1 /*
2  *  drivers/mtd/nand/rtc_from4.c
3  *
4  *  Copyright (C) 2004  Red Hat, Inc.
5  *
6  *  Derived from drivers/mtd/nand/spia.c
7  *       Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * Overview:
14  *   This is a device driver for the AG-AND flash device found on the
15  *   Renesas Technology Corp. Flash ROM 4-slot interface board (FROM_BOARD4),
16  *   which utilizes the Renesas HN29V1G91T-30 part.
17  *   This chip is a 1 GBibit (128MiB x 8 bits) AG-AND flash device.
18  */
19 
20 #include <linux/delay.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/slab.h>
24 #include <linux/rslib.h>
25 #include <linux/bitrev.h>
26 #include <linux/module.h>
27 #include <linux/mtd/mtd.h>
28 #include <linux/mtd/nand.h>
29 #include <linux/mtd/partitions.h>
30 #include <asm/io.h>
31 
32 /*
33  * MTD structure for Renesas board
34  */
35 static struct mtd_info *rtc_from4_mtd = NULL;
36 
37 #define RTC_FROM4_MAX_CHIPS	2
38 
39 /* HS77x9 processor register defines */
40 #define SH77X9_BCR1	((volatile unsigned short *)(0xFFFFFF60))
41 #define SH77X9_BCR2	((volatile unsigned short *)(0xFFFFFF62))
42 #define SH77X9_WCR1	((volatile unsigned short *)(0xFFFFFF64))
43 #define SH77X9_WCR2	((volatile unsigned short *)(0xFFFFFF66))
44 #define SH77X9_MCR	((volatile unsigned short *)(0xFFFFFF68))
45 #define SH77X9_PCR	((volatile unsigned short *)(0xFFFFFF6C))
46 #define SH77X9_FRQCR	((volatile unsigned short *)(0xFFFFFF80))
47 
48 /*
49  * Values specific to the Renesas Technology Corp. FROM_BOARD4 (used with HS77x9 processor)
50  */
51 /* Address where flash is mapped */
52 #define RTC_FROM4_FIO_BASE	0x14000000
53 
54 /* CLE and ALE are tied to address lines 5 & 4, respectively */
55 #define RTC_FROM4_CLE		(1 << 5)
56 #define RTC_FROM4_ALE		(1 << 4)
57 
58 /* address lines A24-A22 used for chip selection */
59 #define RTC_FROM4_NAND_ADDR_SLOT3	(0x00800000)
60 #define RTC_FROM4_NAND_ADDR_SLOT4	(0x00C00000)
61 #define RTC_FROM4_NAND_ADDR_FPGA	(0x01000000)
62 /* mask address lines A24-A22 used for chip selection */
63 #define RTC_FROM4_NAND_ADDR_MASK	(RTC_FROM4_NAND_ADDR_SLOT3 | RTC_FROM4_NAND_ADDR_SLOT4 | RTC_FROM4_NAND_ADDR_FPGA)
64 
65 /* FPGA status register for checking device ready (bit zero) */
66 #define RTC_FROM4_FPGA_SR		(RTC_FROM4_NAND_ADDR_FPGA | 0x00000002)
67 #define RTC_FROM4_DEVICE_READY		0x0001
68 
69 /* FPGA Reed-Solomon ECC Control register */
70 
71 #define RTC_FROM4_RS_ECC_CTL		(RTC_FROM4_NAND_ADDR_FPGA | 0x00000050)
72 #define RTC_FROM4_RS_ECC_CTL_CLR	(1 << 7)
73 #define RTC_FROM4_RS_ECC_CTL_GEN	(1 << 6)
74 #define RTC_FROM4_RS_ECC_CTL_FD_E	(1 << 5)
75 
76 /* FPGA Reed-Solomon ECC code base */
77 #define RTC_FROM4_RS_ECC		(RTC_FROM4_NAND_ADDR_FPGA | 0x00000060)
78 #define RTC_FROM4_RS_ECCN		(RTC_FROM4_NAND_ADDR_FPGA | 0x00000080)
79 
80 /* FPGA Reed-Solomon ECC check register */
81 #define RTC_FROM4_RS_ECC_CHK		(RTC_FROM4_NAND_ADDR_FPGA | 0x00000070)
82 #define RTC_FROM4_RS_ECC_CHK_ERROR	(1 << 7)
83 
84 #define ERR_STAT_ECC_AVAILABLE		0x20
85 
86 /* Undefine for software ECC */
