1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Artem Bityutskiy (Битюцкий Артём)
19  */
20 
21 /*
22  * UBI scanning sub-system.
23  *
24  * This sub-system is responsible for scanning the flash media, checking UBI
25  * headers and providing complete information about the UBI flash image.
26  *
27  * The scanning information is represented by a &struct ubi_scan_info' object.
28  * Information about found volumes is represented by &struct ubi_scan_volume
29  * objects which are kept in volume RB-tree with root at the @volumes field.
30  * The RB-tree is indexed by the volume ID.
31  *
32  * Scanned logical eraseblocks are represented by &struct ubi_scan_leb objects.
33  * These objects are kept in per-volume RB-trees with the root at the
34  * corresponding &struct ubi_scan_volume object. To put it differently, we keep
35  * an RB-tree of per-volume objects and each of these objects is the root of
36  * RB-tree of per-eraseblock objects.
37  *
38  * Corrupted physical eraseblocks are put to the @corr list, free physical
39  * eraseblocks are put to the @free list and the physical eraseblock to be
40  * erased are put to the @erase list.
41  *
42  * About corruptions
43  * ~~~~~~~~~~~~~~~~~
44  *
45  * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
46  * whether the headers are corrupted or not. Sometimes UBI also protects the
47  * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
48  * when it moves the contents of a PEB for wear-leveling purposes.
49  *
50  * UBI tries to distinguish between 2 types of corruptions.
51  *
52  * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
53  * tries to handle them gracefully, without printing too many warnings and
54  * error messages. The idea is that we do not lose important data in these case
55  * - we may lose only the data which was being written to the media just before
56  * the power cut happened, and the upper layers (e.g., UBIFS) are supposed to
57  * handle such data losses (e.g., by using the FS journal).
58  *
59  * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
60  * the reason is a power cut, UBI puts this PEB to the @erase list, and all
61  * PEBs in the @erase list are scheduled for erasure later.
62  *
63  * 2. Unexpected corruptions which are not caused by power cuts. During
64  * scanning, such PEBs are put to the @corr list and UBI preserves them.
65  * Obviously, this lessens the amount of available PEBs, and if at some  point
66  * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
67  * about such PEBs every time the MTD device is attached.
68  *
69  * However, it is difficult to reliably distinguish between these types of
70  * corruptions and UBI's strategy is as follows. UBI assumes corruption type 2
71  * if the VID header is corrupted and the data area does not contain all 0xFFs,
72  * and there were no bit-flips or integrity errors while reading the data area.
73  * Otherwise UBI assumes corruption type 1. So the decision criteria are as
74  * follows.
75  *   o If the data area contains only 0xFFs, there is no data, and it is safe
76  *     to just erase this PEB - this is corruption type 1.
77  *   o If the data area has bit-flips or data integrity errors (ECC errors on
78  *     NAND), it is probably a PEB which was being erased when power cut
79  *     happened, so this is corruption type 1. However, this is just a guess,
80  *     which might be wrong.
81  *   o Otherwise this it corruption type 2.
82  */
83 
84 #include <linux/err.h>
85 #include <linux/slab.h>
86 #include <linux/crc32.h>
87 #include <linux/math64.h>
88 #include <linux/random.h>
89 #include "ubi.h"
90 
91 #ifdef CONFIG_MTD_UBI_DEBUG
92 static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si);
93 #else
94 #define paranoid_check_si(ubi, si) 0
95 #endif
96 
97 /* Temporary variables used during scanning */
98 static struct ubi_ec_hdr *ech;
99 static struct ubi_vid_hdr *vidh;
100 
101 /**
102  * add_to_list - add physical eraseblock to a list.
103  * @si: scanning information
104  * @pnum: physical eraseblock number to add
105  * @ec: erase counter of the physical eraseblock
106  * @to_head: if not zero, add to the head of the list
107  * @list: the list to add to
108  *
109  * This function adds physical eraseblock @pnum to free, erase, or alien lists.
110  * If @to_head is not zero, PEB will be added to the head of the list, which
111  * basically means it will be processed first later. E.g., we add corrupted
112  * PEBs (corrupted due to power cuts) to the head of the erase list to make
113  * sure we erase them first and get rid of corruptions ASAP. This function
114  * returns zero in case of success and a negative error code in case of
115  * failure.
116  */
add_to_list(struct ubi_scan_info * si,int pnum,int ec,int to_head,struct list_head * list)117 static int add_to_list(struct ubi_scan_info *si, int pnum, int ec, int to_head,
118 		       struct list_head *list)
119 {
120 	struct ubi_scan_leb *seb;
121 
122 	if (list == &si->free) {
123 		dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
124 	} else if (list == &si->erase) {
125 		dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
126 	} else if (list == &si->alien) {
127 		dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
128 		si->alien_peb_count += 1;
129 	} else
130 		BUG();
131 
132 	seb = kmem_cache_alloc(si->scan_leb_slab, GFP_KERNEL);
133 	if (!seb)
134 		return -ENOMEM;
135 
136 	seb->pnum = pnum;
137 	seb->ec = ec;
138 	if (to_head)
139 		list_add(&seb->u.list, list);
140 	else
141 		list_add_tail(&seb->u.list, list);
142 	return 0;
143 }
144 
145 /**
146  * add_corrupted - add a corrupted physical eraseblock.
147  * @si: scanning information
148  * @pnum: physical eraseblock number to add
149  * @ec: erase counter of the physical eraseblock
150  *
151  * This function adds corrupted physical eraseblock @pnum to the 'corr' list.
152  * The corruption was presumably not caused by a power cut. Returns zero in
153  * case of success and a negative error code in case of failure.
154  */
add_corrupted(struct ubi_scan_info * si,int pnum,int ec)155 static int add_corrupted(struct ubi_scan_info *si, int pnum, int ec)
156 {
157 	struct ubi_scan_leb *seb;
158 
159 	dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
160 
161 	seb = kmem_cache_alloc(si->scan_leb_slab, GFP_KERNEL);
162 	if (!seb)
163 		return -ENOMEM;
164 
165 	si->corr_peb_count += 1;
166 	seb->pnum = pnum;
167 	seb->ec = ec;
168 	list_add(&seb->u.list, &si->corr);
169 	return 0;
170 }
171 
172 /**
173  * validate_vid_hdr - check volume identifier header.
174  * @vid_hdr: the volume identifier header to check
175  * @sv: information about the volume this logical eraseblock belongs to
176  * @pnum: physical eraseblock number the VID header came from
177  *
178  * This function checks that data stored in @vid_hdr is consistent. Returns
179  * non-zero if an inconsistency was found and zero if not.
180  *
181  * Note, UBI does sanity check of everything it reads from the flash media.
182  * Most of the checks are done in the I/O sub-system. Here we check that the
183  * information in the VID header is consistent to the information in other VID
184  * headers of the same volume.
185  */
validate_vid_hdr(const struct ubi_vid_hdr * vid_hdr,const struct ubi_scan_volume * sv,int pnum)186 static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
187 			    const struct ubi_scan_volume *sv, int pnum)
188 {
189 	int vol_type = vid_hdr->vol_type;
190 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
191 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
192 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
193 
194 	if (sv->leb_count != 0) {
195 		int sv_vol_type;
196 
197 		/*
198 		 * This is not the first logical eraseblock belonging to this
199 		 * volume. Ensure that the data in its VID header is consistent
200 		 * to the data in previous logical eraseblock headers.
