1 /*
2  * drivers/mtd/nand/diskonchip.c
3  *
4  * (C) 2003 Red Hat, Inc.
5  * (C) 2004 Dan Brown <dan_brown@ieee.org>
6  * (C) 2004 Kalev Lember <kalev@smartlink.ee>
7  *
8  * Author: David Woodhouse <dwmw2@infradead.org>
9  * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
10  * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
11  *
12  * Error correction code lifted from the old docecc code
13  * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
14  * Copyright (C) 2000 Netgem S.A.
15  * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
16  *
17  * Interface to generic NAND code for M-Systems DiskOnChip devices
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/sched.h>
23 #include <linux/delay.h>
24 #include <linux/rslib.h>
25 #include <linux/moduleparam.h>
26 #include <linux/slab.h>
27 #include <asm/io.h>
28 
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/nand.h>
31 #include <linux/mtd/doc2000.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/mtd/inftl.h>
34 #include <linux/module.h>
35 
36 /* Where to look for the devices? */
37 #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
38 #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
39 #endif
40 
41 static unsigned long __initdata doc_locations[] = {
42 #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
43 #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
44 	0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
45 	0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
46 	0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
47 	0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
48 	0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
49 #else /*  CONFIG_MTD_DOCPROBE_HIGH */
50 	0xc8000, 0xca000, 0xcc000, 0xce000,
51 	0xd0000, 0xd2000, 0xd4000, 0xd6000,
52 	0xd8000, 0xda000, 0xdc000, 0xde000,
53 	0xe0000, 0xe2000, 0xe4000, 0xe6000,
54 	0xe8000, 0xea000, 0xec000, 0xee000,
55 #endif /*  CONFIG_MTD_DOCPROBE_HIGH */
56 #else
57 #warning Unknown architecture for DiskOnChip. No default probe locations defined
58 #endif
59 	0xffffffff };
60 
61 static struct mtd_info *doclist = NULL;
62 
63 struct doc_priv {
64 	void __iomem *virtadr;
65 	unsigned long physadr;
66 	u_char ChipID;
67 	u_char CDSNControl;
68 	int chips_per_floor;	/* The number of chips detected on each floor */
69 	int curfloor;
70 	int curchip;
71 	int mh0_page;
72 	int mh1_page;
73 	struct mtd_info *nextdoc;
74 };
75 
76 /* This is the syndrome computed by the HW ecc generator upon reading an empty
77    page, one with all 0xff for data and stored ecc code. */
78 static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
79 
80 /* This is the ecc value computed by the HW ecc generator upon writing an empty
81    page, one with all 0xff for data. */
82 static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
83 
84 #define INFTL_BBT_RESERVED_BLOCKS 4
85 
86 #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
87 #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
88 #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
89 
90 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
91 			      unsigned int bitmask);
92 static void doc200x_select_chip(struct mtd_info *mtd, int chip);
93 
94 static int debug = 0;
95 module_param(debug, int, 0);
96 
97 static int try_dword = 1;
98 module_param(try_dword, int, 0);
99 
100 static int no_ecc_failures = 0;
101 module_param(no_ecc_failures, int, 0);
102 
103 static int no_autopart = 0;
104 module_param(no_autopart, int, 0);
105 
106 static int show_firmware_partition = 0;
107 module_param(show_firmware_partition, int, 0);
108 
109 #ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
110 static int inftl_bbt_write = 1;
111 #else
112 static int inftl_bbt_write = 0;
113 #endif
114 module_param(inftl_bbt_write, int, 0);
115 
116 static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
117 module_param(doc_config_location, ulong, 0);
118 MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
119 
120 /* Sector size for HW ECC */
121 #define SECTOR_SIZE 512
122 /* The sector bytes are packed into NB_DATA 10 bit words */
123 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
124 /* Number of roots */
125 #define NROOTS 4
126 /* First consective root */
127 #define FCR 510
128 /* Number of symbols */
129 #define NN 1023
130 
131 /* the Reed Solomon control structure */
132 static struct rs_control *rs_decoder;
133 
134 /*
135  * The HW decoder in the DoC ASIC's provides us a error syndrome,
136  * which we must convert to a standard syndrome usable by the generic
137  * Reed-Solomon library code.
138  *
139  * Fabrice Bellard figured this out in the old docecc code. I added
140  * some comments, improved a minor bit and converted it to make use
141  * of the generic Reed-Solomon library. tglx
142  */
doc_ecc_decode(struct rs_control * rs,uint8_t * data,uint8_t * ecc)143 static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
144 {
145 	int i, j, nerr, errpos[8];
146 	uint8_t parity;
147 	uint16_t ds[4], s[5], tmp, errval[8], syn[4];
148 
149 	memset(syn, 0, sizeof(syn));
150 	/* Convert the ecc bytes into words */
151 	ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
152 	ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
153 	ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
154 	ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
155 	parity = ecc[1];
156 
157 	/* Initialize the syndrome buffer */
158 	for (i = 0; i < NROOTS; i++)
159 		s[i] = ds[0];
160 	/*
161 	 *  Evaluate
162 	 *  s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
163 	 *  where x = alpha^(FCR + i)
164 	 */
165 	for (j = 1; j < NROOTS; j++) {
166 		if (ds[j] == 0)
167 			continue;
168 		tmp = rs->index_of[ds[j]];
169 		for (i = 0; i < NROOTS; i++)
170 			s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
171 	}
172 
173 	/* Calc syn[i] = s[i] / alpha^(v + i) */
174 	for (i = 0; i < NROOTS; i++) {
175 		if (s[i])
176 			syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
177 	}
178 	/* Call the decoder library */
179 	nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
180 
181 	/* Incorrectable errors ? */
182 	if (nerr < 0)
183 		return nerr;
184 
185 	/*
186 	 * Correct the errors. The bitpositions are a bit of magic,
187 	 * but they are given by the design of the de/encoder circuit
188 	 * in the DoC ASIC's.
