1 /*
2  * e100net.c: A network driver for the ETRAX 100LX network controller.
3  *
4  * Copyright (c) 1998-2002 Axis Communications AB.
5  *
6  * The outline of this driver comes from skeleton.c.
7  *
8  */
9 
10 
11 #include <linux/module.h>
12 
13 #include <linux/kernel.h>
14 #include <linux/delay.h>
15 #include <linux/types.h>
16 #include <linux/fcntl.h>
17 #include <linux/interrupt.h>
18 #include <linux/ptrace.h>
19 #include <linux/ioport.h>
20 #include <linux/in.h>
21 #include <linux/string.h>
22 #include <linux/spinlock.h>
23 #include <linux/errno.h>
24 #include <linux/init.h>
25 #include <linux/bitops.h>
26 
27 #include <linux/if.h>
28 #include <linux/mii.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/skbuff.h>
32 #include <linux/ethtool.h>
33 
34 #include <arch/svinto.h>/* DMA and register descriptions */
35 #include <asm/io.h>         /* CRIS_LED_* I/O functions */
36 #include <asm/irq.h>
37 #include <asm/dma.h>
38 #include <asm/system.h>
39 #include <asm/ethernet.h>
40 #include <asm/cache.h>
41 #include <arch/io_interface_mux.h>
42 
43 //#define ETHDEBUG
44 #define D(x)
45 
46 /*
47  * The name of the card. Is used for messages and in the requests for
48  * io regions, irqs and dma channels
49  */
50 
51 static const char* cardname = "ETRAX 100LX built-in ethernet controller";
52 
53 /* A default ethernet address. Highlevel SW will set the real one later */
54 
55 static struct sockaddr default_mac = {
56 	0,
57 	{ 0x00, 0x40, 0x8C, 0xCD, 0x00, 0x00 }
58 };
59 
60 /* Information that need to be kept for each board. */
61 struct net_local {
62 	struct mii_if_info mii_if;
63 
64 	/* Tx control lock.  This protects the transmit buffer ring
65 	 * state along with the "tx full" state of the driver.  This
66 	 * means all netif_queue flow control actions are protected
67 	 * by this lock as well.
68 	 */
69 	spinlock_t lock;
70 
71 	spinlock_t led_lock; /* Protect LED state */
72 	spinlock_t transceiver_lock; /* Protect transceiver state. */
73 };
74 
75 typedef struct etrax_eth_descr
76 {
77 	etrax_dma_descr descr;
78 	struct sk_buff* skb;
79 } etrax_eth_descr;
80 
81 /* Some transceivers requires special handling */
82 struct transceiver_ops
83 {
84 	unsigned int oui;
85 	void (*check_speed)(struct net_device* dev);
86 	void (*check_duplex)(struct net_device* dev);
87 };
88 
89 /* Duplex settings */
90 enum duplex
91 {
92 	half,
93 	full,
94 	autoneg
95 };
96 
97 /* Dma descriptors etc. */
98 
99 #define MAX_MEDIA_DATA_SIZE 1522
100 
101 #define MIN_PACKET_LEN      46
102 #define ETHER_HEAD_LEN      14
103 
104 /*
105 ** MDIO constants.
106 */
107 #define MDIO_START                          0x1
108 #define MDIO_READ                           0x2
109 #define MDIO_WRITE                          0x1
110 #define MDIO_PREAMBLE              0xfffffffful
111 
112 /* Broadcom specific */
113 #define MDIO_AUX_CTRL_STATUS_REG           0x18
114 #define MDIO_BC_FULL_DUPLEX_IND             0x1
115 #define MDIO_BC_SPEED                       0x2
116 
117 /* TDK specific */
118 #define MDIO_TDK_DIAGNOSTIC_REG              18
119 #define MDIO_TDK_DIAGNOSTIC_RATE          0x400
120 #define MDIO_TDK_DIAGNOSTIC_DPLX          0x800
121 
122 /*Intel LXT972A specific*/
123 #define MDIO_INT_STATUS_REG_2			0x0011
124 #define MDIO_INT_FULL_DUPLEX_IND       (1 << 9)
125 #define MDIO_INT_SPEED                (1 << 14)
126 
127 /* Network flash constants */
128 #define NET_FLASH_TIME                  (HZ/50) /* 20 ms */
129 #define NET_FLASH_PAUSE                (HZ/100) /* 10 ms */
130 #define NET_LINK_UP_CHECK_INTERVAL       (2*HZ) /* 2 s   */
131 #define NET_DUPLEX_CHECK_INTERVAL        (2*HZ) /* 2 s   */
132 
133 #define NO_NETWORK_ACTIVITY 0
134 #define NETWORK_ACTIVITY    1
135 
136 #define NBR_OF_RX_DESC     32
137 #define NBR_OF_TX_DESC     16
138 
139 /* Large packets are sent directly to upper layers while small packets are */
140 /* copied (to reduce memory waste). The following constant decides the breakpoint */
141 #define RX_COPYBREAK 256
142 
143 /* Due to a chip bug we need to flush the cache when descriptors are returned */
144 /* to the DMA. To decrease performance impact we return descriptors in chunks. */
145 /* The following constant determines the number of descriptors to return. */
146 #define RX_QUEUE_THRESHOLD  NBR_OF_RX_DESC/2
147 
148 #define GET_BIT(bit,val)   (((val) >> (bit)) & 0x01)
149 
150 /* Define some macros to access ETRAX 100 registers */
151 #define SETF(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \
152 					  IO_FIELD_(reg##_, field##_, val)
153 #define SETS(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \
154 					  IO_STATE_(reg##_, field##_, _##val)
155 
156 static etrax_eth_descr *myNextRxDesc;  /* Points to the next descriptor to
157                                           to be processed */
158 static etrax_eth_descr *myLastRxDesc;  /* The last processed descriptor */
159 
160 static etrax_eth_descr RxDescList[NBR_OF_RX_DESC] __attribute__ ((aligned(32)));
161 
162 static etrax_eth_descr* myFirstTxDesc; /* First packet not yet sent */
163 static etrax_eth_descr* myLastTxDesc;  /* End of send queue */
164 static etrax_eth_descr* myNextTxDesc;  /* Next descriptor to use */
165 static etrax_eth_descr TxDescList[NBR_OF_TX_DESC] __attribute__ ((aligned(32)));
166 
167 static unsigned int network_rec_config_shadow = 0;
168 
169 static unsigned int network_tr_ctrl_shadow = 0;
170 
171 /* Network speed indication. */
172 static DEFINE_TIMER(speed_timer, NULL, 0, 0);
173 static DEFINE_TIMER(clear_led_timer, NULL, 0, 0);
174 static int current_speed; /* Speed read from transceiver */
175 static int current_speed_selection; /* Speed selected by user */
176 static unsigned long led_next_time;
177 static int led_active;
178 static int rx_queue_len;
179 
180 /* Duplex */
181 static DEFINE_TIMER(duplex_timer, NULL, 0, 0);
182 static int full_duplex;
183 static enum duplex current_duplex;
184 
185 /* Index to functions, as function prototypes. */
186 
187 static int etrax_ethernet_init(void);
188 
189 static int e100_open(struct net_device *dev);
190 static int e100_set_mac_address(struct net_device *dev, void *addr);
191 static int e100_send_packet(struct sk_buff *skb, struct net_device *dev);
192 static irqreturn_t e100rxtx_interrupt(int irq, void *dev_id);
193 static irqreturn_t e100nw_interrupt(int irq, void *dev_id);
194 static void e100_rx(struct net_device *dev);
195 static int e100_close(struct net_device *dev);
196 static int e100_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
197 static int e100_set_config(struct net_device* dev, struct ifmap* map);
198 static void e100_tx_timeout(struct net_device *dev);
199 static struct net_device_stats *e100_get_stats(struct net_device *dev);
200 static void set_multicast_list(struct net_device *dev);
201 static void e100_hardware_send_packet(struct net_local* np, char *buf, int length);
202 static void update_rx_stats(struct net_device_stats *);
203 static void update_tx_stats(struct net_device_stats *);
204 static int e100_probe_transceiver(struct net_device* dev);
205 
206 static void e100_check_speed(unsigned long priv);
207 static void e100_set_speed(struct net_device* dev, unsigned long speed);
208 static void e100_check_duplex(unsigned long priv);
209 static void e100_set_duplex(struct net_device* dev, enum duplex);
210 static void e100_negotiate(struct net_device* dev);
211 
212 static int e100_get_mdio_reg(struct net_device *dev, int phy_id, int location);
213 static void e100_set_mdio_reg(struct net_device *dev, int phy_id, int location, int value);
214 
215 static void e100_send_mdio_cmd(unsigned short cmd, int write_cmd);
216 static void e100_send_mdio_bit(unsigned char bit);
217 static unsigned char e100_receive_mdio_bit(void);
218 static void e100_reset_transceiver(struct net_device* net);
219 
220 static void e100_clear_network_leds(unsigned long dummy);
221 static void e100_set_network_leds(int active);
222 
223 static const struct ethtool_ops e100_ethtool_ops;
224 #if defined(CONFIG_ETRAX_NO_PHY)
225 static void dummy_check_speed(struct net_device* dev);
226 static void dummy_check_duplex(struct net_device* dev);
227 #else
228 static void broadcom_check_speed(struct net_device* dev);
229 static void broadcom_check_duplex(struct net_device* dev);
230 static void tdk_check_speed(struct net_device* dev);
231 static void tdk_check_duplex(struct net_device* dev);
232 static void intel_check_speed(struct net_device* dev);
233 static void intel_check_duplex(struct net_device* dev);
234 static void generic_check_speed(struct net_device* dev);
235 static void generic_check_duplex(struct net_device* dev);
236 #endif
237 #ifdef CONFIG_NET_POLL_CONTROLLER
238 static void e100_netpoll(struct net_device* dev);
239 #endif
240 
241 static int autoneg_normal = 1;
242 
243 struct transceiver_ops transceivers[] =
244 {
245 #if defined(CONFIG_ETRAX_NO_PHY)
246 	{0x0000, dummy_check_speed, dummy_check_duplex}        /* Dummy */
247 #else
248 	{0x1018, broadcom_check_speed, broadcom_check_duplex},  /* Broadcom */
249 	{0xC039, tdk_check_speed, tdk_check_duplex},            /* TDK 2120 */
250 	{0x039C, tdk_check_speed, tdk_check_duplex},            /* TDK 2120C */
251         {0x04de, intel_check_speed, intel_check_duplex},     	/* Intel LXT972A*/
252 	{0x0000, generic_check_speed, generic_check_duplex}     /* Generic, must be last */
253 #endif
254 };
255 
256 struct transceiver_ops* transceiver = &transceivers[0];
257 
258 static const struct net_device_ops e100_netdev_ops = {
259 	.ndo_open		= e100_open,
260 	.ndo_stop		= e100_close,
261 	.ndo_start_xmit		= e100_send_packet,
262 	.ndo_tx_timeout		= e100_tx_timeout,
263 	.ndo_get_stats		= e100_get_stats,
264 	.ndo_set_rx_mode	= set_multicast_list,
265 	.ndo_do_ioctl		= e100_ioctl,
266 	.ndo_set_mac_address	= e100_set_mac_address,
267 	.ndo_validate_addr	= eth_validate_addr,
268 	.ndo_change_mtu		= eth_change_mtu,
269 	.ndo_set_config		= e100_set_config,
270 #ifdef CONFIG_NET_POLL_CONTROLLER
271 	.ndo_poll_controller	= e100_netpoll,
272 #endif
273 };
274 
275 #define tx_done(dev) (*R_DMA_CH0_CMD == 0)
276 
277 /*
278  * Check for a network adaptor of this type, and return '0' if one exists.
