1 /*
2  * Freescale GPMI NAND Flash Driver
3  *
4  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
5  * Copyright (C) 2008 Embedded Alley Solutions, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License along
18  * with this program; if not, write to the Free Software Foundation, Inc.,
19  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20  */
21 #include <linux/clk.h>
22 #include <linux/slab.h>
23 #include <linux/interrupt.h>
24 #include <linux/module.h>
25 #include <linux/mtd/gpmi-nand.h>
26 #include <linux/mtd/partitions.h>
27 #include "gpmi-nand.h"
28 
29 /* add our owner bbt descriptor */
30 static uint8_t scan_ff_pattern[] = { 0xff };
31 static struct nand_bbt_descr gpmi_bbt_descr = {
32 	.options	= 0,
33 	.offs		= 0,
34 	.len		= 1,
35 	.pattern	= scan_ff_pattern
36 };
37 
38 /*  We will use all the (page + OOB). */
39 static struct nand_ecclayout gpmi_hw_ecclayout = {
40 	.eccbytes = 0,
41 	.eccpos = { 0, },
42 	.oobfree = { {.offset = 0, .length = 0} }
43 };
44 
bch_irq(int irq,void * cookie)45 static irqreturn_t bch_irq(int irq, void *cookie)
46 {
47 	struct gpmi_nand_data *this = cookie;
48 
49 	gpmi_clear_bch(this);
50 	complete(&this->bch_done);
51 	return IRQ_HANDLED;
52 }
53 
54 /*
55  *  Calculate the ECC strength by hand:
56  *	E : The ECC strength.
57  *	G : the length of Galois Field.
58  *	N : The chunk count of per page.
59  *	O : the oobsize of the NAND chip.
60  *	M : the metasize of per page.
61  *
62  *	The formula is :
63  *		E * G * N
64  *	      ------------ <= (O - M)
65  *                  8
66  *
67  *      So, we get E by:
68  *                    (O - M) * 8
69  *              E <= -------------
70  *                       G * N
71  */
get_ecc_strength(struct gpmi_nand_data * this)72 static inline int get_ecc_strength(struct gpmi_nand_data *this)
73 {
74 	struct bch_geometry *geo = &this->bch_geometry;
75 	struct mtd_info	*mtd = &this->mtd;
76 	int ecc_strength;
77 
78 	ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
79 			/ (geo->gf_len * geo->ecc_chunk_count);
80 
81 	/* We need the minor even number. */
82 	return round_down(ecc_strength, 2);
83 }
84 
common_nfc_set_geometry(struct gpmi_nand_data * this)85 int common_nfc_set_geometry(struct gpmi_nand_data *this)
86 {
87 	struct bch_geometry *geo = &this->bch_geometry;
88 	struct mtd_info *mtd = &this->mtd;
89 	unsigned int metadata_size;
90 	unsigned int status_size;
91 	unsigned int block_mark_bit_offset;
92 
93 	/*
94 	 * The size of the metadata can be changed, though we set it to 10
95 	 * bytes now. But it can't be too large, because we have to save
96 	 * enough space for BCH.
97 	 */
98 	geo->metadata_size = 10;
99 
100 	/* The default for the length of Galois Field. */
101 	geo->gf_len = 13;
102 
103 	/* The default for chunk size. There is no oobsize greater then 512. */
104 	geo->ecc_chunk_size = 512;
105 	while (geo->ecc_chunk_size < mtd->oobsize)
106 		geo->ecc_chunk_size *= 2; /* keep C >= O */
107 
108 	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
109 
110 	/* We use the same ECC strength for all chunks. */
111 	geo->ecc_strength = get_ecc_strength(this);
112 	if (!geo->ecc_strength) {
113 		pr_err("We get a wrong ECC strength.\n");
114 		return -EINVAL;
115 	}
116 
117 	geo->page_size = mtd->writesize + mtd->oobsize;
118 	geo->payload_size = mtd->writesize;
119 
120 	/*
121 	 * The auxiliary buffer contains the metadata and the ECC status. The
122 	 * metadata is padded to the nearest 32-bit boundary. The ECC status
123 	 * contains one byte for every ECC chunk, and is also padded to the
124 	 * nearest 32-bit boundary.
125 	 */
126 	metadata_size = ALIGN(geo->metadata_size, 4);
127 	status_size   = ALIGN(geo->ecc_chunk_count, 4);
128 
129 	geo->auxiliary_size = metadata_size + status_size;
130 	geo->auxiliary_status_offset = metadata_size;
131 
132 	if (!this->swap_block_mark)
133 		return 0;
134 
135 	/*
136 	 * We need to compute the byte and bit offsets of
137 	 * the physical block mark within the ECC-based view of the page.
138 	 *
139 	 * NAND chip with 2K page shows below:
140 	 *                                             (Block Mark)
141 	 *                                                   |      |
142 	 *                                                   |  D   |
143 	 *                                                   |<---->|
144 	 *                                                   V      V
145 	 *    +---+----------+-+----------+-+----------+-+----------+-+
146 	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|
147 	 *    +---+----------+-+----------+-+----------+-+----------+-+
148 	 *
149 	 * The position of block mark moves forward in the ECC-based view
150 	 * of page, and the delta is:
151 	 *
152 	 *                   E * G * (N - 1)
153 	 *             D = (---------------- + M)
154 	 *                          8
155 	 *
156 	 * With the formula to compute the ECC strength, and the condition
157 	 *       : C >= O         (C is the ecc chunk size)
158 	 *
159 	 * It's easy to deduce to the following result:
160 	 *
161 	 *         E * G       (O - M)      C - M         C - M
162 	 *      ----------- <= ------- <=  --------  <  ---------
163 	 *           8            N           N          (N - 1)
164 	 *
165 	 *  So, we get:
166 	 *
167 	 *                   E * G * (N - 1)
168 	 *             D = (---------------- + M) < C
169 	 *                          8
170 	 *
171 	 *  The above inequality means the position of block mark
172 	 *  within the ECC-based view of the page is still in the data chunk,
173 	 *  and it's NOT in the ECC bits of the chunk.
