqe:
4727 spqe_cnt++;
4728 } /* for */
4729
4730 smp_mb__before_atomic_inc();
4731 atomic_add(spqe_cnt, &bp->eq_spq_left);
4732
4733 bp->eq_cons = sw_cons;
4734 bp->eq_prod = sw_prod;
4735 /* Make sure that above mem writes were issued towards the memory */
4736 smp_wmb();
4737
4738 /* update producer */
4739 bnx2x_update_eq_prod(bp, bp->eq_prod);
4740 }
4741
bnx2x_sp_task(struct work_struct * work)4742 static void bnx2x_sp_task(struct work_struct *work)
4743 {
4744 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
4745 u16 status;
4746
4747 status = bnx2x_update_dsb_idx(bp);
4748 /* if (status == 0) */
4749 /* BNX2X_ERR("spurious slowpath interrupt!\n"); */
4750
4751 DP(NETIF_MSG_INTR, "got a slowpath interrupt (status 0x%x)\n", status);
4752
4753 /* HW attentions */
4754 if (status & BNX2X_DEF_SB_ATT_IDX) {
4755 bnx2x_attn_int(bp);
4756 status &= ~BNX2X_DEF_SB_ATT_IDX;
4757 }
4758
4759 /* SP events: STAT_QUERY and others */
4760 if (status & BNX2X_DEF_SB_IDX) {
4761 #ifdef BCM_CNIC
4762 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
4763
4764 if ((!NO_FCOE(bp)) &&
4765 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
4766 /*
4767 * Prevent local bottom-halves from running as
4768 * we are going to change the local NAPI list.
4769 */
4770 local_bh_disable();
4771 napi_schedule(&bnx2x_fcoe(bp, napi));
4772 local_bh_enable();
4773 }
4774 #endif
4775 /* Handle EQ completions */
4776 bnx2x_eq_int(bp);
4777
4778 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
4779 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
4780
4781 status &= ~BNX2X_DEF_SB_IDX;
4782 }
4783
4784 if (unlikely(status))
4785 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
4786 status);
4787
4788 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
4789 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
4790 }
4791
bnx2x_msix_sp_int(int irq,void * dev_instance)4792 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
4793 {
4794 struct net_device *dev = dev_instance;
4795 struct bnx2x *bp = netdev_priv(dev);
4796
4797 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
4798 IGU_INT_DISABLE, 0);
4799
4800 #ifdef BNX2X_STOP_ON_ERROR
4801 if (unlikely(bp->panic))
4802 return IRQ_HANDLED;
4803 #endif
4804
4805 #ifdef BCM_CNIC
4806 {
4807 struct cnic_ops *c_ops;
4808
4809 rcu_read_lock();
4810 c_ops = rcu_dereference(bp->cnic_ops);
4811 if (c_ops)
4812 c_ops->cnic_handler(bp->cnic_data, NULL);
4813 rcu_read_unlock();
4814 }
4815 #endif
4816 queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
4817
4818 return IRQ_HANDLED;
4819 }
4820
4821 /* end of slow path */
4822
4823
bnx2x_drv_pulse(struct bnx2x * bp)4824 void bnx2x_drv_pulse(struct bnx2x *bp)
4825 {
4826 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
4827 bp->fw_drv_pulse_wr_seq);
4828 }
4829
4830
bnx2x_timer(unsigned long data)4831 static void bnx2x_timer(unsigned long data)
4832 {
4833 struct bnx2x *bp = (struct bnx2x *) data;
4834
4835 if (!netif_running(bp->dev))
4836 return;
4837
4838 if (!BP_NOMCP(bp)) {
4839 int mb_idx = BP_FW_MB_IDX(bp);
4840 u32 drv_pulse;
4841 u32 mcp_pulse;
4842
4843 ++bp->fw_drv_pulse_wr_seq;
4844 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
4845 /* TBD - add SYSTEM_TIME */
4846 drv_pulse = bp->fw_drv_pulse_wr_seq;
4847 bnx2x_drv_pulse(bp);
4848
4849 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
4850 MCP_PULSE_SEQ_MASK);
4851 /* The delta between driver pulse and mcp response
4852 * should be 1 (before mcp response) or 0 (after mcp response)
4853 */
4854 if ((drv_pulse != mcp_pulse) &&
4855 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
4856 /* someone lost a heartbeat... */
4857 BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
4858 drv_pulse, mcp_pulse);
4859 }
4860 }
4861
4862 if (bp->state == BNX2X_STATE_OPEN)
4863 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
4864
4865 mod_timer(&bp->timer, jiffies + bp->current_interval);
4866 }
4867
4868 /* end of Statistics */
4869
4870 /* nic init */
4871
4872 /*
4873 * nic init service functions
4874 */
4875
bnx2x_fill(struct bnx2x * bp,u32 addr,int fill,u32 len)4876 static inline void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
4877 {
4878 u32 i;
4879 if (!(len%4) && !(addr%4))
4880 for (i = 0; i < len; i += 4)
4881 REG_WR(bp, addr + i, fill);
4882 else
4883 for (i = 0; i < len; i++)
4884 REG_WR8(bp, addr + i, fill);
4885
4886 }
4887
4888 /* helper: writes FP SP data to FW - data_size in dwords */
bnx2x_wr_fp_sb_data(struct bnx2x * bp,int fw_sb_id,u32 * sb_data_p,u32 data_size)4889 static inline void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
4890 int fw_sb_id,
4891 u32 *sb_data_p,
4892 u32 data_size)
4893 {
4894 int index;
4895 for (index = 0; index < data_size; index++)
4896 REG_WR(bp, BAR_CSTRORM_INTMEM +
4897 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
4898 sizeof(u32)*index,
4899 *(sb_data_p + index));
4900 }
4901
bnx2x_zero_fp_sb(struct bnx2x * bp,int fw_sb_id)4902 static inline void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
4903 {
4904 u32 *sb_data_p;
4905 u32 data_size = 0;
4906 struct hc_status_block_data_e2 sb_data_e2;
4907 struct hc_status_block_data_e1x sb_data_e1x;
4908
4909 /* disable the function first */
4910 if (!CHIP_IS_E1x(bp)) {
4911 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4912 sb_data_e2.common.state = SB_DISABLED;
4913 sb_data_e2.common.p_func.vf_valid = false;
4914 sb_data_p = (u32 *)&sb_data_e2;
4915 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
4916 } else {
4917 memset(&sb_data_e1x, 0,
4918 sizeof(struct hc_status_block_data_e1x));
4919 sb_data_e1x.common.state = SB_DISABLED;
4920 sb_data_e1x.common.p_func.vf_valid = false;
4921 sb_data_p = (u32 *)&sb_data_e1x;
4922 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
4923 }
4924 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
4925
4926 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4927 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
4928 CSTORM_STATUS_BLOCK_SIZE);
4929 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4930 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
4931 CSTORM_SYNC_BLOCK_SIZE);
4932 }
4933
4934 /* helper: writes SP SB data to FW */
bnx2x_wr_sp_sb_data(struct bnx2x * bp,struct hc_sp_status_block_data * sp_sb_data)4935 static inline void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
4936 struct hc_sp_status_block_data *sp_sb_data)
4937 {
4938 int func = BP_FUNC(bp);
4939 int i;
4940 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
4941 REG_WR(bp, BAR_CSTRORM_INTMEM +
4942 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
4943 i*sizeof(u32),
4944 *((u32 *)sp_sb_data + i));
4945 }
4946
bnx2x_zero_sp_sb(struct bnx2x * bp)4947 static inline void bnx2x_zero_sp_sb(struct bnx2x *bp)
4948 {
4949 int func = BP_FUNC(bp);
4950 struct hc_sp_status_block_data sp_sb_data;
4951 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4952
4953 sp_sb_data.state = SB_DISABLED;
4954 sp_sb_data.p_func.vf_valid = false;
4955
4956 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
4957
4958 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4959 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
4960 CSTORM_SP_STATUS_BLOCK_SIZE);
4961 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4962 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
4963 CSTORM_SP_SYNC_BLOCK_SIZE);
4964
4965 }
4966
4967
4968 static inline
bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm * hc_sm,int igu_sb_id,int igu_seg_id)4969 void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
4970 int igu_sb_id, int igu_seg_id)
4971 {
4972 hc_sm->igu_sb_id = igu_sb_id;
4973 hc_sm->igu_seg_id = igu_seg_id;
4974 hc_sm->timer_value = 0xFF;
4975 hc_sm->time_to_expire = 0xFFFFFFFF;
4976 }
4977
4978
4979 /* allocates state machine ids. */
4980 static inline
bnx2x_map_sb_state_machines(struct hc_index_data * index_data)4981 void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
4982 {
4983 /* zero out state machine indices */
4984 /* rx indices */
4985 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4986
4987 /* tx indices */
4988 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4989 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
4990 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
4991 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
4992
4993 /* map indices */
4994 /* rx indices */
4995 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
4996 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4997
4998 /* tx indices */
4999 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5000 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5001 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5002 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5003 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5004 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5005 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5006 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5007 }
5008
bnx2x_init_sb(struct bnx2x * bp,dma_addr_t mapping,int vfid,u8 vf_valid,int fw_sb_id,int igu_sb_id)5009 static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5010 u8 vf_valid, int fw_sb_id, int igu_sb_id)
5011 {
5012 int igu_seg_id;
5013
5014 struct hc_status_block_data_e2 sb_data_e2;
5015 struct hc_status_block_data_e1x sb_data_e1x;
5016 struct hc_status_block_sm *hc_sm_p;
5017 int data_size;
5018 u32 *sb_data_p;
5019
5020 if (CHIP_INT_MODE_IS_BC(bp))
5021 igu_seg_id = HC_SEG_ACCESS_NORM;
5022 else
5023 igu_seg_id = IGU_SEG_ACCESS_NORM;
5024
5025 bnx2x_zero_fp_sb(bp, fw_sb_id);
5026
5027 if (!CHIP_IS_E1x(bp)) {
5028 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5029 sb_data_e2.common.state = SB_ENABLED;
5030 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5031 sb_data_e2.common.p_func.vf_id = vfid;
5032 sb_data_e2.common.p_func.vf_valid = vf_valid;
5033 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5034 sb_data_e2.common.same_igu_sb_1b = true;
5035 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5036 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5037 hc_sm_p = sb_data_e2.common.state_machine;
5038 sb_data_p = (u32 *)&sb_data_e2;
5039 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5040 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5041 } else {
5042 memset(&sb_data_e1x, 0,
5043 sizeof(struct hc_status_block_data_e1x));
5044 sb_data_e1x.common.state = SB_ENABLED;
5045 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5046 sb_data_e1x.common.p_func.vf_id = 0xff;
5047 sb_data_e1x.common.p_func.vf_valid = false;
5048 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5049 sb_data_e1x.common.same_igu_sb_1b = true;
5050 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5051 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5052 hc_sm_p = sb_data_e1x.common.state_machine;
5053 sb_data_p = (u32 *)&sb_data_e1x;
5054 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5055 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5056 }
5057
5058 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5059 igu_sb_id, igu_seg_id);
5060 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5061 igu_sb_id, igu_seg_id);
5062
5063 DP(NETIF_MSG_HW, "Init FW SB %d\n", fw_sb_id);
5064
5065 /* write indecies to HW */
5066 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5067 }
5068
bnx2x_update_coalesce_sb(struct bnx2x * bp,u8 fw_sb_id,u16 tx_usec,u16 rx_usec)5069 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5070 u16 tx_usec, u16 rx_usec)
5071 {
5072 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5073 false, rx_usec);
5074 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5075 HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5076 tx_usec);
5077 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5078 HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5079 tx_usec);
5080 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5081 HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5082 tx_usec);
5083 }
5084
bnx2x_init_def_sb(struct bnx2x * bp)5085 static void bnx2x_init_def_sb(struct bnx2x *bp)
5086 {
5087 struct host_sp_status_block *def_sb = bp->def_status_blk;
5088 dma_addr_t mapping = bp->def_status_blk_mapping;
5089 int igu_sp_sb_index;
5090 int igu_seg_id;
5091 int port = BP_PORT(bp);
5092 int func = BP_FUNC(bp);
5093 int reg_offset, reg_offset_en5;
5094 u64 section;
5095 int index;
5096 struct hc_sp_status_block_data sp_sb_data;
5097 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5098
5099 if (CHIP_INT_MODE_IS_BC(bp)) {
5100 igu_sp_sb_index = DEF_SB_IGU_ID;
5101 igu_seg_id = HC_SEG_ACCESS_DEF;
5102 } else {
5103 igu_sp_sb_index = bp->igu_dsb_id;
5104 igu_seg_id = IGU_SEG_ACCESS_DEF;
5105 }
5106
5107 /* ATTN */
5108 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5109 atten_status_block);
5110 def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5111
5112 bp->attn_state = 0;
5113
5114 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5115 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5116 reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5117 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5118 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5119 int sindex;
5120 /* take care of sig[0]..sig[4] */
5121 for (sindex = 0; sindex < 4; sindex++)
5122 bp->attn_group[index].sig[sindex] =
5123 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5124
5125 if (!CHIP_IS_E1x(bp))
5126 /*
5127 * enable5 is separate from the rest of the registers,
5128 * and therefore the address skip is 4
5129 * and not 16 between the different groups
5130 */
5131 bp->attn_group[index].sig[4] = REG_RD(bp,
5132 reg_offset_en5 + 0x4*index);
5133 else
5134 bp->attn_group[index].sig[4] = 0;
5135 }
5136
5137 if (bp->common.int_block == INT_BLOCK_HC) {
5138 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5139 HC_REG_ATTN_MSG0_ADDR_L);
5140
5141 REG_WR(bp, reg_offset, U64_LO(section));
5142 REG_WR(bp, reg_offset + 4, U64_HI(section));
5143 } else if (!CHIP_IS_E1x(bp)) {
5144 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5145 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5146 }
5147
5148 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5149 sp_sb);
5150
5151 bnx2x_zero_sp_sb(bp);
5152
5153 sp_sb_data.state = SB_ENABLED;
5154 sp_sb_data.host_sb_addr.lo = U64_LO(section);
5155 sp_sb_data.host_sb_addr.hi = U64_HI(section);
5156 sp_sb_data.igu_sb_id = igu_sp_sb_index;
5157 sp_sb_data.igu_seg_id = igu_seg_id;
5158 sp_sb_data.p_func.pf_id = func;
5159 sp_sb_data.p_func.vnic_id = BP_VN(bp);
5160 sp_sb_data.p_func.vf_id = 0xff;
5161
5162 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5163
5164 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5165 }
5166
bnx2x_update_coalesce(struct bnx2x * bp)5167 void bnx2x_update_coalesce(struct bnx2x *bp)
5168 {
5169 int i;
5170
5171 for_each_eth_queue(bp, i)
5172 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5173 bp->tx_ticks, bp->rx_ticks);
5174 }
5175
bnx2x_init_sp_ring(struct bnx2x * bp)5176 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5177 {
5178 spin_lock_init(&bp->spq_lock);
5179 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5180
5181 bp->spq_prod_idx = 0;
5182 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5183 bp->spq_prod_bd = bp->spq;
5184 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5185 }
5186
bnx2x_init_eq_ring(struct bnx2x * bp)5187 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5188 {
5189 int i;
5190 for (i = 1; i <= NUM_EQ_PAGES; i++) {
5191 union event_ring_elem *elem =
5192 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5193
5194 elem->next_page.addr.hi =
5195 cpu_to_le32(U64_HI(bp->eq_mapping +
5196 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5197 elem->next_page.addr.lo =
5198 cpu_to_le32(U64_LO(bp->eq_mapping +
5199 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5200 }
5201 bp->eq_cons = 0;
5202 bp->eq_prod = NUM_EQ_DESC;
5203 bp->eq_cons_sb = BNX2X_EQ_INDEX;
5204 /* we want a warning message before it gets rought... */
5205 atomic_set(&bp->eq_spq_left,
5206 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5207 }
5208
5209
5210 /* called with netif_addr_lock_bh() */
bnx2x_set_q_rx_mode(struct bnx2x * bp,u8 cl_id,unsigned long rx_mode_flags,unsigned long rx_accept_flags,unsigned long tx_accept_flags,unsigned long ramrod_flags)5211 void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5212 unsigned long rx_mode_flags,
5213 unsigned long rx_accept_flags,
5214 unsigned long tx_accept_flags,
5215 unsigned long ramrod_flags)
5216 {
5217 struct bnx2x_rx_mode_ramrod_params ramrod_param;
5218 int rc;
5219
5220 memset(&ramrod_param, 0, sizeof(ramrod_param));
5221
5222 /* Prepare ramrod parameters */
5223 ramrod_param.cid = 0;
5224 ramrod_param.cl_id = cl_id;
5225 ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5226 ramrod_param.func_id = BP_FUNC(bp);
5227
5228 ramrod_param.pstate = &bp->sp_state;
5229 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5230
5231 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5232 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5233
5234 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5235
5236 ramrod_param.ramrod_flags = ramrod_flags;
5237 ramrod_param.rx_mode_flags = rx_mode_flags;
5238
5239 ramrod_param.rx_accept_flags = rx_accept_flags;
5240 ramrod_param.tx_accept_flags = tx_accept_flags;
5241
5242 rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5243 if (rc < 0) {
5244 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5245 return;
5246 }
5247 }
5248
5249 /* called with netif_addr_lock_bh() */
bnx2x_set_storm_rx_mode(struct bnx2x * bp)5250 void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5251 {
5252 unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5253 unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5254
5255 #ifdef BCM_CNIC
5256 if (!NO_FCOE(bp))
5257
5258 /* Configure rx_mode of FCoE Queue */
5259 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5260 #endif
5261
5262 switch (bp->rx_mode) {
5263 case BNX2X_RX_MODE_NONE:
5264 /*
5265 * 'drop all' supersedes any accept flags that may have been
5266 * passed to the function.
5267 */
5268 break;
5269 case BNX2X_RX_MODE_NORMAL:
5270 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5271 __set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags);
5272 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5273
5274 /* internal switching mode */
5275 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5276 __set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags);
5277 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5278
5279 break;
5280 case BNX2X_RX_MODE_ALLMULTI:
5281 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5282 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5283 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5284
5285 /* internal switching mode */
5286 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5287 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5288 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5289
5290 break;
5291 case BNX2X_RX_MODE_PROMISC:
5292 /* According to deffinition of SI mode, iface in promisc mode
5293 * should receive matched and unmatched (in resolution of port)
5294 * unicast packets.
5295 */
5296 __set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags);
5297 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5298 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5299 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5300
5301 /* internal switching mode */
5302 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5303 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5304
5305 if (IS_MF_SI(bp))
5306 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags);
5307 else
5308 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5309
5310 break;
5311 default:
5312 BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode);
5313 return;
5314 }
5315
5316 if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5317 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags);
5318 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags);
5319 }
5320
5321 __set_bit(RAMROD_RX, &ramrod_flags);
5322 __set_bit(RAMROD_TX, &ramrod_flags);
5323
5324 bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags,
5325 tx_accept_flags, ramrod_flags);
5326 }
5327
bnx2x_init_internal_common(struct bnx2x * bp)5328 static void bnx2x_init_internal_common(struct bnx2x *bp)
5329 {
5330 int i;
5331
5332 if (IS_MF_SI(bp))
5333 /*
5334 * In switch independent mode, the TSTORM needs to accept
5335 * packets that failed classification, since approximate match
5336 * mac addresses aren't written to NIG LLH
5337 */
5338 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5339 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5340 else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5341 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5342 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5343
5344 /* Zero this manually as its initialization is
5345 currently missing in the initTool */
5346 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5347 REG_WR(bp, BAR_USTRORM_INTMEM +
5348 USTORM_AGG_DATA_OFFSET + i * 4, 0);
5349 if (!CHIP_IS_E1x(bp)) {
5350 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5351 CHIP_INT_MODE_IS_BC(bp) ?
5352 HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5353 }
5354 }
5355
bnx2x_init_internal(struct bnx2x * bp,u32 load_code)5356 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5357 {
5358 switch (load_code) {
5359 case FW_MSG_CODE_DRV_LOAD_COMMON:
5360 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5361 bnx2x_init_internal_common(bp);
5362 /* no break */
5363
5364 case FW_MSG_CODE_DRV_LOAD_PORT:
5365 /* nothing to do */
5366 /* no break */
5367
5368 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5369 /* internal memory per function is
5370 initialized inside bnx2x_pf_init */
5371 break;
5372
5373 default:
5374 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5375 break;
5376 }
5377 }
5378
bnx2x_fp_igu_sb_id(struct bnx2x_fastpath * fp)5379 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5380 {
5381 return fp->bp->igu_base_sb + fp->index + CNIC_PRESENT;
5382 }
5383
bnx2x_fp_fw_sb_id(struct bnx2x_fastpath * fp)5384 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5385 {
5386 return fp->bp->base_fw_ndsb + fp->index + CNIC_PRESENT;
5387 }
5388
bnx2x_fp_cl_id(struct bnx2x_fastpath * fp)5389 static inline u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
5390 {
5391 if (CHIP_IS_E1x(fp->bp))
5392 return BP_L_ID(fp->bp) + fp->index;
5393 else /* We want Client ID to be the same as IGU SB ID for 57712 */
5394 return bnx2x_fp_igu_sb_id(fp);
5395 }
5396
bnx2x_init_eth_fp(struct bnx2x * bp,int fp_idx)5397 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
5398 {
5399 struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
5400 u8 cos;
5401 unsigned long q_type = 0;
5402 u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
5403 fp->rx_queue = fp_idx;
5404 fp->cid = fp_idx;
5405 fp->cl_id = bnx2x_fp_cl_id(fp);
5406 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
5407 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
5408 /* qZone id equals to FW (per path) client id */
5409 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
5410
5411 /* init shortcut */
5412 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
5413 /* Setup SB indicies */
5414 fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
5415
5416 /* Configure Queue State object */
5417 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
5418 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
5419
5420 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
5421
5422 /* init tx data */
5423 for_each_cos_in_tx_queue(fp, cos) {
5424 bnx2x_init_txdata(bp, &fp->txdata[cos],
5425 CID_COS_TO_TX_ONLY_CID(fp->cid, cos),
5426 FP_COS_TO_TXQ(fp, cos),
5427 BNX2X_TX_SB_INDEX_BASE + cos);
5428 cids[cos] = fp->txdata[cos].cid;
5429 }
5430
5431 bnx2x_init_queue_obj(bp, &fp->q_obj, fp->cl_id, cids, fp->max_cos,
5432 BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
5433 bnx2x_sp_mapping(bp, q_rdata), q_type);
5434
5435 /**
5436 * Configure classification DBs: Always enable Tx switching
5437 */
5438 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
5439
5440 DP(NETIF_MSG_IFUP, "queue[%d]: bnx2x_init_sb(%p,%p) "
5441 "cl_id %d fw_sb %d igu_sb %d\n",
5442 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
5443 fp->igu_sb_id);
5444 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
5445 fp->fw_sb_id, fp->igu_sb_id);
5446
5447 bnx2x_update_fpsb_idx(fp);
5448 }
5449
bnx2x_nic_init(struct bnx2x * bp,u32 load_code)5450 void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
5451 {
5452 int i;
5453
5454 for_each_eth_queue(bp, i)
5455 bnx2x_init_eth_fp(bp, i);
5456 #ifdef BCM_CNIC
5457 if (!NO_FCOE(bp))
5458 bnx2x_init_fcoe_fp(bp);
5459
5460 bnx2x_init_sb(bp, bp->cnic_sb_mapping,
5461 BNX2X_VF_ID_INVALID, false,
5462 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
5463
5464 #endif
5465
5466 /* Initialize MOD_ABS interrupts */
5467 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
5468 bp->common.shmem_base, bp->common.shmem2_base,
5469 BP_PORT(bp));
5470 /* ensure status block indices were read */
5471 rmb();
5472
5473 bnx2x_init_def_sb(bp);
5474 bnx2x_update_dsb_idx(bp);
5475 bnx2x_init_rx_rings(bp);
5476 bnx2x_init_tx_rings(bp);
5477 bnx2x_init_sp_ring(bp);
5478 bnx2x_init_eq_ring(bp);
5479 bnx2x_init_internal(bp, load_code);
5480 bnx2x_pf_init(bp);
5481 bnx2x_stats_init(bp);
5482
5483 /* flush all before enabling interrupts */
5484 mb();
5485 mmiowb();
5486
5487 bnx2x_int_enable(bp);
5488
5489 /* Check for SPIO5 */
5490 bnx2x_attn_int_deasserted0(bp,
5491 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
5492 AEU_INPUTS_ATTN_BITS_SPIO5);
5493 }
5494
5495 /* end of nic init */
5496
5497 /*
5498 * gzip service functions
5499 */
5500
bnx2x_gunzip_init(struct bnx2x * bp)5501 static int bnx2x_gunzip_init(struct bnx2x *bp)
5502 {
5503 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
5504 &bp->gunzip_mapping, GFP_KERNEL);
5505 if (bp->gunzip_buf == NULL)
5506 goto gunzip_nomem1;
5507
5508 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
5509 if (bp->strm == NULL)
5510 goto gunzip_nomem2;
5511
5512 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
5513 if (bp->strm->workspace == NULL)
5514 goto gunzip_nomem3;
5515
5516 return 0;
5517
5518 gunzip_nomem3:
5519 kfree(bp->strm);
5520 bp->strm = NULL;
5521
5522 gunzip_nomem2:
5523 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5524 bp->gunzip_mapping);
5525 bp->gunzip_buf = NULL;
5526
5527 gunzip_nomem1:
5528 netdev_err(bp->dev, "Cannot allocate firmware buffer for"
5529 " un-compression\n");
5530 return -ENOMEM;
5531 }
5532
bnx2x_gunzip_end(struct bnx2x * bp)5533 static void bnx2x_gunzip_end(struct bnx2x *bp)
5534 {
5535 if (bp->strm) {
5536 vfree(bp->strm->workspace);
5537 kfree(bp->strm);
5538 bp->strm = NULL;
5539 }
5540
5541 if (bp->gunzip_buf) {
5542 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5543 bp->gunzip_mapping);
5544 bp->gunzip_buf = NULL;
5545 }
5546 }
5547
bnx2x_gunzip(struct bnx2x * bp,const u8 * zbuf,int len)5548 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
5549 {
5550 int n, rc;
5551
5552 /* check gzip header */
5553 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
5554 BNX2X_ERR("Bad gzip header\n");
5555 return -EINVAL;
5556 }
5557
5558 n = 10;
5559
5560 #define FNAME 0x8
5561
5562 if (zbuf[3] & FNAME)
5563 while ((zbuf[n++] != 0) && (n < len));
5564
5565 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
5566 bp->strm->avail_in = len - n;
5567 bp->strm->next_out = bp->gunzip_buf;
5568 bp->strm->avail_out = FW_BUF_SIZE;
5569
5570 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
5571 if (rc != Z_OK)
5572 return rc;
5573
5574 rc = zlib_inflate(bp->strm, Z_FINISH);
5575 if ((rc != Z_OK) && (rc != Z_STREAM_END))
5576 netdev_err(bp->dev, "Firmware decompression error: %s\n",
5577 bp->strm->msg);
5578
5579 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
5580 if (bp->gunzip_outlen & 0x3)
5581 netdev_err(bp->dev, "Firmware decompression error:"
5582 " gunzip_outlen (%d) not aligned\n",
5583 bp->gunzip_outlen);
5584 bp->gunzip_outlen >>= 2;
5585
5586 zlib_inflateEnd(bp->strm);
5587
5588 if (rc == Z_STREAM_END)
5589 return 0;
5590
5591 return rc;
5592 }
5593
5594 /* nic load/unload */
5595
5596 /*
5597 * General service functions
5598 */
5599
5600 /* send a NIG loopback debug packet */
bnx2x_lb_pckt(struct bnx2x * bp)5601 static void bnx2x_lb_pckt(struct bnx2x *bp)
5602 {
5603 u32 wb_write[3];
5604
5605 /* Ethernet source and destination addresses */
5606 wb_write[0] = 0x55555555;
5607 wb_write[1] = 0x55555555;
5608 wb_write[2] = 0x20; /* SOP */
5609 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5610
5611 /* NON-IP protocol */
5612 wb_write[0] = 0x09000000;
5613 wb_write[1] = 0x55555555;
5614 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
5615 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5616 }
5617
5618 /* some of the internal memories
5619 * are not directly readable from the driver
5620 * to test them we send debug packets
5621 */
bnx2x_int_mem_test(struct bnx2x * bp)5622 static int bnx2x_int_mem_test(struct bnx2x *bp)
5623 {
5624 int factor;
5625 int count, i;
5626 u32 val = 0;
5627
5628 if (CHIP_REV_IS_FPGA(bp))
5629 factor = 120;
5630 else if (CHIP_REV_IS_EMUL(bp))
5631 factor = 200;
5632 else
5633 factor = 1;
5634
5635 /* Disable inputs of parser neighbor blocks */
5636 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5637 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5638 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5639 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5640
5641 /* Write 0 to parser credits for CFC search request */
5642 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5643
5644 /* send Ethernet packet */
5645 bnx2x_lb_pckt(bp);
5646
5647 /* TODO do i reset NIG statistic? */
5648 /* Wait until NIG register shows 1 packet of size 0x10 */
5649 count = 1000 * factor;
5650 while (count) {
5651
5652 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5653 val = *bnx2x_sp(bp, wb_data[0]);
5654 if (val == 0x10)
5655 break;
5656
5657 msleep(10);
5658 count--;
5659 }
5660 if (val != 0x10) {
5661 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
5662 return -1;
5663 }
5664
5665 /* Wait until PRS register shows 1 packet */
5666 count = 1000 * factor;
5667 while (count) {
5668 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5669 if (val == 1)
5670 break;
5671
5672 msleep(10);
5673 count--;
5674 }
5675 if (val != 0x1) {
5676 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5677 return -2;
5678 }
5679
5680 /* Reset and init BRB, PRS */
5681 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5682 msleep(50);
5683 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5684 msleep(50);
5685 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5686 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5687
5688 DP(NETIF_MSG_HW, "part2\n");
5689
5690 /* Disable inputs of parser neighbor blocks */
5691 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5692 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5693 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5694 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5695
5696 /* Write 0 to parser credits for CFC search request */
5697 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5698
5699 /* send 10 Ethernet packets */
5700 for (i = 0; i < 10; i++)
5701 bnx2x_lb_pckt(bp);
5702
5703 /* Wait until NIG register shows 10 + 1
5704 packets of size 11*0x10 = 0xb0 */
5705 count = 1000 * factor;
5706 while (count) {
5707
5708 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5709 val = *bnx2x_sp(bp, wb_data[0]);
5710 if (val == 0xb0)
5711 break;
5712
5713 msleep(10);
5714 count--;
5715 }
5716 if (val != 0xb0) {
5717 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
5718 return -3;
5719 }
5720
5721 /* Wait until PRS register shows 2 packets */
5722 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5723 if (val != 2)
5724 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5725
5726 /* Write 1 to parser credits for CFC search request */
5727 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
5728
5729 /* Wait until PRS register shows 3 packets */
5730 msleep(10 * factor);
5731 /* Wait until NIG register shows 1 packet of size 0x10 */
5732 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5733 if (val != 3)
5734 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5735
5736 /* clear NIG EOP FIFO */
5737 for (i = 0; i < 11; i++)
5738 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
5739 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
5740 if (val != 1) {
5741 BNX2X_ERR("clear of NIG failed\n");
5742 return -4;
5743 }
5744
5745 /* Reset and init BRB, PRS, NIG */
5746 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5747 msleep(50);
5748 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5749 msleep(50);
5750 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5751 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5752 #ifndef BCM_CNIC
5753 /* set NIC mode */
5754 REG_WR(bp, PRS_REG_NIC_MODE, 1);
5755 #endif
5756
5757 /* Enable inputs of parser neighbor blocks */
5758 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
5759 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
5760 REG_WR(bp, CFC_REG_DEBUG0, 0x0);
5761 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
5762
5763 DP(NETIF_MSG_HW, "done\n");
5764
5765 return 0; /* OK */
5766 }
5767
bnx2x_enable_blocks_attention(struct bnx2x * bp)5768 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
5769 {
5770 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
5771 if (!CHIP_IS_E1x(bp))
5772 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