87 #define RTC_FROM4_HWECC	1
88 
89 /* Define as 1 for no virtual erase blocks (in JFFS2) */
90 #define RTC_FROM4_NO_VIRTBLOCKS	0
91 
92 /*
93  * Module stuff
94  */
95 static void __iomem *rtc_from4_fio_base = (void *)P2SEGADDR(RTC_FROM4_FIO_BASE);
96 
97 static const struct mtd_partition partition_info[] = {
98 	{
99 	 .name = "Renesas flash partition 1",
100 	 .offset = 0,
101 	 .size = MTDPART_SIZ_FULL},
102 };
103 
104 #define NUM_PARTITIONS 1
105 
106 /*
107  *	hardware specific flash bbt decriptors
108  *	Note: this is to allow debugging by disabling
109  *		NAND_BBT_CREATE and/or NAND_BBT_WRITE
110  *
111  */
112 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
113 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
114 
115 static struct nand_bbt_descr rtc_from4_bbt_main_descr = {
116 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
117 		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
118 	.offs = 40,
119 	.len = 4,
120 	.veroffs = 44,
121 	.maxblocks = 4,
122 	.pattern = bbt_pattern
123 };
124 
125 static struct nand_bbt_descr rtc_from4_bbt_mirror_descr = {
126 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
127 		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
128 	.offs = 40,
129 	.len = 4,
130 	.veroffs = 44,
131 	.maxblocks = 4,
132 	.pattern = mirror_pattern
133 };
134 
135 #ifdef RTC_FROM4_HWECC
136 
137 /* the Reed Solomon control structure */
138 static struct rs_control *rs_decoder;
139 
140 /*
141  *      hardware specific Out Of Band information
142  */
143 static struct nand_ecclayout rtc_from4_nand_oobinfo = {
144 	.eccbytes = 32,
145 	.eccpos = {
146 		   0, 1, 2, 3, 4, 5, 6, 7,
147 		   8, 9, 10, 11, 12, 13, 14, 15,
148 		   16, 17, 18, 19, 20, 21, 22, 23,
149 		   24, 25, 26, 27, 28, 29, 30, 31},
150 	.oobfree = {{32, 32}}
151 };
152 
153 #endif
154 
155 /*
156  * rtc_from4_hwcontrol - hardware specific access to control-lines
157  * @mtd:	MTD device structure
158  * @cmd:	hardware control command
159  *
160  * Address lines (A5 and A4) are used to control Command and Address Latch
161  * Enable on this board, so set the read/write address appropriately.
162  *
163  * Chip Enable is also controlled by the Chip Select (CS5) and
164  * Address lines (A24-A22), so no action is required here.
165  *
166  */
rtc_from4_hwcontrol(struct mtd_info * mtd,int cmd,unsigned int ctrl)167 static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd,
168 				unsigned int ctrl)
169 {
170 	struct nand_chip *chip = (mtd->priv);
171 
172 	if (cmd == NAND_CMD_NONE)
173 		return;
174 
175 	if (ctrl & NAND_CLE)
176 		writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_CLE);
177 	else
178 		writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_ALE);
179 }
180 
181 /*
182  * rtc_from4_nand_select_chip - hardware specific chip select
183  * @mtd:	MTD device structure
184  * @chip:	Chip to select (0 == slot 3, 1 == slot 4)
185  *
186  * The chip select is based on address lines A24-A22.
187  * This driver uses flash slots 3 and 4 (A23-A22).
