1 /*
2  *  drivers/mtd/nand.c
3  *
4  *  Overview:
5  *   This is the generic MTD driver for NAND flash devices. It should be
6  *   capable of working with almost all NAND chips currently available.
7  *   Basic support for AG-AND chips is provided.
8  *
9  *	Additional technical information is available on
10  *	http://www.linux-mtd.infradead.org/doc/nand.html
11  *
12  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13  *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
14  *
15  *  Credits:
16  *	David Woodhouse for adding multichip support
17  *
18  *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19  *	rework for 2K page size chips
20  *
21  *  TODO:
22  *	Enable cached programming for 2k page size chips
23  *	Check, if mtd->ecctype should be set to MTD_ECC_HW
24  *	if we have HW ECC support.
25  *	The AG-AND chips have nice features for speed improvement,
26  *	which are not supported yet. Read / program 4 pages in one go.
27  *	BBT table is not serialized, has to be fixed
28  *
29  * This program is free software; you can redistribute it and/or modify
30  * it under the terms of the GNU General Public License version 2 as
31  * published by the Free Software Foundation.
32  *
33  */
34 
35 #include <linux/module.h>
36 #include <linux/delay.h>
37 #include <linux/errno.h>
38 #include <linux/err.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/mtd/nand_bch.h>
46 #include <linux/interrupt.h>
47 #include <linux/bitops.h>
48 #include <linux/leds.h>
49 #include <linux/io.h>
50 #include <linux/mtd/partitions.h>
51 
52 /* Define default oob placement schemes for large and small page devices */
53 static struct nand_ecclayout nand_oob_8 = {
54 	.eccbytes = 3,
55 	.eccpos = {0, 1, 2},
56 	.oobfree = {
57 		{.offset = 3,
58 		 .length = 2},
59 		{.offset = 6,
60 		 .length = 2} }
61 };
62 
63 static struct nand_ecclayout nand_oob_16 = {
64 	.eccbytes = 6,
65 	.eccpos = {0, 1, 2, 3, 6, 7},
66 	.oobfree = {
67 		{.offset = 8,
68 		 . length = 8} }
69 };
70 
71 static struct nand_ecclayout nand_oob_64 = {
72 	.eccbytes = 24,
73 	.eccpos = {
74 		   40, 41, 42, 43, 44, 45, 46, 47,
75 		   48, 49, 50, 51, 52, 53, 54, 55,
76 		   56, 57, 58, 59, 60, 61, 62, 63},
77 	.oobfree = {
78 		{.offset = 2,
79 		 .length = 38} }
80 };
81 
82 static struct nand_ecclayout nand_oob_128 = {
83 	.eccbytes = 48,
84 	.eccpos = {
85 		   80, 81, 82, 83, 84, 85, 86, 87,
86 		   88, 89, 90, 91, 92, 93, 94, 95,
87 		   96, 97, 98, 99, 100, 101, 102, 103,
88 		   104, 105, 106, 107, 108, 109, 110, 111,
89 		   112, 113, 114, 115, 116, 117, 118, 119,
90 		   120, 121, 122, 123, 124, 125, 126, 127},
91 	.oobfree = {
92 		{.offset = 2,
93 		 .length = 78} }
94 };
95 
96 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
97 			   int new_state);
98 
99 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
100 			     struct mtd_oob_ops *ops);
101 
102 /*
103  * For devices which display every fart in the system on a separate LED. Is
104  * compiled away when LED support is disabled.
105  */
106 DEFINE_LED_TRIGGER(nand_led_trigger);
107 
check_offs_len(struct mtd_info * mtd,loff_t ofs,uint64_t len)108 static int check_offs_len(struct mtd_info *mtd,
109 					loff_t ofs, uint64_t len)
110 {
111 	struct nand_chip *chip = mtd->priv;
112 	int ret = 0;
113 
114 	/* Start address must align on block boundary */
115 	if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
116 		pr_debug("%s: unaligned address\n", __func__);
117 		ret = -EINVAL;
118 	}
119 
120 	/* Length must align on block boundary */
121 	if (len & ((1 << chip->phys_erase_shift) - 1)) {
122 		pr_debug("%s: length not block aligned\n", __func__);
123 		ret = -EINVAL;
124 	}
125 
126 	/* Do not allow past end of device */
127 	if (ofs + len > mtd->size) {
128 		pr_debug("%s: past end of device\n", __func__);
129 		ret = -EINVAL;
130 	}
131 
132 	return ret;
133 }
134 
135 /**
136  * nand_release_device - [GENERIC] release chip
137  * @mtd: MTD device structure
138  *
139  * Deselect, release chip lock and wake up anyone waiting on the device.
140  */
nand_release_device(struct mtd_info * mtd)141 static void nand_release_device(struct mtd_info *mtd)
142 {
143 	struct nand_chip *chip = mtd->priv;
144 
145 	/* De-select the NAND device */
146 	chip->select_chip(mtd, -1);
147 
148 	/* Release the controller and the chip */
149 	spin_lock(&chip->controller->lock);
150 	chip->controller->active = NULL;
151 	chip->state = FL_READY;
152 	wake_up(&chip->controller->wq);
153 	spin_unlock(&chip->controller->lock);
154 }
155 
156 /**
157  * nand_read_byte - [DEFAULT] read one byte from the chip
158  * @mtd: MTD device structure
159  *
160  * Default read function for 8bit buswidth
161  */
nand_read_byte(struct mtd_info * mtd)162 static uint8_t nand_read_byte(struct mtd_info *mtd)
163 {
164 	struct nand_chip *chip = mtd->priv;
165 	return readb(chip->IO_ADDR_R);
166 }
167 
168 /**
169  * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
170  * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
171  * @mtd: MTD device structure
172  *
173  * Default read function for 16bit buswidth with endianness conversion.
174  *
175  */
nand_read_byte16(struct mtd_info * mtd)176 static uint8_t nand_read_byte16(struct mtd_info *mtd)
177 {
178 	struct nand_chip *chip = mtd->priv;
179 	return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
180 }
181 
182 /**
183  * nand_read_word - [DEFAULT] read one word from the chip
184  * @mtd: MTD device structure
185  *
186  * Default read function for 16bit buswidth without endianness conversion.
187  */
nand_read_word(struct mtd_info * mtd)188 static u16 nand_read_word(struct mtd_info *mtd)
189 {
190 	struct nand_chip *chip = mtd->priv;
191 	return readw(chip->IO_ADDR_R);
192 }
193 
194 /**
195  * nand_select_chip - [DEFAULT] control CE line
196  * @mtd: MTD device structure
197  * @chipnr: chipnumber to select, -1 for deselect
198  *
199  * Default select function for 1 chip devices.
200  */
nand_select_chip(struct mtd_info * mtd,int chipnr)201 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
202 {
203 	struct nand_chip *chip = mtd->priv;
204 
205 	switch (chipnr) {
206 	case -1:
207 		chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
208 		break;
209 	case 0:
210 		break;
211 
212 	default:
213 		BUG();
214 	}
215 }
216 
217 /**
218  * nand_write_buf - [DEFAULT] write buffer to chip
219  * @mtd: MTD device structure
220  * @buf: data buffer
221  * @len: number of bytes to write
222  *
223  * Default write function for 8bit buswidth.
224  */
nand_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)225 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
226 {
227 	int i;
228 	struct nand_chip *chip = mtd->priv;
229 
230 	for (i = 0; i < len; i++)
231 		writeb(buf[i], chip->IO_ADDR_W);
232 }
233 
234 /**
235  * nand_read_buf - [DEFAULT] read chip data into buffer
236  * @mtd: MTD device structure
237  * @buf: buffer to store date
238  * @len: number of bytes to read
239  *
240  * Default read function for 8bit buswidth.
241  */
nand_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)242 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
243 {
244 	int i;
245 	struct nand_chip *chip = mtd->priv;
246 
247 	for (i = 0; i < len; i++)
248 		buf[i] = readb(chip->IO_ADDR_R);
249 }
250 
251 /**
252  * nand_verify_buf - [DEFAULT] Verify chip data against buffer
253  * @mtd: MTD device structure
254  * @buf: buffer containing the data to compare
255  * @len: number of bytes to compare
256  *
257  * Default verify function for 8bit buswidth.
258  */
nand_verify_buf(struct mtd_info * mtd,const uint8_t * buf,int len)259 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
260 {
261 	int i;
262 	struct nand_chip *chip = mtd->priv;
263 
264 	for (i = 0; i < len; i++)
265 		if (buf[i] != readb(chip->IO_ADDR_R))
266 			return -EFAULT;
267 	return 0;
268 }
269 
270 /**
271  * nand_write_buf16 - [DEFAULT] write buffer to chip
272  * @mtd: MTD device structure
273  * @buf: data buffer
274  * @len: number of bytes to write
275  *
276  * Default write function for 16bit buswidth.
277  */
nand_write_buf16(struct mtd_info * mtd,const uint8_t * buf,int len)278 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
279 {
280 	int i;
281 	struct nand_chip *chip = mtd->priv;
282 	u16 *p = (u16 *) buf;
283 	len >>= 1;
284 
285 	for (i = 0; i < len; i++)
286 		writew(p[i], chip->IO_ADDR_W);
287 
288 }
289 
290 /**
291  * nand_read_buf16 - [DEFAULT] read chip data into buffer
292  * @mtd: MTD device structure
293  * @buf: buffer to store date
294  * @len: number of bytes to read
295  *
296  * Default read function for 16bit buswidth.
297  */
nand_read_buf16(struct mtd_info * mtd,uint8_t * buf,int len)298 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
299 {
300 	int i;
301 	struct nand_chip *chip = mtd->priv;
302 	u16 *p = (u16 *) buf;
303 	len >>= 1;
304 
305 	for (i = 0; i < len; i++)
306 		p[i] = readw(chip->IO_ADDR_R);
307 }
308 
309 /**
310  * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
311  * @mtd: MTD device structure
312  * @buf: buffer containing the data to compare
313  * @len: number of bytes to compare
314  *
315  * Default verify function for 16bit buswidth.
316  */
nand_verify_buf16(struct mtd_info * mtd,const uint8_t * buf,int len)317 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
318 {
319 	int i;
320 	struct nand_chip *chip = mtd->priv;
321 	u16 *p = (u16 *) buf;
322 	len >>= 1;
323 
324 	for (i = 0; i < len; i++)
325 		if (p[i] != readw(chip->IO_ADDR_R))
326 			return -EFAULT;
327 
328 	return 0;
329 }
330 
331 /**
332  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
333  * @mtd: MTD device structure
334  * @ofs: offset from device start
335  * @getchip: 0, if the chip is already selected
336  *
337  * Check, if the block is bad.
338  */
nand_block_bad(struct mtd_info * mtd,loff_t ofs,int getchip)339 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
340 {
341 	int page, chipnr, res = 0;
342 	struct nand_chip *chip = mtd->priv;
343 	u16 bad;
344 
345 	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
346 		ofs += mtd->erasesize - mtd->writesize;
347 
348 	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
349 
350 	if (getchip) {
351 		chipnr = (int)(ofs >> chip->chip_shift);
352 
353 		nand_get_device(chip, mtd, FL_READING);
354 
355 		/* Select the NAND device */
356 		chip->select_chip(mtd, chipnr);
357 	}
358 
359 	if (chip->options & NAND_BUSWIDTH_16) {
360 		chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
361 			      page);
362 		bad = cpu_to_le16(chip->read_word(mtd));
363 		if (chip->badblockpos & 0x1)
364 			bad >>= 8;
365 		else
366 			bad &= 0xFF;
367 	} else {
368 		chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
369 		bad = chip->read_byte(mtd);
370 	}
371 
372 	if (likely(chip->badblockbits == 8))
373 		res = bad != 0xFF;
374 	else
375 		res = hweight8(bad) < chip->badblockbits;
376 
377 	if (getchip)
378 		nand_release_device(mtd);
379 
380 	return res;
381 }
382 
383 /**
384  * nand_default_block_markbad - [DEFAULT] mark a block bad
385  * @mtd: MTD device structure
386  * @ofs: offset from device start
387  *
388  * This is the default implementation, which can be overridden by a hardware
389  * specific driver.
390 */
nand_default_block_markbad(struct mtd_info * mtd,loff_t ofs)391 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
392 {
393 	struct nand_chip *chip = mtd->priv;
394 	uint8_t buf[2] = { 0, 0 };
395 	int block, ret, i = 0;
396 
397 	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
398 		ofs += mtd->erasesize - mtd->writesize;
399 
400 	/* Get block number */
401 	block = (int)(ofs >> chip->bbt_erase_shift);
402 	if (chip->bbt)
403 		chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
404 
405 	/* Do we have a flash based bad block table? */
406 	if (chip->bbt_options & NAND_BBT_USE_FLASH)
407 		ret = nand_update_bbt(mtd, ofs);
408 	else {
409 		struct mtd_oob_ops ops;
410 
411 		nand_get_device(chip, mtd, FL_WRITING);
412 
413 		/*
414 		 * Write to first two pages if necessary. If we write to more
415 		 * than one location, the first error encountered quits the
416 		 * procedure. We write two bytes per location, so we dont have
417 		 * to mess with 16 bit access.
418 		 */
419 		ops.len = ops.ooblen = 2;
420 		ops.datbuf = NULL;
421 		ops.oobbuf = buf;
422 		ops.ooboffs = chip->badblockpos & ~0x01;
423 		ops.mode = MTD_OPS_PLACE_OOB;
424 		do {
425 			ret = nand_do_write_oob(mtd, ofs, &ops);
426 
427 			i++;
428 			ofs += mtd->writesize;
429 		} while (!ret && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE) &&
430 				i < 2);
431 
432 		nand_release_device(mtd);
433 	}
434 	if (!ret)
435 		mtd->ecc_stats.badblocks++;
436 
437 	return ret;
438 }
439 
440 /**
441  * nand_check_wp - [GENERIC] check if the chip is write protected
442  * @mtd: MTD device structure
443  *
444  * Check, if the device is write protected. The function expects, that the
445  * device is already selected.
446  */
nand_check_wp(struct mtd_info * mtd)447 static int nand_check_wp(struct mtd_info *mtd)
448 {
449 	struct nand_chip *chip = mtd->priv;
450 
451 	/* Broken xD cards report WP despite being writable */
452 	if (chip->options & NAND_BROKEN_XD)
453 		return 0;
454 
455 	/* Check the WP bit */
456 	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
457 	return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
458 }
459 
460 /**
461  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
462  * @mtd: MTD device structure
463  * @ofs: offset from device start
464  * @getchip: 0, if the chip is already selected
465  * @allowbbt: 1, if its allowed to access the bbt area
466  *
467  * Check, if the block is bad. Either by reading the bad block table or
468  * calling of the scan function.
469  */
nand_block_checkbad(struct mtd_info * mtd,loff_t ofs,int getchip,int allowbbt)470 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
471 			       int allowbbt)
472 {
473 	struct nand_chip *chip = mtd->priv;
474 
475 	if (!chip->bbt)
476 		return chip->block_bad(mtd, ofs, getchip);
477 
478 	/* Return info from the table */
479 	return nand_isbad_bbt(mtd, ofs, allowbbt);
480 }
481 
482 /**
483  * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
484  * @mtd: MTD device structure
485  * @timeo: Timeout
486  *
487  * Helper function for nand_wait_ready used when needing to wait in interrupt
488  * context.