189 	 */
190 	for (i = 0; i < nerr; i++) {
191 		int index, bitpos, pos = 1015 - errpos[i];
192 		uint8_t val;
193 		if (pos >= NB_DATA && pos < 1019)
194 			continue;
195 		if (pos < NB_DATA) {
196 			/* extract bit position (MSB first) */
197 			pos = 10 * (NB_DATA - 1 - pos) - 6;
198 			/* now correct the following 10 bits. At most two bytes
199 			   can be modified since pos is even */
200 			index = (pos >> 3) ^ 1;
201 			bitpos = pos & 7;
202 			if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
203 				val = (uint8_t) (errval[i] >> (2 + bitpos));
204 				parity ^= val;
205 				if (index < SECTOR_SIZE)
206 					data[index] ^= val;
207 			}
208 			index = ((pos >> 3) + 1) ^ 1;
209 			bitpos = (bitpos + 10) & 7;
210 			if (bitpos == 0)
211 				bitpos = 8;
212 			if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
213 				val = (uint8_t) (errval[i] << (8 - bitpos));
214 				parity ^= val;
215 				if (index < SECTOR_SIZE)
216 					data[index] ^= val;
217 			}
218 		}
219 	}
220 	/* If the parity is wrong, no rescue possible */
221 	return parity ? -EBADMSG : nerr;
222 }
223 
DoC_Delay(struct doc_priv * doc,unsigned short cycles)224 static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
225 {
226 	volatile char dummy;
227 	int i;
228 
229 	for (i = 0; i < cycles; i++) {
230 		if (DoC_is_Millennium(doc))
231 			dummy = ReadDOC(doc->virtadr, NOP);
232 		else if (DoC_is_MillenniumPlus(doc))
233 			dummy = ReadDOC(doc->virtadr, Mplus_NOP);
234 		else
235 			dummy = ReadDOC(doc->virtadr, DOCStatus);
236 	}
237 
238 }
239 
240 #define CDSN_CTRL_FR_B_MASK	(CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
241 
242 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
_DoC_WaitReady(struct doc_priv * doc)243 static int _DoC_WaitReady(struct doc_priv *doc)
244 {
245 	void __iomem *docptr = doc->virtadr;
246 	unsigned long timeo = jiffies + (HZ * 10);
247 
248 	if (debug)
249 		printk("_DoC_WaitReady...\n");
250 	/* Out-of-line routine to wait for chip response */
251 	if (DoC_is_MillenniumPlus(doc)) {
252 		while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
253 			if (time_after(jiffies, timeo)) {
254 				printk("_DoC_WaitReady timed out.\n");
255 				return -EIO;
256 			}
257 			udelay(1);
258 			cond_resched();
259 		}
260 	} else {
261 		while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
262 			if (time_after(jiffies, timeo)) {
263 				printk("_DoC_WaitReady timed out.\n");
264 				return -EIO;
265 			}
266 			udelay(1);
267 			cond_resched();
268 		}
269 	}
270 
271 	return 0;
272 }
273 
DoC_WaitReady(struct doc_priv * doc)274 static inline int DoC_WaitReady(struct doc_priv *doc)
275 {
276 	void __iomem *docptr = doc->virtadr;
277 	int ret = 0;
278 
279 	if (DoC_is_MillenniumPlus(doc)) {
280 		DoC_Delay(doc, 4);
281 
282 		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
283 			/* Call the out-of-line routine to wait */
284 			ret = _DoC_WaitReady(doc);
285 	} else {
286 		DoC_Delay(doc, 4);
287 
288 		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
289 			/* Call the out-of-line routine to wait */
290 			ret = _DoC_WaitReady(doc);
291 		DoC_Delay(doc, 2);
292 	}
293 
294 	if (debug)
295 		printk("DoC_WaitReady OK\n");
296 	return ret;
297 }
298 
doc2000_write_byte(struct mtd_info * mtd,u_char datum)299 static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
300 {
301 	struct nand_chip *this = mtd->priv;
302 	struct doc_priv *doc = this->priv;
303 	void __iomem *docptr = doc->virtadr;
304 
305 	if (debug)
306 		printk("write_byte %02x\n", datum);
307 	WriteDOC(datum, docptr, CDSNSlowIO);
308 	WriteDOC(datum, docptr, 2k_CDSN_IO);
309 }
310 
doc2000_read_byte(struct mtd_info * mtd)311 static u_char doc2000_read_byte(struct mtd_info *mtd)
312 {
313 	struct nand_chip *this = mtd->priv;
314 	struct doc_priv *doc = this->priv;
315 	void __iomem *docptr = doc->virtadr;
316 	u_char ret;
317 
318 	ReadDOC(docptr, CDSNSlowIO);
319 	DoC_Delay(doc, 2);
320 	ret = ReadDOC(docptr, 2k_CDSN_IO);
321 	if (debug)
322 		printk("read_byte returns %02x\n", ret);
323 	return ret;
324 }
325 
doc2000_writebuf(struct mtd_info * mtd,const u_char * buf,int len)326 static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
327 {
328 	struct nand_chip *this = mtd->priv;
329 	struct doc_priv *doc = this->priv;
330 	void __iomem *docptr = doc->virtadr;
331 	int i;
332 	if (debug)
333 		printk("writebuf of %d bytes: ", len);
334 	for (i = 0; i < len; i++) {
335 		WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
336 		if (debug && i < 16)
337 			printk("%02x ", buf[i]);
338 	}
339 	if (debug)
340 		printk("\n");
341 }
342 
doc2000_readbuf(struct mtd_info * mtd,u_char * buf,int len)343 static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len)
344 {
345 	struct nand_chip *this = mtd->priv;
346 	struct doc_priv *doc = this->priv;
347 	void __iomem *docptr = doc->virtadr;
348 	int i;
349 
350 	if (debug)
351 		printk("readbuf of %d bytes: ", len);
352 
353 	for (i = 0; i < len; i++) {
354 		buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
355 	}
356 }
357 
doc2000_readbuf_dword(struct mtd_info * mtd,u_char * buf,int len)358 static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len)
359 {
360 	struct nand_chip *this = mtd->priv;
361 	struct doc_priv *doc = this->priv;
362 	void __iomem *docptr = doc->virtadr;
363 	int i;
364 
365 	if (debug)
366 		printk("readbuf_dword of %d bytes: ", len);
367 
368 	if (unlikely((((unsigned long)buf) | len) & 3)) {
369 		for (i = 0; i < len; i++) {
370 			*(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
371 		}
372 	} else {
373 		for (i = 0; i < len; i += 4) {
374 			*(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
375 		}
376 	}
377 }
378 
doc2000_verifybuf(struct mtd_info * mtd,const u_char * buf,int len)379 static int doc2000_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
380 {
381 	struct nand_chip *this = mtd->priv;
382 	struct doc_priv *doc = this->priv;
383 	void __iomem *docptr = doc->virtadr;
384 	int i;
385 
386 	for (i = 0; i < len; i++)
387 		if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO))
388 			return -EFAULT;
389 	return 0;
390 }
391 
doc200x_ident_chip(struct mtd_info * mtd,int nr)392 static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
393 {
394 	struct nand_chip *this = mtd->priv;
395 	struct doc_priv *doc = this->priv;
396 	uint16_t ret;
397 
398 	doc200x_select_chip(mtd, nr);
399 	doc200x_hwcontrol(mtd, NAND_CMD_READID,
400 			  NAND_CTRL_CLE | NAND_CTRL_CHANGE);
401 	doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
402 	doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
403 
404 	/* We can't use dev_ready here, but at least we wait for the
405 	 * command to complete
406 	 */
407 	udelay(50);
408 
409 	ret = this->read_byte(mtd) << 8;
410 	ret |= this->read_byte(mtd);
411 
412 	if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
413 		/* First chip probe. See if we get same results by 32-bit access */
414 		union {
415 			uint32_t dword;
416 			uint8_t byte[4];
417 		} ident;
418 		void __iomem *docptr = doc->virtadr;
419 
420 		doc200x_hwcontrol(mtd, NAND_CMD_READID,
421 				  NAND_CTRL_CLE | NAND_CTRL_CHANGE);
422 		doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
423 		doc200x_hwcontrol(mtd, NAND_CMD_NONE,
424 				  NAND_NCE | NAND_CTRL_CHANGE);
425 
426 		udelay(50);
427 
428 		ident.dword = readl(docptr + DoC_2k_CDSN_IO);
429 		if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
430 			printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
431 			this->read_buf = &doc2000_readbuf_dword;
432 		}
433 	}
434 
435 	return ret;
436 }
437 
doc2000_count_chips(struct mtd_info * mtd)438 static void __init doc2000_count_chips(struct mtd_info *mtd)
439 {
440 	struct nand_chip *this = mtd->priv;
441 	struct doc_priv *doc = this->priv;
442 	uint16_t mfrid;
443 	int i;
444 
445 	/* Max 4 chips per floor on DiskOnChip 2000 */
446 	doc->chips_per_floor = 4;
447 
448 	/* Find out what the first chip is */
449 	mfrid = doc200x_ident_chip(mtd, 0);
450 
451 	/* Find how many chips in each floor. */
452 	for (i = 1; i < 4; i++) {
453 		if (doc200x_ident_chip(mtd, i) != mfrid)
454 			break;
455 	}
456 	doc->chips_per_floor = i;
457 	printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
458 }
459 
doc200x_wait(struct mtd_info * mtd,struct nand_chip * this)460 static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this)
461 {
462 	struct doc_priv *doc = this->priv;
