1 /*
2  * NAND Flash Controller Device Driver
3  * Copyright © 2009-2010, Intel Corporation and its suppliers.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  *
18  */
19 
20 #include <linux/interrupt.h>
21 #include <linux/delay.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/wait.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/pci.h>
27 #include <linux/mtd/mtd.h>
28 #include <linux/module.h>
29 
30 #include "denali.h"
31 
32 MODULE_LICENSE("GPL");
33 
34 /* We define a module parameter that allows the user to override
35  * the hardware and decide what timing mode should be used.
36  */
37 #define NAND_DEFAULT_TIMINGS	-1
38 
39 static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
40 module_param(onfi_timing_mode, int, S_IRUGO);
41 MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
42 			" -1 indicates use default timings");
43 
44 #define DENALI_NAND_NAME    "denali-nand"
45 
46 /* We define a macro here that combines all interrupts this driver uses into
47  * a single constant value, for convenience. */
48 #define DENALI_IRQ_ALL	(INTR_STATUS__DMA_CMD_COMP | \
49 			INTR_STATUS__ECC_TRANSACTION_DONE | \
50 			INTR_STATUS__ECC_ERR | \
51 			INTR_STATUS__PROGRAM_FAIL | \
52 			INTR_STATUS__LOAD_COMP | \
53 			INTR_STATUS__PROGRAM_COMP | \
54 			INTR_STATUS__TIME_OUT | \
55 			INTR_STATUS__ERASE_FAIL | \
56 			INTR_STATUS__RST_COMP | \
57 			INTR_STATUS__ERASE_COMP)
58 
59 /* indicates whether or not the internal value for the flash bank is
60  * valid or not */
61 #define CHIP_SELECT_INVALID	-1
62 
63 #define SUPPORT_8BITECC		1
64 
65 /* This macro divides two integers and rounds fractional values up
66  * to the nearest integer value. */
67 #define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
68 
69 /* this macro allows us to convert from an MTD structure to our own
70  * device context (denali) structure.
71  */
72 #define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
73 
74 /* These constants are defined by the driver to enable common driver
75  * configuration options. */
76 #define SPARE_ACCESS		0x41
77 #define MAIN_ACCESS		0x42
78 #define MAIN_SPARE_ACCESS	0x43
79 
80 #define DENALI_READ	0
81 #define DENALI_WRITE	0x100
82 
83 /* types of device accesses. We can issue commands and get status */
84 #define COMMAND_CYCLE	0
85 #define ADDR_CYCLE	1
86 #define STATUS_CYCLE	2
87 
88 /* this is a helper macro that allows us to
89  * format the bank into the proper bits for the controller */
90 #define BANK(x) ((x) << 24)
91 
92 /* List of platforms this NAND controller has be integrated into */
93 static const struct pci_device_id denali_pci_ids[] = {
94 	{ PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 },
95 	{ PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST },
96 	{ /* end: all zeroes */ }
97 };
98 
99 /* forward declarations */
100 static void clear_interrupts(struct denali_nand_info *denali);
101 static uint32_t wait_for_irq(struct denali_nand_info *denali,
102 							uint32_t irq_mask);
103 static void denali_irq_enable(struct denali_nand_info *denali,
104 							uint32_t int_mask);
105 static uint32_t read_interrupt_status(struct denali_nand_info *denali);
106 
107 /* Certain operations for the denali NAND controller use
108  * an indexed mode to read/write data. The operation is
109  * performed by writing the address value of the command
110  * to the device memory followed by the data. This function
111  * abstracts this common operation.
112 */
index_addr(struct denali_nand_info * denali,uint32_t address,uint32_t data)113 static void index_addr(struct denali_nand_info *denali,
114 				uint32_t address, uint32_t data)
115 {
116 	iowrite32(address, denali->flash_mem);
117 	iowrite32(data, denali->flash_mem + 0x10);
118 }
119 
120 /* Perform an indexed read of the device */
index_addr_read_data(struct denali_nand_info * denali,uint32_t address,uint32_t * pdata)121 static void index_addr_read_data(struct denali_nand_info *denali,
122 				 uint32_t address, uint32_t *pdata)
123 {
124 	iowrite32(address, denali->flash_mem);
125 	*pdata = ioread32(denali->flash_mem + 0x10);
126 }
127 
128 /* We need to buffer some data for some of the NAND core routines.
129  * The operations manage buffering that data. */
reset_buf(struct denali_nand_info * denali)130 static void reset_buf(struct denali_nand_info *denali)
131 {
132 	denali->buf.head = denali->buf.tail = 0;
133 }
134 
write_byte_to_buf(struct denali_nand_info * denali,uint8_t byte)135 static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
136 {
137 	BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf));
138 	denali->buf.buf[denali->buf.tail++] = byte;
139 }
140 
141 /* reads the status of the device */
read_status(struct denali_nand_info * denali)142 static void read_status(struct denali_nand_info *denali)
143 {
144 	uint32_t cmd = 0x0;
145 
146 	/* initialize the data buffer to store status */
147 	reset_buf(denali);
148 
149 	cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
150 	if (cmd)
151 		write_byte_to_buf(denali, NAND_STATUS_WP);
152 	else
153 		write_byte_to_buf(denali, 0);
154 }
155 
156 /* resets a specific device connected to the core */
reset_bank(struct denali_nand_info * denali)157 static void reset_bank(struct denali_nand_info *denali)
158 {
159 	uint32_t irq_status = 0;
160 	uint32_t irq_mask = INTR_STATUS__RST_COMP |
161 			    INTR_STATUS__TIME_OUT;
162 
163 	clear_interrupts(denali);
164 
165 	iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
166 
167 	irq_status = wait_for_irq(denali, irq_mask);
168 
169 	if (irq_status & INTR_STATUS__TIME_OUT)
170 		dev_err(denali->dev, "reset bank failed.\n");
171 }
172 
173 /* Reset the flash controller */
denali_nand_reset(struct denali_nand_info * denali)174 static uint16_t denali_nand_reset(struct denali_nand_info *denali)
175 {
176 	uint32_t i;
177 
178 	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
179 		       __FILE__, __LINE__, __func__);
180 
181 	for (i = 0 ; i < denali->max_banks; i++)
182 		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
183 		denali->flash_reg + INTR_STATUS(i));
184 
185 	for (i = 0 ; i < denali->max_banks; i++) {
186 		iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
187 		while (!(ioread32(denali->flash_reg +
188 				INTR_STATUS(i)) &
189 			(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
190 			cpu_relax();
191 		if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
192 			INTR_STATUS__TIME_OUT)
193 			dev_dbg(denali->dev,
194 			"NAND Reset operation timed out on bank %d\n", i);
195 	}
196 
197 	for (i = 0; i < denali->max_banks; i++)
198 		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
199 			denali->flash_reg + INTR_STATUS(i));
200 
201 	return PASS;
202 }
203 
204 /* this routine calculates the ONFI timing values for a given mode and
205  * programs the clocking register accordingly. The mode is determined by
206  * the get_onfi_nand_para routine.