279  * If dev->base_addr == 0, probe all likely locations.
280  * If dev->base_addr == 1, always return failure.
281  * If dev->base_addr == 2, allocate space for the device and return success
282  * (detachable devices only).
283  */
284 
285 static int __init
etrax_ethernet_init(void)286 etrax_ethernet_init(void)
287 {
288 	struct net_device *dev;
289         struct net_local* np;
290 	int i, err;
291 
292 	printk(KERN_INFO
293 	       "ETRAX 100LX 10/100MBit ethernet v2.0 (c) 1998-2007 Axis Communications AB\n");
294 
295 	if (cris_request_io_interface(if_eth, cardname)) {
296 		printk(KERN_CRIT "etrax_ethernet_init failed to get IO interface\n");
297 		return -EBUSY;
298 	}
299 
300 	dev = alloc_etherdev(sizeof(struct net_local));
301 	if (!dev)
302 		return -ENOMEM;
303 
304 	np = netdev_priv(dev);
305 
306 	/* we do our own locking */
307 	dev->features |= NETIF_F_LLTX;
308 
309 	dev->base_addr = (unsigned int)R_NETWORK_SA_0; /* just to have something to show */
310 
311 	/* now setup our etrax specific stuff */
312 
313 	dev->irq = NETWORK_DMA_RX_IRQ_NBR; /* we really use DMATX as well... */
314 	dev->dma = NETWORK_RX_DMA_NBR;
315 
316 	/* fill in our handlers so the network layer can talk to us in the future */
317 
318 	dev->ethtool_ops	= &e100_ethtool_ops;
319 	dev->netdev_ops		= &e100_netdev_ops;
320 
321 	spin_lock_init(&np->lock);
322 	spin_lock_init(&np->led_lock);
323 	spin_lock_init(&np->transceiver_lock);
324 
325 	/* Initialise the list of Etrax DMA-descriptors */
326 
327 	/* Initialise receive descriptors */
328 
329 	for (i = 0; i < NBR_OF_RX_DESC; i++) {
330 		/* Allocate two extra cachelines to make sure that buffer used
331 		 * by DMA does not share cacheline with any other data (to
332 		 * avoid cache bug)
333 		 */
334 		RxDescList[i].skb = dev_alloc_skb(MAX_MEDIA_DATA_SIZE + 2 * L1_CACHE_BYTES);
335 		if (!RxDescList[i].skb)
336 			return -ENOMEM;
337 		RxDescList[i].descr.ctrl   = 0;
338 		RxDescList[i].descr.sw_len = MAX_MEDIA_DATA_SIZE;
339 		RxDescList[i].descr.next   = virt_to_phys(&RxDescList[i + 1]);
340 		RxDescList[i].descr.buf    = L1_CACHE_ALIGN(virt_to_phys(RxDescList[i].skb->data));
341 		RxDescList[i].descr.status = 0;
342 		RxDescList[i].descr.hw_len = 0;
343 		prepare_rx_descriptor(&RxDescList[i].descr);
344 	}
345 
346 	RxDescList[NBR_OF_RX_DESC - 1].descr.ctrl   = d_eol;
347 	RxDescList[NBR_OF_RX_DESC - 1].descr.next   = virt_to_phys(&RxDescList[0]);
348 	rx_queue_len = 0;
349 
350 	/* Initialize transmit descriptors */
351 	for (i = 0; i < NBR_OF_TX_DESC; i++) {
352 		TxDescList[i].descr.ctrl   = 0;
353 		TxDescList[i].descr.sw_len = 0;
354 		TxDescList[i].descr.next   = virt_to_phys(&TxDescList[i + 1].descr);
355 		TxDescList[i].descr.buf    = 0;
356 		TxDescList[i].descr.status = 0;
357 		TxDescList[i].descr.hw_len = 0;
358 		TxDescList[i].skb = 0;
359 	}
360 
361 	TxDescList[NBR_OF_TX_DESC - 1].descr.ctrl   = d_eol;
362 	TxDescList[NBR_OF_TX_DESC - 1].descr.next   = virt_to_phys(&TxDescList[0].descr);
363 
364 	/* Initialise initial pointers */
365 
366 	myNextRxDesc  = &RxDescList[0];
367 	myLastRxDesc  = &RxDescList[NBR_OF_RX_DESC - 1];
368 	myFirstTxDesc = &TxDescList[0];
369 	myNextTxDesc  = &TxDescList[0];
370 	myLastTxDesc  = &TxDescList[NBR_OF_TX_DESC - 1];
371 
372 	/* Register device */
373 	err = register_netdev(dev);
374 	if (err) {
375 		free_netdev(dev);
376 		return err;
377 	}
378 
379 	/* set the default MAC address */
380 
381 	e100_set_mac_address(dev, &default_mac);
382 
383 	/* Initialize speed indicator stuff. */
384 
385 	current_speed = 10;
386 	current_speed_selection = 0; /* Auto */
387 	speed_timer.expires = jiffies + NET_LINK_UP_CHECK_INTERVAL;
388 	speed_timer.data = (unsigned long)dev;
389 	speed_timer.function = e100_check_speed;
390 
391 	clear_led_timer.function = e100_clear_network_leds;
392 	clear_led_timer.data = (unsigned long)dev;
393 
394 	full_duplex = 0;
395 	current_duplex = autoneg;
396 	duplex_timer.expires = jiffies + NET_DUPLEX_CHECK_INTERVAL;
397         duplex_timer.data = (unsigned long)dev;
398 	duplex_timer.function = e100_check_duplex;
399 
400         /* Initialize mii interface */
401 	np->mii_if.phy_id_mask = 0x1f;
402 	np->mii_if.reg_num_mask = 0x1f;
403 	np->mii_if.dev = dev;
404 	np->mii_if.mdio_read = e100_get_mdio_reg;
405 	np->mii_if.mdio_write = e100_set_mdio_reg;
406 
407 	/* Initialize group address registers to make sure that no */
408 	/* unwanted addresses are matched */
409 	*R_NETWORK_GA_0 = 0x00000000;
410 	*R_NETWORK_GA_1 = 0x00000000;
411 
412 	/* Initialize next time the led can flash */
413 	led_next_time = jiffies;
414 	return 0;
415 }
416 
417 /* set MAC address of the interface. called from the core after a
418  * SIOCSIFADDR ioctl, and from the bootup above.
419  */
420 
421 static int
e100_set_mac_address(struct net_device * dev,void * p)422 e100_set_mac_address(struct net_device *dev, void *p)
423 {
424 	struct net_local *np = netdev_priv(dev);
425 	struct sockaddr *addr = p;
426 
427 	spin_lock(&np->lock); /* preemption protection */
428 
429 	/* remember it */
430 
431 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
432 
433 	/* Write it to the hardware.