463 
464 	int status;
465 
466 	DoC_WaitReady(doc);
467 	this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
468 	DoC_WaitReady(doc);
469 	status = (int)this->read_byte(mtd);
470 
471 	return status;
472 }
473 
doc2001_write_byte(struct mtd_info * mtd,u_char datum)474 static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
475 {
476 	struct nand_chip *this = mtd->priv;
477 	struct doc_priv *doc = this->priv;
478 	void __iomem *docptr = doc->virtadr;
479 
480 	WriteDOC(datum, docptr, CDSNSlowIO);
481 	WriteDOC(datum, docptr, Mil_CDSN_IO);
482 	WriteDOC(datum, docptr, WritePipeTerm);
483 }
484 
doc2001_read_byte(struct mtd_info * mtd)485 static u_char doc2001_read_byte(struct mtd_info *mtd)
486 {
487 	struct nand_chip *this = mtd->priv;
488 	struct doc_priv *doc = this->priv;
489 	void __iomem *docptr = doc->virtadr;
490 
491 	//ReadDOC(docptr, CDSNSlowIO);
492 	/* 11.4.5 -- delay twice to allow extended length cycle */
493 	DoC_Delay(doc, 2);
494 	ReadDOC(docptr, ReadPipeInit);
495 	//return ReadDOC(docptr, Mil_CDSN_IO);
496 	return ReadDOC(docptr, LastDataRead);
497 }
498 
doc2001_writebuf(struct mtd_info * mtd,const u_char * buf,int len)499 static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
500 {
501 	struct nand_chip *this = mtd->priv;
502 	struct doc_priv *doc = this->priv;
503 	void __iomem *docptr = doc->virtadr;
504 	int i;
505 
506 	for (i = 0; i < len; i++)
507 		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
508 	/* Terminate write pipeline */
509 	WriteDOC(0x00, docptr, WritePipeTerm);
510 }
511 
doc2001_readbuf(struct mtd_info * mtd,u_char * buf,int len)512 static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len)
513 {
514 	struct nand_chip *this = mtd->priv;
515 	struct doc_priv *doc = this->priv;
516 	void __iomem *docptr = doc->virtadr;
517 	int i;
518 
519 	/* Start read pipeline */
520 	ReadDOC(docptr, ReadPipeInit);
521 
522 	for (i = 0; i < len - 1; i++)
523 		buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
524 
525 	/* Terminate read pipeline */
526 	buf[i] = ReadDOC(docptr, LastDataRead);
527 }
528 
doc2001_verifybuf(struct mtd_info * mtd,const u_char * buf,int len)529 static int doc2001_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
530 {
531 	struct nand_chip *this = mtd->priv;
532 	struct doc_priv *doc = this->priv;
533 	void __iomem *docptr = doc->virtadr;
534 	int i;
535 
536 	/* Start read pipeline */
537 	ReadDOC(docptr, ReadPipeInit);
538 
539 	for (i = 0; i < len - 1; i++)
540 		if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
541 			ReadDOC(docptr, LastDataRead);
542 			return i;
543 		}
544 	if (buf[i] != ReadDOC(docptr, LastDataRead))
545 		return i;
546 	return 0;
547 }
548 
doc2001plus_read_byte(struct mtd_info * mtd)549 static u_char doc2001plus_read_byte(struct mtd_info *mtd)
550 {
551 	struct nand_chip *this = mtd->priv;
552 	struct doc_priv *doc = this->priv;
553 	void __iomem *docptr = doc->virtadr;
554 	u_char ret;
555 
556 	ReadDOC(docptr, Mplus_ReadPipeInit);
557 	ReadDOC(docptr, Mplus_ReadPipeInit);
558 	ret = ReadDOC(docptr, Mplus_LastDataRead);
559 	if (debug)
560 		printk("read_byte returns %02x\n", ret);
561 	return ret;
562 }
563 
doc2001plus_writebuf(struct mtd_info * mtd,const u_char * buf,int len)564 static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
565 {
566 	struct nand_chip *this = mtd->priv;
567 	struct doc_priv *doc = this->priv;
568 	void __iomem *docptr = doc->virtadr;
569 	int i;
570 
571 	if (debug)
572 		printk("writebuf of %d bytes: ", len);
573 	for (i = 0; i < len; i++) {
574 		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
575 		if (debug && i < 16)
576 			printk("%02x ", buf[i]);
577 	}
578 	if (debug)
579 		printk("\n");
580 }
581 
doc2001plus_readbuf(struct mtd_info * mtd,u_char * buf,int len)582 static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len)
583 {
584 	struct nand_chip *this = mtd->priv;
585 	struct doc_priv *doc = this->priv;
586 	void __iomem *docptr = doc->virtadr;
587 	int i;
588 
589 	if (debug)
590 		printk("readbuf of %d bytes: ", len);
591 
592 	/* Start read pipeline */
593 	ReadDOC(docptr, Mplus_ReadPipeInit);
594 	ReadDOC(docptr, Mplus_ReadPipeInit);
595 
596 	for (i = 0; i < len - 2; i++) {
597 		buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
598 		if (debug && i < 16)
599 			printk("%02x ", buf[i]);
600 	}
601 
602 	/* Terminate read pipeline */
603 	buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
604 	if (debug && i < 16)
605 		printk("%02x ", buf[len - 2]);
606 	buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
607 	if (debug && i < 16)
608 		printk("%02x ", buf[len - 1]);
609 	if (debug)
610 		printk("\n");
611 }
612 
doc2001plus_verifybuf(struct mtd_info * mtd,const u_char * buf,int len)613 static int doc2001plus_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
614 {
615 	struct nand_chip *this = mtd->priv;
616 	struct doc_priv *doc = this->priv;
617 	void __iomem *docptr = doc->virtadr;
618 	int i;
619 
620 	if (debug)
621 		printk("verifybuf of %d bytes: ", len);
622 
623 	/* Start read pipeline */
624 	ReadDOC(docptr, Mplus_ReadPipeInit);
625 	ReadDOC(docptr, Mplus_ReadPipeInit);
626 
627 	for (i = 0; i < len - 2; i++)
628 		if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
629 			ReadDOC(docptr, Mplus_LastDataRead);
630 			ReadDOC(docptr, Mplus_LastDataRead);
631 			return i;
632 		}
633 	if (buf[len - 2] != ReadDOC(docptr, Mplus_LastDataRead))
634 		return len - 2;
635 	if (buf[len - 1] != ReadDOC(docptr, Mplus_LastDataRead))
636 		return len - 1;
637 	return 0;
638 }
639 
doc2001plus_select_chip(struct mtd_info * mtd,int chip)640 static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
641 {
642 	struct nand_chip *this = mtd->priv;
643 	struct doc_priv *doc = this->priv;
644 	void __iomem *docptr = doc->virtadr;
645 	int floor = 0;
646 
647 	if (debug)
648 		printk("select chip (%d)\n", chip);
649 
650 	if (chip == -1) {
651 		/* Disable flash internally */
652 		WriteDOC(0, docptr, Mplus_FlashSelect);
653 		return;
654 	}
655 
656 	floor = chip / doc->chips_per_floor;
657 	chip -= (floor * doc->chips_per_floor);
658 
659 	/* Assert ChipEnable and deassert WriteProtect */
660 	WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
661 	this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
662 
663 	doc->curchip = chip;
664 	doc->curfloor = floor;
665 }
666 
doc200x_select_chip(struct mtd_info * mtd,int chip)667 static void doc200x_select_chip(struct mtd_info *mtd, int chip)
668 {
669 	struct nand_chip *this = mtd->priv;
670 	struct doc_priv *doc = this->priv;
671 	void __iomem *docptr = doc->virtadr;
672 	int floor = 0;
673 
674 	if (debug)
675 		printk("select chip (%d)\n", chip);
676 
677 	if (chip == -1)
678 		return;
679 
680 	floor = chip / doc->chips_per_floor;
681 	chip -= (floor * doc->chips_per_floor);
682 
683 	/* 11.4.4 -- deassert CE before changing chip */
684 	doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
685 
686 	WriteDOC(floor, docptr, FloorSelect);
687 	WriteDOC(chip, docptr, CDSNDeviceSelect);
688 
689 	doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
690 
691 	doc->curchip = chip;
692 	doc->curfloor = floor;
693 }
694 
695 #define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
696 
doc200x_hwcontrol(struct mtd_info * mtd,int cmd,unsigned int ctrl)697 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
698 			      unsigned int ctrl)
699 {
700 	struct nand_chip *this = mtd->priv;
701 	struct doc_priv *doc = this->priv;
702 	void __iomem *docptr = doc->virtadr;
703 
704 	if (ctrl & NAND_CTRL_CHANGE) {
705 		doc->CDSNControl &= ~CDSN_CTRL_MSK;
706 		doc->CDSNControl |= ctrl & CDSN_CTRL_MSK;
707 		if (debug)
708 			printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
709 		WriteDOC(doc->CDSNControl, docptr, CDSNControl);
710 		/* 11.4.3 -- 4 NOPs after CSDNControl write */
711 		DoC_Delay(doc, 4);
712 	}
713 	if (cmd != NAND_CMD_NONE) {
714 		if (DoC_is_2000(doc))
715 			doc2000_write_byte(mtd, cmd);
716 		else
717 			doc2001_write_byte(mtd, cmd);
718 	}
719 }
720 
doc2001plus_command(struct mtd_info * mtd,unsigned command,int column,int page_addr)721 static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
722 {
723 	struct nand_chip *this = mtd->priv;
724 	struct doc_priv *doc = this->priv;
725 	void __iomem *docptr = doc->virtadr;
726 
727 	/*
728 	 * Must terminate write pipeline before sending any commands
729 	 * to the device.