174 	 *
175 	 *  Use the following to compute the bit position of the
176 	 *  physical block mark within the ECC-based view of the page:
177 	 *          (page_size - D) * 8
178 	 *
179 	 *  --Huang Shijie
180 	 */
181 	block_mark_bit_offset = mtd->writesize * 8 -
182 		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
183 				+ geo->metadata_size * 8);
184 
185 	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
186 	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
187 	return 0;
188 }
189 
get_dma_chan(struct gpmi_nand_data * this)190 struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
191 {
192 	int chipnr = this->current_chip;
193 
194 	return this->dma_chans[chipnr];
195 }
196 
197 /* Can we use the upper's buffer directly for DMA? */
prepare_data_dma(struct gpmi_nand_data * this,enum dma_data_direction dr)198 void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr)
199 {
200 	struct scatterlist *sgl = &this->data_sgl;
201 	int ret;
202 
203 	this->direct_dma_map_ok = true;
204 
205 	/* first try to map the upper buffer directly */
206 	sg_init_one(sgl, this->upper_buf, this->upper_len);
207 	ret = dma_map_sg(this->dev, sgl, 1, dr);
208 	if (ret == 0) {
209 		/* We have to use our own DMA buffer. */
210 		sg_init_one(sgl, this->data_buffer_dma, PAGE_SIZE);
211 
212 		if (dr == DMA_TO_DEVICE)
213 			memcpy(this->data_buffer_dma, this->upper_buf,
214 				this->upper_len);
215 
216 		ret = dma_map_sg(this->dev, sgl, 1, dr);
217 		if (ret == 0)
218 			pr_err("map failed.\n");
219 
220 		this->direct_dma_map_ok = false;
221 	}
222 }
223 
224 /* This will be called after the DMA operation is finished. */
dma_irq_callback(void * param)225 static void dma_irq_callback(void *param)
226 {
227 	struct gpmi_nand_data *this = param;
228 	struct completion *dma_c = &this->dma_done;
229 
230 	complete(dma_c);
231 
232 	switch (this->dma_type) {
233 	case DMA_FOR_COMMAND:
234 		dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE);
235 		break;
236 
237 	case DMA_FOR_READ_DATA:
238 		dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE);
239 		if (this->direct_dma_map_ok == false)
240 			memcpy(this->upper_buf, this->data_buffer_dma,
241 				this->upper_len);
242 		break;
243 
244 	case DMA_FOR_WRITE_DATA:
245 		dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE);
246 		break;
247 
248 	case DMA_FOR_READ_ECC_PAGE:
249 	case DMA_FOR_WRITE_ECC_PAGE:
250 		/* We have to wait the BCH interrupt to finish. */
251 		break;
252 
253 	default:
254 		pr_err("in wrong DMA operation.\n");
255 	}
256 }
257 
start_dma_without_bch_irq(struct gpmi_nand_data * this,struct dma_async_tx_descriptor * desc)258 int start_dma_without_bch_irq(struct gpmi_nand_data *this,
259 				struct dma_async_tx_descriptor *desc)
260 {
261 	struct completion *dma_c = &this->dma_done;
262 	int err;
263 
264 	init_completion(dma_c);
265 
266 	desc->callback		= dma_irq_callback;
267 	desc->callback_param	= this;
268 	dmaengine_submit(desc);
269 
270 	/* Wait for the interrupt from the DMA block. */
271 	err = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000));
272 	if (!err) {
273 		pr_err("DMA timeout, last DMA :%d\n", this->last_dma_type);
274 		gpmi_dump_info(this);
275 		return -ETIMEDOUT;
276 	}
277 	return 0;
278 }
279 
280 /*
281  * This function is used in BCH reading or BCH writing pages.
282  * It will wait for the BCH interrupt as long as ONE second.
283  * Actually, we must wait for two interrupts :
284  *	[1] firstly the DMA interrupt and
285  *	[2] secondly the BCH interrupt.
286  */
start_dma_with_bch_irq(struct gpmi_nand_data * this,struct dma_async_tx_descriptor * desc)287 int start_dma_with_bch_irq(struct gpmi_nand_data *this,
288 			struct dma_async_tx_descriptor *desc)
289 {
290 	struct completion *bch_c = &this->bch_done;
291 	int err;
292 
293 	/* Prepare to receive an interrupt from the BCH block. */
294 	init_completion(bch_c);
295 
296 	/* start the DMA */
297 	start_dma_without_bch_irq(this, desc);
298 
299 	/* Wait for the interrupt from the BCH block. */
300 	err = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000));
301 	if (!err) {
302 		pr_err("BCH timeout, last DMA :%d\n", this->last_dma_type);
303 		gpmi_dump_info(this);
304 		return -ETIMEDOUT;
305 	}
306 	return 0;
307 }
308 
309 static int __devinit
acquire_register_block(struct gpmi_nand_data * this,const char * res_name)310 acquire_register_block(struct gpmi_nand_data *this, const char *res_name)
311 {
312 	struct platform_device *pdev = this->pdev;
313 	struct resources *res = &this->resources;
314 	struct resource *r;
315 	void *p;
316 
317 	r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
318 	if (!r) {
319 		pr_err("Can't get resource for %s\n", res_name);
320 		return -ENXIO;
321 	}
322 
323 	p = ioremap(r->start, resource_size(r));
324 	if (!p) {
325 		pr_err("Can't remap %s\n", res_name);
326 		return -ENOMEM;
327 	}
328 
329 	if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
330 		res->gpmi_regs = p;
331 	else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
332 		res->bch_regs = p;
333 	else
334 		pr_err("unknown resource name : %s\n", res_name);
335 
336 	return 0;
337 }
338 
release_register_block(struct gpmi_nand_data * this)339 static void release_register_block(struct gpmi_nand_data *this)
340 {
341 	struct resources *res = &this->resources;
342 	if (res->gpmi_regs)
343 		iounmap(res->gpmi_regs);
344 	if (res->bch_regs)
345 		iounmap(res->bch_regs);
346 	res->gpmi_regs = NULL;
347 	res->bch_regs = NULL;
348 }
349 
350 static int __devinit
acquire_bch_irq(struct gpmi_nand_data * this,irq_handler_t irq_h)351 acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
352 {
353 	struct platform_device *pdev = this->pdev;
354 	struct resources *res = &this->resources;
355 	const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
356 	struct resource *r;
357 	int err;
358 
359 	r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
360 	if (!r) {
361 		pr_err("Can't get resource for %s\n", res_name);
362 		return -ENXIO;
363 	}
364 
365 	err = request_irq(r->start, irq_h, 0, res_name, this);
366 	if (err) {
367 		pr_err("Can't own %s\n", res_name);
368 		return err;
369 	}
370 
371 	res->bch_low_interrupt = r->start;
372 	res->bch_high_interrupt = r->end;
373 	return 0;
374 }
375 
release_bch_irq(struct gpmi_nand_data * this)376 static void release_bch_irq(struct gpmi_nand_data *this)
377 {
378 	struct resources *res = &this->resources;
379 	int i = res->bch_low_interrupt;
380 
381 	for (; i <= res->bch_high_interrupt; i++)
382 		free_irq(i, this);
383 }
384 
gpmi_dma_filter(struct dma_chan * chan,void * param)385 static bool gpmi_dma_filter(struct dma_chan *chan, void *param)
386 {
387 	struct gpmi_nand_data *this = param;
388 	struct resource *r = this->private;
389 
390 	if (!mxs_dma_is_apbh(chan))
391 		return false;
392 	/*
393 	 * only catch the GPMI dma channels :
394 	 *	for mx23 :	MX23_DMA_GPMI0 ~ MX23_DMA_GPMI3
395 	 *		(These four channels share the same IRQ!)
396 	 *
397 	 *	for mx28 :	MX28_DMA_GPMI0 ~ MX28_DMA_GPMI7
398 	 *		(These eight channels share the same IRQ!)