201 		 */
202 
203 		if (vol_id != sv->vol_id) {
204 			dbg_err("inconsistent vol_id");
205 			goto bad;
206 		}
207 
208 		if (sv->vol_type == UBI_STATIC_VOLUME)
209 			sv_vol_type = UBI_VID_STATIC;
210 		else
211 			sv_vol_type = UBI_VID_DYNAMIC;
212 
213 		if (vol_type != sv_vol_type) {
214 			dbg_err("inconsistent vol_type");
215 			goto bad;
216 		}
217 
218 		if (used_ebs != sv->used_ebs) {
219 			dbg_err("inconsistent used_ebs");
220 			goto bad;
221 		}
222 
223 		if (data_pad != sv->data_pad) {
224 			dbg_err("inconsistent data_pad");
225 			goto bad;
226 		}
227 	}
228 
229 	return 0;
230 
231 bad:
232 	ubi_err("inconsistent VID header at PEB %d", pnum);
233 	ubi_dbg_dump_vid_hdr(vid_hdr);
234 	ubi_dbg_dump_sv(sv);
235 	return -EINVAL;
236 }
237 
238 /**
239  * add_volume - add volume to the scanning information.
240  * @si: scanning information
241  * @vol_id: ID of the volume to add
242  * @pnum: physical eraseblock number
243  * @vid_hdr: volume identifier header
244  *
245  * If the volume corresponding to the @vid_hdr logical eraseblock is already
246  * present in the scanning information, this function does nothing. Otherwise
247  * it adds corresponding volume to the scanning information. Returns a pointer
248  * to the scanning volume object in case of success and a negative error code
249  * in case of failure.
250  */
add_volume(struct ubi_scan_info * si,int vol_id,int pnum,const struct ubi_vid_hdr * vid_hdr)251 static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id,
252 					  int pnum,
253 					  const struct ubi_vid_hdr *vid_hdr)
254 {
255 	struct ubi_scan_volume *sv;
256 	struct rb_node **p = &si->volumes.rb_node, *parent = NULL;
257 
258 	ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
259 
260 	/* Walk the volume RB-tree to look if this volume is already present */
261 	while (*p) {
262 		parent = *p;
263 		sv = rb_entry(parent, struct ubi_scan_volume, rb);
264 
265 		if (vol_id == sv->vol_id)
266 			return sv;
267 
268 		if (vol_id > sv->vol_id)
269 			p = &(*p)->rb_left;
270 		else
271 			p = &(*p)->rb_right;
272 	}
273 
274 	/* The volume is absent - add it */
275 	sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL);
276 	if (!sv)
277 		return ERR_PTR(-ENOMEM);
278 
279 	sv->highest_lnum = sv->leb_count = 0;
280 	sv->vol_id = vol_id;
281 	sv->root = RB_ROOT;
282 	sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
283 	sv->data_pad = be32_to_cpu(vid_hdr->data_pad);
284 	sv->compat = vid_hdr->compat;
285 	sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
286 							    : UBI_STATIC_VOLUME;
287 	if (vol_id > si->highest_vol_id)
288 		si->highest_vol_id = vol_id;
289 
290 	rb_link_node(&sv->rb, parent, p);
291 	rb_insert_color(&sv->rb, &si->volumes);
292 	si->vols_found += 1;
293 	dbg_bld("added volume %d", vol_id);
294 	return sv;
295 }
296 
297 /**
298  * compare_lebs - find out which logical eraseblock is newer.
299  * @ubi: UBI device description object
300  * @seb: first logical eraseblock to compare
301  * @pnum: physical eraseblock number of the second logical eraseblock to
302  * compare
303  * @vid_hdr: volume identifier header of the second logical eraseblock
304  *
305  * This function compares 2 copies of a LEB and informs which one is newer. In
306  * case of success this function returns a positive value, in case of failure, a
307  * negative error code is returned. The success return codes use the following
308  * bits:
309  *     o bit 0 is cleared: the first PEB (described by @seb) is newer than the
310  *       second PEB (described by @pnum and @vid_hdr);
311  *     o bit 0 is set: the second PEB is newer;
312  *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
313  *     o bit 1 is set: bit-flips were detected in the newer LEB;
314  *     o bit 2 is cleared: the older LEB is not corrupted;
315  *     o bit 2 is set: the older LEB is corrupted.
316  */
compare_lebs(struct ubi_device * ubi,const struct ubi_scan_leb * seb,int pnum,const struct ubi_vid_hdr * vid_hdr)317 static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb,
318 			int pnum, const struct ubi_vid_hdr *vid_hdr)
319 {
320 	void *buf;
321 	int len, err, second_is_newer, bitflips = 0, corrupted = 0;
322 	uint32_t data_crc, crc;
323 	struct ubi_vid_hdr *vh = NULL;
324 	unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
325 
326 	if (sqnum2 == seb->sqnum) {
327 		/*
328 		 * This must be a really ancient UBI image which has been
329 		 * created before sequence numbers support has been added. At
330 		 * that times we used 32-bit LEB versions stored in logical
331 		 * eraseblocks. That was before UBI got into mainline. We do not
332 		 * support these images anymore. Well, those images still work,
333 		 * but only if no unclean reboots happened.
334 		 */
335 		ubi_err("unsupported on-flash UBI format\n");
336 		return -EINVAL;
337 	}
338 
339 	/* Obviously the LEB with lower sequence counter is older */
340 	second_is_newer = !!(sqnum2 > seb->sqnum);
341 
342 	/*
343 	 * Now we know which copy is newer. If the copy flag of the PEB with
344 	 * newer version is not set, then we just return, otherwise we have to
345 	 * check data CRC. For the second PEB we already have the VID header,
346 	 * for the first one - we'll need to re-read it from flash.
347 	 *
348 	 * Note: this may be optimized so that we wouldn't read twice.
349 	 */
350 
351 	if (second_is_newer) {
352 		if (!vid_hdr->copy_flag) {
353 			/* It is not a copy, so it is newer */
354 			dbg_bld("second PEB %d is newer, copy_flag is unset",
355 				pnum);
356 			return 1;
357 		}
358 	} else {
359 		if (!seb->copy_flag) {
360 			/* It is not a copy, so it is newer */
361 			dbg_bld("first PEB %d is newer, copy_flag is unset",
362 				pnum);
363 			return bitflips << 1;
364 		}
365 
366 		vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
367 		if (!vh)
368 			return -ENOMEM;
369 
370 		pnum = seb->pnum;
371 		err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
372 		if (err) {
373 			if (err == UBI_IO_BITFLIPS)
374 				bitflips = 1;
375 			else {
376 				dbg_err("VID of PEB %d header is bad, but it "
377 					"was OK earlier, err %d", pnum, err);
378 				if (err > 0)
379 					err = -EIO;
380 
381 				goto out_free_vidh;
382 			}
383 		}
384 
385 		vid_hdr = vh;
386 	}
387 
388 	/* Read the data of the copy and check the CRC */
389 
390 	len = be32_to_cpu(vid_hdr->data_size);
391 	buf = vmalloc(len);
392 	if (!buf) {
393 		err = -ENOMEM;
394 		goto out_free_vidh;
395 	}
396 
397 	err = ubi_io_read_data(ubi, buf, pnum, 0, len);
398 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
399 		goto out_free_buf;
400 
401 	data_crc = be32_to_cpu(vid_hdr->data_crc);
402 	crc = crc32(UBI_CRC32_INIT, buf, len);
403 	if (crc != data_crc) {
404 		dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
405 			pnum, crc, data_crc);
406 		corrupted = 1;
407 		bitflips = 0;
408 		second_is_newer = !second_is_newer;
409 	} else {
410 		dbg_bld("PEB %d CRC is OK", pnum);
411 		bitflips = !!err;
412 	}
413 
414 	vfree(buf);
415 	ubi_free_vid_hdr(ubi, vh);
416 
417 	if (second_is_newer)
418 		dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
419 	else
420 		dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
421 
422 	return second_is_newer | (bitflips << 1) | (corrupted << 2);
423 
424 out_free_buf:
425 	vfree(buf);
426 out_free_vidh:
427 	ubi_free_vid_hdr(ubi, vh);
428 	return err;
429 }
430 
431 /**
432  * ubi_scan_add_used - add physical eraseblock to the scanning information.