188  *
189  */
rtc_from4_nand_select_chip(struct mtd_info * mtd,int chip)190 static void rtc_from4_nand_select_chip(struct mtd_info *mtd, int chip)
191 {
192 	struct nand_chip *this = mtd->priv;
193 
194 	this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R & ~RTC_FROM4_NAND_ADDR_MASK);
195 	this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_NAND_ADDR_MASK);
196 
197 	switch (chip) {
198 
199 	case 0:		/* select slot 3 chip */
200 		this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT3);
201 		this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT3);
202 		break;
203 	case 1:		/* select slot 4 chip */
204 		this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT4);
205 		this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT4);
206 		break;
207 
208 	}
209 }
210 
211 /*
212  * rtc_from4_nand_device_ready - hardware specific ready/busy check
213  * @mtd:	MTD device structure
214  *
215  * This board provides the Ready/Busy state in the status register
216  * of the FPGA.  Bit zero indicates the RDY(1)/BSY(0) signal.
217  *
218  */
rtc_from4_nand_device_ready(struct mtd_info * mtd)219 static int rtc_from4_nand_device_ready(struct mtd_info *mtd)
220 {
221 	unsigned short status;
222 
223 	status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_FPGA_SR));
224 
225 	return (status & RTC_FROM4_DEVICE_READY);
226 
227 }
228 
229 /*
230  * deplete - code to perform device recovery in case there was a power loss
231  * @mtd:	MTD device structure
232  * @chip:	Chip to select (0 == slot 3, 1 == slot 4)
233  *
234  * If there was a sudden loss of power during an erase operation, a
235  * "device recovery" operation must be performed when power is restored
236  * to ensure correct operation.  This routine performs the required steps
237  * for the requested chip.
238  *
239  * See page 86 of the data sheet for details.
240  *
241  */
deplete(struct mtd_info * mtd,int chip)242 static void deplete(struct mtd_info *mtd, int chip)
243 {
244 	struct nand_chip *this = mtd->priv;
245 
246 	/* wait until device is ready */
247 	while (!this->dev_ready(mtd)) ;
248 
249 	this->select_chip(mtd, chip);
250 
251 	/* Send the commands for device recovery, phase 1 */
252 	this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0000);
253 	this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
254 
255 	/* Send the commands for device recovery, phase 2 */
256 	this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0004);
257 	this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
258 
259 }
260 
261 #ifdef RTC_FROM4_HWECC
262 /*
263  * rtc_from4_enable_hwecc - hardware specific hardware ECC enable function
264  * @mtd:	MTD device structure
265  * @mode:	I/O mode; read or write
266  *
267  * enable hardware ECC for data read or write
268  *
269  */
rtc_from4_enable_hwecc(struct mtd_info * mtd,int mode)270 static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode)
271 {
272 	volatile unsigned short *rs_ecc_ctl = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CTL);
273 	unsigned short status;
274 
275 	switch (mode) {
276 	case NAND_ECC_READ:
277 		status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_FD_E;
278 
279 		*rs_ecc_ctl = status;
280 		break;
281 
282 	case NAND_ECC_READSYN:
283 		status = 0x00;
284 
285 		*rs_ecc_ctl = status;
286 		break;
287 
288 	case NAND_ECC_WRITE:
289 		status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_GEN | RTC_FROM4_RS_ECC_CTL_FD_E;
290 
291 		*rs_ecc_ctl = status;
292 		break;
293 
294 	default:
295 		BUG();
296 		break;
297 	}
298 
299 }
300 
301 /*
302  * rtc_from4_calculate_ecc - hardware specific code to read ECC code
303  * @mtd:	MTD device structure
304  * @dat:	buffer containing the data to generate ECC codes
305  * @ecc_code	ECC codes calculated
306  *
307  * The ECC code is calculated by the FPGA.  All we have to do is read the values
308  * from the FPGA registers.
309  *
310  * Note: We read from the inverted registers, since data is inverted before
311  * the code is calculated. So all 0xff data (blank page) results in all 0xff rs code
312  *
313  */
rtc_from4_calculate_ecc(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)314 static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
315 {
316 	volatile unsigned short *rs_eccn = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECCN);
317 	unsigned short value;
318 	int i;
319 
320 	for (i = 0; i < 8; i++) {
321 		value = *rs_eccn;
322 		ecc_code[i] = (unsigned char)value;
323 		rs_eccn++;
324 	}
325 	ecc_code[7] |= 0x0f;	/* set the last four bits (not used) */
326 }
327 
328 /*
329  * rtc_from4_correct_data - hardware specific code to correct data using ECC code
330  * @mtd:	MTD device structure
331  * @buf:	buffer containing the data to generate ECC codes
332  * @ecc1	ECC codes read
333  * @ecc2	ECC codes calculated
334  *
335  * The FPGA tells us fast, if there's an error or not. If no, we go back happy
336  * else we read the ecc results from the fpga and call the rs library to decode
337  * and hopefully correct the error.