399 	 */
400 	if (r->start <= chan->chan_id && chan->chan_id <= r->end) {
401 		chan->private = &this->dma_data;
402 		return true;
403 	}
404 	return false;
405 }
406 
release_dma_channels(struct gpmi_nand_data * this)407 static void release_dma_channels(struct gpmi_nand_data *this)
408 {
409 	unsigned int i;
410 	for (i = 0; i < DMA_CHANS; i++)
411 		if (this->dma_chans[i]) {
412 			dma_release_channel(this->dma_chans[i]);
413 			this->dma_chans[i] = NULL;
414 		}
415 }
416 
acquire_dma_channels(struct gpmi_nand_data * this)417 static int __devinit acquire_dma_channels(struct gpmi_nand_data *this)
418 {
419 	struct platform_device *pdev = this->pdev;
420 	struct gpmi_nand_platform_data *pdata = this->pdata;
421 	struct resources *res = &this->resources;
422 	struct resource *r, *r_dma;
423 	unsigned int i;
424 
425 	r = platform_get_resource_byname(pdev, IORESOURCE_DMA,
426 					GPMI_NAND_DMA_CHANNELS_RES_NAME);
427 	r_dma = platform_get_resource_byname(pdev, IORESOURCE_IRQ,
428 					GPMI_NAND_DMA_INTERRUPT_RES_NAME);
429 	if (!r || !r_dma) {
430 		pr_err("Can't get resource for DMA\n");
431 		return -ENXIO;
432 	}
433 
434 	/* used in gpmi_dma_filter() */
435 	this->private = r;
436 
437 	for (i = r->start; i <= r->end; i++) {
438 		struct dma_chan *dma_chan;
439 		dma_cap_mask_t mask;
440 
441 		if (i - r->start >= pdata->max_chip_count)
442 			break;
443 
444 		dma_cap_zero(mask);
445 		dma_cap_set(DMA_SLAVE, mask);
446 
447 		/* get the DMA interrupt */
448 		if (r_dma->start == r_dma->end) {
449 			/* only register the first. */
450 			if (i == r->start)
451 				this->dma_data.chan_irq = r_dma->start;
452 			else
453 				this->dma_data.chan_irq = NO_IRQ;
454 		} else
455 			this->dma_data.chan_irq = r_dma->start + (i - r->start);
456 
457 		dma_chan = dma_request_channel(mask, gpmi_dma_filter, this);
458 		if (!dma_chan)
459 			goto acquire_err;
460 
461 		/* fill the first empty item */
462 		this->dma_chans[i - r->start] = dma_chan;
463 	}
464 
465 	res->dma_low_channel = r->start;
466 	res->dma_high_channel = i;
467 	return 0;
468 
469 acquire_err:
470 	pr_err("Can't acquire DMA channel %u\n", i);
471 	release_dma_channels(this);
472 	return -EINVAL;
473 }
474 
acquire_resources(struct gpmi_nand_data * this)475 static int __devinit acquire_resources(struct gpmi_nand_data *this)
476 {
477 	struct resources *res = &this->resources;
478 	int ret;
479 
480 	ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
481 	if (ret)
482 		goto exit_regs;
483 
484 	ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
485 	if (ret)
486 		goto exit_regs;
487 
488 	ret = acquire_bch_irq(this, bch_irq);
489 	if (ret)
490 		goto exit_regs;
491 
492 	ret = acquire_dma_channels(this);
493 	if (ret)
494 		goto exit_dma_channels;
495 
496 	res->clock = clk_get(&this->pdev->dev, NULL);
497 	if (IS_ERR(res->clock)) {
498 		pr_err("can not get the clock\n");
499 		ret = -ENOENT;
500 		goto exit_clock;
501 	}
502 	return 0;
503 
504 exit_clock:
505 	release_dma_channels(this);
506 exit_dma_channels:
507 	release_bch_irq(this);
508 exit_regs:
509 	release_register_block(this);
510 	return ret;
511 }
512 
release_resources(struct gpmi_nand_data * this)513 static void release_resources(struct gpmi_nand_data *this)
514 {
515 	struct resources *r = &this->resources;
516 
517 	clk_put(r->clock);
518 	release_register_block(this);
519 	release_bch_irq(this);
520 	release_dma_channels(this);
521 }
522 
init_hardware(struct gpmi_nand_data * this)523 static int __devinit init_hardware(struct gpmi_nand_data *this)
524 {
525 	int ret;
526 
527 	/*
528 	 * This structure contains the "safe" GPMI timing that should succeed
529 	 * with any NAND Flash device
530 	 * (although, with less-than-optimal performance).
531 	 */
532 	struct nand_timing  safe_timing = {
533 		.data_setup_in_ns        = 80,
534 		.data_hold_in_ns         = 60,
535 		.address_setup_in_ns     = 25,
536 		.gpmi_sample_delay_in_ns =  6,
537 		.tREA_in_ns              = -1,
538 		.tRLOH_in_ns             = -1,
539 		.tRHOH_in_ns             = -1,
540 	};
541 
542 	/* Initialize the hardwares. */
543 	ret = gpmi_init(this);
544 	if (ret)
545 		return ret;
546 
547 	this->timing = safe_timing;
548 	return 0;
549 }
550 
read_page_prepare(struct gpmi_nand_data * this,void * destination,unsigned length,void * alt_virt,dma_addr_t alt_phys,unsigned alt_size,void ** use_virt,dma_addr_t * use_phys)551 static int read_page_prepare(struct gpmi_nand_data *this,
552 			void *destination, unsigned length,
553 			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
554 			void **use_virt, dma_addr_t *use_phys)
555 {
556 	struct device *dev = this->dev;
557 
558 	if (virt_addr_valid(destination)) {
559 		dma_addr_t dest_phys;
560 
561 		dest_phys = dma_map_single(dev, destination,
562 						length, DMA_FROM_DEVICE);
563 		if (dma_mapping_error(dev, dest_phys)) {
564 			if (alt_size < length) {
565 				pr_err("Alternate buffer is too small\n");
566 				return -ENOMEM;
567 			}
568 			goto map_failed;
569 		}
570 		*use_virt = destination;
571 		*use_phys = dest_phys;
572 		this->direct_dma_map_ok = true;
573 		return 0;
574 	}
575 
576 map_failed:
577 	*use_virt = alt_virt;
578 	*use_phys = alt_phys;
579 	this->direct_dma_map_ok = false;
580 	return 0;
581 }
582 
read_page_end(struct gpmi_nand_data * this,void * destination,unsigned length,void * alt_virt,dma_addr_t alt_phys,unsigned alt_size,void * used_virt,dma_addr_t used_phys)583 static inline void read_page_end(struct gpmi_nand_data *this,
584 			void *destination, unsigned length,
585 			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
586 			void *used_virt, dma_addr_t used_phys)
587 {
588 	if (this->direct_dma_map_ok)
589 		dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE);
590 }
591 
read_page_swap_end(struct gpmi_nand_data * this,void * destination,unsigned length,void * alt_virt,dma_addr_t alt_phys,unsigned alt_size,void * used_virt,dma_addr_t used_phys)592 static inline void read_page_swap_end(struct gpmi_nand_data *this,
593 			void *destination, unsigned length,
594 			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
595 			void *used_virt, dma_addr_t used_phys)
596 {
597 	if (!this->direct_dma_map_ok)
598 		memcpy(destination, alt_virt, length);
599 }
600 
send_page_prepare(struct gpmi_nand_data * this,const void * source,unsigned length,void * alt_virt,dma_addr_t alt_phys,unsigned alt_size,const void ** use_virt,dma_addr_t * use_phys)601 static int send_page_prepare(struct gpmi_nand_data *this,
602 			const void *source, unsigned length,
603 			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
604 			const void **use_virt, dma_addr_t *use_phys)
605 {
606 	struct device *dev = this->dev;
607 
608 	if (virt_addr_valid(source)) {
609 		dma_addr_t source_phys;
610 
611 		source_phys = dma_map_single(dev, (void *)source, length,
612 						DMA_TO_DEVICE);
613 		if (dma_mapping_error(dev, source_phys)) {
614 			if (alt_size < length) {
615 				pr_err("Alternate buffer is too small\n");
616 				return -ENOMEM;
617 			}
618 			goto map_failed;
619 		}
620 		*use_virt = source;
621 		*use_phys = source_phys;
622 		return 0;
623 	}
624 map_failed:
625 	/*
626 	 * Copy the content of the source buffer into the alternate
627 	 * buffer and set up the return values accordingly.
