1 /*
2  * net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support
3  * Copyright (c) 2008 Marvell Semiconductor
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  */
10 
11 #include <linux/list.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/phy.h>
15 #include <net/dsa.h>
16 #include "mv88e6xxx.h"
17 
18 /*
19  * If the switch's ADDR[4:0] strap pins are strapped to zero, it will
20  * use all 32 SMI bus addresses on its SMI bus, and all switch registers
21  * will be directly accessible on some {device address,register address}
22  * pair.  If the ADDR[4:0] pins are not strapped to zero, the switch
23  * will only respond to SMI transactions to that specific address, and
24  * an indirect addressing mechanism needs to be used to access its
25  * registers.
26  */
mv88e6xxx_reg_wait_ready(struct mii_bus * bus,int sw_addr)27 static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
28 {
29 	int ret;
30 	int i;
31 
32 	for (i = 0; i < 16; i++) {
33 		ret = mdiobus_read(bus, sw_addr, 0);
34 		if (ret < 0)
35 			return ret;
36 
37 		if ((ret & 0x8000) == 0)
38 			return 0;
39 	}
40 
41 	return -ETIMEDOUT;
42 }
43 
__mv88e6xxx_reg_read(struct mii_bus * bus,int sw_addr,int addr,int reg)44 int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr, int reg)
45 {
46 	int ret;
47 
48 	if (sw_addr == 0)
49 		return mdiobus_read(bus, addr, reg);
50 
51 	/*
52 	 * Wait for the bus to become free.
53 	 */
54 	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
55 	if (ret < 0)
56 		return ret;
57 
58 	/*
59 	 * Transmit the read command.
60 	 */
61 	ret = mdiobus_write(bus, sw_addr, 0, 0x9800 | (addr << 5) | reg);
62 	if (ret < 0)
63 		return ret;
64 
65 	/*
66 	 * Wait for the read command to complete.
67 	 */
68 	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
69 	if (ret < 0)
70 		return ret;
71 
72 	/*
73 	 * Read the data.
74 	 */
75 	ret = mdiobus_read(bus, sw_addr, 1);
76 	if (ret < 0)
77 		return ret;
78 
79 	return ret & 0xffff;
80 }
81 
mv88e6xxx_reg_read(struct dsa_switch * ds,int addr,int reg)82 int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
83 {
84 	struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
85 	int ret;
86 
87 	mutex_lock(&ps->smi_mutex);
88 	ret = __mv88e6xxx_reg_read(ds->master_mii_bus,
89 				   ds->pd->sw_addr, addr, reg);
90 	mutex_unlock(&ps->smi_mutex);
91 
92 	return ret;
93 }
94 
__mv88e6xxx_reg_write(struct mii_bus * bus,int sw_addr,int addr,int reg,u16 val)95 int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
96 			  int reg, u16 val)
97 {
98 	int ret;
99 
100 	if (sw_addr == 0)
101 		return mdiobus_write(bus, addr, reg, val);
102 
103 	/*
104 	 * Wait for the bus to become free.
105 	 */
106 	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
107 	if (ret < 0)
108 		return ret;
109 
110 	/*
111 	 * Transmit the data to write.
112 	 */
113 	ret = mdiobus_write(bus, sw_addr, 1, val);
114 	if (ret < 0)
115 		return ret;
116 
117 	/*
118 	 * Transmit the write command.
119 	 */
120 	ret = mdiobus_write(bus, sw_addr, 0, 0x9400 | (addr << 5) | reg);
121 	if (ret < 0)
122 		return ret;
123 
124 	/*
125 	 * Wait for the write command to complete.
126 	 */
127 	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
128 	if (ret < 0)
129 		return ret;
130 
131 	return 0;
132 }
133 
mv88e6xxx_reg_write(struct dsa_switch * ds,int addr,int reg,u16 val)134 int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val)
135 {
136 	struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
137 	int ret;
138 
139 	mutex_lock(&ps->smi_mutex);
140 	ret = __mv88e6xxx_reg_write(ds->master_mii_bus,
141 				    ds->pd->sw_addr, addr, reg, val);
142 	mutex_unlock(&ps->smi_mutex);
143 
144 	return ret;
145 }
146 
mv88e6xxx_config_prio(struct dsa_switch * ds)147 int mv88e6xxx_config_prio(struct dsa_switch *ds)
148 {
149 	/*
150 	 * Configure the IP ToS mapping registers.