5773 else
5774 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
5775 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
5776 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
5777 /*
5778 * mask read length error interrupts in brb for parser
5779 * (parsing unit and 'checksum and crc' unit)
5780 * these errors are legal (PU reads fixed length and CAC can cause
5781 * read length error on truncated packets)
5782 */
5783 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
5784 REG_WR(bp, QM_REG_QM_INT_MASK, 0);
5785 REG_WR(bp, TM_REG_TM_INT_MASK, 0);
5786 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
5787 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
5788 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
5789 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
5790 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
5791 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
5792 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
5793 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
5794 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
5795 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
5796 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
5797 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
5798 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
5799 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
5800 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
5801 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
5802
5803 if (CHIP_REV_IS_FPGA(bp))
5804 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x580000);
5805 else if (!CHIP_IS_E1x(bp))
5806 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0,
5807 (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
5808 | PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
5809 | PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
5810 | PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
5811 | PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED));
5812 else
5813 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x480000);
5814 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
5815 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
5816 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
5817 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
5818
5819 if (!CHIP_IS_E1x(bp))
5820 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
5821 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
5822
5823 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
5824 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
5825 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
5826 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
5827 }
5828
bnx2x_reset_common(struct bnx2x * bp)5829 static void bnx2x_reset_common(struct bnx2x *bp)
5830 {
5831 u32 val = 0x1400;
5832
5833 /* reset_common */
5834 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
5835 0xd3ffff7f);
5836
5837 if (CHIP_IS_E3(bp)) {
5838 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
5839 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
5840 }
5841
5842 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
5843 }
5844
bnx2x_setup_dmae(struct bnx2x * bp)5845 static void bnx2x_setup_dmae(struct bnx2x *bp)
5846 {
5847 bp->dmae_ready = 0;
5848 spin_lock_init(&bp->dmae_lock);
5849 }
5850
bnx2x_init_pxp(struct bnx2x * bp)5851 static void bnx2x_init_pxp(struct bnx2x *bp)
5852 {
5853 u16 devctl;
5854 int r_order, w_order;
5855
5856 pci_read_config_word(bp->pdev,
5857 pci_pcie_cap(bp->pdev) + PCI_EXP_DEVCTL, &devctl);
5858 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
5859 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5860 if (bp->mrrs == -1)
5861 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5862 else {
5863 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
5864 r_order = bp->mrrs;
5865 }
5866
5867 bnx2x_init_pxp_arb(bp, r_order, w_order);
5868 }
5869
bnx2x_setup_fan_failure_detection(struct bnx2x * bp)5870 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
5871 {
5872 int is_required;
5873 u32 val;
5874 int port;
5875
5876 if (BP_NOMCP(bp))
5877 return;
5878
5879 is_required = 0;
5880 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
5881 SHARED_HW_CFG_FAN_FAILURE_MASK;
5882
5883 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
5884 is_required = 1;
5885
5886 /*
5887 * The fan failure mechanism is usually related to the PHY type since
5888 * the power consumption of the board is affected by the PHY. Currently,
5889 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
5890 */
5891 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
5892 for (port = PORT_0; port < PORT_MAX; port++) {
5893 is_required |=
5894 bnx2x_fan_failure_det_req(
5895 bp,
5896 bp->common.shmem_base,
5897 bp->common.shmem2_base,
5898 port);
5899 }
5900
5901 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
5902
5903 if (is_required == 0)
5904 return;
5905
5906 /* Fan failure is indicated by SPIO 5 */
5907 bnx2x_set_spio(bp, MISC_REGISTERS_SPIO_5,
5908 MISC_REGISTERS_SPIO_INPUT_HI_Z);
5909
5910 /* set to active low mode */
5911 val = REG_RD(bp, MISC_REG_SPIO_INT);
5912 val |= ((1 << MISC_REGISTERS_SPIO_5) <<
5913 MISC_REGISTERS_SPIO_INT_OLD_SET_POS);
5914 REG_WR(bp, MISC_REG_SPIO_INT, val);
5915
5916 /* enable interrupt to signal the IGU */
5917 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
5918 val |= (1 << MISC_REGISTERS_SPIO_5);
5919 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
5920 }
5921
bnx2x_pretend_func(struct bnx2x * bp,u8 pretend_func_num)5922 static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
5923 {
5924 u32 offset = 0;
5925
5926 if (CHIP_IS_E1(bp))
5927 return;
5928 if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
5929 return;
5930
5931 switch (BP_ABS_FUNC(bp)) {
5932 case 0:
5933 offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
5934 break;
5935 case 1:
5936 offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
5937 break;
5938 case 2:
5939 offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
5940 break;
5941 case 3:
5942 offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
5943 break;
5944 case 4:
5945 offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
5946 break;
5947 case 5:
5948 offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
5949 break;
5950 case 6:
5951 offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
5952 break;
5953 case 7:
5954 offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
5955 break;
5956 default:
5957 return;
5958 }
5959
5960 REG_WR(bp, offset, pretend_func_num);
5961 REG_RD(bp, offset);
5962 DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
5963 }
5964
bnx2x_pf_disable(struct bnx2x * bp)5965 void bnx2x_pf_disable(struct bnx2x *bp)
5966 {
5967 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
5968 val &= ~IGU_PF_CONF_FUNC_EN;
5969
5970 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
5971 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
5972 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
5973 }
5974
bnx2x__common_init_phy(struct bnx2x * bp)5975 static inline void bnx2x__common_init_phy(struct bnx2x *bp)
5976 {
5977 u32 shmem_base[2], shmem2_base[2];
5978 shmem_base[0] = bp->common.shmem_base;
5979 shmem2_base[0] = bp->common.shmem2_base;
5980 if (!CHIP_IS_E1x(bp)) {
5981 shmem_base[1] =
5982 SHMEM2_RD(bp, other_shmem_base_addr);
5983 shmem2_base[1] =
5984 SHMEM2_RD(bp, other_shmem2_base_addr);
5985 }
5986 bnx2x_acquire_phy_lock(bp);
5987 bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
5988 bp->common.chip_id);
5989 bnx2x_release_phy_lock(bp);
5990 }
5991
5992 /**
5993 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
5994 *
5995 * @bp: driver handle
5996 */
bnx2x_init_hw_common(struct bnx2x * bp)5997 static int bnx2x_init_hw_common(struct bnx2x *bp)
5998 {
5999 u32 val;
6000
6001 DP(BNX2X_MSG_MCP, "starting common init func %d\n", BP_ABS_FUNC(bp));
6002
6003 /*
6004 * take the UNDI lock to protect undi_unload flow from accessing
6005 * registers while we're resetting the chip
6006 */
6007 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6008
6009 bnx2x_reset_common(bp);
6010 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6011
6012 val = 0xfffc;
6013 if (CHIP_IS_E3(bp)) {
6014 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6015 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6016 }
6017 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6018
6019 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6020
6021 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6022
6023 if (!CHIP_IS_E1x(bp)) {
6024 u8 abs_func_id;
6025
6026 /**
6027 * 4-port mode or 2-port mode we need to turn of master-enable
6028 * for everyone, after that, turn it back on for self.
6029 * so, we disregard multi-function or not, and always disable
6030 * for all functions on the given path, this means 0,2,4,6 for
6031 * path 0 and 1,3,5,7 for path 1
6032 */
6033 for (abs_func_id = BP_PATH(bp);
6034 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6035 if (abs_func_id == BP_ABS_FUNC(bp)) {
6036 REG_WR(bp,
6037 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6038 1);
6039 continue;
6040 }
6041
6042 bnx2x_pretend_func(bp, abs_func_id);
6043 /* clear pf enable */
6044 bnx2x_pf_disable(bp);
6045 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6046 }
6047 }
6048
6049 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6050 if (CHIP_IS_E1(bp)) {
6051 /* enable HW interrupt from PXP on USDM overflow
6052 bit 16 on INT_MASK_0 */
6053 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6054 }
6055
6056 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6057 bnx2x_init_pxp(bp);
6058
6059 #ifdef __BIG_ENDIAN
6060 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6061 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6062 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6063 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6064 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6065 /* make sure this value is 0 */
6066 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6067
6068 /* REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6069 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6070 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6071 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6072 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6073 #endif
6074
6075 bnx2x_ilt_init_page_size(bp, INITOP_SET);
6076
6077 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6078 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6079
6080 /* let the HW do it's magic ... */
6081 msleep(100);
6082 /* finish PXP init */
6083 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6084 if (val != 1) {
6085 BNX2X_ERR("PXP2 CFG failed\n");
6086 return -EBUSY;
6087 }
6088 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6089 if (val != 1) {
6090 BNX2X_ERR("PXP2 RD_INIT failed\n");
6091 return -EBUSY;
6092 }
6093
6094 /* Timers bug workaround E2 only. We need to set the entire ILT to
6095 * have entries with value "0" and valid bit on.
6096 * This needs to be done by the first PF that is loaded in a path
6097 * (i.e. common phase)
6098 */
6099 if (!CHIP_IS_E1x(bp)) {
6100 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6101 * (i.e. vnic3) to start even if it is marked as "scan-off".
6102 * This occurs when a different function (func2,3) is being marked
6103 * as "scan-off". Real-life scenario for example: if a driver is being
6104 * load-unloaded while func6,7 are down. This will cause the timer to access
6105 * the ilt, translate to a logical address and send a request to read/write.
6106 * Since the ilt for the function that is down is not valid, this will cause
6107 * a translation error which is unrecoverable.
6108 * The Workaround is intended to make sure that when this happens nothing fatal
6109 * will occur. The workaround:
6110 * 1. First PF driver which loads on a path will:
6111 * a. After taking the chip out of reset, by using pretend,
6112 * it will write "0" to the following registers of
6113 * the other vnics.
6114 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6115 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6116 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6117 * And for itself it will write '1' to
6118 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6119 * dmae-operations (writing to pram for example.)
6120 * note: can be done for only function 6,7 but cleaner this
6121 * way.
6122 * b. Write zero+valid to the entire ILT.
6123 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
6124 * VNIC3 (of that port). The range allocated will be the
6125 * entire ILT. This is needed to prevent ILT range error.
6126 * 2. Any PF driver load flow:
6127 * a. ILT update with the physical addresses of the allocated
6128 * logical pages.
6129 * b. Wait 20msec. - note that this timeout is needed to make
6130 * sure there are no requests in one of the PXP internal
6131 * queues with "old" ILT addresses.
6132 * c. PF enable in the PGLC.
6133 * d. Clear the was_error of the PF in the PGLC. (could have
6134 * occured while driver was down)
6135 * e. PF enable in the CFC (WEAK + STRONG)
6136 * f. Timers scan enable
6137 * 3. PF driver unload flow:
6138 * a. Clear the Timers scan_en.
6139 * b. Polling for scan_on=0 for that PF.
6140 * c. Clear the PF enable bit in the PXP.
6141 * d. Clear the PF enable in the CFC (WEAK + STRONG)
6142 * e. Write zero+valid to all ILT entries (The valid bit must
6143 * stay set)
6144 * f. If this is VNIC 3 of a port then also init
6145 * first_timers_ilt_entry to zero and last_timers_ilt_entry
6146 * to the last enrty in the ILT.
6147 *
6148 * Notes:
6149 * Currently the PF error in the PGLC is non recoverable.
6150 * In the future the there will be a recovery routine for this error.
6151 * Currently attention is masked.
6152 * Having an MCP lock on the load/unload process does not guarantee that
6153 * there is no Timer disable during Func6/7 enable. This is because the
6154 * Timers scan is currently being cleared by the MCP on FLR.
6155 * Step 2.d can be done only for PF6/7 and the driver can also check if
6156 * there is error before clearing it. But the flow above is simpler and
6157 * more general.
6158 * All ILT entries are written by zero+valid and not just PF6/7
6159 * ILT entries since in the future the ILT entries allocation for
6160 * PF-s might be dynamic.
6161 */
6162 struct ilt_client_info ilt_cli;
6163 struct bnx2x_ilt ilt;
6164 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6165 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6166
6167 /* initialize dummy TM client */
6168 ilt_cli.start = 0;
6169 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6170 ilt_cli.client_num = ILT_CLIENT_TM;
6171
6172 /* Step 1: set zeroes to all ilt page entries with valid bit on
6173 * Step 2: set the timers first/last ilt entry to point
6174 * to the entire range to prevent ILT range error for 3rd/4th
6175 * vnic (this code assumes existance of the vnic)
6176 *
6177 * both steps performed by call to bnx2x_ilt_client_init_op()
6178 * with dummy TM client
6179 *
6180 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6181 * and his brother are split registers
6182 */
6183 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6184 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6185 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6186
6187 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6188 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6189 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6190 }
6191
6192
6193 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6194 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6195
6196 if (!CHIP_IS_E1x(bp)) {
6197 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6198 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6199 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6200
6201 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6202
6203 /* let the HW do it's magic ... */
6204 do {
6205 msleep(200);
6206 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6207 } while (factor-- && (val != 1));
6208
6209 if (val != 1) {
6210 BNX2X_ERR("ATC_INIT failed\n");
6211 return -EBUSY;
6212 }
6213 }
6214
6215 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6216
6217 /* clean the DMAE memory */
6218 bp->dmae_ready = 1;
6219 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6220
6221 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6222
6223 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6224
6225 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6226
6227 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6228
6229 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6230 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6231 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6232 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6233
6234 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6235
6236
6237 /* QM queues pointers table */
6238 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6239
6240 /* soft reset pulse */
6241 REG_WR(bp, QM_REG_SOFT_RESET, 1);
6242 REG_WR(bp, QM_REG_SOFT_RESET, 0);
6243
6244 #ifdef BCM_CNIC
6245 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6246 #endif
6247
6248 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6249 REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6250 if (!CHIP_REV_IS_SLOW(bp))
6251 /* enable hw interrupt from doorbell Q */
6252 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6253
6254 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6255
6256 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6257 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6258
6259 if (!CHIP_IS_E1(bp))
6260 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6261
6262 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp))
6263 /* Bit-map indicating which L2 hdrs may appear
6264 * after the basic Ethernet header
6265 */
6266 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6267 bp->path_has_ovlan ? 7 : 6);
6268
6269 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6270 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6271 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6272 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6273
6274 if (!CHIP_IS_E1x(bp)) {
6275 /* reset VFC memories */
6276 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6277 VFC_MEMORIES_RST_REG_CAM_RST |
6278 VFC_MEMORIES_RST_REG_RAM_RST);
6279 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6280 VFC_MEMORIES_RST_REG_CAM_RST |
6281 VFC_MEMORIES_RST_REG_RAM_RST);
6282
6283 msleep(20);
6284 }
6285
6286 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6287 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6288 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6289 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6290
6291 /* sync semi rtc */
6292 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6293 0x80000000);
6294 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6295 0x80000000);
6296
6297 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6298 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6299 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6300
6301 if (!CHIP_IS_E1x(bp))
6302 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6303 bp->path_has_ovlan ? 7 : 6);
6304
6305 REG_WR(bp, SRC_REG_SOFT_RST, 1);
6306
6307 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6308
6309 #ifdef BCM_CNIC
6310 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6311 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6312 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6313 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6314 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6315 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6316 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6317 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6318 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6319 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6320 #endif
6321 REG_WR(bp, SRC_REG_SOFT_RST, 0);
6322
6323 if (sizeof(union cdu_context) != 1024)
6324 /* we currently assume that a context is 1024 bytes */
6325 dev_alert(&bp->pdev->dev, "please adjust the size "
6326 "of cdu_context(%ld)\n",
6327 (long)sizeof(union cdu_context));
6328
6329 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6330 val = (4 << 24) + (0 << 12) + 1024;
6331 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6332
6333 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6334 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6335 /* enable context validation interrupt from CFC */
6336 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6337
6338 /* set the thresholds to prevent CFC/CDU race */
6339 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6340
6341 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6342
6343 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
6344 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
6345
6346 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
6347 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
6348
6349 /* Reset PCIE errors for debug */
6350 REG_WR(bp, 0x2814, 0xffffffff);
6351 REG_WR(bp, 0x3820, 0xffffffff);
6352
6353 if (!CHIP_IS_E1x(bp)) {
6354 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
6355 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
6356 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
6357 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
6358 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
6359 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
6360 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
6361 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
6362 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
6363 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
6364 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
6365 }
6366
6367 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
6368 if (!CHIP_IS_E1(bp)) {
6369 /* in E3 this done in per-port section */
6370 if (!CHIP_IS_E3(bp))
6371 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
6372 }
6373 if (CHIP_IS_E1H(bp))
6374 /* not applicable for E2 (and above ...) */
6375 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
6376
6377 if (CHIP_REV_IS_SLOW(bp))
6378 msleep(200);
6379
6380 /* finish CFC init */
6381 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
6382 if (val != 1) {
6383 BNX2X_ERR("CFC LL_INIT failed\n");
6384 return -EBUSY;
6385 }
6386 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
6387 if (val != 1) {
6388 BNX2X_ERR("CFC AC_INIT failed\n");
6389 return -EBUSY;
6390 }
6391 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
6392 if (val != 1) {
6393 BNX2X_ERR("CFC CAM_INIT failed\n");
6394 return -EBUSY;
6395 }
6396 REG_WR(bp, CFC_REG_DEBUG0, 0);
6397
6398 if (CHIP_IS_E1(bp)) {
6399 /* read NIG statistic
6400 to see if this is our first up since powerup */
6401 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6402 val = *bnx2x_sp(bp, wb_data[0]);
6403
6404 /* do internal memory self test */
6405 if ((val == 0) && bnx2x_int_mem_test(bp)) {
6406 BNX2X_ERR("internal mem self test failed\n");
6407 return -EBUSY;
6408 }
6409 }
6410
6411 bnx2x_setup_fan_failure_detection(bp);
6412
6413 /* clear PXP2 attentions */
6414 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
6415
6416 bnx2x_enable_blocks_attention(bp);
6417 bnx2x_enable_blocks_parity(bp);
6418
6419 if (!BP_NOMCP(bp)) {
6420 if (CHIP_IS_E1x(bp))
6421 bnx2x__common_init_phy(bp);
6422 } else
6423 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6424
6425 return 0;
6426 }
6427
6428 /**
6429 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6430 *
6431 * @bp: driver handle
6432 */
bnx2x_init_hw_common_chip(struct bnx2x * bp)6433 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
6434 {
6435 int rc = bnx2x_init_hw_common(bp);
6436
6437 if (rc)
6438 return rc;
6439
6440 /* In E2 2-PORT mode, same ext phy is used for the two paths */
6441 if (!BP_NOMCP(bp))
6442 bnx2x__common_init_phy(bp);
6443
6444 return 0;
6445 }
6446
bnx2x_init_hw_port(struct bnx2x * bp)6447 static int bnx2x_init_hw_port(struct bnx2x *bp)
6448 {
6449 int port = BP_PORT(bp);
6450 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
6451 u32 low, high;
6452 u32 val;
6453
6454 bnx2x__link_reset(bp);
6455
6456 DP(BNX2X_MSG_MCP, "starting port init port %d\n", port);
6457
6458 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
6459
6460 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6461 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6462 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6463
6464 /* Timers bug workaround: disables the pf_master bit in pglue at
6465 * common phase, we need to enable it here before any dmae access are
6466 * attempted. Therefore we manually added the enable-master to the
6467 * port phase (it also happens in the function phase)
6468 */
6469 if (!CHIP_IS_E1x(bp))
6470 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6471
6472 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6473 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6474 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6475 bnx2x_init_block(bp, BLOCK_QM, init_phase);
6476
6477 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6478 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6479 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6480 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6481
6482 /* QM cid (connection) count */
6483 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
6484
6485 #ifdef BCM_CNIC
6486 bnx2x_init_block(bp, BLOCK_TM, init_phase);
6487 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
6488 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
6489 #endif
6490
6491 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6492
6493 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
6494 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6495
6496 if (IS_MF(bp))
6497 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
6498 else if (bp->dev->mtu > 4096) {
6499 if (bp->flags & ONE_PORT_FLAG)
6500 low = 160;
6501 else {
6502 val = bp->dev->mtu;
6503 /* (24*1024 + val*4)/256 */
6504 low = 96 + (val/64) +
6505 ((val % 64) ? 1 : 0);
6506 }
6507 } else
6508 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
6509 high = low + 56; /* 14*1024/256 */
6510 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
6511 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
6512 }
6513
6514 if (CHIP_MODE_IS_4_PORT(bp))
6515 REG_WR(bp, (BP_PORT(bp) ?
6516 BRB1_REG_MAC_GUARANTIED_1 :
6517 BRB1_REG_MAC_GUARANTIED_0), 40);
6518
6519
6520 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6521 if (CHIP_IS_E3B0(bp))
6522 /* Ovlan exists only if we are in multi-function +
6523 * switch-dependent mode, in switch-independent there
6524 * is no ovlan headers
6525 */
6526 REG_WR(bp, BP_PORT(bp) ?
6527 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6528 PRS_REG_HDRS_AFTER_BASIC_PORT_0,
6529 (bp->path_has_ovlan ? 7 : 6));
6530
6531 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6532 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6533 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6534 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6535
6536 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6537 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6538 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6539 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6540
6541 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6542 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6543
6544 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6545
6546 if (CHIP_IS_E1x(bp)) {
6547 /* configure PBF to work without PAUSE mtu 9000 */
6548 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
6549
6550 /* update threshold */
6551 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
6552 /* update init credit */
6553 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
6554
6555 /* probe changes */
6556 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
6557 udelay(50);
6558 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
6559 }
6560
6561 #ifdef BCM_CNIC
6562 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6563 #endif
6564 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6565 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6566
6567 if (CHIP_IS_E1(bp)) {
6568 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6569 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6570 }
6571 bnx2x_init_block(bp, BLOCK_HC, init_phase);
6572
6573 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6574
6575 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6576 /* init aeu_mask_attn_func_0/1:
6577 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use
6578 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
6579 * bits 4-7 are used for "per vn group attention" */
6580 val = IS_MF(bp) ? 0xF7 : 0x7;
6581 /* Enable DCBX attention for all but E1 */
6582 val |= CHIP_IS_E1(bp) ? 0 : 0x10;
6583 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
6584
6585 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6586
6587 if (!CHIP_IS_E1x(bp)) {
6588 /* Bit-map indicating which L2 hdrs may appear after the
6589 * basic Ethernet header
6590 */
6591 REG_WR(bp, BP_PORT(bp) ?
6592 NIG_REG_P1_HDRS_AFTER_BASIC :
6593 NIG_REG_P0_HDRS_AFTER_BASIC,
6594 IS_MF_SD(bp) ? 7 : 6);
6595
6596 if (CHIP_IS_E3(bp))
6597 REG_WR(bp, BP_PORT(bp) ?
6598 NIG_REG_LLH1_MF_MODE :
6599 NIG_REG_LLH_MF_MODE, IS_MF(bp));
6600 }
6601 if (!CHIP_IS_E3(bp))
6602 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
6603
6604 if (!CHIP_IS_E1(bp)) {
6605 /* 0x2 disable mf_ov, 0x1 enable */
6606 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
6607 (IS_MF_SD(bp) ? 0x1 : 0x2));
6608
6609 if (!CHIP_IS_E1x(bp)) {
6610 val = 0;
6611 switch (bp->mf_mode) {
6612 case MULTI_FUNCTION_SD:
6613 val = 1;
6614 break;
6615 case MULTI_FUNCTION_SI:
6616 val = 2;
6617 break;
6618 }
6619
6620 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
6621 NIG_REG_LLH0_CLS_TYPE), val);
6622 }
6623 {
6624 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
6625 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
6626 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
6627 }
6628 }
6629
6630
6631 /* If SPIO5 is set to generate interrupts, enable it for this port */
6632 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6633 if (val & (1 << MISC_REGISTERS_SPIO_5)) {
6634 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6635 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6636 val = REG_RD(bp, reg_addr);
6637 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
6638 REG_WR(bp, reg_addr, val);
6639 }
6640
6641 return 0;
6642 }
6643
bnx2x_ilt_wr(struct bnx2x * bp,u32 index,dma_addr_t addr)6644 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
6645 {
6646 int reg;
6647
6648 if (CHIP_IS_E1(bp))
6649 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
6650 else
6651 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
6652
6653 bnx2x_wb_wr(bp, reg, ONCHIP_ADDR1(addr), ONCHIP_ADDR2(addr));
6654 }
6655
bnx2x_igu_clear_sb(struct bnx2x * bp,u8 idu_sb_id)6656 static inline void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
6657 {
6658 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
6659 }
6660
bnx2x_clear_func_ilt(struct bnx2x * bp,u32 func)6661 static inline void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
6662 {
6663 u32 i, base = FUNC_ILT_BASE(func);
6664 for (i = base; i < base + ILT_PER_FUNC; i++)
6665 bnx2x_ilt_wr(bp, i, 0);
6666 }
6667
bnx2x_init_hw_func(struct bnx2x * bp)6668 static int bnx2x_init_hw_func(struct bnx2x *bp)
6669 {
6670 int port = BP_PORT(bp);
6671 int func = BP_FUNC(bp);
6672 int init_phase = PHASE_PF0 + func;
6673 struct bnx2x_ilt *ilt = BP_ILT(bp);
6674 u16 cdu_ilt_start;
6675 u32 addr, val;
6676 u32 main_mem_base, main_mem_size, main_mem_prty_clr;
6677 int i, main_mem_width;
6678
6679 DP(BNX2X_MSG_MCP, "starting func init func %d\n", func);
6680
6681 /* FLR cleanup - hmmm */
6682 if (!CHIP_IS_E1x(bp))
6683 bnx2x_pf_flr_clnup(bp);
6684
6685 /* set MSI reconfigure capability */
6686 if (bp->common.int_block == INT_BLOCK_HC) {
6687 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
6688 val = REG_RD(bp, addr);
6689 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
6690 REG_WR(bp, addr, val);
6691 }
6692
6693 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6694 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6695
6696 ilt = BP_ILT(bp);
6697 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
6698
6699 for (i = 0; i < L2_ILT_LINES(bp); i++) {
6700 ilt->lines[cdu_ilt_start + i].page =
6701 bp->context.vcxt + (ILT_PAGE_CIDS * i);
6702 ilt->lines[cdu_ilt_start + i].page_mapping =
6703 bp->context.cxt_mapping + (CDU_ILT_PAGE_SZ * i);
6704 /* cdu ilt pages are allocated manually so there's no need to
6705 set the size */
6706 }
6707 bnx2x_ilt_init_op(bp, INITOP_SET);
6708
6709 #ifdef BCM_CNIC
6710 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
6711
6712 /* T1 hash bits value determines the T1 number of entries */
6713 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
6714 #endif
6715
6716 #ifndef BCM_CNIC
6717 /* set NIC mode */
6718 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6719 #endif /* BCM_CNIC */
6720
6721 if (!CHIP_IS_E1x(bp)) {
6722 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
6723
6724 /* Turn on a single ISR mode in IGU if driver is going to use
6725 * INT#x or MSI
6726 */
6727 if (!(bp->flags & USING_MSIX_FLAG))
6728 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
6729 /*
6730 * Timers workaround bug: function init part.