338  *
339  */
rtc_from4_correct_data(struct mtd_info * mtd,const u_char * buf,u_char * ecc1,u_char * ecc2)340 static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_char *ecc1, u_char *ecc2)
341 {
342 	int i, j, res;
343 	unsigned short status;
344 	uint16_t par[6], syn[6];
345 	uint8_t ecc[8];
346 	volatile unsigned short *rs_ecc;
347 
348 	status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CHK));
349 
350 	if (!(status & RTC_FROM4_RS_ECC_CHK_ERROR)) {
351 		return 0;
352 	}
353 
354 	/* Read the syndrome pattern from the FPGA and correct the bitorder */
355 	rs_ecc = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC);
356 	for (i = 0; i < 8; i++) {
357 		ecc[i] = bitrev8(*rs_ecc);
358 		rs_ecc++;
359 	}
360 
361 	/* convert into 6 10bit syndrome fields */
362 	par[5] = rs_decoder->index_of[(((uint16_t) ecc[0] >> 0) & 0x0ff) | (((uint16_t) ecc[1] << 8) & 0x300)];
363 	par[4] = rs_decoder->index_of[(((uint16_t) ecc[1] >> 2) & 0x03f) | (((uint16_t) ecc[2] << 6) & 0x3c0)];
364 	par[3] = rs_decoder->index_of[(((uint16_t) ecc[2] >> 4) & 0x00f) | (((uint16_t) ecc[3] << 4) & 0x3f0)];
365 	par[2] = rs_decoder->index_of[(((uint16_t) ecc[3] >> 6) & 0x003) | (((uint16_t) ecc[4] << 2) & 0x3fc)];
366 	par[1] = rs_decoder->index_of[(((uint16_t) ecc[5] >> 0) & 0x0ff) | (((uint16_t) ecc[6] << 8) & 0x300)];
367 	par[0] = (((uint16_t) ecc[6] >> 2) & 0x03f) | (((uint16_t) ecc[7] << 6) & 0x3c0);
368 
369 	/* Convert to computable syndrome */
370 	for (i = 0; i < 6; i++) {
371 		syn[i] = par[0];
372 		for (j = 1; j < 6; j++)
373 			if (par[j] != rs_decoder->nn)
374 				syn[i] ^= rs_decoder->alpha_to[rs_modnn(rs_decoder, par[j] + i * j)];
375 
376 		/* Convert to index form */
377 		syn[i] = rs_decoder->index_of[syn[i]];
378 	}
379 
380 	/* Let the library code do its magic. */
381 	res = decode_rs8(rs_decoder, (uint8_t *) buf, par, 512, syn, 0, NULL, 0xff, NULL);
382 	if (res > 0) {
383 		pr_debug("rtc_from4_correct_data: " "ECC corrected %d errors on read\n", res);
384 	}
385 	return res;
386 }
387 
388 /**
389  * rtc_from4_errstat - perform additional error status checks
390  * @mtd:	MTD device structure
391  * @this:	NAND chip structure
392  * @state:	state or the operation
393  * @status:	status code returned from read status
394  * @page:	startpage inside the chip, must be called with (page & this->pagemask)
395  *
396  * Perform additional error status checks on erase and write failures
397  * to determine if errors are correctable.  For this device, correctable
398  * 1-bit errors on erase and write are considered acceptable.
399  *
400  * note: see pages 34..37 of data sheet for details.