207  */
nand_onfi_timing_set(struct denali_nand_info * denali,uint16_t mode)208 static void nand_onfi_timing_set(struct denali_nand_info *denali,
209 								uint16_t mode)
210 {
211 	uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
212 	uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
213 	uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
214 	uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
215 	uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
216 	uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
217 	uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
218 	uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
219 	uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
220 	uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
221 	uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
222 	uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
223 
224 	uint16_t TclsRising = 1;
225 	uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
226 	uint16_t dv_window = 0;
227 	uint16_t en_lo, en_hi;
228 	uint16_t acc_clks;
229 	uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
230 
231 	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
232 		       __FILE__, __LINE__, __func__);
233 
234 	en_lo = CEIL_DIV(Trp[mode], CLK_X);
235 	en_hi = CEIL_DIV(Treh[mode], CLK_X);
236 #if ONFI_BLOOM_TIME
237 	if ((en_hi * CLK_X) < (Treh[mode] + 2))
238 		en_hi++;
239 #endif
240 
241 	if ((en_lo + en_hi) * CLK_X < Trc[mode])
242 		en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
243 
244 	if ((en_lo + en_hi) < CLK_MULTI)
245 		en_lo += CLK_MULTI - en_lo - en_hi;
246 
247 	while (dv_window < 8) {
248 		data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
249 
250 		data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
251 
252 		data_invalid =
253 		    data_invalid_rhoh <
254 		    data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;
255 
256 		dv_window = data_invalid - Trea[mode];
257 
258 		if (dv_window < 8)
259 			en_lo++;
260 	}
261 
262 	acc_clks = CEIL_DIV(Trea[mode], CLK_X);
263 
264 	while (((acc_clks * CLK_X) - Trea[mode]) < 3)
265 		acc_clks++;
266 
267 	if ((data_invalid - acc_clks * CLK_X) < 2)
268 		dev_warn(denali->dev, "%s, Line %d: Warning!\n",
269 			__FILE__, __LINE__);
270 
271 	addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
272 	re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
273 	re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
274 	we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
275 	cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
276 	if (!TclsRising)
277 		cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
278 	if (cs_cnt == 0)
279 		cs_cnt = 1;
280 
281 	if (Tcea[mode]) {
282 		while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
283 			cs_cnt++;
284 	}
285 
286 #if MODE5_WORKAROUND
287 	if (mode == 5)
288 		acc_clks = 5;
289 #endif
290 
291 	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
292 	if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) &&
293 		(ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
294 		acc_clks = 6;
295 
296 	iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
297 	iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
298 	iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
299 	iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
300 	iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
301 	iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
302 	iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
303 	iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
304 }
305 
306 /* queries the NAND device to see what ONFI modes it supports. */
get_onfi_nand_para(struct denali_nand_info * denali)307 static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
308 {
309 	int i;
310 	/* we needn't to do a reset here because driver has already
311 	 * reset all the banks before
312 	 * */
313 	if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
314 		ONFI_TIMING_MODE__VALUE))
315 		return FAIL;
316 
317 	for (i = 5; i > 0; i--) {
318 		if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
319 			(0x01 << i))
320 			break;
321 	}
322 
323 	nand_onfi_timing_set(denali, i);
324 
325 	/* By now, all the ONFI devices we know support the page cache */
326 	/* rw feature. So here we enable the pipeline_rw_ahead feature */
327 	/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
328 	/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */
329 
330 	return PASS;
331 }
332 
get_samsung_nand_para(struct denali_nand_info * denali,uint8_t device_id)333 static void get_samsung_nand_para(struct denali_nand_info *denali,
334 							uint8_t device_id)
335 {
336 	if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
337 		/* Set timing register values according to datasheet */
338 		iowrite32(5, denali->flash_reg + ACC_CLKS);
339 		iowrite32(20, denali->flash_reg + RE_2_WE);
340 		iowrite32(12, denali->flash_reg + WE_2_RE);
341 		iowrite32(14, denali->flash_reg + ADDR_2_DATA);
342 		iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
343 		iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
344 		iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
345 	}
346 }
347 
get_toshiba_nand_para(struct denali_nand_info * denali)348 static void get_toshiba_nand_para(struct denali_nand_info *denali)
349 {
350 	uint32_t tmp;
351 
352 	/* Workaround to fix a controller bug which reports a wrong */
353 	/* spare area size for some kind of Toshiba NAND device */
354 	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
355 		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
356 		iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
357 		tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
358 			ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
359 		iowrite32(tmp,
360 				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
361 #if SUPPORT_15BITECC
362 		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
363 #elif SUPPORT_8BITECC
364 		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
365 #endif
366 	}
367 }
368 
get_hynix_nand_para(struct denali_nand_info * denali,uint8_t device_id)369 static void get_hynix_nand_para(struct denali_nand_info *denali,
370 							uint8_t device_id)
371 {
372 	uint32_t main_size, spare_size;
373 
374 	switch (device_id) {
375 	case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
376 	case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
377 		iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
378 		iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
379 		iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
380 		main_size = 4096 *
381 			ioread32(denali->flash_reg + DEVICES_CONNECTED);
382 		spare_size = 224 *
383 			ioread32(denali->flash_reg + DEVICES_CONNECTED);
384 		iowrite32(main_size,
385 				denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
386 		iowrite32(spare_size,
387 				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
388 		iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
389 #if SUPPORT_15BITECC
390 		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
391 #elif SUPPORT_8BITECC
392 		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
393 #endif
394 		break;
395 	default:
396 		dev_warn(denali->dev,
397 			"Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
398 			"Will use default parameter values instead.\n",
399 			device_id);
400 	}
401 }
402 
403 /* determines how many NAND chips are connected to the controller. Note for
404  * Intel CE4100 devices we don't support more than one device.
405  */
find_valid_banks(struct denali_nand_info * denali)406 static void find_valid_banks(struct denali_nand_info *denali)
407 {
408 	uint32_t id[denali->max_banks];
409 	int i;
410 
411 	denali->total_used_banks = 1;
412 	for (i = 0; i < denali->max_banks; i++) {
413 		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
414 		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
415 		index_addr_read_data(denali,
416 				(uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
417 
418 		dev_dbg(denali->dev,
419 			"Return 1st ID for bank[%d]: %x\n", i, id[i]);
420 
421 		if (i == 0) {
422 			if (!(id[i] & 0x0ff))
423 				break; /* WTF? */
424 		} else {
425 			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
426 				denali->total_used_banks++;
427 			else
428 				break;
429 		}
430 	}
431 
432 	if (denali->platform == INTEL_CE4100) {
433 		/* Platform limitations of the CE4100 device limit
434 		 * users to a single chip solution for NAND.