489  */
panic_nand_wait_ready(struct mtd_info * mtd,unsigned long timeo)490 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
491 {
492 	struct nand_chip *chip = mtd->priv;
493 	int i;
494 
495 	/* Wait for the device to get ready */
496 	for (i = 0; i < timeo; i++) {
497 		if (chip->dev_ready(mtd))
498 			break;
499 		touch_softlockup_watchdog();
500 		mdelay(1);
501 	}
502 }
503 
504 /* Wait for the ready pin, after a command. The timeout is caught later. */
nand_wait_ready(struct mtd_info * mtd)505 void nand_wait_ready(struct mtd_info *mtd)
506 {
507 	struct nand_chip *chip = mtd->priv;
508 	unsigned long timeo = jiffies + 2;
509 
510 	/* 400ms timeout */
511 	if (in_interrupt() || oops_in_progress)
512 		return panic_nand_wait_ready(mtd, 400);
513 
514 	led_trigger_event(nand_led_trigger, LED_FULL);
515 	/* Wait until command is processed or timeout occurs */
516 	do {
517 		if (chip->dev_ready(mtd))
518 			break;
519 		touch_softlockup_watchdog();
520 	} while (time_before(jiffies, timeo));
521 	led_trigger_event(nand_led_trigger, LED_OFF);
522 }
523 EXPORT_SYMBOL_GPL(nand_wait_ready);
524 
525 /**
526  * nand_command - [DEFAULT] Send command to NAND device
527  * @mtd: MTD device structure
528  * @command: the command to be sent
529  * @column: the column address for this command, -1 if none
530  * @page_addr: the page address for this command, -1 if none
531  *
532  * Send command to NAND device. This function is used for small page devices
533  * (256/512 Bytes per page).
534  */
nand_command(struct mtd_info * mtd,unsigned int command,int column,int page_addr)535 static void nand_command(struct mtd_info *mtd, unsigned int command,
536 			 int column, int page_addr)
537 {
538 	register struct nand_chip *chip = mtd->priv;
539 	int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
540 
541 	/* Write out the command to the device */
542 	if (command == NAND_CMD_SEQIN) {
543 		int readcmd;
544 
545 		if (column >= mtd->writesize) {
546 			/* OOB area */
547 			column -= mtd->writesize;
548 			readcmd = NAND_CMD_READOOB;
549 		} else if (column < 256) {
550 			/* First 256 bytes --> READ0 */
551 			readcmd = NAND_CMD_READ0;
552 		} else {
553 			column -= 256;
554 			readcmd = NAND_CMD_READ1;
555 		}
556 		chip->cmd_ctrl(mtd, readcmd, ctrl);
557 		ctrl &= ~NAND_CTRL_CHANGE;
558 	}
559 	chip->cmd_ctrl(mtd, command, ctrl);
560 
561 	/* Address cycle, when necessary */
562 	ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
563 	/* Serially input address */
564 	if (column != -1) {
565 		/* Adjust columns for 16 bit buswidth */
566 		if (chip->options & NAND_BUSWIDTH_16)
567 			column >>= 1;
568 		chip->cmd_ctrl(mtd, column, ctrl);
569 		ctrl &= ~NAND_CTRL_CHANGE;
570 	}
571 	if (page_addr != -1) {
572 		chip->cmd_ctrl(mtd, page_addr, ctrl);
573 		ctrl &= ~NAND_CTRL_CHANGE;
574 		chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
575 		/* One more address cycle for devices > 32MiB */
576 		if (chip->chipsize > (32 << 20))
577 			chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
578 	}
579 	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
580 
581 	/*
582 	 * Program and erase have their own busy handlers status and sequential
583 	 * in needs no delay
584 	 */
585 	switch (command) {
586 
587 	case NAND_CMD_PAGEPROG:
588 	case NAND_CMD_ERASE1:
589 	case NAND_CMD_ERASE2:
590 	case NAND_CMD_SEQIN:
591 	case NAND_CMD_STATUS:
592 		return;
593 
594 	case NAND_CMD_RESET:
595 		if (chip->dev_ready)
596 			break;
597 		udelay(chip->chip_delay);
598 		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
599 			       NAND_CTRL_CLE | NAND_CTRL_CHANGE);
600 		chip->cmd_ctrl(mtd,
601 			       NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
602 		while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
603 				;
604 		return;
605 
606 		/* This applies to read commands */
607 	default:
608 		/*
609 		 * If we don't have access to the busy pin, we apply the given
610 		 * command delay
611 		 */
612 		if (!chip->dev_ready) {
613 			udelay(chip->chip_delay);
614 			return;
615 		}
616 	}
617 	/*
618 	 * Apply this short delay always to ensure that we do wait tWB in
619 	 * any case on any machine.
620 	 */
621 	ndelay(100);
622 
623 	nand_wait_ready(mtd);
624 }
625 
626 /**
627  * nand_command_lp - [DEFAULT] Send command to NAND large page device
628  * @mtd: MTD device structure
629  * @command: the command to be sent
630  * @column: the column address for this command, -1 if none
631  * @page_addr: the page address for this command, -1 if none
632  *
633  * Send command to NAND device. This is the version for the new large page
634  * devices. We don't have the separate regions as we have in the small page
635  * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
636  */
nand_command_lp(struct mtd_info * mtd,unsigned int command,int column,int page_addr)637 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
638 			    int column, int page_addr)
639 {
640 	register struct nand_chip *chip = mtd->priv;
641 
642 	/* Emulate NAND_CMD_READOOB */
643 	if (command == NAND_CMD_READOOB) {
644 		column += mtd->writesize;
645 		command = NAND_CMD_READ0;
646 	}
647 
648 	/* Command latch cycle */
649 	chip->cmd_ctrl(mtd, command & 0xff,
650 		       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
651 
652 	if (column != -1 || page_addr != -1) {
653 		int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
654 
655 		/* Serially input address */
656 		if (column != -1) {
657 			/* Adjust columns for 16 bit buswidth */
658 			if (chip->options & NAND_BUSWIDTH_16)
659 				column >>= 1;
660 			chip->cmd_ctrl(mtd, column, ctrl);
661 			ctrl &= ~NAND_CTRL_CHANGE;
662 			chip->cmd_ctrl(mtd, column >> 8, ctrl);
663 		}
664 		if (page_addr != -1) {
665 			chip->cmd_ctrl(mtd, page_addr, ctrl);
666 			chip->cmd_ctrl(mtd, page_addr >> 8,
667 				       NAND_NCE | NAND_ALE);
668 			/* One more address cycle for devices > 128MiB */
669 			if (chip->chipsize > (128 << 20))
670 				chip->cmd_ctrl(mtd, page_addr >> 16,
671 					       NAND_NCE | NAND_ALE);
672 		}
673 	}
674 	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
675 
676 	/*
677 	 * Program and erase have their own busy handlers status, sequential
678 	 * in, and deplete1 need no delay.
679 	 */
680 	switch (command) {
681 
682 	case NAND_CMD_CACHEDPROG:
683 	case NAND_CMD_PAGEPROG:
684 	case NAND_CMD_ERASE1:
685 	case NAND_CMD_ERASE2:
686 	case NAND_CMD_SEQIN:
687 	case NAND_CMD_RNDIN:
688 	case NAND_CMD_STATUS:
689 	case NAND_CMD_DEPLETE1:
690 		return;
691 
692 	case NAND_CMD_STATUS_ERROR:
693 	case NAND_CMD_STATUS_ERROR0:
694 	case NAND_CMD_STATUS_ERROR1:
695 	case NAND_CMD_STATUS_ERROR2:
696 	case NAND_CMD_STATUS_ERROR3:
697 		/* Read error status commands require only a short delay */
698 		udelay(chip->chip_delay);
699 		return;
700 
701 	case NAND_CMD_RESET:
702 		if (chip->dev_ready)
703 			break;
704 		udelay(chip->chip_delay);
705 		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
706 			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
707 		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
708 			       NAND_NCE | NAND_CTRL_CHANGE);
709 		while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
710 				;
711 		return;
712 
713 	case NAND_CMD_RNDOUT:
714 		/* No ready / busy check necessary */
715 		chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
716 			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
717 		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
718 			       NAND_NCE | NAND_CTRL_CHANGE);
719 		return;
720 
721 	case NAND_CMD_READ0:
722 		chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
723 			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
724 		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
725 			       NAND_NCE | NAND_CTRL_CHANGE);
726 
727 		/* This applies to read commands */
728 	default:
729 		/*
730 		 * If we don't have access to the busy pin, we apply the given
731 		 * command delay.
732 		 */
733 		if (!chip->dev_ready) {
734 			udelay(chip->chip_delay);
735 			return;
736 		}
737 	}
738 
739 	/*
740 	 * Apply this short delay always to ensure that we do wait tWB in
741 	 * any case on any machine.
742 	 */
743 	ndelay(100);
744 
745 	nand_wait_ready(mtd);
746 }
747 
748 /**
749  * panic_nand_get_device - [GENERIC] Get chip for selected access
750  * @chip: the nand chip descriptor
751  * @mtd: MTD device structure
752  * @new_state: the state which is requested
753  *
754  * Used when in panic, no locks are taken.
755  */
panic_nand_get_device(struct nand_chip * chip,struct mtd_info * mtd,int new_state)756 static void panic_nand_get_device(struct nand_chip *chip,
757 		      struct mtd_info *mtd, int new_state)
758 {
759 	/* Hardware controller shared among independent devices */
760 	chip->controller->active = chip;
761 	chip->state = new_state;
762 }
763 
764 /**
765  * nand_get_device - [GENERIC] Get chip for selected access
766  * @chip: the nand chip descriptor
767  * @mtd: MTD device structure
768  * @new_state: the state which is requested
769  *
770  * Get the device and lock it for exclusive access
771  */
772 static int
nand_get_device(struct nand_chip * chip,struct mtd_info * mtd,int new_state)773 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
774 {
775 	spinlock_t *lock = &chip->controller->lock;
776 	wait_queue_head_t *wq = &chip->controller->wq;
777 	DECLARE_WAITQUEUE(wait, current);
778 retry:
779 	spin_lock(lock);
780 
781 	/* Hardware controller shared among independent devices */
782 	if (!chip->controller->active)
783 		chip->controller->active = chip;
784 
785 	if (chip->controller->active == chip && chip->state == FL_READY) {
786 		chip->state = new_state;
787 		spin_unlock(lock);
788 		return 0;
789 	}
790 	if (new_state == FL_PM_SUSPENDED) {
791 		if (chip->controller->active->state == FL_PM_SUSPENDED) {
792 			chip->state = FL_PM_SUSPENDED;
793 			spin_unlock(lock);
794 			return 0;
795 		}
796 	}
797 	set_current_state(TASK_UNINTERRUPTIBLE);
798 	add_wait_queue(wq, &wait);
799 	spin_unlock(lock);
800 	schedule();
801 	remove_wait_queue(wq, &wait);
802 	goto retry;
803 }
804 
805 /**
806  * panic_nand_wait - [GENERIC] wait until the command is done
807  * @mtd: MTD device structure
808  * @chip: NAND chip structure
809  * @timeo: timeout
810  *
811  * Wait for command done. This is a helper function for nand_wait used when
812  * we are in interrupt context. May happen when in panic and trying to write
813  * an oops through mtdoops.
814  */
panic_nand_wait(struct mtd_info * mtd,struct nand_chip * chip,unsigned long timeo)815 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
816 			    unsigned long timeo)
817 {
818 	int i;
819 	for (i = 0; i < timeo; i++) {
820 		if (chip->dev_ready) {
821 			if (chip->dev_ready(mtd))
822 				break;
823 		} else {
824 			if (chip->read_byte(mtd) & NAND_STATUS_READY)
825 				break;
826 		}
827 		mdelay(1);
828 	}
829 }
830 
831 /**
832  * nand_wait - [DEFAULT] wait until the command is done
833  * @mtd: MTD device structure
834  * @chip: NAND chip structure
835  *
836  * Wait for command done. This applies to erase and program only. Erase can
837  * take up to 400ms and program up to 20ms according to general NAND and
838  * SmartMedia specs.
839  */
nand_wait(struct mtd_info * mtd,struct nand_chip * chip)840 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
841 {
842 
843 	unsigned long timeo = jiffies;
844 	int status, state = chip->state;
845 
846 	if (state == FL_ERASING)
847 		timeo += (HZ * 400) / 1000;
848 	else
849 		timeo += (HZ * 20) / 1000;
850 
851 	led_trigger_event(nand_led_trigger, LED_FULL);
852 
853 	/*
854 	 * Apply this short delay always to ensure that we do wait tWB in any
855 	 * case on any machine.
856 	 */
857 	ndelay(100);
858 
859 	if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
860 		chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
861 	else
862 		chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
863 
864 	if (in_interrupt() || oops_in_progress)
865 		panic_nand_wait(mtd, chip, timeo);
866 	else {
867 		while (time_before(jiffies, timeo)) {
868 			if (chip->dev_ready) {
869 				if (chip->dev_ready(mtd))
870 					break;
871 			} else {
872 				if (chip->read_byte(mtd) & NAND_STATUS_READY)
873 					break;
874 			}
875 			cond_resched();
876 		}
877 	}
878 	led_trigger_event(nand_led_trigger, LED_OFF);
879 
880 	status = (int)chip->read_byte(mtd);
881 	return status;
882 }
883 
884 /**
885  * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
886  * @mtd: mtd info
887  * @ofs: offset to start unlock from
888  * @len: length to unlock
889  * @invert: when = 0, unlock the range of blocks within the lower and
890  *                    upper boundary address
891  *          when = 1, unlock the range of blocks outside the boundaries
892  *                    of the lower and upper boundary address
893  *
894  * Returs unlock status.
895  */
__nand_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len,int invert)896 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
897 					uint64_t len, int invert)
898 {
899 	int ret = 0;
900 	int status, page;
901 	struct nand_chip *chip = mtd->priv;
902 
903 	/* Submit address of first page to unlock */
904 	page = ofs >> chip->page_shift;
905 	chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
906 
907 	/* Submit address of last page to unlock */
908 	page = (ofs + len) >> chip->page_shift;
909 	chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
910 				(page | invert) & chip->pagemask);
911 
912 	/* Call wait ready function */
913 	status = chip->waitfunc(mtd, chip);
914 	/* See if device thinks it succeeded */
915 	if (status & 0x01) {
916 		pr_debug("%s: error status = 0x%08x\n",
917 					__func__, status);
918 		ret = -EIO;
919 	}
920 
921 	return ret;
922 }
923 
924 /**
925  * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
926  * @mtd: mtd info
927  * @ofs: offset to start unlock from
928  * @len: length to unlock
929  *
930  * Returns unlock status.