6731 * Need to wait 20msec after initializing ILT,
6732 * needed to make sure there are no requests in
6733 * one of the PXP internal queues with "old" ILT addresses
6734 */
6735 msleep(20);
6736 /*
6737 * Master enable - Due to WB DMAE writes performed before this
6738 * register is re-initialized as part of the regular function
6739 * init
6740 */
6741 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6742 /* Enable the function in IGU */
6743 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
6744 }
6745
6746 bp->dmae_ready = 1;
6747
6748 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6749
6750 if (!CHIP_IS_E1x(bp))
6751 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
6752
6753 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6754 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6755 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6756 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6757 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6758 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6759 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6760 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6761 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6762 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6763 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6764 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6765 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6766
6767 if (!CHIP_IS_E1x(bp))
6768 REG_WR(bp, QM_REG_PF_EN, 1);
6769
6770 if (!CHIP_IS_E1x(bp)) {
6771 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6772 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6773 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6774 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6775 }
6776 bnx2x_init_block(bp, BLOCK_QM, init_phase);
6777
6778 bnx2x_init_block(bp, BLOCK_TM, init_phase);
6779 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6780 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6781 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6782 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6783 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6784 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6785 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6786 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6787 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6788 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6789 if (!CHIP_IS_E1x(bp))
6790 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
6791
6792 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6793
6794 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6795
6796 if (!CHIP_IS_E1x(bp))
6797 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
6798
6799 if (IS_MF(bp)) {
6800 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
6801 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
6802 }
6803
6804 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6805
6806 /* HC init per function */
6807 if (bp->common.int_block == INT_BLOCK_HC) {
6808 if (CHIP_IS_E1H(bp)) {
6809 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6810
6811 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6812 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6813 }
6814 bnx2x_init_block(bp, BLOCK_HC, init_phase);
6815
6816 } else {
6817 int num_segs, sb_idx, prod_offset;
6818
6819 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6820
6821 if (!CHIP_IS_E1x(bp)) {
6822 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
6823 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
6824 }
6825
6826 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6827
6828 if (!CHIP_IS_E1x(bp)) {
6829 int dsb_idx = 0;
6830 /**
6831 * Producer memory:
6832 * E2 mode: address 0-135 match to the mapping memory;
6833 * 136 - PF0 default prod; 137 - PF1 default prod;
6834 * 138 - PF2 default prod; 139 - PF3 default prod;
6835 * 140 - PF0 attn prod; 141 - PF1 attn prod;
6836 * 142 - PF2 attn prod; 143 - PF3 attn prod;
6837 * 144-147 reserved.
6838 *
6839 * E1.5 mode - In backward compatible mode;
6840 * for non default SB; each even line in the memory
6841 * holds the U producer and each odd line hold
6842 * the C producer. The first 128 producers are for
6843 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
6844 * producers are for the DSB for each PF.
6845 * Each PF has five segments: (the order inside each
6846 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
6847 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
6848 * 144-147 attn prods;
6849 */
6850 /* non-default-status-blocks */
6851 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6852 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
6853 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
6854 prod_offset = (bp->igu_base_sb + sb_idx) *
6855 num_segs;
6856
6857 for (i = 0; i < num_segs; i++) {
6858 addr = IGU_REG_PROD_CONS_MEMORY +
6859 (prod_offset + i) * 4;
6860 REG_WR(bp, addr, 0);
6861 }
6862 /* send consumer update with value 0 */
6863 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
6864 USTORM_ID, 0, IGU_INT_NOP, 1);
6865 bnx2x_igu_clear_sb(bp,
6866 bp->igu_base_sb + sb_idx);
6867 }
6868
6869 /* default-status-blocks */
6870 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6871 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
6872
6873 if (CHIP_MODE_IS_4_PORT(bp))
6874 dsb_idx = BP_FUNC(bp);
6875 else
6876 dsb_idx = BP_VN(bp);
6877
6878 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
6879 IGU_BC_BASE_DSB_PROD + dsb_idx :
6880 IGU_NORM_BASE_DSB_PROD + dsb_idx);
6881
6882 /*
6883 * igu prods come in chunks of E1HVN_MAX (4) -
6884 * does not matters what is the current chip mode
6885 */
6886 for (i = 0; i < (num_segs * E1HVN_MAX);
6887 i += E1HVN_MAX) {
6888 addr = IGU_REG_PROD_CONS_MEMORY +
6889 (prod_offset + i)*4;
6890 REG_WR(bp, addr, 0);
6891 }
6892 /* send consumer update with 0 */
6893 if (CHIP_INT_MODE_IS_BC(bp)) {
6894 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6895 USTORM_ID, 0, IGU_INT_NOP, 1);
6896 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6897 CSTORM_ID, 0, IGU_INT_NOP, 1);
6898 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6899 XSTORM_ID, 0, IGU_INT_NOP, 1);
6900 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6901 TSTORM_ID, 0, IGU_INT_NOP, 1);
6902 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6903 ATTENTION_ID, 0, IGU_INT_NOP, 1);
6904 } else {
6905 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6906 USTORM_ID, 0, IGU_INT_NOP, 1);
6907 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6908 ATTENTION_ID, 0, IGU_INT_NOP, 1);
6909 }
6910 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
6911
6912 /* !!! these should become driver const once
6913 rf-tool supports split-68 const */
6914 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
6915 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
6916 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
6917 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
6918 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
6919 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
6920 }
6921 }
6922
6923 /* Reset PCIE errors for debug */
6924 REG_WR(bp, 0x2114, 0xffffffff);
6925 REG_WR(bp, 0x2120, 0xffffffff);
6926
6927 if (CHIP_IS_E1x(bp)) {
6928 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
6929 main_mem_base = HC_REG_MAIN_MEMORY +
6930 BP_PORT(bp) * (main_mem_size * 4);
6931 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
6932 main_mem_width = 8;
6933
6934 val = REG_RD(bp, main_mem_prty_clr);
6935 if (val)
6936 DP(BNX2X_MSG_MCP, "Hmmm... Parity errors in HC "
6937 "block during "
6938 "function init (0x%x)!\n", val);
6939
6940 /* Clear "false" parity errors in MSI-X table */
6941 for (i = main_mem_base;
6942 i < main_mem_base + main_mem_size * 4;
6943 i += main_mem_width) {
6944 bnx2x_read_dmae(bp, i, main_mem_width / 4);
6945 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
6946 i, main_mem_width / 4);
6947 }
6948 /* Clear HC parity attention */
6949 REG_RD(bp, main_mem_prty_clr);
6950 }
6951
6952 #ifdef BNX2X_STOP_ON_ERROR
6953 /* Enable STORMs SP logging */
6954 REG_WR8(bp, BAR_USTRORM_INTMEM +
6955 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6956 REG_WR8(bp, BAR_TSTRORM_INTMEM +
6957 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6958 REG_WR8(bp, BAR_CSTRORM_INTMEM +
6959 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6960 REG_WR8(bp, BAR_XSTRORM_INTMEM +
6961 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6962 #endif
6963
6964 bnx2x_phy_probe(&bp->link_params);
6965
6966 return 0;
6967 }
6968
6969
bnx2x_free_mem(struct bnx2x * bp)6970 void bnx2x_free_mem(struct bnx2x *bp)
6971 {
6972 /* fastpath */
6973 bnx2x_free_fp_mem(bp);
6974 /* end of fastpath */
6975
6976 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
6977 sizeof(struct host_sp_status_block));
6978
6979 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
6980 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
6981
6982 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
6983 sizeof(struct bnx2x_slowpath));
6984
6985 BNX2X_PCI_FREE(bp->context.vcxt, bp->context.cxt_mapping,
6986 bp->context.size);
6987
6988 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
6989
6990 BNX2X_FREE(bp->ilt->lines);
6991
6992 #ifdef BCM_CNIC
6993 if (!CHIP_IS_E1x(bp))
6994 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
6995 sizeof(struct host_hc_status_block_e2));
6996 else
6997 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
6998 sizeof(struct host_hc_status_block_e1x));
6999
7000 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7001 #endif
7002
7003 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7004
7005 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7006 BCM_PAGE_SIZE * NUM_EQ_PAGES);
7007 }
7008
bnx2x_alloc_fw_stats_mem(struct bnx2x * bp)7009 static inline int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
7010 {
7011 int num_groups;
7012 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
7013
7014 /* number of queues for statistics is number of eth queues + FCoE */
7015 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
7016
7017 /* Total number of FW statistics requests =
7018 * 1 for port stats + 1 for PF stats + potential 1 for FCoE stats +
7019 * num of queues
7020 */
7021 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
7022
7023
7024 /* Request is built from stats_query_header and an array of
7025 * stats_query_cmd_group each of which contains
7026 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
7027 * configured in the stats_query_header.
7028 */
7029 num_groups = ((bp->fw_stats_num) / STATS_QUERY_CMD_COUNT) +
7030 (((bp->fw_stats_num) % STATS_QUERY_CMD_COUNT) ? 1 : 0);
7031
7032 bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
7033 num_groups * sizeof(struct stats_query_cmd_group);
7034
7035 /* Data for statistics requests + stats_conter
7036 *
7037 * stats_counter holds per-STORM counters that are incremented
7038 * when STORM has finished with the current request.
7039 *
7040 * memory for FCoE offloaded statistics are counted anyway,
7041 * even if they will not be sent.
7042 */
7043 bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
7044 sizeof(struct per_pf_stats) +
7045 sizeof(struct fcoe_statistics_params) +
7046 sizeof(struct per_queue_stats) * num_queue_stats +
7047 sizeof(struct stats_counter);
7048
7049 BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
7050 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7051
7052 /* Set shortcuts */
7053 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
7054 bp->fw_stats_req_mapping = bp->fw_stats_mapping;
7055
7056 bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
7057 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
7058
7059 bp->fw_stats_data_mapping = bp->fw_stats_mapping +
7060 bp->fw_stats_req_sz;
7061 return 0;
7062
7063 alloc_mem_err:
7064 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7065 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7066 return -ENOMEM;
7067 }
7068
7069
bnx2x_alloc_mem(struct bnx2x * bp)7070 int bnx2x_alloc_mem(struct bnx2x *bp)
7071 {
7072 #ifdef BCM_CNIC
7073 if (!CHIP_IS_E1x(bp))
7074 /* size = the status block + ramrod buffers */
7075 BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7076 sizeof(struct host_hc_status_block_e2));
7077 else
7078 BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb, &bp->cnic_sb_mapping,
7079 sizeof(struct host_hc_status_block_e1x));
7080
7081 /* allocate searcher T2 table */
7082 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7083 #endif
7084
7085
7086 BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7087 sizeof(struct host_sp_status_block));
7088
7089 BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7090 sizeof(struct bnx2x_slowpath));
7091
7092 /* Allocated memory for FW statistics */
7093 if (bnx2x_alloc_fw_stats_mem(bp))
7094 goto alloc_mem_err;
7095
7096 bp->context.size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7097
7098 BNX2X_PCI_ALLOC(bp->context.vcxt, &bp->context.cxt_mapping,
7099 bp->context.size);
7100
7101 BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7102
7103 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7104 goto alloc_mem_err;
7105
7106 /* Slow path ring */
7107 BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7108
7109 /* EQ */
7110 BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7111 BCM_PAGE_SIZE * NUM_EQ_PAGES);
7112
7113
7114 /* fastpath */
7115 /* need to be done at the end, since it's self adjusting to amount
7116 * of memory available for RSS queues
7117 */
7118 if (bnx2x_alloc_fp_mem(bp))
7119 goto alloc_mem_err;
7120 return 0;
7121
7122 alloc_mem_err:
7123 bnx2x_free_mem(bp);
7124 return -ENOMEM;
7125 }
7126
7127 /*
7128 * Init service functions
7129 */
7130
bnx2x_set_mac_one(struct bnx2x * bp,u8 * mac,struct bnx2x_vlan_mac_obj * obj,bool set,int mac_type,unsigned long * ramrod_flags)7131 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7132 struct bnx2x_vlan_mac_obj *obj, bool set,
7133 int mac_type, unsigned long *ramrod_flags)
7134 {
7135 int rc;
7136 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7137
7138 memset(&ramrod_param, 0, sizeof(ramrod_param));
7139
7140 /* Fill general parameters */
7141 ramrod_param.vlan_mac_obj = obj;
7142 ramrod_param.ramrod_flags = *ramrod_flags;
7143
7144 /* Fill a user request section if needed */
7145 if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7146 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7147
7148 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
7149
7150 /* Set the command: ADD or DEL */
7151 if (set)
7152 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
7153 else
7154 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
7155 }
7156
7157 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
7158 if (rc < 0)
7159 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
7160 return rc;
7161 }
7162
bnx2x_del_all_macs(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * mac_obj,int mac_type,bool wait_for_comp)7163 int bnx2x_del_all_macs(struct bnx2x *bp,
7164 struct bnx2x_vlan_mac_obj *mac_obj,
7165 int mac_type, bool wait_for_comp)
7166 {
7167 int rc;
7168 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
7169
7170 /* Wait for completion of requested */
7171 if (wait_for_comp)
7172 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7173
7174 /* Set the mac type of addresses we want to clear */
7175 __set_bit(mac_type, &vlan_mac_flags);
7176
7177 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
7178 if (rc < 0)
7179 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
7180
7181 return rc;
7182 }
7183
bnx2x_set_eth_mac(struct bnx2x * bp,bool set)7184 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
7185 {
7186 unsigned long ramrod_flags = 0;
7187
7188 #ifdef BCM_CNIC
7189 if (is_zero_ether_addr(bp->dev->dev_addr) && IS_MF_ISCSI_SD(bp)) {
7190 DP(NETIF_MSG_IFUP, "Ignoring Zero MAC for iSCSI SD mode\n");
7191 return 0;
7192 }
7193 #endif
7194
7195 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
7196
7197 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7198 /* Eth MAC is set on RSS leading client (fp[0]) */
7199 return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->fp->mac_obj, set,
7200 BNX2X_ETH_MAC, &ramrod_flags);
7201 }
7202
bnx2x_setup_leading(struct bnx2x * bp)7203 int bnx2x_setup_leading(struct bnx2x *bp)
7204 {
7205 return bnx2x_setup_queue(bp, &bp->fp[0], 1);
7206 }
7207
7208 /**
7209 * bnx2x_set_int_mode - configure interrupt mode
7210 *
7211 * @bp: driver handle
7212 *
7213 * In case of MSI-X it will also try to enable MSI-X.
7214 */
bnx2x_set_int_mode(struct bnx2x * bp)7215 static void __devinit bnx2x_set_int_mode(struct bnx2x *bp)
7216 {
7217 switch (int_mode) {
7218 case INT_MODE_MSI:
7219 bnx2x_enable_msi(bp);
7220 /* falling through... */
7221 case INT_MODE_INTx:
7222 bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7223 DP(NETIF_MSG_IFUP, "set number of queues to 1\n");
7224 break;
7225 default:
7226 /* Set number of queues according to bp->multi_mode value */
7227 bnx2x_set_num_queues(bp);
7228
7229 DP(NETIF_MSG_IFUP, "set number of queues to %d\n",
7230 bp->num_queues);
7231
7232 /* if we can't use MSI-X we only need one fp,
7233 * so try to enable MSI-X with the requested number of fp's
7234 * and fallback to MSI or legacy INTx with one fp
7235 */
7236 if (bnx2x_enable_msix(bp)) {
7237 /* failed to enable MSI-X */
7238 if (bp->multi_mode)
7239 DP(NETIF_MSG_IFUP,
7240 "Multi requested but failed to "
7241 "enable MSI-X (%d), "
7242 "set number of queues to %d\n",
7243 bp->num_queues,
7244 1 + NON_ETH_CONTEXT_USE);
7245 bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7246
7247 /* Try to enable MSI */
7248 if (!(bp->flags & DISABLE_MSI_FLAG))
7249 bnx2x_enable_msi(bp);
7250 }
7251 break;
7252 }
7253 }
7254
7255 /* must be called prioir to any HW initializations */
bnx2x_cid_ilt_lines(struct bnx2x * bp)7256 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
7257 {
7258 return L2_ILT_LINES(bp);
7259 }
7260
bnx2x_ilt_set_info(struct bnx2x * bp)7261 void bnx2x_ilt_set_info(struct bnx2x *bp)
7262 {
7263 struct ilt_client_info *ilt_client;
7264 struct bnx2x_ilt *ilt = BP_ILT(bp);
7265 u16 line = 0;
7266
7267 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
7268 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
7269
7270 /* CDU */
7271 ilt_client = &ilt->clients[ILT_CLIENT_CDU];
7272 ilt_client->client_num = ILT_CLIENT_CDU;
7273 ilt_client->page_size = CDU_ILT_PAGE_SZ;
7274 ilt_client->flags = ILT_CLIENT_SKIP_MEM;
7275 ilt_client->start = line;
7276 line += bnx2x_cid_ilt_lines(bp);
7277 #ifdef BCM_CNIC
7278 line += CNIC_ILT_LINES;
7279 #endif
7280 ilt_client->end = line - 1;
7281
7282 DP(BNX2X_MSG_SP, "ilt client[CDU]: start %d, end %d, psz 0x%x, "
7283 "flags 0x%x, hw psz %d\n",
7284 ilt_client->start,
7285 ilt_client->end,
7286 ilt_client->page_size,
7287 ilt_client->flags,
7288 ilog2(ilt_client->page_size >> 12));
7289
7290 /* QM */
7291 if (QM_INIT(bp->qm_cid_count)) {
7292 ilt_client = &ilt->clients[ILT_CLIENT_QM];
7293 ilt_client->client_num = ILT_CLIENT_QM;
7294 ilt_client->page_size = QM_ILT_PAGE_SZ;
7295 ilt_client->flags = 0;
7296 ilt_client->start = line;
7297
7298 /* 4 bytes for each cid */
7299 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
7300 QM_ILT_PAGE_SZ);
7301
7302 ilt_client->end = line - 1;
7303
7304 DP(BNX2X_MSG_SP, "ilt client[QM]: start %d, end %d, psz 0x%x, "
7305 "flags 0x%x, hw psz %d\n",
7306 ilt_client->start,
7307 ilt_client->end,
7308 ilt_client->page_size,
7309 ilt_client->flags,
7310 ilog2(ilt_client->page_size >> 12));
7311
7312 }
7313 /* SRC */
7314 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
7315 #ifdef BCM_CNIC
7316 ilt_client->client_num = ILT_CLIENT_SRC;
7317 ilt_client->page_size = SRC_ILT_PAGE_SZ;
7318 ilt_client->flags = 0;
7319 ilt_client->start = line;
7320 line += SRC_ILT_LINES;
7321 ilt_client->end = line - 1;
7322
7323 DP(BNX2X_MSG_SP, "ilt client[SRC]: start %d, end %d, psz 0x%x, "
7324 "flags 0x%x, hw psz %d\n",
7325 ilt_client->start,
7326 ilt_client->end,
7327 ilt_client->page_size,
7328 ilt_client->flags,
7329 ilog2(ilt_client->page_size >> 12));
7330
7331 #else
7332 ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7333 #endif
7334
7335 /* TM */
7336 ilt_client = &ilt->clients[ILT_CLIENT_TM];
7337 #ifdef BCM_CNIC
7338 ilt_client->client_num = ILT_CLIENT_TM;
7339 ilt_client->page_size = TM_ILT_PAGE_SZ;
7340 ilt_client->flags = 0;
7341 ilt_client->start = line;
7342 line += TM_ILT_LINES;
7343 ilt_client->end = line - 1;
7344
7345 DP(BNX2X_MSG_SP, "ilt client[TM]: start %d, end %d, psz 0x%x, "
7346 "flags 0x%x, hw psz %d\n",
7347 ilt_client->start,
7348 ilt_client->end,
7349 ilt_client->page_size,
7350 ilt_client->flags,
7351 ilog2(ilt_client->page_size >> 12));
7352
7353 #else
7354 ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7355 #endif
7356 BUG_ON(line > ILT_MAX_LINES);
7357 }
7358
7359 /**
7360 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
7361 *
7362 * @bp: driver handle
7363 * @fp: pointer to fastpath
7364 * @init_params: pointer to parameters structure
7365 *
7366 * parameters configured:
7367 * - HC configuration
7368 * - Queue's CDU context
7369 */
bnx2x_pf_q_prep_init(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_queue_init_params * init_params)7370 static inline void bnx2x_pf_q_prep_init(struct bnx2x *bp,
7371 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
7372 {
7373
7374 u8 cos;
7375 /* FCoE Queue uses Default SB, thus has no HC capabilities */
7376 if (!IS_FCOE_FP(fp)) {
7377 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
7378 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
7379
7380 /* If HC is supporterd, enable host coalescing in the transition
7381 * to INIT state.
7382 */
7383 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
7384 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
7385
7386 /* HC rate */
7387 init_params->rx.hc_rate = bp->rx_ticks ?
7388 (1000000 / bp->rx_ticks) : 0;
7389 init_params->tx.hc_rate = bp->tx_ticks ?
7390 (1000000 / bp->tx_ticks) : 0;
7391
7392 /* FW SB ID */
7393 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
7394 fp->fw_sb_id;
7395
7396 /*
7397 * CQ index among the SB indices: FCoE clients uses the default
7398 * SB, therefore it's different.
7399 */
7400 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
7401 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
7402 }
7403
7404 /* set maximum number of COSs supported by this queue */
7405 init_params->max_cos = fp->max_cos;
7406
7407 DP(BNX2X_MSG_SP, "fp: %d setting queue params max cos to: %d\n",
7408 fp->index, init_params->max_cos);
7409
7410 /* set the context pointers queue object */
7411 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++)
7412 init_params->cxts[cos] =
7413 &bp->context.vcxt[fp->txdata[cos].cid].eth;
7414 }
7415
bnx2x_setup_tx_only(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_queue_state_params * q_params,struct bnx2x_queue_setup_tx_only_params * tx_only_params,int tx_index,bool leading)7416 int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7417 struct bnx2x_queue_state_params *q_params,
7418 struct bnx2x_queue_setup_tx_only_params *tx_only_params,
7419 int tx_index, bool leading)
7420 {
7421 memset(tx_only_params, 0, sizeof(*tx_only_params));
7422
7423 /* Set the command */
7424 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
7425
7426 /* Set tx-only QUEUE flags: don't zero statistics */
7427 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
7428
7429 /* choose the index of the cid to send the slow path on */
7430 tx_only_params->cid_index = tx_index;
7431
7432 /* Set general TX_ONLY_SETUP parameters */
7433 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
7434
7435 /* Set Tx TX_ONLY_SETUP parameters */
7436 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
7437
7438 DP(BNX2X_MSG_SP, "preparing to send tx-only ramrod for connection:"
7439 "cos %d, primary cid %d, cid %d, "
7440 "client id %d, sp-client id %d, flags %lx\n",
7441 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
7442 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
7443 tx_only_params->gen_params.spcl_id, tx_only_params->flags);
7444
7445 /* send the ramrod */
7446 return bnx2x_queue_state_change(bp, q_params);
7447 }
7448
7449
7450 /**
7451 * bnx2x_setup_queue - setup queue
7452 *
7453 * @bp: driver handle
7454 * @fp: pointer to fastpath
7455 * @leading: is leading
7456 *
7457 * This function performs 2 steps in a Queue state machine
7458 * actually: 1) RESET->INIT 2) INIT->SETUP
7459 */
7460
bnx2x_setup_queue(struct bnx2x * bp,struct bnx2x_fastpath * fp,bool leading)7461 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7462 bool leading)
7463 {
7464 struct bnx2x_queue_state_params q_params = {0};
7465 struct bnx2x_queue_setup_params *setup_params =
7466 &q_params.params.setup;
7467 struct bnx2x_queue_setup_tx_only_params *tx_only_params =
7468 &q_params.params.tx_only;
7469 int rc;
7470 u8 tx_index;
7471
7472 DP(BNX2X_MSG_SP, "setting up queue %d\n", fp->index);
7473
7474 /* reset IGU state skip FCoE L2 queue */
7475 if (!IS_FCOE_FP(fp))
7476 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
7477 IGU_INT_ENABLE, 0);
7478
7479 q_params.q_obj = &fp->q_obj;
7480 /* We want to wait for completion in this context */
7481 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7482
7483 /* Prepare the INIT parameters */
7484 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
7485
7486 /* Set the command */
7487 q_params.cmd = BNX2X_Q_CMD_INIT;
7488
7489 /* Change the state to INIT */
7490 rc = bnx2x_queue_state_change(bp, &q_params);
7491 if (rc) {
7492 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
7493 return rc;
7494 }
7495
7496 DP(BNX2X_MSG_SP, "init complete\n");
7497
7498
7499 /* Now move the Queue to the SETUP state... */
7500 memset(setup_params, 0, sizeof(*setup_params));
7501
7502 /* Set QUEUE flags */
7503 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
7504
7505 /* Set general SETUP parameters */
7506 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
7507 FIRST_TX_COS_INDEX);
7508
7509 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
7510 &setup_params->rxq_params);
7511
7512 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
7513 FIRST_TX_COS_INDEX);
7514
7515 /* Set the command */
7516 q_params.cmd = BNX2X_Q_CMD_SETUP;
7517
7518 /* Change the state to SETUP */
7519 rc = bnx2x_queue_state_change(bp, &q_params);
7520 if (rc) {
7521 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
7522 return rc;
7523 }
7524
7525 /* loop through the relevant tx-only indices */
7526 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7527 tx_index < fp->max_cos;
7528 tx_index++) {
7529
7530 /* prepare and send tx-only ramrod*/
7531 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
7532 tx_only_params, tx_index, leading);
7533 if (rc) {
7534 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
7535 fp->index, tx_index);
7536 return rc;
7537 }
7538 }
7539
7540 return rc;
7541 }
7542
bnx2x_stop_queue(struct bnx2x * bp,int index)7543 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
7544 {
7545 struct bnx2x_fastpath *fp = &bp->fp[index];
7546 struct bnx2x_fp_txdata *txdata;
7547 struct bnx2x_queue_state_params q_params = {0};
7548 int rc, tx_index;
7549
7550 DP(BNX2X_MSG_SP, "stopping queue %d cid %d\n", index, fp->cid);
7551
7552 q_params.q_obj = &fp->q_obj;
7553 /* We want to wait for completion in this context */
7554 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7555
7556
7557 /* close tx-only connections */
7558 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7559 tx_index < fp->max_cos;
7560 tx_index++){
7561
7562 /* ascertain this is a normal queue*/
7563 txdata = &fp->txdata[tx_index];
7564
7565 DP(BNX2X_MSG_SP, "stopping tx-only queue %d\n",
7566 txdata->txq_index);
7567
7568 /* send halt terminate on tx-only connection */
7569 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7570 memset(&q_params.params.terminate, 0,
7571 sizeof(q_params.params.terminate));
7572 q_params.params.terminate.cid_index = tx_index;
7573
7574 rc = bnx2x_queue_state_change(bp, &q_params);
7575 if (rc)
7576 return rc;
7577
7578 /* send halt terminate on tx-only connection */
7579 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7580 memset(&q_params.params.cfc_del, 0,
7581 sizeof(q_params.params.cfc_del));
7582 q_params.params.cfc_del.cid_index = tx_index;
7583 rc = bnx2x_queue_state_change(bp, &q_params);
7584 if (rc)
7585 return rc;
7586 }
7587 /* Stop the primary connection: */
7588 /* ...halt the connection */
7589 q_params.cmd = BNX2X_Q_CMD_HALT;
7590 rc = bnx2x_queue_state_change(bp, &q_params);
7591 if (rc)
7592 return rc;
7593
7594 /* ...terminate the connection */
7595 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7596 memset(&q_params.params.terminate, 0,
7597 sizeof(q_params.params.terminate));
7598 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
7599 rc = bnx2x_queue_state_change(bp, &q_params);
7600 if (rc)
7601 return rc;
7602 /* ...delete cfc entry */
7603 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7604 memset(&q_params.params.cfc_del, 0,
7605 sizeof(q_params.params.cfc_del));
7606 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
7607 return bnx2x_queue_state_change(bp, &q_params);
7608 }
7609
7610
bnx2x_reset_func(struct bnx2x * bp)7611 static void bnx2x_reset_func(struct bnx2x *bp)
7612 {
7613 int port = BP_PORT(bp);
7614 int func = BP_FUNC(bp);
7615 int i;
7616
7617 /* Disable the function in the FW */
7618 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
7619 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
7620 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
7621 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
7622
7623 /* FP SBs */
7624 for_each_eth_queue(bp, i) {
7625 struct bnx2x_fastpath *fp = &bp->fp[i];
7626 REG_WR8(bp, BAR_CSTRORM_INTMEM +
7627 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
7628 SB_DISABLED);
7629 }
7630
7631 #ifdef BCM_CNIC
7632 /* CNIC SB */
7633 REG_WR8(bp, BAR_CSTRORM_INTMEM +
7634 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(bnx2x_cnic_fw_sb_id(bp)),
7635 SB_DISABLED);
7636 #endif
7637 /* SP SB */
7638 REG_WR8(bp, BAR_CSTRORM_INTMEM +
7639 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
7640 SB_DISABLED);
7641
7642 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
7643 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
7644 0);
7645
7646 /* Configure IGU */
7647 if (bp->common.int_block == INT_BLOCK_HC) {
7648 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7649 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7650 } else {
7651 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7652 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7653 }
7654
7655 #ifdef BCM_CNIC
7656 /* Disable Timer scan */
7657 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
7658 /*
7659 * Wait for at least 10ms and up to 2 second for the timers scan to
7660 * complete
7661 */
7662 for (i = 0; i < 200; i++) {
7663 msleep(10);
7664 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
7665 break;
7666 }
7667 #endif
7668 /* Clear ILT */
7669 bnx2x_clear_func_ilt(bp, func);
7670
7671 /* Timers workaround bug for E2: if this is vnic-3,
7672 * we need to set the entire ilt range for this timers.