435 		 * Multichip support is not enabled.
436 		 */
437 		if (denali->total_used_banks != 1) {
438 			dev_err(denali->dev,
439 					"Sorry, Intel CE4100 only supports "
440 					"a single NAND device.\n");
441 			BUG();
442 		}
443 	}
444 	dev_dbg(denali->dev,
445 		"denali->total_used_banks: %d\n", denali->total_used_banks);
446 }
447 
448 /*
449  * Use the configuration feature register to determine the maximum number of
450  * banks that the hardware supports.
451  */
detect_max_banks(struct denali_nand_info * denali)452 static void detect_max_banks(struct denali_nand_info *denali)
453 {
454 	uint32_t features = ioread32(denali->flash_reg + FEATURES);
455 
456 	denali->max_banks = 2 << (features & FEATURES__N_BANKS);
457 }
458 
detect_partition_feature(struct denali_nand_info * denali)459 static void detect_partition_feature(struct denali_nand_info *denali)
460 {
461 	/* For MRST platform, denali->fwblks represent the
462 	 * number of blocks firmware is taken,
463 	 * FW is in protect partition and MTD driver has no
464 	 * permission to access it. So let driver know how many
465 	 * blocks it can't touch.
466 	 * */
467 	if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
468 		if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) &
469 			PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
470 			denali->fwblks =
471 			    ((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) &
472 			      MIN_MAX_BANK__MIN_VALUE) *
473 			     denali->blksperchip)
474 			    +
475 			    (ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) &
476 			    MIN_BLK_ADDR__VALUE);
477 		} else
478 			denali->fwblks = SPECTRA_START_BLOCK;
479 	} else
480 		denali->fwblks = SPECTRA_START_BLOCK;
481 }
482 
denali_nand_timing_set(struct denali_nand_info * denali)483 static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
484 {
485 	uint16_t status = PASS;
486 	uint32_t id_bytes[5], addr;
487 	uint8_t i, maf_id, device_id;
488 
489 	dev_dbg(denali->dev,
490 			"%s, Line %d, Function: %s\n",
491 			__FILE__, __LINE__, __func__);
492 
493 	/* Use read id method to get device ID and other
494 	 * params. For some NAND chips, controller can't
495 	 * report the correct device ID by reading from
496 	 * DEVICE_ID register
497 	 * */
498 	addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
499 	index_addr(denali, (uint32_t)addr | 0, 0x90);
500 	index_addr(denali, (uint32_t)addr | 1, 0);
501 	for (i = 0; i < 5; i++)
502 		index_addr_read_data(denali, addr | 2, &id_bytes[i]);
503 	maf_id = id_bytes[0];
504 	device_id = id_bytes[1];
505 
506 	if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
507 		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
508 		if (FAIL == get_onfi_nand_para(denali))
509 			return FAIL;
510 	} else if (maf_id == 0xEC) { /* Samsung NAND */
511 		get_samsung_nand_para(denali, device_id);
512 	} else if (maf_id == 0x98) { /* Toshiba NAND */
513 		get_toshiba_nand_para(denali);
514 	} else if (maf_id == 0xAD) { /* Hynix NAND */
515 		get_hynix_nand_para(denali, device_id);
516 	}
517 
518 	dev_info(denali->dev,
519 			"Dump timing register values:"
520 			"acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
521 			"we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
522 			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
523 			ioread32(denali->flash_reg + ACC_CLKS),
524 			ioread32(denali->flash_reg + RE_2_WE),
525 			ioread32(denali->flash_reg + RE_2_RE),
526 			ioread32(denali->flash_reg + WE_2_RE),
527 			ioread32(denali->flash_reg + ADDR_2_DATA),
528 			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
529 			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
530 			ioread32(denali->flash_reg + CS_SETUP_CNT));
531 
532 	find_valid_banks(denali);
533 
534 	detect_partition_feature(denali);
535 
536 	/* If the user specified to override the default timings
537 	 * with a specific ONFI mode, we apply those changes here.
538 	 */
539 	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
540 		nand_onfi_timing_set(denali, onfi_timing_mode);
541 
542 	return status;
543 }
544 
denali_set_intr_modes(struct denali_nand_info * denali,uint16_t INT_ENABLE)545 static void denali_set_intr_modes(struct denali_nand_info *denali,
546 					uint16_t INT_ENABLE)
547 {
548 	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
549 		       __FILE__, __LINE__, __func__);
550 
551 	if (INT_ENABLE)
552 		iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
553 	else
554 		iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
555 }
556 
557 /* validation function to verify that the controlling software is making
558  * a valid request
559  */
is_flash_bank_valid(int flash_bank)560 static inline bool is_flash_bank_valid(int flash_bank)
561 {
562 	return (flash_bank >= 0 && flash_bank < 4);
563 }
564 
denali_irq_init(struct denali_nand_info * denali)565 static void denali_irq_init(struct denali_nand_info *denali)
566 {
567 	uint32_t int_mask = 0;
568 	int i;
569 
570 	/* Disable global interrupts */
571 	denali_set_intr_modes(denali, false);
572 
573 	int_mask = DENALI_IRQ_ALL;
574 
575 	/* Clear all status bits */
576 	for (i = 0; i < denali->max_banks; ++i)
577 		iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
578 
579 	denali_irq_enable(denali, int_mask);
580 }
581 
denali_irq_cleanup(int irqnum,struct denali_nand_info * denali)582 static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
583 {
584 	denali_set_intr_modes(denali, false);
585 	free_irq(irqnum, denali);
586 }
587 
denali_irq_enable(struct denali_nand_info * denali,uint32_t int_mask)588 static void denali_irq_enable(struct denali_nand_info *denali,
589 							uint32_t int_mask)
590 {
591 	int i;
592 
593 	for (i = 0; i < denali->max_banks; ++i)
594 		iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
595 }
596 
597 /* This function only returns when an interrupt that this driver cares about
598  * occurs. This is to reduce the overhead of servicing interrupts
599  */
denali_irq_detected(struct denali_nand_info * denali)600 static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
601 {
602 	return read_interrupt_status(denali) & DENALI_IRQ_ALL;
603 }
604 
605 /* Interrupts are cleared by writing a 1 to the appropriate status bit */
clear_interrupt(struct denali_nand_info * denali,uint32_t irq_mask)606 static inline void clear_interrupt(struct denali_nand_info *denali,
607 							uint32_t irq_mask)
608 {
609 	uint32_t intr_status_reg = 0;
610 
611 	intr_status_reg = INTR_STATUS(denali->flash_bank);
612 
613 	iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
614 }
615 
clear_interrupts(struct denali_nand_info * denali)616 static void clear_interrupts(struct denali_nand_info *denali)
617 {
618 	uint32_t status = 0x0;
619 	spin_lock_irq(&denali->irq_lock);
620 
621 	status = read_interrupt_status(denali);
622 	clear_interrupt(denali, status);
623 
624 	denali->irq_status = 0x0;
625 	spin_unlock_irq(&denali->irq_lock);
626 }
627 
read_interrupt_status(struct denali_nand_info * denali)628 static uint32_t read_interrupt_status(struct denali_nand_info *denali)
629 {
630 	uint32_t intr_status_reg = 0;
631 
632 	intr_status_reg = INTR_STATUS(denali->flash_bank);
633 
634 	return ioread32(denali->flash_reg + intr_status_reg);
635 }
636 
637 /* This is the interrupt service routine. It handles all interrupts
638  * sent to this device. Note that on CE4100, this is a shared
639  * interrupt.