434 	 * Note the way the address is wrapped:
435 	 * *R_NETWORK_SA_0 = a0_0 | (a0_1 << 8) | (a0_2 << 16) | (a0_3 << 24);
436 	 * *R_NETWORK_SA_1 = a0_4 | (a0_5 << 8);
437 	 */
438 
439 	*R_NETWORK_SA_0 = dev->dev_addr[0] | (dev->dev_addr[1] << 8) |
440 		(dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24);
441 	*R_NETWORK_SA_1 = dev->dev_addr[4] | (dev->dev_addr[5] << 8);
442 	*R_NETWORK_SA_2 = 0;
443 
444 	/* show it in the log as well */
445 
446 	printk(KERN_INFO "%s: changed MAC to %pM\n", dev->name, dev->dev_addr);
447 
448 	spin_unlock(&np->lock);
449 
450 	return 0;
451 }
452 
453 /*
454  * Open/initialize the board. This is called (in the current kernel)
455  * sometime after booting when the 'ifconfig' program is run.
456  *
457  * This routine should set everything up anew at each open, even
458  * registers that "should" only need to be set once at boot, so that
459  * there is non-reboot way to recover if something goes wrong.
460  */
461 
462 static int
e100_open(struct net_device * dev)463 e100_open(struct net_device *dev)
464 {
465 	unsigned long flags;
466 
467 	/* enable the MDIO output pin */
468 
469 	*R_NETWORK_MGM_CTRL = IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable);
470 
471 	*R_IRQ_MASK0_CLR =
472 		IO_STATE(R_IRQ_MASK0_CLR, overrun, clr) |
473 		IO_STATE(R_IRQ_MASK0_CLR, underrun, clr) |
474 		IO_STATE(R_IRQ_MASK0_CLR, excessive_col, clr);
475 
476 	/* clear dma0 and 1 eop and descr irq masks */
477 	*R_IRQ_MASK2_CLR =
478 		IO_STATE(R_IRQ_MASK2_CLR, dma0_descr, clr) |
479 		IO_STATE(R_IRQ_MASK2_CLR, dma0_eop, clr) |
480 		IO_STATE(R_IRQ_MASK2_CLR, dma1_descr, clr) |
481 		IO_STATE(R_IRQ_MASK2_CLR, dma1_eop, clr);
482 
483 	/* Reset and wait for the DMA channels */
484 
485 	RESET_DMA(NETWORK_TX_DMA_NBR);
486 	RESET_DMA(NETWORK_RX_DMA_NBR);
487 	WAIT_DMA(NETWORK_TX_DMA_NBR);
488 	WAIT_DMA(NETWORK_RX_DMA_NBR);
489 
490 	/* Initialise the etrax network controller */
491 
492 	/* allocate the irq corresponding to the receiving DMA */
493 
494 	if (request_irq(NETWORK_DMA_RX_IRQ_NBR, e100rxtx_interrupt, 0, cardname,
495 			(void *)dev)) {
496 		goto grace_exit0;
497 	}
498 
499 	/* allocate the irq corresponding to the transmitting DMA */
500 
501 	if (request_irq(NETWORK_DMA_TX_IRQ_NBR, e100rxtx_interrupt, 0,
502 			cardname, (void *)dev)) {
503 		goto grace_exit1;
504 	}
505 
506 	/* allocate the irq corresponding to the network errors etc */
507 
508 	if (request_irq(NETWORK_STATUS_IRQ_NBR, e100nw_interrupt, 0,
509 			cardname, (void *)dev)) {
510 		goto grace_exit2;
511 	}
512 
513 	/*
514 	 * Always allocate the DMA channels after the IRQ,
515 	 * and clean up on failure.
516 	 */
517 
518 	if (cris_request_dma(NETWORK_TX_DMA_NBR,
519 	                     cardname,
520 	                     DMA_VERBOSE_ON_ERROR,
521 	                     dma_eth)) {
522 		goto grace_exit3;
523         }
524 
525 	if (cris_request_dma(NETWORK_RX_DMA_NBR,
526 	                     cardname,
527 	                     DMA_VERBOSE_ON_ERROR,
528 	                     dma_eth)) {
529 		goto grace_exit4;
530         }
531 
532 	/* give the HW an idea of what MAC address we want */
533 
534 	*R_NETWORK_SA_0 = dev->dev_addr[0] | (dev->dev_addr[1] << 8) |
535 		(dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24);
536 	*R_NETWORK_SA_1 = dev->dev_addr[4] | (dev->dev_addr[5] << 8);
537 	*R_NETWORK_SA_2 = 0;
538 
539 #if 0
540 	/* use promiscuous mode for testing */
541 	*R_NETWORK_GA_0 = 0xffffffff;
542 	*R_NETWORK_GA_1 = 0xffffffff;
543 
544 	*R_NETWORK_REC_CONFIG = 0xd; /* broadcast rec, individ. rec, ma0 enabled */
545 #else
546 	SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, max_size, size1522);
547 	SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, broadcast, receive);
548 	SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, ma0, enable);
549 	SETF(network_rec_config_shadow, R_NETWORK_REC_CONFIG, duplex, full_duplex);
550 	*R_NETWORK_REC_CONFIG = network_rec_config_shadow;
551 #endif
552 
553 	*R_NETWORK_GEN_CONFIG =
554 		IO_STATE(R_NETWORK_GEN_CONFIG, phy,    mii_clk) |
555 		IO_STATE(R_NETWORK_GEN_CONFIG, enable, on);
556 
557 	SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr);
558 	SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, delay, none);
559 	SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, cancel, dont);
560 	SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, cd, enable);
561 	SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, retry, enable);
562 	SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, pad, enable);
563 	SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, crc, enable);
564 	*R_NETWORK_TR_CTRL = network_tr_ctrl_shadow;
565 
566 	local_irq_save(flags);
567 
568 	/* enable the irq's for ethernet DMA */
569 
570 	*R_IRQ_MASK2_SET =
571 		IO_STATE(R_IRQ_MASK2_SET, dma0_eop, set) |
572 		IO_STATE(R_IRQ_MASK2_SET, dma1_eop, set);
573 
574 	*R_IRQ_MASK0_SET =
575 		IO_STATE(R_IRQ_MASK0_SET, overrun,       set) |
576 		IO_STATE(R_IRQ_MASK0_SET, underrun,      set) |
577 		IO_STATE(R_IRQ_MASK0_SET, excessive_col, set);
578 
579 	/* make sure the irqs are cleared */
580 
581 	*R_DMA_CH0_CLR_INTR = IO_STATE(R_DMA_CH0_CLR_INTR, clr_eop, do);
582 	*R_DMA_CH1_CLR_INTR = IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do);
583 
584 	/* make sure the rec and transmit error counters are cleared */
585 
586 	(void)*R_REC_COUNTERS;  /* dummy read */
587 	(void)*R_TR_COUNTERS;   /* dummy read */
588 
589 	/* start the receiving DMA channel so we can receive packets from now on */
590 
591 	*R_DMA_CH1_FIRST = virt_to_phys(myNextRxDesc);
592 	*R_DMA_CH1_CMD = IO_STATE(R_DMA_CH1_CMD, cmd, start);
593 
594 	/* Set up transmit DMA channel so it can be restarted later */
595 
596 	*R_DMA_CH0_FIRST = 0;
597 	*R_DMA_CH0_DESCR = virt_to_phys(myLastTxDesc);
598 	netif_start_queue(dev);
599 
600 	local_irq_restore(flags);
601 
602 	/* Probe for transceiver */
603 	if (e100_probe_transceiver(dev))
604 		goto grace_exit5;
605 
606 	/* Start duplex/speed timers */
607 	add_timer(&speed_timer);
608 	add_timer(&duplex_timer);
609 
610 	/* We are now ready to accept transmit requeusts from
611 	 * the queueing layer of the networking.