628 	 */
629 	memcpy(alt_virt, source, length);
630 
631 	*use_virt = alt_virt;
632 	*use_phys = alt_phys;
633 	return 0;
634 }
635 
send_page_end(struct gpmi_nand_data * this,const void * source,unsigned length,void * alt_virt,dma_addr_t alt_phys,unsigned alt_size,const void * used_virt,dma_addr_t used_phys)636 static void send_page_end(struct gpmi_nand_data *this,
637 			const void *source, unsigned length,
638 			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
639 			const void *used_virt, dma_addr_t used_phys)
640 {
641 	struct device *dev = this->dev;
642 	if (used_virt == source)
643 		dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
644 }
645 
gpmi_free_dma_buffer(struct gpmi_nand_data * this)646 static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
647 {
648 	struct device *dev = this->dev;
649 
650 	if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt))
651 		dma_free_coherent(dev, this->page_buffer_size,
652 					this->page_buffer_virt,
653 					this->page_buffer_phys);
654 	kfree(this->cmd_buffer);
655 	kfree(this->data_buffer_dma);
656 
657 	this->cmd_buffer	= NULL;
658 	this->data_buffer_dma	= NULL;
659 	this->page_buffer_virt	= NULL;
660 	this->page_buffer_size	=  0;
661 }
662 
663 /* Allocate the DMA buffers */
gpmi_alloc_dma_buffer(struct gpmi_nand_data * this)664 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
665 {
666 	struct bch_geometry *geo = &this->bch_geometry;
667 	struct device *dev = this->dev;
668 
669 	/* [1] Allocate a command buffer. PAGE_SIZE is enough. */
670 	this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA);
671 	if (this->cmd_buffer == NULL)
672 		goto error_alloc;
673 
674 	/* [2] Allocate a read/write data buffer. PAGE_SIZE is enough. */
675 	this->data_buffer_dma = kzalloc(PAGE_SIZE, GFP_DMA);
676 	if (this->data_buffer_dma == NULL)
677 		goto error_alloc;
678 
679 	/*
680 	 * [3] Allocate the page buffer.
681 	 *
682 	 * Both the payload buffer and the auxiliary buffer must appear on
683 	 * 32-bit boundaries. We presume the size of the payload buffer is a
684 	 * power of two and is much larger than four, which guarantees the
685 	 * auxiliary buffer will appear on a 32-bit boundary.
686 	 */
687 	this->page_buffer_size = geo->payload_size + geo->auxiliary_size;
688 	this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size,
689 					&this->page_buffer_phys, GFP_DMA);
690 	if (!this->page_buffer_virt)
691 		goto error_alloc;
692 
693 
694 	/* Slice up the page buffer. */
695 	this->payload_virt = this->page_buffer_virt;
696 	this->payload_phys = this->page_buffer_phys;
697 	this->auxiliary_virt = this->payload_virt + geo->payload_size;
698 	this->auxiliary_phys = this->payload_phys + geo->payload_size;
699 	return 0;
700 
701 error_alloc:
702 	gpmi_free_dma_buffer(this);
703 	pr_err("allocate DMA buffer ret!!\n");
704 	return -ENOMEM;
705 }
706 
gpmi_cmd_ctrl(struct mtd_info * mtd,int data,unsigned int ctrl)707 static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
708 {
709 	struct nand_chip *chip = mtd->priv;
710 	struct gpmi_nand_data *this = chip->priv;
711 	int ret;
712 
713 	/*
714 	 * Every operation begins with a command byte and a series of zero or
715 	 * more address bytes. These are distinguished by either the Address
716 	 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
717 	 * asserted. When MTD is ready to execute the command, it will deassert
718 	 * both latch enables.
719 	 *
720 	 * Rather than run a separate DMA operation for every single byte, we
721 	 * queue them up and run a single DMA operation for the entire series
722 	 * of command and data bytes. NAND_CMD_NONE means the END of the queue.
723 	 */
724 	if ((ctrl & (NAND_ALE | NAND_CLE))) {
725 		if (data != NAND_CMD_NONE)
726 			this->cmd_buffer[this->command_length++] = data;
727 		return;
728 	}
729 
730 	if (!this->command_length)
731 		return;
732 
733 	ret = gpmi_send_command(this);
734 	if (ret)
735 		pr_err("Chip: %u, Error %d\n", this->current_chip, ret);
736 
737 	this->command_length = 0;
738 }
739 
gpmi_dev_ready(struct mtd_info * mtd)740 static int gpmi_dev_ready(struct mtd_info *mtd)
741 {
742 	struct nand_chip *chip = mtd->priv;
743 	struct gpmi_nand_data *this = chip->priv;
744 
745 	return gpmi_is_ready(this, this->current_chip);
746 }
747 
gpmi_select_chip(struct mtd_info * mtd,int chipnr)748 static void gpmi_select_chip(struct mtd_info *mtd, int chipnr)
749 {
750 	struct nand_chip *chip = mtd->priv;
751 	struct gpmi_nand_data *this = chip->priv;
752 
753 	if ((this->current_chip < 0) && (chipnr >= 0))
754 		gpmi_begin(this);
755 	else if ((this->current_chip >= 0) && (chipnr < 0))
756 		gpmi_end(this);
757 
758 	this->current_chip = chipnr;
759 }
760 
gpmi_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)761 static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
762 {
763 	struct nand_chip *chip = mtd->priv;
764 	struct gpmi_nand_data *this = chip->priv;
765 
766 	pr_debug("len is %d\n", len);
767 	this->upper_buf	= buf;
768 	this->upper_len	= len;
769 
770 	gpmi_read_data(this);
771 }
772 
gpmi_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)773 static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
774 {
775 	struct nand_chip *chip = mtd->priv;
776 	struct gpmi_nand_data *this = chip->priv;
777 
778 	pr_debug("len is %d\n", len);
779 	this->upper_buf	= (uint8_t *)buf;
780 	this->upper_len	= len;
781 
782 	gpmi_send_data(this);
783 }
784 
gpmi_read_byte(struct mtd_info * mtd)785 static uint8_t gpmi_read_byte(struct mtd_info *mtd)
786 {
787 	struct nand_chip *chip = mtd->priv;
788 	struct gpmi_nand_data *this = chip->priv;
789 	uint8_t *buf = this->data_buffer_dma;
790 
791 	gpmi_read_buf(mtd, buf, 1);
792 	return buf[0];
793 }
794 
795 /*
796  * Handles block mark swapping.
797  * It can be called in swapping the block mark, or swapping it back,
798  * because the the operations are the same.
799  */
block_mark_swapping(struct gpmi_nand_data * this,void * payload,void * auxiliary)800 static void block_mark_swapping(struct gpmi_nand_data *this,
801 				void *payload, void *auxiliary)
802 {
803 	struct bch_geometry *nfc_geo = &this->bch_geometry;
804 	unsigned char *p;
805 	unsigned char *a;
806 	unsigned int  bit;
807 	unsigned char mask;
808 	unsigned char from_data;
809 	unsigned char from_oob;
810 
811 	if (!this->swap_block_mark)
812 		return;
813 
814 	/*
815 	 * If control arrives here, we're swapping. Make some convenience
816 	 * variables.
817 	 */
818 	bit = nfc_geo->block_mark_bit_offset;
819 	p   = payload + nfc_geo->block_mark_byte_offset;
820 	a   = auxiliary;
821 
822 	/*
823 	 * Get the byte from the data area that overlays the block mark. Since
824 	 * the ECC engine applies its own view to the bits in the page, the
825 	 * physical block mark won't (in general) appear on a byte boundary in
826 	 * the data.