640  */
denali_isr(int irq,void * dev_id)641 static irqreturn_t denali_isr(int irq, void *dev_id)
642 {
643 	struct denali_nand_info *denali = dev_id;
644 	uint32_t irq_status = 0x0;
645 	irqreturn_t result = IRQ_NONE;
646 
647 	spin_lock(&denali->irq_lock);
648 
649 	/* check to see if a valid NAND chip has
650 	 * been selected.
651 	 */
652 	if (is_flash_bank_valid(denali->flash_bank)) {
653 		/* check to see if controller generated
654 		 * the interrupt, since this is a shared interrupt */
655 		irq_status = denali_irq_detected(denali);
656 		if (irq_status != 0) {
657 			/* handle interrupt */
658 			/* first acknowledge it */
659 			clear_interrupt(denali, irq_status);
660 			/* store the status in the device context for someone
661 			   to read */
662 			denali->irq_status |= irq_status;
663 			/* notify anyone who cares that it happened */
664 			complete(&denali->complete);
665 			/* tell the OS that we've handled this */
666 			result = IRQ_HANDLED;
667 		}
668 	}
669 	spin_unlock(&denali->irq_lock);
670 	return result;
671 }
672 #define BANK(x) ((x) << 24)
673 
wait_for_irq(struct denali_nand_info * denali,uint32_t irq_mask)674 static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
675 {
676 	unsigned long comp_res = 0;
677 	uint32_t intr_status = 0;
678 	bool retry = false;
679 	unsigned long timeout = msecs_to_jiffies(1000);
680 
681 	do {
682 		comp_res =
683 			wait_for_completion_timeout(&denali->complete, timeout);
684 		spin_lock_irq(&denali->irq_lock);
685 		intr_status = denali->irq_status;
686 
687 		if (intr_status & irq_mask) {
688 			denali->irq_status &= ~irq_mask;
689 			spin_unlock_irq(&denali->irq_lock);
690 			/* our interrupt was detected */
691 			break;
692 		} else {
693 			/* these are not the interrupts you are looking for -
694 			 * need to wait again */
695 			spin_unlock_irq(&denali->irq_lock);
696 			retry = true;
697 		}
698 	} while (comp_res != 0);
699 
700 	if (comp_res == 0) {
701 		/* timeout */
702 		printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n",
703 				intr_status, irq_mask);
704 
705 		intr_status = 0;
706 	}
707 	return intr_status;
708 }
709 
710 /* This helper function setups the registers for ECC and whether or not
711  * the spare area will be transferred. */
setup_ecc_for_xfer(struct denali_nand_info * denali,bool ecc_en,bool transfer_spare)712 static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
713 				bool transfer_spare)
714 {
715 	int ecc_en_flag = 0, transfer_spare_flag = 0;
716 
717 	/* set ECC, transfer spare bits if needed */
718 	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
719 	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
720 
721 	/* Enable spare area/ECC per user's request. */
722 	iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
723 	iowrite32(transfer_spare_flag,
724 			denali->flash_reg + TRANSFER_SPARE_REG);
725 }
726 
727 /* sends a pipeline command operation to the controller. See the Denali NAND
728  * controller's user guide for more information (section 4.2.3.6).
729  */
denali_send_pipeline_cmd(struct denali_nand_info * denali,bool ecc_en,bool transfer_spare,int access_type,int op)730 static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
731 							bool ecc_en,
732 							bool transfer_spare,
733 							int access_type,
734 							int op)
735 {
736 	int status = PASS;
737 	uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
738 		 irq_mask = 0;
739 
740 	if (op == DENALI_READ)
741 		irq_mask = INTR_STATUS__LOAD_COMP;
742 	else if (op == DENALI_WRITE)
743 		irq_mask = 0;
744 	else
745 		BUG();
746 
747 	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
748 
749 	/* clear interrupts */
750 	clear_interrupts(denali);
751 
752 	addr = BANK(denali->flash_bank) | denali->page;
753 
754 	if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
755 		cmd = MODE_01 | addr;
756 		iowrite32(cmd, denali->flash_mem);
757 	} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
758 		/* read spare area */
759 		cmd = MODE_10 | addr;
760 		index_addr(denali, (uint32_t)cmd, access_type);
761 
762 		cmd = MODE_01 | addr;
763 		iowrite32(cmd, denali->flash_mem);
764 	} else if (op == DENALI_READ) {
765 		/* setup page read request for access type */
766 		cmd = MODE_10 | addr;
767 		index_addr(denali, (uint32_t)cmd, access_type);
768 
769 		/* page 33 of the NAND controller spec indicates we should not
770 		   use the pipeline commands in Spare area only mode. So we
771 		   don't.