612 	 */
613 	netif_carrier_on(dev);
614 
615 	return 0;
616 
617 grace_exit5:
618 	cris_free_dma(NETWORK_RX_DMA_NBR, cardname);
619 grace_exit4:
620 	cris_free_dma(NETWORK_TX_DMA_NBR, cardname);
621 grace_exit3:
622 	free_irq(NETWORK_STATUS_IRQ_NBR, (void *)dev);
623 grace_exit2:
624 	free_irq(NETWORK_DMA_TX_IRQ_NBR, (void *)dev);
625 grace_exit1:
626 	free_irq(NETWORK_DMA_RX_IRQ_NBR, (void *)dev);
627 grace_exit0:
628 	return -EAGAIN;
629 }
630 
631 #if defined(CONFIG_ETRAX_NO_PHY)
632 static void
dummy_check_speed(struct net_device * dev)633 dummy_check_speed(struct net_device* dev)
634 {
635 	current_speed = 100;
636 }
637 #else
638 static void
generic_check_speed(struct net_device * dev)639 generic_check_speed(struct net_device* dev)
640 {
641 	unsigned long data;
642 	struct net_local *np = netdev_priv(dev);
643 
644 	data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE);
645 	if ((data & ADVERTISE_100FULL) ||
646 	    (data & ADVERTISE_100HALF))
647 		current_speed = 100;
648 	else
649 		current_speed = 10;
650 }
651 
652 static void
tdk_check_speed(struct net_device * dev)653 tdk_check_speed(struct net_device* dev)
654 {
655 	unsigned long data;
656 	struct net_local *np = netdev_priv(dev);
657 
658 	data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
659 				 MDIO_TDK_DIAGNOSTIC_REG);
660 	current_speed = (data & MDIO_TDK_DIAGNOSTIC_RATE ? 100 : 10);
661 }
662 
663 static void
broadcom_check_speed(struct net_device * dev)664 broadcom_check_speed(struct net_device* dev)
665 {
666 	unsigned long data;
667 	struct net_local *np = netdev_priv(dev);
668 
669 	data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
670 				 MDIO_AUX_CTRL_STATUS_REG);
671 	current_speed = (data & MDIO_BC_SPEED ? 100 : 10);
672 }
673 
674 static void
intel_check_speed(struct net_device * dev)675 intel_check_speed(struct net_device* dev)
676 {
677 	unsigned long data;
678 	struct net_local *np = netdev_priv(dev);
679 
680 	data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
681 				 MDIO_INT_STATUS_REG_2);
682 	current_speed = (data & MDIO_INT_SPEED ? 100 : 10);
683 }
684 #endif
685 static void
e100_check_speed(unsigned long priv)686 e100_check_speed(unsigned long priv)
687 {
688 	struct net_device* dev = (struct net_device*)priv;
689 	struct net_local *np = netdev_priv(dev);
690 	static int led_initiated = 0;
691 	unsigned long data;
692 	int old_speed = current_speed;
693 
694 	spin_lock(&np->transceiver_lock);
695 
696 	data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMSR);
697 	if (!(data & BMSR_LSTATUS)) {
698 		current_speed = 0;
699 	} else {
700 		transceiver->check_speed(dev);
701 	}
702 
703 	spin_lock(&np->led_lock);
704 	if ((old_speed != current_speed) || !led_initiated) {
705 		led_initiated = 1;
706 		e100_set_network_leds(NO_NETWORK_ACTIVITY);
707 		if (current_speed)
708 			netif_carrier_on(dev);
709 		else
710 			netif_carrier_off(dev);
711 	}
712 	spin_unlock(&np->led_lock);
713 
714 	/* Reinitialize the timer. */
715 	speed_timer.expires = jiffies + NET_LINK_UP_CHECK_INTERVAL;
716 	add_timer(&speed_timer);
717 
718 	spin_unlock(&np->transceiver_lock);
719 }
720 
721 static void
e100_negotiate(struct net_device * dev)722 e100_negotiate(struct net_device* dev)
723 {
724 	struct net_local *np = netdev_priv(dev);
725 	unsigned short data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
726 						MII_ADVERTISE);
727 
728 	/* Discard old speed and duplex settings */
729 	data &= ~(ADVERTISE_100HALF | ADVERTISE_100FULL |
730 	          ADVERTISE_10HALF | ADVERTISE_10FULL);
731 
732 	switch (current_speed_selection) {
733 		case 10:
734 			if (current_duplex == full)
735 				data |= ADVERTISE_10FULL;
736 			else if (current_duplex == half)
737 				data |= ADVERTISE_10HALF;
738 			else
739 				data |= ADVERTISE_10HALF | ADVERTISE_10FULL;
740 			break;
741 
742 		case 100:
743 			 if (current_duplex == full)
744 				data |= ADVERTISE_100FULL;
745 			else if (current_duplex == half)
746 				data |= ADVERTISE_100HALF;
747 			else
748 				data |= ADVERTISE_100HALF | ADVERTISE_100FULL;
749 			break;
750 
751 		case 0: /* Auto */
752 			 if (current_duplex == full)
753 				data |= ADVERTISE_100FULL | ADVERTISE_10FULL;
754 			else if (current_duplex == half)
755 				data |= ADVERTISE_100HALF | ADVERTISE_10HALF;
756 			else
757 				data |= ADVERTISE_10HALF | ADVERTISE_10FULL |
758 				  ADVERTISE_100HALF | ADVERTISE_100FULL;
759 			break;
760 
761 		default: /* assume autoneg speed and duplex */
762 			data |= ADVERTISE_10HALF | ADVERTISE_10FULL |
763 				  ADVERTISE_100HALF | ADVERTISE_100FULL;
764 			break;
765 	}
766 
767 	e100_set_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE, data);
768 
769 	data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR);
770 	if (autoneg_normal) {
771 		/* Renegotiate with link partner */
772 		data |= BMCR_ANENABLE | BMCR_ANRESTART;
773 	} else {
774 		/* Don't negotiate speed or duplex */
775 		data &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
776 
777 		/* Set speed and duplex static */
778 		if (current_speed_selection == 10)
779 			data &= ~BMCR_SPEED100;
780 		else
781 			data |= BMCR_SPEED100;
782 
783 		if (current_duplex != full)
784 			data &= ~BMCR_FULLDPLX;
785 		else
786 			data |= BMCR_FULLDPLX;
787 	}
788 	e100_set_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR, data);
789 }
790 
791 static void
e100_set_speed(struct net_device * dev,unsigned long speed)792 e100_set_speed(struct net_device* dev, unsigned long speed)
793 {
794 	struct net_local *np = netdev_priv(dev);
795 
796 	spin_lock(&np->transceiver_lock);
797 	if (speed != current_speed_selection) {
798 		current_speed_selection = speed;
799 		e100_negotiate(dev);
800 	}
801 	spin_unlock(&np->transceiver_lock);
802 }
803 
804 static void
e100_check_duplex(unsigned long priv)805 e100_check_duplex(unsigned long priv)
806 {
807 	struct net_device *dev = (struct net_device *)priv;
808 	struct net_local *np = netdev_priv(dev);
809 	int old_duplex;
810 
811 	spin_lock(&np->transceiver_lock);
812 	old_duplex = full_duplex;
813 	transceiver->check_duplex(dev);
814 	if (old_duplex != full_duplex) {
815 		/* Duplex changed */
816 		SETF(network_rec_config_shadow, R_NETWORK_REC_CONFIG, duplex, full_duplex);
817 		*R_NETWORK_REC_CONFIG = network_rec_config_shadow;
818 	}
819 
820 	/* Reinitialize the timer. */
821 	duplex_timer.expires = jiffies + NET_DUPLEX_CHECK_INTERVAL;
822 	add_timer(&duplex_timer);
823 	np->mii_if.full_duplex = full_duplex;
824 	spin_unlock(&np->transceiver_lock);
825 }
826 #if defined(CONFIG_ETRAX_NO_PHY)
827 static void
dummy_check_duplex(struct net_device * dev)828 dummy_check_duplex(struct net_device* dev)
829 {
830 	full_duplex = 1;
831 }
832 #else
833 static void
generic_check_duplex(struct net_device * dev)834 generic_check_duplex(struct net_device* dev)
835 {
836 	unsigned long data;
837 	struct net_local *np = netdev_priv(dev);
838 
839 	data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE);
840 	if ((data & ADVERTISE_10FULL) ||
841 	    (data & ADVERTISE_100FULL))
842 		full_duplex = 1;
843 	else
844 		full_duplex = 0;
845 }
846 
847 static void
tdk_check_duplex(struct net_device * dev)848 tdk_check_duplex(struct net_device* dev)
849 {
850 	unsigned long data;
851 	struct net_local *np = netdev_priv(dev);
852 
853 	data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
854 				 MDIO_TDK_DIAGNOSTIC_REG);
855 	full_duplex = (data & MDIO_TDK_DIAGNOSTIC_DPLX) ? 1 : 0;
856 }
857 
858 static void
broadcom_check_duplex(struct net_device * dev)859 broadcom_check_duplex(struct net_device* dev)
860 {
861 	unsigned long data;
862 	struct net_local *np = netdev_priv(dev);
863 
864 	data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
865 				 MDIO_AUX_CTRL_STATUS_REG);
866 	full_duplex = (data & MDIO_BC_FULL_DUPLEX_IND) ? 1 : 0;
867 }
868 
869 static void