827 	 */
828 	from_data = (p[0] >> bit) | (p[1] << (8 - bit));
829 
830 	/* Get the byte from the OOB. */
831 	from_oob = a[0];
832 
833 	/* Swap them. */
834 	a[0] = from_data;
835 
836 	mask = (0x1 << bit) - 1;
837 	p[0] = (p[0] & mask) | (from_oob << bit);
838 
839 	mask = ~0 << bit;
840 	p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
841 }
842 
gpmi_ecc_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int page)843 static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
844 				uint8_t *buf, int page)
845 {
846 	struct gpmi_nand_data *this = chip->priv;
847 	struct bch_geometry *nfc_geo = &this->bch_geometry;
848 	void          *payload_virt;
849 	dma_addr_t    payload_phys;
850 	void          *auxiliary_virt;
851 	dma_addr_t    auxiliary_phys;
852 	unsigned int  i;
853 	unsigned char *status;
854 	unsigned int  failed;
855 	unsigned int  corrected;
856 	int           ret;
857 
858 	pr_debug("page number is : %d\n", page);
859 	ret = read_page_prepare(this, buf, mtd->writesize,
860 					this->payload_virt, this->payload_phys,
861 					nfc_geo->payload_size,
862 					&payload_virt, &payload_phys);
863 	if (ret) {
864 		pr_err("Inadequate DMA buffer\n");
865 		ret = -ENOMEM;
866 		return ret;
867 	}
868 	auxiliary_virt = this->auxiliary_virt;
869 	auxiliary_phys = this->auxiliary_phys;
870 
871 	/* go! */
872 	ret = gpmi_read_page(this, payload_phys, auxiliary_phys);
873 	read_page_end(this, buf, mtd->writesize,
874 			this->payload_virt, this->payload_phys,
875 			nfc_geo->payload_size,
876 			payload_virt, payload_phys);
877 	if (ret) {
878 		pr_err("Error in ECC-based read: %d\n", ret);
879 		goto exit_nfc;
880 	}
881 
882 	/* handle the block mark swapping */
883 	block_mark_swapping(this, payload_virt, auxiliary_virt);
884 
885 	/* Loop over status bytes, accumulating ECC status. */
886 	failed		= 0;
887 	corrected	= 0;
888 	status		= auxiliary_virt + nfc_geo->auxiliary_status_offset;
889 
890 	for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
891 		if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
892 			continue;
893 
894 		if (*status == STATUS_UNCORRECTABLE) {
895 			failed++;
896 			continue;
897 		}
898 		corrected += *status;
899 	}
900 
901 	/*
902 	 * Propagate ECC status to the owning MTD only when failed or
903 	 * corrected times nearly reaches our ECC correction threshold.
904 	 */
905 	if (failed || corrected >= (nfc_geo->ecc_strength - 1)) {
906 		mtd->ecc_stats.failed    += failed;
907 		mtd->ecc_stats.corrected += corrected;
908 	}
909 
910 	/*
911 	 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob() for
912 	 * details about our policy for delivering the OOB.
913 	 *
914 	 * We fill the caller's buffer with set bits, and then copy the block
915 	 * mark to th caller's buffer. Note that, if block mark swapping was
916 	 * necessary, it has already been done, so we can rely on the first
917 	 * byte of the auxiliary buffer to contain the block mark.
918 	 */
919 	memset(chip->oob_poi, ~0, mtd->oobsize);
920 	chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0];
921 
922 	read_page_swap_end(this, buf, mtd->writesize,
923 			this->payload_virt, this->payload_phys,
924 			nfc_geo->payload_size,
925 			payload_virt, payload_phys);
926 exit_nfc:
927 	return ret;
928 }
929 
gpmi_ecc_write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf)930 static void gpmi_ecc_write_page(struct mtd_info *mtd,
931 				struct nand_chip *chip, const uint8_t *buf)
932 {
933 	struct gpmi_nand_data *this = chip->priv;
934 	struct bch_geometry *nfc_geo = &this->bch_geometry;
935 	const void *payload_virt;
936 	dma_addr_t payload_phys;
937 	const void *auxiliary_virt;
938 	dma_addr_t auxiliary_phys;
939 	int        ret;
940 
941 	pr_debug("ecc write page.\n");
942 	if (this->swap_block_mark) {
943 		/*
944 		 * If control arrives here, we're doing block mark swapping.
945 		 * Since we can't modify the caller's buffers, we must copy them
946 		 * into our own.
947 		 */
948 		memcpy(this->payload_virt, buf, mtd->writesize);
949 		payload_virt = this->payload_virt;
950 		payload_phys = this->payload_phys;
951 
952 		memcpy(this->auxiliary_virt, chip->oob_poi,
953 				nfc_geo->auxiliary_size);
954 		auxiliary_virt = this->auxiliary_virt;
955 		auxiliary_phys = this->auxiliary_phys;
956 
957 		/* Handle block mark swapping. */
958 		block_mark_swapping(this,
959 				(void *) payload_virt, (void *) auxiliary_virt);
960 	} else {
961 		/*
962 		 * If control arrives here, we're not doing block mark swapping,
963 		 * so we can to try and use the caller's buffers.
964 		 */
965 		ret = send_page_prepare(this,
966 				buf, mtd->writesize,
967 				this->payload_virt, this->payload_phys,
968 				nfc_geo->payload_size,
969 				&payload_virt, &payload_phys);
970 		if (ret) {
971 			pr_err("Inadequate payload DMA buffer\n");
972 			return;
973 		}
974 
975 		ret = send_page_prepare(this,
976 				chip->oob_poi, mtd->oobsize,
977 				this->auxiliary_virt, this->auxiliary_phys,
978 				nfc_geo->auxiliary_size,
979 				&auxiliary_virt, &auxiliary_phys);
980 		if (ret) {
981 			pr_err("Inadequate auxiliary DMA buffer\n");
982 			goto exit_auxiliary;
983 		}
984 	}
985 
986 	/* Ask the NFC. */
987 	ret = gpmi_send_page(this, payload_phys, auxiliary_phys);
988 	if (ret)
989 		pr_err("Error in ECC-based write: %d\n", ret);
990 
991 	if (!this->swap_block_mark) {
992 		send_page_end(this, chip->oob_poi, mtd->oobsize,
993 				this->auxiliary_virt, this->auxiliary_phys,
994 				nfc_geo->auxiliary_size,
995 				auxiliary_virt, auxiliary_phys);
996 exit_auxiliary:
997 		send_page_end(this, buf, mtd->writesize,
998 				this->payload_virt, this->payload_phys,
999 				nfc_geo->payload_size,
1000 				payload_virt, payload_phys);
1001 	}
1002 }
1003 
1004 /*
1005  * There are several places in this driver where we have to handle the OOB and
1006  * block marks. This is the function where things are the most complicated, so
1007  * this is where we try to explain it all. All the other places refer back to
1008  * here.
1009  *
1010  * These are the rules, in order of decreasing importance:
1011  *
1012  * 1) Nothing the caller does can be allowed to imperil the block mark.
1013  *
1014  * 2) In read operations, the first byte of the OOB we return must reflect the
1015  *    true state of the block mark, no matter where that block mark appears in
1016  *    the physical page.
1017  *
1018  * 3) ECC-based read operations return an OOB full of set bits (since we never
1019  *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1020  *    return).
1021  *
1022  * 4) "Raw" read operations return a direct view of the physical bytes in the
1023  *    page, using the conventional definition of which bytes are data and which
1024  *    are OOB. This gives the caller a way to see the actual, physical bytes
1025  *    in the page, without the distortions applied by our ECC engine.
1026  *
1027  *
1028  * What we do for this specific read operation depends on two questions:
1029  *
1030  * 1) Are we doing a "raw" read, or an ECC-based read?
1031  *
1032  * 2) Are we using block mark swapping or transcription?