151 	 */
152 	REG_WRITE(REG_GLOBAL, 0x10, 0x0000);
153 	REG_WRITE(REG_GLOBAL, 0x11, 0x0000);
154 	REG_WRITE(REG_GLOBAL, 0x12, 0x5555);
155 	REG_WRITE(REG_GLOBAL, 0x13, 0x5555);
156 	REG_WRITE(REG_GLOBAL, 0x14, 0xaaaa);
157 	REG_WRITE(REG_GLOBAL, 0x15, 0xaaaa);
158 	REG_WRITE(REG_GLOBAL, 0x16, 0xffff);
159 	REG_WRITE(REG_GLOBAL, 0x17, 0xffff);
160 
161 	/*
162 	 * Configure the IEEE 802.1p priority mapping register.
163 	 */
164 	REG_WRITE(REG_GLOBAL, 0x18, 0xfa41);
165 
166 	return 0;
167 }
168 
mv88e6xxx_set_addr_direct(struct dsa_switch * ds,u8 * addr)169 int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
170 {
171 	REG_WRITE(REG_GLOBAL, 0x01, (addr[0] << 8) | addr[1]);
172 	REG_WRITE(REG_GLOBAL, 0x02, (addr[2] << 8) | addr[3]);
173 	REG_WRITE(REG_GLOBAL, 0x03, (addr[4] << 8) | addr[5]);
174 
175 	return 0;
176 }
177 
mv88e6xxx_set_addr_indirect(struct dsa_switch * ds,u8 * addr)178 int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
179 {
180 	int i;
181 	int ret;
182 
183 	for (i = 0; i < 6; i++) {
184 		int j;
185 
186 		/*
187 		 * Write the MAC address byte.
188 		 */
189 		REG_WRITE(REG_GLOBAL2, 0x0d, 0x8000 | (i << 8) | addr[i]);
190 
191 		/*
192 		 * Wait for the write to complete.
193 		 */
194 		for (j = 0; j < 16; j++) {
195 			ret = REG_READ(REG_GLOBAL2, 0x0d);
196 			if ((ret & 0x8000) == 0)
197 				break;
198 		}
199 		if (j == 16)
200 			return -ETIMEDOUT;
201 	}
202 
203 	return 0;
204 }
205 
mv88e6xxx_phy_read(struct dsa_switch * ds,int addr,int regnum)206 int mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum)
207 {
208 	if (addr >= 0)
209 		return mv88e6xxx_reg_read(ds, addr, regnum);
210 	return 0xffff;
211 }
212 
mv88e6xxx_phy_write(struct dsa_switch * ds,int addr,int regnum,u16 val)213 int mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum, u16 val)
214 {
215 	if (addr >= 0)
216 		return mv88e6xxx_reg_write(ds, addr, regnum, val);
217 	return 0;
218 }
219 
220 #ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU
mv88e6xxx_ppu_disable(struct dsa_switch * ds)221 static int mv88e6xxx_ppu_disable(struct dsa_switch *ds)
222 {
223 	int ret;
224 	int i;
225 
226 	ret = REG_READ(REG_GLOBAL, 0x04);
227 	REG_WRITE(REG_GLOBAL, 0x04, ret & ~0x4000);
228 
229 	for (i = 0; i < 1000; i++) {
230 	        ret = REG_READ(REG_GLOBAL, 0x00);
231 	        msleep(1);
232 	        if ((ret & 0xc000) != 0xc000)
233 	                return 0;
234 	}
235 
236 	return -ETIMEDOUT;
237 }
238 
mv88e6xxx_ppu_enable(struct dsa_switch * ds)239 static int mv88e6xxx_ppu_enable(struct dsa_switch *ds)
240 {
241 	int ret;
242 	int i;
243 
244 	ret = REG_READ(REG_GLOBAL, 0x04);
245 	REG_WRITE(REG_GLOBAL, 0x04, ret | 0x4000);
246 
247 	for (i = 0; i < 1000; i++) {
248 	        ret = REG_READ(REG_GLOBAL, 0x00);
249 	        msleep(1);
250 	        if ((ret & 0xc000) == 0xc000)
251 	                return 0;
252 	}
253 
254 	return -ETIMEDOUT;
255 }
256 
mv88e6xxx_ppu_reenable_work(struct work_struct * ugly)257 static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
258 {
259 	struct mv88e6xxx_priv_state *ps;
260 
261 	ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work);
262 	if (mutex_trylock(&ps->ppu_mutex)) {
263 	        struct dsa_switch *ds = ((struct dsa_switch *)ps) - 1;
264 
265 	        if (mv88e6xxx_ppu_enable(ds) == 0)
266 	                ps->ppu_disabled = 0;
267 	        mutex_unlock(&ps->ppu_mutex);
268 	}
269 }
270 
mv88e6xxx_ppu_reenable_timer(unsigned long _ps)271 static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
272 {
273 	struct mv88e6xxx_priv_state *ps = (void *)_ps;
274 
275 	schedule_work(&ps->ppu_work);
276 }
277 
mv88e6xxx_ppu_access_get(struct dsa_switch * ds)278 static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds)
279 {
280 	struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
281 	int ret;
282 
283 	mutex_lock(&ps->ppu_mutex);
284 
285 	/*
286 	 * If the PHY polling unit is enabled, disable it so that
287 	 * we can access the PHY registers.  If it was already
288 	 * disabled, cancel the timer that is going to re-enable
289 	 * it.
