1 /*
2  * drivers/mtd/nand/fsmc_nand.c
3  *
4  * ST Microelectronics
5  * Flexible Static Memory Controller (FSMC)
6  * Driver for NAND portions
7  *
8  * Copyright © 2010 ST Microelectronics
9  * Vipin Kumar <vipin.kumar@st.com>
10  * Ashish Priyadarshi
11  *
12  * Based on drivers/mtd/nand/nomadik_nand.c
13  *
14  * This file is licensed under the terms of the GNU General Public
15  * License version 2. This program is licensed "as is" without any
16  * warranty of any kind, whether express or implied.
17  */
18 
19 #include <linux/clk.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/resource.h>
24 #include <linux/sched.h>
25 #include <linux/types.h>
26 #include <linux/mtd/mtd.h>
27 #include <linux/mtd/nand.h>
28 #include <linux/mtd/nand_ecc.h>
29 #include <linux/platform_device.h>
30 #include <linux/mtd/partitions.h>
31 #include <linux/io.h>
32 #include <linux/slab.h>
33 #include <linux/mtd/fsmc.h>
34 #include <linux/amba/bus.h>
35 #include <mtd/mtd-abi.h>
36 
37 static struct nand_ecclayout fsmc_ecc1_layout = {
38 	.eccbytes = 24,
39 	.eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52,
40 		66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116},
41 	.oobfree = {
42 		{.offset = 8, .length = 8},
43 		{.offset = 24, .length = 8},
44 		{.offset = 40, .length = 8},
45 		{.offset = 56, .length = 8},
46 		{.offset = 72, .length = 8},
47 		{.offset = 88, .length = 8},
48 		{.offset = 104, .length = 8},
49 		{.offset = 120, .length = 8}
50 	}
51 };
52 
53 static struct nand_ecclayout fsmc_ecc4_lp_layout = {
54 	.eccbytes = 104,
55 	.eccpos = {  2,   3,   4,   5,   6,   7,   8,
56 		9,  10,  11,  12,  13,  14,
57 		18,  19,  20,  21,  22,  23,  24,
58 		25,  26,  27,  28,  29,  30,
59 		34,  35,  36,  37,  38,  39,  40,
60 		41,  42,  43,  44,  45,  46,
61 		50,  51,  52,  53,  54,  55,  56,
62 		57,  58,  59,  60,  61,  62,
63 		66,  67,  68,  69,  70,  71,  72,
64 		73,  74,  75,  76,  77,  78,
65 		82,  83,  84,  85,  86,  87,  88,
66 		89,  90,  91,  92,  93,  94,
67 		98,  99, 100, 101, 102, 103, 104,
68 		105, 106, 107, 108, 109, 110,
69 		114, 115, 116, 117, 118, 119, 120,
70 		121, 122, 123, 124, 125, 126
71 	},
72 	.oobfree = {
73 		{.offset = 15, .length = 3},
74 		{.offset = 31, .length = 3},
75 		{.offset = 47, .length = 3},
76 		{.offset = 63, .length = 3},
77 		{.offset = 79, .length = 3},
78 		{.offset = 95, .length = 3},
79 		{.offset = 111, .length = 3},
80 		{.offset = 127, .length = 1}
81 	}
82 };
83 
84 /*
85  * ECC placement definitions in oobfree type format.
86  * There are 13 bytes of ecc for every 512 byte block and it has to be read
87  * consecutively and immediately after the 512 byte data block for hardware to
88  * generate the error bit offsets in 512 byte data.