7673 */
7674 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
7675 struct ilt_client_info ilt_cli;
7676 /* use dummy TM client */
7677 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7678 ilt_cli.start = 0;
7679 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7680 ilt_cli.client_num = ILT_CLIENT_TM;
7681
7682 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
7683 }
7684
7685 /* this assumes that reset_port() called before reset_func()*/
7686 if (!CHIP_IS_E1x(bp))
7687 bnx2x_pf_disable(bp);
7688
7689 bp->dmae_ready = 0;
7690 }
7691
bnx2x_reset_port(struct bnx2x * bp)7692 static void bnx2x_reset_port(struct bnx2x *bp)
7693 {
7694 int port = BP_PORT(bp);
7695 u32 val;
7696
7697 /* Reset physical Link */
7698 bnx2x__link_reset(bp);
7699
7700 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7701
7702 /* Do not rcv packets to BRB */
7703 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
7704 /* Do not direct rcv packets that are not for MCP to the BRB */
7705 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
7706 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
7707
7708 /* Configure AEU */
7709 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
7710
7711 msleep(100);
7712 /* Check for BRB port occupancy */
7713 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
7714 if (val)
7715 DP(NETIF_MSG_IFDOWN,
7716 "BRB1 is not empty %d blocks are occupied\n", val);
7717
7718 /* TODO: Close Doorbell port? */
7719 }
7720
bnx2x_reset_hw(struct bnx2x * bp,u32 load_code)7721 static inline int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
7722 {
7723 struct bnx2x_func_state_params func_params = {0};
7724
7725 /* Prepare parameters for function state transitions */
7726 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7727
7728 func_params.f_obj = &bp->func_obj;
7729 func_params.cmd = BNX2X_F_CMD_HW_RESET;
7730
7731 func_params.params.hw_init.load_phase = load_code;
7732
7733 return bnx2x_func_state_change(bp, &func_params);
7734 }
7735
bnx2x_func_stop(struct bnx2x * bp)7736 static inline int bnx2x_func_stop(struct bnx2x *bp)
7737 {
7738 struct bnx2x_func_state_params func_params = {0};
7739 int rc;
7740
7741 /* Prepare parameters for function state transitions */
7742 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7743 func_params.f_obj = &bp->func_obj;
7744 func_params.cmd = BNX2X_F_CMD_STOP;
7745
7746 /*
7747 * Try to stop the function the 'good way'. If fails (in case
7748 * of a parity error during bnx2x_chip_cleanup()) and we are
7749 * not in a debug mode, perform a state transaction in order to
7750 * enable further HW_RESET transaction.
7751 */
7752 rc = bnx2x_func_state_change(bp, &func_params);
7753 if (rc) {
7754 #ifdef BNX2X_STOP_ON_ERROR
7755 return rc;
7756 #else
7757 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry "
7758 "transaction\n");
7759 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
7760 return bnx2x_func_state_change(bp, &func_params);
7761 #endif
7762 }
7763
7764 return 0;
7765 }
7766
7767 /**
7768 * bnx2x_send_unload_req - request unload mode from the MCP.
7769 *
7770 * @bp: driver handle
7771 * @unload_mode: requested function's unload mode
7772 *
7773 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
7774 */
bnx2x_send_unload_req(struct bnx2x * bp,int unload_mode)7775 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
7776 {
7777 u32 reset_code = 0;
7778 int port = BP_PORT(bp);
7779
7780 /* Select the UNLOAD request mode */
7781 if (unload_mode == UNLOAD_NORMAL)
7782 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7783
7784 else if (bp->flags & NO_WOL_FLAG)
7785 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
7786
7787 else if (bp->wol) {
7788 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
7789 u8 *mac_addr = bp->dev->dev_addr;
7790 u32 val;
7791 u16 pmc;
7792
7793 /* The mac address is written to entries 1-4 to
7794 * preserve entry 0 which is used by the PMF
7795 */
7796 u8 entry = (BP_VN(bp) + 1)*8;
7797
7798 val = (mac_addr[0] << 8) | mac_addr[1];
7799 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
7800
7801 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
7802 (mac_addr[4] << 8) | mac_addr[5];
7803 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
7804
7805 /* Enable the PME and clear the status */
7806 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
7807 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
7808 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
7809
7810 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
7811
7812 } else
7813 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7814
7815 /* Send the request to the MCP */
7816 if (!BP_NOMCP(bp))
7817 reset_code = bnx2x_fw_command(bp, reset_code, 0);
7818 else {
7819 int path = BP_PATH(bp);
7820
7821 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] "
7822 "%d, %d, %d\n",
7823 path, load_count[path][0], load_count[path][1],
7824 load_count[path][2]);
7825 load_count[path][0]--;
7826 load_count[path][1 + port]--;
7827 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] "
7828 "%d, %d, %d\n",
7829 path, load_count[path][0], load_count[path][1],
7830 load_count[path][2]);
7831 if (load_count[path][0] == 0)
7832 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
7833 else if (load_count[path][1 + port] == 0)
7834 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
7835 else
7836 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
7837 }
7838
7839 return reset_code;
7840 }
7841
7842 /**
7843 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
7844 *
7845 * @bp: driver handle
7846 */
bnx2x_send_unload_done(struct bnx2x * bp)7847 void bnx2x_send_unload_done(struct bnx2x *bp)
7848 {
7849 /* Report UNLOAD_DONE to MCP */
7850 if (!BP_NOMCP(bp))
7851 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
7852 }
7853
bnx2x_func_wait_started(struct bnx2x * bp)7854 static inline int bnx2x_func_wait_started(struct bnx2x *bp)
7855 {
7856 int tout = 50;
7857 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
7858
7859 if (!bp->port.pmf)
7860 return 0;
7861
7862 /*
7863 * (assumption: No Attention from MCP at this stage)
7864 * PMF probably in the middle of TXdisable/enable transaction
7865 * 1. Sync IRS for default SB
7866 * 2. Sync SP queue - this guarantes us that attention handling started
7867 * 3. Wait, that TXdisable/enable transaction completes
7868 *
7869 * 1+2 guranty that if DCBx attention was scheduled it already changed
7870 * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
7871 * received complettion for the transaction the state is TX_STOPPED.
7872 * State will return to STARTED after completion of TX_STOPPED-->STARTED
7873 * transaction.
7874 */
7875
7876 /* make sure default SB ISR is done */
7877 if (msix)
7878 synchronize_irq(bp->msix_table[0].vector);
7879 else
7880 synchronize_irq(bp->pdev->irq);
7881
7882 flush_workqueue(bnx2x_wq);
7883
7884 while (bnx2x_func_get_state(bp, &bp->func_obj) !=
7885 BNX2X_F_STATE_STARTED && tout--)
7886 msleep(20);
7887
7888 if (bnx2x_func_get_state(bp, &bp->func_obj) !=
7889 BNX2X_F_STATE_STARTED) {
7890 #ifdef BNX2X_STOP_ON_ERROR
7891 return -EBUSY;
7892 #else
7893 /*
7894 * Failed to complete the transaction in a "good way"
7895 * Force both transactions with CLR bit
7896 */
7897 struct bnx2x_func_state_params func_params = {0};
7898
7899 DP(BNX2X_MSG_SP, "Hmmm... unexpected function state! "
7900 "Forcing STARTED-->TX_ST0PPED-->STARTED\n");
7901
7902 func_params.f_obj = &bp->func_obj;
7903 __set_bit(RAMROD_DRV_CLR_ONLY,
7904 &func_params.ramrod_flags);
7905
7906 /* STARTED-->TX_ST0PPED */
7907 func_params.cmd = BNX2X_F_CMD_TX_STOP;
7908 bnx2x_func_state_change(bp, &func_params);
7909
7910 /* TX_ST0PPED-->STARTED */
7911 func_params.cmd = BNX2X_F_CMD_TX_START;
7912 return bnx2x_func_state_change(bp, &func_params);
7913 #endif
7914 }
7915
7916 return 0;
7917 }
7918
bnx2x_chip_cleanup(struct bnx2x * bp,int unload_mode)7919 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode)
7920 {
7921 int port = BP_PORT(bp);
7922 int i, rc = 0;
7923 u8 cos;
7924 struct bnx2x_mcast_ramrod_params rparam = {0};
7925 u32 reset_code;
7926
7927 /* Wait until tx fastpath tasks complete */
7928 for_each_tx_queue(bp, i) {
7929 struct bnx2x_fastpath *fp = &bp->fp[i];
7930
7931 for_each_cos_in_tx_queue(fp, cos)
7932 rc = bnx2x_clean_tx_queue(bp, &fp->txdata[cos]);
7933 #ifdef BNX2X_STOP_ON_ERROR
7934 if (rc)
7935 return;
7936 #endif
7937 }
7938
7939 /* Give HW time to discard old tx messages */
7940 usleep_range(1000, 1000);
7941
7942 /* Clean all ETH MACs */
7943 rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_ETH_MAC, false);
7944 if (rc < 0)
7945 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
7946
7947 /* Clean up UC list */
7948 rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_UC_LIST_MAC,
7949 true);
7950 if (rc < 0)
7951 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: "
7952 "%d\n", rc);
7953
7954 /* Disable LLH */
7955 if (!CHIP_IS_E1(bp))
7956 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7957
7958 /* Set "drop all" (stop Rx).
7959 * We need to take a netif_addr_lock() here in order to prevent
7960 * a race between the completion code and this code.
7961 */
7962 netif_addr_lock_bh(bp->dev);
7963 /* Schedule the rx_mode command */
7964 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
7965 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
7966 else
7967 bnx2x_set_storm_rx_mode(bp);
7968
7969 /* Cleanup multicast configuration */
7970 rparam.mcast_obj = &bp->mcast_obj;
7971 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
7972 if (rc < 0)
7973 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
7974
7975 netif_addr_unlock_bh(bp->dev);
7976
7977
7978
7979 /*
7980 * Send the UNLOAD_REQUEST to the MCP. This will return if
7981 * this function should perform FUNC, PORT or COMMON HW
7982 * reset.
7983 */
7984 reset_code = bnx2x_send_unload_req(bp, unload_mode);
7985
7986 /*
7987 * (assumption: No Attention from MCP at this stage)
7988 * PMF probably in the middle of TXdisable/enable transaction
7989 */
7990 rc = bnx2x_func_wait_started(bp);
7991 if (rc) {
7992 BNX2X_ERR("bnx2x_func_wait_started failed\n");
7993 #ifdef BNX2X_STOP_ON_ERROR
7994 return;
7995 #endif
7996 }
7997
7998 /* Close multi and leading connections
7999 * Completions for ramrods are collected in a synchronous way
8000 */
8001 for_each_queue(bp, i)
8002 if (bnx2x_stop_queue(bp, i))
8003 #ifdef BNX2X_STOP_ON_ERROR
8004 return;
8005 #else
8006 goto unload_error;
8007 #endif
8008 /* If SP settings didn't get completed so far - something
8009 * very wrong has happen.
8010 */
8011 if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8012 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8013
8014 #ifndef BNX2X_STOP_ON_ERROR
8015 unload_error:
8016 #endif
8017 rc = bnx2x_func_stop(bp);
8018 if (rc) {
8019 BNX2X_ERR("Function stop failed!\n");
8020 #ifdef BNX2X_STOP_ON_ERROR
8021 return;
8022 #endif
8023 }
8024
8025 /* Disable HW interrupts, NAPI */
8026 bnx2x_netif_stop(bp, 1);
8027
8028 /* Release IRQs */
8029 bnx2x_free_irq(bp);
8030
8031 /* Reset the chip */
8032 rc = bnx2x_reset_hw(bp, reset_code);
8033 if (rc)
8034 BNX2X_ERR("HW_RESET failed\n");
8035
8036
8037 /* Report UNLOAD_DONE to MCP */
8038 bnx2x_send_unload_done(bp);
8039 }
8040
bnx2x_disable_close_the_gate(struct bnx2x * bp)8041 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8042 {
8043 u32 val;
8044
8045 DP(NETIF_MSG_HW, "Disabling \"close the gates\"\n");
8046
8047 if (CHIP_IS_E1(bp)) {
8048 int port = BP_PORT(bp);
8049 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8050 MISC_REG_AEU_MASK_ATTN_FUNC_0;
8051
8052 val = REG_RD(bp, addr);
8053 val &= ~(0x300);
8054 REG_WR(bp, addr, val);
8055 } else {
8056 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8057 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8058 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8059 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8060 }
8061 }
8062
8063 /* Close gates #2, #3 and #4: */
bnx2x_set_234_gates(struct bnx2x * bp,bool close)8064 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8065 {
8066 u32 val;
8067
8068 /* Gates #2 and #4a are closed/opened for "not E1" only */
8069 if (!CHIP_IS_E1(bp)) {
8070 /* #4 */
8071 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8072 /* #2 */
8073 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8074 }
8075
8076 /* #3 */
8077 if (CHIP_IS_E1x(bp)) {
8078 /* Prevent interrupts from HC on both ports */
8079 val = REG_RD(bp, HC_REG_CONFIG_1);
8080 REG_WR(bp, HC_REG_CONFIG_1,
8081 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8082 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8083
8084 val = REG_RD(bp, HC_REG_CONFIG_0);
8085 REG_WR(bp, HC_REG_CONFIG_0,
8086 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8087 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8088 } else {
8089 /* Prevent incomming interrupts in IGU */
8090 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8091
8092 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8093 (!close) ?
8094 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8095 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8096 }
8097
8098 DP(NETIF_MSG_HW, "%s gates #2, #3 and #4\n",
8099 close ? "closing" : "opening");
8100 mmiowb();
8101 }
8102
8103 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */
8104
bnx2x_clp_reset_prep(struct bnx2x * bp,u32 * magic_val)8105 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8106 {
8107 /* Do some magic... */
8108 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8109 *magic_val = val & SHARED_MF_CLP_MAGIC;
8110 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8111 }
8112
8113 /**
8114 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8115 *
8116 * @bp: driver handle
8117 * @magic_val: old value of the `magic' bit.
8118 */
bnx2x_clp_reset_done(struct bnx2x * bp,u32 magic_val)8119 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
8120 {
8121 /* Restore the `magic' bit value... */
8122 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8123 MF_CFG_WR(bp, shared_mf_config.clp_mb,
8124 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
8125 }
8126
8127 /**
8128 * bnx2x_reset_mcp_prep - prepare for MCP reset.
8129 *
8130 * @bp: driver handle
8131 * @magic_val: old value of 'magic' bit.
8132 *
8133 * Takes care of CLP configurations.
8134 */
bnx2x_reset_mcp_prep(struct bnx2x * bp,u32 * magic_val)8135 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
8136 {
8137 u32 shmem;
8138 u32 validity_offset;
8139
8140 DP(NETIF_MSG_HW, "Starting\n");
8141
8142 /* Set `magic' bit in order to save MF config */
8143 if (!CHIP_IS_E1(bp))
8144 bnx2x_clp_reset_prep(bp, magic_val);
8145
8146 /* Get shmem offset */
8147 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8148 validity_offset = offsetof(struct shmem_region, validity_map[0]);
8149
8150 /* Clear validity map flags */
8151 if (shmem > 0)
8152 REG_WR(bp, shmem + validity_offset, 0);
8153 }
8154
8155 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
8156 #define MCP_ONE_TIMEOUT 100 /* 100 ms */
8157
8158 /**
8159 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
8160 *
8161 * @bp: driver handle
8162 */
bnx2x_mcp_wait_one(struct bnx2x * bp)8163 static inline void bnx2x_mcp_wait_one(struct bnx2x *bp)
8164 {
8165 /* special handling for emulation and FPGA,
8166 wait 10 times longer */
8167 if (CHIP_REV_IS_SLOW(bp))
8168 msleep(MCP_ONE_TIMEOUT*10);
8169 else
8170 msleep(MCP_ONE_TIMEOUT);
8171 }
8172
8173 /*
8174 * initializes bp->common.shmem_base and waits for validity signature to appear
8175 */
bnx2x_init_shmem(struct bnx2x * bp)8176 static int bnx2x_init_shmem(struct bnx2x *bp)
8177 {
8178 int cnt = 0;
8179 u32 val = 0;
8180
8181 do {
8182 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8183 if (bp->common.shmem_base) {
8184 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
8185 if (val & SHR_MEM_VALIDITY_MB)
8186 return 0;
8187 }
8188
8189 bnx2x_mcp_wait_one(bp);
8190
8191 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
8192
8193 BNX2X_ERR("BAD MCP validity signature\n");
8194
8195 return -ENODEV;
8196 }
8197
bnx2x_reset_mcp_comp(struct bnx2x * bp,u32 magic_val)8198 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
8199 {
8200 int rc = bnx2x_init_shmem(bp);
8201
8202 /* Restore the `magic' bit value */
8203 if (!CHIP_IS_E1(bp))
8204 bnx2x_clp_reset_done(bp, magic_val);
8205
8206 return rc;
8207 }
8208
bnx2x_pxp_prep(struct bnx2x * bp)8209 static void bnx2x_pxp_prep(struct bnx2x *bp)
8210 {
8211 if (!CHIP_IS_E1(bp)) {
8212 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
8213 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
8214 mmiowb();
8215 }
8216 }
8217
8218 /*
8219 * Reset the whole chip except for:
8220 * - PCIE core
8221 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
8222 * one reset bit)
8223 * - IGU
8224 * - MISC (including AEU)
8225 * - GRC
8226 * - RBCN, RBCP
8227 */
bnx2x_process_kill_chip_reset(struct bnx2x * bp,bool global)8228 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
8229 {
8230 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
8231 u32 global_bits2, stay_reset2;
8232
8233 /*
8234 * Bits that have to be set in reset_mask2 if we want to reset 'global'
8235 * (per chip) blocks.
8236 */
8237 global_bits2 =
8238 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
8239 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
8240
8241 /* Don't reset the following blocks */
8242 not_reset_mask1 =
8243 MISC_REGISTERS_RESET_REG_1_RST_HC |
8244 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
8245 MISC_REGISTERS_RESET_REG_1_RST_PXP;
8246
8247 not_reset_mask2 =
8248 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
8249 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
8250 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
8251 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
8252 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
8253 MISC_REGISTERS_RESET_REG_2_RST_GRC |
8254 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
8255 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
8256 MISC_REGISTERS_RESET_REG_2_RST_ATC |
8257 MISC_REGISTERS_RESET_REG_2_PGLC;
8258
8259 /*
8260 * Keep the following blocks in reset:
8261 * - all xxMACs are handled by the bnx2x_link code.
8262 */
8263 stay_reset2 =
8264 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
8265 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
8266 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
8267 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
8268 MISC_REGISTERS_RESET_REG_2_UMAC0 |
8269 MISC_REGISTERS_RESET_REG_2_UMAC1 |
8270 MISC_REGISTERS_RESET_REG_2_XMAC |
8271 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
8272
8273 /* Full reset masks according to the chip */
8274 reset_mask1 = 0xffffffff;
8275
8276 if (CHIP_IS_E1(bp))
8277 reset_mask2 = 0xffff;
8278 else if (CHIP_IS_E1H(bp))
8279 reset_mask2 = 0x1ffff;
8280 else if (CHIP_IS_E2(bp))
8281 reset_mask2 = 0xfffff;
8282 else /* CHIP_IS_E3 */
8283 reset_mask2 = 0x3ffffff;
8284
8285 /* Don't reset global blocks unless we need to */
8286 if (!global)
8287 reset_mask2 &= ~global_bits2;
8288
8289 /*
8290 * In case of attention in the QM, we need to reset PXP
8291 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
8292 * because otherwise QM reset would release 'close the gates' shortly
8293 * before resetting the PXP, then the PSWRQ would send a write
8294 * request to PGLUE. Then when PXP is reset, PGLUE would try to
8295 * read the payload data from PSWWR, but PSWWR would not
8296 * respond. The write queue in PGLUE would stuck, dmae commands
8297 * would not return. Therefore it's important to reset the second
8298 * reset register (containing the
8299 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
8300 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
8301 * bit).
8302 */
8303 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8304 reset_mask2 & (~not_reset_mask2));
8305
8306 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8307 reset_mask1 & (~not_reset_mask1));
8308
8309 barrier();
8310 mmiowb();
8311
8312 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
8313 reset_mask2 & (~stay_reset2));
8314
8315 barrier();
8316 mmiowb();
8317
8318 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
8319 mmiowb();
8320 }
8321
8322 /**
8323 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
8324 * It should get cleared in no more than 1s.
8325 *
8326 * @bp: driver handle
8327 *
8328 * It should get cleared in no more than 1s. Returns 0 if
8329 * pending writes bit gets cleared.
8330 */
bnx2x_er_poll_igu_vq(struct bnx2x * bp)8331 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
8332 {
8333 u32 cnt = 1000;
8334 u32 pend_bits = 0;
8335
8336 do {
8337 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
8338
8339 if (pend_bits == 0)
8340 break;
8341
8342 usleep_range(1000, 1000);
8343 } while (cnt-- > 0);
8344
8345 if (cnt <= 0) {
8346 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
8347 pend_bits);
8348 return -EBUSY;
8349 }
8350
8351 return 0;
8352 }
8353
bnx2x_process_kill(struct bnx2x * bp,bool global)8354 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
8355 {
8356 int cnt = 1000;
8357 u32 val = 0;
8358 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
8359
8360
8361 /* Empty the Tetris buffer, wait for 1s */
8362 do {
8363 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT);
8364 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
8365 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
8366 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
8367 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
8368 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
8369 ((port_is_idle_0 & 0x1) == 0x1) &&
8370 ((port_is_idle_1 & 0x1) == 0x1) &&
8371 (pgl_exp_rom2 == 0xffffffff))
8372 break;
8373 usleep_range(1000, 1000);
8374 } while (cnt-- > 0);
8375
8376 if (cnt <= 0) {
8377 DP(NETIF_MSG_HW, "Tetris buffer didn't get empty or there"
8378 " are still"
8379 " outstanding read requests after 1s!\n");
8380 DP(NETIF_MSG_HW, "sr_cnt=0x%08x, blk_cnt=0x%08x,"
8381 " port_is_idle_0=0x%08x,"
8382 " port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
8383 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
8384 pgl_exp_rom2);
8385 return -EAGAIN;
8386 }
8387
8388 barrier();
8389
8390 /* Close gates #2, #3 and #4 */
8391 bnx2x_set_234_gates(bp, true);
8392
8393 /* Poll for IGU VQs for 57712 and newer chips */
8394 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
8395 return -EAGAIN;
8396
8397
8398 /* TBD: Indicate that "process kill" is in progress to MCP */
8399
8400 /* Clear "unprepared" bit */
8401 REG_WR(bp, MISC_REG_UNPREPARED, 0);
8402 barrier();
8403
8404 /* Make sure all is written to the chip before the reset */
8405 mmiowb();
8406
8407 /* Wait for 1ms to empty GLUE and PCI-E core queues,
8408 * PSWHST, GRC and PSWRD Tetris buffer.
8409 */
8410 usleep_range(1000, 1000);
8411
8412 /* Prepare to chip reset: */
8413 /* MCP */
8414 if (global)
8415 bnx2x_reset_mcp_prep(bp, &val);
8416
8417 /* PXP */
8418 bnx2x_pxp_prep(bp);
8419 barrier();
8420
8421 /* reset the chip */
8422 bnx2x_process_kill_chip_reset(bp, global);
8423 barrier();
8424
8425 /* Recover after reset: */
8426 /* MCP */
8427 if (global && bnx2x_reset_mcp_comp(bp, val))
8428 return -EAGAIN;
8429
8430 /* TBD: Add resetting the NO_MCP mode DB here */
8431
8432 /* PXP */
8433 bnx2x_pxp_prep(bp);
8434
8435 /* Open the gates #2, #3 and #4 */
8436 bnx2x_set_234_gates(bp, false);
8437
8438 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
8439 * reset state, re-enable attentions. */
8440
8441 return 0;
8442 }
8443
bnx2x_leader_reset(struct bnx2x * bp)8444 int bnx2x_leader_reset(struct bnx2x *bp)
8445 {
8446 int rc = 0;
8447 bool global = bnx2x_reset_is_global(bp);
8448
8449 /* Try to recover after the failure */
8450 if (bnx2x_process_kill(bp, global)) {
8451 netdev_err(bp->dev, "Something bad had happen on engine %d! "
8452 "Aii!\n", BP_PATH(bp));
8453 rc = -EAGAIN;
8454 goto exit_leader_reset;
8455 }
8456
8457 /*
8458 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
8459 * state.
8460 */
8461 bnx2x_set_reset_done(bp);
8462 if (global)
8463 bnx2x_clear_reset_global(bp);
8464
8465 exit_leader_reset:
8466 bp->is_leader = 0;
8467 bnx2x_release_leader_lock(bp);
8468 smp_mb();
8469 return rc;
8470 }
8471
bnx2x_recovery_failed(struct bnx2x * bp)8472 static inline void bnx2x_recovery_failed(struct bnx2x *bp)
8473 {
8474 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
8475
8476 /* Disconnect this device */
8477 netif_device_detach(bp->dev);
8478
8479 /*
8480 * Block ifup for all function on this engine until "process kill"
8481 * or power cycle.