290 	 */
291 	if (!ps->ppu_disabled) {
292 	        ret = mv88e6xxx_ppu_disable(ds);
293 	        if (ret < 0) {
294 	                mutex_unlock(&ps->ppu_mutex);
295 	                return ret;
296 	        }
297 	        ps->ppu_disabled = 1;
298 	} else {
299 	        del_timer(&ps->ppu_timer);
300 	        ret = 0;
301 	}
302 
303 	return ret;
304 }
305 
mv88e6xxx_ppu_access_put(struct dsa_switch * ds)306 static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds)
307 {
308 	struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
309 
310 	/*
311 	 * Schedule a timer to re-enable the PHY polling unit.
312 	 */
313 	mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10));
314 	mutex_unlock(&ps->ppu_mutex);
315 }
316 
mv88e6xxx_ppu_state_init(struct dsa_switch * ds)317 void mv88e6xxx_ppu_state_init(struct dsa_switch *ds)
318 {
319 	struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
320 
321 	mutex_init(&ps->ppu_mutex);
322 	INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work);
323 	init_timer(&ps->ppu_timer);
324 	ps->ppu_timer.data = (unsigned long)ps;
325 	ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
326 }
327 
mv88e6xxx_phy_read_ppu(struct dsa_switch * ds,int addr,int regnum)328 int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum)
329 {
330 	int ret;
331 
332 	ret = mv88e6xxx_ppu_access_get(ds);
333 	if (ret >= 0) {
334 	        ret = mv88e6xxx_reg_read(ds, addr, regnum);
335 	        mv88e6xxx_ppu_access_put(ds);
336 	}
337 
338 	return ret;
339 }
340 
mv88e6xxx_phy_write_ppu(struct dsa_switch * ds,int addr,int regnum,u16 val)341 int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr,
342 			    int regnum, u16 val)
343 {
344 	int ret;
345 
346 	ret = mv88e6xxx_ppu_access_get(ds);
347 	if (ret >= 0) {
348 	        ret = mv88e6xxx_reg_write(ds, addr, regnum, val);
349 	        mv88e6xxx_ppu_access_put(ds);
350 	}
351 
352 	return ret;
353 }
354 #endif
355 
mv88e6xxx_poll_link(struct dsa_switch * ds)356 void mv88e6xxx_poll_link(struct dsa_switch *ds)
357 {
358 	int i;
359 
360 	for (i = 0; i < DSA_MAX_PORTS; i++) {
361 		struct net_device *dev;
362 		int uninitialized_var(port_status);
363 		int link;
364 		int speed;
365 		int duplex;
366 		int fc;
367 
368 		dev = ds->ports[i];
369 		if (dev == NULL)
370 			continue;
371 
372 		link = 0;
373 		if (dev->flags & IFF_UP) {
374 			port_status = mv88e6xxx_reg_read(ds, REG_PORT(i), 0x00);
375 			if (port_status < 0)
376 				continue;
377 
378 			link = !!(port_status & 0x0800);
379 		}
380 
381 		if (!link) {
382 			if (netif_carrier_ok(dev)) {
383 				printk(KERN_INFO "%s: link down\n", dev->name);
384 				netif_carrier_off(dev);
385 			}
386 			continue;
387 		}
388 
389 		switch (port_status & 0x0300) {
390 		case 0x0000:
391 			speed = 10;
392 			break;
393 		case 0x0100:
394 			speed = 100;
395 			break;
396 		case 0x0200:
397 			speed = 1000;
398 			break;
399 		default:
400 			speed = -1;
401 			break;
402 		}
403 		duplex = (port_status & 0x0400) ? 1 : 0;
404 		fc = (port_status & 0x8000) ? 1 : 0;
405 
406 		if (!netif_carrier_ok(dev)) {
407 			printk(KERN_INFO "%s: link up, %d Mb/s, %s duplex, "
408 					 "flow control %sabled\n", dev->name,
409 					 speed, duplex ? "full" : "half",
410 					 fc ? "en" : "dis");
411 			netif_carrier_on(dev);
412 		}
413 	}
414 }
415 
mv88e6xxx_stats_wait(struct dsa_switch * ds)416 static int mv88e6xxx_stats_wait(struct dsa_switch *ds)
417 {
418 	int ret;
419 	int i;
420 
421 	for (i = 0; i < 10; i++) {
422 		ret = REG_READ(REG_GLOBAL, 0x1d);
423 		if ((ret & 0x8000) == 0)
424 			return 0;
425 	}
426 
427 	return -ETIMEDOUT;
428 }
429 
mv88e6xxx_stats_snapshot(struct dsa_switch * ds,int port)430 static int mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port)
431 {
432 	int ret;
433 
434 	/*
435 	 * Snapshot the hardware statistics counters for this port.