89  * Managing the ecc bytes in the following way makes it easier for software to
90  * read ecc bytes consecutive to data bytes. This way is similar to
91  * oobfree structure maintained already in generic nand driver
92  */
93 static struct fsmc_eccplace fsmc_ecc4_lp_place = {
94 	.eccplace = {
95 		{.offset = 2, .length = 13},
96 		{.offset = 18, .length = 13},
97 		{.offset = 34, .length = 13},
98 		{.offset = 50, .length = 13},
99 		{.offset = 66, .length = 13},
100 		{.offset = 82, .length = 13},
101 		{.offset = 98, .length = 13},
102 		{.offset = 114, .length = 13}
103 	}
104 };
105 
106 static struct nand_ecclayout fsmc_ecc4_sp_layout = {
107 	.eccbytes = 13,
108 	.eccpos = { 0,  1,  2,  3,  6,  7, 8,
109 		9, 10, 11, 12, 13, 14
110 	},
111 	.oobfree = {
112 		{.offset = 15, .length = 1},
113 	}
114 };
115 
116 static struct fsmc_eccplace fsmc_ecc4_sp_place = {
117 	.eccplace = {
118 		{.offset = 0, .length = 4},
119 		{.offset = 6, .length = 9}
120 	}
121 };
122 
123 /*
124  * Default partition tables to be used if the partition information not
125  * provided through platform data.
126  *
127  * Default partition layout for small page(= 512 bytes) devices
128  * Size for "Root file system" is updated in driver based on actual device size
129  */
130 static struct mtd_partition partition_info_16KB_blk[] = {
131 	{
132 		.name = "X-loader",
133 		.offset = 0,
134 		.size = 4*0x4000,
135 	},
136 	{
137 		.name = "U-Boot",
138 		.offset = 0x10000,
139 		.size = 20*0x4000,
140 	},
141 	{
142 		.name = "Kernel",
143 		.offset = 0x60000,
144 		.size = 256*0x4000,
145 	},
146 	{
147 		.name = "Root File System",
148 		.offset = 0x460000,
149 		.size = MTDPART_SIZ_FULL,
150 	},
151 };
152 
153 /*
154  * Default partition layout for large page(> 512 bytes) devices
155  * Size for "Root file system" is updated in driver based on actual device size
156  */
157 static struct mtd_partition partition_info_128KB_blk[] = {
158 	{
159 		.name = "X-loader",
160 		.offset = 0,
161 		.size = 4*0x20000,
162 	},
163 	{
164 		.name = "U-Boot",
165 		.offset = 0x80000,
166 		.size = 12*0x20000,
167 	},
168 	{
169 		.name = "Kernel",
170 		.offset = 0x200000,
171 		.size = 48*0x20000,
172 	},
173 	{
174 		.name = "Root File System",
175 		.offset = 0x800000,
176 		.size = MTDPART_SIZ_FULL,
177 	},
178 };
179 
180 
181 /**
182  * struct fsmc_nand_data - structure for FSMC NAND device state
183  *
184  * @pid:		Part ID on the AMBA PrimeCell format
185  * @mtd:		MTD info for a NAND flash.
186  * @nand:		Chip related info for a NAND flash.
187  *
188  * @ecc_place:		ECC placing locations in oobfree type format.
189  * @bank:		Bank number for probed device.
190  * @clk:		Clock structure for FSMC.
191  *
192  * @data_va:		NAND port for Data.
193  * @cmd_va:		NAND port for Command.
194  * @addr_va:		NAND port for Address.
195  * @regs_va:		FSMC regs base address.