8482 */
8483 bnx2x_set_reset_in_progress(bp);
8484
8485 /* Shut down the power */
8486 bnx2x_set_power_state(bp, PCI_D3hot);
8487
8488 bp->recovery_state = BNX2X_RECOVERY_FAILED;
8489
8490 smp_mb();
8491 }
8492
8493 /*
8494 * Assumption: runs under rtnl lock. This together with the fact
8495 * that it's called only from bnx2x_sp_rtnl() ensure that it
8496 * will never be called when netif_running(bp->dev) is false.
8497 */
bnx2x_parity_recover(struct bnx2x * bp)8498 static void bnx2x_parity_recover(struct bnx2x *bp)
8499 {
8500 bool global = false;
8501
8502 DP(NETIF_MSG_HW, "Handling parity\n");
8503 while (1) {
8504 switch (bp->recovery_state) {
8505 case BNX2X_RECOVERY_INIT:
8506 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
8507 bnx2x_chk_parity_attn(bp, &global, false);
8508
8509 /* Try to get a LEADER_LOCK HW lock */
8510 if (bnx2x_trylock_leader_lock(bp)) {
8511 bnx2x_set_reset_in_progress(bp);
8512 /*
8513 * Check if there is a global attention and if
8514 * there was a global attention, set the global
8515 * reset bit.
8516 */
8517
8518 if (global)
8519 bnx2x_set_reset_global(bp);
8520
8521 bp->is_leader = 1;
8522 }
8523
8524 /* Stop the driver */
8525 /* If interface has been removed - break */
8526 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY))
8527 return;
8528
8529 bp->recovery_state = BNX2X_RECOVERY_WAIT;
8530
8531 /*
8532 * Reset MCP command sequence number and MCP mail box
8533 * sequence as we are going to reset the MCP.
8534 */
8535 if (global) {
8536 bp->fw_seq = 0;
8537 bp->fw_drv_pulse_wr_seq = 0;
8538 }
8539
8540 /* Ensure "is_leader", MCP command sequence and
8541 * "recovery_state" update values are seen on other
8542 * CPUs.
8543 */
8544 smp_mb();
8545 break;
8546
8547 case BNX2X_RECOVERY_WAIT:
8548 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
8549 if (bp->is_leader) {
8550 int other_engine = BP_PATH(bp) ? 0 : 1;
8551 u32 other_load_counter =
8552 bnx2x_get_load_cnt(bp, other_engine);
8553 u32 load_counter =
8554 bnx2x_get_load_cnt(bp, BP_PATH(bp));
8555 global = bnx2x_reset_is_global(bp);
8556
8557 /*
8558 * In case of a parity in a global block, let
8559 * the first leader that performs a
8560 * leader_reset() reset the global blocks in
8561 * order to clear global attentions. Otherwise
8562 * the the gates will remain closed for that
8563 * engine.
8564 */
8565 if (load_counter ||
8566 (global && other_load_counter)) {
8567 /* Wait until all other functions get
8568 * down.
8569 */
8570 schedule_delayed_work(&bp->sp_rtnl_task,
8571 HZ/10);
8572 return;
8573 } else {
8574 /* If all other functions got down -
8575 * try to bring the chip back to
8576 * normal. In any case it's an exit
8577 * point for a leader.
8578 */
8579 if (bnx2x_leader_reset(bp)) {
8580 bnx2x_recovery_failed(bp);
8581 return;
8582 }
8583
8584 /* If we are here, means that the
8585 * leader has succeeded and doesn't
8586 * want to be a leader any more. Try
8587 * to continue as a none-leader.
8588 */
8589 break;
8590 }
8591 } else { /* non-leader */
8592 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
8593 /* Try to get a LEADER_LOCK HW lock as
8594 * long as a former leader may have
8595 * been unloaded by the user or
8596 * released a leadership by another
8597 * reason.
8598 */
8599 if (bnx2x_trylock_leader_lock(bp)) {
8600 /* I'm a leader now! Restart a
8601 * switch case.
8602 */
8603 bp->is_leader = 1;
8604 break;
8605 }
8606
8607 schedule_delayed_work(&bp->sp_rtnl_task,
8608 HZ/10);
8609 return;
8610
8611 } else {
8612 /*
8613 * If there was a global attention, wait
8614 * for it to be cleared.
8615 */
8616 if (bnx2x_reset_is_global(bp)) {
8617 schedule_delayed_work(
8618 &bp->sp_rtnl_task,
8619 HZ/10);
8620 return;
8621 }
8622
8623 if (bnx2x_nic_load(bp, LOAD_NORMAL))
8624 bnx2x_recovery_failed(bp);
8625 else {
8626 bp->recovery_state =
8627 BNX2X_RECOVERY_DONE;
8628 smp_mb();
8629 }
8630
8631 return;
8632 }
8633 }
8634 default:
8635 return;
8636 }
8637 }
8638 }
8639
8640 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
8641 * scheduled on a general queue in order to prevent a dead lock.
8642 */
bnx2x_sp_rtnl_task(struct work_struct * work)8643 static void bnx2x_sp_rtnl_task(struct work_struct *work)
8644 {
8645 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
8646
8647 rtnl_lock();
8648
8649 if (!netif_running(bp->dev))
8650 goto sp_rtnl_exit;
8651
8652 /* if stop on error is defined no recovery flows should be executed */
8653 #ifdef BNX2X_STOP_ON_ERROR
8654 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined "
8655 "so reset not done to allow debug dump,\n"
8656 "you will need to reboot when done\n");
8657 goto sp_rtnl_not_reset;
8658 #endif
8659
8660 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
8661 /*
8662 * Clear all pending SP commands as we are going to reset the
8663 * function anyway.
8664 */
8665 bp->sp_rtnl_state = 0;
8666 smp_mb();
8667
8668 bnx2x_parity_recover(bp);
8669
8670 goto sp_rtnl_exit;
8671 }
8672
8673 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
8674 /*
8675 * Clear all pending SP commands as we are going to reset the
8676 * function anyway.
8677 */
8678 bp->sp_rtnl_state = 0;
8679 smp_mb();
8680
8681 bnx2x_nic_unload(bp, UNLOAD_NORMAL);
8682 bnx2x_nic_load(bp, LOAD_NORMAL);
8683
8684 goto sp_rtnl_exit;
8685 }
8686 #ifdef BNX2X_STOP_ON_ERROR
8687 sp_rtnl_not_reset:
8688 #endif
8689 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
8690 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
8691
8692 /*
8693 * in case of fan failure we need to reset id if the "stop on error"
8694 * debug flag is set, since we trying to prevent permanent overheating
8695 * damage
8696 */
8697 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
8698 DP(BNX2X_MSG_SP, "fan failure detected. Unloading driver\n");
8699 netif_device_detach(bp->dev);
8700 bnx2x_close(bp->dev);
8701 }
8702
8703 sp_rtnl_exit:
8704 rtnl_unlock();
8705 }
8706
8707 /* end of nic load/unload */
8708
bnx2x_period_task(struct work_struct * work)8709 static void bnx2x_period_task(struct work_struct *work)
8710 {
8711 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
8712
8713 if (!netif_running(bp->dev))
8714 goto period_task_exit;
8715
8716 if (CHIP_REV_IS_SLOW(bp)) {
8717 BNX2X_ERR("period task called on emulation, ignoring\n");
8718 goto period_task_exit;
8719 }
8720
8721 bnx2x_acquire_phy_lock(bp);
8722 /*
8723 * The barrier is needed to ensure the ordering between the writing to
8724 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
8725 * the reading here.
8726 */
8727 smp_mb();
8728 if (bp->port.pmf) {
8729 bnx2x_period_func(&bp->link_params, &bp->link_vars);
8730
8731 /* Re-queue task in 1 sec */
8732 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
8733 }
8734
8735 bnx2x_release_phy_lock(bp);
8736 period_task_exit:
8737 return;
8738 }
8739
8740 /*
8741 * Init service functions
8742 */
8743
bnx2x_get_pretend_reg(struct bnx2x * bp)8744 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
8745 {
8746 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
8747 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
8748 return base + (BP_ABS_FUNC(bp)) * stride;
8749 }
8750
bnx2x_undi_int_disable_e1h(struct bnx2x * bp)8751 static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp)
8752 {
8753 u32 reg = bnx2x_get_pretend_reg(bp);
8754
8755 /* Flush all outstanding writes */
8756 mmiowb();
8757
8758 /* Pretend to be function 0 */
8759 REG_WR(bp, reg, 0);
8760 REG_RD(bp, reg); /* Flush the GRC transaction (in the chip) */
8761
8762 /* From now we are in the "like-E1" mode */
8763 bnx2x_int_disable(bp);
8764
8765 /* Flush all outstanding writes */
8766 mmiowb();
8767
8768 /* Restore the original function */
8769 REG_WR(bp, reg, BP_ABS_FUNC(bp));
8770 REG_RD(bp, reg);
8771 }
8772
bnx2x_undi_int_disable(struct bnx2x * bp)8773 static inline void bnx2x_undi_int_disable(struct bnx2x *bp)
8774 {
8775 if (CHIP_IS_E1(bp))
8776 bnx2x_int_disable(bp);
8777 else
8778 bnx2x_undi_int_disable_e1h(bp);
8779 }
8780
bnx2x_undi_unload(struct bnx2x * bp)8781 static void __devinit bnx2x_undi_unload(struct bnx2x *bp)
8782 {
8783 u32 val;
8784
8785 /* Check if there is any driver already loaded */
8786 val = REG_RD(bp, MISC_REG_UNPREPARED);
8787 if (val == 0x1) {
8788
8789 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
8790 /*
8791 * Check if it is the UNDI driver
8792 * UNDI driver initializes CID offset for normal bell to 0x7
8793 */
8794 val = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
8795 if (val == 0x7) {
8796 u32 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8797 /* save our pf_num */
8798 int orig_pf_num = bp->pf_num;
8799 int port;
8800 u32 swap_en, swap_val, value;
8801
8802 /* clear the UNDI indication */
8803 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
8804
8805 BNX2X_DEV_INFO("UNDI is active! reset device\n");
8806
8807 /* try unload UNDI on port 0 */
8808 bp->pf_num = 0;
8809 bp->fw_seq =
8810 (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8811 DRV_MSG_SEQ_NUMBER_MASK);
8812 reset_code = bnx2x_fw_command(bp, reset_code, 0);
8813
8814 /* if UNDI is loaded on the other port */
8815 if (reset_code != FW_MSG_CODE_DRV_UNLOAD_COMMON) {
8816
8817 /* send "DONE" for previous unload */
8818 bnx2x_fw_command(bp,
8819 DRV_MSG_CODE_UNLOAD_DONE, 0);
8820
8821 /* unload UNDI on port 1 */
8822 bp->pf_num = 1;
8823 bp->fw_seq =
8824 (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8825 DRV_MSG_SEQ_NUMBER_MASK);
8826 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8827
8828 bnx2x_fw_command(bp, reset_code, 0);
8829 }
8830
8831 bnx2x_undi_int_disable(bp);
8832 port = BP_PORT(bp);
8833
8834 /* close input traffic and wait for it */
8835 /* Do not rcv packets to BRB */
8836 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_DRV_MASK :
8837 NIG_REG_LLH0_BRB1_DRV_MASK), 0x0);
8838 /* Do not direct rcv packets that are not for MCP to
8839 * the BRB */
8840 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8841 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8842 /* clear AEU */
8843 REG_WR(bp, (port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8844 MISC_REG_AEU_MASK_ATTN_FUNC_0), 0);
8845 msleep(10);
8846
8847 /* save NIG port swap info */
8848 swap_val = REG_RD(bp, NIG_REG_PORT_SWAP);
8849 swap_en = REG_RD(bp, NIG_REG_STRAP_OVERRIDE);
8850 /* reset device */
8851 REG_WR(bp,
8852 GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8853 0xd3ffffff);
8854
8855 value = 0x1400;
8856 if (CHIP_IS_E3(bp)) {
8857 value |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
8858 value |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
8859 }
8860
8861 REG_WR(bp,
8862 GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8863 value);
8864
8865 /* take the NIG out of reset and restore swap values */
8866 REG_WR(bp,
8867 GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
8868 MISC_REGISTERS_RESET_REG_1_RST_NIG);
8869 REG_WR(bp, NIG_REG_PORT_SWAP, swap_val);
8870 REG_WR(bp, NIG_REG_STRAP_OVERRIDE, swap_en);
8871
8872 /* send unload done to the MCP */
8873 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
8874
8875 /* restore our func and fw_seq */
8876 bp->pf_num = orig_pf_num;
8877 bp->fw_seq =
8878 (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8879 DRV_MSG_SEQ_NUMBER_MASK);
8880 }
8881
8882 /* now it's safe to release the lock */
8883 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
8884 }
8885 }
8886
bnx2x_get_common_hwinfo(struct bnx2x * bp)8887 static void __devinit bnx2x_get_common_hwinfo(struct bnx2x *bp)
8888 {
8889 u32 val, val2, val3, val4, id, boot_mode;
8890 u16 pmc;
8891
8892 /* Get the chip revision id and number. */
8893 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
8894 val = REG_RD(bp, MISC_REG_CHIP_NUM);
8895 id = ((val & 0xffff) << 16);
8896 val = REG_RD(bp, MISC_REG_CHIP_REV);
8897 id |= ((val & 0xf) << 12);
8898 val = REG_RD(bp, MISC_REG_CHIP_METAL);
8899 id |= ((val & 0xff) << 4);
8900 val = REG_RD(bp, MISC_REG_BOND_ID);
8901 id |= (val & 0xf);
8902 bp->common.chip_id = id;
8903
8904 /* Set doorbell size */
8905 bp->db_size = (1 << BNX2X_DB_SHIFT);
8906
8907 if (!CHIP_IS_E1x(bp)) {
8908 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
8909 if ((val & 1) == 0)
8910 val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
8911 else
8912 val = (val >> 1) & 1;
8913 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
8914 "2_PORT_MODE");
8915 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
8916 CHIP_2_PORT_MODE;
8917
8918 if (CHIP_MODE_IS_4_PORT(bp))
8919 bp->pfid = (bp->pf_num >> 1); /* 0..3 */
8920 else
8921 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */
8922 } else {
8923 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
8924 bp->pfid = bp->pf_num; /* 0..7 */
8925 }
8926
8927 bp->link_params.chip_id = bp->common.chip_id;
8928 BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
8929
8930 val = (REG_RD(bp, 0x2874) & 0x55);
8931 if ((bp->common.chip_id & 0x1) ||
8932 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
8933 bp->flags |= ONE_PORT_FLAG;
8934 BNX2X_DEV_INFO("single port device\n");
8935 }
8936
8937 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
8938 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
8939 (val & MCPR_NVM_CFG4_FLASH_SIZE));
8940 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
8941 bp->common.flash_size, bp->common.flash_size);
8942
8943 bnx2x_init_shmem(bp);
8944
8945
8946
8947 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
8948 MISC_REG_GENERIC_CR_1 :
8949 MISC_REG_GENERIC_CR_0));
8950
8951 bp->link_params.shmem_base = bp->common.shmem_base;
8952 bp->link_params.shmem2_base = bp->common.shmem2_base;
8953 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n",
8954 bp->common.shmem_base, bp->common.shmem2_base);
8955
8956 if (!bp->common.shmem_base) {
8957 BNX2X_DEV_INFO("MCP not active\n");
8958 bp->flags |= NO_MCP_FLAG;
8959 return;
8960 }
8961
8962 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
8963 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
8964
8965 bp->link_params.hw_led_mode = ((bp->common.hw_config &
8966 SHARED_HW_CFG_LED_MODE_MASK) >>
8967 SHARED_HW_CFG_LED_MODE_SHIFT);
8968
8969 bp->link_params.feature_config_flags = 0;
8970 val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
8971 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
8972 bp->link_params.feature_config_flags |=
8973 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8974 else
8975 bp->link_params.feature_config_flags &=
8976 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8977
8978 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
8979 bp->common.bc_ver = val;
8980 BNX2X_DEV_INFO("bc_ver %X\n", val);
8981 if (val < BNX2X_BC_VER) {
8982 /* for now only warn
8983 * later we might need to enforce this */
8984 BNX2X_ERR("This driver needs bc_ver %X but found %X, "
8985 "please upgrade BC\n", BNX2X_BC_VER, val);
8986 }
8987 bp->link_params.feature_config_flags |=
8988 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
8989 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
8990
8991 bp->link_params.feature_config_flags |=
8992 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
8993 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
8994
8995 bp->link_params.feature_config_flags |=
8996 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
8997 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
8998 bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
8999 BC_SUPPORTS_PFC_STATS : 0;
9000
9001 boot_mode = SHMEM_RD(bp,
9002 dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
9003 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
9004 switch (boot_mode) {
9005 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
9006 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
9007 break;
9008 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
9009 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
9010 break;
9011 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
9012 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
9013 break;
9014 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
9015 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
9016 break;
9017 }
9018
9019 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
9020 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
9021
9022 BNX2X_DEV_INFO("%sWoL capable\n",
9023 (bp->flags & NO_WOL_FLAG) ? "not " : "");
9024
9025 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
9026 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
9027 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
9028 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
9029
9030 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
9031 val, val2, val3, val4);
9032 }
9033
9034 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
9035 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
9036
bnx2x_get_igu_cam_info(struct bnx2x * bp)9037 static void __devinit bnx2x_get_igu_cam_info(struct bnx2x *bp)
9038 {
9039 int pfid = BP_FUNC(bp);
9040 int igu_sb_id;
9041 u32 val;
9042 u8 fid, igu_sb_cnt = 0;
9043
9044 bp->igu_base_sb = 0xff;
9045 if (CHIP_INT_MODE_IS_BC(bp)) {
9046 int vn = BP_VN(bp);
9047 igu_sb_cnt = bp->igu_sb_cnt;
9048 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
9049 FP_SB_MAX_E1x;
9050
9051 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x +
9052 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
9053
9054 return;
9055 }
9056
9057 /* IGU in normal mode - read CAM */
9058 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
9059 igu_sb_id++) {
9060 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
9061 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
9062 continue;
9063 fid = IGU_FID(val);
9064 if ((fid & IGU_FID_ENCODE_IS_PF)) {
9065 if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
9066 continue;
9067 if (IGU_VEC(val) == 0)
9068 /* default status block */
9069 bp->igu_dsb_id = igu_sb_id;
9070 else {
9071 if (bp->igu_base_sb == 0xff)
9072 bp->igu_base_sb = igu_sb_id;
9073 igu_sb_cnt++;
9074 }
9075 }
9076 }
9077
9078 #ifdef CONFIG_PCI_MSI
9079 /*
9080 * It's expected that number of CAM entries for this functions is equal
9081 * to the number evaluated based on the MSI-X table size. We want a
9082 * harsh warning if these values are different!
9083 */
9084 WARN_ON(bp->igu_sb_cnt != igu_sb_cnt);
9085 #endif
9086
9087 if (igu_sb_cnt == 0)
9088 BNX2X_ERR("CAM configuration error\n");
9089 }
9090
bnx2x_link_settings_supported(struct bnx2x * bp,u32 switch_cfg)9091 static void __devinit bnx2x_link_settings_supported(struct bnx2x *bp,
9092 u32 switch_cfg)
9093 {
9094 int cfg_size = 0, idx, port = BP_PORT(bp);
9095
9096 /* Aggregation of supported attributes of all external phys */
9097 bp->port.supported[0] = 0;
9098 bp->port.supported[1] = 0;
9099 switch (bp->link_params.num_phys) {
9100 case 1:
9101 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
9102 cfg_size = 1;
9103 break;
9104 case 2:
9105 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
9106 cfg_size = 1;
9107 break;
9108 case 3:
9109 if (bp->link_params.multi_phy_config &
9110 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
9111 bp->port.supported[1] =
9112 bp->link_params.phy[EXT_PHY1].supported;
9113 bp->port.supported[0] =
9114 bp->link_params.phy[EXT_PHY2].supported;
9115 } else {
9116 bp->port.supported[0] =
9117 bp->link_params.phy[EXT_PHY1].supported;
9118 bp->port.supported[1] =
9119 bp->link_params.phy[EXT_PHY2].supported;
9120 }
9121 cfg_size = 2;
9122 break;
9123 }
9124
9125 if (!(bp->port.supported[0] || bp->port.supported[1])) {
9126 BNX2X_ERR("NVRAM config error. BAD phy config."
9127 "PHY1 config 0x%x, PHY2 config 0x%x\n",
9128 SHMEM_RD(bp,
9129 dev_info.port_hw_config[port].external_phy_config),
9130 SHMEM_RD(bp,
9131 dev_info.port_hw_config[port].external_phy_config2));
9132 return;
9133 }
9134
9135 if (CHIP_IS_E3(bp))
9136 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
9137 else {
9138 switch (switch_cfg) {
9139 case SWITCH_CFG_1G:
9140 bp->port.phy_addr = REG_RD(
9141 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
9142 break;
9143 case SWITCH_CFG_10G:
9144 bp->port.phy_addr = REG_RD(
9145 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
9146 break;
9147 default:
9148 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
9149 bp->port.link_config[0]);
9150 return;
9151 }
9152 }
9153 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
9154 /* mask what we support according to speed_cap_mask per configuration */
9155 for (idx = 0; idx < cfg_size; idx++) {
9156 if (!(bp->link_params.speed_cap_mask[idx] &
9157 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
9158 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
9159
9160 if (!(bp->link_params.speed_cap_mask[idx] &
9161 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
9162 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
9163
9164 if (!(bp->link_params.speed_cap_mask[idx] &
9165 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
9166 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
9167
9168 if (!(bp->link_params.speed_cap_mask[idx] &
9169 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
9170 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
9171
9172 if (!(bp->link_params.speed_cap_mask[idx] &
9173 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
9174 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
9175 SUPPORTED_1000baseT_Full);
9176
9177 if (!(bp->link_params.speed_cap_mask[idx] &
9178 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
9179 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
9180
9181 if (!(bp->link_params.speed_cap_mask[idx] &
9182 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
9183 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
9184
9185 }
9186
9187 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
9188 bp->port.supported[1]);
9189 }
9190
bnx2x_link_settings_requested(struct bnx2x * bp)9191 static void __devinit bnx2x_link_settings_requested(struct bnx2x *bp)
9192 {
9193 u32 link_config, idx, cfg_size = 0;
9194 bp->port.advertising[0] = 0;
9195 bp->port.advertising[1] = 0;
9196 switch (bp->link_params.num_phys) {
9197 case 1:
9198 case 2:
9199 cfg_size = 1;
9200 break;
9201 case 3:
9202 cfg_size = 2;
9203 break;
9204 }
9205 for (idx = 0; idx < cfg_size; idx++) {
9206 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
9207 link_config = bp->port.link_config[idx];
9208 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
9209 case PORT_FEATURE_LINK_SPEED_AUTO:
9210 if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
9211 bp->link_params.req_line_speed[idx] =
9212 SPEED_AUTO_NEG;
9213 bp->port.advertising[idx] |=
9214 bp->port.supported[idx];
9215 } else {
9216 /* force 10G, no AN */
9217 bp->link_params.req_line_speed[idx] =
9218 SPEED_10000;
9219 bp->port.advertising[idx] |=
9220 (ADVERTISED_10000baseT_Full |
9221 ADVERTISED_FIBRE);
9222 continue;
9223 }
9224 break;
9225
9226 case PORT_FEATURE_LINK_SPEED_10M_FULL:
9227 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
9228 bp->link_params.req_line_speed[idx] =
9229 SPEED_10;
9230 bp->port.advertising[idx] |=
9231 (ADVERTISED_10baseT_Full |
9232 ADVERTISED_TP);
9233 } else {
9234 BNX2X_ERR("NVRAM config error. "
9235 "Invalid link_config 0x%x"
9236 " speed_cap_mask 0x%x\n",
9237 link_config,
9238 bp->link_params.speed_cap_mask[idx]);
9239 return;
9240 }
9241 break;
9242
9243 case PORT_FEATURE_LINK_SPEED_10M_HALF:
9244 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
9245 bp->link_params.req_line_speed[idx] =
9246 SPEED_10;
9247 bp->link_params.req_duplex[idx] =
9248 DUPLEX_HALF;
9249 bp->port.advertising[idx] |=
9250 (ADVERTISED_10baseT_Half |
9251 ADVERTISED_TP);
9252 } else {
9253 BNX2X_ERR("NVRAM config error. "
9254 "Invalid link_config 0x%x"
9255 " speed_cap_mask 0x%x\n",
9256 link_config,
9257 bp->link_params.speed_cap_mask[idx]);
9258 return;
9259 }
9260 break;
9261
9262 case PORT_FEATURE_LINK_SPEED_100M_FULL:
9263 if (bp->port.supported[idx] &
9264 SUPPORTED_100baseT_Full) {
9265 bp->link_params.req_line_speed[idx] =
9266 SPEED_100;
9267 bp->port.advertising[idx] |=
9268 (ADVERTISED_100baseT_Full |
9269 ADVERTISED_TP);
9270 } else {
9271 BNX2X_ERR("NVRAM config error. "
9272 "Invalid link_config 0x%x"
9273 " speed_cap_mask 0x%x\n",
9274 link_config,
9275 bp->link_params.speed_cap_mask[idx]);
9276 return;
9277 }
9278 break;
9279
9280 case PORT_FEATURE_LINK_SPEED_100M_HALF:
9281 if (bp->port.supported[idx] &
9282 SUPPORTED_100baseT_Half) {
9283 bp->link_params.req_line_speed[idx] =
9284 SPEED_100;
9285 bp->link_params.req_duplex[idx] =
9286 DUPLEX_HALF;
9287 bp->port.advertising[idx] |=
9288 (ADVERTISED_100baseT_Half |
9289 ADVERTISED_TP);
9290 } else {
9291 BNX2X_ERR("NVRAM config error. "
9292 "Invalid link_config 0x%x"
9293 " speed_cap_mask 0x%x\n",
9294 link_config,
9295 bp->link_params.speed_cap_mask[idx]);
9296 return;
9297 }
9298 break;
9299
9300 case PORT_FEATURE_LINK_SPEED_1G:
9301 if (bp->port.supported[idx] &
9302 SUPPORTED_1000baseT_Full) {
9303 bp->link_params.req_line_speed[idx] =
9304 SPEED_1000;
9305 bp->port.advertising[idx] |=
9306 (ADVERTISED_1000baseT_Full |
9307 ADVERTISED_TP);
9308 } else {
9309 BNX2X_ERR("NVRAM config error. "
9310 "Invalid link_config 0x%x"
9311 " speed_cap_mask 0x%x\n",
9312 link_config,
9313 bp->link_params.speed_cap_mask[idx]);
9314 return;
9315 }
9316 break;
9317
9318 case PORT_FEATURE_LINK_SPEED_2_5G:
9319 if (bp->port.supported[idx] &
9320 SUPPORTED_2500baseX_Full) {
9321 bp->link_params.req_line_speed[idx] =
9322 SPEED_2500;
9323 bp->port.advertising[idx] |=
9324 (ADVERTISED_2500baseX_Full |
9325 ADVERTISED_TP);
9326 } else {
9327 BNX2X_ERR("NVRAM config error. "
9328 "Invalid link_config 0x%x"
9329 " speed_cap_mask 0x%x\n",
9330 link_config,
9331 bp->link_params.speed_cap_mask[idx]);
9332 return;
9333 }
9334 break;
9335
9336 case PORT_FEATURE_LINK_SPEED_10G_CX4:
9337 if (bp->port.supported[idx] &
9338 SUPPORTED_10000baseT_Full) {
9339 bp->link_params.req_line_speed[idx] =
9340 SPEED_10000;
9341 bp->port.advertising[idx] |=
9342 (ADVERTISED_10000baseT_Full |
9343 ADVERTISED_FIBRE);
9344 } else {
9345 BNX2X_ERR("NVRAM config error. "
9346 "Invalid link_config 0x%x"
9347 " speed_cap_mask 0x%x\n",
9348 link_config,
9349 bp->link_params.speed_cap_mask[idx]);
9350 return;
9351 }
9352 break;
9353 case PORT_FEATURE_LINK_SPEED_20G:
9354 bp->link_params.req_line_speed[idx] = SPEED_20000;
9355
9356 break;
9357 default:
9358 BNX2X_ERR("NVRAM config error. "
9359 "BAD link speed link_config 0x%x\n",
9360 link_config);
9361 bp->link_params.req_line_speed[idx] =
9362 SPEED_AUTO_NEG;
9363 bp->port.advertising[idx] =
9364 bp->port.supported[idx];
9365 break;
9366 }
9367
9368 bp->link_params.req_flow_ctrl[idx] = (link_config &
9369 PORT_FEATURE_FLOW_CONTROL_MASK);
9370 if ((bp->link_params.req_flow_ctrl[idx] ==
9371 BNX2X_FLOW_CTRL_AUTO) &&
9372 !(bp->port.supported[idx] & SUPPORTED_Autoneg)) {
9373 bp->link_params.req_flow_ctrl[idx] =
9374 BNX2X_FLOW_CTRL_NONE;
9375 }
9376
9377 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl"
9378 " 0x%x advertising 0x%x\n",
9379 bp->link_params.req_line_speed[idx],
9380 bp->link_params.req_duplex[idx],
9381 bp->link_params.req_flow_ctrl[idx],
9382 bp->port.advertising[idx]);
9383 }
9384 }
9385
bnx2x_set_mac_buf(u8 * mac_buf,u32 mac_lo,u16 mac_hi)9386 static void __devinit bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
9387 {
9388 mac_hi = cpu_to_be16(mac_hi);
9389 mac_lo = cpu_to_be32(mac_lo);
9390 memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
9391 memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
9392 }
9393
bnx2x_get_port_hwinfo(struct bnx2x * bp)9394 static void __devinit bnx2x_get_port_hwinfo(struct bnx2x *bp)
9395 {
9396 int port = BP_PORT(bp);
9397 u32 config;
9398 u32 ext_phy_type, ext_phy_config;
9399
9400 bp->link_params.bp = bp;
9401 bp->link_params.port = port;
9402
9403 bp->link_params.lane_config =
9404 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
9405
9406 bp->link_params.speed_cap_mask[0] =
9407 SHMEM_RD(bp,
9408 dev_info.port_hw_config[port].speed_capability_mask);
9409 bp->link_params.speed_cap_mask[1] =
9410 SHMEM_RD(bp,
9411 dev_info.port_hw_config[port].speed_capability_mask2);
9412 bp->port.link_config[0] =
9413 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
9414
9415 bp->port.link_config[1] =
9416 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
9417
9418 bp->link_params.multi_phy_config =
9419 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
9420 /* If the device is capable of WoL, set the default state according
9421 * to the HW
9422 */
9423 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
9424 bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
9425 (config & PORT_FEATURE_WOL_ENABLED));
9426
9427 BNX2X_DEV_INFO("lane_config 0x%08x "
9428 "speed_cap_mask0 0x%08x link_config0 0x%08x\n",
9429 bp->link_params.lane_config,
9430 bp->link_params.speed_cap_mask[0],
9431 bp->port.link_config[0]);
9432
9433 bp->link_params.switch_cfg = (bp->port.link_config[0] &
9434 PORT_FEATURE_CONNECTED_SWITCH_MASK);
9435 bnx2x_phy_probe(&bp->link_params);
9436 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
9437
9438 bnx2x_link_settings_requested(bp);
9439
9440 /*
9441 * If connected directly, work with the internal PHY, otherwise, work
9442 * with the external PHY
9443 */
9444 ext_phy_config =
9445 SHMEM_RD(bp,
9446 dev_info.port_hw_config[port].external_phy_config);
9447 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
9448 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
9449 bp->mdio.prtad = bp->port.phy_addr;
9450
9451 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
9452 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
9453 bp->mdio.prtad =
9454 XGXS_EXT_PHY_ADDR(ext_phy_config);
9455
9456 /*
9457 * Check if hw lock is required to access MDC/MDIO bus to the PHY(s)
9458 * In MF mode, it is set to cover self test cases
9459 */
9460 if (IS_MF(bp))
9461 bp->port.need_hw_lock = 1;
9462 else
9463 bp->port.need_hw_lock = bnx2x_hw_lock_required(bp,
9464 bp->common.shmem_base,
9465 bp->common.shmem2_base);
9466 }
9467
bnx2x_get_iscsi_info(struct bnx2x * bp)9468 void bnx2x_get_iscsi_info(struct bnx2x *bp)
9469 {
9470 #ifdef BCM_CNIC
9471 int port = BP_PORT(bp);
9472
9473 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9474 drv_lic_key[port].max_iscsi_conn);
9475
9476 /* Get the number of maximum allowed iSCSI connections */
9477 bp->cnic_eth_dev.max_iscsi_conn =
9478 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
9479 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
9480
9481 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
9482 bp->cnic_eth_dev.max_iscsi_conn);
9483
9484 /*
9485 * If maximum allowed number of connections is zero -
9486 * disable the feature.