intel_check_duplex(struct net_device * dev)870 intel_check_duplex(struct net_device* dev)
871 {
872 	unsigned long data;
873 	struct net_local *np = netdev_priv(dev);
874 
875 	data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
876 				 MDIO_INT_STATUS_REG_2);
877 	full_duplex = (data & MDIO_INT_FULL_DUPLEX_IND) ? 1 : 0;
878 }
879 #endif
880 static void
e100_set_duplex(struct net_device * dev,enum duplex new_duplex)881 e100_set_duplex(struct net_device* dev, enum duplex new_duplex)
882 {
883 	struct net_local *np = netdev_priv(dev);
884 
885 	spin_lock(&np->transceiver_lock);
886 	if (new_duplex != current_duplex) {
887 		current_duplex = new_duplex;
888 		e100_negotiate(dev);
889 	}
890 	spin_unlock(&np->transceiver_lock);
891 }
892 
893 static int
e100_probe_transceiver(struct net_device * dev)894 e100_probe_transceiver(struct net_device* dev)
895 {
896 	int ret = 0;
897 
898 #if !defined(CONFIG_ETRAX_NO_PHY)
899 	unsigned int phyid_high;
900 	unsigned int phyid_low;
901 	unsigned int oui;
902 	struct transceiver_ops* ops = NULL;
903 	struct net_local *np = netdev_priv(dev);
904 
905 	spin_lock(&np->transceiver_lock);
906 
907 	/* Probe MDIO physical address */
908 	for (np->mii_if.phy_id = 0; np->mii_if.phy_id <= 31;
909 	     np->mii_if.phy_id++) {
910 		if (e100_get_mdio_reg(dev,
911 				      np->mii_if.phy_id, MII_BMSR) != 0xffff)
912 			break;
913 	}
914 	if (np->mii_if.phy_id == 32) {
915 		ret = -ENODEV;
916 		goto out;
917 	}
918 
919 	/* Get manufacturer */
920 	phyid_high = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_PHYSID1);
921 	phyid_low = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_PHYSID2);
922 	oui = (phyid_high << 6) | (phyid_low >> 10);
923 
924 	for (ops = &transceivers[0]; ops->oui; ops++) {
925 		if (ops->oui == oui)
926 			break;
927 	}
928 	transceiver = ops;
929 out:
930 	spin_unlock(&np->transceiver_lock);
931 #endif
932 	return ret;
933 }
934 
935 static int
e100_get_mdio_reg(struct net_device * dev,int phy_id,int location)936 e100_get_mdio_reg(struct net_device *dev, int phy_id, int location)
937 {
938 	unsigned short cmd;    /* Data to be sent on MDIO port */
939 	int data;   /* Data read from MDIO */
940 	int bitCounter;
941 
942 	/* Start of frame, OP Code, Physical Address, Register Address */
943 	cmd = (MDIO_START << 14) | (MDIO_READ << 12) | (phy_id << 7) |
944 		(location << 2);
945 
946 	e100_send_mdio_cmd(cmd, 0);
947 
948 	data = 0;
949 
950 	/* Data... */
951 	for (bitCounter=15; bitCounter>=0 ; bitCounter--) {
952 		data |= (e100_receive_mdio_bit() << bitCounter);
953 	}
954 
955 	return data;
956 }
957 
958 static void
e100_set_mdio_reg(struct net_device * dev,int phy_id,int location,int value)959 e100_set_mdio_reg(struct net_device *dev, int phy_id, int location, int value)
960 {
961 	int bitCounter;
962 	unsigned short cmd;
963 
964 	cmd = (MDIO_START << 14) | (MDIO_WRITE << 12) | (phy_id << 7) |
965 	      (location << 2);
966 
967 	e100_send_mdio_cmd(cmd, 1);
968 
969 	/* Data... */
970 	for (bitCounter=15; bitCounter>=0 ; bitCounter--) {
971 		e100_send_mdio_bit(GET_BIT(bitCounter, value));
972 	}
973 
974 }
975 
976 static void
e100_send_mdio_cmd(unsigned short cmd,int write_cmd)977 e100_send_mdio_cmd(unsigned short cmd, int write_cmd)
978 {
979 	int bitCounter;
980 	unsigned char data = 0x2;
981 
982 	/* Preamble */
983 	for (bitCounter = 31; bitCounter>= 0; bitCounter--)
984 		e100_send_mdio_bit(GET_BIT(bitCounter, MDIO_PREAMBLE));
985 
986 	for (bitCounter = 15; bitCounter >= 2; bitCounter--)
987 		e100_send_mdio_bit(GET_BIT(bitCounter, cmd));
988 
989 	/* Turnaround */
990 	for (bitCounter = 1; bitCounter >= 0 ; bitCounter--)
991 		if (write_cmd)
992 			e100_send_mdio_bit(GET_BIT(bitCounter, data));
993 		else
994 			e100_receive_mdio_bit();
995 }
996 
997 static void
e100_send_mdio_bit(unsigned char bit)998 e100_send_mdio_bit(unsigned char bit)
999 {
1000 	*R_NETWORK_MGM_CTRL =
1001 		IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable) |
1002 		IO_FIELD(R_NETWORK_MGM_CTRL, mdio, bit);
1003 	udelay(1);
1004 	*R_NETWORK_MGM_CTRL =
1005 		IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable) |
1006 		IO_MASK(R_NETWORK_MGM_CTRL, mdck) |
1007 		IO_FIELD(R_NETWORK_MGM_CTRL, mdio, bit);
1008 	udelay(1);
1009 }
1010 
1011 static unsigned char
e100_receive_mdio_bit()1012 e100_receive_mdio_bit()
1013 {
1014 	unsigned char bit;
1015 	*R_NETWORK_MGM_CTRL = 0;
1016 	bit = IO_EXTRACT(R_NETWORK_STAT, mdio, *R_NETWORK_STAT);
1017 	udelay(1);
1018 	*R_NETWORK_MGM_CTRL = IO_MASK(R_NETWORK_MGM_CTRL, mdck);
1019 	udelay(1);
1020 	return bit;
1021 }
1022 
1023 static void
e100_reset_transceiver(struct net_device * dev)1024 e100_reset_transceiver(struct net_device* dev)
1025 {
1026 	struct net_local *np = netdev_priv(dev);
1027 	unsigned short cmd;
1028 	unsigned short data;
1029 	int bitCounter;
1030 
1031 	data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR);
1032 
1033 	cmd = (MDIO_START << 14) | (MDIO_WRITE << 12) | (np->mii_if.phy_id << 7) | (MII_BMCR << 2);
1034 
1035 	e100_send_mdio_cmd(cmd, 1);
1036 
1037 	data |= 0x8000;
1038 
1039 	for (bitCounter = 15; bitCounter >= 0 ; bitCounter--) {
1040 		e100_send_mdio_bit(GET_BIT(bitCounter, data));
1041 	}
1042 }
1043 
1044 /* Called by upper layers if they decide it took too long to complete
1045  * sending a packet - we need to reset and stuff.
1046  */
1047 
1048 static void
e100_tx_timeout(struct net_device * dev)1049 e100_tx_timeout(struct net_device *dev)
1050 {
1051 	struct net_local *np = netdev_priv(dev);
1052 	unsigned long flags;
1053 
1054 	spin_lock_irqsave(&np->lock, flags);
1055 
1056 	printk(KERN_WARNING "%s: transmit timed out, %s?\n", dev->name,
1057 	       tx_done(dev) ? "IRQ problem" : "network cable problem");
1058 
1059 	/* remember we got an error */
1060 
1061 	dev->stats.tx_errors++;
1062 
1063 	/* reset the TX DMA in case it has hung on something */
1064 
1065 	RESET_DMA(NETWORK_TX_DMA_NBR);
1066 	WAIT_DMA(NETWORK_TX_DMA_NBR);
1067 
1068 	/* Reset the transceiver. */
1069 
1070 	e100_reset_transceiver(dev);
1071 
1072 	/* and get rid of the packets that never got an interrupt */
1073 	while (myFirstTxDesc != myNextTxDesc) {
1074 		dev_kfree_skb(myFirstTxDesc->skb);
1075 		myFirstTxDesc->skb = 0;
1076 		myFirstTxDesc = phys_to_virt(myFirstTxDesc->descr.next);
1077 	}
1078 
1079 	/* Set up transmit DMA channel so it can be restarted later */
1080 	*R_DMA_CH0_FIRST = 0;
1081 	*R_DMA_CH0_DESCR = virt_to_phys(myLastTxDesc);
1082 
1083 	/* tell the upper layers we're ok again */
1084 
1085 	netif_wake_queue(dev);
1086 	spin_unlock_irqrestore(&np->lock, flags);
1087 }
1088 
1089 
1090 /* This will only be invoked if the driver is _not_ in XOFF state.
1091  * What this means is that we need not check it, and that this
1092  * invariant will hold if we make sure that the netif_*_queue()
1093  * calls are done at the proper times.
1094  */
1095 
1096 static int
e100_send_packet(struct sk_buff * skb,struct net_device * dev)1097 e100_send_packet(struct sk_buff *skb, struct net_device *dev)
1098 {
1099 	struct net_local *np = netdev_priv(dev);
1100 	unsigned char *buf = skb->data;
1101 	unsigned long flags;
1102 
1103 #ifdef ETHDEBUG
1104 	printk("send packet len %d\n", length);
1105 #endif
1106 	spin_lock_irqsave(&np->lock, flags);  /* protect from tx_interrupt and ourself */
1107 
1108 	myNextTxDesc->skb = skb;
1109 
1110 	dev->trans_start = jiffies; /* NETIF_F_LLTX driver :( */
1111 
1112 	e100_hardware_send_packet(np, buf, skb->len);
1113 
1114 	myNextTxDesc = phys_to_virt(myNextTxDesc->descr.next);
1115 
1116 	/* Stop queue if full */
1117 	if (myNextTxDesc == myFirstTxDesc) {
1118 		netif_stop_queue(dev);
1119 	}
1120 
1121 	spin_unlock_irqrestore(&np->lock, flags);
1122 
1123 	return NETDEV_TX_OK;
1124 }
1125 
1126 /*
1127  * The typical workload of the driver:
1128  *   Handle the network interface interrupts.