931  */
nand_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)932 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
933 {
934 	int ret = 0;
935 	int chipnr;
936 	struct nand_chip *chip = mtd->priv;
937 
938 	pr_debug("%s: start = 0x%012llx, len = %llu\n",
939 			__func__, (unsigned long long)ofs, len);
940 
941 	if (check_offs_len(mtd, ofs, len))
942 		ret = -EINVAL;
943 
944 	/* Align to last block address if size addresses end of the device */
945 	if (ofs + len == mtd->size)
946 		len -= mtd->erasesize;
947 
948 	nand_get_device(chip, mtd, FL_UNLOCKING);
949 
950 	/* Shift to get chip number */
951 	chipnr = ofs >> chip->chip_shift;
952 
953 	chip->select_chip(mtd, chipnr);
954 
955 	/* Check, if it is write protected */
956 	if (nand_check_wp(mtd)) {
957 		pr_debug("%s: device is write protected!\n",
958 					__func__);
959 		ret = -EIO;
960 		goto out;
961 	}
962 
963 	ret = __nand_unlock(mtd, ofs, len, 0);
964 
965 out:
966 	nand_release_device(mtd);
967 
968 	return ret;
969 }
970 EXPORT_SYMBOL(nand_unlock);
971 
972 /**
973  * nand_lock - [REPLACEABLE] locks all blocks present in the device
974  * @mtd: mtd info
975  * @ofs: offset to start unlock from
976  * @len: length to unlock
977  *
978  * This feature is not supported in many NAND parts. 'Micron' NAND parts do
979  * have this feature, but it allows only to lock all blocks, not for specified
980  * range for block. Implementing 'lock' feature by making use of 'unlock', for
981  * now.
982  *
983  * Returns lock status.
984  */
nand_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)985 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
986 {
987 	int ret = 0;
988 	int chipnr, status, page;
989 	struct nand_chip *chip = mtd->priv;
990 
991 	pr_debug("%s: start = 0x%012llx, len = %llu\n",
992 			__func__, (unsigned long long)ofs, len);
993 
994 	if (check_offs_len(mtd, ofs, len))
995 		ret = -EINVAL;
996 
997 	nand_get_device(chip, mtd, FL_LOCKING);
998 
999 	/* Shift to get chip number */
1000 	chipnr = ofs >> chip->chip_shift;
1001 
1002 	chip->select_chip(mtd, chipnr);
1003 
1004 	/* Check, if it is write protected */
1005 	if (nand_check_wp(mtd)) {
1006 		pr_debug("%s: device is write protected!\n",
1007 					__func__);
1008 		status = MTD_ERASE_FAILED;
1009 		ret = -EIO;
1010 		goto out;
1011 	}
1012 
1013 	/* Submit address of first page to lock */
1014 	page = ofs >> chip->page_shift;
1015 	chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1016 
1017 	/* Call wait ready function */
1018 	status = chip->waitfunc(mtd, chip);
1019 	/* See if device thinks it succeeded */
1020 	if (status & 0x01) {
1021 		pr_debug("%s: error status = 0x%08x\n",
1022 					__func__, status);
1023 		ret = -EIO;
1024 		goto out;
1025 	}
1026 
1027 	ret = __nand_unlock(mtd, ofs, len, 0x1);
1028 
1029 out:
1030 	nand_release_device(mtd);
1031 
1032 	return ret;
1033 }
1034 EXPORT_SYMBOL(nand_lock);
1035 
1036 /**
1037  * nand_read_page_raw - [INTERN] read raw page data without ecc
1038  * @mtd: mtd info structure
1039  * @chip: nand chip info structure
1040  * @buf: buffer to store read data
1041  * @page: page number to read
1042  *
1043  * Not for syndrome calculating ECC controllers, which use a special oob layout.
1044  */
nand_read_page_raw(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int page)1045 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1046 			      uint8_t *buf, int page)
1047 {
1048 	chip->read_buf(mtd, buf, mtd->writesize);
1049 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1050 	return 0;
1051 }
1052 
1053 /**
1054  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1055  * @mtd: mtd info structure
1056  * @chip: nand chip info structure
1057  * @buf: buffer to store read data
1058  * @page: page number to read
1059  *
1060  * We need a special oob layout and handling even when OOB isn't used.
1061  */
nand_read_page_raw_syndrome(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int page)1062 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1063 					struct nand_chip *chip,
1064 					uint8_t *buf, int page)
1065 {
1066 	int eccsize = chip->ecc.size;
1067 	int eccbytes = chip->ecc.bytes;
1068 	uint8_t *oob = chip->oob_poi;
1069 	int steps, size;
1070 
1071 	for (steps = chip->ecc.steps; steps > 0; steps--) {
1072 		chip->read_buf(mtd, buf, eccsize);
1073 		buf += eccsize;
1074 
1075 		if (chip->ecc.prepad) {
1076 			chip->read_buf(mtd, oob, chip->ecc.prepad);
1077 			oob += chip->ecc.prepad;
1078 		}
1079 
1080 		chip->read_buf(mtd, oob, eccbytes);
1081 		oob += eccbytes;
1082 
1083 		if (chip->ecc.postpad) {
1084 			chip->read_buf(mtd, oob, chip->ecc.postpad);
1085 			oob += chip->ecc.postpad;
1086 		}
1087 	}
1088 
1089 	size = mtd->oobsize - (oob - chip->oob_poi);
1090 	if (size)
1091 		chip->read_buf(mtd, oob, size);
1092 
1093 	return 0;
1094 }
1095 
1096 /**
1097  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1098  * @mtd: mtd info structure
1099  * @chip: nand chip info structure
1100  * @buf: buffer to store read data
1101  * @page: page number to read
1102  */
nand_read_page_swecc(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int page)1103 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1104 				uint8_t *buf, int page)
1105 {
1106 	int i, eccsize = chip->ecc.size;
1107 	int eccbytes = chip->ecc.bytes;
1108 	int eccsteps = chip->ecc.steps;
1109 	uint8_t *p = buf;
1110 	uint8_t *ecc_calc = chip->buffers->ecccalc;
1111 	uint8_t *ecc_code = chip->buffers->ecccode;
1112 	uint32_t *eccpos = chip->ecc.layout->eccpos;
1113 
1114 	chip->ecc.read_page_raw(mtd, chip, buf, page);
1115 
1116 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1117 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1118 
1119 	for (i = 0; i < chip->ecc.total; i++)
1120 		ecc_code[i] = chip->oob_poi[eccpos[i]];
1121 
1122 	eccsteps = chip->ecc.steps;
1123 	p = buf;
1124 
1125 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1126 		int stat;
1127 
1128 		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1129 		if (stat < 0)
1130 			mtd->ecc_stats.failed++;
1131 		else
1132 			mtd->ecc_stats.corrected += stat;
1133 	}
1134 	return 0;
1135 }
1136 
1137 /**
1138  * nand_read_subpage - [REPLACEABLE] software ECC based sub-page read function
1139  * @mtd: mtd info structure
1140  * @chip: nand chip info structure
1141  * @data_offs: offset of requested data within the page
1142  * @readlen: data length
1143  * @bufpoi: buffer to store read data
1144  */
nand_read_subpage(struct mtd_info * mtd,struct nand_chip * chip,uint32_t data_offs,uint32_t readlen,uint8_t * bufpoi)1145 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1146 			uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
1147 {
1148 	int start_step, end_step, num_steps;
1149 	uint32_t *eccpos = chip->ecc.layout->eccpos;
1150 	uint8_t *p;
1151 	int data_col_addr, i, gaps = 0;
1152 	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1153 	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1154 	int index = 0;
1155 
1156 	/* Column address within the page aligned to ECC size (256bytes) */
1157 	start_step = data_offs / chip->ecc.size;
1158 	end_step = (data_offs + readlen - 1) / chip->ecc.size;
1159 	num_steps = end_step - start_step + 1;
1160 
1161 	/* Data size aligned to ECC ecc.size */
1162 	datafrag_len = num_steps * chip->ecc.size;
1163 	eccfrag_len = num_steps * chip->ecc.bytes;
1164 
1165 	data_col_addr = start_step * chip->ecc.size;
1166 	/* If we read not a page aligned data */
1167 	if (data_col_addr != 0)
1168 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1169 
1170 	p = bufpoi + data_col_addr;
1171 	chip->read_buf(mtd, p, datafrag_len);
1172 
1173 	/* Calculate ECC */
1174 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1175 		chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1176 
1177 	/*
1178 	 * The performance is faster if we position offsets according to
1179 	 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1180 	 */
1181 	for (i = 0; i < eccfrag_len - 1; i++) {
1182 		if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1183 			eccpos[i + start_step * chip->ecc.bytes + 1]) {
1184 			gaps = 1;
1185 			break;
1186 		}
1187 	}
1188 	if (gaps) {
1189 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1190 		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1191 	} else {
1192 		/*
1193 		 * Send the command to read the particular ECC bytes take care
1194 		 * about buswidth alignment in read_buf.
1195 		 */
1196 		index = start_step * chip->ecc.bytes;
1197 
1198 		aligned_pos = eccpos[index] & ~(busw - 1);
1199 		aligned_len = eccfrag_len;
1200 		if (eccpos[index] & (busw - 1))
1201 			aligned_len++;
1202 		if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1203 			aligned_len++;
1204 
1205 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1206 					mtd->writesize + aligned_pos, -1);
1207 		chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1208 	}
1209 
1210 	for (i = 0; i < eccfrag_len; i++)
1211 		chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1212 
1213 	p = bufpoi + data_col_addr;
1214 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1215 		int stat;
1216 
1217 		stat = chip->ecc.correct(mtd, p,
1218 			&chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1219 		if (stat < 0)
1220 			mtd->ecc_stats.failed++;
1221 		else
1222 			mtd->ecc_stats.corrected += stat;
1223 	}
1224 	return 0;
1225 }
1226 
1227 /**
1228  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1229  * @mtd: mtd info structure
1230  * @chip: nand chip info structure
1231  * @buf: buffer to store read data
1232  * @page: page number to read
1233  *
1234  * Not for syndrome calculating ECC controllers which need a special oob layout.
1235  */
nand_read_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int page)1236 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1237 				uint8_t *buf, int page)
1238 {
1239 	int i, eccsize = chip->ecc.size;
1240 	int eccbytes = chip->ecc.bytes;
1241 	int eccsteps = chip->ecc.steps;
1242 	uint8_t *p = buf;
1243 	uint8_t *ecc_calc = chip->buffers->ecccalc;
1244 	uint8_t *ecc_code = chip->buffers->ecccode;
1245 	uint32_t *eccpos = chip->ecc.layout->eccpos;
1246 
1247 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1248 		chip->ecc.hwctl(mtd, NAND_ECC_READ);
1249 		chip->read_buf(mtd, p, eccsize);
1250 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1251 	}
1252 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1253 
1254 	for (i = 0; i < chip->ecc.total; i++)
1255 		ecc_code[i] = chip->oob_poi[eccpos[i]];
1256 
1257 	eccsteps = chip->ecc.steps;
1258 	p = buf;
1259 
1260 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1261 		int stat;
1262 
1263 		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1264 		if (stat < 0)
1265 			mtd->ecc_stats.failed++;
1266 		else
1267 			mtd->ecc_stats.corrected += stat;
1268 	}
1269 	return 0;
1270 }
1271 
1272 /**
1273  * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1274  * @mtd: mtd info structure
1275  * @chip: nand chip info structure
1276  * @buf: buffer to store read data
1277  * @page: page number to read
1278  *
1279  * Hardware ECC for large page chips, require OOB to be read first. For this
1280  * ECC mode, the write_page method is re-used from ECC_HW. These methods
1281  * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1282  * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1283  * the data area, by overwriting the NAND manufacturer bad block markings.
1284  */
nand_read_page_hwecc_oob_first(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int page)1285 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1286 	struct nand_chip *chip, uint8_t *buf, int page)
1287 {
1288 	int i, eccsize = chip->ecc.size;
1289 	int eccbytes = chip->ecc.bytes;
1290 	int eccsteps = chip->ecc.steps;
1291 	uint8_t *p = buf;
1292 	uint8_t *ecc_code = chip->buffers->ecccode;
1293 	uint32_t *eccpos = chip->ecc.layout->eccpos;
1294 	uint8_t *ecc_calc = chip->buffers->ecccalc;
1295 
1296 	/* Read the OOB area first */
1297 	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1298 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1299 	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1300 
1301 	for (i = 0; i < chip->ecc.total; i++)
1302 		ecc_code[i] = chip->oob_poi[eccpos[i]];
1303 
1304 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1305 		int stat;
1306 
1307 		chip->ecc.hwctl(mtd, NAND_ECC_READ);
1308 		chip->read_buf(mtd, p, eccsize);
1309 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1310 
1311 		stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1312 		if (stat < 0)
1313 			mtd->ecc_stats.failed++;
1314 		else
1315 			mtd->ecc_stats.corrected += stat;
1316 	}
1317 	return 0;
1318 }
1319 
1320 /**
1321  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1322  * @mtd: mtd info structure
1323  * @chip: nand chip info structure
1324  * @buf: buffer to store read data
1325  * @page: page number to read
1326  *
1327  * The hw generator calculates the error syndrome automatically. Therefore we
1328  * need a special oob layout and handling.
1329  */
nand_read_page_syndrome(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int page)1330 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1331 				   uint8_t *buf, int page)
1332 {
1333 	int i, eccsize = chip->ecc.size;
1334 	int eccbytes = chip->ecc.bytes;
1335 	int eccsteps = chip->ecc.steps;
1336 	uint8_t *p = buf;
1337 	uint8_t *oob = chip->oob_poi;
1338 
1339 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1340 		int stat;
1341 
1342 		chip->ecc.hwctl(mtd, NAND_ECC_READ);
1343 		chip->read_buf(mtd, p, eccsize);
1344 
1345 		if (chip->ecc.prepad) {
1346 			chip->read_buf(mtd, oob, chip->ecc.prepad);
1347 			oob += chip->ecc.prepad;
1348 		}
1349 
1350 		chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1351 		chip->read_buf(mtd, oob, eccbytes);
1352 		stat = chip->ecc.correct(mtd, p, oob, NULL);
1353 
1354 		if (stat < 0)
1355 			mtd->ecc_stats.failed++;
1356 		else
1357 			mtd->ecc_stats.corrected += stat;
1358 
1359 		oob += eccbytes;
1360 
1361 		if (chip->ecc.postpad) {
1362 			chip->read_buf(mtd, oob, chip->ecc.postpad);
1363 			oob += chip->ecc.postpad;
1364 		}
1365 	}
1366 
1367 	/* Calculate remaining oob bytes */
1368 	i = mtd->oobsize - (oob - chip->oob_poi);
1369 	if (i)
1370 		chip->read_buf(mtd, oob, i);
1371 
1372 	return 0;
1373 }
1374 
1375 /**
1376  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1377  * @chip: nand chip structure
1378  * @oob: oob destination address
1379  * @ops: oob ops structure
1380  * @len: size of oob to transfer
1381  */
nand_transfer_oob(struct nand_chip * chip,uint8_t * oob,struct mtd_oob_ops * ops,size_t len)1382 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1383 				  struct mtd_oob_ops *ops, size_t len)
1384 {
1385 	switch (ops->mode) {
1386 
1387 	case MTD_OPS_PLACE_OOB:
1388 	case MTD_OPS_RAW:
1389 		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1390 		return oob + len;
1391 
1392 	case MTD_OPS_AUTO_OOB: {
1393 		struct nand_oobfree *free = chip->ecc.layout->oobfree;
1394 		uint32_t boffs = 0, roffs = ops->ooboffs;
1395 		size_t bytes = 0;
1396 
1397 		for (; free->length && len; free++, len -= bytes) {
1398 			/* Read request not from offset 0? */
1399 			if (unlikely(roffs)) {
1400 				if (roffs >= free->length) {
1401 					roffs -= free->length;
1402 					continue;
1403 				}
1404 				boffs = free->offset + roffs;
1405 				bytes = min_t(size_t, len,
1406 					      (free->length - roffs));
1407 				roffs = 0;
1408 			} else {
1409 				bytes = min_t(size_t, len, free->length);
1410 				boffs = free->offset;
1411 			}
1412 			memcpy(oob, chip->oob_poi + boffs, bytes);
1413 			oob += bytes;
1414 		}
1415 		return oob;
1416 	}
1417 	default:
1418 		BUG();
1419 	}
1420 	return NULL;
1421 }
1422 
1423 /**
1424  * nand_do_read_ops - [INTERN] Read data with ECC
1425  * @mtd: MTD device structure
1426  * @from: offset to read from
1427  * @ops: oob ops structure
1428  *
1429  * Internal function. Called with chip held.