9487 */
9488 if (!bp->cnic_eth_dev.max_iscsi_conn)
9489 bp->flags |= NO_ISCSI_FLAG;
9490 #else
9491 bp->flags |= NO_ISCSI_FLAG;
9492 #endif
9493 }
9494
bnx2x_get_fcoe_info(struct bnx2x * bp)9495 static void __devinit bnx2x_get_fcoe_info(struct bnx2x *bp)
9496 {
9497 #ifdef BCM_CNIC
9498 int port = BP_PORT(bp);
9499 int func = BP_ABS_FUNC(bp);
9500
9501 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9502 drv_lic_key[port].max_fcoe_conn);
9503
9504 /* Get the number of maximum allowed FCoE connections */
9505 bp->cnic_eth_dev.max_fcoe_conn =
9506 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
9507 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
9508
9509 /* Read the WWN: */
9510 if (!IS_MF(bp)) {
9511 /* Port info */
9512 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9513 SHMEM_RD(bp,
9514 dev_info.port_hw_config[port].
9515 fcoe_wwn_port_name_upper);
9516 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9517 SHMEM_RD(bp,
9518 dev_info.port_hw_config[port].
9519 fcoe_wwn_port_name_lower);
9520
9521 /* Node info */
9522 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9523 SHMEM_RD(bp,
9524 dev_info.port_hw_config[port].
9525 fcoe_wwn_node_name_upper);
9526 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9527 SHMEM_RD(bp,
9528 dev_info.port_hw_config[port].
9529 fcoe_wwn_node_name_lower);
9530 } else if (!IS_MF_SD(bp)) {
9531 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9532
9533 /*
9534 * Read the WWN info only if the FCoE feature is enabled for
9535 * this function.
9536 */
9537 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9538 /* Port info */
9539 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9540 MF_CFG_RD(bp, func_ext_config[func].
9541 fcoe_wwn_port_name_upper);
9542 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9543 MF_CFG_RD(bp, func_ext_config[func].
9544 fcoe_wwn_port_name_lower);
9545
9546 /* Node info */
9547 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9548 MF_CFG_RD(bp, func_ext_config[func].
9549 fcoe_wwn_node_name_upper);
9550 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9551 MF_CFG_RD(bp, func_ext_config[func].
9552 fcoe_wwn_node_name_lower);
9553 }
9554 }
9555
9556 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
9557
9558 /*
9559 * If maximum allowed number of connections is zero -
9560 * disable the feature.
9561 */
9562 if (!bp->cnic_eth_dev.max_fcoe_conn)
9563 bp->flags |= NO_FCOE_FLAG;
9564 #else
9565 bp->flags |= NO_FCOE_FLAG;
9566 #endif
9567 }
9568
bnx2x_get_cnic_info(struct bnx2x * bp)9569 static void __devinit bnx2x_get_cnic_info(struct bnx2x *bp)
9570 {
9571 /*
9572 * iSCSI may be dynamically disabled but reading
9573 * info here we will decrease memory usage by driver
9574 * if the feature is disabled for good
9575 */
9576 bnx2x_get_iscsi_info(bp);
9577 bnx2x_get_fcoe_info(bp);
9578 }
9579
bnx2x_get_mac_hwinfo(struct bnx2x * bp)9580 static void __devinit bnx2x_get_mac_hwinfo(struct bnx2x *bp)
9581 {
9582 u32 val, val2;
9583 int func = BP_ABS_FUNC(bp);
9584 int port = BP_PORT(bp);
9585 #ifdef BCM_CNIC
9586 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
9587 u8 *fip_mac = bp->fip_mac;
9588 #endif
9589
9590 /* Zero primary MAC configuration */
9591 memset(bp->dev->dev_addr, 0, ETH_ALEN);
9592
9593 if (BP_NOMCP(bp)) {
9594 BNX2X_ERROR("warning: random MAC workaround active\n");
9595 random_ether_addr(bp->dev->dev_addr);
9596 } else if (IS_MF(bp)) {
9597 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
9598 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
9599 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
9600 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
9601 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9602
9603 #ifdef BCM_CNIC
9604 /*
9605 * iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
9606 * FCoE MAC then the appropriate feature should be disabled.
9607 */
9608 if (IS_MF_SI(bp)) {
9609 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9610 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
9611 val2 = MF_CFG_RD(bp, func_ext_config[func].
9612 iscsi_mac_addr_upper);
9613 val = MF_CFG_RD(bp, func_ext_config[func].
9614 iscsi_mac_addr_lower);
9615 bnx2x_set_mac_buf(iscsi_mac, val, val2);
9616 BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9617 iscsi_mac);
9618 } else
9619 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
9620
9621 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9622 val2 = MF_CFG_RD(bp, func_ext_config[func].
9623 fcoe_mac_addr_upper);
9624 val = MF_CFG_RD(bp, func_ext_config[func].
9625 fcoe_mac_addr_lower);
9626 bnx2x_set_mac_buf(fip_mac, val, val2);
9627 BNX2X_DEV_INFO("Read FCoE L2 MAC: %pM\n",
9628 fip_mac);
9629
9630 } else
9631 bp->flags |= NO_FCOE_FLAG;
9632 } else { /* SD mode */
9633 if (BNX2X_IS_MF_PROTOCOL_ISCSI(bp)) {
9634 /* use primary mac as iscsi mac */
9635 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
9636 /* Zero primary MAC configuration */
9637 memset(bp->dev->dev_addr, 0, ETH_ALEN);
9638
9639 BNX2X_DEV_INFO("SD ISCSI MODE\n");
9640 BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9641 iscsi_mac);
9642 }
9643 }
9644 #endif
9645 } else {
9646 /* in SF read MACs from port configuration */
9647 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
9648 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
9649 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9650
9651 #ifdef BCM_CNIC
9652 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9653 iscsi_mac_upper);
9654 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9655 iscsi_mac_lower);
9656 bnx2x_set_mac_buf(iscsi_mac, val, val2);
9657
9658 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9659 fcoe_fip_mac_upper);
9660 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9661 fcoe_fip_mac_lower);
9662 bnx2x_set_mac_buf(fip_mac, val, val2);
9663 #endif
9664 }
9665
9666 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
9667 memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
9668
9669 #ifdef BCM_CNIC
9670 /* Set the FCoE MAC in MF_SD mode */
9671 if (!CHIP_IS_E1x(bp) && IS_MF_SD(bp))
9672 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
9673
9674 /* Disable iSCSI if MAC configuration is
9675 * invalid.
9676 */
9677 if (!is_valid_ether_addr(iscsi_mac)) {
9678 bp->flags |= NO_ISCSI_FLAG;
9679 memset(iscsi_mac, 0, ETH_ALEN);
9680 }
9681
9682 /* Disable FCoE if MAC configuration is
9683 * invalid.
9684 */
9685 if (!is_valid_ether_addr(fip_mac)) {
9686 bp->flags |= NO_FCOE_FLAG;
9687 memset(bp->fip_mac, 0, ETH_ALEN);
9688 }
9689 #endif
9690
9691 if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
9692 dev_err(&bp->pdev->dev,
9693 "bad Ethernet MAC address configuration: "
9694 "%pM, change it manually before bringing up "
9695 "the appropriate network interface\n",
9696 bp->dev->dev_addr);
9697 }
9698
bnx2x_get_hwinfo(struct bnx2x * bp)9699 static int __devinit bnx2x_get_hwinfo(struct bnx2x *bp)
9700 {
9701 int /*abs*/func = BP_ABS_FUNC(bp);
9702 int vn;
9703 u32 val = 0;
9704 int rc = 0;
9705
9706 bnx2x_get_common_hwinfo(bp);
9707
9708 /*
9709 * initialize IGU parameters
9710 */
9711 if (CHIP_IS_E1x(bp)) {
9712 bp->common.int_block = INT_BLOCK_HC;
9713
9714 bp->igu_dsb_id = DEF_SB_IGU_ID;
9715 bp->igu_base_sb = 0;
9716 } else {
9717 bp->common.int_block = INT_BLOCK_IGU;
9718
9719 /* do not allow device reset during IGU info preocessing */
9720 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
9721
9722 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9723
9724 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9725 int tout = 5000;
9726
9727 BNX2X_DEV_INFO("FORCING Normal Mode\n");
9728
9729 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
9730 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
9731 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
9732
9733 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9734 tout--;
9735 usleep_range(1000, 1000);
9736 }
9737
9738 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9739 dev_err(&bp->pdev->dev,
9740 "FORCING Normal Mode failed!!!\n");
9741 return -EPERM;
9742 }
9743 }
9744
9745 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9746 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
9747 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
9748 } else
9749 BNX2X_DEV_INFO("IGU Normal Mode\n");
9750
9751 bnx2x_get_igu_cam_info(bp);
9752
9753 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
9754 }
9755
9756 /*
9757 * set base FW non-default (fast path) status block id, this value is
9758 * used to initialize the fw_sb_id saved on the fp/queue structure to
9759 * determine the id used by the FW.
9760 */
9761 if (CHIP_IS_E1x(bp))
9762 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
9763 else /*
9764 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
9765 * the same queue are indicated on the same IGU SB). So we prefer
9766 * FW and IGU SBs to be the same value.
9767 */
9768 bp->base_fw_ndsb = bp->igu_base_sb;
9769
9770 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n"
9771 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
9772 bp->igu_sb_cnt, bp->base_fw_ndsb);
9773
9774 /*
9775 * Initialize MF configuration
9776 */
9777
9778 bp->mf_ov = 0;
9779 bp->mf_mode = 0;
9780 vn = BP_VN(bp);
9781
9782 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
9783 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
9784 bp->common.shmem2_base, SHMEM2_RD(bp, size),
9785 (u32)offsetof(struct shmem2_region, mf_cfg_addr));
9786
9787 if (SHMEM2_HAS(bp, mf_cfg_addr))
9788 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
9789 else
9790 bp->common.mf_cfg_base = bp->common.shmem_base +
9791 offsetof(struct shmem_region, func_mb) +
9792 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
9793 /*
9794 * get mf configuration:
9795 * 1. existence of MF configuration
9796 * 2. MAC address must be legal (check only upper bytes)
9797 * for Switch-Independent mode;
9798 * OVLAN must be legal for Switch-Dependent mode
9799 * 3. SF_MODE configures specific MF mode
9800 */
9801 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9802 /* get mf configuration */
9803 val = SHMEM_RD(bp,
9804 dev_info.shared_feature_config.config);
9805 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
9806
9807 switch (val) {
9808 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
9809 val = MF_CFG_RD(bp, func_mf_config[func].
9810 mac_upper);
9811 /* check for legal mac (upper bytes)*/
9812 if (val != 0xffff) {
9813 bp->mf_mode = MULTI_FUNCTION_SI;
9814 bp->mf_config[vn] = MF_CFG_RD(bp,
9815 func_mf_config[func].config);
9816 } else
9817 BNX2X_DEV_INFO("illegal MAC address "
9818 "for SI\n");
9819 break;
9820 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
9821 /* get OV configuration */
9822 val = MF_CFG_RD(bp,
9823 func_mf_config[FUNC_0].e1hov_tag);
9824 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
9825
9826 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9827 bp->mf_mode = MULTI_FUNCTION_SD;
9828 bp->mf_config[vn] = MF_CFG_RD(bp,
9829 func_mf_config[func].config);
9830 } else
9831 BNX2X_DEV_INFO("illegal OV for SD\n");
9832 break;
9833 default:
9834 /* Unknown configuration: reset mf_config */
9835 bp->mf_config[vn] = 0;
9836 BNX2X_DEV_INFO("unkown MF mode 0x%x\n", val);
9837 }
9838 }
9839
9840 BNX2X_DEV_INFO("%s function mode\n",
9841 IS_MF(bp) ? "multi" : "single");
9842
9843 switch (bp->mf_mode) {
9844 case MULTI_FUNCTION_SD:
9845 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
9846 FUNC_MF_CFG_E1HOV_TAG_MASK;
9847 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9848 bp->mf_ov = val;
9849 bp->path_has_ovlan = true;
9850
9851 BNX2X_DEV_INFO("MF OV for func %d is %d "
9852 "(0x%04x)\n", func, bp->mf_ov,
9853 bp->mf_ov);
9854 } else {
9855 dev_err(&bp->pdev->dev,
9856 "No valid MF OV for func %d, "
9857 "aborting\n", func);
9858 return -EPERM;
9859 }
9860 break;
9861 case MULTI_FUNCTION_SI:
9862 BNX2X_DEV_INFO("func %d is in MF "
9863 "switch-independent mode\n", func);
9864 break;
9865 default:
9866 if (vn) {
9867 dev_err(&bp->pdev->dev,
9868 "VN %d is in a single function mode, "
9869 "aborting\n", vn);
9870 return -EPERM;
9871 }
9872 break;
9873 }
9874
9875 /* check if other port on the path needs ovlan:
9876 * Since MF configuration is shared between ports
9877 * Possible mixed modes are only
9878 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
9879 */
9880 if (CHIP_MODE_IS_4_PORT(bp) &&
9881 !bp->path_has_ovlan &&
9882 !IS_MF(bp) &&
9883 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9884 u8 other_port = !BP_PORT(bp);
9885 u8 other_func = BP_PATH(bp) + 2*other_port;
9886 val = MF_CFG_RD(bp,
9887 func_mf_config[other_func].e1hov_tag);
9888 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
9889 bp->path_has_ovlan = true;
9890 }
9891 }
9892
9893 /* adjust igu_sb_cnt to MF for E1x */
9894 if (CHIP_IS_E1x(bp) && IS_MF(bp))
9895 bp->igu_sb_cnt /= E1HVN_MAX;
9896
9897 /* port info */
9898 bnx2x_get_port_hwinfo(bp);
9899
9900 /* Get MAC addresses */
9901 bnx2x_get_mac_hwinfo(bp);
9902
9903 bnx2x_get_cnic_info(bp);
9904
9905 /* Get current FW pulse sequence */
9906 if (!BP_NOMCP(bp)) {
9907 int mb_idx = BP_FW_MB_IDX(bp);
9908
9909 bp->fw_drv_pulse_wr_seq =
9910 (SHMEM_RD(bp, func_mb[mb_idx].drv_pulse_mb) &
9911 DRV_PULSE_SEQ_MASK);
9912 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
9913 }
9914
9915 return rc;
9916 }
9917
bnx2x_read_fwinfo(struct bnx2x * bp)9918 static void __devinit bnx2x_read_fwinfo(struct bnx2x *bp)
9919 {
9920 int cnt, i, block_end, rodi;
9921 char vpd_start[BNX2X_VPD_LEN+1];
9922 char str_id_reg[VENDOR_ID_LEN+1];
9923 char str_id_cap[VENDOR_ID_LEN+1];
9924 char *vpd_data;
9925 char *vpd_extended_data = NULL;
9926 u8 len;
9927
9928 cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
9929 memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
9930
9931 if (cnt < BNX2X_VPD_LEN)
9932 goto out_not_found;
9933
9934 /* VPD RO tag should be first tag after identifier string, hence
9935 * we should be able to find it in first BNX2X_VPD_LEN chars
9936 */
9937 i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
9938 PCI_VPD_LRDT_RO_DATA);
9939 if (i < 0)
9940 goto out_not_found;
9941
9942 block_end = i + PCI_VPD_LRDT_TAG_SIZE +
9943 pci_vpd_lrdt_size(&vpd_start[i]);
9944
9945 i += PCI_VPD_LRDT_TAG_SIZE;
9946
9947 if (block_end > BNX2X_VPD_LEN) {
9948 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
9949 if (vpd_extended_data == NULL)
9950 goto out_not_found;
9951
9952 /* read rest of vpd image into vpd_extended_data */
9953 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
9954 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
9955 block_end - BNX2X_VPD_LEN,
9956 vpd_extended_data + BNX2X_VPD_LEN);
9957 if (cnt < (block_end - BNX2X_VPD_LEN))
9958 goto out_not_found;
9959 vpd_data = vpd_extended_data;
9960 } else
9961 vpd_data = vpd_start;
9962
9963 /* now vpd_data holds full vpd content in both cases */
9964
9965 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
9966 PCI_VPD_RO_KEYWORD_MFR_ID);
9967 if (rodi < 0)
9968 goto out_not_found;
9969
9970 len = pci_vpd_info_field_size(&vpd_data[rodi]);
9971
9972 if (len != VENDOR_ID_LEN)
9973 goto out_not_found;
9974
9975 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
9976
9977 /* vendor specific info */
9978 snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
9979 snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
9980 if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
9981 !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
9982
9983 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
9984 PCI_VPD_RO_KEYWORD_VENDOR0);
9985 if (rodi >= 0) {
9986 len = pci_vpd_info_field_size(&vpd_data[rodi]);
9987
9988 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
9989
9990 if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
9991 memcpy(bp->fw_ver, &vpd_data[rodi], len);
9992 bp->fw_ver[len] = ' ';
9993 }
9994 }
9995 kfree(vpd_extended_data);
9996 return;
9997 }
9998 out_not_found:
9999 kfree(vpd_extended_data);
10000 return;
10001 }
10002
bnx2x_set_modes_bitmap(struct bnx2x * bp)10003 static void __devinit bnx2x_set_modes_bitmap(struct bnx2x *bp)
10004 {
10005 u32 flags = 0;
10006
10007 if (CHIP_REV_IS_FPGA(bp))
10008 SET_FLAGS(flags, MODE_FPGA);
10009 else if (CHIP_REV_IS_EMUL(bp))
10010 SET_FLAGS(flags, MODE_EMUL);
10011 else
10012 SET_FLAGS(flags, MODE_ASIC);
10013
10014 if (CHIP_MODE_IS_4_PORT(bp))
10015 SET_FLAGS(flags, MODE_PORT4);
10016 else
10017 SET_FLAGS(flags, MODE_PORT2);
10018
10019 if (CHIP_IS_E2(bp))
10020 SET_FLAGS(flags, MODE_E2);
10021 else if (CHIP_IS_E3(bp)) {
10022 SET_FLAGS(flags, MODE_E3);
10023 if (CHIP_REV(bp) == CHIP_REV_Ax)
10024 SET_FLAGS(flags, MODE_E3_A0);
10025 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
10026 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
10027 }
10028
10029 if (IS_MF(bp)) {
10030 SET_FLAGS(flags, MODE_MF);
10031 switch (bp->mf_mode) {
10032 case MULTI_FUNCTION_SD:
10033 SET_FLAGS(flags, MODE_MF_SD);
10034 break;
10035 case MULTI_FUNCTION_SI:
10036 SET_FLAGS(flags, MODE_MF_SI);
10037 break;
10038 }
10039 } else
10040 SET_FLAGS(flags, MODE_SF);
10041
10042 #if defined(__LITTLE_ENDIAN)
10043 SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
10044 #else /*(__BIG_ENDIAN)*/
10045 SET_FLAGS(flags, MODE_BIG_ENDIAN);
10046 #endif
10047 INIT_MODE_FLAGS(bp) = flags;
10048 }
10049
bnx2x_init_bp(struct bnx2x * bp)10050 static int __devinit bnx2x_init_bp(struct bnx2x *bp)
10051 {
10052 int func;
10053 int rc;
10054
10055 mutex_init(&bp->port.phy_mutex);
10056 mutex_init(&bp->fw_mb_mutex);
10057 spin_lock_init(&bp->stats_lock);
10058 #ifdef BCM_CNIC
10059 mutex_init(&bp->cnic_mutex);
10060 #endif
10061
10062 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
10063 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
10064 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
10065 rc = bnx2x_get_hwinfo(bp);
10066 if (rc)
10067 return rc;
10068
10069 bnx2x_set_modes_bitmap(bp);
10070
10071 rc = bnx2x_alloc_mem_bp(bp);
10072 if (rc)
10073 return rc;
10074
10075 bnx2x_read_fwinfo(bp);
10076
10077 func = BP_FUNC(bp);
10078
10079 /* need to reset chip if undi was active */
10080 if (!BP_NOMCP(bp))
10081 bnx2x_undi_unload(bp);
10082
10083 /* init fw_seq after undi_unload! */
10084 if (!BP_NOMCP(bp)) {
10085 bp->fw_seq =
10086 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
10087 DRV_MSG_SEQ_NUMBER_MASK);
10088 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
10089 }
10090
10091 if (CHIP_REV_IS_FPGA(bp))
10092 dev_err(&bp->pdev->dev, "FPGA detected\n");
10093
10094 if (BP_NOMCP(bp) && (func == 0))
10095 dev_err(&bp->pdev->dev, "MCP disabled, "
10096 "must load devices in order!\n");
10097
10098 bp->multi_mode = multi_mode;
10099
10100 bp->disable_tpa = disable_tpa;
10101
10102 #ifdef BCM_CNIC
10103 bp->disable_tpa |= IS_MF_ISCSI_SD(bp);
10104 #endif
10105
10106 /* Set TPA flags */
10107 if (bp->disable_tpa) {
10108 bp->flags &= ~TPA_ENABLE_FLAG;
10109 bp->dev->features &= ~NETIF_F_LRO;
10110 } else {
10111 bp->flags |= TPA_ENABLE_FLAG;
10112 bp->dev->features |= NETIF_F_LRO;
10113 }
10114
10115 if (CHIP_IS_E1(bp))
10116 bp->dropless_fc = 0;
10117 else
10118 bp->dropless_fc = dropless_fc;
10119
10120 bp->mrrs = mrrs;
10121
10122 bp->tx_ring_size = MAX_TX_AVAIL;
10123
10124 /* make sure that the numbers are in the right granularity */
10125 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
10126 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
10127
10128 bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
10129
10130 init_timer(&bp->timer);
10131 bp->timer.expires = jiffies + bp->current_interval;
10132 bp->timer.data = (unsigned long) bp;
10133 bp->timer.function = bnx2x_timer;
10134
10135 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
10136 bnx2x_dcbx_init_params(bp);
10137
10138 #ifdef BCM_CNIC
10139 if (CHIP_IS_E1x(bp))
10140 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
10141 else
10142 bp->cnic_base_cl_id = FP_SB_MAX_E2;
10143 #endif
10144
10145 /* multiple tx priority */
10146 if (CHIP_IS_E1x(bp))
10147 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
10148 if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
10149 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
10150 if (CHIP_IS_E3B0(bp))
10151 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
10152
10153 return rc;
10154 }
10155
10156
10157 /****************************************************************************
10158 * General service functions
10159 ****************************************************************************/
10160
10161 /*
10162 * net_device service functions
10163 */
10164
10165 /* called with rtnl_lock */
bnx2x_open(struct net_device * dev)10166 static int bnx2x_open(struct net_device *dev)
10167 {
10168 struct bnx2x *bp = netdev_priv(dev);
10169 bool global = false;
10170 int other_engine = BP_PATH(bp) ? 0 : 1;
10171 u32 other_load_counter, load_counter;
10172
10173 netif_carrier_off(dev);
10174
10175 bnx2x_set_power_state(bp, PCI_D0);
10176
10177 other_load_counter = bnx2x_get_load_cnt(bp, other_engine);
10178 load_counter = bnx2x_get_load_cnt(bp, BP_PATH(bp));
10179
10180 /*
10181 * If parity had happen during the unload, then attentions
10182 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
10183 * want the first function loaded on the current engine to
10184 * complete the recovery.
10185 */
10186 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
10187 bnx2x_chk_parity_attn(bp, &global, true))
10188 do {
10189 /*
10190 * If there are attentions and they are in a global
10191 * blocks, set the GLOBAL_RESET bit regardless whether
10192 * it will be this function that will complete the
10193 * recovery or not.
10194 */
10195 if (global)
10196 bnx2x_set_reset_global(bp);
10197
10198 /*
10199 * Only the first function on the current engine should
10200 * try to recover in open. In case of attentions in
10201 * global blocks only the first in the chip should try
10202 * to recover.