772 		 */
773 		if (access_type == SPARE_ACCESS) {
774 			cmd = MODE_01 | addr;
775 			iowrite32(cmd, denali->flash_mem);
776 		} else {
777 			index_addr(denali, (uint32_t)cmd,
778 					0x2000 | op | page_count);
779 
780 			/* wait for command to be accepted
781 			 * can always use status0 bit as the
782 			 * mask is identical for each
783 			 * bank. */
784 			irq_status = wait_for_irq(denali, irq_mask);
785 
786 			if (irq_status == 0) {
787 				dev_err(denali->dev,
788 						"cmd, page, addr on timeout "
789 						"(0x%x, 0x%x, 0x%x)\n",
790 						cmd, denali->page, addr);
791 				status = FAIL;
792 			} else {
793 				cmd = MODE_01 | addr;
794 				iowrite32(cmd, denali->flash_mem);
795 			}
796 		}
797 	}
798 	return status;
799 }
800 
801 /* helper function that simply writes a buffer to the flash */
write_data_to_flash_mem(struct denali_nand_info * denali,const uint8_t * buf,int len)802 static int write_data_to_flash_mem(struct denali_nand_info *denali,
803 							const uint8_t *buf,
804 							int len)
805 {
806 	uint32_t i = 0, *buf32;
807 
808 	/* verify that the len is a multiple of 4. see comment in
809 	 * read_data_from_flash_mem() */
810 	BUG_ON((len % 4) != 0);
811 
812 	/* write the data to the flash memory */
813 	buf32 = (uint32_t *)buf;
814 	for (i = 0; i < len / 4; i++)
815 		iowrite32(*buf32++, denali->flash_mem + 0x10);
816 	return i*4; /* intent is to return the number of bytes read */
817 }
818 
819 /* helper function that simply reads a buffer from the flash */
read_data_from_flash_mem(struct denali_nand_info * denali,uint8_t * buf,int len)820 static int read_data_from_flash_mem(struct denali_nand_info *denali,
821 								uint8_t *buf,
822 								int len)
823 {
824 	uint32_t i = 0, *buf32;
825 
826 	/* we assume that len will be a multiple of 4, if not
827 	 * it would be nice to know about it ASAP rather than
828 	 * have random failures...
829 	 * This assumption is based on the fact that this
830 	 * function is designed to be used to read flash pages,
831 	 * which are typically multiples of 4...
832 	 */
833 
834 	BUG_ON((len % 4) != 0);
835 
836 	/* transfer the data from the flash */
837 	buf32 = (uint32_t *)buf;
838 	for (i = 0; i < len / 4; i++)
839 		*buf32++ = ioread32(denali->flash_mem + 0x10);
840 	return i*4; /* intent is to return the number of bytes read */
841 }
842 
843 /* writes OOB data to the device */
write_oob_data(struct mtd_info * mtd,uint8_t * buf,int page)844 static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
845 {
846 	struct denali_nand_info *denali = mtd_to_denali(mtd);
847 	uint32_t irq_status = 0;
848 	uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
849 						INTR_STATUS__PROGRAM_FAIL;
850 	int status = 0;
851 
852 	denali->page = page;
853 
854 	if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
855 							DENALI_WRITE) == PASS) {
856 		write_data_to_flash_mem(denali, buf, mtd->oobsize);
857 
858 		/* wait for operation to complete */
859 		irq_status = wait_for_irq(denali, irq_mask);
860 
861 		if (irq_status == 0) {
862 			dev_err(denali->dev, "OOB write failed\n");
863 			status = -EIO;
864 		}
865 	} else {
866 		dev_err(denali->dev, "unable to send pipeline command\n");
867 		status = -EIO;
868 	}
869 	return status;
870 }
871 
872 /* reads OOB data from the device */
read_oob_data(struct mtd_info * mtd,uint8_t * buf,int page)873 static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
874 {
875 	struct denali_nand_info *denali = mtd_to_denali(mtd);
876 	uint32_t irq_mask = INTR_STATUS__LOAD_COMP,
877 			 irq_status = 0, addr = 0x0, cmd = 0x0;
878 
879 	denali->page = page;
880 
881 	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
882 							DENALI_READ) == PASS) {
883 		read_data_from_flash_mem(denali, buf, mtd->oobsize);
884 
885 		/* wait for command to be accepted
886 		 * can always use status0 bit as the mask is identical for each
887 		 * bank. */
888 		irq_status = wait_for_irq(denali, irq_mask);
889 
890 		if (irq_status == 0)
891 			dev_err(denali->dev, "page on OOB timeout %d\n",
892 					denali->page);
893 
894 		/* We set the device back to MAIN_ACCESS here as I observed
895 		 * instability with the controller if you do a block erase
896 		 * and the last transaction was a SPARE_ACCESS. Block erase
897 		 * is reliable (according to the MTD test infrastructure)
898 		 * if you are in MAIN_ACCESS.
899 		 */
900 		addr = BANK(denali->flash_bank) | denali->page;
901 		cmd = MODE_10 | addr;
902 		index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
903 	}
904 }
905 
906 /* this function examines buffers to see if they contain data that
907  * indicate that the buffer is part of an erased region of flash.
908  */
is_erased(uint8_t * buf,int len)909 bool is_erased(uint8_t *buf, int len)
910 {
911 	int i = 0;
912 	for (i = 0; i < len; i++)
913 		if (buf[i] != 0xFF)
914 			return false;
915 	return true;
916 }
917 #define ECC_SECTOR_SIZE 512
918 
919 #define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
920 #define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
921 #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
922 #define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
923 #define ECC_ERR_DEVICE(x)	(((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
924 #define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
925 
handle_ecc(struct denali_nand_info * denali,uint8_t * buf,uint32_t irq_status)926 static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
927 					uint32_t irq_status)
928 {
929 	bool check_erased_page = false;
930 
931 	if (irq_status & INTR_STATUS__ECC_ERR) {
932 		/* read the ECC errors. we'll ignore them for now */
933 		uint32_t err_address = 0, err_correction_info = 0;
934 		uint32_t err_byte = 0, err_sector = 0, err_device = 0;
935 		uint32_t err_correction_value = 0;
936 		denali_set_intr_modes(denali, false);
937 
938 		do {
939 			err_address = ioread32(denali->flash_reg +
940 						ECC_ERROR_ADDRESS);
941 			err_sector = ECC_SECTOR(err_address);
942 			err_byte = ECC_BYTE(err_address);
943 
944 			err_correction_info = ioread32(denali->flash_reg +
945 						ERR_CORRECTION_INFO);
946 			err_correction_value =
947 				ECC_CORRECTION_VALUE(err_correction_info);
948 			err_device = ECC_ERR_DEVICE(err_correction_info);
949 
950 			if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
951 				/* If err_byte is larger than ECC_SECTOR_SIZE,
952 				 * means error happened in OOB, so we ignore
953 				 * it. It's no need for us to correct it
954 				 * err_device is represented the NAND error
955 				 * bits are happened in if there are more
956 				 * than one NAND connected.