1430  */
nand_do_read_ops(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1431 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1432 			    struct mtd_oob_ops *ops)
1433 {
1434 	int chipnr, page, realpage, col, bytes, aligned;
1435 	struct nand_chip *chip = mtd->priv;
1436 	struct mtd_ecc_stats stats;
1437 	int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1438 	int sndcmd = 1;
1439 	int ret = 0;
1440 	uint32_t readlen = ops->len;
1441 	uint32_t oobreadlen = ops->ooblen;
1442 	uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
1443 		mtd->oobavail : mtd->oobsize;
1444 
1445 	uint8_t *bufpoi, *oob, *buf;
1446 
1447 	stats = mtd->ecc_stats;
1448 
1449 	chipnr = (int)(from >> chip->chip_shift);
1450 	chip->select_chip(mtd, chipnr);
1451 
1452 	realpage = (int)(from >> chip->page_shift);
1453 	page = realpage & chip->pagemask;
1454 
1455 	col = (int)(from & (mtd->writesize - 1));
1456 
1457 	buf = ops->datbuf;
1458 	oob = ops->oobbuf;
1459 
1460 	while (1) {
1461 		bytes = min(mtd->writesize - col, readlen);
1462 		aligned = (bytes == mtd->writesize);
1463 
1464 		/* Is the current page in the buffer? */
1465 		if (realpage != chip->pagebuf || oob) {
1466 			bufpoi = aligned ? buf : chip->buffers->databuf;
1467 
1468 			if (likely(sndcmd)) {
1469 				chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1470 				sndcmd = 0;
1471 			}
1472 
1473 			/* Now read the page into the buffer */
1474 			if (unlikely(ops->mode == MTD_OPS_RAW))
1475 				ret = chip->ecc.read_page_raw(mtd, chip,
1476 							      bufpoi, page);
1477 			else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
1478 				ret = chip->ecc.read_subpage(mtd, chip,
1479 							col, bytes, bufpoi);
1480 			else
1481 				ret = chip->ecc.read_page(mtd, chip, bufpoi,
1482 							  page);
1483 			if (ret < 0) {
1484 				if (!aligned)
1485 					/* Invalidate page cache */
1486 					chip->pagebuf = -1;
1487 				break;
1488 			}
1489 
1490 			/* Transfer not aligned data */
1491 			if (!aligned) {
1492 				if (!NAND_SUBPAGE_READ(chip) && !oob &&
1493 				    !(mtd->ecc_stats.failed - stats.failed) &&
1494 				    (ops->mode != MTD_OPS_RAW))
1495 					chip->pagebuf = realpage;
1496 				else
1497 					/* Invalidate page cache */
1498 					chip->pagebuf = -1;
1499 				memcpy(buf, chip->buffers->databuf + col, bytes);
1500 			}
1501 
1502 			buf += bytes;
1503 
1504 			if (unlikely(oob)) {
1505 
1506 				int toread = min(oobreadlen, max_oobsize);
1507 
1508 				if (toread) {
1509 					oob = nand_transfer_oob(chip,
1510 						oob, ops, toread);
1511 					oobreadlen -= toread;
1512 				}
1513 			}
1514 
1515 			if (!(chip->options & NAND_NO_READRDY)) {
1516 				/*
1517 				 * Apply delay or wait for ready/busy pin. Do
1518 				 * this before the AUTOINCR check, so no
1519 				 * problems arise if a chip which does auto
1520 				 * increment is marked as NOAUTOINCR by the
1521 				 * board driver.
1522 				 */
1523 				if (!chip->dev_ready)
1524 					udelay(chip->chip_delay);
1525 				else
1526 					nand_wait_ready(mtd);
1527 			}
1528 		} else {
1529 			memcpy(buf, chip->buffers->databuf + col, bytes);
1530 			buf += bytes;
1531 		}
1532 
1533 		readlen -= bytes;
1534 
1535 		if (!readlen)
1536 			break;
1537 
1538 		/* For subsequent reads align to page boundary */
1539 		col = 0;
1540 		/* Increment page address */
1541 		realpage++;
1542 
1543 		page = realpage & chip->pagemask;
1544 		/* Check, if we cross a chip boundary */
1545 		if (!page) {
1546 			chipnr++;
1547 			chip->select_chip(mtd, -1);
1548 			chip->select_chip(mtd, chipnr);
1549 		}
1550 
1551 		/*
1552 		 * Check, if the chip supports auto page increment or if we
1553 		 * have hit a block boundary.
1554 		 */
1555 		if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1556 			sndcmd = 1;
1557 	}
1558 
1559 	ops->retlen = ops->len - (size_t) readlen;
1560 	if (oob)
1561 		ops->oobretlen = ops->ooblen - oobreadlen;
1562 
1563 	if (ret)
1564 		return ret;
1565 
1566 	if (mtd->ecc_stats.failed - stats.failed)
1567 		return -EBADMSG;
1568 
1569 	return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1570 }
1571 
1572 /**
1573  * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1574  * @mtd: MTD device structure
1575  * @from: offset to read from
1576  * @len: number of bytes to read
1577  * @retlen: pointer to variable to store the number of read bytes
1578  * @buf: the databuffer to put data
1579  *
1580  * Get hold of the chip and call nand_do_read.
1581  */
nand_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,uint8_t * buf)1582 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1583 		     size_t *retlen, uint8_t *buf)
1584 {
1585 	struct nand_chip *chip = mtd->priv;
1586 	struct mtd_oob_ops ops;
1587 	int ret;
1588 
1589 	/* Do not allow reads past end of device */
1590 	if ((from + len) > mtd->size)
1591 		return -EINVAL;
1592 	if (!len)
1593 		return 0;
1594 
1595 	nand_get_device(chip, mtd, FL_READING);
1596 
1597 	ops.len = len;
1598 	ops.datbuf = buf;
1599 	ops.oobbuf = NULL;
1600 	ops.mode = 0;
1601 
1602 	ret = nand_do_read_ops(mtd, from, &ops);
1603 
1604 	*retlen = ops.retlen;
1605 
1606 	nand_release_device(mtd);
1607 
1608 	return ret;
1609 }
1610 
1611 /**
1612  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1613  * @mtd: mtd info structure
1614  * @chip: nand chip info structure
1615  * @page: page number to read
1616  * @sndcmd: flag whether to issue read command or not
1617  */
nand_read_oob_std(struct mtd_info * mtd,struct nand_chip * chip,int page,int sndcmd)1618 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1619 			     int page, int sndcmd)
1620 {
1621 	if (sndcmd) {
1622 		chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1623 		sndcmd = 0;
1624 	}
1625 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1626 	return sndcmd;
1627 }
1628 
1629 /**
1630  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1631  *			    with syndromes
1632  * @mtd: mtd info structure
1633  * @chip: nand chip info structure
1634  * @page: page number to read
1635  * @sndcmd: flag whether to issue read command or not
1636  */
nand_read_oob_syndrome(struct mtd_info * mtd,struct nand_chip * chip,int page,int sndcmd)1637 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1638 				  int page, int sndcmd)
1639 {
1640 	uint8_t *buf = chip->oob_poi;
1641 	int length = mtd->oobsize;
1642 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1643 	int eccsize = chip->ecc.size;
1644 	uint8_t *bufpoi = buf;
1645 	int i, toread, sndrnd = 0, pos;
1646 
1647 	chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1648 	for (i = 0; i < chip->ecc.steps; i++) {
1649 		if (sndrnd) {
1650 			pos = eccsize + i * (eccsize + chunk);
1651 			if (mtd->writesize > 512)
1652 				chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1653 			else
1654 				chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1655 		} else
1656 			sndrnd = 1;
1657 		toread = min_t(int, length, chunk);
1658 		chip->read_buf(mtd, bufpoi, toread);
1659 		bufpoi += toread;
1660 		length -= toread;
1661 	}
1662 	if (length > 0)
1663 		chip->read_buf(mtd, bufpoi, length);
1664 
1665 	return 1;
1666 }
1667 
1668 /**
1669  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1670  * @mtd: mtd info structure
1671  * @chip: nand chip info structure
1672  * @page: page number to write
1673  */
nand_write_oob_std(struct mtd_info * mtd,struct nand_chip * chip,int page)1674 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1675 			      int page)
1676 {
1677 	int status = 0;
1678 	const uint8_t *buf = chip->oob_poi;
1679 	int length = mtd->oobsize;
1680 
1681 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1682 	chip->write_buf(mtd, buf, length);
1683 	/* Send command to program the OOB data */
1684 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1685 
1686 	status = chip->waitfunc(mtd, chip);
1687 
1688 	return status & NAND_STATUS_FAIL ? -EIO : 0;
1689 }
1690 
1691 /**
1692  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1693  *			     with syndrome - only for large page flash
1694  * @mtd: mtd info structure
1695  * @chip: nand chip info structure
1696  * @page: page number to write
1697  */
nand_write_oob_syndrome(struct mtd_info * mtd,struct nand_chip * chip,int page)1698 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1699 				   struct nand_chip *chip, int page)
1700 {
1701 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1702 	int eccsize = chip->ecc.size, length = mtd->oobsize;
1703 	int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1704 	const uint8_t *bufpoi = chip->oob_poi;
1705 
1706 	/*
1707 	 * data-ecc-data-ecc ... ecc-oob
1708 	 * or
1709 	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1710 	 */
1711 	if (!chip->ecc.prepad && !chip->ecc.postpad) {
1712 		pos = steps * (eccsize + chunk);
1713 		steps = 0;
1714 	} else
1715 		pos = eccsize;
1716 
1717 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1718 	for (i = 0; i < steps; i++) {
1719 		if (sndcmd) {
1720 			if (mtd->writesize <= 512) {
1721 				uint32_t fill = 0xFFFFFFFF;
1722 
1723 				len = eccsize;
1724 				while (len > 0) {
1725 					int num = min_t(int, len, 4);
1726 					chip->write_buf(mtd, (uint8_t *)&fill,
1727 							num);
1728 					len -= num;
1729 				}
1730 			} else {
1731 				pos = eccsize + i * (eccsize + chunk);
1732 				chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1733 			}
1734 		} else
1735 			sndcmd = 1;
1736 		len = min_t(int, length, chunk);
1737 		chip->write_buf(mtd, bufpoi, len);
1738 		bufpoi += len;
1739 		length -= len;
1740 	}
1741 	if (length > 0)
1742 		chip->write_buf(mtd, bufpoi, length);
1743 
1744 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1745 	status = chip->waitfunc(mtd, chip);
1746 
1747 	return status & NAND_STATUS_FAIL ? -EIO : 0;
1748 }
1749 
1750 /**
1751  * nand_do_read_oob - [INTERN] NAND read out-of-band
1752  * @mtd: MTD device structure
1753  * @from: offset to read from
1754  * @ops: oob operations description structure
1755  *
1756  * NAND read out-of-band data from the spare area.
1757  */
nand_do_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1758 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1759 			    struct mtd_oob_ops *ops)
1760 {
1761 	int page, realpage, chipnr, sndcmd = 1;
1762 	struct nand_chip *chip = mtd->priv;
1763 	struct mtd_ecc_stats stats;
1764 	int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1765 	int readlen = ops->ooblen;
1766 	int len;
1767 	uint8_t *buf = ops->oobbuf;
1768 
1769 	pr_debug("%s: from = 0x%08Lx, len = %i\n",
1770 			__func__, (unsigned long long)from, readlen);
1771 
1772 	stats = mtd->ecc_stats;
1773 
1774 	if (ops->mode == MTD_OPS_AUTO_OOB)
1775 		len = chip->ecc.layout->oobavail;
1776 	else
1777 		len = mtd->oobsize;
1778 
1779 	if (unlikely(ops->ooboffs >= len)) {
1780 		pr_debug("%s: attempt to start read outside oob\n",
1781 				__func__);
1782 		return -EINVAL;
1783 	}
1784 
1785 	/* Do not allow reads past end of device */
1786 	if (unlikely(from >= mtd->size ||
1787 		     ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1788 					(from >> chip->page_shift)) * len)) {
1789 		pr_debug("%s: attempt to read beyond end of device\n",
1790 				__func__);
1791 		return -EINVAL;
1792 	}
1793 
1794 	chipnr = (int)(from >> chip->chip_shift);
1795 	chip->select_chip(mtd, chipnr);
1796 
1797 	/* Shift to get page */
1798 	realpage = (int)(from >> chip->page_shift);
1799 	page = realpage & chip->pagemask;
1800 
1801 	while (1) {
1802 		if (ops->mode == MTD_OPS_RAW)
1803 			sndcmd = chip->ecc.read_oob_raw(mtd, chip, page, sndcmd);
1804 		else
1805 			sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1806 
1807 		len = min(len, readlen);
1808 		buf = nand_transfer_oob(chip, buf, ops, len);
1809 
1810 		if (!(chip->options & NAND_NO_READRDY)) {
1811 			/*
1812 			 * Apply delay or wait for ready/busy pin. Do this
1813 			 * before the AUTOINCR check, so no problems arise if a
1814 			 * chip which does auto increment is marked as
1815 			 * NOAUTOINCR by the board driver.
1816 			 */
1817 			if (!chip->dev_ready)
1818 				udelay(chip->chip_delay);
1819 			else
1820 				nand_wait_ready(mtd);
1821 		}
1822 
1823 		readlen -= len;
1824 		if (!readlen)
1825 			break;
1826 
1827 		/* Increment page address */
1828 		realpage++;
1829 
1830 		page = realpage & chip->pagemask;
1831 		/* Check, if we cross a chip boundary */
1832 		if (!page) {
1833 			chipnr++;
1834 			chip->select_chip(mtd, -1);
1835 			chip->select_chip(mtd, chipnr);
1836 		}
1837 
1838 		/*
1839 		 * Check, if the chip supports auto page increment or if we
1840 		 * have hit a block boundary.
1841 		 */
1842 		if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1843 			sndcmd = 1;
1844 	}
1845 
1846 	ops->oobretlen = ops->ooblen;
1847 
1848 	if (mtd->ecc_stats.failed - stats.failed)
1849 		return -EBADMSG;
1850 
1851 	return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1852 }
1853 
1854 /**
1855  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1856  * @mtd: MTD device structure
1857  * @from: offset to read from
1858  * @ops: oob operation description structure
1859  *
1860  * NAND read data and/or out-of-band data.