433  * @ubi: UBI device description object
434  * @si: scanning information
435  * @pnum: the physical eraseblock number
436  * @ec: erase counter
437  * @vid_hdr: the volume identifier header
438  * @bitflips: if bit-flips were detected when this physical eraseblock was read
439  *
440  * This function adds information about a used physical eraseblock to the
441  * 'used' tree of the corresponding volume. The function is rather complex
442  * because it has to handle cases when this is not the first physical
443  * eraseblock belonging to the same logical eraseblock, and the newer one has
444  * to be picked, while the older one has to be dropped. This function returns
445  * zero in case of success and a negative error code in case of failure.
446  */
ubi_scan_add_used(struct ubi_device * ubi,struct ubi_scan_info * si,int pnum,int ec,const struct ubi_vid_hdr * vid_hdr,int bitflips)447 int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si,
448 		      int pnum, int ec, const struct ubi_vid_hdr *vid_hdr,
449 		      int bitflips)
450 {
451 	int err, vol_id, lnum;
452 	unsigned long long sqnum;
453 	struct ubi_scan_volume *sv;
454 	struct ubi_scan_leb *seb;
455 	struct rb_node **p, *parent = NULL;
456 
457 	vol_id = be32_to_cpu(vid_hdr->vol_id);
458 	lnum = be32_to_cpu(vid_hdr->lnum);
459 	sqnum = be64_to_cpu(vid_hdr->sqnum);
460 
461 	dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
462 		pnum, vol_id, lnum, ec, sqnum, bitflips);
463 
464 	sv = add_volume(si, vol_id, pnum, vid_hdr);
465 	if (IS_ERR(sv))
466 		return PTR_ERR(sv);
467 
468 	if (si->max_sqnum < sqnum)
469 		si->max_sqnum = sqnum;
470 
471 	/*
472 	 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
473 	 * if this is the first instance of this logical eraseblock or not.
474 	 */
475 	p = &sv->root.rb_node;
476 	while (*p) {
477 		int cmp_res;
478 
479 		parent = *p;
480 		seb = rb_entry(parent, struct ubi_scan_leb, u.rb);
481 		if (lnum != seb->lnum) {
482 			if (lnum < seb->lnum)
483 				p = &(*p)->rb_left;
484 			else
485 				p = &(*p)->rb_right;
486 			continue;
487 		}
488 
489 		/*
490 		 * There is already a physical eraseblock describing the same
491 		 * logical eraseblock present.
492 		 */
493 
494 		dbg_bld("this LEB already exists: PEB %d, sqnum %llu, "
495 			"EC %d", seb->pnum, seb->sqnum, seb->ec);
496 
497 		/*
498 		 * Make sure that the logical eraseblocks have different
499 		 * sequence numbers. Otherwise the image is bad.
500 		 *
501 		 * However, if the sequence number is zero, we assume it must
502 		 * be an ancient UBI image from the era when UBI did not have
503 		 * sequence numbers. We still can attach these images, unless
504 		 * there is a need to distinguish between old and new
505 		 * eraseblocks, in which case we'll refuse the image in
506 		 * 'compare_lebs()'. In other words, we attach old clean
507 		 * images, but refuse attaching old images with duplicated
508 		 * logical eraseblocks because there was an unclean reboot.
509 		 */
510 		if (seb->sqnum == sqnum && sqnum != 0) {
511 			ubi_err("two LEBs with same sequence number %llu",
512 				sqnum);
513 			ubi_dbg_dump_seb(seb, 0);
514 			ubi_dbg_dump_vid_hdr(vid_hdr);
515 			return -EINVAL;
516 		}
517 
518 		/*
519 		 * Now we have to drop the older one and preserve the newer
520 		 * one.
521 		 */
522 		cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr);
523 		if (cmp_res < 0)
524 			return cmp_res;
525 
526 		if (cmp_res & 1) {
527 			/*
528 			 * This logical eraseblock is newer than the one
529 			 * found earlier.
530 			 */
531 			err = validate_vid_hdr(vid_hdr, sv, pnum);
532 			if (err)
533 				return err;
534 
535 			err = add_to_list(si, seb->pnum, seb->ec, cmp_res & 4,
536 					  &si->erase);
537 			if (err)
538 				return err;
539 
540 			seb->ec = ec;
541 			seb->pnum = pnum;
542 			seb->scrub = ((cmp_res & 2) || bitflips);
543 			seb->copy_flag = vid_hdr->copy_flag;
544 			seb->sqnum = sqnum;
545 
546 			if (sv->highest_lnum == lnum)
547 				sv->last_data_size =
548 					be32_to_cpu(vid_hdr->data_size);
549 
550 			return 0;
551 		} else {
552 			/*
553 			 * This logical eraseblock is older than the one found
554 			 * previously.
555 			 */
556 			return add_to_list(si, pnum, ec, cmp_res & 4,
557 					   &si->erase);
558 		}
559 	}
560 
561 	/*
562 	 * We've met this logical eraseblock for the first time, add it to the
563 	 * scanning information.
564 	 */
565 
566 	err = validate_vid_hdr(vid_hdr, sv, pnum);
567 	if (err)
568 		return err;
569 
570 	seb = kmem_cache_alloc(si->scan_leb_slab, GFP_KERNEL);
571 	if (!seb)
572 		return -ENOMEM;
573 
574 	seb->ec = ec;
575 	seb->pnum = pnum;
576 	seb->lnum = lnum;
577 	seb->scrub = bitflips;
578 	seb->copy_flag = vid_hdr->copy_flag;
579 	seb->sqnum = sqnum;
580 
581 	if (sv->highest_lnum <= lnum) {
582 		sv->highest_lnum = lnum;
583 		sv->last_data_size = be32_to_cpu(vid_hdr->data_size);
584 	}
585 
586 	sv->leb_count += 1;
587 	rb_link_node(&seb->u.rb, parent, p);
588 	rb_insert_color(&seb->u.rb, &sv->root);
589 	return 0;
590 }
591 
592 /**
593  * ubi_scan_find_sv - find volume in the scanning information.
594  * @si: scanning information
595  * @vol_id: the requested volume ID
596  *
597  * This function returns a pointer to the volume description or %NULL if there
598  * are no data about this volume in the scanning information.