196  */
197 struct fsmc_nand_data {
198 	u32			pid;
199 	struct mtd_info		mtd;
200 	struct nand_chip	nand;
201 
202 	struct fsmc_eccplace	*ecc_place;
203 	unsigned int		bank;
204 	struct clk		*clk;
205 
206 	struct resource		*resregs;
207 	struct resource		*rescmd;
208 	struct resource		*resaddr;
209 	struct resource		*resdata;
210 
211 	void __iomem		*data_va;
212 	void __iomem		*cmd_va;
213 	void __iomem		*addr_va;
214 	void __iomem		*regs_va;
215 
216 	void			(*select_chip)(uint32_t bank, uint32_t busw);
217 };
218 
219 /* Assert CS signal based on chipnr */
fsmc_select_chip(struct mtd_info * mtd,int chipnr)220 static void fsmc_select_chip(struct mtd_info *mtd, int chipnr)
221 {
222 	struct nand_chip *chip = mtd->priv;
223 	struct fsmc_nand_data *host;
224 
225 	host = container_of(mtd, struct fsmc_nand_data, mtd);
226 
227 	switch (chipnr) {
228 	case -1:
229 		chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
230 		break;
231 	case 0:
232 	case 1:
233 	case 2:
234 	case 3:
235 		if (host->select_chip)
236 			host->select_chip(chipnr,
237 					chip->options & NAND_BUSWIDTH_16);
238 		break;
239 
240 	default:
241 		BUG();
242 	}
243 }
244 
245 /*
246  * fsmc_cmd_ctrl - For facilitaing Hardware access
247  * This routine allows hardware specific access to control-lines(ALE,CLE)
248  */
fsmc_cmd_ctrl(struct mtd_info * mtd,int cmd,unsigned int ctrl)249 static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
250 {
251 	struct nand_chip *this = mtd->priv;
252 	struct fsmc_nand_data *host = container_of(mtd,
253 					struct fsmc_nand_data, mtd);
254 	struct fsmc_regs *regs = host->regs_va;
255 	unsigned int bank = host->bank;
256 
257 	if (ctrl & NAND_CTRL_CHANGE) {
258 		if (ctrl & NAND_CLE) {
259 			this->IO_ADDR_R = (void __iomem *)host->cmd_va;
260 			this->IO_ADDR_W = (void __iomem *)host->cmd_va;
261 		} else if (ctrl & NAND_ALE) {
262 			this->IO_ADDR_R = (void __iomem *)host->addr_va;
263 			this->IO_ADDR_W = (void __iomem *)host->addr_va;
264 		} else {
265 			this->IO_ADDR_R = (void __iomem *)host->data_va;
266 			this->IO_ADDR_W = (void __iomem *)host->data_va;
267 		}
268 
269 		if (ctrl & NAND_NCE) {
270 			writel(readl(&regs->bank_regs[bank].pc) | FSMC_ENABLE,
271 					&regs->bank_regs[bank].pc);
272 		} else {
273 			writel(readl(&regs->bank_regs[bank].pc) & ~FSMC_ENABLE,
274 				       &regs->bank_regs[bank].pc);
275 		}
276 	}
277 
278 	mb();
279 
280 	if (cmd != NAND_CMD_NONE)
281 		writeb(cmd, this->IO_ADDR_W);
282 }
283 
284 /*
285  * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
286  *
287  * This routine initializes timing parameters related to NAND memory access in
288  * FSMC registers
289  */
fsmc_nand_setup(struct fsmc_regs * regs,uint32_t bank,uint32_t busw)290 static void __init fsmc_nand_setup(struct fsmc_regs *regs, uint32_t bank,
291 				   uint32_t busw)
292 {
293 	uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
294 
295 	if (busw)
296 		writel(value | FSMC_DEVWID_16, &regs->bank_regs[bank].pc);
297 	else
298 		writel(value | FSMC_DEVWID_8, &regs->bank_regs[bank].pc);
299 
300 	writel(readl(&regs->bank_regs[bank].pc) | FSMC_TCLR_1 | FSMC_TAR_1,
301 	       &regs->bank_regs[bank].pc);
302 	writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0,
303 	       &regs->bank_regs[bank].comm);
304 	writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0,