1861  */
nand_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1862 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1863 			 struct mtd_oob_ops *ops)
1864 {
1865 	struct nand_chip *chip = mtd->priv;
1866 	int ret = -ENOTSUPP;
1867 
1868 	ops->retlen = 0;
1869 
1870 	/* Do not allow reads past end of device */
1871 	if (ops->datbuf && (from + ops->len) > mtd->size) {
1872 		pr_debug("%s: attempt to read beyond end of device\n",
1873 				__func__);
1874 		return -EINVAL;
1875 	}
1876 
1877 	nand_get_device(chip, mtd, FL_READING);
1878 
1879 	switch (ops->mode) {
1880 	case MTD_OPS_PLACE_OOB:
1881 	case MTD_OPS_AUTO_OOB:
1882 	case MTD_OPS_RAW:
1883 		break;
1884 
1885 	default:
1886 		goto out;
1887 	}
1888 
1889 	if (!ops->datbuf)
1890 		ret = nand_do_read_oob(mtd, from, ops);
1891 	else
1892 		ret = nand_do_read_ops(mtd, from, ops);
1893 
1894 out:
1895 	nand_release_device(mtd);
1896 	return ret;
1897 }
1898 
1899 
1900 /**
1901  * nand_write_page_raw - [INTERN] raw page write function
1902  * @mtd: mtd info structure
1903  * @chip: nand chip info structure
1904  * @buf: data buffer
1905  *
1906  * Not for syndrome calculating ECC controllers, which use a special oob layout.
1907  */
nand_write_page_raw(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf)1908 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1909 				const uint8_t *buf)
1910 {
1911 	chip->write_buf(mtd, buf, mtd->writesize);
1912 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1913 }
1914 
1915 /**
1916  * nand_write_page_raw_syndrome - [INTERN] raw page write function
1917  * @mtd: mtd info structure
1918  * @chip: nand chip info structure
1919  * @buf: data buffer
1920  *
1921  * We need a special oob layout and handling even when ECC isn't checked.
1922  */
nand_write_page_raw_syndrome(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf)1923 static void nand_write_page_raw_syndrome(struct mtd_info *mtd,
1924 					struct nand_chip *chip,
1925 					const uint8_t *buf)
1926 {
1927 	int eccsize = chip->ecc.size;
1928 	int eccbytes = chip->ecc.bytes;
1929 	uint8_t *oob = chip->oob_poi;
1930 	int steps, size;
1931 
1932 	for (steps = chip->ecc.steps; steps > 0; steps--) {
1933 		chip->write_buf(mtd, buf, eccsize);
1934 		buf += eccsize;
1935 
1936 		if (chip->ecc.prepad) {
1937 			chip->write_buf(mtd, oob, chip->ecc.prepad);
1938 			oob += chip->ecc.prepad;
1939 		}
1940 
1941 		chip->read_buf(mtd, oob, eccbytes);
1942 		oob += eccbytes;
1943 
1944 		if (chip->ecc.postpad) {
1945 			chip->write_buf(mtd, oob, chip->ecc.postpad);
1946 			oob += chip->ecc.postpad;
1947 		}
1948 	}
1949 
1950 	size = mtd->oobsize - (oob - chip->oob_poi);
1951 	if (size)
1952 		chip->write_buf(mtd, oob, size);
1953 }
1954 /**
1955  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
1956  * @mtd: mtd info structure
1957  * @chip: nand chip info structure
1958  * @buf: data buffer
1959  */
nand_write_page_swecc(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf)1960 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1961 				  const uint8_t *buf)
1962 {
1963 	int i, eccsize = chip->ecc.size;
1964 	int eccbytes = chip->ecc.bytes;
1965 	int eccsteps = chip->ecc.steps;
1966 	uint8_t *ecc_calc = chip->buffers->ecccalc;
1967 	const uint8_t *p = buf;
1968 	uint32_t *eccpos = chip->ecc.layout->eccpos;
1969 
1970 	/* Software ECC calculation */
1971 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1972 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1973 
1974 	for (i = 0; i < chip->ecc.total; i++)
1975 		chip->oob_poi[eccpos[i]] = ecc_calc[i];
1976 
1977 	chip->ecc.write_page_raw(mtd, chip, buf);
1978 }
1979 
1980 /**
1981  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
1982  * @mtd: mtd info structure
1983  * @chip: nand chip info structure
1984  * @buf: data buffer
1985  */
nand_write_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf)1986 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1987 				  const uint8_t *buf)
1988 {
1989 	int i, eccsize = chip->ecc.size;
1990 	int eccbytes = chip->ecc.bytes;
1991 	int eccsteps = chip->ecc.steps;
1992 	uint8_t *ecc_calc = chip->buffers->ecccalc;
1993 	const uint8_t *p = buf;
1994 	uint32_t *eccpos = chip->ecc.layout->eccpos;
1995 
1996 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1997 		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1998 		chip->write_buf(mtd, p, eccsize);
1999 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2000 	}
2001 
2002 	for (i = 0; i < chip->ecc.total; i++)
2003 		chip->oob_poi[eccpos[i]] = ecc_calc[i];
2004 
2005 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2006 }
2007 
2008 /**
2009  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2010  * @mtd: mtd info structure
2011  * @chip: nand chip info structure
2012  * @buf: data buffer
2013  *
2014  * The hw generator calculates the error syndrome automatically. Therefore we
2015  * need a special oob layout and handling.
2016  */
nand_write_page_syndrome(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf)2017 static void nand_write_page_syndrome(struct mtd_info *mtd,
2018 				    struct nand_chip *chip, const uint8_t *buf)
2019 {
2020 	int i, eccsize = chip->ecc.size;
2021 	int eccbytes = chip->ecc.bytes;
2022 	int eccsteps = chip->ecc.steps;
2023 	const uint8_t *p = buf;
2024 	uint8_t *oob = chip->oob_poi;
2025 
2026 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2027 
2028 		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2029 		chip->write_buf(mtd, p, eccsize);
2030 
2031 		if (chip->ecc.prepad) {
2032 			chip->write_buf(mtd, oob, chip->ecc.prepad);
2033 			oob += chip->ecc.prepad;
2034 		}
2035 
2036 		chip->ecc.calculate(mtd, p, oob);
2037 		chip->write_buf(mtd, oob, eccbytes);
2038 		oob += eccbytes;
2039 
2040 		if (chip->ecc.postpad) {
2041 			chip->write_buf(mtd, oob, chip->ecc.postpad);
2042 			oob += chip->ecc.postpad;
2043 		}
2044 	}
2045 
2046 	/* Calculate remaining oob bytes */
2047 	i = mtd->oobsize - (oob - chip->oob_poi);
2048 	if (i)
2049 		chip->write_buf(mtd, oob, i);
2050 }
2051 
2052 /**
2053  * nand_write_page - [REPLACEABLE] write one page
2054  * @mtd: MTD device structure
2055  * @chip: NAND chip descriptor
2056  * @buf: the data to write
2057  * @page: page number to write
2058  * @cached: cached programming
2059  * @raw: use _raw version of write_page
2060  */
nand_write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int page,int cached,int raw)2061 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2062 			   const uint8_t *buf, int page, int cached, int raw)
2063 {
2064 	int status;
2065 
2066 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2067 
2068 	if (unlikely(raw))
2069 		chip->ecc.write_page_raw(mtd, chip, buf);
2070 	else
2071 		chip->ecc.write_page(mtd, chip, buf);
2072 
2073 	/*
2074 	 * Cached progamming disabled for now. Not sure if it's worth the
2075 	 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2076 	 */
2077 	cached = 0;
2078 
2079 	if (!cached || !(chip->options & NAND_CACHEPRG)) {
2080 
2081 		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2082 		status = chip->waitfunc(mtd, chip);
2083 		/*
2084 		 * See if operation failed and additional status checks are
2085 		 * available.
2086 		 */
2087 		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2088 			status = chip->errstat(mtd, chip, FL_WRITING, status,
2089 					       page);
2090 
2091 		if (status & NAND_STATUS_FAIL)
2092 			return -EIO;
2093 	} else {
2094 		chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2095 		status = chip->waitfunc(mtd, chip);
2096 	}
2097 
2098 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
2099 	/* Send command to read back the data */
2100 	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
2101 
2102 	if (chip->verify_buf(mtd, buf, mtd->writesize))
2103 		return -EIO;
2104 #endif
2105 	return 0;
2106 }
2107 
2108 /**
2109  * nand_fill_oob - [INTERN] Transfer client buffer to oob
2110  * @mtd: MTD device structure
2111  * @oob: oob data buffer
2112  * @len: oob data write length
2113  * @ops: oob ops structure
2114  */
nand_fill_oob(struct mtd_info * mtd,uint8_t * oob,size_t len,struct mtd_oob_ops * ops)2115 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2116 			      struct mtd_oob_ops *ops)
2117 {
2118 	struct nand_chip *chip = mtd->priv;
2119 
2120 	/*
2121 	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2122 	 * data from a previous OOB read.
2123 	 */
2124 	memset(chip->oob_poi, 0xff, mtd->oobsize);
2125 
2126 	switch (ops->mode) {
2127 
2128 	case MTD_OPS_PLACE_OOB:
2129 	case MTD_OPS_RAW:
2130 		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2131 		return oob + len;
2132 
2133 	case MTD_OPS_AUTO_OOB: {
2134 		struct nand_oobfree *free = chip->ecc.layout->oobfree;
2135 		uint32_t boffs = 0, woffs = ops->ooboffs;
2136 		size_t bytes = 0;
2137 
2138 		for (; free->length && len; free++, len -= bytes) {
2139 			/* Write request not from offset 0? */
2140 			if (unlikely(woffs)) {
2141 				if (woffs >= free->length) {
2142 					woffs -= free->length;
2143 					continue;
2144 				}
2145 				boffs = free->offset + woffs;
2146 				bytes = min_t(size_t, len,
2147 					      (free->length - woffs));
2148 				woffs = 0;
2149 			} else {
2150 				bytes = min_t(size_t, len, free->length);
2151 				boffs = free->offset;
2152 			}
2153 			memcpy(chip->oob_poi + boffs, oob, bytes);
2154 			oob += bytes;
2155 		}
2156 		return oob;
2157 	}
2158 	default:
2159 		BUG();
2160 	}
2161 	return NULL;
2162 }
2163 
2164 #define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)
2165 
2166 /**
2167  * nand_do_write_ops - [INTERN] NAND write with ECC
2168  * @mtd: MTD device structure
2169  * @to: offset to write to
2170  * @ops: oob operations description structure
2171  *
2172  * NAND write with ECC.
2173  */
nand_do_write_ops(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)2174 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2175 			     struct mtd_oob_ops *ops)
2176 {
2177 	int chipnr, realpage, page, blockmask, column;
2178 	struct nand_chip *chip = mtd->priv;
2179 	uint32_t writelen = ops->len;
2180 
2181 	uint32_t oobwritelen = ops->ooblen;
2182 	uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
2183 				mtd->oobavail : mtd->oobsize;
2184 
2185 	uint8_t *oob = ops->oobbuf;
2186 	uint8_t *buf = ops->datbuf;
2187 	int ret, subpage;
2188 
2189 	ops->retlen = 0;
2190 	if (!writelen)
2191 		return 0;
2192 
2193 	/* Reject writes, which are not page aligned */
2194 	if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2195 		pr_notice("%s: attempt to write non page aligned data\n",
2196 			   __func__);
2197 		return -EINVAL;
2198 	}
2199 
2200 	column = to & (mtd->writesize - 1);
2201 	subpage = column || (writelen & (mtd->writesize - 1));
2202 
2203 	if (subpage && oob)
2204 		return -EINVAL;
2205 
2206 	chipnr = (int)(to >> chip->chip_shift);
2207 	chip->select_chip(mtd, chipnr);
2208 
2209 	/* Check, if it is write protected */
2210 	if (nand_check_wp(mtd))
2211 		return -EIO;
2212 
2213 	realpage = (int)(to >> chip->page_shift);
2214 	page = realpage & chip->pagemask;
2215 	blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2216 
2217 	/* Invalidate the page cache, when we write to the cached page */
2218 	if (to <= (chip->pagebuf << chip->page_shift) &&
2219 	    (chip->pagebuf << chip->page_shift) < (to + ops->len))
2220 		chip->pagebuf = -1;
2221 
2222 	/* Don't allow multipage oob writes with offset */
2223 	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen))
2224 		return -EINVAL;
2225 
2226 	while (1) {
2227 		int bytes = mtd->writesize;
2228 		int cached = writelen > bytes && page != blockmask;
2229 		uint8_t *wbuf = buf;
2230 
2231 		/* Partial page write? */
2232 		if (unlikely(column || writelen < (mtd->writesize - 1))) {
2233 			cached = 0;
2234 			bytes = min_t(int, bytes - column, (int) writelen);
2235 			chip->pagebuf = -1;
2236 			memset(chip->buffers->databuf, 0xff, mtd->writesize);
2237 			memcpy(&chip->buffers->databuf[column], buf, bytes);
2238 			wbuf = chip->buffers->databuf;
2239 		}
2240 
2241 		if (unlikely(oob)) {
2242 			size_t len = min(oobwritelen, oobmaxlen);
2243 			oob = nand_fill_oob(mtd, oob, len, ops);
2244 			oobwritelen -= len;
2245 		} else {
2246 			/* We still need to erase leftover OOB data */
2247 			memset(chip->oob_poi, 0xff, mtd->oobsize);
2248 		}
2249 
2250 		ret = chip->write_page(mtd, chip, wbuf, page, cached,
2251 				       (ops->mode == MTD_OPS_RAW));
2252 		if (ret)
2253 			break;
2254 
2255 		writelen -= bytes;
2256 		if (!writelen)
2257 			break;
2258 
2259 		column = 0;
2260 		buf += bytes;
2261 		realpage++;
2262 
2263 		page = realpage & chip->pagemask;
2264 		/* Check, if we cross a chip boundary */
2265 		if (!page) {
2266 			chipnr++;
2267 			chip->select_chip(mtd, -1);
2268 			chip->select_chip(mtd, chipnr);
2269 		}
2270 	}
2271 
2272 	ops->retlen = ops->len - writelen;
2273 	if (unlikely(oob))
2274 		ops->oobretlen = ops->ooblen;
2275 	return ret;
2276 }
2277 
2278 /**
2279  * panic_nand_write - [MTD Interface] NAND write with ECC
2280  * @mtd: MTD device structure
2281  * @to: offset to write to
2282  * @len: number of bytes to write
2283  * @retlen: pointer to variable to store the number of written bytes
2284  * @buf: the data to write
2285  *
2286  * NAND write with ECC. Used when performing writes in interrupt context, this
2287  * may for example be called by mtdoops when writing an oops while in panic.
2288  */
panic_nand_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const uint8_t * buf)2289 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2290 			    size_t *retlen, const uint8_t *buf)
2291 {
2292 	struct nand_chip *chip = mtd->priv;
2293 	struct mtd_oob_ops ops;
2294 	int ret;
2295 
2296 	/* Do not allow reads past end of device */
2297 	if ((to + len) > mtd->size)
2298 		return -EINVAL;
2299 	if (!len)
2300 		return 0;
2301 
2302 	/* Wait for the device to get ready */
2303 	panic_nand_wait(mtd, chip, 400);
2304 
2305 	/* Grab the device */
2306 	panic_nand_get_device(chip, mtd, FL_WRITING);
2307 
2308 	ops.len = len;
2309 	ops.datbuf = (uint8_t *)buf;
2310 	ops.oobbuf = NULL;
2311 	ops.mode = 0;
2312 
2313 	ret = nand_do_write_ops(mtd, to, &ops);
2314 
2315 	*retlen = ops.retlen;
2316 	return ret;
2317 }
2318 
2319 /**
2320  * nand_write - [MTD Interface] NAND write with ECC
2321  * @mtd: MTD device structure
2322  * @to: offset to write to
2323  * @len: number of bytes to write
2324  * @retlen: pointer to variable to store the number of written bytes
2325  * @buf: the data to write
2326  *
2327  * NAND write with ECC.