1129  */
1130 
1131 static irqreturn_t
e100rxtx_interrupt(int irq,void * dev_id)1132 e100rxtx_interrupt(int irq, void *dev_id)
1133 {
1134 	struct net_device *dev = (struct net_device *)dev_id;
1135 	struct net_local *np = netdev_priv(dev);
1136 	unsigned long irqbits;
1137 
1138 	/*
1139 	 * Note that both rx and tx interrupts are blocked at this point,
1140 	 * regardless of which got us here.
1141 	 */
1142 
1143 	irqbits = *R_IRQ_MASK2_RD;
1144 
1145 	/* Handle received packets */
1146 	if (irqbits & IO_STATE(R_IRQ_MASK2_RD, dma1_eop, active)) {
1147 		/* acknowledge the eop interrupt */
1148 
1149 		*R_DMA_CH1_CLR_INTR = IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do);
1150 
1151 		/* check if one or more complete packets were indeed received */
1152 
1153 		while ((*R_DMA_CH1_FIRST != virt_to_phys(myNextRxDesc)) &&
1154 		       (myNextRxDesc != myLastRxDesc)) {
1155 			/* Take out the buffer and give it to the OS, then
1156 			 * allocate a new buffer to put a packet in.
1157 			 */
1158 			e100_rx(dev);
1159 			dev->stats.rx_packets++;
1160 			/* restart/continue on the channel, for safety */
1161 			*R_DMA_CH1_CMD = IO_STATE(R_DMA_CH1_CMD, cmd, restart);
1162 			/* clear dma channel 1 eop/descr irq bits */
1163 			*R_DMA_CH1_CLR_INTR =
1164 				IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do) |
1165 				IO_STATE(R_DMA_CH1_CLR_INTR, clr_descr, do);
1166 
1167 			/* now, we might have gotten another packet
1168 			   so we have to loop back and check if so */
1169 		}
1170 	}
1171 
1172 	/* Report any packets that have been sent */
1173 	while (virt_to_phys(myFirstTxDesc) != *R_DMA_CH0_FIRST &&
1174 	       (netif_queue_stopped(dev) || myFirstTxDesc != myNextTxDesc)) {
1175 		dev->stats.tx_bytes += myFirstTxDesc->skb->len;
1176 		dev->stats.tx_packets++;
1177 
1178 		/* dma is ready with the transmission of the data in tx_skb, so now
1179 		   we can release the skb memory */
1180 		dev_kfree_skb_irq(myFirstTxDesc->skb);
1181 		myFirstTxDesc->skb = 0;
1182 		myFirstTxDesc = phys_to_virt(myFirstTxDesc->descr.next);
1183                 /* Wake up queue. */
1184 		netif_wake_queue(dev);
1185 	}
1186 
1187 	if (irqbits & IO_STATE(R_IRQ_MASK2_RD, dma0_eop, active)) {
1188 		/* acknowledge the eop interrupt. */
1189 		*R_DMA_CH0_CLR_INTR = IO_STATE(R_DMA_CH0_CLR_INTR, clr_eop, do);
1190 	}
1191 
1192 	return IRQ_HANDLED;
1193 }
1194 
1195 static irqreturn_t
e100nw_interrupt(int irq,void * dev_id)1196 e100nw_interrupt(int irq, void *dev_id)
1197 {
1198 	struct net_device *dev = (struct net_device *)dev_id;
1199 	unsigned long irqbits = *R_IRQ_MASK0_RD;
1200 
1201 	/* check for underrun irq */
1202 	if (irqbits & IO_STATE(R_IRQ_MASK0_RD, underrun, active)) {
1203 		SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr);
1204 		*R_NETWORK_TR_CTRL = network_tr_ctrl_shadow;
1205 		SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, nop);
1206 		dev->stats.tx_errors++;
1207 		D(printk("ethernet receiver underrun!\n"));
1208 	}
1209 
1210 	/* check for overrun irq */
1211 	if (irqbits & IO_STATE(R_IRQ_MASK0_RD, overrun, active)) {
1212 		update_rx_stats(&dev->stats); /* this will ack the irq */
1213 		D(printk("ethernet receiver overrun!\n"));
1214 	}
1215 	/* check for excessive collision irq */
1216 	if (irqbits & IO_STATE(R_IRQ_MASK0_RD, excessive_col, active)) {
1217 		SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr);
1218 		*R_NETWORK_TR_CTRL = network_tr_ctrl_shadow;
1219 		SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, nop);
1220 		dev->stats.tx_errors++;
1221 		D(printk("ethernet excessive collisions!\n"));
1222 	}
1223 	return IRQ_HANDLED;
1224 }
1225 
1226 /* We have a good packet(s), get it/them out of the buffers. */
1227 static void
e100_rx(struct net_device * dev)1228 e100_rx(struct net_device *dev)
1229 {
1230 	struct sk_buff *skb;
1231 	int length = 0;
1232 	struct net_local *np = netdev_priv(dev);
1233 	unsigned char *skb_data_ptr;
1234 #ifdef ETHDEBUG
1235 	int i;
1236 #endif
1237 	etrax_eth_descr *prevRxDesc;  /* The descriptor right before myNextRxDesc */
1238 	spin_lock(&np->led_lock);
1239 	if (!led_active && time_after(jiffies, led_next_time)) {
1240 		/* light the network leds depending on the current speed. */
1241 		e100_set_network_leds(NETWORK_ACTIVITY);
1242 
1243 		/* Set the earliest time we may clear the LED */
1244 		led_next_time = jiffies + NET_FLASH_TIME;
1245 		led_active = 1;
1246 		mod_timer(&clear_led_timer, jiffies + HZ/10);
1247 	}
1248 	spin_unlock(&np->led_lock);
1249 
1250 	length = myNextRxDesc->descr.hw_len - 4;
1251 	dev->stats.rx_bytes += length;
1252 
1253 #ifdef ETHDEBUG
1254 	printk("Got a packet of length %d:\n", length);
1255 	/* dump the first bytes in the packet */
1256 	skb_data_ptr = (unsigned char *)phys_to_virt(myNextRxDesc->descr.buf);
1257 	for (i = 0; i < 8; i++) {
1258 		printk("%d: %.2x %.2x %.2x %.2x %.2x %.2x %.2x %.2x\n", i * 8,
1259 		       skb_data_ptr[0],skb_data_ptr[1],skb_data_ptr[2],skb_data_ptr[3],
1260 		       skb_data_ptr[4],skb_data_ptr[5],skb_data_ptr[6],skb_data_ptr[7]);
1261 		skb_data_ptr += 8;
1262 	}
1263 #endif
1264 
1265 	if (length < RX_COPYBREAK) {
1266 		/* Small packet, copy data */
1267 		skb = dev_alloc_skb(length - ETHER_HEAD_LEN);
1268 		if (!skb) {
1269 			dev->stats.rx_errors++;
1270 			printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
1271 			goto update_nextrxdesc;
1272 		}
1273 
1274 		skb_put(skb, length - ETHER_HEAD_LEN);        /* allocate room for the packet body */
1275 		skb_data_ptr = skb_push(skb, ETHER_HEAD_LEN); /* allocate room for the header */
1276 
1277 #ifdef ETHDEBUG
1278 		printk("head = 0x%x, data = 0x%x, tail = 0x%x, end = 0x%x\n",
1279 		       skb->head, skb->data, skb_tail_pointer(skb),
1280 		       skb_end_pointer(skb));
1281 		printk("copying packet to 0x%x.\n", skb_data_ptr);
1282 #endif
1283 
1284 		memcpy(skb_data_ptr, phys_to_virt(myNextRxDesc->descr.buf), length);
1285 	}
1286 	else {
1287 		/* Large packet, send directly to upper layers and allocate new
1288 		 * memory (aligned to cache line boundary to avoid bug).
1289 		 * Before sending the skb to upper layers we must make sure
1290 		 * that skb->data points to the aligned start of the packet.