305 	       &regs->bank_regs[bank].attrib);
306 }
307 
308 /*
309  * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
310  */
fsmc_enable_hwecc(struct mtd_info * mtd,int mode)311 static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
312 {
313 	struct fsmc_nand_data *host = container_of(mtd,
314 					struct fsmc_nand_data, mtd);
315 	struct fsmc_regs *regs = host->regs_va;
316 	uint32_t bank = host->bank;
317 
318 	writel(readl(&regs->bank_regs[bank].pc) & ~FSMC_ECCPLEN_256,
319 		       &regs->bank_regs[bank].pc);
320 	writel(readl(&regs->bank_regs[bank].pc) & ~FSMC_ECCEN,
321 			&regs->bank_regs[bank].pc);
322 	writel(readl(&regs->bank_regs[bank].pc) | FSMC_ECCEN,
323 			&regs->bank_regs[bank].pc);
324 }
325 
326 /*
327  * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
328  * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
329  * max of 8-bits)
330  */
fsmc_read_hwecc_ecc4(struct mtd_info * mtd,const uint8_t * data,uint8_t * ecc)331 static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
332 				uint8_t *ecc)
333 {
334 	struct fsmc_nand_data *host = container_of(mtd,
335 					struct fsmc_nand_data, mtd);
336 	struct fsmc_regs *regs = host->regs_va;
337 	uint32_t bank = host->bank;
338 	uint32_t ecc_tmp;
339 	unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
340 
341 	do {
342 		if (readl(&regs->bank_regs[bank].sts) & FSMC_CODE_RDY)
343 			break;
344 		else
345 			cond_resched();
346 	} while (!time_after_eq(jiffies, deadline));
347 
348 	ecc_tmp = readl(&regs->bank_regs[bank].ecc1);
349 	ecc[0] = (uint8_t) (ecc_tmp >> 0);
350 	ecc[1] = (uint8_t) (ecc_tmp >> 8);
351 	ecc[2] = (uint8_t) (ecc_tmp >> 16);
352 	ecc[3] = (uint8_t) (ecc_tmp >> 24);
353 
354 	ecc_tmp = readl(&regs->bank_regs[bank].ecc2);
355 	ecc[4] = (uint8_t) (ecc_tmp >> 0);
356 	ecc[5] = (uint8_t) (ecc_tmp >> 8);
357 	ecc[6] = (uint8_t) (ecc_tmp >> 16);
358 	ecc[7] = (uint8_t) (ecc_tmp >> 24);
359 
360 	ecc_tmp = readl(&regs->bank_regs[bank].ecc3);
361 	ecc[8] = (uint8_t) (ecc_tmp >> 0);
362 	ecc[9] = (uint8_t) (ecc_tmp >> 8);
363 	ecc[10] = (uint8_t) (ecc_tmp >> 16);
364 	ecc[11] = (uint8_t) (ecc_tmp >> 24);
365 
366 	ecc_tmp = readl(&regs->bank_regs[bank].sts);
367 	ecc[12] = (uint8_t) (ecc_tmp >> 16);
368 
369 	return 0;
370 }
371 
372 /*
373  * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
374  * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
375  * max of 1-bit)
376  */
fsmc_read_hwecc_ecc1(struct mtd_info * mtd,const uint8_t * data,uint8_t * ecc)377 static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data,
378 				uint8_t *ecc)
379 {
380 	struct fsmc_nand_data *host = container_of(mtd,
381 					struct fsmc_nand_data, mtd);
382 	struct fsmc_regs *regs = host->regs_va;
383 	uint32_t bank = host->bank;
384 	uint32_t ecc_tmp;
385 
386 	ecc_tmp = readl(&regs->bank_regs[bank].ecc1);
387 	ecc[0] = (uint8_t) (ecc_tmp >> 0);
388 	ecc[1] = (uint8_t) (ecc_tmp >> 8);
389 	ecc[2] = (uint8_t) (ecc_tmp >> 16);
390 
391 	return 0;
392 }
393 
394 /*
395  * fsmc_read_page_hwecc
396  * @mtd:	mtd info structure
397  * @chip:	nand chip info structure
398  * @buf:	buffer to store read data
399  * @page:	page number to read
400  *
401  * This routine is needed for fsmc version 8 as reading from NAND chip has to be
402  * performed in a strict sequence as follows:
403  * data(512 byte) -> ecc(13 byte)