2328  */
nand_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const uint8_t * buf)2329 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2330 			  size_t *retlen, const uint8_t *buf)
2331 {
2332 	struct nand_chip *chip = mtd->priv;
2333 	struct mtd_oob_ops ops;
2334 	int ret;
2335 
2336 	/* Do not allow reads past end of device */
2337 	if ((to + len) > mtd->size)
2338 		return -EINVAL;
2339 	if (!len)
2340 		return 0;
2341 
2342 	nand_get_device(chip, mtd, FL_WRITING);
2343 
2344 	ops.len = len;
2345 	ops.datbuf = (uint8_t *)buf;
2346 	ops.oobbuf = NULL;
2347 	ops.mode = 0;
2348 
2349 	ret = nand_do_write_ops(mtd, to, &ops);
2350 
2351 	*retlen = ops.retlen;
2352 
2353 	nand_release_device(mtd);
2354 
2355 	return ret;
2356 }
2357 
2358 /**
2359  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2360  * @mtd: MTD device structure
2361  * @to: offset to write to
2362  * @ops: oob operation description structure
2363  *
2364  * NAND write out-of-band.
2365  */
nand_do_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)2366 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2367 			     struct mtd_oob_ops *ops)
2368 {
2369 	int chipnr, page, status, len;
2370 	struct nand_chip *chip = mtd->priv;
2371 
2372 	pr_debug("%s: to = 0x%08x, len = %i\n",
2373 			 __func__, (unsigned int)to, (int)ops->ooblen);
2374 
2375 	if (ops->mode == MTD_OPS_AUTO_OOB)
2376 		len = chip->ecc.layout->oobavail;
2377 	else
2378 		len = mtd->oobsize;
2379 
2380 	/* Do not allow write past end of page */
2381 	if ((ops->ooboffs + ops->ooblen) > len) {
2382 		pr_debug("%s: attempt to write past end of page\n",
2383 				__func__);
2384 		return -EINVAL;
2385 	}
2386 
2387 	if (unlikely(ops->ooboffs >= len)) {
2388 		pr_debug("%s: attempt to start write outside oob\n",
2389 				__func__);
2390 		return -EINVAL;
2391 	}
2392 
2393 	/* Do not allow write past end of device */
2394 	if (unlikely(to >= mtd->size ||
2395 		     ops->ooboffs + ops->ooblen >
2396 			((mtd->size >> chip->page_shift) -
2397 			 (to >> chip->page_shift)) * len)) {
2398 		pr_debug("%s: attempt to write beyond end of device\n",
2399 				__func__);
2400 		return -EINVAL;
2401 	}
2402 
2403 	chipnr = (int)(to >> chip->chip_shift);
2404 	chip->select_chip(mtd, chipnr);
2405 
2406 	/* Shift to get page */
2407 	page = (int)(to >> chip->page_shift);
2408 
2409 	/*
2410 	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2411 	 * of my DiskOnChip 2000 test units) will clear the whole data page too
2412 	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2413 	 * it in the doc2000 driver in August 1999.  dwmw2.
2414 	 */
2415 	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2416 
2417 	/* Check, if it is write protected */
2418 	if (nand_check_wp(mtd))
2419 		return -EROFS;
2420 
2421 	/* Invalidate the page cache, if we write to the cached page */
2422 	if (page == chip->pagebuf)
2423 		chip->pagebuf = -1;
2424 
2425 	nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2426 
2427 	if (ops->mode == MTD_OPS_RAW)
2428 		status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2429 	else
2430 		status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2431 
2432 	if (status)
2433 		return status;
2434 
2435 	ops->oobretlen = ops->ooblen;
2436 
2437 	return 0;
2438 }
2439 
2440 /**
2441  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2442  * @mtd: MTD device structure
2443  * @to: offset to write to
2444  * @ops: oob operation description structure
2445  */
nand_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)2446 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2447 			  struct mtd_oob_ops *ops)
2448 {
2449 	struct nand_chip *chip = mtd->priv;
2450 	int ret = -ENOTSUPP;
2451 
2452 	ops->retlen = 0;
2453 
2454 	/* Do not allow writes past end of device */
2455 	if (ops->datbuf && (to + ops->len) > mtd->size) {
2456 		pr_debug("%s: attempt to write beyond end of device\n",
2457 				__func__);
2458 		return -EINVAL;
2459 	}
2460 
2461 	nand_get_device(chip, mtd, FL_WRITING);
2462 
2463 	switch (ops->mode) {
2464 	case MTD_OPS_PLACE_OOB:
2465 	case MTD_OPS_AUTO_OOB:
2466 	case MTD_OPS_RAW:
2467 		break;
2468 
2469 	default:
2470 		goto out;
2471 	}
2472 
2473 	if (!ops->datbuf)
2474 		ret = nand_do_write_oob(mtd, to, ops);
2475 	else
2476 		ret = nand_do_write_ops(mtd, to, ops);
2477 
2478 out:
2479 	nand_release_device(mtd);
2480 	return ret;
2481 }
2482 
2483 /**
2484  * single_erase_cmd - [GENERIC] NAND standard block erase command function
2485  * @mtd: MTD device structure
2486  * @page: the page address of the block which will be erased
2487  *
2488  * Standard erase command for NAND chips.
2489  */
single_erase_cmd(struct mtd_info * mtd,int page)2490 static void single_erase_cmd(struct mtd_info *mtd, int page)
2491 {
2492 	struct nand_chip *chip = mtd->priv;
2493 	/* Send commands to erase a block */
2494 	chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2495 	chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2496 }
2497 
2498 /**
2499  * multi_erase_cmd - [GENERIC] AND specific block erase command function
2500  * @mtd: MTD device structure
2501  * @page: the page address of the block which will be erased
2502  *
2503  * AND multi block erase command function. Erase 4 consecutive blocks.
2504  */
multi_erase_cmd(struct mtd_info * mtd,int page)2505 static void multi_erase_cmd(struct mtd_info *mtd, int page)
2506 {
2507 	struct nand_chip *chip = mtd->priv;
2508 	/* Send commands to erase a block */
2509 	chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2510 	chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2511 	chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2512 	chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2513 	chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2514 }
2515 
2516 /**
2517  * nand_erase - [MTD Interface] erase block(s)
2518  * @mtd: MTD device structure
2519  * @instr: erase instruction
2520  *
2521  * Erase one ore more blocks.
2522  */
nand_erase(struct mtd_info * mtd,struct erase_info * instr)2523 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2524 {
2525 	return nand_erase_nand(mtd, instr, 0);
2526 }
2527 
2528 #define BBT_PAGE_MASK	0xffffff3f
2529 /**
2530  * nand_erase_nand - [INTERN] erase block(s)
2531  * @mtd: MTD device structure
2532  * @instr: erase instruction
2533  * @allowbbt: allow erasing the bbt area
2534  *
2535  * Erase one ore more blocks.
2536  */
nand_erase_nand(struct mtd_info * mtd,struct erase_info * instr,int allowbbt)2537 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2538 		    int allowbbt)
2539 {
2540 	int page, status, pages_per_block, ret, chipnr;
2541 	struct nand_chip *chip = mtd->priv;
2542 	loff_t rewrite_bbt[NAND_MAX_CHIPS] = {0};
2543 	unsigned int bbt_masked_page = 0xffffffff;
2544 	loff_t len;
2545 
2546 	pr_debug("%s: start = 0x%012llx, len = %llu\n",
2547 			__func__, (unsigned long long)instr->addr,
2548 			(unsigned long long)instr->len);
2549 
2550 	if (check_offs_len(mtd, instr->addr, instr->len))
2551 		return -EINVAL;
2552 
2553 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2554 
2555 	/* Grab the lock and see if the device is available */
2556 	nand_get_device(chip, mtd, FL_ERASING);
2557 
2558 	/* Shift to get first page */
2559 	page = (int)(instr->addr >> chip->page_shift);
2560 	chipnr = (int)(instr->addr >> chip->chip_shift);
2561 
2562 	/* Calculate pages in each block */
2563 	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2564 
2565 	/* Select the NAND device */
2566 	chip->select_chip(mtd, chipnr);
2567 
2568 	/* Check, if it is write protected */
2569 	if (nand_check_wp(mtd)) {
2570 		pr_debug("%s: device is write protected!\n",
2571 				__func__);
2572 		instr->state = MTD_ERASE_FAILED;
2573 		goto erase_exit;
2574 	}
2575 
2576 	/*
2577 	 * If BBT requires refresh, set the BBT page mask to see if the BBT
2578 	 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2579 	 * can not be matched. This is also done when the bbt is actually
2580 	 * erased to avoid recursive updates.
2581 	 */
2582 	if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2583 		bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2584 
2585 	/* Loop through the pages */
2586 	len = instr->len;
2587 
2588 	instr->state = MTD_ERASING;
2589 
2590 	while (len) {
2591 		/* Check if we have a bad block, we do not erase bad blocks! */
2592 		if (nand_block_checkbad(mtd, ((loff_t) page) <<
2593 					chip->page_shift, 0, allowbbt)) {
2594 			pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2595 				    __func__, page);
2596 			instr->state = MTD_ERASE_FAILED;
2597 			goto erase_exit;
2598 		}
2599 
2600 		/*
2601 		 * Invalidate the page cache, if we erase the block which
2602 		 * contains the current cached page.
2603 		 */
2604 		if (page <= chip->pagebuf && chip->pagebuf <
2605 		    (page + pages_per_block))
2606 			chip->pagebuf = -1;
2607 
2608 		chip->erase_cmd(mtd, page & chip->pagemask);
2609 
2610 		status = chip->waitfunc(mtd, chip);
2611 
2612 		/*
2613 		 * See if operation failed and additional status checks are
2614 		 * available
2615 		 */
2616 		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2617 			status = chip->errstat(mtd, chip, FL_ERASING,
2618 					       status, page);
2619 
2620 		/* See if block erase succeeded */
2621 		if (status & NAND_STATUS_FAIL) {
2622 			pr_debug("%s: failed erase, page 0x%08x\n",
2623 					__func__, page);
2624 			instr->state = MTD_ERASE_FAILED;
2625 			instr->fail_addr =
2626 				((loff_t)page << chip->page_shift);
2627 			goto erase_exit;
2628 		}
2629 
2630 		/*
2631 		 * If BBT requires refresh, set the BBT rewrite flag to the
2632 		 * page being erased.
2633 		 */
2634 		if (bbt_masked_page != 0xffffffff &&
2635 		    (page & BBT_PAGE_MASK) == bbt_masked_page)
2636 			    rewrite_bbt[chipnr] =
2637 					((loff_t)page << chip->page_shift);
2638 
2639 		/* Increment page address and decrement length */
2640 		len -= (1 << chip->phys_erase_shift);
2641 		page += pages_per_block;
2642 
2643 		/* Check, if we cross a chip boundary */
2644 		if (len && !(page & chip->pagemask)) {
2645 			chipnr++;
2646 			chip->select_chip(mtd, -1);
2647 			chip->select_chip(mtd, chipnr);
2648 
2649 			/*
2650 			 * If BBT requires refresh and BBT-PERCHIP, set the BBT
2651 			 * page mask to see if this BBT should be rewritten.
2652 			 */
2653 			if (bbt_masked_page != 0xffffffff &&
2654 			    (chip->bbt_td->options & NAND_BBT_PERCHIP))
2655 				bbt_masked_page = chip->bbt_td->pages[chipnr] &
2656 					BBT_PAGE_MASK;
2657 		}
2658 	}
2659 	instr->state = MTD_ERASE_DONE;
2660 
2661 erase_exit:
2662 
2663 	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2664 
2665 	/* Deselect and wake up anyone waiting on the device */
2666 	nand_release_device(mtd);
2667 
2668 	/* Do call back function */
2669 	if (!ret)
2670 		mtd_erase_callback(instr);
2671 
2672 	/*
2673 	 * If BBT requires refresh and erase was successful, rewrite any
2674 	 * selected bad block tables.
2675 	 */
2676 	if (bbt_masked_page == 0xffffffff || ret)
2677 		return ret;
2678 
2679 	for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2680 		if (!rewrite_bbt[chipnr])
2681 			continue;
2682 		/* Update the BBT for chip */
2683 		pr_debug("%s: nand_update_bbt (%d:0x%0llx 0x%0x)\n",
2684 				__func__, chipnr, rewrite_bbt[chipnr],
2685 				chip->bbt_td->pages[chipnr]);
2686 		nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2687 	}
2688 
2689 	/* Return more or less happy */
2690 	return ret;
2691 }
2692 
2693 /**
2694  * nand_sync - [MTD Interface] sync
2695  * @mtd: MTD device structure
2696  *
2697  * Sync is actually a wait for chip ready function.