730 	 */
731 	if (command == NAND_CMD_PAGEPROG) {
732 		WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
733 		WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
734 	}
735 
736 	/*
737 	 * Write out the command to the device.
738 	 */
739 	if (command == NAND_CMD_SEQIN) {
740 		int readcmd;
741 
742 		if (column >= mtd->writesize) {
743 			/* OOB area */
744 			column -= mtd->writesize;
745 			readcmd = NAND_CMD_READOOB;
746 		} else if (column < 256) {
747 			/* First 256 bytes --> READ0 */
748 			readcmd = NAND_CMD_READ0;
749 		} else {
750 			column -= 256;
751 			readcmd = NAND_CMD_READ1;
752 		}
753 		WriteDOC(readcmd, docptr, Mplus_FlashCmd);
754 	}
755 	WriteDOC(command, docptr, Mplus_FlashCmd);
756 	WriteDOC(0, docptr, Mplus_WritePipeTerm);
757 	WriteDOC(0, docptr, Mplus_WritePipeTerm);
758 
759 	if (column != -1 || page_addr != -1) {
760 		/* Serially input address */
761 		if (column != -1) {
762 			/* Adjust columns for 16 bit buswidth */
763 			if (this->options & NAND_BUSWIDTH_16)
764 				column >>= 1;
765 			WriteDOC(column, docptr, Mplus_FlashAddress);
766 		}
767 		if (page_addr != -1) {
768 			WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
769 			WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
770 			/* One more address cycle for higher density devices */
771 			if (this->chipsize & 0x0c000000) {
772 				WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
773 				printk("high density\n");
774 			}
775 		}
776 		WriteDOC(0, docptr, Mplus_WritePipeTerm);
777 		WriteDOC(0, docptr, Mplus_WritePipeTerm);
778 		/* deassert ALE */
779 		if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
780 		    command == NAND_CMD_READOOB || command == NAND_CMD_READID)
781 			WriteDOC(0, docptr, Mplus_FlashControl);
782 	}
783 
784 	/*
785 	 * program and erase have their own busy handlers
786 	 * status and sequential in needs no delay
787 	 */
788 	switch (command) {
789 
790 	case NAND_CMD_PAGEPROG:
791 	case NAND_CMD_ERASE1:
792 	case NAND_CMD_ERASE2:
793 	case NAND_CMD_SEQIN:
794 	case NAND_CMD_STATUS:
795 		return;
796 
797 	case NAND_CMD_RESET:
798 		if (this->dev_ready)
799 			break;
800 		udelay(this->chip_delay);
801 		WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
802 		WriteDOC(0, docptr, Mplus_WritePipeTerm);
803 		WriteDOC(0, docptr, Mplus_WritePipeTerm);
804 		while (!(this->read_byte(mtd) & 0x40)) ;
805 		return;
806 
807 		/* This applies to read commands */
808 	default:
809 		/*
810 		 * If we don't have access to the busy pin, we apply the given
811 		 * command delay
812 		 */
813 		if (!this->dev_ready) {
814 			udelay(this->chip_delay);
815 			return;
816 		}
817 	}
818 
819 	/* Apply this short delay always to ensure that we do wait tWB in
820 	 * any case on any machine. */
821 	ndelay(100);
822 	/* wait until command is processed */
823 	while (!this->dev_ready(mtd)) ;
824 }
825 
doc200x_dev_ready(struct mtd_info * mtd)826 static int doc200x_dev_ready(struct mtd_info *mtd)
827 {
828 	struct nand_chip *this = mtd->priv;
829 	struct doc_priv *doc = this->priv;
830 	void __iomem *docptr = doc->virtadr;
831 
832 	if (DoC_is_MillenniumPlus(doc)) {
833 		/* 11.4.2 -- must NOP four times before checking FR/B# */
834 		DoC_Delay(doc, 4);
835 		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
836 			if (debug)
837 				printk("not ready\n");
838 			return 0;
839 		}
840 		if (debug)
841 			printk("was ready\n");
842 		return 1;
843 	} else {
844 		/* 11.4.2 -- must NOP four times before checking FR/B# */
845 		DoC_Delay(doc, 4);
846 		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
847 			if (debug)
848 				printk("not ready\n");
849 			return 0;
850 		}
851 		/* 11.4.2 -- Must NOP twice if it's ready */
852 		DoC_Delay(doc, 2);
853 		if (debug)
854 			printk("was ready\n");
855 		return 1;
856 	}
857 }
858 
doc200x_block_bad(struct mtd_info * mtd,loff_t ofs,int getchip)859 static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
860 {
861 	/* This is our last resort if we couldn't find or create a BBT.  Just
862 	   pretend all blocks are good. */
863 	return 0;
864 }
865 
doc200x_enable_hwecc(struct mtd_info * mtd,int mode)866 static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
867 {
868 	struct nand_chip *this = mtd->priv;
869 	struct doc_priv *doc = this->priv;
870 	void __iomem *docptr = doc->virtadr;
871 
872 	/* Prime the ECC engine */
873 	switch (mode) {
874 	case NAND_ECC_READ:
875 		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
876 		WriteDOC(DOC_ECC_EN, docptr, ECCConf);
877 		break;
878 	case NAND_ECC_WRITE:
879 		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
880 		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
881 		break;
882 	}
883 }
884 
doc2001plus_enable_hwecc(struct mtd_info * mtd,int mode)885 static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
886 {
887 	struct nand_chip *this = mtd->priv;
888 	struct doc_priv *doc = this->priv;
889 	void __iomem *docptr = doc->virtadr;
890 
891 	/* Prime the ECC engine */
892 	switch (mode) {
893 	case NAND_ECC_READ:
894 		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
895 		WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
896 		break;
897 	case NAND_ECC_WRITE:
898 		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
899 		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
900 		break;
901 	}
902 }
903 
904 /* This code is only called on write */
doc200x_calculate_ecc(struct mtd_info * mtd,const u_char * dat,unsigned char * ecc_code)905 static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code)
906 {
907 	struct nand_chip *this = mtd->priv;
908 	struct doc_priv *doc = this->priv;
909 	void __iomem *docptr = doc->virtadr;
910 	int i;
911 	int emptymatch = 1;
912 
913 	/* flush the pipeline */
914 	if (DoC_is_2000(doc)) {
915 		WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
916 		WriteDOC(0, docptr, 2k_CDSN_IO);
917 		WriteDOC(0, docptr, 2k_CDSN_IO);
918 		WriteDOC(0, docptr, 2k_CDSN_IO);
919 		WriteDOC(doc->CDSNControl, docptr, CDSNControl);
920 	} else if (DoC_is_MillenniumPlus(doc)) {
921 		WriteDOC(0, docptr, Mplus_NOP);
922 		WriteDOC(0, docptr, Mplus_NOP);
923 		WriteDOC(0, docptr, Mplus_NOP);
924 	} else {
925 		WriteDOC(0, docptr, NOP);
926 		WriteDOC(0, docptr, NOP);
927 		WriteDOC(0, docptr, NOP);
928 	}
929 
930 	for (i = 0; i < 6; i++) {
931 		if (DoC_is_MillenniumPlus(doc))
932 			ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
933 		else
934 			ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
935 		if (ecc_code[i] != empty_write_ecc[i])
936 			emptymatch = 0;
937 	}
938 	if (DoC_is_MillenniumPlus(doc))
939 		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
940 	else
941 		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
942 #if 0
943 	/* If emptymatch=1, we might have an all-0xff data buffer.  Check. */
944 	if (emptymatch) {
945 		/* Note: this somewhat expensive test should not be triggered
946 		   often.  It could be optimized away by examining the data in
947 		   the writebuf routine, and remembering the result. */
948 		for (i = 0; i < 512; i++) {
949 			if (dat[i] == 0xff)
950 				continue;
951 			emptymatch = 0;
952 			break;
953 		}
954 	}
955 	/* If emptymatch still =1, we do have an all-0xff data buffer.