599  */
ubi_scan_find_sv(const struct ubi_scan_info * si,int vol_id)600 struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si,
601 					 int vol_id)
602 {
603 	struct ubi_scan_volume *sv;
604 	struct rb_node *p = si->volumes.rb_node;
605 
606 	while (p) {
607 		sv = rb_entry(p, struct ubi_scan_volume, rb);
608 
609 		if (vol_id == sv->vol_id)
610 			return sv;
611 
612 		if (vol_id > sv->vol_id)
613 			p = p->rb_left;
614 		else
615 			p = p->rb_right;
616 	}
617 
618 	return NULL;
619 }
620 
621 /**
622  * ubi_scan_find_seb - find LEB in the volume scanning information.
623  * @sv: a pointer to the volume scanning information
624  * @lnum: the requested logical eraseblock
625  *
626  * This function returns a pointer to the scanning logical eraseblock or %NULL
627  * if there are no data about it in the scanning volume information.
628  */
ubi_scan_find_seb(const struct ubi_scan_volume * sv,int lnum)629 struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv,
630 				       int lnum)
631 {
632 	struct ubi_scan_leb *seb;
633 	struct rb_node *p = sv->root.rb_node;
634 
635 	while (p) {
636 		seb = rb_entry(p, struct ubi_scan_leb, u.rb);
637 
638 		if (lnum == seb->lnum)
639 			return seb;
640 
641 		if (lnum > seb->lnum)
642 			p = p->rb_left;
643 		else
644 			p = p->rb_right;
645 	}
646 
647 	return NULL;
648 }
649 
650 /**
651  * ubi_scan_rm_volume - delete scanning information about a volume.
652  * @si: scanning information
653  * @sv: the volume scanning information to delete
654  */
ubi_scan_rm_volume(struct ubi_scan_info * si,struct ubi_scan_volume * sv)655 void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv)
656 {
657 	struct rb_node *rb;
658 	struct ubi_scan_leb *seb;
659 
660 	dbg_bld("remove scanning information about volume %d", sv->vol_id);
661 
662 	while ((rb = rb_first(&sv->root))) {
663 		seb = rb_entry(rb, struct ubi_scan_leb, u.rb);
664 		rb_erase(&seb->u.rb, &sv->root);
665 		list_add_tail(&seb->u.list, &si->erase);
666 	}
667 
668 	rb_erase(&sv->rb, &si->volumes);
669 	kfree(sv);
670 	si->vols_found -= 1;
671 }
672 
673 /**
674  * ubi_scan_erase_peb - erase a physical eraseblock.
675  * @ubi: UBI device description object
676  * @si: scanning information
677  * @pnum: physical eraseblock number to erase;
678  * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown)
679  *
680  * This function erases physical eraseblock 'pnum', and writes the erase
681  * counter header to it. This function should only be used on UBI device
682  * initialization stages, when the EBA sub-system had not been yet initialized.
683  * This function returns zero in case of success and a negative error code in
684  * case of failure.
685  */
ubi_scan_erase_peb(struct ubi_device * ubi,const struct ubi_scan_info * si,int pnum,int ec)686 int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si,
687 		       int pnum, int ec)
688 {
689 	int err;
690 	struct ubi_ec_hdr *ec_hdr;
691 
692 	if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
693 		/*
694 		 * Erase counter overflow. Upgrade UBI and use 64-bit
695 		 * erase counters internally.
696 		 */
697 		ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
698 		return -EINVAL;
699 	}
700 
701 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
702 	if (!ec_hdr)
703 		return -ENOMEM;
704 
705 	ec_hdr->ec = cpu_to_be64(ec);
706 
707 	err = ubi_io_sync_erase(ubi, pnum, 0);
708 	if (err < 0)
709 		goto out_free;
710 
711 	err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
712 
713 out_free:
714 	kfree(ec_hdr);
715 	return err;
716 }
717 
718 /**
719  * ubi_scan_get_free_peb - get a free physical eraseblock.
720  * @ubi: UBI device description object
721  * @si: scanning information
722  *
723  * This function returns a free physical eraseblock. It is supposed to be
724  * called on the UBI initialization stages when the wear-leveling sub-system is
725  * not initialized yet. This function picks a physical eraseblocks from one of
726  * the lists, writes the EC header if it is needed, and removes it from the
727  * list.
728  *
729  * This function returns scanning physical eraseblock information in case of
730  * success and an error code in case of failure.
731  */
ubi_scan_get_free_peb(struct ubi_device * ubi,struct ubi_scan_info * si)732 struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi,
733 					   struct ubi_scan_info *si)
734 {
735 	int err = 0;
736 	struct ubi_scan_leb *seb, *tmp_seb;
737 
738 	if (!list_empty(&si->free)) {
739 		seb = list_entry(si->free.next, struct ubi_scan_leb, u.list);
740 		list_del(&seb->u.list);
741 		dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec);
742 		return seb;
743 	}
744 
745 	/*
746 	 * We try to erase the first physical eraseblock from the erase list
747 	 * and pick it if we succeed, or try to erase the next one if not. And
748 	 * so forth. We don't want to take care about bad eraseblocks here -
749 	 * they'll be handled later.
750 	 */
751 	list_for_each_entry_safe(seb, tmp_seb, &si->erase, u.list) {
752 		if (seb->ec == UBI_SCAN_UNKNOWN_EC)
753 			seb->ec = si->mean_ec;
754 
755 		err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1);
756 		if (err)
757 			continue;
758 
759 		seb->ec += 1;
760 		list_del(&seb->u.list);
761 		dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec);
762 		return seb;
763 	}
764 
765 	ubi_err("no free eraseblocks");
766 	return ERR_PTR(-ENOSPC);
767 }
768 
769 /**
770  * check_corruption - check the data area of PEB.
771  * @ubi: UBI device description object
772  * @vid_hrd: the (corrupted) VID header of this PEB
773  * @pnum: the physical eraseblock number to check
774  *
775  * This is a helper function which is used to distinguish between VID header
776  * corruptions caused by power cuts and other reasons. If the PEB contains only
777  * 0xFF bytes in the data area, the VID header is most probably corrupted
778  * because of a power cut (%0 is returned in this case). Otherwise, it was
779  * probably corrupted for some other reasons (%1 is returned in this case). A
780  * negative error code is returned if a read error occurred.
781  *
782  * If the corruption reason was a power cut, UBI can safely erase this PEB.
783  * Otherwise, it should preserve it to avoid possibly destroying important
784  * information.
785  */
check_corruption(struct ubi_device * ubi,struct ubi_vid_hdr * vid_hdr,int pnum)786 static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
787 			    int pnum)
788 {
789 	int err;
790 
791 	mutex_lock(&ubi->buf_mutex);
792 	memset(ubi->peb_buf1, 0x00, ubi->leb_size);
793 
794 	err = ubi_io_read(ubi, ubi->peb_buf1, pnum, ubi->leb_start,
795 			  ubi->leb_size);
796 	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
797 		/*
798 		 * Bit-flips or integrity errors while reading the data area.
799 		 * It is difficult to say for sure what type of corruption is
800 		 * this, but presumably a power cut happened while this PEB was
801 		 * erased, so it became unstable and corrupted, and should be
802 		 * erased.