2698  */
nand_sync(struct mtd_info * mtd)2699 static void nand_sync(struct mtd_info *mtd)
2700 {
2701 	struct nand_chip *chip = mtd->priv;
2702 
2703 	pr_debug("%s: called\n", __func__);
2704 
2705 	/* Grab the lock and see if the device is available */
2706 	nand_get_device(chip, mtd, FL_SYNCING);
2707 	/* Release it and go back */
2708 	nand_release_device(mtd);
2709 }
2710 
2711 /**
2712  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2713  * @mtd: MTD device structure
2714  * @offs: offset relative to mtd start
2715  */
nand_block_isbad(struct mtd_info * mtd,loff_t offs)2716 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2717 {
2718 	/* Check for invalid offset */
2719 	if (offs > mtd->size)
2720 		return -EINVAL;
2721 
2722 	return nand_block_checkbad(mtd, offs, 1, 0);
2723 }
2724 
2725 /**
2726  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2727  * @mtd: MTD device structure
2728  * @ofs: offset relative to mtd start
2729  */
nand_block_markbad(struct mtd_info * mtd,loff_t ofs)2730 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2731 {
2732 	struct nand_chip *chip = mtd->priv;
2733 	int ret;
2734 
2735 	ret = nand_block_isbad(mtd, ofs);
2736 	if (ret) {
2737 		/* If it was bad already, return success and do nothing */
2738 		if (ret > 0)
2739 			return 0;
2740 		return ret;
2741 	}
2742 
2743 	return chip->block_markbad(mtd, ofs);
2744 }
2745 
2746 /**
2747  * nand_suspend - [MTD Interface] Suspend the NAND flash
2748  * @mtd: MTD device structure
2749  */
nand_suspend(struct mtd_info * mtd)2750 static int nand_suspend(struct mtd_info *mtd)
2751 {
2752 	struct nand_chip *chip = mtd->priv;
2753 
2754 	return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2755 }
2756 
2757 /**
2758  * nand_resume - [MTD Interface] Resume the NAND flash
2759  * @mtd: MTD device structure
2760  */
nand_resume(struct mtd_info * mtd)2761 static void nand_resume(struct mtd_info *mtd)
2762 {
2763 	struct nand_chip *chip = mtd->priv;
2764 
2765 	if (chip->state == FL_PM_SUSPENDED)
2766 		nand_release_device(mtd);
2767 	else
2768 		pr_err("%s called for a chip which is not in suspended state\n",
2769 			__func__);
2770 }
2771 
2772 /* Set default functions */
nand_set_defaults(struct nand_chip * chip,int busw)2773 static void nand_set_defaults(struct nand_chip *chip, int busw)
2774 {
2775 	/* check for proper chip_delay setup, set 20us if not */
2776 	if (!chip->chip_delay)
2777 		chip->chip_delay = 20;
2778 
2779 	/* check, if a user supplied command function given */
2780 	if (chip->cmdfunc == NULL)
2781 		chip->cmdfunc = nand_command;
2782 
2783 	/* check, if a user supplied wait function given */
2784 	if (chip->waitfunc == NULL)
2785 		chip->waitfunc = nand_wait;
2786 
2787 	if (!chip->select_chip)
2788 		chip->select_chip = nand_select_chip;
2789 	if (!chip->read_byte)
2790 		chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2791 	if (!chip->read_word)
2792 		chip->read_word = nand_read_word;
2793 	if (!chip->block_bad)
2794 		chip->block_bad = nand_block_bad;
2795 	if (!chip->block_markbad)
2796 		chip->block_markbad = nand_default_block_markbad;
2797 	if (!chip->write_buf)
2798 		chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2799 	if (!chip->read_buf)
2800 		chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2801 	if (!chip->verify_buf)
2802 		chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2803 	if (!chip->scan_bbt)
2804 		chip->scan_bbt = nand_default_bbt;
2805 
2806 	if (!chip->controller) {
2807 		chip->controller = &chip->hwcontrol;
2808 		spin_lock_init(&chip->controller->lock);
2809 		init_waitqueue_head(&chip->controller->wq);
2810 	}
2811 
2812 }
2813 
2814 /* Sanitize ONFI strings so we can safely print them */
sanitize_string(uint8_t * s,size_t len)2815 static void sanitize_string(uint8_t *s, size_t len)
2816 {
2817 	ssize_t i;
2818 
2819 	/* Null terminate */
2820 	s[len - 1] = 0;
2821 
2822 	/* Remove non printable chars */
2823 	for (i = 0; i < len - 1; i++) {
2824 		if (s[i] < ' ' || s[i] > 127)
2825 			s[i] = '?';
2826 	}
2827 
2828 	/* Remove trailing spaces */
2829 	strim(s);
2830 }
2831 
onfi_crc16(u16 crc,u8 const * p,size_t len)2832 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2833 {
2834 	int i;
2835 	while (len--) {
2836 		crc ^= *p++ << 8;
2837 		for (i = 0; i < 8; i++)
2838 			crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2839 	}
2840 
2841 	return crc;
2842 }
2843 
2844 /*
2845  * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
2846  */
nand_flash_detect_onfi(struct mtd_info * mtd,struct nand_chip * chip,int * busw)2847 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
2848 					int *busw)
2849 {
2850 	struct nand_onfi_params *p = &chip->onfi_params;
2851 	int i;
2852 	int val;
2853 
2854 	/* Try ONFI for unknown chip or LP */
2855 	chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
2856 	if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
2857 		chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
2858 		return 0;
2859 
2860 	pr_info("ONFI flash detected\n");
2861 	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2862 	for (i = 0; i < 3; i++) {
2863 		chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
2864 		if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
2865 				le16_to_cpu(p->crc)) {
2866 			pr_info("ONFI param page %d valid\n", i);
2867 			break;
2868 		}
2869 	}
2870 
2871 	if (i == 3)
2872 		return 0;
2873 
2874 	/* Check version */
2875 	val = le16_to_cpu(p->revision);
2876 	if (val & (1 << 5))
2877 		chip->onfi_version = 23;
2878 	else if (val & (1 << 4))
2879 		chip->onfi_version = 22;
2880 	else if (val & (1 << 3))
2881 		chip->onfi_version = 21;
2882 	else if (val & (1 << 2))
2883 		chip->onfi_version = 20;
2884 	else if (val & (1 << 1))
2885 		chip->onfi_version = 10;
2886 	else
2887 		chip->onfi_version = 0;
2888 
2889 	if (!chip->onfi_version) {
2890 		pr_info("%s: unsupported ONFI version: %d\n", __func__, val);
2891 		return 0;
2892 	}
2893 
2894 	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
2895 	sanitize_string(p->model, sizeof(p->model));
2896 	if (!mtd->name)
2897 		mtd->name = p->model;
2898 	mtd->writesize = le32_to_cpu(p->byte_per_page);
2899 	mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize;
2900 	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
2901 	chip->chipsize = (uint64_t)le32_to_cpu(p->blocks_per_lun) * mtd->erasesize;
2902 	*busw = 0;
2903 	if (le16_to_cpu(p->features) & 1)
2904 		*busw = NAND_BUSWIDTH_16;
2905 
2906 	chip->options &= ~NAND_CHIPOPTIONS_MSK;
2907 	chip->options |= (NAND_NO_READRDY |
2908 			NAND_NO_AUTOINCR) & NAND_CHIPOPTIONS_MSK;
2909 
2910 	return 1;
2911 }
2912 
2913 /*
2914  * Get the flash and manufacturer id and lookup if the type is supported.
2915  */
nand_get_flash_type(struct mtd_info * mtd,struct nand_chip * chip,int busw,int * maf_id,int * dev_id,struct nand_flash_dev * type)2916 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2917 						  struct nand_chip *chip,
2918 						  int busw,
2919 						  int *maf_id, int *dev_id,
2920 						  struct nand_flash_dev *type)
2921 {
2922 	int i, maf_idx;
2923 	u8 id_data[8];
2924 	int ret;
2925 
2926 	/* Select the device */
2927 	chip->select_chip(mtd, 0);
2928 
2929 	/*
2930 	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2931 	 * after power-up.
2932 	 */
2933 	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2934 
2935 	/* Send the command for reading device ID */
2936 	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2937 
2938 	/* Read manufacturer and device IDs */
2939 	*maf_id = chip->read_byte(mtd);
2940 	*dev_id = chip->read_byte(mtd);
2941 
2942 	/*
2943 	 * Try again to make sure, as some systems the bus-hold or other
2944 	 * interface concerns can cause random data which looks like a
2945 	 * possibly credible NAND flash to appear. If the two results do
2946 	 * not match, ignore the device completely.
2947 	 */
2948 
2949 	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2950 
2951 	for (i = 0; i < 2; i++)
2952 		id_data[i] = chip->read_byte(mtd);
2953 
2954 	if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
2955 		pr_info("%s: second ID read did not match "
2956 			"%02x,%02x against %02x,%02x\n", __func__,
2957 			*maf_id, *dev_id, id_data[0], id_data[1]);
2958 		return ERR_PTR(-ENODEV);
2959 	}
2960 
2961 	if (!type)
2962 		type = nand_flash_ids;
2963 
2964 	for (; type->name != NULL; type++)
2965 		if (*dev_id == type->id)
2966 			break;
2967 
2968 	chip->onfi_version = 0;
2969 	if (!type->name || !type->pagesize) {
2970 		/* Check is chip is ONFI compliant */
2971 		ret = nand_flash_detect_onfi(mtd, chip, &busw);
2972 		if (ret)
2973 			goto ident_done;
2974 	}
2975 
2976 	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2977 
2978 	/* Read entire ID string */
2979 
2980 	for (i = 0; i < 8; i++)
2981 		id_data[i] = chip->read_byte(mtd);
2982 
2983 	if (!type->name)
2984 		return ERR_PTR(-ENODEV);
2985 
2986 	if (!mtd->name)
2987 		mtd->name = type->name;
2988 
2989 	chip->chipsize = (uint64_t)type->chipsize << 20;
2990 
2991 	if (!type->pagesize && chip->init_size) {
2992 		/* Set the pagesize, oobsize, erasesize by the driver */
2993 		busw = chip->init_size(mtd, chip, id_data);
2994 	} else if (!type->pagesize) {
2995 		int extid;
2996 		/* The 3rd id byte holds MLC / multichip data */
2997 		chip->cellinfo = id_data[2];
2998 		/* The 4th id byte is the important one */
2999 		extid = id_data[3];
3000 
3001 		/*
3002 		 * Field definitions are in the following datasheets:
3003 		 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3004 		 * New style   (6 byte ID): Samsung K9GBG08U0M (p.40)
3005 		 *
3006 		 * Check for wraparound + Samsung ID + nonzero 6th byte
3007 		 * to decide what to do.
3008 		 */
3009 		if (id_data[0] == id_data[6] && id_data[1] == id_data[7] &&
3010 				id_data[0] == NAND_MFR_SAMSUNG &&
3011 				(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3012 				id_data[5] != 0x00) {
3013 			/* Calc pagesize */
3014 			mtd->writesize = 2048 << (extid & 0x03);
3015 			extid >>= 2;
3016 			/* Calc oobsize */
3017 			switch (extid & 0x03) {
3018 			case 1:
3019 				mtd->oobsize = 128;
3020 				break;
3021 			case 2:
3022 				mtd->oobsize = 218;
3023 				break;
3024 			case 3:
3025 				mtd->oobsize = 400;
3026 				break;
3027 			default:
3028 				mtd->oobsize = 436;
3029 				break;
3030 			}
3031 			extid >>= 2;
3032 			/* Calc blocksize */
3033 			mtd->erasesize = (128 * 1024) <<
3034 				(((extid >> 1) & 0x04) | (extid & 0x03));
3035 			busw = 0;
3036 		} else {
3037 			/* Calc pagesize */
3038 			mtd->writesize = 1024 << (extid & 0x03);
3039 			extid >>= 2;
3040 			/* Calc oobsize */
3041 			mtd->oobsize = (8 << (extid & 0x01)) *
3042 				(mtd->writesize >> 9);
3043 			extid >>= 2;
3044 			/* Calc blocksize. Blocksize is multiples of 64KiB */
3045 			mtd->erasesize = (64 * 1024) << (extid & 0x03);
3046 			extid >>= 2;
3047 			/* Get buswidth information */
3048 			busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3049 		}
3050 	} else {
3051 		/*
3052 		 * Old devices have chip data hardcoded in the device id table.
3053 		 */
3054 		mtd->erasesize = type->erasesize;
3055 		mtd->writesize = type->pagesize;
3056 		mtd->oobsize = mtd->writesize / 32;
3057 		busw = type->options & NAND_BUSWIDTH_16;
3058 
3059 		/*
3060 		 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3061 		 * some Spansion chips have erasesize that conflicts with size
3062 		 * listed in nand_ids table.
3063 		 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3064 		 */
3065 		if (*maf_id == NAND_MFR_AMD && id_data[4] != 0x00 &&
3066 				id_data[5] == 0x00 && id_data[6] == 0x00 &&
3067 				id_data[7] == 0x00 && mtd->writesize == 512) {
3068 			mtd->erasesize = 128 * 1024;
3069 			mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3070 		}
3071 	}
3072 	/* Get chip options, preserve non chip based options */
3073 	chip->options &= ~NAND_CHIPOPTIONS_MSK;
3074 	chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
3075 
3076 	/*
3077 	 * Check if chip is not a Samsung device. Do not clear the
3078 	 * options for chips which do not have an extended id.
3079 	 */
3080 	if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3081 		chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3082 ident_done:
3083 
3084 	/*
3085 	 * Set chip as a default. Board drivers can override it, if necessary.
3086 	 */
3087 	chip->options |= NAND_NO_AUTOINCR;
3088 
3089 	/* Try to identify manufacturer */
3090 	for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3091 		if (nand_manuf_ids[maf_idx].id == *maf_id)
3092 			break;
3093 	}
3094 
3095 	/*
3096 	 * Check, if buswidth is correct. Hardware drivers should set
3097 	 * chip correct!
3098 	 */
3099 	if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3100 		pr_info("NAND device: Manufacturer ID:"
3101 			" 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
3102 			*dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
3103 		pr_warn("NAND bus width %d instead %d bit\n",
3104 			   (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3105 			   busw ? 16 : 8);
3106 		return ERR_PTR(-EINVAL);
3107 	}
3108 
3109 	/* Calculate the address shift from the page size */
3110 	chip->page_shift = ffs(mtd->writesize) - 1;
3111 	/* Convert chipsize to number of pages per chip -1 */
3112 	chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3113 
3114 	chip->bbt_erase_shift = chip->phys_erase_shift =
3115 		ffs(mtd->erasesize) - 1;
3116 	if (chip->chipsize & 0xffffffff)
3117 		chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3118 	else {
3119 		chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3120 		chip->chip_shift += 32 - 1;
3121 	}
3122 
3123 	chip->badblockbits = 8;
3124 
3125 	/* Set the bad block position */
3126 	if (mtd->writesize > 512 || (busw & NAND_BUSWIDTH_16))
3127 		chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3128 	else
3129 		chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3130 
3131 	/*
3132 	 * Bad block marker is stored in the last page of each block
3133 	 * on Samsung and Hynix MLC devices; stored in first two pages
3134 	 * of each block on Micron devices with 2KiB pages and on
3135 	 * SLC Samsung, Hynix, Toshiba, AMD/Spansion, and Macronix.
3136 	 * All others scan only the first page.
3137 	 */
3138 	if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3139 			(*maf_id == NAND_MFR_SAMSUNG ||
3140 			 *maf_id == NAND_MFR_HYNIX))
3141 		chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3142 	else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3143 				(*maf_id == NAND_MFR_SAMSUNG ||
3144 				 *maf_id == NAND_MFR_HYNIX ||
3145 				 *maf_id == NAND_MFR_TOSHIBA ||
3146 				 *maf_id == NAND_MFR_AMD ||
3147 				 *maf_id == NAND_MFR_MACRONIX)) ||
3148 			(mtd->writesize == 2048 &&
3149 			 *maf_id == NAND_MFR_MICRON))
3150 		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3151 
3152 	/* Check for AND chips with 4 page planes */
3153 	if (chip->options & NAND_4PAGE_ARRAY)
3154 		chip->erase_cmd = multi_erase_cmd;
3155 	else
3156 		chip->erase_cmd = single_erase_cmd;
3157 
3158 	/* Do not replace user supplied command function! */
3159 	if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3160 		chip->cmdfunc = nand_command_lp;
3161 
3162 	pr_info("NAND device: Manufacturer ID:"
3163 		" 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, *dev_id,
3164 		nand_manuf_ids[maf_idx].name,
3165 		chip->onfi_version ? chip->onfi_params.model : type->name);
3166 
3167 	return type;
3168 }
3169 
3170 /**
3171  * nand_scan_ident - [NAND Interface] Scan for the NAND device
3172  * @mtd: MTD device structure
3173  * @maxchips: number of chips to scan for
3174  * @table: alternative NAND ID table
3175  *
3176  * This is the first phase of the normal nand_scan() function. It reads the
3177  * flash ID and sets up MTD fields accordingly.
3178  *
3179  * The mtd->owner field must be set to the module of the caller.