957 				 * */
958 				if (err_byte < ECC_SECTOR_SIZE) {
959 					int offset;
960 					offset = (err_sector *
961 							ECC_SECTOR_SIZE +
962 							err_byte) *
963 							denali->devnum +
964 							err_device;
965 					/* correct the ECC error */
966 					buf[offset] ^= err_correction_value;
967 					denali->mtd.ecc_stats.corrected++;
968 				}
969 			} else {
970 				/* if the error is not correctable, need to
971 				 * look at the page to see if it is an erased
972 				 * page. if so, then it's not a real ECC error
973 				 * */
974 				check_erased_page = true;
975 			}
976 		} while (!ECC_LAST_ERR(err_correction_info));
977 		/* Once handle all ecc errors, controller will triger
978 		 * a ECC_TRANSACTION_DONE interrupt, so here just wait
979 		 * for a while for this interrupt
980 		 * */
981 		while (!(read_interrupt_status(denali) &
982 				INTR_STATUS__ECC_TRANSACTION_DONE))
983 			cpu_relax();
984 		clear_interrupts(denali);
985 		denali_set_intr_modes(denali, true);
986 	}
987 	return check_erased_page;
988 }
989 
990 /* programs the controller to either enable/disable DMA transfers */
denali_enable_dma(struct denali_nand_info * denali,bool en)991 static void denali_enable_dma(struct denali_nand_info *denali, bool en)
992 {
993 	uint32_t reg_val = 0x0;
994 
995 	if (en)
996 		reg_val = DMA_ENABLE__FLAG;
997 
998 	iowrite32(reg_val, denali->flash_reg + DMA_ENABLE);
999 	ioread32(denali->flash_reg + DMA_ENABLE);
1000 }
1001 
1002 /* setups the HW to perform the data DMA */
denali_setup_dma(struct denali_nand_info * denali,int op)1003 static void denali_setup_dma(struct denali_nand_info *denali, int op)
1004 {
1005 	uint32_t mode = 0x0;
1006 	const int page_count = 1;
1007 	dma_addr_t addr = denali->buf.dma_buf;
1008 
1009 	mode = MODE_10 | BANK(denali->flash_bank);
1010 
1011 	/* DMA is a four step process */
1012 
1013 	/* 1. setup transfer type and # of pages */
1014 	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
1015 
1016 	/* 2. set memory high address bits 23:8 */
1017 	index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);
1018 
1019 	/* 3. set memory low address bits 23:8 */
1020 	index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);
1021 
1022 	/* 4.  interrupt when complete, burst len = 64 bytes*/
1023 	index_addr(denali, mode | 0x14000, 0x2400);
1024 }
1025 
1026 /* writes a page. user specifies type, and this function handles the
1027  * configuration details. */
write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,bool raw_xfer)1028 static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
1029 			const uint8_t *buf, bool raw_xfer)
1030 {
1031 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1032 
1033 	dma_addr_t addr = denali->buf.dma_buf;
1034 	size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1035 
1036 	uint32_t irq_status = 0;
1037 	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
1038 						INTR_STATUS__PROGRAM_FAIL;
1039 
1040 	/* if it is a raw xfer, we want to disable ecc, and send
1041 	 * the spare area.
1042 	 * !raw_xfer - enable ecc
1043 	 * raw_xfer - transfer spare
1044 	 */
1045 	setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
1046 
1047 	/* copy buffer into DMA buffer */
1048 	memcpy(denali->buf.buf, buf, mtd->writesize);
1049 
1050 	if (raw_xfer) {
1051 		/* transfer the data to the spare area */
1052 		memcpy(denali->buf.buf + mtd->writesize,
1053 			chip->oob_poi,
1054 			mtd->oobsize);
1055 	}
1056 
1057 	dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
1058 
1059 	clear_interrupts(denali);
1060 	denali_enable_dma(denali, true);
1061 
1062 	denali_setup_dma(denali, DENALI_WRITE);
1063 
1064 	/* wait for operation to complete */
1065 	irq_status = wait_for_irq(denali, irq_mask);
1066 
1067 	if (irq_status == 0) {
1068 		dev_err(denali->dev,
1069 				"timeout on write_page (type = %d)\n",
1070 				raw_xfer);
1071 		denali->status =
1072 			(irq_status & INTR_STATUS__PROGRAM_FAIL) ?
1073 			NAND_STATUS_FAIL : PASS;
1074 	}
1075 
1076 	denali_enable_dma(denali, false);
1077 	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
1078 }
1079 
1080 /* NAND core entry points */
1081 
1082 /* this is the callback that the NAND core calls to write a page. Since
1083  * writing a page with ECC or without is similar, all the work is done
1084  * by write_page above.
1085  * */
denali_write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf)1086 static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1087 				const uint8_t *buf)
1088 {
1089 	/* for regular page writes, we let HW handle all the ECC
1090 	 * data written to the device. */
1091 	write_page(mtd, chip, buf, false);
1092 }
1093 
1094 /* This is the callback that the NAND core calls to write a page without ECC.
1095  * raw access is similar to ECC page writes, so all the work is done in the
1096  * write_page() function above.
1097  */
denali_write_page_raw(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf)1098 static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1099 					const uint8_t *buf)
1100 {
1101 	/* for raw page writes, we want to disable ECC and simply write
1102 	   whatever data is in the buffer. */
1103 	write_page(mtd, chip, buf, true);
1104 }
1105 
denali_write_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)1106 static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1107 			    int page)
1108 {
1109 	return write_oob_data(mtd, chip->oob_poi, page);
1110 }
1111 
denali_read_oob(struct mtd_info * mtd,struct nand_chip * chip,int page,int sndcmd)1112 static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1113 			   int page, int sndcmd)
1114 {
1115 	read_oob_data(mtd, chip->oob_poi, page);
1116 
1117 	return 0; /* notify NAND core to send command to
1118 			   NAND device. */
1119 }
1120 
denali_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int page)1121 static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1122 			    uint8_t *buf, int page)
1123 {
1124 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1125 
1126 	dma_addr_t addr = denali->buf.dma_buf;
1127 	size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1128 
1129 	uint32_t irq_status = 0;
1130 	uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE |
1131 			    INTR_STATUS__ECC_ERR;
1132 	bool check_erased_page = false;
1133 
1134 	if (page != denali->page) {
1135 		dev_err(denali->dev, "IN %s: page %d is not"
1136 				" equal to denali->page %d, investigate!!",
1137 				__func__, page, denali->page);
1138 		BUG();
1139 	}
1140 
1141 	setup_ecc_for_xfer(denali, true, false);
1142 
1143 	denali_enable_dma(denali, true);
1144 	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1145 
1146 	clear_interrupts(denali);