803 		 */
804 		err = 0;
805 		goto out_unlock;
806 	}
807 
808 	if (err)
809 		goto out_unlock;
810 
811 	if (ubi_check_pattern(ubi->peb_buf1, 0xFF, ubi->leb_size))
812 		goto out_unlock;
813 
814 	ubi_err("PEB %d contains corrupted VID header, and the data does not "
815 		"contain all 0xFF, this may be a non-UBI PEB or a severe VID "
816 		"header corruption which requires manual inspection", pnum);
817 	ubi_dbg_dump_vid_hdr(vid_hdr);
818 	dbg_msg("hexdump of PEB %d offset %d, length %d",
819 		pnum, ubi->leb_start, ubi->leb_size);
820 	ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
821 			       ubi->peb_buf1, ubi->leb_size, 1);
822 	err = 1;
823 
824 out_unlock:
825 	mutex_unlock(&ubi->buf_mutex);
826 	return err;
827 }
828 
829 /**
830  * process_eb - read, check UBI headers, and add them to scanning information.
831  * @ubi: UBI device description object
832  * @si: scanning information
833  * @pnum: the physical eraseblock number
834  *
835  * This function returns a zero if the physical eraseblock was successfully
836  * handled and a negative error code in case of failure.
837  */
process_eb(struct ubi_device * ubi,struct ubi_scan_info * si,int pnum)838 static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si,
839 		      int pnum)
840 {
841 	long long uninitialized_var(ec);
842 	int err, bitflips = 0, vol_id, ec_err = 0;
843 
844 	dbg_bld("scan PEB %d", pnum);
845 
846 	/* Skip bad physical eraseblocks */
847 	err = ubi_io_is_bad(ubi, pnum);
848 	if (err < 0)
849 		return err;
850 	else if (err) {
851 		/*
852 		 * FIXME: this is actually duty of the I/O sub-system to
853 		 * initialize this, but MTD does not provide enough
854 		 * information.
855 		 */
856 		si->bad_peb_count += 1;
857 		return 0;
858 	}
859 
860 	err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
861 	if (err < 0)
862 		return err;
863 	switch (err) {
864 	case 0:
865 		break;
866 	case UBI_IO_BITFLIPS:
867 		bitflips = 1;
868 		break;
869 	case UBI_IO_FF:
870 		si->empty_peb_count += 1;
871 		return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, 0,
872 				   &si->erase);
873 	case UBI_IO_FF_BITFLIPS:
874 		si->empty_peb_count += 1;
875 		return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, 1,
876 				   &si->erase);
877 	case UBI_IO_BAD_HDR_EBADMSG:
878 	case UBI_IO_BAD_HDR:
879 		/*
880 		 * We have to also look at the VID header, possibly it is not
881 		 * corrupted. Set %bitflips flag in order to make this PEB be
882 		 * moved and EC be re-created.
883 		 */
884 		ec_err = err;
885 		ec = UBI_SCAN_UNKNOWN_EC;
886 		bitflips = 1;
887 		break;
888 	default:
889 		ubi_err("'ubi_io_read_ec_hdr()' returned unknown code %d", err);
890 		return -EINVAL;
891 	}
892 
893 	if (!ec_err) {
894 		int image_seq;
895 
896 		/* Make sure UBI version is OK */
897 		if (ech->version != UBI_VERSION) {
898 			ubi_err("this UBI version is %d, image version is %d",
899 				UBI_VERSION, (int)ech->version);
900 			return -EINVAL;
901 		}
902 
903 		ec = be64_to_cpu(ech->ec);
904 		if (ec > UBI_MAX_ERASECOUNTER) {
905 			/*
906 			 * Erase counter overflow. The EC headers have 64 bits
907 			 * reserved, but we anyway make use of only 31 bit
908 			 * values, as this seems to be enough for any existing
909 			 * flash. Upgrade UBI and use 64-bit erase counters
910 			 * internally.
911 			 */
912 			ubi_err("erase counter overflow, max is %d",
913 				UBI_MAX_ERASECOUNTER);
914 			ubi_dbg_dump_ec_hdr(ech);
915 			return -EINVAL;
916 		}
917 
918 		/*
919 		 * Make sure that all PEBs have the same image sequence number.
920 		 * This allows us to detect situations when users flash UBI
921 		 * images incorrectly, so that the flash has the new UBI image
922 		 * and leftovers from the old one. This feature was added
923 		 * relatively recently, and the sequence number was always
924 		 * zero, because old UBI implementations always set it to zero.
925 		 * For this reasons, we do not panic if some PEBs have zero
926 		 * sequence number, while other PEBs have non-zero sequence
927 		 * number.
928 		 */
929 		image_seq = be32_to_cpu(ech->image_seq);
930 		if (!ubi->image_seq && image_seq)
931 			ubi->image_seq = image_seq;
932 		if (ubi->image_seq && image_seq &&
933 		    ubi->image_seq != image_seq) {
934 			ubi_err("bad image sequence number %d in PEB %d, "
935 				"expected %d", image_seq, pnum, ubi->image_seq);
936 			ubi_dbg_dump_ec_hdr(ech);
937 			return -EINVAL;
938 		}
939 	}
940 
941 	/* OK, we've done with the EC header, let's look at the VID header */
942 
943 	err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
944 	if (err < 0)
945 		return err;
946 	switch (err) {
947 	case 0:
948 		break;
949 	case UBI_IO_BITFLIPS:
950 		bitflips = 1;
951 		break;
952 	case UBI_IO_BAD_HDR_EBADMSG:
953 		if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
954 			/*
955 			 * Both EC and VID headers are corrupted and were read
956 			 * with data integrity error, probably this is a bad
957 			 * PEB, bit it is not marked as bad yet. This may also
958 			 * be a result of power cut during erasure.
959 			 */
960 			si->maybe_bad_peb_count += 1;
961 	case UBI_IO_BAD_HDR:
962 		if (ec_err)
963 			/*
964 			 * Both headers are corrupted. There is a possibility
965 			 * that this a valid UBI PEB which has corresponding
966 			 * LEB, but the headers are corrupted. However, it is
967 			 * impossible to distinguish it from a PEB which just
968 			 * contains garbage because of a power cut during erase
969 			 * operation. So we just schedule this PEB for erasure.
970 			 *
971 			 * Besides, in case of NOR flash, we deliberately
972 			 * corrupt both headers because NOR flash erasure is
973 			 * slow and can start from the end.
974 			 */
975 			err = 0;
976 		else
977 			/*
978 			 * The EC was OK, but the VID header is corrupted. We
979 			 * have to check what is in the data area.