436 	 */
437 	REG_WRITE(REG_GLOBAL, 0x1d, 0xdc00 | port);
438 
439 	/*
440 	 * Wait for the snapshotting to complete.
441 	 */
442 	ret = mv88e6xxx_stats_wait(ds);
443 	if (ret < 0)
444 		return ret;
445 
446 	return 0;
447 }
448 
mv88e6xxx_stats_read(struct dsa_switch * ds,int stat,u32 * val)449 static void mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val)
450 {
451 	u32 _val;
452 	int ret;
453 
454 	*val = 0;
455 
456 	ret = mv88e6xxx_reg_write(ds, REG_GLOBAL, 0x1d, 0xcc00 | stat);
457 	if (ret < 0)
458 		return;
459 
460 	ret = mv88e6xxx_stats_wait(ds);
461 	if (ret < 0)
462 		return;
463 
464 	ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x1e);
465 	if (ret < 0)
466 		return;
467 
468 	_val = ret << 16;
469 
470 	ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x1f);
471 	if (ret < 0)
472 		return;
473 
474 	*val = _val | ret;
475 }
476 
mv88e6xxx_get_strings(struct dsa_switch * ds,int nr_stats,struct mv88e6xxx_hw_stat * stats,int port,uint8_t * data)477 void mv88e6xxx_get_strings(struct dsa_switch *ds,
478 			   int nr_stats, struct mv88e6xxx_hw_stat *stats,
479 			   int port, uint8_t *data)
480 {
481 	int i;
482 
483 	for (i = 0; i < nr_stats; i++) {
484 		memcpy(data + i * ETH_GSTRING_LEN,
485 		       stats[i].string, ETH_GSTRING_LEN);
486 	}
487 }
488 
mv88e6xxx_get_ethtool_stats(struct dsa_switch * ds,int nr_stats,struct mv88e6xxx_hw_stat * stats,int port,uint64_t * data)489 void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
490 				 int nr_stats, struct mv88e6xxx_hw_stat *stats,
491 				 int port, uint64_t *data)
492 {
493 	struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
494 	int ret;
495 	int i;
496 
497 	mutex_lock(&ps->stats_mutex);
498 
499 	ret = mv88e6xxx_stats_snapshot(ds, port);
500 	if (ret < 0) {
501 		mutex_unlock(&ps->stats_mutex);
502 		return;
503 	}
504 
505 	/*
506 	 * Read each of the counters.
507 	 */
508 	for (i = 0; i < nr_stats; i++) {
509 		struct mv88e6xxx_hw_stat *s = stats + i;
510 		u32 low;
511 		u32 high;
512 
513 		mv88e6xxx_stats_read(ds, s->reg, &low);
514 		if (s->sizeof_stat == 8)
515 			mv88e6xxx_stats_read(ds, s->reg + 1, &high);
516 		else
517 			high = 0;
518 
519 		data[i] = (((u64)high) << 32) | low;
520 	}
521 
522 	mutex_unlock(&ps->stats_mutex);
523 }
524 
mv88e6xxx_init(void)525 static int __init mv88e6xxx_init(void)
526 {
527 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
528 	register_switch_driver(&mv88e6131_switch_driver);
529 #endif
530 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
531 	register_switch_driver(&mv88e6123_61_65_switch_driver);
532 #endif
533 	return 0;
534 }
535 module_init(mv88e6xxx_init);
536 
mv88e6xxx_cleanup(void)537 static void __exit mv88e6xxx_cleanup(void)
538 {
539 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
540 	unregister_switch_driver(&mv88e6123_61_65_switch_driver);
541 #endif
542 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
543 	unregister_switch_driver(&mv88e6131_switch_driver);
544 #endif
545 }
546 module_exit(mv88e6xxx_cleanup);
547 
548 MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
549 MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
550 MODULE_LICENSE("GPL");
551