1147 	denali_setup_dma(denali, DENALI_READ);
1148 
1149 	/* wait for operation to complete */
1150 	irq_status = wait_for_irq(denali, irq_mask);
1151 
1152 	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1153 
1154 	memcpy(buf, denali->buf.buf, mtd->writesize);
1155 
1156 	check_erased_page = handle_ecc(denali, buf, irq_status);
1157 	denali_enable_dma(denali, false);
1158 
1159 	if (check_erased_page) {
1160 		read_oob_data(&denali->mtd, chip->oob_poi, denali->page);
1161 
1162 		/* check ECC failures that may have occurred on erased pages */
1163 		if (check_erased_page) {
1164 			if (!is_erased(buf, denali->mtd.writesize))
1165 				denali->mtd.ecc_stats.failed++;
1166 			if (!is_erased(buf, denali->mtd.oobsize))
1167 				denali->mtd.ecc_stats.failed++;
1168 		}
1169 	}
1170 	return 0;
1171 }
1172 
denali_read_page_raw(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int page)1173 static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1174 				uint8_t *buf, int page)
1175 {
1176 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1177 
1178 	dma_addr_t addr = denali->buf.dma_buf;
1179 	size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1180 
1181 	uint32_t irq_status = 0;
1182 	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
1183 
1184 	if (page != denali->page) {
1185 		dev_err(denali->dev, "IN %s: page %d is not"
1186 				" equal to denali->page %d, investigate!!",
1187 				__func__, page, denali->page);
1188 		BUG();
1189 	}
1190 
1191 	setup_ecc_for_xfer(denali, false, true);
1192 	denali_enable_dma(denali, true);
1193 
1194 	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1195 
1196 	clear_interrupts(denali);
1197 	denali_setup_dma(denali, DENALI_READ);
1198 
1199 	/* wait for operation to complete */
1200 	irq_status = wait_for_irq(denali, irq_mask);
1201 
1202 	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1203 
1204 	denali_enable_dma(denali, false);
1205 
1206 	memcpy(buf, denali->buf.buf, mtd->writesize);
1207 	memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
1208 
1209 	return 0;
1210 }
1211 
denali_read_byte(struct mtd_info * mtd)1212 static uint8_t denali_read_byte(struct mtd_info *mtd)
1213 {
1214 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1215 	uint8_t result = 0xff;
1216 
1217 	if (denali->buf.head < denali->buf.tail)
1218 		result = denali->buf.buf[denali->buf.head++];
1219 
1220 	return result;
1221 }
1222 
denali_select_chip(struct mtd_info * mtd,int chip)1223 static void denali_select_chip(struct mtd_info *mtd, int chip)
1224 {
1225 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1226 
1227 	spin_lock_irq(&denali->irq_lock);
1228 	denali->flash_bank = chip;
1229 	spin_unlock_irq(&denali->irq_lock);
1230 }
1231 
denali_waitfunc(struct mtd_info * mtd,struct nand_chip * chip)1232 static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
1233 {
1234 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1235 	int status = denali->status;
1236 	denali->status = 0;
1237 
1238 	return status;
1239 }
1240 
denali_erase(struct mtd_info * mtd,int page)1241 static void denali_erase(struct mtd_info *mtd, int page)
1242 {
1243 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1244 
1245 	uint32_t cmd = 0x0, irq_status = 0;
1246 
1247 	/* clear interrupts */
1248 	clear_interrupts(denali);
1249 
1250 	/* setup page read request for access type */
1251 	cmd = MODE_10 | BANK(denali->flash_bank) | page;
1252 	index_addr(denali, (uint32_t)cmd, 0x1);
1253 
1254 	/* wait for erase to complete or failure to occur */
1255 	irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
1256 					INTR_STATUS__ERASE_FAIL);
1257 
1258 	denali->status = (irq_status & INTR_STATUS__ERASE_FAIL) ?
1259 						NAND_STATUS_FAIL : PASS;
1260 }
1261 
denali_cmdfunc(struct mtd_info * mtd,unsigned int cmd,int col,int page)1262 static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1263 			   int page)
1264 {
1265 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1266 	uint32_t addr, id;
1267 	int i;
1268 
1269 	switch (cmd) {
1270 	case NAND_CMD_PAGEPROG:
1271 		break;
1272 	case NAND_CMD_STATUS:
1273 		read_status(denali);
1274 		break;
1275 	case NAND_CMD_READID:
1276 	case NAND_CMD_PARAM:
1277 		reset_buf(denali);
1278 		/*sometimes ManufactureId read from register is not right
1279 		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
1280 		 * So here we send READID cmd to NAND insteand
1281 		 * */
1282 		addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
1283 		index_addr(denali, (uint32_t)addr | 0, 0x90);
1284 		index_addr(denali, (uint32_t)addr | 1, 0);
1285 		for (i = 0; i < 5; i++) {
1286 			index_addr_read_data(denali,
1287 						(uint32_t)addr | 2,
1288 						&id);
1289 			write_byte_to_buf(denali, id);
1290 		}
1291 		break;
1292 	case NAND_CMD_READ0:
1293 	case NAND_CMD_SEQIN:
1294 		denali->page = page;
1295 		break;
1296 	case NAND_CMD_RESET:
1297 		reset_bank(denali);
1298 		break;
1299 	case NAND_CMD_READOOB:
1300 		/* TODO: Read OOB data */
1301 		break;
1302 	default:
1303 		printk(KERN_ERR ": unsupported command"
1304 				" received 0x%x\n", cmd);
1305 		break;
1306 	}
1307 }
1308 
1309 /* stubs for ECC functions not used by the NAND core */
denali_ecc_calculate(struct mtd_info * mtd,const uint8_t * data,uint8_t * ecc_code)1310 static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
1311 				uint8_t *ecc_code)
1312 {
1313 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1314 	dev_err(denali->dev,
1315 			"denali_ecc_calculate called unexpectedly\n");
1316 	BUG();
1317 	return -EIO;
1318 }
1319 
denali_ecc_correct(struct mtd_info * mtd,uint8_t * data,uint8_t * read_ecc,uint8_t * calc_ecc)1320 static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
1321 				uint8_t *read_ecc, uint8_t *calc_ecc)
1322 {
1323 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1324 	dev_err(denali->dev,
1325 			"denali_ecc_correct called unexpectedly\n");
1326 	BUG();
1327 	return -EIO;
1328 }
1329 
denali_ecc_hwctl(struct mtd_info * mtd,int mode)1330 static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
1331 {
1332 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1333 	dev_err(denali->dev,
1334 			"denali_ecc_hwctl called unexpectedly\n");
1335 	BUG();
1336 }
1337 /* end NAND core entry points */
1338 
1339 /* Initialization code to bring the device up to a known good state */
denali_hw_init(struct denali_nand_info * denali)1340 static void denali_hw_init(struct denali_nand_info *denali)
1341 {
1342 	/* tell driver how many bit controller will skip before
1343 	 * writing ECC code in OOB, this register may be already
1344 	 * set by firmware. So we read this value out.
1345 	 * if this value is 0, just let it be.