1033  *
1034  * There are four cases, illustrated by the following Karnaugh map:
1035  *
1036  *                    |           Raw           |         ECC-based       |
1037  *       -------------+-------------------------+-------------------------+
1038  *                    | Read the conventional   |                         |
1039  *                    | OOB at the end of the   |                         |
1040  *       Swapping     | page and return it. It  |                         |
1041  *                    | contains exactly what   |                         |
1042  *                    | we want.                | Read the block mark and |
1043  *       -------------+-------------------------+ return it in a buffer   |
1044  *                    | Read the conventional   | full of set bits.       |
1045  *                    | OOB at the end of the   |                         |
1046  *                    | page and also the block |                         |
1047  *       Transcribing | mark in the metadata.   |                         |
1048  *                    | Copy the block mark     |                         |
1049  *                    | into the first byte of  |                         |
1050  *                    | the OOB.                |                         |
1051  *       -------------+-------------------------+-------------------------+
1052  *
1053  * Note that we break rule #4 in the Transcribing/Raw case because we're not
1054  * giving an accurate view of the actual, physical bytes in the page (we're
1055  * overwriting the block mark). That's OK because it's more important to follow
1056  * rule #2.
1057  *
1058  * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1059  * easy. When reading a page, for example, the NAND Flash MTD code calls our
1060  * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1061  * ECC-based or raw view of the page is implicit in which function it calls
1062  * (there is a similar pair of ECC-based/raw functions for writing).
1063  *
1064  * Since MTD assumes the OOB is not covered by ECC, there is no pair of
1065  * ECC-based/raw functions for reading or or writing the OOB. The fact that the
1066  * caller wants an ECC-based or raw view of the page is not propagated down to
1067  * this driver.
1068  */
gpmi_ecc_read_oob(struct mtd_info * mtd,struct nand_chip * chip,int page,int sndcmd)1069 static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1070 				int page, int sndcmd)
1071 {
1072 	struct gpmi_nand_data *this = chip->priv;
1073 
1074 	pr_debug("page number is %d\n", page);
1075 	/* clear the OOB buffer */
1076 	memset(chip->oob_poi, ~0, mtd->oobsize);
1077 
1078 	/* Read out the conventional OOB. */
1079 	chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
1080 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1081 
1082 	/*
1083 	 * Now, we want to make sure the block mark is correct. In the
1084 	 * Swapping/Raw case, we already have it. Otherwise, we need to
1085 	 * explicitly read it.
1086 	 */
1087 	if (!this->swap_block_mark) {
1088 		/* Read the block mark into the first byte of the OOB buffer. */
1089 		chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1090 		chip->oob_poi[0] = chip->read_byte(mtd);
1091 	}
1092 
1093 	/*
1094 	 * Return true, indicating that the next call to this function must send
1095 	 * a command.
1096 	 */
1097 	return true;
1098 }
1099 
1100 static int
gpmi_ecc_write_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)1101 gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page)
1102 {
1103 	/*
1104 	 * The BCH will use all the (page + oob).
1105 	 * Our gpmi_hw_ecclayout can only prohibit the JFFS2 to write the oob.
1106 	 * But it can not stop some ioctls such MEMWRITEOOB which uses
1107 	 * MTD_OPS_PLACE_OOB. So We have to implement this function to prohibit
1108 	 * these ioctls too.
1109 	 */
1110 	return -EPERM;
1111 }
1112 
gpmi_block_markbad(struct mtd_info * mtd,loff_t ofs)1113 static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs)
1114 {
1115 	struct nand_chip *chip = mtd->priv;
1116 	struct gpmi_nand_data *this = chip->priv;
1117 	int block, ret = 0;
1118 	uint8_t *block_mark;
1119 	int column, page, status, chipnr;
1120 
1121 	/* Get block number */
1122 	block = (int)(ofs >> chip->bbt_erase_shift);
1123 	if (chip->bbt)
1124 		chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1125 
1126 	/* Do we have a flash based bad block table ? */
1127 	if (chip->options & NAND_BBT_USE_FLASH)
1128 		ret = nand_update_bbt(mtd, ofs);
1129 	else {
1130 		chipnr = (int)(ofs >> chip->chip_shift);
1131 		chip->select_chip(mtd, chipnr);
1132 
1133 		column = this->swap_block_mark ? mtd->writesize : 0;
1134 
1135 		/* Write the block mark. */
1136 		block_mark = this->data_buffer_dma;
1137 		block_mark[0] = 0; /* bad block marker */
1138 
1139 		/* Shift to get page */
1140 		page = (int)(ofs >> chip->page_shift);
1141 
1142 		chip->cmdfunc(mtd, NAND_CMD_SEQIN, column, page);
1143 		chip->write_buf(mtd, block_mark, 1);
1144 		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1145 
1146 		status = chip->waitfunc(mtd, chip);
1147 		if (status & NAND_STATUS_FAIL)
1148 			ret = -EIO;
1149 
1150 		chip->select_chip(mtd, -1);
1151 	}
1152 	if (!ret)
1153 		mtd->ecc_stats.badblocks++;
1154 
1155 	return ret;
1156 }
1157 
nand_boot_set_geometry(struct gpmi_nand_data * this)1158 static int __devinit nand_boot_set_geometry(struct gpmi_nand_data *this)
1159 {
1160 	struct boot_rom_geometry *geometry = &this->rom_geometry;
1161 
1162 	/*
1163 	 * Set the boot block stride size.
1164 	 *
1165 	 * In principle, we should be reading this from the OTP bits, since
1166 	 * that's where the ROM is going to get it. In fact, we don't have any
1167 	 * way to read the OTP bits, so we go with the default and hope for the
1168 	 * best.
1169 	 */
1170 	geometry->stride_size_in_pages = 64;
1171 
1172 	/*
1173 	 * Set the search area stride exponent.
1174 	 *
1175 	 * In principle, we should be reading this from the OTP bits, since
1176 	 * that's where the ROM is going to get it. In fact, we don't have any
1177 	 * way to read the OTP bits, so we go with the default and hope for the
1178 	 * best.
1179 	 */
1180 	geometry->search_area_stride_exponent = 2;
1181 	return 0;
1182 }
1183 
1184 static const char  *fingerprint = "STMP";
mx23_check_transcription_stamp(struct gpmi_nand_data * this)1185 static int __devinit mx23_check_transcription_stamp(struct gpmi_nand_data *this)
1186 {
1187 	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1188 	struct device *dev = this->dev;
1189 	struct mtd_info *mtd = &this->mtd;
1190 	struct nand_chip *chip = &this->nand;
1191 	unsigned int search_area_size_in_strides;
1192 	unsigned int stride;
1193 	unsigned int page;
1194 	loff_t byte;
1195 	uint8_t *buffer = chip->buffers->databuf;
1196 	int saved_chip_number;
1197 	int found_an_ncb_fingerprint = false;
1198 
1199 	/* Compute the number of strides in a search area. */
1200 	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1201 
1202 	saved_chip_number = this->current_chip;
1203 	chip->select_chip(mtd, 0);
1204 
1205 	/*
1206 	 * Loop through the first search area, looking for the NCB fingerprint.
1207 	 */
1208 	dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
1209 
1210 	for (stride = 0; stride < search_area_size_in_strides; stride++) {
1211 		/* Compute the page and byte addresses. */
1212 		page = stride * rom_geo->stride_size_in_pages;
1213 		byte = page   * mtd->writesize;
1214 
1215 		dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
1216 
1217 		/*
1218 		 * Read the NCB fingerprint. The fingerprint is four bytes long
1219 		 * and starts in the 12th byte of the page.