1291 		 */
1292 		int align;
1293 		struct sk_buff *new_skb = dev_alloc_skb(MAX_MEDIA_DATA_SIZE + 2 * L1_CACHE_BYTES);
1294 		if (!new_skb) {
1295 			dev->stats.rx_errors++;
1296 			printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
1297 			goto update_nextrxdesc;
1298 		}
1299 		skb = myNextRxDesc->skb;
1300 		align = (int)phys_to_virt(myNextRxDesc->descr.buf) - (int)skb->data;
1301 		skb_put(skb, length + align);
1302 		skb_pull(skb, align); /* Remove alignment bytes */
1303 		myNextRxDesc->skb = new_skb;
1304 		myNextRxDesc->descr.buf = L1_CACHE_ALIGN(virt_to_phys(myNextRxDesc->skb->data));
1305 	}
1306 
1307 	skb->protocol = eth_type_trans(skb, dev);
1308 
1309 	/* Send the packet to the upper layers */
1310 	netif_rx(skb);
1311 
1312   update_nextrxdesc:
1313 	/* Prepare for next packet */
1314 	myNextRxDesc->descr.status = 0;
1315 	prevRxDesc = myNextRxDesc;
1316 	myNextRxDesc = phys_to_virt(myNextRxDesc->descr.next);
1317 
1318 	rx_queue_len++;
1319 
1320 	/* Check if descriptors should be returned */
1321 	if (rx_queue_len == RX_QUEUE_THRESHOLD) {
1322 		flush_etrax_cache();
1323 		prevRxDesc->descr.ctrl |= d_eol;
1324 		myLastRxDesc->descr.ctrl &= ~d_eol;
1325 		myLastRxDesc = prevRxDesc;
1326 		rx_queue_len = 0;
1327 	}
1328 }
1329 
1330 /* The inverse routine to net_open(). */
1331 static int
e100_close(struct net_device * dev)1332 e100_close(struct net_device *dev)
1333 {
1334 	printk(KERN_INFO "Closing %s.\n", dev->name);
1335 
1336 	netif_stop_queue(dev);
1337 
1338 	*R_IRQ_MASK0_CLR =
1339 		IO_STATE(R_IRQ_MASK0_CLR, overrun, clr) |
1340 		IO_STATE(R_IRQ_MASK0_CLR, underrun, clr) |
1341 		IO_STATE(R_IRQ_MASK0_CLR, excessive_col, clr);
1342 
1343 	*R_IRQ_MASK2_CLR =
1344 		IO_STATE(R_IRQ_MASK2_CLR, dma0_descr, clr) |
1345 		IO_STATE(R_IRQ_MASK2_CLR, dma0_eop, clr) |
1346 		IO_STATE(R_IRQ_MASK2_CLR, dma1_descr, clr) |
1347 		IO_STATE(R_IRQ_MASK2_CLR, dma1_eop, clr);
1348 
1349 	/* Stop the receiver and the transmitter */
1350 
1351 	RESET_DMA(NETWORK_TX_DMA_NBR);
1352 	RESET_DMA(NETWORK_RX_DMA_NBR);
1353 
1354 	/* Flush the Tx and disable Rx here. */
1355 
1356 	free_irq(NETWORK_DMA_RX_IRQ_NBR, (void *)dev);
1357 	free_irq(NETWORK_DMA_TX_IRQ_NBR, (void *)dev);
1358 	free_irq(NETWORK_STATUS_IRQ_NBR, (void *)dev);
1359 
1360 	cris_free_dma(NETWORK_TX_DMA_NBR, cardname);
1361 	cris_free_dma(NETWORK_RX_DMA_NBR, cardname);
1362 
1363 	/* Update the statistics here. */
1364 
1365 	update_rx_stats(&dev->stats);
1366 	update_tx_stats(&dev->stats);
1367 
1368 	/* Stop speed/duplex timers */
1369 	del_timer(&speed_timer);
1370 	del_timer(&duplex_timer);
1371 
1372 	return 0;
1373 }
1374 
1375 static int
e100_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)1376 e100_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1377 {
1378 	struct mii_ioctl_data *data = if_mii(ifr);
1379 	struct net_local *np = netdev_priv(dev);
1380 	int rc = 0;
1381         int old_autoneg;
1382 
1383 	spin_lock(&np->lock); /* Preempt protection */
1384 	switch (cmd) {
1385 		/* The ioctls below should be considered obsolete but are */
1386 		/* still present for compatibility with old scripts/apps  */
1387 		case SET_ETH_SPEED_10:                  /* 10 Mbps */
1388 			e100_set_speed(dev, 10);
1389 			break;
1390 		case SET_ETH_SPEED_100:                /* 100 Mbps */
1391 			e100_set_speed(dev, 100);
1392 			break;
1393 		case SET_ETH_SPEED_AUTO:        /* Auto-negotiate speed */
1394 			e100_set_speed(dev, 0);
1395 			break;
1396 		case SET_ETH_DUPLEX_HALF:       /* Half duplex */
1397 			e100_set_duplex(dev, half);
1398 			break;
1399 		case SET_ETH_DUPLEX_FULL:       /* Full duplex */
1400 			e100_set_duplex(dev, full);
1401 			break;
1402 		case SET_ETH_DUPLEX_AUTO:       /* Auto-negotiate duplex */
1403 			e100_set_duplex(dev, autoneg);
1404 			break;
1405 	        case SET_ETH_AUTONEG:
1406 			old_autoneg = autoneg_normal;
1407 		        autoneg_normal = *(int*)data;
1408 			if (autoneg_normal != old_autoneg)
1409 				e100_negotiate(dev);
1410 			break;
1411 		default:
1412 			rc = generic_mii_ioctl(&np->mii_if, if_mii(ifr),
1413 						cmd, NULL);
1414 			break;
1415 	}
1416 	spin_unlock(&np->lock);
1417 	return rc;
1418 }
1419 
e100_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)1420 static int e100_get_settings(struct net_device *dev,
1421 			     struct ethtool_cmd *cmd)
1422 {
1423 	struct net_local *np = netdev_priv(dev);
1424 	int err;
1425 
1426 	spin_lock_irq(&np->lock);
1427 	err = mii_ethtool_gset(&np->mii_if, cmd);
1428 	spin_unlock_irq(&np->lock);
1429 
1430 	/* The PHY may support 1000baseT, but the Etrax100 does not.  */
1431 	cmd->supported &= ~(SUPPORTED_1000baseT_Half
1432 			    | SUPPORTED_1000baseT_Full);
1433 	return err;
1434 }
1435 
e100_set_settings(struct net_device * dev,struct ethtool_cmd * ecmd)1436 static int e100_set_settings(struct net_device *dev,
1437 			     struct ethtool_cmd *ecmd)
1438 {
1439 	if (ecmd->autoneg == AUTONEG_ENABLE) {
1440 		e100_set_duplex(dev, autoneg);
1441 		e100_set_speed(dev, 0);
1442 	} else {
1443 		e100_set_duplex(dev, ecmd->duplex == DUPLEX_HALF ? half : full);
1444 		e100_set_speed(dev, ecmd->speed == SPEED_10 ? 10: 100);
1445 	}
1446 
1447 	return 0;
1448 }
1449 
e100_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1450 static void e100_get_drvinfo(struct net_device *dev,
1451 			     struct ethtool_drvinfo *info)
1452 {
1453 	strncpy(info->driver, "ETRAX 100LX", sizeof(info->driver) - 1);
1454 	strncpy(info->version, "$Revision: 1.31 $", sizeof(info->version) - 1);
1455 	strncpy(info->fw_version, "N/A", sizeof(info->fw_version) - 1);
1456 	strncpy(info->bus_info, "N/A", sizeof(info->bus_info) - 1);
1457 }
1458 
e100_nway_reset(struct net_device * dev)1459 static int e100_nway_reset(struct net_device *dev)
1460 {
1461 	if (current_duplex == autoneg && current_speed_selection == 0)
1462 		e100_negotiate(dev);
1463 	return 0;
1464 }
1465 
1466 static const struct ethtool_ops e100_ethtool_ops = {
1467 	.get_settings	= e100_get_settings,
1468 	.set_settings	= e100_set_settings,
1469 	.get_drvinfo	= e100_get_drvinfo,
1470 	.nway_reset	= e100_nway_reset,
1471 	.get_link	= ethtool_op_get_link,
1472 };
1473 
1474 static int
e100_set_config(struct net_device * dev,struct ifmap * map)1475 e100_set_config(struct net_device *dev, struct ifmap *map)
1476 {
1477 	struct net_local *np = netdev_priv(dev);
1478 
1479 	spin_lock(&np->lock); /* Preempt protection */
1480 
1481 	switch(map->port) {
1482 		case IF_PORT_UNKNOWN:
1483 			/* Use autoneg */
1484 			e100_set_speed(dev, 0);
1485 			e100_set_duplex(dev, autoneg);
1486 			break;
1487 		case IF_PORT_10BASET:
1488 			e100_set_speed(dev, 10);
1489 			e100_set_duplex(dev, autoneg);
1490 			break;
1491 		case IF_PORT_100BASET:
1492 		case IF_PORT_100BASETX:
1493 			e100_set_speed(dev, 100);
1494 			e100_set_duplex(dev, autoneg);
1495 			break;
1496 		case IF_PORT_100BASEFX:
1497 		case IF_PORT_10BASE2:
1498 		case IF_PORT_AUI:
1499 			spin_unlock(&np->lock);
1500 			return -EOPNOTSUPP;
1501 			break;
1502 		default:
1503 			printk(KERN_ERR "%s: Invalid media selected", dev->name);
1504 			spin_unlock(&np->lock);
1505 			return -EINVAL;
1506 	}
1507 	spin_unlock(&np->lock);
1508 	return 0;
1509 }
1510 
1511 static void
update_rx_stats(struct net_device_stats * es)1512 update_rx_stats(struct net_device_stats *es)
1513 {
1514 	unsigned long r = *R_REC_COUNTERS;
1515 	/* update stats relevant to reception errors */
1516 	es->rx_fifo_errors += IO_EXTRACT(R_REC_COUNTERS, congestion, r);
1517 	es->rx_crc_errors += IO_EXTRACT(R_REC_COUNTERS, crc_error, r);
1518 	es->rx_frame_errors += IO_EXTRACT(R_REC_COUNTERS, alignment_error, r);
1519 	es->rx_length_errors += IO_EXTRACT(R_REC_COUNTERS, oversize, r);
1520 }
1521 
1522 static void
update_tx_stats(struct net_device_stats * es)1523 update_tx_stats(struct net_device_stats *es)
1524 {
1525 	unsigned long r = *R_TR_COUNTERS;
1526 	/* update stats relevant to transmission errors */
1527 	es->collisions +=
1528 		IO_EXTRACT(R_TR_COUNTERS, single_col, r) +
1529 		IO_EXTRACT(R_TR_COUNTERS, multiple_col, r);
1530 }
1531 
1532 /*
1533  * Get the current statistics.