980 			 */
981 			err = check_corruption(ubi, vidh, pnum);
982 
983 		if (err < 0)
984 			return err;
985 		else if (!err)
986 			/* This corruption is caused by a power cut */
987 			err = add_to_list(si, pnum, ec, 1, &si->erase);
988 		else
989 			/* This is an unexpected corruption */
990 			err = add_corrupted(si, pnum, ec);
991 		if (err)
992 			return err;
993 		goto adjust_mean_ec;
994 	case UBI_IO_FF_BITFLIPS:
995 		err = add_to_list(si, pnum, ec, 1, &si->erase);
996 		if (err)
997 			return err;
998 		goto adjust_mean_ec;
999 	case UBI_IO_FF:
1000 		if (ec_err)
1001 			err = add_to_list(si, pnum, ec, 1, &si->erase);
1002 		else
1003 			err = add_to_list(si, pnum, ec, 0, &si->free);
1004 		if (err)
1005 			return err;
1006 		goto adjust_mean_ec;
1007 	default:
1008 		ubi_err("'ubi_io_read_vid_hdr()' returned unknown code %d",
1009 			err);
1010 		return -EINVAL;
1011 	}
1012 
1013 	vol_id = be32_to_cpu(vidh->vol_id);
1014 	if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
1015 		int lnum = be32_to_cpu(vidh->lnum);
1016 
1017 		/* Unsupported internal volume */
1018 		switch (vidh->compat) {
1019 		case UBI_COMPAT_DELETE:
1020 			ubi_msg("\"delete\" compatible internal volume %d:%d"
1021 				" found, will remove it", vol_id, lnum);
1022 			err = add_to_list(si, pnum, ec, 1, &si->erase);
1023 			if (err)
1024 				return err;
1025 			return 0;
1026 
1027 		case UBI_COMPAT_RO:
1028 			ubi_msg("read-only compatible internal volume %d:%d"
1029 				" found, switch to read-only mode",
1030 				vol_id, lnum);
1031 			ubi->ro_mode = 1;
1032 			break;
1033 
1034 		case UBI_COMPAT_PRESERVE:
1035 			ubi_msg("\"preserve\" compatible internal volume %d:%d"
1036 				" found", vol_id, lnum);
1037 			err = add_to_list(si, pnum, ec, 0, &si->alien);
1038 			if (err)
1039 				return err;
1040 			return 0;
1041 
1042 		case UBI_COMPAT_REJECT:
1043 			ubi_err("incompatible internal volume %d:%d found",
1044 				vol_id, lnum);
1045 			return -EINVAL;
1046 		}
1047 	}
1048 
1049 	if (ec_err)
1050 		ubi_warn("valid VID header but corrupted EC header at PEB %d",
1051 			 pnum);
1052 	err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips);
1053 	if (err)
1054 		return err;
1055 
1056 adjust_mean_ec:
1057 	if (!ec_err) {
1058 		si->ec_sum += ec;
1059 		si->ec_count += 1;
1060 		if (ec > si->max_ec)
1061 			si->max_ec = ec;
1062 		if (ec < si->min_ec)
1063 			si->min_ec = ec;
1064 	}
1065 
1066 	return 0;
1067 }
1068 
1069 /**
1070  * check_what_we_have - check what PEB were found by scanning.
1071  * @ubi: UBI device description object
1072  * @si: scanning information
1073  *
1074  * This is a helper function which takes a look what PEBs were found by
1075  * scanning, and decides whether the flash is empty and should be formatted and
1076  * whether there are too many corrupted PEBs and we should not attach this
1077  * MTD device. Returns zero if we should proceed with attaching the MTD device,
1078  * and %-EINVAL if we should not.
1079  */
check_what_we_have(struct ubi_device * ubi,struct ubi_scan_info * si)1080 static int check_what_we_have(struct ubi_device *ubi, struct ubi_scan_info *si)
1081 {
1082 	struct ubi_scan_leb *seb;
1083 	int max_corr, peb_count;
1084 
1085 	peb_count = ubi->peb_count - si->bad_peb_count - si->alien_peb_count;
1086 	max_corr = peb_count / 20 ?: 8;
1087 
1088 	/*
1089 	 * Few corrupted PEBs is not a problem and may be just a result of
1090 	 * unclean reboots. However, many of them may indicate some problems
1091 	 * with the flash HW or driver.
1092 	 */
1093 	if (si->corr_peb_count) {
1094 		ubi_err("%d PEBs are corrupted and preserved",
1095 			si->corr_peb_count);
1096 		printk(KERN_ERR "Corrupted PEBs are:");
1097 		list_for_each_entry(seb, &si->corr, u.list)
1098 			printk(KERN_CONT " %d", seb->pnum);
1099 		printk(KERN_CONT "\n");
1100 
1101 		/*
1102 		 * If too many PEBs are corrupted, we refuse attaching,
1103 		 * otherwise, only print a warning.
1104 		 */
1105 		if (si->corr_peb_count >= max_corr) {
1106 			ubi_err("too many corrupted PEBs, refusing");
1107 			return -EINVAL;
1108 		}
1109 	}
1110 
1111 	if (si->empty_peb_count + si->maybe_bad_peb_count == peb_count) {
1112 		/*
1113 		 * All PEBs are empty, or almost all - a couple PEBs look like
1114 		 * they may be bad PEBs which were not marked as bad yet.
1115 		 *
1116 		 * This piece of code basically tries to distinguish between
1117 		 * the following situations:
1118 		 *
1119 		 * 1. Flash is empty, but there are few bad PEBs, which are not
1120 		 *    marked as bad so far, and which were read with error. We
1121 		 *    want to go ahead and format this flash. While formatting,
1122 		 *    the faulty PEBs will probably be marked as bad.
1123 		 *
1124 		 * 2. Flash contains non-UBI data and we do not want to format
1125 		 *    it and destroy possibly important information.
1126 		 */
1127 		if (si->maybe_bad_peb_count <= 2) {
1128 			si->is_empty = 1;
1129 			ubi_msg("empty MTD device detected");
1130 			get_random_bytes(&ubi->image_seq,
1131 					 sizeof(ubi->image_seq));
1132 		} else {
1133 			ubi_err("MTD device is not UBI-formatted and possibly "
1134 				"contains non-UBI data - refusing it");
1135 			return -EINVAL;
1136 		}
1137 
1138 	}
1139 
1140 	return 0;
1141 }
1142 
1143 /**
1144  * ubi_scan - scan an MTD device.
1145  * @ubi: UBI device description object
1146  *
1147  * This function does full scanning of an MTD device and returns complete
1148  * information about it. In case of failure, an error code is returned.
1149  */
ubi_scan(struct ubi_device * ubi)1150 struct ubi_scan_info *ubi_scan(struct ubi_device *ubi)
1151 {
1152 	int err, pnum;
1153 	struct rb_node *rb1, *rb2;
1154 	struct ubi_scan_volume *sv;
1155 	struct ubi_scan_leb *seb;
1156 	struct ubi_scan_info *si;
1157 
1158 	si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL);
1159 	if (!si)
1160 		return ERR_PTR(-ENOMEM);
1161 
1162 	INIT_LIST_HEAD(&si->corr);
1163 	INIT_LIST_HEAD(&si->free);
1164 	INIT_LIST_HEAD(&si->erase);
1165 	INIT_LIST_HEAD(&si->alien);
1166 	si->volumes = RB_ROOT;
1167 
1168 	err = -ENOMEM;
1169 	si->scan_leb_slab = kmem_cache_create("ubi_scan_leb_slab",
1170 					      sizeof(struct ubi_scan_leb),
1171 					      0, 0, NULL);
1172 	if (!si->scan_leb_slab)
1173 		goto out_si;
1174 
1175 	ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1176 	if (!ech)
1177 		goto out_slab;
1178 
1179 	vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1180 	if (!vidh)
1181 		goto out_ech;
1182 
1183 	for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1184 		cond_resched();
1185 
1186 		dbg_gen("process PEB %d", pnum);
1187 		err = process_eb(ubi, si, pnum);
1188 		if (err < 0)
1189 			goto out_vidh;
1190 	}
1191 
1192 	dbg_msg("scanning is finished");
1193 
1194 	/* Calculate mean erase counter */
1195 	if (si->ec_count)
1196 		si->mean_ec = div_u64(si->ec_sum, si->ec_count);
1197 
1198 	err = check_what_we_have(ubi, si);
1199 	if (err)
1200 		goto out_vidh;
1201 
1202 	/*
1203 	 * In case of unknown erase counter we use the mean erase counter
1204 	 * value.