1220 		 */
1221 		chip->cmdfunc(mtd, NAND_CMD_READ0, 12, page);
1222 		chip->read_buf(mtd, buffer, strlen(fingerprint));
1223 
1224 		/* Look for the fingerprint. */
1225 		if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
1226 			found_an_ncb_fingerprint = true;
1227 			break;
1228 		}
1229 
1230 	}
1231 
1232 	chip->select_chip(mtd, saved_chip_number);
1233 
1234 	if (found_an_ncb_fingerprint)
1235 		dev_dbg(dev, "\tFound a fingerprint\n");
1236 	else
1237 		dev_dbg(dev, "\tNo fingerprint found\n");
1238 	return found_an_ncb_fingerprint;
1239 }
1240 
1241 /* Writes a transcription stamp. */
mx23_write_transcription_stamp(struct gpmi_nand_data * this)1242 static int __devinit mx23_write_transcription_stamp(struct gpmi_nand_data *this)
1243 {
1244 	struct device *dev = this->dev;
1245 	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1246 	struct mtd_info *mtd = &this->mtd;
1247 	struct nand_chip *chip = &this->nand;
1248 	unsigned int block_size_in_pages;
1249 	unsigned int search_area_size_in_strides;
1250 	unsigned int search_area_size_in_pages;
1251 	unsigned int search_area_size_in_blocks;
1252 	unsigned int block;
1253 	unsigned int stride;
1254 	unsigned int page;
1255 	loff_t       byte;
1256 	uint8_t      *buffer = chip->buffers->databuf;
1257 	int saved_chip_number;
1258 	int status;
1259 
1260 	/* Compute the search area geometry. */
1261 	block_size_in_pages = mtd->erasesize / mtd->writesize;
1262 	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1263 	search_area_size_in_pages = search_area_size_in_strides *
1264 					rom_geo->stride_size_in_pages;
1265 	search_area_size_in_blocks =
1266 		  (search_area_size_in_pages + (block_size_in_pages - 1)) /
1267 				    block_size_in_pages;
1268 
1269 	dev_dbg(dev, "Search Area Geometry :\n");
1270 	dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
1271 	dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
1272 	dev_dbg(dev, "\tin Pages  : %u\n", search_area_size_in_pages);
1273 
1274 	/* Select chip 0. */
1275 	saved_chip_number = this->current_chip;
1276 	chip->select_chip(mtd, 0);
1277 
1278 	/* Loop over blocks in the first search area, erasing them. */
1279 	dev_dbg(dev, "Erasing the search area...\n");
1280 
1281 	for (block = 0; block < search_area_size_in_blocks; block++) {
1282 		/* Compute the page address. */
1283 		page = block * block_size_in_pages;
1284 
1285 		/* Erase this block. */
1286 		dev_dbg(dev, "\tErasing block 0x%x\n", block);
1287 		chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1288 		chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1289 
1290 		/* Wait for the erase to finish. */
1291 		status = chip->waitfunc(mtd, chip);
1292 		if (status & NAND_STATUS_FAIL)
1293 			dev_err(dev, "[%s] Erase failed.\n", __func__);
1294 	}
1295 
1296 	/* Write the NCB fingerprint into the page buffer. */
1297 	memset(buffer, ~0, mtd->writesize);
1298 	memset(chip->oob_poi, ~0, mtd->oobsize);
1299 	memcpy(buffer + 12, fingerprint, strlen(fingerprint));
1300 
1301 	/* Loop through the first search area, writing NCB fingerprints. */
1302 	dev_dbg(dev, "Writing NCB fingerprints...\n");
1303 	for (stride = 0; stride < search_area_size_in_strides; stride++) {
1304 		/* Compute the page and byte addresses. */
1305 		page = stride * rom_geo->stride_size_in_pages;
1306 		byte = page   * mtd->writesize;
1307 
1308 		/* Write the first page of the current stride. */
1309 		dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
1310 		chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1311 		chip->ecc.write_page_raw(mtd, chip, buffer);
1312 		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1313 
1314 		/* Wait for the write to finish. */
1315 		status = chip->waitfunc(mtd, chip);
1316 		if (status & NAND_STATUS_FAIL)
1317 			dev_err(dev, "[%s] Write failed.\n", __func__);
1318 	}
1319 
1320 	/* Deselect chip 0. */
1321 	chip->select_chip(mtd, saved_chip_number);
1322 	return 0;
1323 }
1324 
mx23_boot_init(struct gpmi_nand_data * this)1325 static int __devinit mx23_boot_init(struct gpmi_nand_data  *this)
1326 {
1327 	struct device *dev = this->dev;
1328 	struct nand_chip *chip = &this->nand;
1329 	struct mtd_info *mtd = &this->mtd;
1330 	unsigned int block_count;
1331 	unsigned int block;
1332 	int     chipnr;
1333 	int     page;
1334 	loff_t  byte;
1335 	uint8_t block_mark;
1336 	int     ret = 0;
1337 
1338 	/*
1339 	 * If control arrives here, we can't use block mark swapping, which
1340 	 * means we're forced to use transcription. First, scan for the
1341 	 * transcription stamp. If we find it, then we don't have to do
1342 	 * anything -- the block marks are already transcribed.
1343 	 */
1344 	if (mx23_check_transcription_stamp(this))
1345 		return 0;
1346 
1347 	/*
1348 	 * If control arrives here, we couldn't find a transcription stamp, so
1349 	 * so we presume the block marks are in the conventional location.
1350 	 */
1351 	dev_dbg(dev, "Transcribing bad block marks...\n");
1352 
1353 	/* Compute the number of blocks in the entire medium. */
1354 	block_count = chip->chipsize >> chip->phys_erase_shift;
1355 
1356 	/*
1357 	 * Loop over all the blocks in the medium, transcribing block marks as
1358 	 * we go.
1359 	 */
1360 	for (block = 0; block < block_count; block++) {
1361 		/*
1362 		 * Compute the chip, page and byte addresses for this block's
1363 		 * conventional mark.
1364 		 */
1365 		chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
1366 		page = block << (chip->phys_erase_shift - chip->page_shift);
1367 		byte = block <<  chip->phys_erase_shift;
1368 
1369 		/* Send the command to read the conventional block mark. */
1370 		chip->select_chip(mtd, chipnr);
1371 		chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
1372 		block_mark = chip->read_byte(mtd);
1373 		chip->select_chip(mtd, -1);
1374 
1375 		/*
1376 		 * Check if the block is marked bad. If so, we need to mark it
1377 		 * again, but this time the result will be a mark in the
1378 		 * location where we transcribe block marks.