404  * After this read, fsmc hardware generates and reports error data bits(up to a
405  * max of 8 bits)
406  */
fsmc_read_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int page)407 static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
408 				 uint8_t *buf, int page)
409 {
410 	struct fsmc_nand_data *host = container_of(mtd,
411 					struct fsmc_nand_data, mtd);
412 	struct fsmc_eccplace *ecc_place = host->ecc_place;
413 	int i, j, s, stat, eccsize = chip->ecc.size;
414 	int eccbytes = chip->ecc.bytes;
415 	int eccsteps = chip->ecc.steps;
416 	uint8_t *p = buf;
417 	uint8_t *ecc_calc = chip->buffers->ecccalc;
418 	uint8_t *ecc_code = chip->buffers->ecccode;
419 	int off, len, group = 0;
420 	/*
421 	 * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we
422 	 * end up reading 14 bytes (7 words) from oob. The local array is
423 	 * to maintain word alignment
424 	 */
425 	uint16_t ecc_oob[7];
426 	uint8_t *oob = (uint8_t *)&ecc_oob[0];
427 
428 	for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
429 
430 		chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page);
431 		chip->ecc.hwctl(mtd, NAND_ECC_READ);
432 		chip->read_buf(mtd, p, eccsize);
433 
434 		for (j = 0; j < eccbytes;) {
435 			off = ecc_place->eccplace[group].offset;
436 			len = ecc_place->eccplace[group].length;
437 			group++;
438 
439 			/*
440 			* length is intentionally kept a higher multiple of 2
441 			* to read at least 13 bytes even in case of 16 bit NAND
442 			* devices
443 			*/
444 			len = roundup(len, 2);
445 			chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page);
446 			chip->read_buf(mtd, oob + j, len);
447 			j += len;
448 		}
449 
450 		memcpy(&ecc_code[i], oob, 13);
451 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
452 
453 		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
454 		if (stat < 0)
455 			mtd->ecc_stats.failed++;
456 		else
457 			mtd->ecc_stats.corrected += stat;
458 	}
459 
460 	return 0;
461 }
462 
463 /*
464  * fsmc_correct_data
465  * @mtd:	mtd info structure
466  * @dat:	buffer of read data
467  * @read_ecc:	ecc read from device spare area
468  * @calc_ecc:	ecc calculated from read data
469  *
470  * calc_ecc is a 104 bit information containing maximum of 8 error
471  * offset informations of 13 bits each in 512 bytes of read data.
472  */
fsmc_correct_data(struct mtd_info * mtd,uint8_t * dat,uint8_t * read_ecc,uint8_t * calc_ecc)473 static int fsmc_correct_data(struct mtd_info *mtd, uint8_t *dat,
474 			     uint8_t *read_ecc, uint8_t *calc_ecc)
475 {
476 	struct fsmc_nand_data *host = container_of(mtd,
477 					struct fsmc_nand_data, mtd);
478 	struct fsmc_regs *regs = host->regs_va;
479 	unsigned int bank = host->bank;
480 	uint16_t err_idx[8];
481 	uint64_t ecc_data[2];
482 	uint32_t num_err, i;
483 
484 	/* The calculated ecc is actually the correction index in data */
485 	memcpy(ecc_data, calc_ecc, 13);
486 
487 	/*
488 	 * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
489 	 * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
490 	 *
491 	 * calc_ecc is a 104 bit information containing maximum of 8 error
492 	 * offset informations of 13 bits each. calc_ecc is copied into a
493 	 * uint64_t array and error offset indexes are populated in err_idx
494 	 * array
495 	 */
496 	for (i = 0; i < 8; i++) {
497 		if (i == 4) {
498 			err_idx[4] = ((ecc_data[1] & 0x1) << 12) | ecc_data[0];