3180  */
nand_scan_ident(struct mtd_info * mtd,int maxchips,struct nand_flash_dev * table)3181 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3182 		    struct nand_flash_dev *table)
3183 {
3184 	int i, busw, nand_maf_id, nand_dev_id;
3185 	struct nand_chip *chip = mtd->priv;
3186 	struct nand_flash_dev *type;
3187 
3188 	/* Get buswidth to select the correct functions */
3189 	busw = chip->options & NAND_BUSWIDTH_16;
3190 	/* Set the default functions */
3191 	nand_set_defaults(chip, busw);
3192 
3193 	/* Read the flash type */
3194 	type = nand_get_flash_type(mtd, chip, busw,
3195 				&nand_maf_id, &nand_dev_id, table);
3196 
3197 	if (IS_ERR(type)) {
3198 		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3199 			pr_warn("No NAND device found\n");
3200 		chip->select_chip(mtd, -1);
3201 		return PTR_ERR(type);
3202 	}
3203 
3204 	/* Check for a chip array */
3205 	for (i = 1; i < maxchips; i++) {
3206 		chip->select_chip(mtd, i);
3207 		/* See comment in nand_get_flash_type for reset */
3208 		chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3209 		/* Send the command for reading device ID */
3210 		chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3211 		/* Read manufacturer and device IDs */
3212 		if (nand_maf_id != chip->read_byte(mtd) ||
3213 		    nand_dev_id != chip->read_byte(mtd))
3214 			break;
3215 	}
3216 	if (i > 1)
3217 		pr_info("%d NAND chips detected\n", i);
3218 
3219 	/* Store the number of chips and calc total size for mtd */
3220 	chip->numchips = i;
3221 	mtd->size = i * chip->chipsize;
3222 
3223 	return 0;
3224 }
3225 EXPORT_SYMBOL(nand_scan_ident);
3226 
3227 
3228 /**
3229  * nand_scan_tail - [NAND Interface] Scan for the NAND device
3230  * @mtd: MTD device structure
3231  *
3232  * This is the second phase of the normal nand_scan() function. It fills out
3233  * all the uninitialized function pointers with the defaults and scans for a
3234  * bad block table if appropriate.
3235  */
nand_scan_tail(struct mtd_info * mtd)3236 int nand_scan_tail(struct mtd_info *mtd)
3237 {
3238 	int i;
3239 	struct nand_chip *chip = mtd->priv;
3240 
3241 	if (!(chip->options & NAND_OWN_BUFFERS))
3242 		chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3243 	if (!chip->buffers)
3244 		return -ENOMEM;
3245 
3246 	/* Set the internal oob buffer location, just after the page data */
3247 	chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3248 
3249 	/*
3250 	 * If no default placement scheme is given, select an appropriate one.
3251 	 */
3252 	if (!chip->ecc.layout && (chip->ecc.mode != NAND_ECC_SOFT_BCH)) {
3253 		switch (mtd->oobsize) {
3254 		case 8:
3255 			chip->ecc.layout = &nand_oob_8;
3256 			break;
3257 		case 16:
3258 			chip->ecc.layout = &nand_oob_16;
3259 			break;
3260 		case 64:
3261 			chip->ecc.layout = &nand_oob_64;
3262 			break;
3263 		case 128:
3264 			chip->ecc.layout = &nand_oob_128;
3265 			break;
3266 		default:
3267 			pr_warn("No oob scheme defined for oobsize %d\n",
3268 				   mtd->oobsize);
3269 			BUG();
3270 		}
3271 	}
3272 
3273 	if (!chip->write_page)
3274 		chip->write_page = nand_write_page;
3275 
3276 	/*
3277 	 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
3278 	 * selected and we have 256 byte pagesize fallback to software ECC
3279 	 */
3280 
3281 	switch (chip->ecc.mode) {
3282 	case NAND_ECC_HW_OOB_FIRST:
3283 		/* Similar to NAND_ECC_HW, but a separate read_page handle */
3284 		if (!chip->ecc.calculate || !chip->ecc.correct ||
3285 		     !chip->ecc.hwctl) {
3286 			pr_warn("No ECC functions supplied; "
3287 				   "hardware ECC not possible\n");
3288 			BUG();
3289 		}
3290 		if (!chip->ecc.read_page)
3291 			chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3292 
3293 	case NAND_ECC_HW:
3294 		/* Use standard hwecc read page function? */
3295 		if (!chip->ecc.read_page)
3296 			chip->ecc.read_page = nand_read_page_hwecc;
3297 		if (!chip->ecc.write_page)
3298 			chip->ecc.write_page = nand_write_page_hwecc;
3299 		if (!chip->ecc.read_page_raw)
3300 			chip->ecc.read_page_raw = nand_read_page_raw;
3301 		if (!chip->ecc.write_page_raw)
3302 			chip->ecc.write_page_raw = nand_write_page_raw;
3303 		if (!chip->ecc.read_oob)
3304 			chip->ecc.read_oob = nand_read_oob_std;
3305 		if (!chip->ecc.write_oob)
3306 			chip->ecc.write_oob = nand_write_oob_std;
3307 
3308 	case NAND_ECC_HW_SYNDROME:
3309 		if ((!chip->ecc.calculate || !chip->ecc.correct ||
3310 		     !chip->ecc.hwctl) &&
3311 		    (!chip->ecc.read_page ||
3312 		     chip->ecc.read_page == nand_read_page_hwecc ||
3313 		     !chip->ecc.write_page ||
3314 		     chip->ecc.write_page == nand_write_page_hwecc)) {
3315 			pr_warn("No ECC functions supplied; "
3316 				   "hardware ECC not possible\n");
3317 			BUG();
3318 		}
3319 		/* Use standard syndrome read/write page function? */
3320 		if (!chip->ecc.read_page)
3321 			chip->ecc.read_page = nand_read_page_syndrome;
3322 		if (!chip->ecc.write_page)
3323 			chip->ecc.write_page = nand_write_page_syndrome;
3324 		if (!chip->ecc.read_page_raw)
3325 			chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3326 		if (!chip->ecc.write_page_raw)
3327 			chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
3328 		if (!chip->ecc.read_oob)
3329 			chip->ecc.read_oob = nand_read_oob_syndrome;
3330 		if (!chip->ecc.write_oob)
3331 			chip->ecc.write_oob = nand_write_oob_syndrome;
3332 
3333 		if (mtd->writesize >= chip->ecc.size)
3334 			break;
3335 		pr_warn("%d byte HW ECC not possible on "
3336 			   "%d byte page size, fallback to SW ECC\n",
3337 			   chip->ecc.size, mtd->writesize);
3338 		chip->ecc.mode = NAND_ECC_SOFT;
3339 
3340 	case NAND_ECC_SOFT:
3341 		chip->ecc.calculate = nand_calculate_ecc;
3342 		chip->ecc.correct = nand_correct_data;
3343 		chip->ecc.read_page = nand_read_page_swecc;
3344 		chip->ecc.read_subpage = nand_read_subpage;
3345 		chip->ecc.write_page = nand_write_page_swecc;
3346 		chip->ecc.read_page_raw = nand_read_page_raw;
3347 		chip->ecc.write_page_raw = nand_write_page_raw;
3348 		chip->ecc.read_oob = nand_read_oob_std;
3349 		chip->ecc.write_oob = nand_write_oob_std;
3350 		if (!chip->ecc.size)
3351 			chip->ecc.size = 256;
3352 		chip->ecc.bytes = 3;
3353 		break;
3354 
3355 	case NAND_ECC_SOFT_BCH:
3356 		if (!mtd_nand_has_bch()) {
3357 			pr_warn("CONFIG_MTD_ECC_BCH not enabled\n");
3358 			BUG();
3359 		}
3360 		chip->ecc.calculate = nand_bch_calculate_ecc;
3361 		chip->ecc.correct = nand_bch_correct_data;
3362 		chip->ecc.read_page = nand_read_page_swecc;
3363 		chip->ecc.read_subpage = nand_read_subpage;
3364 		chip->ecc.write_page = nand_write_page_swecc;
3365 		chip->ecc.read_page_raw = nand_read_page_raw;
3366 		chip->ecc.write_page_raw = nand_write_page_raw;
3367 		chip->ecc.read_oob = nand_read_oob_std;
3368 		chip->ecc.write_oob = nand_write_oob_std;
3369 		/*
3370 		 * Board driver should supply ecc.size and ecc.bytes values to
3371 		 * select how many bits are correctable; see nand_bch_init()
3372 		 * for details. Otherwise, default to 4 bits for large page
3373 		 * devices.
3374 		 */
3375 		if (!chip->ecc.size && (mtd->oobsize >= 64)) {
3376 			chip->ecc.size = 512;
3377 			chip->ecc.bytes = 7;
3378 		}
3379 		chip->ecc.priv = nand_bch_init(mtd,
3380 					       chip->ecc.size,
3381 					       chip->ecc.bytes,
3382 					       &chip->ecc.layout);
3383 		if (!chip->ecc.priv) {
3384 			pr_warn("BCH ECC initialization failed!\n");
3385 			BUG();
3386 		}
3387 		break;
3388 
3389 	case NAND_ECC_NONE:
3390 		pr_warn("NAND_ECC_NONE selected by board driver. "
3391 			   "This is not recommended!\n");
3392 		chip->ecc.read_page = nand_read_page_raw;
3393 		chip->ecc.write_page = nand_write_page_raw;
3394 		chip->ecc.read_oob = nand_read_oob_std;
3395 		chip->ecc.read_page_raw = nand_read_page_raw;
3396 		chip->ecc.write_page_raw = nand_write_page_raw;
3397 		chip->ecc.write_oob = nand_write_oob_std;
3398 		chip->ecc.size = mtd->writesize;
3399 		chip->ecc.bytes = 0;
3400 		break;
3401 
3402 	default:
3403 		pr_warn("Invalid NAND_ECC_MODE %d\n", chip->ecc.mode);
3404 		BUG();
3405 	}
3406 
3407 	/* For many systems, the standard OOB write also works for raw */
3408 	if (!chip->ecc.read_oob_raw)
3409 		chip->ecc.read_oob_raw = chip->ecc.read_oob;
3410 	if (!chip->ecc.write_oob_raw)
3411 		chip->ecc.write_oob_raw = chip->ecc.write_oob;
3412 
3413 	/*
3414 	 * The number of bytes available for a client to place data into
3415 	 * the out of band area.
3416 	 */
3417 	chip->ecc.layout->oobavail = 0;
3418 	for (i = 0; chip->ecc.layout->oobfree[i].length
3419 			&& i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
3420 		chip->ecc.layout->oobavail +=
3421 			chip->ecc.layout->oobfree[i].length;
3422 	mtd->oobavail = chip->ecc.layout->oobavail;
3423 
3424 	/*
3425 	 * Set the number of read / write steps for one page depending on ECC
3426 	 * mode.
3427 	 */
3428 	chip->ecc.steps = mtd->writesize / chip->ecc.size;
3429 	if (chip->ecc.steps * chip->ecc.size != mtd->writesize) {
3430 		pr_warn("Invalid ECC parameters\n");
3431 		BUG();
3432 	}
3433 	chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
3434 
3435 	/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
3436 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3437 	    !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3438 		switch (chip->ecc.steps) {
3439 		case 2:
3440 			mtd->subpage_sft = 1;
3441 			break;
3442 		case 4:
3443 		case 8:
3444 		case 16:
3445 			mtd->subpage_sft = 2;
3446 			break;
3447 		}
3448 	}
3449 	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3450 
3451 	/* Initialize state */
3452 	chip->state = FL_READY;
3453 
3454 	/* De-select the device */
3455 	chip->select_chip(mtd, -1);
3456 
3457 	/* Invalidate the pagebuffer reference */
3458 	chip->pagebuf = -1;
3459 
3460 	/* Fill in remaining MTD driver data */
3461 	mtd->type = MTD_NANDFLASH;
3462 	mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3463 						MTD_CAP_NANDFLASH;
3464 	mtd->erase = nand_erase;
3465 	mtd->point = NULL;
3466 	mtd->unpoint = NULL;
3467 	mtd->read = nand_read;
3468 	mtd->write = nand_write;
3469 	mtd->panic_write = panic_nand_write;
3470 	mtd->read_oob = nand_read_oob;
3471 	mtd->write_oob = nand_write_oob;
3472 	mtd->sync = nand_sync;
3473 	mtd->lock = NULL;
3474 	mtd->unlock = NULL;
3475 	mtd->suspend = nand_suspend;
3476 	mtd->resume = nand_resume;
3477 	mtd->block_isbad = nand_block_isbad;
3478 	mtd->block_markbad = nand_block_markbad;
3479 	mtd->writebufsize = mtd->writesize;
3480 
3481 	/* propagate ecc.layout to mtd_info */
3482 	mtd->ecclayout = chip->ecc.layout;
3483 
3484 	/* Check, if we should skip the bad block table scan */
3485 	if (chip->options & NAND_SKIP_BBTSCAN)
3486 		return 0;
3487 
3488 	/* Build bad block table */
3489 	return chip->scan_bbt(mtd);
3490 }
3491 EXPORT_SYMBOL(nand_scan_tail);
3492 
3493 /*
3494  * is_module_text_address() isn't exported, and it's mostly a pointless
3495  * test if this is a module _anyway_ -- they'd have to try _really_ hard
3496  * to call us from in-kernel code if the core NAND support is modular.
3497  */
3498 #ifdef MODULE
3499 #define caller_is_module() (1)
3500 #else
3501 #define caller_is_module() \
3502 	is_module_text_address((unsigned long)__builtin_return_address(0))
3503 #endif
3504 
3505 /**
3506  * nand_scan - [NAND Interface] Scan for the NAND device
3507  * @mtd: MTD device structure
3508  * @maxchips: number of chips to scan for
3509  *
3510  * This fills out all the uninitialized function pointers with the defaults.
3511  * The flash ID is read and the mtd/chip structures are filled with the
3512  * appropriate values. The mtd->owner field must be set to the module of the
3513  * caller.
3514  */
nand_scan(struct mtd_info * mtd,int maxchips)3515 int nand_scan(struct mtd_info *mtd, int maxchips)
3516 {
3517 	int ret;
3518 
3519 	/* Many callers got this wrong, so check for it for a while... */
3520 	if (!mtd->owner && caller_is_module()) {
3521 		pr_crit("%s called with NULL mtd->owner!\n", __func__);
3522 		BUG();
3523 	}
3524 
3525 	ret = nand_scan_ident(mtd, maxchips, NULL);
3526 	if (!ret)
3527 		ret = nand_scan_tail(mtd);
3528 	return ret;
3529 }
3530 EXPORT_SYMBOL(nand_scan);
3531 
3532 /**
3533  * nand_release - [NAND Interface] Free resources held by the NAND device
3534  * @mtd: MTD device structure
3535  */
nand_release(struct mtd_info * mtd)3536 void nand_release(struct mtd_info *mtd)
3537 {
3538 	struct nand_chip *chip = mtd->priv;
3539 
3540 	if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
3541 		nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
3542 
3543 	mtd_device_unregister(mtd);
3544 
3545 	/* Free bad block table memory */
3546 	kfree(chip->bbt);
3547 	if (!(chip->options & NAND_OWN_BUFFERS))
3548 		kfree(chip->buffers);
3549 
3550 	/* Free bad block descriptor memory */
3551 	if (chip->badblock_pattern && chip->badblock_pattern->options
3552 			& NAND_BBT_DYNAMICSTRUCT)
3553 		kfree(chip->badblock_pattern);
3554 }
3555 EXPORT_SYMBOL_GPL(nand_release);
3556 
nand_base_init(void)3557 static int __init nand_base_init(void)
3558 {
3559 	led_trigger_register_simple("nand-disk", &nand_led_trigger);
3560 	return 0;
3561 }
3562 
nand_base_exit(void)3563 static void __exit nand_base_exit(void)
3564 {
3565 	led_trigger_unregister_simple(nand_led_trigger);
3566 }
3567 
3568 module_init(nand_base_init);
3569 module_exit(nand_base_exit);
3570 
3571 MODULE_LICENSE("GPL");
3572 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
3573 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
3574 MODULE_DESCRIPTION("Generic NAND flash driver code");
3575