956 	   Return all-0xff ecc value instead of the computed one, so
957 	   it'll look just like a freshly-erased page. */
958 	if (emptymatch)
959 		memset(ecc_code, 0xff, 6);
960 #endif
961 	return 0;
962 }
963 
doc200x_correct_data(struct mtd_info * mtd,u_char * dat,u_char * read_ecc,u_char * isnull)964 static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat,
965 				u_char *read_ecc, u_char *isnull)
966 {
967 	int i, ret = 0;
968 	struct nand_chip *this = mtd->priv;
969 	struct doc_priv *doc = this->priv;
970 	void __iomem *docptr = doc->virtadr;
971 	uint8_t calc_ecc[6];
972 	volatile u_char dummy;
973 	int emptymatch = 1;
974 
975 	/* flush the pipeline */
976 	if (DoC_is_2000(doc)) {
977 		dummy = ReadDOC(docptr, 2k_ECCStatus);
978 		dummy = ReadDOC(docptr, 2k_ECCStatus);
979 		dummy = ReadDOC(docptr, 2k_ECCStatus);
980 	} else if (DoC_is_MillenniumPlus(doc)) {
981 		dummy = ReadDOC(docptr, Mplus_ECCConf);
982 		dummy = ReadDOC(docptr, Mplus_ECCConf);
983 		dummy = ReadDOC(docptr, Mplus_ECCConf);
984 	} else {
985 		dummy = ReadDOC(docptr, ECCConf);
986 		dummy = ReadDOC(docptr, ECCConf);
987 		dummy = ReadDOC(docptr, ECCConf);
988 	}
989 
990 	/* Error occurred ? */
991 	if (dummy & 0x80) {
992 		for (i = 0; i < 6; i++) {
993 			if (DoC_is_MillenniumPlus(doc))
994 				calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
995 			else
996 				calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
997 			if (calc_ecc[i] != empty_read_syndrome[i])
998 				emptymatch = 0;
999 		}
1000 		/* If emptymatch=1, the read syndrome is consistent with an
1001 		   all-0xff data and stored ecc block.  Check the stored ecc. */
1002 		if (emptymatch) {
1003 			for (i = 0; i < 6; i++) {
1004 				if (read_ecc[i] == 0xff)
1005 					continue;
1006 				emptymatch = 0;
1007 				break;
1008 			}
1009 		}
1010 		/* If emptymatch still =1, check the data block. */
1011 		if (emptymatch) {
1012 			/* Note: this somewhat expensive test should not be triggered
1013 			   often.  It could be optimized away by examining the data in
1014 			   the readbuf routine, and remembering the result. */
1015 			for (i = 0; i < 512; i++) {
1016 				if (dat[i] == 0xff)
1017 					continue;
1018 				emptymatch = 0;
1019 				break;
1020 			}
1021 		}
1022 		/* If emptymatch still =1, this is almost certainly a freshly-
1023 		   erased block, in which case the ECC will not come out right.
1024 		   We'll suppress the error and tell the caller everything's
1025 		   OK.  Because it is. */
1026 		if (!emptymatch)
1027 			ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
1028 		if (ret > 0)
1029 			printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
1030 	}
1031 	if (DoC_is_MillenniumPlus(doc))
1032 		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
1033 	else
1034 		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
1035 	if (no_ecc_failures && mtd_is_eccerr(ret)) {
1036 		printk(KERN_ERR "suppressing ECC failure\n");
1037 		ret = 0;
1038 	}
1039 	return ret;
1040 }
1041 
1042 //u_char mydatabuf[528];
1043 
1044 /* The strange out-of-order .oobfree list below is a (possibly unneeded)
1045  * attempt to retain compatibility.  It used to read:
1046  * 	.oobfree = { {8, 8} }
1047  * Since that leaves two bytes unusable, it was changed.  But the following
1048  * scheme might affect existing jffs2 installs by moving the cleanmarker:
1049  * 	.oobfree = { {6, 10} }
1050  * jffs2 seems to handle the above gracefully, but the current scheme seems
1051  * safer.  The only problem with it is that any code that parses oobfree must
1052  * be able to handle out-of-order segments.
1053  */
1054 static struct nand_ecclayout doc200x_oobinfo = {
1055 	.eccbytes = 6,
1056 	.eccpos = {0, 1, 2, 3, 4, 5},
1057 	.oobfree = {{8, 8}, {6, 2}}
1058 };
1059 
1060 /* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1061    On successful return, buf will contain a copy of the media header for
1062    further processing.  id is the string to scan for, and will presumably be
1063    either "ANAND" or "BNAND".  If findmirror=1, also look for the mirror media
1064    header.  The page #s of the found media headers are placed in mh0_page and
1065    mh1_page in the DOC private structure. */
find_media_headers(struct mtd_info * mtd,u_char * buf,const char * id,int findmirror)1066 static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
1067 {
1068 	struct nand_chip *this = mtd->priv;
1069 	struct doc_priv *doc = this->priv;
1070 	unsigned offs;
1071 	int ret;
1072 	size_t retlen;
1073 
1074 	for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
1075 		ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
1076 		if (retlen != mtd->writesize)
1077 			continue;
1078 		if (ret) {
1079 			printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs);
1080 		}
1081 		if (memcmp(buf, id, 6))
1082 			continue;
1083 		printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
1084 		if (doc->mh0_page == -1) {
1085 			doc->mh0_page = offs >> this->page_shift;
1086 			if (!findmirror)
1087 				return 1;
1088 			continue;
1089 		}
1090 		doc->mh1_page = offs >> this->page_shift;
1091 		return 2;
1092 	}
1093 	if (doc->mh0_page == -1) {
1094 		printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
1095 		return 0;
1096 	}
1097 	/* Only one mediaheader was found.  We want buf to contain a
1098 	   mediaheader on return, so we'll have to re-read the one we found. */
1099 	offs = doc->mh0_page << this->page_shift;
1100 	ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
1101 	if (retlen != mtd->writesize) {
1102 		/* Insanity.  Give up. */
1103 		printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
1104 		return 0;
1105 	}
1106 	return 1;
1107 }
1108 
nftl_partscan(struct mtd_info * mtd,struct mtd_partition * parts)1109 static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1110 {
1111 	struct nand_chip *this = mtd->priv;
1112 	struct doc_priv *doc = this->priv;
1113 	int ret = 0;
1114 	u_char *buf;
1115 	struct NFTLMediaHeader *mh;
1116 	const unsigned psize = 1 << this->page_shift;
1117 	int numparts = 0;
1118 	unsigned blocks, maxblocks;
1119 	int offs, numheaders;
1120 
1121 	buf = kmalloc(mtd->writesize, GFP_KERNEL);
1122 	if (!buf) {
1123 		printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1124 		return 0;
1125 	}
1126 	if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
1127 		goto out;
1128 	mh = (struct NFTLMediaHeader *)buf;
1129 
1130 	le16_to_cpus(&mh->NumEraseUnits);
1131 	le16_to_cpus(&mh->FirstPhysicalEUN);
1132 	le32_to_cpus(&mh->FormattedSize);
1133 
1134 	printk(KERN_INFO "    DataOrgID        = %s\n"
1135 			 "    NumEraseUnits    = %d\n"
1136 			 "    FirstPhysicalEUN = %d\n"
1137 			 "    FormattedSize    = %d\n"
1138 			 "    UnitSizeFactor   = %d\n",
1139 		mh->DataOrgID, mh->NumEraseUnits,
1140 		mh->FirstPhysicalEUN, mh->FormattedSize,
1141 		mh->UnitSizeFactor);
1142 
1143 	blocks = mtd->size >> this->phys_erase_shift;
1144 	maxblocks = min(32768U, mtd->erasesize - psize);
1145 
1146 	if (mh->UnitSizeFactor == 0x00) {
1147 		/* Auto-determine UnitSizeFactor.  The constraints are:
1148 		   - There can be at most 32768 virtual blocks.
1149 		   - There can be at most (virtual block size - page size)
1150 		   virtual blocks (because MediaHeader+BBT must fit in 1).
1151 		 */
1152 		mh->UnitSizeFactor = 0xff;
1153 		while (blocks > maxblocks) {
1154 			blocks >>= 1;
1155 			maxblocks = min(32768U, (maxblocks << 1) + psize);
1156 			mh->UnitSizeFactor--;
1157 		}
1158 		printk(KERN_WARNING "UnitSizeFactor=0x00 detected.  Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
1159 	}
1160 
1161 	/* NOTE: The lines below modify internal variables of the NAND and MTD
1162 	   layers; variables with have already been configured by nand_scan.