1379 		 */
1380 		if (block_mark != 0xff) {
1381 			dev_dbg(dev, "Transcribing mark in block %u\n", block);
1382 			ret = chip->block_markbad(mtd, byte);
1383 			if (ret)
1384 				dev_err(dev, "Failed to mark block bad with "
1385 							"ret %d\n", ret);
1386 		}
1387 	}
1388 
1389 	/* Write the stamp that indicates we've transcribed the block marks. */
1390 	mx23_write_transcription_stamp(this);
1391 	return 0;
1392 }
1393 
nand_boot_init(struct gpmi_nand_data * this)1394 static int __devinit nand_boot_init(struct gpmi_nand_data  *this)
1395 {
1396 	nand_boot_set_geometry(this);
1397 
1398 	/* This is ROM arch-specific initilization before the BBT scanning. */
1399 	if (GPMI_IS_MX23(this))
1400 		return mx23_boot_init(this);
1401 	return 0;
1402 }
1403 
gpmi_set_geometry(struct gpmi_nand_data * this)1404 static int __devinit gpmi_set_geometry(struct gpmi_nand_data *this)
1405 {
1406 	int ret;
1407 
1408 	/* Free the temporary DMA memory for reading ID. */
1409 	gpmi_free_dma_buffer(this);
1410 
1411 	/* Set up the NFC geometry which is used by BCH. */
1412 	ret = bch_set_geometry(this);
1413 	if (ret) {
1414 		pr_err("set geometry ret : %d\n", ret);
1415 		return ret;
1416 	}
1417 
1418 	/* Alloc the new DMA buffers according to the pagesize and oobsize */
1419 	return gpmi_alloc_dma_buffer(this);
1420 }
1421 
gpmi_pre_bbt_scan(struct gpmi_nand_data * this)1422 static int gpmi_pre_bbt_scan(struct gpmi_nand_data  *this)
1423 {
1424 	int ret;
1425 
1426 	/* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
1427 	if (GPMI_IS_MX23(this))
1428 		this->swap_block_mark = false;
1429 	else
1430 		this->swap_block_mark = true;
1431 
1432 	/* Set up the medium geometry */
1433 	ret = gpmi_set_geometry(this);
1434 	if (ret)
1435 		return ret;
1436 
1437 	/* NAND boot init, depends on the gpmi_set_geometry(). */
1438 	return nand_boot_init(this);
1439 }
1440 
gpmi_scan_bbt(struct mtd_info * mtd)1441 static int gpmi_scan_bbt(struct mtd_info *mtd)
1442 {
1443 	struct nand_chip *chip = mtd->priv;
1444 	struct gpmi_nand_data *this = chip->priv;
1445 	int ret;
1446 
1447 	/* Prepare for the BBT scan. */
1448 	ret = gpmi_pre_bbt_scan(this);
1449 	if (ret)
1450 		return ret;
1451 
1452 	/* use the default BBT implementation */
1453 	return nand_default_bbt(mtd);
1454 }
1455 
gpmi_nfc_exit(struct gpmi_nand_data * this)1456 void gpmi_nfc_exit(struct gpmi_nand_data *this)
1457 {
1458 	nand_release(&this->mtd);
1459 	gpmi_free_dma_buffer(this);
1460 }
1461 
gpmi_nfc_init(struct gpmi_nand_data * this)1462 static int __devinit gpmi_nfc_init(struct gpmi_nand_data *this)
1463 {
1464 	struct gpmi_nand_platform_data *pdata = this->pdata;
1465 	struct mtd_info  *mtd = &this->mtd;
1466 	struct nand_chip *chip = &this->nand;
1467 	int ret;
1468 
1469 	/* init current chip */
1470 	this->current_chip	= -1;
1471 
1472 	/* init the MTD data structures */
1473 	mtd->priv		= chip;
1474 	mtd->name		= "gpmi-nand";
1475 	mtd->owner		= THIS_MODULE;
1476 
1477 	/* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
1478 	chip->priv		= this;
1479 	chip->select_chip	= gpmi_select_chip;
1480 	chip->cmd_ctrl		= gpmi_cmd_ctrl;
1481 	chip->dev_ready		= gpmi_dev_ready;
1482 	chip->read_byte		= gpmi_read_byte;
1483 	chip->read_buf		= gpmi_read_buf;
1484 	chip->write_buf		= gpmi_write_buf;
1485 	chip->ecc.read_page	= gpmi_ecc_read_page;
1486 	chip->ecc.write_page	= gpmi_ecc_write_page;
1487 	chip->ecc.read_oob	= gpmi_ecc_read_oob;
1488 	chip->ecc.write_oob	= gpmi_ecc_write_oob;
1489 	chip->scan_bbt		= gpmi_scan_bbt;
1490 	chip->badblock_pattern	= &gpmi_bbt_descr;
1491 	chip->block_markbad	= gpmi_block_markbad;
1492 	chip->options		|= NAND_NO_SUBPAGE_WRITE;
1493 	chip->ecc.mode		= NAND_ECC_HW;
1494 	chip->ecc.size		= 1;
1495 	chip->ecc.layout	= &gpmi_hw_ecclayout;
1496 
1497 	/* Allocate a temporary DMA buffer for reading ID in the nand_scan() */
1498 	this->bch_geometry.payload_size = 1024;
1499 	this->bch_geometry.auxiliary_size = 128;
1500 	ret = gpmi_alloc_dma_buffer(this);
1501 	if (ret)
1502 		goto err_out;
1503 
1504 	ret = nand_scan(mtd, pdata->max_chip_count);
1505 	if (ret) {
1506 		pr_err("Chip scan failed\n");
1507 		goto err_out;
1508 	}
1509 
1510 	ret = mtd_device_parse_register(mtd, NULL, NULL,
1511 			pdata->partitions, pdata->partition_count);
1512 	if (ret)
1513 		goto err_out;
1514 	return 0;
1515 
1516 err_out:
1517 	gpmi_nfc_exit(this);
1518 	return ret;
1519 }
1520 
gpmi_nand_probe(struct platform_device * pdev)1521 static int __devinit gpmi_nand_probe(struct platform_device *pdev)
1522 {
1523 	struct gpmi_nand_platform_data *pdata = pdev->dev.platform_data;
1524 	struct gpmi_nand_data *this;
1525 	int ret;
1526 
1527 	this = kzalloc(sizeof(*this), GFP_KERNEL);
1528 	if (!this) {
1529 		pr_err("Failed to allocate per-device memory\n");
1530 		return -ENOMEM;
1531 	}
1532 
1533 	platform_set_drvdata(pdev, this);
1534 	this->pdev  = pdev;
1535 	this->dev   = &pdev->dev;
1536 	this->pdata = pdata;
1537 
1538 	if (pdata->platform_init) {
1539 		ret = pdata->platform_init();
1540 		if (ret)
1541 			goto platform_init_error;
1542 	}
1543 
1544 	ret = acquire_resources(this);
1545 	if (ret)
1546 		goto exit_acquire_resources;
1547 
1548 	ret = init_hardware(this);
1549 	if (ret)
1550 		goto exit_nfc_init;
1551 
1552 	ret = gpmi_nfc_init(this);
1553 	if (ret)
1554 		goto exit_nfc_init;
1555 
1556 	return 0;
1557 
1558 exit_nfc_init:
1559 	release_resources(this);
1560 platform_init_error:
1561 exit_acquire_resources:
1562 	platform_set_drvdata(pdev, NULL);
1563 	kfree(this);
1564 	return ret;
1565 }
1566 
gpmi_nand_remove(struct platform_device * pdev)1567 static int __exit gpmi_nand_remove(struct platform_device *pdev)
1568 {
1569 	struct gpmi_nand_data *this = platform_get_drvdata(pdev);
1570 
1571 	gpmi_nfc_exit(this);
1572 	release_resources(this);
1573 	platform_set_drvdata(pdev, NULL);
1574 	kfree(this);
1575 	return 0;
1576 }
1577 
1578 static const struct platform_device_id gpmi_ids[] = {
1579 	{
1580 		.name = "imx23-gpmi-nand",
1581 		.driver_data = IS_MX23,
1582 	}, {
1583 		.name = "imx28-gpmi-nand",
1584 		.driver_data = IS_MX28,
1585 	}, {},
1586 };
1587 
1588 static struct platform_driver gpmi_nand_driver = {
1589 	.driver = {
1590 		.name = "gpmi-nand",
1591 	},
1592 	.probe   = gpmi_nand_probe,
1593 	.remove  = __exit_p(gpmi_nand_remove),
1594 	.id_table = gpmi_ids,
1595 };
1596 
gpmi_nand_init(void)1597 static int __init gpmi_nand_init(void)
1598 {
1599 	int err;
1600 
1601 	err = platform_driver_register(&gpmi_nand_driver);
1602 	if (err == 0)
1603 		printk(KERN_INFO "GPMI NAND driver registered. (IMX)\n");
1604 	else
1605 		pr_err("i.MX GPMI NAND driver registration failed\n");
1606 	return err;
1607 }
1608 
gpmi_nand_exit(void)1609 static void __exit gpmi_nand_exit(void)
1610 {
1611 	platform_driver_unregister(&gpmi_nand_driver);
1612 }
1613 
1614 module_init(gpmi_nand_init);
1615 module_exit(gpmi_nand_exit);
1616 
1617 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1618 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
1619 MODULE_LICENSE("GPL");
1620