10203 */
10204 if ((!load_counter &&
10205 (!global || !other_load_counter)) &&
10206 bnx2x_trylock_leader_lock(bp) &&
10207 !bnx2x_leader_reset(bp)) {
10208 netdev_info(bp->dev, "Recovered in open\n");
10209 break;
10210 }
10211
10212 /* recovery has failed... */
10213 bnx2x_set_power_state(bp, PCI_D3hot);
10214 bp->recovery_state = BNX2X_RECOVERY_FAILED;
10215
10216 netdev_err(bp->dev, "Recovery flow hasn't been properly"
10217 " completed yet. Try again later. If u still see this"
10218 " message after a few retries then power cycle is"
10219 " required.\n");
10220
10221 return -EAGAIN;
10222 } while (0);
10223
10224 bp->recovery_state = BNX2X_RECOVERY_DONE;
10225 return bnx2x_nic_load(bp, LOAD_OPEN);
10226 }
10227
10228 /* called with rtnl_lock */
bnx2x_close(struct net_device * dev)10229 int bnx2x_close(struct net_device *dev)
10230 {
10231 struct bnx2x *bp = netdev_priv(dev);
10232
10233 /* Unload the driver, release IRQs */
10234 bnx2x_nic_unload(bp, UNLOAD_CLOSE);
10235
10236 /* Power off */
10237 bnx2x_set_power_state(bp, PCI_D3hot);
10238
10239 return 0;
10240 }
10241
bnx2x_init_mcast_macs_list(struct bnx2x * bp,struct bnx2x_mcast_ramrod_params * p)10242 static inline int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
10243 struct bnx2x_mcast_ramrod_params *p)
10244 {
10245 int mc_count = netdev_mc_count(bp->dev);
10246 struct bnx2x_mcast_list_elem *mc_mac =
10247 kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
10248 struct netdev_hw_addr *ha;
10249
10250 if (!mc_mac)
10251 return -ENOMEM;
10252
10253 INIT_LIST_HEAD(&p->mcast_list);
10254
10255 netdev_for_each_mc_addr(ha, bp->dev) {
10256 mc_mac->mac = bnx2x_mc_addr(ha);
10257 list_add_tail(&mc_mac->link, &p->mcast_list);
10258 mc_mac++;
10259 }
10260
10261 p->mcast_list_len = mc_count;
10262
10263 return 0;
10264 }
10265
bnx2x_free_mcast_macs_list(struct bnx2x_mcast_ramrod_params * p)10266 static inline void bnx2x_free_mcast_macs_list(
10267 struct bnx2x_mcast_ramrod_params *p)
10268 {
10269 struct bnx2x_mcast_list_elem *mc_mac =
10270 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
10271 link);
10272
10273 WARN_ON(!mc_mac);
10274 kfree(mc_mac);
10275 }
10276
10277 /**
10278 * bnx2x_set_uc_list - configure a new unicast MACs list.
10279 *
10280 * @bp: driver handle
10281 *
10282 * We will use zero (0) as a MAC type for these MACs.
10283 */
bnx2x_set_uc_list(struct bnx2x * bp)10284 static inline int bnx2x_set_uc_list(struct bnx2x *bp)
10285 {
10286 int rc;
10287 struct net_device *dev = bp->dev;
10288 struct netdev_hw_addr *ha;
10289 struct bnx2x_vlan_mac_obj *mac_obj = &bp->fp->mac_obj;
10290 unsigned long ramrod_flags = 0;
10291
10292 /* First schedule a cleanup up of old configuration */
10293 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
10294 if (rc < 0) {
10295 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
10296 return rc;
10297 }
10298
10299 netdev_for_each_uc_addr(ha, dev) {
10300 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
10301 BNX2X_UC_LIST_MAC, &ramrod_flags);
10302 if (rc < 0) {
10303 BNX2X_ERR("Failed to schedule ADD operations: %d\n",
10304 rc);
10305 return rc;
10306 }
10307 }
10308
10309 /* Execute the pending commands */
10310 __set_bit(RAMROD_CONT, &ramrod_flags);
10311 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
10312 BNX2X_UC_LIST_MAC, &ramrod_flags);
10313 }
10314
bnx2x_set_mc_list(struct bnx2x * bp)10315 static inline int bnx2x_set_mc_list(struct bnx2x *bp)
10316 {
10317 struct net_device *dev = bp->dev;
10318 struct bnx2x_mcast_ramrod_params rparam = {0};
10319 int rc = 0;
10320
10321 rparam.mcast_obj = &bp->mcast_obj;
10322
10323 /* first, clear all configured multicast MACs */
10324 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
10325 if (rc < 0) {
10326 BNX2X_ERR("Failed to clear multicast "
10327 "configuration: %d\n", rc);
10328 return rc;
10329 }
10330
10331 /* then, configure a new MACs list */
10332 if (netdev_mc_count(dev)) {
10333 rc = bnx2x_init_mcast_macs_list(bp, &rparam);
10334 if (rc) {
10335 BNX2X_ERR("Failed to create multicast MACs "
10336 "list: %d\n", rc);
10337 return rc;
10338 }
10339
10340 /* Now add the new MACs */
10341 rc = bnx2x_config_mcast(bp, &rparam,
10342 BNX2X_MCAST_CMD_ADD);
10343 if (rc < 0)
10344 BNX2X_ERR("Failed to set a new multicast "
10345 "configuration: %d\n", rc);
10346
10347 bnx2x_free_mcast_macs_list(&rparam);
10348 }
10349
10350 return rc;
10351 }
10352
10353
10354 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
bnx2x_set_rx_mode(struct net_device * dev)10355 void bnx2x_set_rx_mode(struct net_device *dev)
10356 {
10357 struct bnx2x *bp = netdev_priv(dev);
10358 u32 rx_mode = BNX2X_RX_MODE_NORMAL;
10359
10360 if (bp->state != BNX2X_STATE_OPEN) {
10361 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
10362 return;
10363 }
10364
10365 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
10366
10367 if (dev->flags & IFF_PROMISC)
10368 rx_mode = BNX2X_RX_MODE_PROMISC;
10369 else if ((dev->flags & IFF_ALLMULTI) ||
10370 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
10371 CHIP_IS_E1(bp)))
10372 rx_mode = BNX2X_RX_MODE_ALLMULTI;
10373 else {
10374 /* some multicasts */
10375 if (bnx2x_set_mc_list(bp) < 0)
10376 rx_mode = BNX2X_RX_MODE_ALLMULTI;
10377
10378 if (bnx2x_set_uc_list(bp) < 0)
10379 rx_mode = BNX2X_RX_MODE_PROMISC;
10380 }
10381
10382 bp->rx_mode = rx_mode;
10383 #ifdef BCM_CNIC
10384 /* handle ISCSI SD mode */
10385 if (IS_MF_ISCSI_SD(bp))
10386 bp->rx_mode = BNX2X_RX_MODE_NONE;
10387 #endif
10388
10389 /* Schedule the rx_mode command */
10390 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
10391 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
10392 return;
10393 }
10394
10395 bnx2x_set_storm_rx_mode(bp);
10396 }
10397
10398 /* called with rtnl_lock */
bnx2x_mdio_read(struct net_device * netdev,int prtad,int devad,u16 addr)10399 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
10400 int devad, u16 addr)
10401 {
10402 struct bnx2x *bp = netdev_priv(netdev);
10403 u16 value;
10404 int rc;
10405
10406 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
10407 prtad, devad, addr);
10408
10409 /* The HW expects different devad if CL22 is used */
10410 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10411
10412 bnx2x_acquire_phy_lock(bp);
10413 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
10414 bnx2x_release_phy_lock(bp);
10415 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
10416
10417 if (!rc)
10418 rc = value;
10419 return rc;
10420 }
10421
10422 /* called with rtnl_lock */
bnx2x_mdio_write(struct net_device * netdev,int prtad,int devad,u16 addr,u16 value)10423 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
10424 u16 addr, u16 value)
10425 {
10426 struct bnx2x *bp = netdev_priv(netdev);
10427 int rc;
10428
10429 DP(NETIF_MSG_LINK, "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x,"
10430 " value 0x%x\n", prtad, devad, addr, value);
10431
10432 /* The HW expects different devad if CL22 is used */
10433 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10434
10435 bnx2x_acquire_phy_lock(bp);
10436 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
10437 bnx2x_release_phy_lock(bp);
10438 return rc;
10439 }
10440
10441 /* called with rtnl_lock */
bnx2x_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)10442 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10443 {
10444 struct bnx2x *bp = netdev_priv(dev);
10445 struct mii_ioctl_data *mdio = if_mii(ifr);
10446
10447 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
10448 mdio->phy_id, mdio->reg_num, mdio->val_in);
10449
10450 if (!netif_running(dev))
10451 return -EAGAIN;
10452
10453 return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
10454 }
10455
10456 #ifdef CONFIG_NET_POLL_CONTROLLER
poll_bnx2x(struct net_device * dev)10457 static void poll_bnx2x(struct net_device *dev)
10458 {
10459 struct bnx2x *bp = netdev_priv(dev);
10460
10461 disable_irq(bp->pdev->irq);
10462 bnx2x_interrupt(bp->pdev->irq, dev);
10463 enable_irq(bp->pdev->irq);
10464 }
10465 #endif
10466
bnx2x_validate_addr(struct net_device * dev)10467 static int bnx2x_validate_addr(struct net_device *dev)
10468 {
10469 struct bnx2x *bp = netdev_priv(dev);
10470
10471 if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr))
10472 return -EADDRNOTAVAIL;
10473 return 0;
10474 }
10475
10476 static const struct net_device_ops bnx2x_netdev_ops = {
10477 .ndo_open = bnx2x_open,
10478 .ndo_stop = bnx2x_close,
10479 .ndo_start_xmit = bnx2x_start_xmit,
10480 .ndo_select_queue = bnx2x_select_queue,
10481 .ndo_set_rx_mode = bnx2x_set_rx_mode,
10482 .ndo_set_mac_address = bnx2x_change_mac_addr,
10483 .ndo_validate_addr = bnx2x_validate_addr,
10484 .ndo_do_ioctl = bnx2x_ioctl,
10485 .ndo_change_mtu = bnx2x_change_mtu,
10486 .ndo_fix_features = bnx2x_fix_features,
10487 .ndo_set_features = bnx2x_set_features,
10488 .ndo_tx_timeout = bnx2x_tx_timeout,
10489 #ifdef CONFIG_NET_POLL_CONTROLLER
10490 .ndo_poll_controller = poll_bnx2x,
10491 #endif
10492 .ndo_setup_tc = bnx2x_setup_tc,
10493
10494 #if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
10495 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn,
10496 #endif
10497 };
10498
bnx2x_set_coherency_mask(struct bnx2x * bp)10499 static inline int bnx2x_set_coherency_mask(struct bnx2x *bp)
10500 {
10501 struct device *dev = &bp->pdev->dev;
10502
10503 if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
10504 bp->flags |= USING_DAC_FLAG;
10505 if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
10506 dev_err(dev, "dma_set_coherent_mask failed, "
10507 "aborting\n");
10508 return -EIO;
10509 }
10510 } else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
10511 dev_err(dev, "System does not support DMA, aborting\n");
10512 return -EIO;
10513 }
10514
10515 return 0;
10516 }
10517
bnx2x_init_dev(struct pci_dev * pdev,struct net_device * dev,unsigned long board_type)10518 static int __devinit bnx2x_init_dev(struct pci_dev *pdev,
10519 struct net_device *dev,
10520 unsigned long board_type)
10521 {
10522 struct bnx2x *bp;
10523 int rc;
10524 bool chip_is_e1x = (board_type == BCM57710 ||
10525 board_type == BCM57711 ||
10526 board_type == BCM57711E);
10527
10528 SET_NETDEV_DEV(dev, &pdev->dev);
10529 bp = netdev_priv(dev);
10530
10531 bp->dev = dev;
10532 bp->pdev = pdev;
10533 bp->flags = 0;
10534 bp->pf_num = PCI_FUNC(pdev->devfn);
10535
10536 rc = pci_enable_device(pdev);
10537 if (rc) {
10538 dev_err(&bp->pdev->dev,
10539 "Cannot enable PCI device, aborting\n");
10540 goto err_out;
10541 }
10542
10543 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
10544 dev_err(&bp->pdev->dev,
10545 "Cannot find PCI device base address, aborting\n");
10546 rc = -ENODEV;
10547 goto err_out_disable;
10548 }
10549
10550 if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
10551 dev_err(&bp->pdev->dev, "Cannot find second PCI device"
10552 " base address, aborting\n");
10553 rc = -ENODEV;
10554 goto err_out_disable;
10555 }
10556
10557 if (atomic_read(&pdev->enable_cnt) == 1) {
10558 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
10559 if (rc) {
10560 dev_err(&bp->pdev->dev,
10561 "Cannot obtain PCI resources, aborting\n");
10562 goto err_out_disable;
10563 }
10564
10565 pci_set_master(pdev);
10566 pci_save_state(pdev);
10567 }
10568
10569 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
10570 if (bp->pm_cap == 0) {
10571 dev_err(&bp->pdev->dev,
10572 "Cannot find power management capability, aborting\n");
10573 rc = -EIO;
10574 goto err_out_release;
10575 }
10576
10577 if (!pci_is_pcie(pdev)) {
10578 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
10579 rc = -EIO;
10580 goto err_out_release;
10581 }
10582
10583 rc = bnx2x_set_coherency_mask(bp);
10584 if (rc)
10585 goto err_out_release;
10586
10587 dev->mem_start = pci_resource_start(pdev, 0);
10588 dev->base_addr = dev->mem_start;
10589 dev->mem_end = pci_resource_end(pdev, 0);
10590
10591 dev->irq = pdev->irq;
10592
10593 bp->regview = pci_ioremap_bar(pdev, 0);
10594 if (!bp->regview) {
10595 dev_err(&bp->pdev->dev,
10596 "Cannot map register space, aborting\n");
10597 rc = -ENOMEM;
10598 goto err_out_release;
10599 }
10600
10601 bnx2x_set_power_state(bp, PCI_D0);
10602
10603 /* clean indirect addresses */
10604 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
10605 PCICFG_VENDOR_ID_OFFSET);
10606 /*
10607 * Clean the following indirect addresses for all functions since it
10608 * is not used by the driver.
10609 */
10610 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
10611 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
10612 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
10613 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
10614
10615 if (chip_is_e1x) {
10616 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
10617 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
10618 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
10619 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
10620 }
10621
10622 /*
10623 * Enable internal target-read (in case we are probed after PF FLR).
10624 * Must be done prior to any BAR read access. Only for 57712 and up
10625 */
10626 if (!chip_is_e1x)
10627 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
10628
10629 /* Reset the load counter */
10630 bnx2x_clear_load_cnt(bp);
10631
10632 dev->watchdog_timeo = TX_TIMEOUT;
10633
10634 dev->netdev_ops = &bnx2x_netdev_ops;
10635 bnx2x_set_ethtool_ops(dev);
10636
10637 dev->priv_flags |= IFF_UNICAST_FLT;
10638
10639 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10640 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_LRO |
10641 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX;
10642
10643 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10644 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
10645
10646 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
10647 if (bp->flags & USING_DAC_FLAG)
10648 dev->features |= NETIF_F_HIGHDMA;
10649
10650 /* Add Loopback capability to the device */
10651 dev->hw_features |= NETIF_F_LOOPBACK;
10652
10653 #ifdef BCM_DCBNL
10654 dev->dcbnl_ops = &bnx2x_dcbnl_ops;
10655 #endif
10656
10657 /* get_port_hwinfo() will set prtad and mmds properly */
10658 bp->mdio.prtad = MDIO_PRTAD_NONE;
10659 bp->mdio.mmds = 0;
10660 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
10661 bp->mdio.dev = dev;
10662 bp->mdio.mdio_read = bnx2x_mdio_read;
10663 bp->mdio.mdio_write = bnx2x_mdio_write;
10664
10665 return 0;
10666
10667 err_out_release:
10668 if (atomic_read(&pdev->enable_cnt) == 1)
10669 pci_release_regions(pdev);
10670
10671 err_out_disable:
10672 pci_disable_device(pdev);
10673 pci_set_drvdata(pdev, NULL);
10674
10675 err_out:
10676 return rc;
10677 }
10678
bnx2x_get_pcie_width_speed(struct bnx2x * bp,int * width,int * speed)10679 static void __devinit bnx2x_get_pcie_width_speed(struct bnx2x *bp,
10680 int *width, int *speed)
10681 {
10682 u32 val = REG_RD(bp, PCICFG_OFFSET + PCICFG_LINK_CONTROL);
10683
10684 *width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
10685
10686 /* return value of 1=2.5GHz 2=5GHz */
10687 *speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
10688 }
10689
bnx2x_check_firmware(struct bnx2x * bp)10690 static int bnx2x_check_firmware(struct bnx2x *bp)
10691 {
10692 const struct firmware *firmware = bp->firmware;
10693 struct bnx2x_fw_file_hdr *fw_hdr;
10694 struct bnx2x_fw_file_section *sections;
10695 u32 offset, len, num_ops;
10696 u16 *ops_offsets;
10697 int i;
10698 const u8 *fw_ver;
10699
10700 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr))
10701 return -EINVAL;
10702
10703 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
10704 sections = (struct bnx2x_fw_file_section *)fw_hdr;
10705
10706 /* Make sure none of the offsets and sizes make us read beyond
10707 * the end of the firmware data */
10708 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
10709 offset = be32_to_cpu(sections[i].offset);
10710 len = be32_to_cpu(sections[i].len);
10711 if (offset + len > firmware->size) {
10712 dev_err(&bp->pdev->dev,
10713 "Section %d length is out of bounds\n", i);
10714 return -EINVAL;
10715 }
10716 }
10717
10718 /* Likewise for the init_ops offsets */
10719 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
10720 ops_offsets = (u16 *)(firmware->data + offset);
10721 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
10722
10723 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
10724 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
10725 dev_err(&bp->pdev->dev,
10726 "Section offset %d is out of bounds\n", i);
10727 return -EINVAL;
10728 }
10729 }
10730
10731 /* Check FW version */
10732 offset = be32_to_cpu(fw_hdr->fw_version.offset);
10733 fw_ver = firmware->data + offset;
10734 if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
10735 (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
10736 (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
10737 (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
10738 dev_err(&bp->pdev->dev,
10739 "Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
10740 fw_ver[0], fw_ver[1], fw_ver[2],
10741 fw_ver[3], BCM_5710_FW_MAJOR_VERSION,
10742 BCM_5710_FW_MINOR_VERSION,
10743 BCM_5710_FW_REVISION_VERSION,
10744 BCM_5710_FW_ENGINEERING_VERSION);
10745 return -EINVAL;
10746 }
10747
10748 return 0;
10749 }
10750
be32_to_cpu_n(const u8 * _source,u8 * _target,u32 n)10751 static inline void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10752 {
10753 const __be32 *source = (const __be32 *)_source;
10754 u32 *target = (u32 *)_target;
10755 u32 i;
10756
10757 for (i = 0; i < n/4; i++)
10758 target[i] = be32_to_cpu(source[i]);
10759 }
10760
10761 /*
10762 Ops array is stored in the following format:
10763 {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
10764 */
bnx2x_prep_ops(const u8 * _source,u8 * _target,u32 n)10765 static inline void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
10766 {
10767 const __be32 *source = (const __be32 *)_source;
10768 struct raw_op *target = (struct raw_op *)_target;
10769 u32 i, j, tmp;
10770
10771 for (i = 0, j = 0; i < n/8; i++, j += 2) {
10772 tmp = be32_to_cpu(source[j]);
10773 target[i].op = (tmp >> 24) & 0xff;
10774 target[i].offset = tmp & 0xffffff;
10775 target[i].raw_data = be32_to_cpu(source[j + 1]);
10776 }
10777 }
10778
10779 /**
10780 * IRO array is stored in the following format:
10781 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
10782 */
bnx2x_prep_iro(const u8 * _source,u8 * _target,u32 n)10783 static inline void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
10784 {
10785 const __be32 *source = (const __be32 *)_source;
10786 struct iro *target = (struct iro *)_target;
10787 u32 i, j, tmp;
10788
10789 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
10790 target[i].base = be32_to_cpu(source[j]);
10791 j++;
10792 tmp = be32_to_cpu(source[j]);
10793 target[i].m1 = (tmp >> 16) & 0xffff;
10794 target[i].m2 = tmp & 0xffff;
10795 j++;
10796 tmp = be32_to_cpu(source[j]);
10797 target[i].m3 = (tmp >> 16) & 0xffff;
10798 target[i].size = tmp & 0xffff;
10799 j++;
10800 }
10801 }
10802
be16_to_cpu_n(const u8 * _source,u8 * _target,u32 n)10803 static inline void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10804 {
10805 const __be16 *source = (const __be16 *)_source;
10806 u16 *target = (u16 *)_target;
10807 u32 i;
10808
10809 for (i = 0; i < n/2; i++)
10810 target[i] = be16_to_cpu(source[i]);
10811 }
10812
10813 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \
10814 do { \
10815 u32 len = be32_to_cpu(fw_hdr->arr.len); \
10816 bp->arr = kmalloc(len, GFP_KERNEL); \
10817 if (!bp->arr) { \
10818 pr_err("Failed to allocate %d bytes for "#arr"\n", len); \
10819 goto lbl; \
10820 } \
10821 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \
10822 (u8 *)bp->arr, len); \
10823 } while (0)
10824
bnx2x_init_firmware(struct bnx2x * bp)10825 int bnx2x_init_firmware(struct bnx2x *bp)
10826 {
10827 const char *fw_file_name;
10828 struct bnx2x_fw_file_hdr *fw_hdr;
10829 int rc;
10830
10831 if (bp->firmware)
10832 return 0;
10833
10834 if (CHIP_IS_E1(bp))
10835 fw_file_name = FW_FILE_NAME_E1;
10836 else if (CHIP_IS_E1H(bp))
10837 fw_file_name = FW_FILE_NAME_E1H;
10838 else if (!CHIP_IS_E1x(bp))
10839 fw_file_name = FW_FILE_NAME_E2;
10840 else {
10841 BNX2X_ERR("Unsupported chip revision\n");
10842 return -EINVAL;
10843 }
10844 BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
10845
10846 rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
10847 if (rc) {
10848 BNX2X_ERR("Can't load firmware file %s\n",
10849 fw_file_name);
10850 goto request_firmware_exit;
10851 }
10852
10853 rc = bnx2x_check_firmware(bp);
10854 if (rc) {
10855 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
10856 goto request_firmware_exit;
10857 }
10858
10859 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
10860
10861 /* Initialize the pointers to the init arrays */
10862 /* Blob */
10863 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
10864
10865 /* Opcodes */
10866 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
10867
10868 /* Offsets */
10869 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
10870 be16_to_cpu_n);
10871
10872 /* STORMs firmware */
10873 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10874 be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
10875 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data +
10876 be32_to_cpu(fw_hdr->tsem_pram_data.offset);
10877 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10878 be32_to_cpu(fw_hdr->usem_int_table_data.offset);
10879 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data +
10880 be32_to_cpu(fw_hdr->usem_pram_data.offset);
10881 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10882 be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
10883 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data +
10884 be32_to_cpu(fw_hdr->xsem_pram_data.offset);
10885 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10886 be32_to_cpu(fw_hdr->csem_int_table_data.offset);
10887 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data +
10888 be32_to_cpu(fw_hdr->csem_pram_data.offset);
10889 /* IRO */
10890 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
10891
10892 return 0;
10893
10894 iro_alloc_err:
10895 kfree(bp->init_ops_offsets);
10896 init_offsets_alloc_err:
10897 kfree(bp->init_ops);
10898 init_ops_alloc_err:
10899 kfree(bp->init_data);
10900 request_firmware_exit:
10901 release_firmware(bp->firmware);
10902 bp->firmware = NULL;
10903
10904 return rc;
10905 }
10906
bnx2x_release_firmware(struct bnx2x * bp)10907 static void bnx2x_release_firmware(struct bnx2x *bp)
10908 {
10909 kfree(bp->init_ops_offsets);
10910 kfree(bp->init_ops);
10911 kfree(bp->init_data);
10912 release_firmware(bp->firmware);
10913 bp->firmware = NULL;
10914 }
10915
10916
10917 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
10918 .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
10919 .init_hw_cmn = bnx2x_init_hw_common,
10920 .init_hw_port = bnx2x_init_hw_port,
10921 .init_hw_func = bnx2x_init_hw_func,
10922
10923 .reset_hw_cmn = bnx2x_reset_common,
10924 .reset_hw_port = bnx2x_reset_port,
10925 .reset_hw_func = bnx2x_reset_func,
10926
10927 .gunzip_init = bnx2x_gunzip_init,
10928 .gunzip_end = bnx2x_gunzip_end,
10929
10930 .init_fw = bnx2x_init_firmware,
10931 .release_fw = bnx2x_release_firmware,
10932 };
10933
bnx2x__init_func_obj(struct bnx2x * bp)10934 void bnx2x__init_func_obj(struct bnx2x *bp)
10935 {
10936 /* Prepare DMAE related driver resources */
10937 bnx2x_setup_dmae(bp);
10938
10939 bnx2x_init_func_obj(bp, &bp->func_obj,
10940 bnx2x_sp(bp, func_rdata),
10941 bnx2x_sp_mapping(bp, func_rdata),
10942 &bnx2x_func_sp_drv);
10943 }
10944
10945 /* must be called after sriov-enable */
bnx2x_set_qm_cid_count(struct bnx2x * bp)10946 static inline int bnx2x_set_qm_cid_count(struct bnx2x *bp)
10947 {
10948 int cid_count = BNX2X_L2_CID_COUNT(bp);
10949
10950 #ifdef BCM_CNIC
10951 cid_count += CNIC_CID_MAX;
10952 #endif
10953 return roundup(cid_count, QM_CID_ROUND);
10954 }
10955
10956 /**
10957 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
10958 *
10959 * @dev: pci device
10960 *
10961 */
bnx2x_get_num_non_def_sbs(struct pci_dev * pdev)10962 static inline int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev)
10963 {
10964 int pos;
10965 u16 control;
10966
10967 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
10968
10969 /*
10970 * If MSI-X is not supported - return number of SBs needed to support
10971 * one fast path queue: one FP queue + SB for CNIC
10972 */
10973 if (!pos)
10974 return 1 + CNIC_PRESENT;
10975
10976 /*
10977 * The value in the PCI configuration space is the index of the last
10978 * entry, namely one less than the actual size of the table, which is
10979 * exactly what we want to return from this function: number of all SBs
10980 * without the default SB.
10981 */
10982 pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &control);
10983 return control & PCI_MSIX_FLAGS_QSIZE;
10984 }
10985
bnx2x_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)10986 static int __devinit bnx2x_init_one(struct pci_dev *pdev,
10987 const struct pci_device_id *ent)
10988 {
10989 struct net_device *dev = NULL;
10990 struct bnx2x *bp;
10991 int pcie_width, pcie_speed;
10992 int rc, max_non_def_sbs;
10993 int rx_count, tx_count, rss_count;
10994 /*
10995 * An estimated maximum supported CoS number according to the chip
10996 * version.
10997 * We will try to roughly estimate the maximum number of CoSes this chip
10998 * may support in order to minimize the memory allocated for Tx
10999 * netdev_queue's. This number will be accurately calculated during the
11000 * initialization of bp->max_cos based on the chip versions AND chip
11001 * revision in the bnx2x_init_bp().
11002 */
11003 u8 max_cos_est = 0;
11004
11005 switch (ent->driver_data) {
11006 case BCM57710:
11007 case BCM57711:
11008 case BCM57711E:
11009 max_cos_est = BNX2X_MULTI_TX_COS_E1X;
11010 break;
11011
11012 case BCM57712:
11013 case BCM57712_MF:
11014 max_cos_est = BNX2X_MULTI_TX_COS_E2_E3A0;
11015 break;
11016
11017 case BCM57800:
11018 case BCM57800_MF:
11019 case BCM57810:
11020 case BCM57810_MF:
11021 case BCM57840:
11022 case BCM57840_MF:
11023 max_cos_est = BNX2X_MULTI_TX_COS_E3B0;
11024 break;
11025
11026 default:
11027 pr_err("Unknown board_type (%ld), aborting\n",
11028 ent->driver_data);
11029 return -ENODEV;
11030 }
11031
11032 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev);
11033
11034 /* !!! FIXME !!!
11035 * Do not allow the maximum SB count to grow above 16
11036 * since Special CIDs starts from 16*BNX2X_MULTI_TX_COS=48.
11037 * We will use the FP_SB_MAX_E1x macro for this matter.