1163 	   Unfortunately, we didn't know before this point what these values
1164 	   should be.  Thus, this code is somewhat dependent on the exact
1165 	   implementation of the NAND layer.  */
1166 	if (mh->UnitSizeFactor != 0xff) {
1167 		this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
1168 		mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
1169 		printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
1170 		blocks = mtd->size >> this->bbt_erase_shift;
1171 		maxblocks = min(32768U, mtd->erasesize - psize);
1172 	}
1173 
1174 	if (blocks > maxblocks) {
1175 		printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size.  Aborting.\n", mh->UnitSizeFactor);
1176 		goto out;
1177 	}
1178 
1179 	/* Skip past the media headers. */
1180 	offs = max(doc->mh0_page, doc->mh1_page);
1181 	offs <<= this->page_shift;
1182 	offs += mtd->erasesize;
1183 
1184 	if (show_firmware_partition == 1) {
1185 		parts[0].name = " DiskOnChip Firmware / Media Header partition";
1186 		parts[0].offset = 0;
1187 		parts[0].size = offs;
1188 		numparts = 1;
1189 	}
1190 
1191 	parts[numparts].name = " DiskOnChip BDTL partition";
1192 	parts[numparts].offset = offs;
1193 	parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
1194 
1195 	offs += parts[numparts].size;
1196 	numparts++;
1197 
1198 	if (offs < mtd->size) {
1199 		parts[numparts].name = " DiskOnChip Remainder partition";
1200 		parts[numparts].offset = offs;
1201 		parts[numparts].size = mtd->size - offs;
1202 		numparts++;
1203 	}
1204 
1205 	ret = numparts;
1206  out:
1207 	kfree(buf);
1208 	return ret;
1209 }
1210 
1211 /* This is a stripped-down copy of the code in inftlmount.c */
inftl_partscan(struct mtd_info * mtd,struct mtd_partition * parts)1212 static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1213 {
1214 	struct nand_chip *this = mtd->priv;
1215 	struct doc_priv *doc = this->priv;
1216 	int ret = 0;
1217 	u_char *buf;
1218 	struct INFTLMediaHeader *mh;
1219 	struct INFTLPartition *ip;
1220 	int numparts = 0;
1221 	int blocks;
1222 	int vshift, lastvunit = 0;
1223 	int i;
1224 	int end = mtd->size;
1225 
1226 	if (inftl_bbt_write)
1227 		end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
1228 
1229 	buf = kmalloc(mtd->writesize, GFP_KERNEL);
1230 	if (!buf) {
1231 		printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1232 		return 0;
1233 	}
1234 
1235 	if (!find_media_headers(mtd, buf, "BNAND", 0))
1236 		goto out;
1237 	doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
1238 	mh = (struct INFTLMediaHeader *)buf;
1239 
1240 	le32_to_cpus(&mh->NoOfBootImageBlocks);
1241 	le32_to_cpus(&mh->NoOfBinaryPartitions);
1242 	le32_to_cpus(&mh->NoOfBDTLPartitions);
1243 	le32_to_cpus(&mh->BlockMultiplierBits);
1244 	le32_to_cpus(&mh->FormatFlags);
1245 	le32_to_cpus(&mh->PercentUsed);
1246 
1247 	printk(KERN_INFO "    bootRecordID          = %s\n"
1248 			 "    NoOfBootImageBlocks   = %d\n"
1249 			 "    NoOfBinaryPartitions  = %d\n"
1250 			 "    NoOfBDTLPartitions    = %d\n"
1251 			 "    BlockMultiplerBits    = %d\n"
1252 			 "    FormatFlgs            = %d\n"
1253 			 "    OsakVersion           = %d.%d.%d.%d\n"
1254 			 "    PercentUsed           = %d\n",
1255 		mh->bootRecordID, mh->NoOfBootImageBlocks,
1256 		mh->NoOfBinaryPartitions,
1257 		mh->NoOfBDTLPartitions,
1258 		mh->BlockMultiplierBits, mh->FormatFlags,
1259 		((unsigned char *) &mh->OsakVersion)[0] & 0xf,
1260 		((unsigned char *) &mh->OsakVersion)[1] & 0xf,
1261 		((unsigned char *) &mh->OsakVersion)[2] & 0xf,
1262 		((unsigned char *) &mh->OsakVersion)[3] & 0xf,
1263 		mh->PercentUsed);
1264 
1265 	vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
1266 
1267 	blocks = mtd->size >> vshift;
1268 	if (blocks > 32768) {
1269 		printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size.  Aborting.\n", mh->BlockMultiplierBits);
1270 		goto out;
1271 	}
1272 
1273 	blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
1274 	if (inftl_bbt_write && (blocks > mtd->erasesize)) {
1275 		printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported.  FIX ME!\n");
1276 		goto out;
1277 	}
1278 
1279 	/* Scan the partitions */
1280 	for (i = 0; (i < 4); i++) {
1281 		ip = &(mh->Partitions[i]);
1282 		le32_to_cpus(&ip->virtualUnits);
1283 		le32_to_cpus(&ip->firstUnit);
1284 		le32_to_cpus(&ip->lastUnit);
1285 		le32_to_cpus(&ip->flags);
1286 		le32_to_cpus(&ip->spareUnits);
1287 		le32_to_cpus(&ip->Reserved0);
1288 
1289 		printk(KERN_INFO	"    PARTITION[%d] ->\n"
1290 			"        virtualUnits    = %d\n"
1291 			"        firstUnit       = %d\n"
1292 			"        lastUnit        = %d\n"
1293 			"        flags           = 0x%x\n"
1294 			"        spareUnits      = %d\n",
1295 			i, ip->virtualUnits, ip->firstUnit,
1296 			ip->lastUnit, ip->flags,
1297 			ip->spareUnits);
1298 
1299 		if ((show_firmware_partition == 1) &&
1300 		    (i == 0) && (ip->firstUnit > 0)) {
1301 			parts[0].name = " DiskOnChip IPL / Media Header partition";
1302 			parts[0].offset = 0;
1303 			parts[0].size = mtd->erasesize * ip->firstUnit;
1304 			numparts = 1;
1305 		}
1306 
1307 		if (ip->flags & INFTL_BINARY)
1308 			parts[numparts].name = " DiskOnChip BDK partition";
1309 		else
1310 			parts[numparts].name = " DiskOnChip BDTL partition";
1311 		parts[numparts].offset = ip->firstUnit << vshift;
1312 		parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
1313 		numparts++;
1314 		if (ip->lastUnit > lastvunit)
1315 			lastvunit = ip->lastUnit;
1316 		if (ip->flags & INFTL_LAST)
1317 			break;
1318 	}
1319 	lastvunit++;
1320 	if ((lastvunit << vshift) < end) {
1321 		parts[numparts].name = " DiskOnChip Remainder partition";
1322 		parts[numparts].offset = lastvunit << vshift;
1323 		parts[numparts].size = end - parts[numparts].offset;
1324 		numparts++;
1325 	}
1326 	ret = numparts;
1327  out:
1328 	kfree(buf);
1329 	return ret;
1330 }
1331 
nftl_scan_bbt(struct mtd_info * mtd)1332 static int __init nftl_scan_bbt(struct mtd_info *mtd)
1333 {
1334 	int ret, numparts;
1335 	struct nand_chip *this = mtd->priv;
1336 	struct doc_priv *doc = this->priv;
1337 	struct mtd_partition parts[2];
1338 
1339 	memset((char *)parts, 0, sizeof(parts));
1340 	/* On NFTL, we have to find the media headers before we can read the
1341 	   BBTs, since they're stored in the media header eraseblocks. */
1342 	numparts = nftl_partscan(mtd, parts);
1343 	if (!numparts)
1344 		return -EIO;