499 			ecc_data[1] >>= 1;
500 			continue;
501 		}
502 		err_idx[i] = (ecc_data[i/4] & 0x1FFF);
503 		ecc_data[i/4] >>= 13;
504 	}
505 
506 	num_err = (readl(&regs->bank_regs[bank].sts) >> 10) & 0xF;
507 
508 	if (num_err == 0xF)
509 		return -EBADMSG;
510 
511 	i = 0;
512 	while (num_err--) {
513 		change_bit(0, (unsigned long *)&err_idx[i]);
514 		change_bit(1, (unsigned long *)&err_idx[i]);
515 
516 		if (err_idx[i] <= 512 * 8) {
517 			change_bit(err_idx[i], (unsigned long *)dat);
518 			i++;
519 		}
520 	}
521 	return i;
522 }
523 
524 /*
525  * fsmc_nand_probe - Probe function
526  * @pdev:       platform device structure
527  */
fsmc_nand_probe(struct platform_device * pdev)528 static int __init fsmc_nand_probe(struct platform_device *pdev)
529 {
530 	struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
531 	struct fsmc_nand_data *host;
532 	struct mtd_info *mtd;
533 	struct nand_chip *nand;
534 	struct fsmc_regs *regs;
535 	struct resource *res;
536 	int ret = 0;
537 	u32 pid;
538 	int i;
539 
540 	if (!pdata) {
541 		dev_err(&pdev->dev, "platform data is NULL\n");
542 		return -EINVAL;
543 	}
544 
545 	/* Allocate memory for the device structure (and zero it) */
546 	host = kzalloc(sizeof(*host), GFP_KERNEL);
547 	if (!host) {
548 		dev_err(&pdev->dev, "failed to allocate device structure\n");
549 		return -ENOMEM;
550 	}
551 
552 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
553 	if (!res) {
554 		ret = -EIO;
555 		goto err_probe1;
556 	}
557 
558 	host->resdata = request_mem_region(res->start, resource_size(res),
559 			pdev->name);
560 	if (!host->resdata) {
561 		ret = -EIO;
562 		goto err_probe1;
563 	}
564 
565 	host->data_va = ioremap(res->start, resource_size(res));
566 	if (!host->data_va) {
567 		ret = -EIO;
568 		goto err_probe1;
569 	}
570 
571 	host->resaddr = request_mem_region(res->start + PLAT_NAND_ALE,
572 			resource_size(res), pdev->name);
573 	if (!host->resaddr) {
574 		ret = -EIO;
575 		goto err_probe1;
576 	}
577 
578 	host->addr_va = ioremap(res->start + PLAT_NAND_ALE, resource_size(res));
579 	if (!host->addr_va) {
580 		ret = -EIO;
581 		goto err_probe1;
582 	}
583 
584 	host->rescmd = request_mem_region(res->start + PLAT_NAND_CLE,
585 			resource_size(res), pdev->name);
586 	if (!host->rescmd) {
587 		ret = -EIO;
588 		goto err_probe1;
589 	}
590 
591 	host->cmd_va = ioremap(res->start + PLAT_NAND_CLE, resource_size(res));
592 	if (!host->cmd_va) {
593 		ret = -EIO;
594 		goto err_probe1;
595 	}
596 
597 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
598 	if (!res) {
599 		ret = -EIO;
600 		goto err_probe1;
601 	}
602 
603 	host->resregs = request_mem_region(res->start, resource_size(res),
604 			pdev->name);
605 	if (!host->resregs) {
606 		ret = -EIO;
607 		goto err_probe1;
608 	}
609 
610 	host->regs_va = ioremap(res->start, resource_size(res));
611 	if (!host->regs_va) {
612 		ret = -EIO;
613 		goto err_probe1;
614 	}
615 
616 	host->clk = clk_get(&pdev->dev, NULL);
617 	if (IS_ERR(host->clk)) {
618 		dev_err(&pdev->dev, "failed to fetch block clock\n");
619 		ret = PTR_ERR(host->clk);
620 		host->clk = NULL;
621 		goto err_probe1;
622 	}
623 
624 	ret = clk_enable(host->clk);
625 	if (ret)
626 		goto err_probe1;
627 
628 	/*
629 	 * This device ID is actually a common AMBA ID as used on the
630 	 * AMBA PrimeCell bus. However it is not a PrimeCell.