1205 	 */
1206 	ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1207 		ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
1208 			if (seb->ec == UBI_SCAN_UNKNOWN_EC)
1209 				seb->ec = si->mean_ec;
1210 	}
1211 
1212 	list_for_each_entry(seb, &si->free, u.list) {
1213 		if (seb->ec == UBI_SCAN_UNKNOWN_EC)
1214 			seb->ec = si->mean_ec;
1215 	}
1216 
1217 	list_for_each_entry(seb, &si->corr, u.list)
1218 		if (seb->ec == UBI_SCAN_UNKNOWN_EC)
1219 			seb->ec = si->mean_ec;
1220 
1221 	list_for_each_entry(seb, &si->erase, u.list)
1222 		if (seb->ec == UBI_SCAN_UNKNOWN_EC)
1223 			seb->ec = si->mean_ec;
1224 
1225 	err = paranoid_check_si(ubi, si);
1226 	if (err)
1227 		goto out_vidh;
1228 
1229 	ubi_free_vid_hdr(ubi, vidh);
1230 	kfree(ech);
1231 
1232 	return si;
1233 
1234 out_vidh:
1235 	ubi_free_vid_hdr(ubi, vidh);
1236 out_ech:
1237 	kfree(ech);
1238 out_slab:
1239 	kmem_cache_destroy(si->scan_leb_slab);
1240 out_si:
1241 	ubi_scan_destroy_si(si);
1242 	return ERR_PTR(err);
1243 }
1244 
1245 /**
1246  * destroy_sv - free the scanning volume information
1247  * @sv: scanning volume information
1248  * @si: scanning information
1249  *
1250  * This function destroys the volume RB-tree (@sv->root) and the scanning
1251  * volume information.
1252  */
destroy_sv(struct ubi_scan_info * si,struct ubi_scan_volume * sv)1253 static void destroy_sv(struct ubi_scan_info *si, struct ubi_scan_volume *sv)
1254 {
1255 	struct ubi_scan_leb *seb;
1256 	struct rb_node *this = sv->root.rb_node;
1257 
1258 	while (this) {
1259 		if (this->rb_left)
1260 			this = this->rb_left;
1261 		else if (this->rb_right)
1262 			this = this->rb_right;
1263 		else {
1264 			seb = rb_entry(this, struct ubi_scan_leb, u.rb);
1265 			this = rb_parent(this);
1266 			if (this) {
1267 				if (this->rb_left == &seb->u.rb)
1268 					this->rb_left = NULL;
1269 				else
1270 					this->rb_right = NULL;
1271 			}
1272 
1273 			kmem_cache_free(si->scan_leb_slab, seb);
1274 		}
1275 	}
1276 	kfree(sv);
1277 }
1278 
1279 /**
1280  * ubi_scan_destroy_si - destroy scanning information.
1281  * @si: scanning information
1282  */
ubi_scan_destroy_si(struct ubi_scan_info * si)1283 void ubi_scan_destroy_si(struct ubi_scan_info *si)
1284 {
1285 	struct ubi_scan_leb *seb, *seb_tmp;
1286 	struct ubi_scan_volume *sv;
1287 	struct rb_node *rb;
1288 
1289 	list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) {
1290 		list_del(&seb->u.list);
1291 		kmem_cache_free(si->scan_leb_slab, seb);
1292 	}
1293 	list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) {
1294 		list_del(&seb->u.list);
1295 		kmem_cache_free(si->scan_leb_slab, seb);
1296 	}
1297 	list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) {
1298 		list_del(&seb->u.list);
1299 		kmem_cache_free(si->scan_leb_slab, seb);
1300 	}
1301 	list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) {
1302 		list_del(&seb->u.list);
1303 		kmem_cache_free(si->scan_leb_slab, seb);
1304 	}
1305 
1306 	/* Destroy the volume RB-tree */
1307 	rb = si->volumes.rb_node;
1308 	while (rb) {
1309 		if (rb->rb_left)
1310 			rb = rb->rb_left;
1311 		else if (rb->rb_right)
1312 			rb = rb->rb_right;
1313 		else {
1314 			sv = rb_entry(rb, struct ubi_scan_volume, rb);
1315 
1316 			rb = rb_parent(rb);
1317 			if (rb) {
1318 				if (rb->rb_left == &sv->rb)
1319 					rb->rb_left = NULL;
1320 				else
1321 					rb->rb_right = NULL;
1322 			}
1323 
1324 			destroy_sv(si, sv);
1325 		}
1326 	}
1327 
1328 	kmem_cache_destroy(si->scan_leb_slab);
1329 	kfree(si);
1330 }
1331 
1332 #ifdef CONFIG_MTD_UBI_DEBUG
1333 
1334 /**
1335  * paranoid_check_si - check the scanning information.
1336  * @ubi: UBI device description object
1337  * @si: scanning information
1338  *
1339  * This function returns zero if the scanning information is all right, and a
1340  * negative error code if not or if an error occurred.
1341  */
paranoid_check_si(struct ubi_device * ubi,struct ubi_scan_info * si)1342 static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si)
1343 {
1344 	int pnum, err, vols_found = 0;
1345 	struct rb_node *rb1, *rb2;
1346 	struct ubi_scan_volume *sv;
1347 	struct ubi_scan_leb *seb, *last_seb;
1348 	uint8_t *buf;
1349 
1350 	if (!ubi->dbg->chk_gen)
1351 		return 0;
1352 
1353 	/*
1354 	 * At first, check that scanning information is OK.