1345 	this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1346 				NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1347 				NAND_BBT_VERSION;
1348 	this->bbt_td->veroffs = 7;
1349 	this->bbt_td->pages[0] = doc->mh0_page + 1;
1350 	if (doc->mh1_page != -1) {
1351 		this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1352 					NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1353 					NAND_BBT_VERSION;
1354 		this->bbt_md->veroffs = 7;
1355 		this->bbt_md->pages[0] = doc->mh1_page + 1;
1356 	} else {
1357 		this->bbt_md = NULL;
1358 	}
1359 
1360 	/* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1361 	   At least as nand_bbt.c is currently written. */
1362 	if ((ret = nand_scan_bbt(mtd, NULL)))
1363 		return ret;
1364 	mtd_device_register(mtd, NULL, 0);
1365 	if (!no_autopart)
1366 		mtd_device_register(mtd, parts, numparts);
1367 	return 0;
1368 }
1369 
inftl_scan_bbt(struct mtd_info * mtd)1370 static int __init inftl_scan_bbt(struct mtd_info *mtd)
1371 {
1372 	int ret, numparts;
1373 	struct nand_chip *this = mtd->priv;
1374 	struct doc_priv *doc = this->priv;
1375 	struct mtd_partition parts[5];
1376 
1377 	if (this->numchips > doc->chips_per_floor) {
1378 		printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
1379 		return -EIO;
1380 	}
1381 
1382 	if (DoC_is_MillenniumPlus(doc)) {
1383 		this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
1384 		if (inftl_bbt_write)
1385 			this->bbt_td->options |= NAND_BBT_WRITE;
1386 		this->bbt_td->pages[0] = 2;
1387 		this->bbt_md = NULL;
1388 	} else {
1389 		this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1390 		if (inftl_bbt_write)
1391 			this->bbt_td->options |= NAND_BBT_WRITE;
1392 		this->bbt_td->offs = 8;
1393 		this->bbt_td->len = 8;
1394 		this->bbt_td->veroffs = 7;
1395 		this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1396 		this->bbt_td->reserved_block_code = 0x01;
1397 		this->bbt_td->pattern = "MSYS_BBT";
1398 
1399 		this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1400 		if (inftl_bbt_write)
1401 			this->bbt_md->options |= NAND_BBT_WRITE;
1402 		this->bbt_md->offs = 8;
1403 		this->bbt_md->len = 8;
1404 		this->bbt_md->veroffs = 7;
1405 		this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1406 		this->bbt_md->reserved_block_code = 0x01;
1407 		this->bbt_md->pattern = "TBB_SYSM";
1408 	}
1409 
1410 	/* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1411 	   At least as nand_bbt.c is currently written. */
1412 	if ((ret = nand_scan_bbt(mtd, NULL)))
1413 		return ret;
1414 	memset((char *)parts, 0, sizeof(parts));
1415 	numparts = inftl_partscan(mtd, parts);
1416 	/* At least for now, require the INFTL Media Header.  We could probably
1417 	   do without it for non-INFTL use, since all it gives us is
1418 	   autopartitioning, but I want to give it more thought. */
1419 	if (!numparts)
1420 		return -EIO;
1421 	mtd_device_register(mtd, NULL, 0);
1422 	if (!no_autopart)
1423 		mtd_device_register(mtd, parts, numparts);
1424 	return 0;
1425 }
1426 
doc2000_init(struct mtd_info * mtd)1427 static inline int __init doc2000_init(struct mtd_info *mtd)
1428 {
1429 	struct nand_chip *this = mtd->priv;
1430 	struct doc_priv *doc = this->priv;
1431 
1432 	this->read_byte = doc2000_read_byte;
1433 	this->write_buf = doc2000_writebuf;
1434 	this->read_buf = doc2000_readbuf;
1435 	this->verify_buf = doc2000_verifybuf;
1436 	this->scan_bbt = nftl_scan_bbt;
1437 
1438 	doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
1439 	doc2000_count_chips(mtd);
1440 	mtd->name = "DiskOnChip 2000 (NFTL Model)";
1441 	return (4 * doc->chips_per_floor);
1442 }
1443 
doc2001_init(struct mtd_info * mtd)1444 static inline int __init doc2001_init(struct mtd_info *mtd)
1445 {
1446 	struct nand_chip *this = mtd->priv;
1447 	struct doc_priv *doc = this->priv;
1448 
1449 	this->read_byte = doc2001_read_byte;
1450 	this->write_buf = doc2001_writebuf;
1451 	this->read_buf = doc2001_readbuf;
1452 	this->verify_buf = doc2001_verifybuf;
1453 
1454 	ReadDOC(doc->virtadr, ChipID);
1455 	ReadDOC(doc->virtadr, ChipID);
1456 	ReadDOC(doc->virtadr, ChipID);
1457 	if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
1458 		/* It's not a Millennium; it's one of the newer
1459 		   DiskOnChip 2000 units with a similar ASIC.
1460 		   Treat it like a Millennium, except that it
1461 		   can have multiple chips. */
1462 		doc2000_count_chips(mtd);
1463 		mtd->name = "DiskOnChip 2000 (INFTL Model)";
1464 		this->scan_bbt = inftl_scan_bbt;
1465 		return (4 * doc->chips_per_floor);
1466 	} else {
1467 		/* Bog-standard Millennium */
1468 		doc->chips_per_floor = 1;
1469 		mtd->name = "DiskOnChip Millennium";
1470 		this->scan_bbt = nftl_scan_bbt;
1471 		return 1;
1472 	}
1473 }
1474 
doc2001plus_init(struct mtd_info * mtd)1475 static inline int __init doc2001plus_init(struct mtd_info *mtd)
1476 {
1477 	struct nand_chip *this = mtd->priv;
1478 	struct doc_priv *doc = this->priv;
1479 
1480 	this->read_byte = doc2001plus_read_byte;
1481 	this->write_buf = doc2001plus_writebuf;
1482 	this->read_buf = doc2001plus_readbuf;
1483 	this->verify_buf = doc2001plus_verifybuf;
1484 	this->scan_bbt = inftl_scan_bbt;
1485 	this->cmd_ctrl = NULL;
1486 	this->select_chip = doc2001plus_select_chip;
1487 	this->cmdfunc = doc2001plus_command;
1488 	this->ecc.hwctl = doc2001plus_enable_hwecc;
1489 
1490 	doc->chips_per_floor = 1;
1491 	mtd->name = "DiskOnChip Millennium Plus";
1492 
1493 	return 1;
1494 }
1495 
doc_probe(unsigned long physadr)1496 static int __init doc_probe(unsigned long physadr)
1497 {
1498 	unsigned char ChipID;
1499 	struct mtd_info *mtd;
1500 	struct nand_chip *nand;
1501 	struct doc_priv *doc;
1502 	void __iomem *virtadr;
1503 	unsigned char save_control;
1504 	unsigned char tmp, tmpb, tmpc;
1505 	int reg, len, numchips;
1506 	int ret = 0;
1507 
1508 	virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
1509 	if (!virtadr) {
1510 		printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
1511 		return -EIO;
1512 	}
1513 
1514 	/* It's not possible to cleanly detect the DiskOnChip - the
1515 	 * bootup procedure will put the device into reset mode, and
1516 	 * it's not possible to talk to it without actually writing
1517 	 * to the DOCControl register. So we store the current contents
1518 	 * of the DOCControl register's location, in case we later decide
1519 	 * that it's not a DiskOnChip, and want to put it back how we
1520 	 * found it.