631 	 */
632 	for (pid = 0, i = 0; i < 4; i++)
633 		pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8);
634 	host->pid = pid;
635 	dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, "
636 		 "revision %02x, config %02x\n",
637 		 AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
638 		 AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
639 
640 	host->bank = pdata->bank;
641 	host->select_chip = pdata->select_bank;
642 	regs = host->regs_va;
643 
644 	/* Link all private pointers */
645 	mtd = &host->mtd;
646 	nand = &host->nand;
647 	mtd->priv = nand;
648 	nand->priv = host;
649 
650 	host->mtd.owner = THIS_MODULE;
651 	nand->IO_ADDR_R = host->data_va;
652 	nand->IO_ADDR_W = host->data_va;
653 	nand->cmd_ctrl = fsmc_cmd_ctrl;
654 	nand->chip_delay = 30;
655 
656 	nand->ecc.mode = NAND_ECC_HW;
657 	nand->ecc.hwctl = fsmc_enable_hwecc;
658 	nand->ecc.size = 512;
659 	nand->options = pdata->options;
660 	nand->select_chip = fsmc_select_chip;
661 
662 	if (pdata->width == FSMC_NAND_BW16)
663 		nand->options |= NAND_BUSWIDTH_16;
664 
665 	fsmc_nand_setup(regs, host->bank, nand->options & NAND_BUSWIDTH_16);
666 
667 	if (AMBA_REV_BITS(host->pid) >= 8) {
668 		nand->ecc.read_page = fsmc_read_page_hwecc;
669 		nand->ecc.calculate = fsmc_read_hwecc_ecc4;
670 		nand->ecc.correct = fsmc_correct_data;
671 		nand->ecc.bytes = 13;
672 	} else {
673 		nand->ecc.calculate = fsmc_read_hwecc_ecc1;
674 		nand->ecc.correct = nand_correct_data;
675 		nand->ecc.bytes = 3;
676 	}
677 
678 	/*
679 	 * Scan to find existence of the device
680 	 */
681 	if (nand_scan_ident(&host->mtd, 1, NULL)) {
682 		ret = -ENXIO;
683 		dev_err(&pdev->dev, "No NAND Device found!\n");
684 		goto err_probe;
685 	}
686 
687 	if (AMBA_REV_BITS(host->pid) >= 8) {
688 		if (host->mtd.writesize == 512) {
689 			nand->ecc.layout = &fsmc_ecc4_sp_layout;
690 			host->ecc_place = &fsmc_ecc4_sp_place;
691 		} else {
692 			nand->ecc.layout = &fsmc_ecc4_lp_layout;
693 			host->ecc_place = &fsmc_ecc4_lp_place;
694 		}
695 	} else {
696 		nand->ecc.layout = &fsmc_ecc1_layout;
697 	}
698 
699 	/* Second stage of scan to fill MTD data-structures */
700 	if (nand_scan_tail(&host->mtd)) {
701 		ret = -ENXIO;
702 		goto err_probe;
703 	}
704 
705 	/*
706 	 * The partition information can is accessed by (in the same precedence)
707 	 *
708 	 * command line through Bootloader,
709 	 * platform data,
710 	 * default partition information present in driver.
711 	 */
712 	/*
713 	 * Check for partition info passed
714 	 */
715 	host->mtd.name = "nand";
716 	ret = mtd_device_parse_register(&host->mtd, NULL, 0,
717 			host->mtd.size <= 0x04000000 ?
718 				partition_info_16KB_blk :
719 				partition_info_128KB_blk,
720 			host->mtd.size <= 0x04000000 ?