1534  * This may be called with the card open or closed.
1535  */
1536 static struct net_device_stats *
e100_get_stats(struct net_device * dev)1537 e100_get_stats(struct net_device *dev)
1538 {
1539 	struct net_local *lp = netdev_priv(dev);
1540 	unsigned long flags;
1541 
1542 	spin_lock_irqsave(&lp->lock, flags);
1543 
1544 	update_rx_stats(&dev->stats);
1545 	update_tx_stats(&dev->stats);
1546 
1547 	spin_unlock_irqrestore(&lp->lock, flags);
1548 	return &dev->stats;
1549 }
1550 
1551 /*
1552  * Set or clear the multicast filter for this adaptor.
1553  * num_addrs == -1	Promiscuous mode, receive all packets
1554  * num_addrs == 0	Normal mode, clear multicast list
1555  * num_addrs > 0	Multicast mode, receive normal and MC packets,
1556  *			and do best-effort filtering.
1557  */
1558 static void
set_multicast_list(struct net_device * dev)1559 set_multicast_list(struct net_device *dev)
1560 {
1561 	struct net_local *lp = netdev_priv(dev);
1562 	int num_addr = netdev_mc_count(dev);
1563 	unsigned long int lo_bits;
1564 	unsigned long int hi_bits;
1565 
1566 	spin_lock(&lp->lock);
1567 	if (dev->flags & IFF_PROMISC) {
1568 		/* promiscuous mode */
1569 		lo_bits = 0xfffffffful;
1570 		hi_bits = 0xfffffffful;
1571 
1572 		/* Enable individual receive */
1573 		SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, receive);
1574 		*R_NETWORK_REC_CONFIG = network_rec_config_shadow;
1575 	} else if (dev->flags & IFF_ALLMULTI) {
1576 		/* enable all multicasts */
1577 		lo_bits = 0xfffffffful;
1578 		hi_bits = 0xfffffffful;
1579 
1580 		/* Disable individual receive */
1581 		SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
1582 		*R_NETWORK_REC_CONFIG =  network_rec_config_shadow;
1583 	} else if (num_addr == 0) {
1584 		/* Normal, clear the mc list */
1585 		lo_bits = 0x00000000ul;
1586 		hi_bits = 0x00000000ul;
1587 
1588 		/* Disable individual receive */
1589 		SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
1590 		*R_NETWORK_REC_CONFIG =  network_rec_config_shadow;
1591 	} else {
1592 		/* MC mode, receive normal and MC packets */
1593 		char hash_ix;
1594 		struct netdev_hw_addr *ha;
1595 		char *baddr;
1596 
1597 		lo_bits = 0x00000000ul;
1598 		hi_bits = 0x00000000ul;
1599 		netdev_for_each_mc_addr(ha, dev) {
1600 			/* Calculate the hash index for the GA registers */
1601 
1602 			hash_ix = 0;
1603 			baddr = ha->addr;
1604 			hash_ix ^= (*baddr) & 0x3f;
1605 			hash_ix ^= ((*baddr) >> 6) & 0x03;
1606 			++baddr;
1607 			hash_ix ^= ((*baddr) << 2) & 0x03c;
1608 			hash_ix ^= ((*baddr) >> 4) & 0xf;
1609 			++baddr;
1610 			hash_ix ^= ((*baddr) << 4) & 0x30;
1611 			hash_ix ^= ((*baddr) >> 2) & 0x3f;
1612 			++baddr;
1613 			hash_ix ^= (*baddr) & 0x3f;
1614 			hash_ix ^= ((*baddr) >> 6) & 0x03;
1615 			++baddr;
1616 			hash_ix ^= ((*baddr) << 2) & 0x03c;
1617 			hash_ix ^= ((*baddr) >> 4) & 0xf;
1618 			++baddr;
1619 			hash_ix ^= ((*baddr) << 4) & 0x30;
1620 			hash_ix ^= ((*baddr) >> 2) & 0x3f;
1621 
1622 			hash_ix &= 0x3f;
1623 
1624 			if (hash_ix >= 32) {
1625 				hi_bits |= (1 << (hash_ix-32));
1626 			} else {
1627 				lo_bits |= (1 << hash_ix);
1628 			}
1629 		}
1630 		/* Disable individual receive */
1631 		SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
1632 		*R_NETWORK_REC_CONFIG = network_rec_config_shadow;
1633 	}
1634 	*R_NETWORK_GA_0 = lo_bits;
1635 	*R_NETWORK_GA_1 = hi_bits;
1636 	spin_unlock(&lp->lock);
1637 }
1638 
1639 void
e100_hardware_send_packet(struct net_local * np,char * buf,int length)1640 e100_hardware_send_packet(struct net_local *np, char *buf, int length)
1641 {
1642 	D(printk("e100 send pack, buf 0x%x len %d\n", buf, length));
1643 
1644 	spin_lock(&np->led_lock);
1645 	if (!led_active && time_after(jiffies, led_next_time)) {
1646 		/* light the network leds depending on the current speed. */
1647 		e100_set_network_leds(NETWORK_ACTIVITY);
1648 
1649 		/* Set the earliest time we may clear the LED */
1650 		led_next_time = jiffies + NET_FLASH_TIME;
1651 		led_active = 1;
1652 		mod_timer(&clear_led_timer, jiffies + HZ/10);
1653 	}
1654 	spin_unlock(&np->led_lock);
1655 
1656 	/* configure the tx dma descriptor */
1657 	myNextTxDesc->descr.sw_len = length;
1658 	myNextTxDesc->descr.ctrl = d_eop | d_eol | d_wait;
1659 	myNextTxDesc->descr.buf = virt_to_phys(buf);
1660 
1661         /* Move end of list */
1662         myLastTxDesc->descr.ctrl &= ~d_eol;
1663         myLastTxDesc = myNextTxDesc;
1664 
1665 	/* Restart DMA channel */
1666 	*R_DMA_CH0_CMD = IO_STATE(R_DMA_CH0_CMD, cmd, restart);
1667 }
1668 
1669 static void
e100_clear_network_leds(unsigned long dummy)1670 e100_clear_network_leds(unsigned long dummy)
1671 {
1672 	struct net_device *dev = (struct net_device *)dummy;
1673 	struct net_local *np = netdev_priv(dev);
1674 
1675 	spin_lock(&np->led_lock);
1676 
1677 	if (led_active && time_after(jiffies, led_next_time)) {
1678 		e100_set_network_leds(NO_NETWORK_ACTIVITY);
1679 
1680 		/* Set the earliest time we may set the LED */
1681 		led_next_time = jiffies + NET_FLASH_PAUSE;
1682 		led_active = 0;
1683 	}
1684 
1685 	spin_unlock(&np->led_lock);
1686 }
1687 
1688 static void
e100_set_network_leds(int active)1689 e100_set_network_leds(int active)
1690 {
1691 #if defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK)
1692 	int light_leds = (active == NO_NETWORK_ACTIVITY);
1693 #elif defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY)
1694 	int light_leds = (active == NETWORK_ACTIVITY);
1695 #else
1696 #error "Define either CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK or CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY"
1697 #endif
1698 
1699 	if (!current_speed) {
1700 		/* Make LED red, link is down */
1701 		CRIS_LED_NETWORK_SET(CRIS_LED_OFF);
1702 	} else if (light_leds) {
1703 		if (current_speed == 10) {
1704 			CRIS_LED_NETWORK_SET(CRIS_LED_ORANGE);
1705 		} else {
1706 			CRIS_LED_NETWORK_SET(CRIS_LED_GREEN);
1707 		}
1708 	} else {
1709 		CRIS_LED_NETWORK_SET(CRIS_LED_OFF);
1710 	}
1711 }
1712 
1713 #ifdef CONFIG_NET_POLL_CONTROLLER
1714 static void
e100_netpoll(struct net_device * netdev)1715 e100_netpoll(struct net_device* netdev)
1716 {
1717 	e100rxtx_interrupt(NETWORK_DMA_TX_IRQ_NBR, netdev, NULL);
1718 }
1719 #endif
1720 
1721 static int
etrax_init_module(void)1722 etrax_init_module(void)
1723 {
1724 	return etrax_ethernet_init();
1725 }
1726 
1727 static int __init
e100_boot_setup(char * str)1728 e100_boot_setup(char* str)
1729 {
1730 	struct sockaddr sa = {0};
1731 	int i;
1732 
1733 	/* Parse the colon separated Ethernet station address */
1734 	for (i = 0; i <  ETH_ALEN; i++) {
1735 		unsigned int tmp;
1736 		if (sscanf(str + 3*i, "%2x", &tmp) != 1) {
1737 			printk(KERN_WARNING "Malformed station address");
1738 			return 0;
1739 		}
1740 		sa.sa_data[i] = (char)tmp;
1741 	}
1742 
1743 	default_mac = sa;
1744 	return 1;
1745 }
1746 
1747 __setup("etrax100_eth=", e100_boot_setup);
1748 
1749 module_init(etrax_init_module);
1750