1521 	 */
1522 	save_control = ReadDOC(virtadr, DOCControl);
1523 
1524 	/* Reset the DiskOnChip ASIC */
1525 	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1526 	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1527 
1528 	/* Enable the DiskOnChip ASIC */
1529 	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1530 	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1531 
1532 	ChipID = ReadDOC(virtadr, ChipID);
1533 
1534 	switch (ChipID) {
1535 	case DOC_ChipID_Doc2k:
1536 		reg = DoC_2k_ECCStatus;
1537 		break;
1538 	case DOC_ChipID_DocMil:
1539 		reg = DoC_ECCConf;
1540 		break;
1541 	case DOC_ChipID_DocMilPlus16:
1542 	case DOC_ChipID_DocMilPlus32:
1543 	case 0:
1544 		/* Possible Millennium Plus, need to do more checks */
1545 		/* Possibly release from power down mode */
1546 		for (tmp = 0; (tmp < 4); tmp++)
1547 			ReadDOC(virtadr, Mplus_Power);
1548 
1549 		/* Reset the Millennium Plus ASIC */
1550 		tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1551 		WriteDOC(tmp, virtadr, Mplus_DOCControl);
1552 		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1553 
1554 		mdelay(1);
1555 		/* Enable the Millennium Plus ASIC */
1556 		tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1557 		WriteDOC(tmp, virtadr, Mplus_DOCControl);
1558 		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1559 		mdelay(1);
1560 
1561 		ChipID = ReadDOC(virtadr, ChipID);
1562 
1563 		switch (ChipID) {
1564 		case DOC_ChipID_DocMilPlus16:
1565 			reg = DoC_Mplus_Toggle;
1566 			break;
1567 		case DOC_ChipID_DocMilPlus32:
1568 			printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1569 		default:
1570 			ret = -ENODEV;
1571 			goto notfound;
1572 		}
1573 		break;
1574 
1575 	default:
1576 		ret = -ENODEV;
1577 		goto notfound;
1578 	}
1579 	/* Check the TOGGLE bit in the ECC register */
1580 	tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1581 	tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1582 	tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1583 	if ((tmp == tmpb) || (tmp != tmpc)) {
1584 		printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
1585 		ret = -ENODEV;
1586 		goto notfound;
1587 	}
1588 
1589 	for (mtd = doclist; mtd; mtd = doc->nextdoc) {
1590 		unsigned char oldval;
1591 		unsigned char newval;
1592 		nand = mtd->priv;
1593 		doc = nand->priv;
1594 		/* Use the alias resolution register to determine if this is
1595 		   in fact the same DOC aliased to a new address.  If writes
1596 		   to one chip's alias resolution register change the value on
1597 		   the other chip, they're the same chip. */
1598 		if (ChipID == DOC_ChipID_DocMilPlus16) {
1599 			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1600 			newval = ReadDOC(virtadr, Mplus_AliasResolution);
1601 		} else {
1602 			oldval = ReadDOC(doc->virtadr, AliasResolution);
1603 			newval = ReadDOC(virtadr, AliasResolution);
1604 		}
1605 		if (oldval != newval)
1606 			continue;
1607 		if (ChipID == DOC_ChipID_DocMilPlus16) {
1608 			WriteDOC(~newval, virtadr, Mplus_AliasResolution);
1609 			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1610 			WriteDOC(newval, virtadr, Mplus_AliasResolution);	// restore it
1611 		} else {
1612 			WriteDOC(~newval, virtadr, AliasResolution);
1613 			oldval = ReadDOC(doc->virtadr, AliasResolution);
1614 			WriteDOC(newval, virtadr, AliasResolution);	// restore it
1615 		}
1616 		newval = ~newval;
1617 		if (oldval == newval) {
1618 			printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
1619 			goto notfound;
1620 		}
1621 	}
1622 
1623 	printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
1624 
1625 	len = sizeof(struct mtd_info) +
1626 	    sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr));
1627 	mtd = kzalloc(len, GFP_KERNEL);
1628 	if (!mtd) {
1629 		printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len);
1630 		ret = -ENOMEM;
1631 		goto fail;
1632 	}
1633 
1634 	nand			= (struct nand_chip *) (mtd + 1);
1635 	doc			= (struct doc_priv *) (nand + 1);
1636 	nand->bbt_td		= (struct nand_bbt_descr *) (doc + 1);
1637 	nand->bbt_md		= nand->bbt_td + 1;
1638 
1639 	mtd->priv		= nand;
1640 	mtd->owner		= THIS_MODULE;
1641 
1642 	nand->priv		= doc;
1643 	nand->select_chip	= doc200x_select_chip;
1644 	nand->cmd_ctrl		= doc200x_hwcontrol;
1645 	nand->dev_ready		= doc200x_dev_ready;
1646 	nand->waitfunc		= doc200x_wait;
1647 	nand->block_bad		= doc200x_block_bad;
1648 	nand->ecc.hwctl		= doc200x_enable_hwecc;
1649 	nand->ecc.calculate	= doc200x_calculate_ecc;
1650 	nand->ecc.correct	= doc200x_correct_data;
1651 
1652 	nand->ecc.layout	= &doc200x_oobinfo;
1653 	nand->ecc.mode		= NAND_ECC_HW_SYNDROME;
1654 	nand->ecc.size		= 512;
1655 	nand->ecc.bytes		= 6;
1656 	nand->bbt_options	= NAND_BBT_USE_FLASH;
1657 
1658 	doc->physadr		= physadr;
1659 	doc->virtadr		= virtadr;
1660 	doc->ChipID		= ChipID;
1661 	doc->curfloor		= -1;
1662 	doc->curchip		= -1;
1663 	doc->mh0_page		= -1;
1664 	doc->mh1_page		= -1;
1665 	doc->nextdoc		= doclist;
1666 
1667 	if (ChipID == DOC_ChipID_Doc2k)
1668 		numchips = doc2000_init(mtd);
1669 	else if (ChipID == DOC_ChipID_DocMilPlus16)
1670 		numchips = doc2001plus_init(mtd);
1671 	else
1672 		numchips = doc2001_init(mtd);
1673 
1674 	if ((ret = nand_scan(mtd, numchips))) {
1675 		/* DBB note: i believe nand_release is necessary here, as
1676 		   buffers may have been allocated in nand_base.  Check with
1677 		   Thomas. FIX ME! */
1678 		/* nand_release will call mtd_device_unregister, but we
1679 		   haven't yet added it.  This is handled without incident by
1680 		   mtd_device_unregister, as far as I can tell. */
1681 		nand_release(mtd);
1682 		kfree(mtd);
1683 		goto fail;
1684 	}
1685 
1686 	/* Success! */
1687 	doclist = mtd;
1688 	return 0;
1689 
1690  notfound:
1691 	/* Put back the contents of the DOCControl register, in case it's not
1692 	   actually a DiskOnChip.  */
1693 	WriteDOC(save_control, virtadr, DOCControl);
1694  fail:
1695 	iounmap(virtadr);
1696 	return ret;
1697 }
1698 
release_nanddoc(void)1699 static void release_nanddoc(void)
1700 {
1701 	struct mtd_info *mtd, *nextmtd;
1702 	struct nand_chip *nand;
1703 	struct doc_priv *doc;
1704 
1705 	for (mtd = doclist; mtd; mtd = nextmtd) {
1706 		nand = mtd->priv;
1707 		doc = nand->priv;
1708 
1709 		nextmtd = doc->nextdoc;
1710 		nand_release(mtd);
1711 		iounmap(doc->virtadr);
1712 		kfree(mtd);
1713 	}
1714 }
1715 
init_nanddoc(void)1716 static int __init init_nanddoc(void)
1717 {
1718 	int i, ret = 0;
1719 
1720 	/* We could create the decoder on demand, if memory is a concern.
1721 	 * This way we have it handy, if an error happens
1722 	 *
1723 	 * Symbolsize is 10 (bits)
1724 	 * Primitve polynomial is x^10+x^3+1
1725 	 * first consecutive root is 510
1726 	 * primitve element to generate roots = 1
1727 	 * generator polinomial degree = 4
1728 	 */
1729 	rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
1730 	if (!rs_decoder) {
1731 		printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
1732 		return -ENOMEM;
1733 	}
1734 
1735 	if (doc_config_location) {
1736 		printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
1737 		ret = doc_probe(doc_config_location);
1738 		if (ret < 0)
1739 			goto outerr;
1740 	} else {
1741 		for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
1742 			doc_probe(doc_locations[i]);
1743 		}
1744 	}
1745 	/* No banner message any more. Print a message if no DiskOnChip
1746 	   found, so the user knows we at least tried. */
1747 	if (!doclist) {
1748 		printk(KERN_INFO "No valid DiskOnChip devices found\n");
1749 		ret = -ENODEV;
1750 		goto outerr;
1751 	}
1752 	return 0;
1753  outerr:
1754 	free_rs(rs_decoder);
1755 	return ret;
1756 }
1757 
cleanup_nanddoc(void)1758 static void __exit cleanup_nanddoc(void)
1759 {
1760 	/* Cleanup the nand/DoC resources */
1761 	release_nanddoc();
1762 
1763 	/* Free the reed solomon resources */
1764 	if (rs_decoder) {
1765 		free_rs(rs_decoder);
1766 	}
1767 }
1768 
1769 module_init(init_nanddoc);
1770 module_exit(cleanup_nanddoc);
1771 
1772 MODULE_LICENSE("GPL");
1773 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1774 MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver");
1775