401  *
402  */
rtc_from4_errstat(struct mtd_info * mtd,struct nand_chip * this,int state,int status,int page)403 static int rtc_from4_errstat(struct mtd_info *mtd, struct nand_chip *this,
404 			     int state, int status, int page)
405 {
406 	int er_stat = 0;
407 	int rtn, retlen;
408 	size_t len;
409 	uint8_t *buf;
410 	int i;
411 
412 	this->cmdfunc(mtd, NAND_CMD_STATUS_CLEAR, -1, -1);
413 
414 	if (state == FL_ERASING) {
415 
416 		for (i = 0; i < 4; i++) {
417 			if (!(status & 1 << (i + 1)))
418 				continue;
419 			this->cmdfunc(mtd, (NAND_CMD_STATUS_ERROR + i + 1),
420 				      -1, -1);
421 			rtn = this->read_byte(mtd);
422 			this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
423 
424 			/* err_ecc_not_avail */
425 			if (!(rtn & ERR_STAT_ECC_AVAILABLE))
426 				er_stat |= 1 << (i + 1);
427 		}
428 
429 	} else if (state == FL_WRITING) {
430 
431 		unsigned long corrected = mtd->ecc_stats.corrected;
432 
433 		/* single bank write logic */
434 		this->cmdfunc(mtd, NAND_CMD_STATUS_ERROR, -1, -1);
435 		rtn = this->read_byte(mtd);
436 		this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
437 
438 		if (!(rtn & ERR_STAT_ECC_AVAILABLE)) {
439 			/* err_ecc_not_avail */
440 			er_stat |= 1 << 1;
441 			goto out;
442 		}
443 
444 		len = mtd->writesize;
445 		buf = kmalloc(len, GFP_KERNEL);
446 		if (!buf) {
447 			er_stat = 1;
448 			goto out;
449 		}
450 
451 		/* recovery read */
452 		rtn = nand_do_read(mtd, page, len, &retlen, buf);
453 
454 		/* if read failed or > 1-bit error corrected */
455 		if (rtn || (mtd->ecc_stats.corrected - corrected) > 1)
456 			er_stat |= 1 << 1;
457 		kfree(buf);
458 	}
459 out:
460 	rtn = status;
461 	if (er_stat == 0) {	/* if ECC is available   */
462 		rtn = (status & ~NAND_STATUS_FAIL);	/*   clear the error bit */
463 	}
464 
465 	return rtn;
466 }
467 #endif
468 
469 /*
470  * Main initialization routine
471  */
rtc_from4_init(void)472 static int __init rtc_from4_init(void)
473 {
474 	struct nand_chip *this;
475 	unsigned short bcr1, bcr2, wcr2;
476 	int i;
477 	int ret;
478 
479 	/* Allocate memory for MTD device structure and private data */
480 	rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
481 	if (!rtc_from4_mtd) {
482 		printk("Unable to allocate Renesas NAND MTD device structure.\n");
483 		return -ENOMEM;
484 	}
485 
486 	/* Get pointer to private data */
487 	this = (struct nand_chip *)(&rtc_from4_mtd[1]);
488 
489 	/* Initialize structures */
490 	memset(rtc_from4_mtd, 0, sizeof(struct mtd_info));
491 	memset(this, 0, sizeof(struct nand_chip));
492 
493 	/* Link the private data with the MTD structure */
494 	rtc_from4_mtd->priv = this;
495 	rtc_from4_mtd->owner = THIS_MODULE;
496 
497 	/* set area 5 as PCMCIA mode to clear the spec of tDH(Data hold time;9ns min) */
498 	bcr1 = *SH77X9_BCR1 & ~0x0002;
499 	bcr1 |= 0x0002;
500 	*SH77X9_BCR1 = bcr1;
501 
502 	/* set */
503 	bcr2 = *SH77X9_BCR2 & ~0x0c00;
504 	bcr2 |= 0x0800;
505 	*SH77X9_BCR2 = bcr2;
506 
507 	/* set area 5 wait states */
508 	wcr2 = *SH77X9_WCR2 & ~0x1c00;
509 	wcr2 |= 0x1c00;
510 	*SH77X9_WCR2 = wcr2;
511 
512 	/* Set address of NAND IO lines */
513 	this->IO_ADDR_R = rtc_from4_fio_base;
514 	this->IO_ADDR_W = rtc_from4_fio_base;
515 	/* Set address of hardware control function */
516 	this->cmd_ctrl = rtc_from4_hwcontrol;
517 	/* Set address of chip select function */
518 	this->select_chip = rtc_from4_nand_select_chip;
519 	/* command delay time (in us) */
520 	this->chip_delay = 100;
521 	/* return the status of the Ready/Busy line */
522 	this->dev_ready = rtc_from4_nand_device_ready;
523 
524 #ifdef RTC_FROM4_HWECC
525 	printk(KERN_INFO "rtc_from4_init: using hardware ECC detection.\n");
526 
527 	this->ecc.mode = NAND_ECC_HW_SYNDROME;
528 	this->ecc.size = 512;
529 	this->ecc.bytes = 8;
530 	/* return the status of extra status and ECC checks */
531 	this->errstat = rtc_from4_errstat;
532 	/* set the nand_oobinfo to support FPGA H/W error detection */
533 	this->ecc.layout = &rtc_from4_nand_oobinfo;
534 	this->ecc.hwctl = rtc_from4_enable_hwecc;
535 	this->ecc.calculate = rtc_from4_calculate_ecc;
536 	this->ecc.correct = rtc_from4_correct_data;
537 
538 	/* We could create the decoder on demand, if memory is a concern.