721 				ARRAY_SIZE(partition_info_16KB_blk) :
722 				ARRAY_SIZE(partition_info_128KB_blk));
723 	if (ret)
724 		goto err_probe;
725 
726 	platform_set_drvdata(pdev, host);
727 	dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
728 	return 0;
729 
730 err_probe:
731 	clk_disable(host->clk);
732 err_probe1:
733 	if (host->clk)
734 		clk_put(host->clk);
735 	if (host->regs_va)
736 		iounmap(host->regs_va);
737 	if (host->resregs)
738 		release_mem_region(host->resregs->start,
739 				resource_size(host->resregs));
740 	if (host->cmd_va)
741 		iounmap(host->cmd_va);
742 	if (host->rescmd)
743 		release_mem_region(host->rescmd->start,
744 				resource_size(host->rescmd));
745 	if (host->addr_va)
746 		iounmap(host->addr_va);
747 	if (host->resaddr)
748 		release_mem_region(host->resaddr->start,
749 				resource_size(host->resaddr));
750 	if (host->data_va)
751 		iounmap(host->data_va);
752 	if (host->resdata)
753 		release_mem_region(host->resdata->start,
754 				resource_size(host->resdata));
755 
756 	kfree(host);
757 	return ret;
758 }
759 
760 /*
761  * Clean up routine
762  */
fsmc_nand_remove(struct platform_device * pdev)763 static int fsmc_nand_remove(struct platform_device *pdev)
764 {
765 	struct fsmc_nand_data *host = platform_get_drvdata(pdev);
766 
767 	platform_set_drvdata(pdev, NULL);
768 
769 	if (host) {
770 		nand_release(&host->mtd);
771 		clk_disable(host->clk);
772 		clk_put(host->clk);
773 
774 		iounmap(host->regs_va);
775 		release_mem_region(host->resregs->start,
776 				resource_size(host->resregs));
777 		iounmap(host->cmd_va);
778 		release_mem_region(host->rescmd->start,
779 				resource_size(host->rescmd));
780 		iounmap(host->addr_va);
781 		release_mem_region(host->resaddr->start,
782 				resource_size(host->resaddr));
783 		iounmap(host->data_va);
784 		release_mem_region(host->resdata->start,
785 				resource_size(host->resdata));
786 
787 		kfree(host);
788 	}
789 	return 0;
790 }
791 
792 #ifdef CONFIG_PM
fsmc_nand_suspend(struct device * dev)793 static int fsmc_nand_suspend(struct device *dev)
794 {
795 	struct fsmc_nand_data *host = dev_get_drvdata(dev);
796 	if (host)
797 		clk_disable(host->clk);
798 	return 0;
799 }
800 
fsmc_nand_resume(struct device * dev)801 static int fsmc_nand_resume(struct device *dev)
802 {
803 	struct fsmc_nand_data *host = dev_get_drvdata(dev);
804 	if (host)
805 		clk_enable(host->clk);
806 	return 0;
807 }
808 
809 static const struct dev_pm_ops fsmc_nand_pm_ops = {
810 	.suspend = fsmc_nand_suspend,
811 	.resume = fsmc_nand_resume,
812 };
813 #endif
814 
815 static struct platform_driver fsmc_nand_driver = {
816 	.remove = fsmc_nand_remove,
817 	.driver = {
818 		.owner = THIS_MODULE,
819 		.name = "fsmc-nand",
820 #ifdef CONFIG_PM
821 		.pm = &fsmc_nand_pm_ops,
822 #endif
823 	},
824 };
825 
fsmc_nand_init(void)826 static int __init fsmc_nand_init(void)
827 {
828 	return platform_driver_probe(&fsmc_nand_driver,
829 				     fsmc_nand_probe);
830 }
831 module_init(fsmc_nand_init);
832 
fsmc_nand_exit(void)833 static void __exit fsmc_nand_exit(void)
834 {
835 	platform_driver_unregister(&fsmc_nand_driver);
836 }
837 module_exit(fsmc_nand_exit);
838 
839 MODULE_LICENSE("GPL");
840 MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
841 MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");
842