1355 	 */
1356 	ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1357 		int leb_count = 0;
1358 
1359 		cond_resched();
1360 
1361 		vols_found += 1;
1362 
1363 		if (si->is_empty) {
1364 			ubi_err("bad is_empty flag");
1365 			goto bad_sv;
1366 		}
1367 
1368 		if (sv->vol_id < 0 || sv->highest_lnum < 0 ||
1369 		    sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 ||
1370 		    sv->data_pad < 0 || sv->last_data_size < 0) {
1371 			ubi_err("negative values");
1372 			goto bad_sv;
1373 		}
1374 
1375 		if (sv->vol_id >= UBI_MAX_VOLUMES &&
1376 		    sv->vol_id < UBI_INTERNAL_VOL_START) {
1377 			ubi_err("bad vol_id");
1378 			goto bad_sv;
1379 		}
1380 
1381 		if (sv->vol_id > si->highest_vol_id) {
1382 			ubi_err("highest_vol_id is %d, but vol_id %d is there",
1383 				si->highest_vol_id, sv->vol_id);
1384 			goto out;
1385 		}
1386 
1387 		if (sv->vol_type != UBI_DYNAMIC_VOLUME &&
1388 		    sv->vol_type != UBI_STATIC_VOLUME) {
1389 			ubi_err("bad vol_type");
1390 			goto bad_sv;
1391 		}
1392 
1393 		if (sv->data_pad > ubi->leb_size / 2) {
1394 			ubi_err("bad data_pad");
1395 			goto bad_sv;
1396 		}
1397 
1398 		last_seb = NULL;
1399 		ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1400 			cond_resched();
1401 
1402 			last_seb = seb;
1403 			leb_count += 1;
1404 
1405 			if (seb->pnum < 0 || seb->ec < 0) {
1406 				ubi_err("negative values");
1407 				goto bad_seb;
1408 			}
1409 
1410 			if (seb->ec < si->min_ec) {
1411 				ubi_err("bad si->min_ec (%d), %d found",
1412 					si->min_ec, seb->ec);
1413 				goto bad_seb;
1414 			}
1415 
1416 			if (seb->ec > si->max_ec) {
1417 				ubi_err("bad si->max_ec (%d), %d found",
1418 					si->max_ec, seb->ec);
1419 				goto bad_seb;
1420 			}
1421 
1422 			if (seb->pnum >= ubi->peb_count) {
1423 				ubi_err("too high PEB number %d, total PEBs %d",
1424 					seb->pnum, ubi->peb_count);
1425 				goto bad_seb;
1426 			}
1427 
1428 			if (sv->vol_type == UBI_STATIC_VOLUME) {
1429 				if (seb->lnum >= sv->used_ebs) {
1430 					ubi_err("bad lnum or used_ebs");
1431 					goto bad_seb;
1432 				}
1433 			} else {
1434 				if (sv->used_ebs != 0) {
1435 					ubi_err("non-zero used_ebs");
1436 					goto bad_seb;
1437 				}
1438 			}
1439 
1440 			if (seb->lnum > sv->highest_lnum) {
1441 				ubi_err("incorrect highest_lnum or lnum");
1442 				goto bad_seb;
1443 			}
1444 		}
1445 
1446 		if (sv->leb_count != leb_count) {
1447 			ubi_err("bad leb_count, %d objects in the tree",
1448 				leb_count);
1449 			goto bad_sv;
1450 		}
1451 
1452 		if (!last_seb)
1453 			continue;
1454 
1455 		seb = last_seb;
1456 
1457 		if (seb->lnum != sv->highest_lnum) {
1458 			ubi_err("bad highest_lnum");
1459 			goto bad_seb;
1460 		}
1461 	}
1462 
1463 	if (vols_found != si->vols_found) {
1464 		ubi_err("bad si->vols_found %d, should be %d",
1465 			si->vols_found, vols_found);
1466 		goto out;
1467 	}
1468 
1469 	/* Check that scanning information is correct */
1470 	ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1471 		last_seb = NULL;
1472 		ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1473 			int vol_type;
1474 
1475 			cond_resched();
1476 
1477 			last_seb = seb;
1478 
1479 			err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1);
1480 			if (err && err != UBI_IO_BITFLIPS) {
1481 				ubi_err("VID header is not OK (%d)", err);
1482 				if (err > 0)
1483 					err = -EIO;
1484 				return err;
1485 			}
1486 
1487 			vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1488 				   UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1489 			if (sv->vol_type != vol_type) {
1490 				ubi_err("bad vol_type");
1491 				goto bad_vid_hdr;
1492 			}
1493 
1494 			if (seb->sqnum != be64_to_cpu(vidh->sqnum)) {
1495 				ubi_err("bad sqnum %llu", seb->sqnum);
1496 				goto bad_vid_hdr;
1497 			}
1498 
1499 			if (sv->vol_id != be32_to_cpu(vidh->vol_id)) {
1500 				ubi_err("bad vol_id %d", sv->vol_id);
1501 				goto bad_vid_hdr;
1502 			}
1503 
1504 			if (sv->compat != vidh->compat) {
1505 				ubi_err("bad compat %d", vidh->compat);
1506 				goto bad_vid_hdr;
1507 			}
1508 
1509 			if (seb->lnum != be32_to_cpu(vidh->lnum)) {
1510 				ubi_err("bad lnum %d", seb->lnum);
1511 				goto bad_vid_hdr;
1512 			}
1513 
1514 			if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1515 				ubi_err("bad used_ebs %d", sv->used_ebs);
1516 				goto bad_vid_hdr;
1517 			}
1518 
1519 			if (sv->data_pad != be32_to_cpu(vidh->data_pad)) {
1520 				ubi_err("bad data_pad %d", sv->data_pad);
1521 				goto bad_vid_hdr;
1522 			}
1523 		}
1524 
1525 		if (!last_seb)
1526 			continue;
1527 
1528 		if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) {
1529 			ubi_err("bad highest_lnum %d", sv->highest_lnum);
1530 			goto bad_vid_hdr;
1531 		}
1532 
1533 		if (sv->last_data_size != be32_to_cpu(vidh->data_size)) {
1534 			ubi_err("bad last_data_size %d", sv->last_data_size);
1535 			goto bad_vid_hdr;
1536 		}
1537 	}
1538 
1539 	/*
1540 	 * Make sure that all the physical eraseblocks are in one of the lists
1541 	 * or trees.
1542 	 */
1543 	buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1544 	if (!buf)
1545 		return -ENOMEM;
1546 
1547 	for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1548 		err = ubi_io_is_bad(ubi, pnum);
1549 		if (err < 0) {
1550 			kfree(buf);
1551 			return err;
1552 		} else if (err)
1553 			buf[pnum] = 1;
1554 	}
1555 
1556 	ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb)
1557 		ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
1558 			buf[seb->pnum] = 1;
1559 
1560 	list_for_each_entry(seb, &si->free, u.list)
1561 		buf[seb->pnum] = 1;
1562 
1563 	list_for_each_entry(seb, &si->corr, u.list)
1564 		buf[seb->pnum] = 1;
1565 
1566 	list_for_each_entry(seb, &si->erase, u.list)
1567 		buf[seb->pnum] = 1;
1568 
1569 	list_for_each_entry(seb, &si->alien, u.list)
1570 		buf[seb->pnum] = 1;
1571 
1572 	err = 0;
1573 	for (pnum = 0; pnum < ubi->peb_count; pnum++)
1574 		if (!buf[pnum]) {
1575 			ubi_err("PEB %d is not referred", pnum);
1576 			err = 1;
1577 		}
1578 
1579 	kfree(buf);
1580 	if (err)
1581 		goto out;
1582 	return 0;
1583 
1584 bad_seb:
1585 	ubi_err("bad scanning information about LEB %d", seb->lnum);
1586 	ubi_dbg_dump_seb(seb, 0);
1587 	ubi_dbg_dump_sv(sv);
1588 	goto out;
1589 
1590 bad_sv:
1591 	ubi_err("bad scanning information about volume %d", sv->vol_id);
1592 	ubi_dbg_dump_sv(sv);
1593 	goto out;
1594 
1595 bad_vid_hdr:
1596 	ubi_err("bad scanning information about volume %d", sv->vol_id);
1597 	ubi_dbg_dump_sv(sv);
1598 	ubi_dbg_dump_vid_hdr(vidh);
1599 
1600 out:
1601 	ubi_dbg_dump_stack();
1602 	return -EINVAL;
1603 }
1604 
1605 #endif /* CONFIG_MTD_UBI_DEBUG */
1606