539 	 * This way we have it handy, if an error happens
540 	 *
541 	 * Symbolsize is 10 (bits)
542 	 * Primitve polynomial is x^10+x^3+1
543 	 * first consecutive root is 0
544 	 * primitve element to generate roots = 1
545 	 * generator polinomial degree = 6
546 	 */
547 	rs_decoder = init_rs(10, 0x409, 0, 1, 6);
548 	if (!rs_decoder) {
549 		printk(KERN_ERR "Could not create a RS decoder\n");
550 		ret = -ENOMEM;
551 		goto err_1;
552 	}
553 #else
554 	printk(KERN_INFO "rtc_from4_init: using software ECC detection.\n");
555 
556 	this->ecc.mode = NAND_ECC_SOFT;
557 #endif
558 
559 	/* set the bad block tables to support debugging */
560 	this->bbt_td = &rtc_from4_bbt_main_descr;
561 	this->bbt_md = &rtc_from4_bbt_mirror_descr;
562 
563 	/* Scan to find existence of the device */
564 	if (nand_scan(rtc_from4_mtd, RTC_FROM4_MAX_CHIPS)) {
565 		ret = -ENXIO;
566 		goto err_2;
567 	}
568 
569 	/* Perform 'device recovery' for each chip in case there was a power loss. */
570 	for (i = 0; i < this->numchips; i++) {
571 		deplete(rtc_from4_mtd, i);
572 	}
573 
574 #if RTC_FROM4_NO_VIRTBLOCKS
575 	/* use a smaller erase block to minimize wasted space when a block is bad */
576 	/* note: this uses eight times as much RAM as using the default and makes */
577 	/*       mounts take four times as long. */
578 	rtc_from4_mtd->flags |= MTD_NO_VIRTBLOCKS;
579 #endif
580 
581 	/* Register the partitions */
582 	ret = mtd_device_register(rtc_from4_mtd, partition_info,
583 				  NUM_PARTITIONS);
584 	if (ret)
585 		goto err_3;
586 
587 	/* Return happy */
588 	return 0;
589 err_3:
590 	nand_release(rtc_from4_mtd);
591 err_2:
592 	free_rs(rs_decoder);
593 err_1:
594 	kfree(rtc_from4_mtd);
595 	return ret;
596 }
597 
598 module_init(rtc_from4_init);
599 
600 /*
601  * Clean up routine
602  */
rtc_from4_cleanup(void)603 static void __exit rtc_from4_cleanup(void)
604 {
605 	/* Release resource, unregister partitions */
606 	nand_release(rtc_from4_mtd);
607 
608 	/* Free the MTD device structure */
609 	kfree(rtc_from4_mtd);
610 
611 #ifdef RTC_FROM4_HWECC
612 	/* Free the reed solomon resources */
613 	if (rs_decoder) {
614 		free_rs(rs_decoder);
615 	}
616 #endif
617 }
618 
619 module_exit(rtc_from4_cleanup);
620 
621 MODULE_LICENSE("GPL");
622 MODULE_AUTHOR("d.marlin <dmarlin@redhat.com");
623 MODULE_DESCRIPTION("Board-specific glue layer for AG-AND flash on Renesas FROM_BOARD4");
624