11038 */
11039 max_non_def_sbs = min_t(int, FP_SB_MAX_E1x, max_non_def_sbs);
11040
11041 WARN_ON(!max_non_def_sbs);
11042
11043 /* Maximum number of RSS queues: one IGU SB goes to CNIC */
11044 rss_count = max_non_def_sbs - CNIC_PRESENT;
11045
11046 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
11047 rx_count = rss_count + FCOE_PRESENT;
11048
11049 /*
11050 * Maximum number of netdev Tx queues:
11051 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2
11052 */
11053 tx_count = MAX_TXQS_PER_COS * max_cos_est + FCOE_PRESENT;
11054
11055 /* dev zeroed in init_etherdev */
11056 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
11057 if (!dev) {
11058 dev_err(&pdev->dev, "Cannot allocate net device\n");
11059 return -ENOMEM;
11060 }
11061
11062 bp = netdev_priv(dev);
11063
11064 DP(NETIF_MSG_DRV, "Allocated netdev with %d tx and %d rx queues\n",
11065 tx_count, rx_count);
11066
11067 bp->igu_sb_cnt = max_non_def_sbs;
11068 bp->msg_enable = debug;
11069 pci_set_drvdata(pdev, dev);
11070
11071 rc = bnx2x_init_dev(pdev, dev, ent->driver_data);
11072 if (rc < 0) {
11073 free_netdev(dev);
11074 return rc;
11075 }
11076
11077 DP(NETIF_MSG_DRV, "max_non_def_sbs %d\n", max_non_def_sbs);
11078
11079 rc = bnx2x_init_bp(bp);
11080 if (rc)
11081 goto init_one_exit;
11082
11083 /*
11084 * Map doorbels here as we need the real value of bp->max_cos which
11085 * is initialized in bnx2x_init_bp().
11086 */
11087 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
11088 min_t(u64, BNX2X_DB_SIZE(bp),
11089 pci_resource_len(pdev, 2)));
11090 if (!bp->doorbells) {
11091 dev_err(&bp->pdev->dev,
11092 "Cannot map doorbell space, aborting\n");
11093 rc = -ENOMEM;
11094 goto init_one_exit;
11095 }
11096
11097 /* calc qm_cid_count */
11098 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
11099
11100 #ifdef BCM_CNIC
11101 /* disable FCOE L2 queue for E1x */
11102 if (CHIP_IS_E1x(bp))
11103 bp->flags |= NO_FCOE_FLAG;
11104
11105 #endif
11106
11107 /* Configure interrupt mode: try to enable MSI-X/MSI if
11108 * needed, set bp->num_queues appropriately.
11109 */
11110 bnx2x_set_int_mode(bp);
11111
11112 /* Add all NAPI objects */
11113 bnx2x_add_all_napi(bp);
11114
11115 rc = register_netdev(dev);
11116 if (rc) {
11117 dev_err(&pdev->dev, "Cannot register net device\n");
11118 goto init_one_exit;
11119 }
11120
11121 #ifdef BCM_CNIC
11122 if (!NO_FCOE(bp)) {
11123 /* Add storage MAC address */
11124 rtnl_lock();
11125 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11126 rtnl_unlock();
11127 }
11128 #endif
11129
11130 bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
11131
11132 netdev_info(dev, "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
11133 board_info[ent->driver_data].name,
11134 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
11135 pcie_width,
11136 ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
11137 (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
11138 "5GHz (Gen2)" : "2.5GHz",
11139 dev->base_addr, bp->pdev->irq, dev->dev_addr);
11140
11141 return 0;
11142
11143 init_one_exit:
11144 if (bp->regview)
11145 iounmap(bp->regview);
11146
11147 if (bp->doorbells)
11148 iounmap(bp->doorbells);
11149
11150 free_netdev(dev);
11151
11152 if (atomic_read(&pdev->enable_cnt) == 1)
11153 pci_release_regions(pdev);
11154
11155 pci_disable_device(pdev);
11156 pci_set_drvdata(pdev, NULL);
11157
11158 return rc;
11159 }
11160
bnx2x_remove_one(struct pci_dev * pdev)11161 static void __devexit bnx2x_remove_one(struct pci_dev *pdev)
11162 {
11163 struct net_device *dev = pci_get_drvdata(pdev);
11164 struct bnx2x *bp;
11165
11166 if (!dev) {
11167 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
11168 return;
11169 }
11170 bp = netdev_priv(dev);
11171
11172 #ifdef BCM_CNIC
11173 /* Delete storage MAC address */
11174 if (!NO_FCOE(bp)) {
11175 rtnl_lock();
11176 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11177 rtnl_unlock();
11178 }
11179 #endif
11180
11181 #ifdef BCM_DCBNL
11182 /* Delete app tlvs from dcbnl */
11183 bnx2x_dcbnl_update_applist(bp, true);
11184 #endif
11185
11186 unregister_netdev(dev);
11187
11188 /* Delete all NAPI objects */
11189 bnx2x_del_all_napi(bp);
11190
11191 /* Power on: we can't let PCI layer write to us while we are in D3 */
11192 bnx2x_set_power_state(bp, PCI_D0);
11193
11194 /* Disable MSI/MSI-X */
11195 bnx2x_disable_msi(bp);
11196
11197 /* Power off */
11198 bnx2x_set_power_state(bp, PCI_D3hot);
11199
11200 /* Make sure RESET task is not scheduled before continuing */
11201 cancel_delayed_work_sync(&bp->sp_rtnl_task);
11202
11203 if (bp->regview)
11204 iounmap(bp->regview);
11205
11206 if (bp->doorbells)
11207 iounmap(bp->doorbells);
11208
11209 bnx2x_release_firmware(bp);
11210
11211 bnx2x_free_mem_bp(bp);
11212
11213 free_netdev(dev);
11214
11215 if (atomic_read(&pdev->enable_cnt) == 1)
11216 pci_release_regions(pdev);
11217
11218 pci_disable_device(pdev);
11219 pci_set_drvdata(pdev, NULL);
11220 }
11221
bnx2x_eeh_nic_unload(struct bnx2x * bp)11222 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
11223 {
11224 int i;
11225
11226 bp->state = BNX2X_STATE_ERROR;
11227
11228 bp->rx_mode = BNX2X_RX_MODE_NONE;
11229
11230 #ifdef BCM_CNIC
11231 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
11232 #endif
11233 /* Stop Tx */
11234 bnx2x_tx_disable(bp);
11235
11236 bnx2x_netif_stop(bp, 0);
11237
11238 del_timer_sync(&bp->timer);
11239
11240 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
11241
11242 /* Release IRQs */
11243 bnx2x_free_irq(bp);
11244
11245 /* Free SKBs, SGEs, TPA pool and driver internals */
11246 bnx2x_free_skbs(bp);
11247
11248 for_each_rx_queue(bp, i)
11249 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
11250
11251 bnx2x_free_mem(bp);
11252
11253 bp->state = BNX2X_STATE_CLOSED;
11254
11255 netif_carrier_off(bp->dev);
11256
11257 return 0;
11258 }
11259
bnx2x_eeh_recover(struct bnx2x * bp)11260 static void bnx2x_eeh_recover(struct bnx2x *bp)
11261 {
11262 u32 val;
11263
11264 mutex_init(&bp->port.phy_mutex);
11265
11266 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
11267 bp->link_params.shmem_base = bp->common.shmem_base;
11268 BNX2X_DEV_INFO("shmem offset is 0x%x\n", bp->common.shmem_base);
11269
11270 if (!bp->common.shmem_base ||
11271 (bp->common.shmem_base < 0xA0000) ||
11272 (bp->common.shmem_base >= 0xC0000)) {
11273 BNX2X_DEV_INFO("MCP not active\n");
11274 bp->flags |= NO_MCP_FLAG;
11275 return;
11276 }
11277
11278 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
11279 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11280 != (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11281 BNX2X_ERR("BAD MCP validity signature\n");
11282
11283 if (!BP_NOMCP(bp)) {
11284 bp->fw_seq =
11285 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11286 DRV_MSG_SEQ_NUMBER_MASK);
11287 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11288 }
11289 }
11290
11291 /**
11292 * bnx2x_io_error_detected - called when PCI error is detected
11293 * @pdev: Pointer to PCI device
11294 * @state: The current pci connection state
11295 *
11296 * This function is called after a PCI bus error affecting
11297 * this device has been detected.
11298 */
bnx2x_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)11299 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
11300 pci_channel_state_t state)
11301 {
11302 struct net_device *dev = pci_get_drvdata(pdev);
11303 struct bnx2x *bp = netdev_priv(dev);
11304
11305 rtnl_lock();
11306
11307 netif_device_detach(dev);
11308
11309 if (state == pci_channel_io_perm_failure) {
11310 rtnl_unlock();
11311 return PCI_ERS_RESULT_DISCONNECT;
11312 }
11313
11314 if (netif_running(dev))
11315 bnx2x_eeh_nic_unload(bp);
11316
11317 pci_disable_device(pdev);
11318
11319 rtnl_unlock();
11320
11321 /* Request a slot reset */
11322 return PCI_ERS_RESULT_NEED_RESET;
11323 }
11324
11325 /**
11326 * bnx2x_io_slot_reset - called after the PCI bus has been reset
11327 * @pdev: Pointer to PCI device
11328 *
11329 * Restart the card from scratch, as if from a cold-boot.
11330 */
bnx2x_io_slot_reset(struct pci_dev * pdev)11331 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
11332 {
11333 struct net_device *dev = pci_get_drvdata(pdev);
11334 struct bnx2x *bp = netdev_priv(dev);
11335
11336 rtnl_lock();
11337
11338 if (pci_enable_device(pdev)) {
11339 dev_err(&pdev->dev,
11340 "Cannot re-enable PCI device after reset\n");
11341 rtnl_unlock();
11342 return PCI_ERS_RESULT_DISCONNECT;
11343 }
11344
11345 pci_set_master(pdev);
11346 pci_restore_state(pdev);
11347
11348 if (netif_running(dev))
11349 bnx2x_set_power_state(bp, PCI_D0);
11350
11351 rtnl_unlock();
11352
11353 return PCI_ERS_RESULT_RECOVERED;
11354 }
11355
11356 /**
11357 * bnx2x_io_resume - called when traffic can start flowing again
11358 * @pdev: Pointer to PCI device
11359 *
11360 * This callback is called when the error recovery driver tells us that
11361 * its OK to resume normal operation.
11362 */
bnx2x_io_resume(struct pci_dev * pdev)11363 static void bnx2x_io_resume(struct pci_dev *pdev)
11364 {
11365 struct net_device *dev = pci_get_drvdata(pdev);
11366 struct bnx2x *bp = netdev_priv(dev);
11367
11368 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
11369 netdev_err(bp->dev, "Handling parity error recovery. "
11370 "Try again later\n");
11371 return;
11372 }
11373
11374 rtnl_lock();
11375
11376 bnx2x_eeh_recover(bp);
11377
11378 if (netif_running(dev))
11379 bnx2x_nic_load(bp, LOAD_NORMAL);
11380
11381 netif_device_attach(dev);
11382
11383 rtnl_unlock();
11384 }
11385
11386 static struct pci_error_handlers bnx2x_err_handler = {
11387 .error_detected = bnx2x_io_error_detected,
11388 .slot_reset = bnx2x_io_slot_reset,
11389 .resume = bnx2x_io_resume,
11390 };
11391
11392 static struct pci_driver bnx2x_pci_driver = {
11393 .name = DRV_MODULE_NAME,
11394 .id_table = bnx2x_pci_tbl,
11395 .probe = bnx2x_init_one,
11396 .remove = __devexit_p(bnx2x_remove_one),
11397 .suspend = bnx2x_suspend,
11398 .resume = bnx2x_resume,
11399 .err_handler = &bnx2x_err_handler,
11400 };
11401
bnx2x_init(void)11402 static int __init bnx2x_init(void)
11403 {
11404 int ret;
11405
11406 pr_info("%s", version);
11407
11408 bnx2x_wq = create_singlethread_workqueue("bnx2x");
11409 if (bnx2x_wq == NULL) {
11410 pr_err("Cannot create workqueue\n");
11411 return -ENOMEM;
11412 }
11413
11414 ret = pci_register_driver(&bnx2x_pci_driver);
11415 if (ret) {
11416 pr_err("Cannot register driver\n");
11417 destroy_workqueue(bnx2x_wq);
11418 }
11419 return ret;
11420 }
11421
bnx2x_cleanup(void)11422 static void __exit bnx2x_cleanup(void)
11423 {
11424 pci_unregister_driver(&bnx2x_pci_driver);
11425
11426 destroy_workqueue(bnx2x_wq);
11427 }
11428
bnx2x_notify_link_changed(struct bnx2x * bp)11429 void bnx2x_notify_link_changed(struct bnx2x *bp)
11430 {
11431 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
11432 }
11433
11434 module_init(bnx2x_init);
11435 module_exit(bnx2x_cleanup);
11436
11437 #ifdef BCM_CNIC
11438 /**
11439 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
11440 *
11441 * @bp: driver handle
11442 * @set: set or clear the CAM entry
11443 *
11444 * This function will wait until the ramdord completion returns.
11445 * Return 0 if success, -ENODEV if ramrod doesn't return.
11446 */
bnx2x_set_iscsi_eth_mac_addr(struct bnx2x * bp)11447 static inline int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
11448 {
11449 unsigned long ramrod_flags = 0;
11450
11451 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11452 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
11453 &bp->iscsi_l2_mac_obj, true,
11454 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
11455 }
11456
11457 /* count denotes the number of new completions we have seen */
bnx2x_cnic_sp_post(struct bnx2x * bp,int count)11458 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
11459 {
11460 struct eth_spe *spe;
11461
11462 #ifdef BNX2X_STOP_ON_ERROR
11463 if (unlikely(bp->panic))
11464 return;
11465 #endif
11466
11467 spin_lock_bh(&bp->spq_lock);
11468 BUG_ON(bp->cnic_spq_pending < count);
11469 bp->cnic_spq_pending -= count;
11470
11471
11472 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
11473 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
11474 & SPE_HDR_CONN_TYPE) >>
11475 SPE_HDR_CONN_TYPE_SHIFT;
11476 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
11477 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
11478
11479 /* Set validation for iSCSI L2 client before sending SETUP
11480 * ramrod
11481 */
11482 if (type == ETH_CONNECTION_TYPE) {
11483 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP)
11484 bnx2x_set_ctx_validation(bp, &bp->context.
11485 vcxt[BNX2X_ISCSI_ETH_CID].eth,
11486 BNX2X_ISCSI_ETH_CID);
11487 }
11488
11489 /*
11490 * There may be not more than 8 L2, not more than 8 L5 SPEs
11491 * and in the air. We also check that number of outstanding
11492 * COMMON ramrods is not more than the EQ and SPQ can
11493 * accommodate.
11494 */
11495 if (type == ETH_CONNECTION_TYPE) {
11496 if (!atomic_read(&bp->cq_spq_left))
11497 break;
11498 else
11499 atomic_dec(&bp->cq_spq_left);
11500 } else if (type == NONE_CONNECTION_TYPE) {
11501 if (!atomic_read(&bp->eq_spq_left))
11502 break;
11503 else
11504 atomic_dec(&bp->eq_spq_left);
11505 } else if ((type == ISCSI_CONNECTION_TYPE) ||
11506 (type == FCOE_CONNECTION_TYPE)) {
11507 if (bp->cnic_spq_pending >=
11508 bp->cnic_eth_dev.max_kwqe_pending)
11509 break;
11510 else
11511 bp->cnic_spq_pending++;
11512 } else {
11513 BNX2X_ERR("Unknown SPE type: %d\n", type);
11514 bnx2x_panic();
11515 break;
11516 }
11517
11518 spe = bnx2x_sp_get_next(bp);
11519 *spe = *bp->cnic_kwq_cons;
11520
11521 DP(NETIF_MSG_TIMER, "pending on SPQ %d, on KWQ %d count %d\n",
11522 bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
11523
11524 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
11525 bp->cnic_kwq_cons = bp->cnic_kwq;
11526 else
11527 bp->cnic_kwq_cons++;
11528 }
11529 bnx2x_sp_prod_update(bp);
11530 spin_unlock_bh(&bp->spq_lock);
11531 }
11532
bnx2x_cnic_sp_queue(struct net_device * dev,struct kwqe_16 * kwqes[],u32 count)11533 static int bnx2x_cnic_sp_queue(struct net_device *dev,
11534 struct kwqe_16 *kwqes[], u32 count)
11535 {
11536 struct bnx2x *bp = netdev_priv(dev);
11537 int i;
11538
11539 #ifdef BNX2X_STOP_ON_ERROR
11540 if (unlikely(bp->panic))
11541 return -EIO;
11542 #endif
11543
11544 spin_lock_bh(&bp->spq_lock);
11545
11546 for (i = 0; i < count; i++) {
11547 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
11548
11549 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
11550 break;
11551
11552 *bp->cnic_kwq_prod = *spe;
11553
11554 bp->cnic_kwq_pending++;
11555
11556 DP(NETIF_MSG_TIMER, "L5 SPQE %x %x %x:%x pos %d\n",
11557 spe->hdr.conn_and_cmd_data, spe->hdr.type,
11558 spe->data.update_data_addr.hi,
11559 spe->data.update_data_addr.lo,
11560 bp->cnic_kwq_pending);
11561
11562 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
11563 bp->cnic_kwq_prod = bp->cnic_kwq;
11564 else
11565 bp->cnic_kwq_prod++;
11566 }
11567
11568 spin_unlock_bh(&bp->spq_lock);
11569
11570 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
11571 bnx2x_cnic_sp_post(bp, 0);
11572
11573 return i;
11574 }
11575
bnx2x_cnic_ctl_send(struct bnx2x * bp,struct cnic_ctl_info * ctl)11576 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11577 {
11578 struct cnic_ops *c_ops;
11579 int rc = 0;
11580
11581 mutex_lock(&bp->cnic_mutex);
11582 c_ops = rcu_dereference_protected(bp->cnic_ops,
11583 lockdep_is_held(&bp->cnic_mutex));
11584 if (c_ops)
11585 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11586 mutex_unlock(&bp->cnic_mutex);
11587
11588 return rc;
11589 }
11590
bnx2x_cnic_ctl_send_bh(struct bnx2x * bp,struct cnic_ctl_info * ctl)11591 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11592 {
11593 struct cnic_ops *c_ops;
11594 int rc = 0;
11595
11596 rcu_read_lock();
11597 c_ops = rcu_dereference(bp->cnic_ops);
11598 if (c_ops)
11599 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11600 rcu_read_unlock();
11601
11602 return rc;
11603 }
11604
11605 /*
11606 * for commands that have no data
11607 */
bnx2x_cnic_notify(struct bnx2x * bp,int cmd)11608 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
11609 {
11610 struct cnic_ctl_info ctl = {0};
11611
11612 ctl.cmd = cmd;
11613
11614 return bnx2x_cnic_ctl_send(bp, &ctl);
11615 }
11616
bnx2x_cnic_cfc_comp(struct bnx2x * bp,int cid,u8 err)11617 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
11618 {
11619 struct cnic_ctl_info ctl = {0};
11620
11621 /* first we tell CNIC and only then we count this as a completion */
11622 ctl.cmd = CNIC_CTL_COMPLETION_CMD;
11623 ctl.data.comp.cid = cid;
11624 ctl.data.comp.error = err;
11625
11626 bnx2x_cnic_ctl_send_bh(bp, &ctl);
11627 bnx2x_cnic_sp_post(bp, 0);
11628 }
11629
11630
11631 /* Called with netif_addr_lock_bh() taken.
11632 * Sets an rx_mode config for an iSCSI ETH client.
11633 * Doesn't block.
11634 * Completion should be checked outside.
11635 */
bnx2x_set_iscsi_eth_rx_mode(struct bnx2x * bp,bool start)11636 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
11637 {
11638 unsigned long accept_flags = 0, ramrod_flags = 0;
11639 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11640 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
11641
11642 if (start) {
11643 /* Start accepting on iSCSI L2 ring. Accept all multicasts
11644 * because it's the only way for UIO Queue to accept
11645 * multicasts (in non-promiscuous mode only one Queue per
11646 * function will receive multicast packets (leading in our
11647 * case).
11648 */
11649 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
11650 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
11651 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
11652 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
11653
11654 /* Clear STOP_PENDING bit if START is requested */
11655 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
11656
11657 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
11658 } else
11659 /* Clear START_PENDING bit if STOP is requested */
11660 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
11661
11662 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
11663 set_bit(sched_state, &bp->sp_state);
11664 else {
11665 __set_bit(RAMROD_RX, &ramrod_flags);
11666 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
11667 ramrod_flags);
11668 }
11669 }
11670
11671
bnx2x_drv_ctl(struct net_device * dev,struct drv_ctl_info * ctl)11672 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
11673 {
11674 struct bnx2x *bp = netdev_priv(dev);
11675 int rc = 0;
11676
11677 switch (ctl->cmd) {
11678 case DRV_CTL_CTXTBL_WR_CMD: {
11679 u32 index = ctl->data.io.offset;
11680 dma_addr_t addr = ctl->data.io.dma_addr;
11681
11682 bnx2x_ilt_wr(bp, index, addr);
11683 break;
11684 }
11685
11686 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
11687 int count = ctl->data.credit.credit_count;
11688
11689 bnx2x_cnic_sp_post(bp, count);
11690 break;
11691 }
11692
11693 /* rtnl_lock is held. */
11694 case DRV_CTL_START_L2_CMD: {
11695 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11696 unsigned long sp_bits = 0;
11697
11698 /* Configure the iSCSI classification object */
11699 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
11700 cp->iscsi_l2_client_id,
11701 cp->iscsi_l2_cid, BP_FUNC(bp),
11702 bnx2x_sp(bp, mac_rdata),
11703 bnx2x_sp_mapping(bp, mac_rdata),
11704 BNX2X_FILTER_MAC_PENDING,
11705 &bp->sp_state, BNX2X_OBJ_TYPE_RX,
11706 &bp->macs_pool);
11707
11708 /* Set iSCSI MAC address */
11709 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
11710 if (rc)
11711 break;
11712
11713 mmiowb();
11714 barrier();
11715
11716 /* Start accepting on iSCSI L2 ring */
11717
11718 netif_addr_lock_bh(dev);
11719 bnx2x_set_iscsi_eth_rx_mode(bp, true);
11720 netif_addr_unlock_bh(dev);
11721
11722 /* bits to wait on */
11723 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11724 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
11725
11726 if (!bnx2x_wait_sp_comp(bp, sp_bits))
11727 BNX2X_ERR("rx_mode completion timed out!\n");
11728
11729 break;
11730 }
11731
11732 /* rtnl_lock is held. */
11733 case DRV_CTL_STOP_L2_CMD: {
11734 unsigned long sp_bits = 0;
11735
11736 /* Stop accepting on iSCSI L2 ring */
11737 netif_addr_lock_bh(dev);
11738 bnx2x_set_iscsi_eth_rx_mode(bp, false);
11739 netif_addr_unlock_bh(dev);
11740
11741 /* bits to wait on */
11742 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11743 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
11744
11745 if (!bnx2x_wait_sp_comp(bp, sp_bits))
11746 BNX2X_ERR("rx_mode completion timed out!\n");
11747
11748 mmiowb();
11749 barrier();
11750
11751 /* Unset iSCSI L2 MAC */
11752 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
11753 BNX2X_ISCSI_ETH_MAC, true);
11754 break;
11755 }
11756 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
11757 int count = ctl->data.credit.credit_count;
11758
11759 smp_mb__before_atomic_inc();
11760 atomic_add(count, &bp->cq_spq_left);
11761 smp_mb__after_atomic_inc();
11762 break;
11763 }
11764 case DRV_CTL_ULP_REGISTER_CMD: {
11765 int ulp_type = ctl->data.ulp_type;
11766
11767 if (CHIP_IS_E3(bp)) {
11768 int idx = BP_FW_MB_IDX(bp);
11769 u32 cap;
11770
11771 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
11772 if (ulp_type == CNIC_ULP_ISCSI)
11773 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
11774 else if (ulp_type == CNIC_ULP_FCOE)
11775 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
11776 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
11777 }
11778 break;
11779 }
11780 case DRV_CTL_ULP_UNREGISTER_CMD: {
11781 int ulp_type = ctl->data.ulp_type;
11782
11783 if (CHIP_IS_E3(bp)) {
11784 int idx = BP_FW_MB_IDX(bp);
11785 u32 cap;
11786
11787 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
11788 if (ulp_type == CNIC_ULP_ISCSI)
11789 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
11790 else if (ulp_type == CNIC_ULP_FCOE)
11791 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
11792 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
11793 }
11794 break;
11795 }
11796
11797 default:
11798 BNX2X_ERR("unknown command %x\n", ctl->cmd);
11799 rc = -EINVAL;
11800 }
11801
11802 return rc;
11803 }
11804
bnx2x_setup_cnic_irq_info(struct bnx2x * bp)11805 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
11806 {
11807 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11808
11809 if (bp->flags & USING_MSIX_FLAG) {
11810 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
11811 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
11812 cp->irq_arr[0].vector = bp->msix_table[1].vector;
11813 } else {
11814 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
11815 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
11816 }
11817 if (!CHIP_IS_E1x(bp))
11818 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
11819 else
11820 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
11821
11822 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp);
11823 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
11824 cp->irq_arr[1].status_blk = bp->def_status_blk;
11825 cp->irq_arr[1].status_blk_num = DEF_SB_ID;
11826 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
11827
11828 cp->num_irq = 2;
11829 }
11830
bnx2x_register_cnic(struct net_device * dev,struct cnic_ops * ops,void * data)11831 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
11832 void *data)
11833 {
11834 struct bnx2x *bp = netdev_priv(dev);
11835 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11836
11837 if (ops == NULL)
11838 return -EINVAL;
11839
11840 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
11841 if (!bp->cnic_kwq)
11842 return -ENOMEM;
11843
11844 bp->cnic_kwq_cons = bp->cnic_kwq;
11845 bp->cnic_kwq_prod = bp->cnic_kwq;
11846 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
11847
11848 bp->cnic_spq_pending = 0;
11849 bp->cnic_kwq_pending = 0;
11850
11851 bp->cnic_data = data;
11852
11853 cp->num_irq = 0;
11854 cp->drv_state |= CNIC_DRV_STATE_REGD;
11855 cp->iro_arr = bp->iro_arr;
11856
11857 bnx2x_setup_cnic_irq_info(bp);
11858
11859 rcu_assign_pointer(bp->cnic_ops, ops);
11860
11861 return 0;
11862 }
11863
bnx2x_unregister_cnic(struct net_device * dev)11864 static int bnx2x_unregister_cnic(struct net_device *dev)
11865 {
11866 struct bnx2x *bp = netdev_priv(dev);
11867 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11868
11869 mutex_lock(&bp->cnic_mutex);
11870 cp->drv_state = 0;
11871 RCU_INIT_POINTER(bp->cnic_ops, NULL);
11872 mutex_unlock(&bp->cnic_mutex);
11873 synchronize_rcu();
11874 kfree(bp->cnic_kwq);
11875 bp->cnic_kwq = NULL;
11876
11877 return 0;
11878 }
11879
bnx2x_cnic_probe(struct net_device * dev)11880 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
11881 {
11882 struct bnx2x *bp = netdev_priv(dev);
11883 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11884
11885 /* If both iSCSI and FCoE are disabled - return NULL in
11886 * order to indicate CNIC that it should not try to work
11887 * with this device.
11888 */
11889 if (NO_ISCSI(bp) && NO_FCOE(bp))
11890 return NULL;
11891
11892 cp->drv_owner = THIS_MODULE;
11893 cp->chip_id = CHIP_ID(bp);
11894 cp->pdev = bp->pdev;
11895 cp->io_base = bp->regview;
11896 cp->io_base2 = bp->doorbells;
11897 cp->max_kwqe_pending = 8;
11898 cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
11899 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
11900 bnx2x_cid_ilt_lines(bp);
11901 cp->ctx_tbl_len = CNIC_ILT_LINES;
11902 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
11903 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
11904 cp->drv_ctl = bnx2x_drv_ctl;
11905 cp->drv_register_cnic = bnx2x_register_cnic;
11906 cp->drv_unregister_cnic = bnx2x_unregister_cnic;
11907 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID;
11908 cp->iscsi_l2_client_id =
11909 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11910 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID;
11911
11912 if (NO_ISCSI_OOO(bp))
11913 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
11914
11915 if (NO_ISCSI(bp))
11916 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
11917
11918 if (NO_FCOE(bp))
11919 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
11920
11921 DP(BNX2X_MSG_SP, "page_size %d, tbl_offset %d, tbl_lines %d, "
11922 "starting cid %d\n",
11923 cp->ctx_blk_size,
11924 cp->ctx_tbl_offset,
11925 cp->ctx_tbl_len,
11926 cp->starting_cid);
11927 return cp;
11928 }
11929 EXPORT_SYMBOL(bnx2x_cnic_probe);
11930
11931 #endif /* BCM_CNIC */
11932
11933