1346 	 * */
1347 	denali->bbtskipbytes = ioread32(denali->flash_reg +
1348 						SPARE_AREA_SKIP_BYTES);
1349 	detect_max_banks(denali);
1350 	denali_nand_reset(denali);
1351 	iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
1352 	iowrite32(CHIP_EN_DONT_CARE__FLAG,
1353 			denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1354 
1355 	iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1356 
1357 	/* Should set value for these registers when init */
1358 	iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
1359 	iowrite32(1, denali->flash_reg + ECC_ENABLE);
1360 	denali_nand_timing_set(denali);
1361 	denali_irq_init(denali);
1362 }
1363 
1364 /* Althogh controller spec said SLC ECC is forceb to be 4bit,
1365  * but denali controller in MRST only support 15bit and 8bit ECC
1366  * correction
1367  * */
1368 #define ECC_8BITS	14
1369 static struct nand_ecclayout nand_8bit_oob = {
1370 	.eccbytes = 14,
1371 };
1372 
1373 #define ECC_15BITS	26
1374 static struct nand_ecclayout nand_15bit_oob = {
1375 	.eccbytes = 26,
1376 };
1377 
1378 static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
1379 static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
1380 
1381 static struct nand_bbt_descr bbt_main_descr = {
1382 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1383 		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1384 	.offs =	8,
1385 	.len = 4,
1386 	.veroffs = 12,
1387 	.maxblocks = 4,
1388 	.pattern = bbt_pattern,
1389 };
1390 
1391 static struct nand_bbt_descr bbt_mirror_descr = {
1392 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1393 		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1394 	.offs =	8,
1395 	.len = 4,
1396 	.veroffs = 12,
1397 	.maxblocks = 4,
1398 	.pattern = mirror_pattern,
1399 };
1400 
1401 /* initialize driver data structures */
denali_drv_init(struct denali_nand_info * denali)1402 void denali_drv_init(struct denali_nand_info *denali)
1403 {
1404 	denali->idx = 0;
1405 
1406 	/* setup interrupt handler */
1407 	/* the completion object will be used to notify
1408 	 * the callee that the interrupt is done */
1409 	init_completion(&denali->complete);
1410 
1411 	/* the spinlock will be used to synchronize the ISR
1412 	 * with any element that might be access shared
1413 	 * data (interrupt status) */
1414 	spin_lock_init(&denali->irq_lock);
1415 
1416 	/* indicate that MTD has not selected a valid bank yet */
1417 	denali->flash_bank = CHIP_SELECT_INVALID;
1418 
1419 	/* initialize our irq_status variable to indicate no interrupts */
1420 	denali->irq_status = 0;
1421 }
1422 
1423 /* driver entry point */
denali_pci_probe(struct pci_dev * dev,const struct pci_device_id * id)1424 static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
1425 {
1426 	int ret = -ENODEV;
1427 	resource_size_t csr_base, mem_base;
1428 	unsigned long csr_len, mem_len;
1429 	struct denali_nand_info *denali;
1430 
1431 	denali = kzalloc(sizeof(*denali), GFP_KERNEL);
1432 	if (!denali)
1433 		return -ENOMEM;
1434 
1435 	ret = pci_enable_device(dev);
1436 	if (ret) {
1437 		printk(KERN_ERR "Spectra: pci_enable_device failed.\n");
1438 		goto failed_alloc_memery;
1439 	}
1440 
1441 	if (id->driver_data == INTEL_CE4100) {
1442 		/* Due to a silicon limitation, we can only support
1443 		 * ONFI timing mode 1 and below.
1444 		 */
1445 		if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1446 			printk(KERN_ERR "Intel CE4100 only supports"
1447 					" ONFI timing mode 1 or below\n");
1448 			ret = -EINVAL;
1449 			goto failed_enable_dev;
1450 		}
1451 		denali->platform = INTEL_CE4100;
1452 		mem_base = pci_resource_start(dev, 0);
1453 		mem_len = pci_resource_len(dev, 1);
1454 		csr_base = pci_resource_start(dev, 1);
1455 		csr_len = pci_resource_len(dev, 1);
1456 	} else {
1457 		denali->platform = INTEL_MRST;
1458 		csr_base = pci_resource_start(dev, 0);
1459 		csr_len = pci_resource_len(dev, 0);
1460 		mem_base = pci_resource_start(dev, 1);
1461 		mem_len = pci_resource_len(dev, 1);
1462 		if (!mem_len) {
1463 			mem_base = csr_base + csr_len;
1464 			mem_len = csr_len;
1465 		}
1466 	}
1467 
1468 	/* Is 32-bit DMA supported? */
1469 	ret = dma_set_mask(&dev->dev, DMA_BIT_MASK(32));
1470 	if (ret) {
1471 		printk(KERN_ERR "Spectra: no usable DMA configuration\n");
1472 		goto failed_enable_dev;
1473 	}
1474 	denali->buf.dma_buf = dma_map_single(&dev->dev, denali->buf.buf,
1475 					     DENALI_BUF_SIZE,
1476 					     DMA_BIDIRECTIONAL);
1477 
1478 	if (dma_mapping_error(&dev->dev, denali->buf.dma_buf)) {
1479 		dev_err(&dev->dev, "Spectra: failed to map DMA buffer\n");
1480 		goto failed_enable_dev;
1481 	}
1482 
1483 	pci_set_master(dev);
1484 	denali->dev = &dev->dev;
1485 	denali->mtd.dev.parent = &dev->dev;
1486 
1487 	ret = pci_request_regions(dev, DENALI_NAND_NAME);
1488 	if (ret) {
1489 		printk(KERN_ERR "Spectra: Unable to request memory regions\n");
1490 		goto failed_dma_map;
1491 	}
1492 
1493 	denali->flash_reg = ioremap_nocache(csr_base, csr_len);
1494 	if (!denali->flash_reg) {
1495 		printk(KERN_ERR "Spectra: Unable to remap memory region\n");
1496 		ret = -ENOMEM;
1497 		goto failed_req_regions;
1498 	}
1499 
1500 	denali->flash_mem = ioremap_nocache(mem_base, mem_len);
1501 	if (!denali->flash_mem) {
1502 		printk(KERN_ERR "Spectra: ioremap_nocache failed!");
1503 		ret = -ENOMEM;
1504 		goto failed_remap_reg;
1505 	}
1506 
1507 	denali_hw_init(denali);
1508 	denali_drv_init(denali);
1509 
1510 	/* denali_isr register is done after all the hardware
1511 	 * initilization is finished*/
1512 	if (request_irq(dev->irq, denali_isr, IRQF_SHARED,
1513 			DENALI_NAND_NAME, denali)) {
1514 		printk(KERN_ERR "Spectra: Unable to allocate IRQ\n");
1515 		ret = -ENODEV;
1516 		goto failed_remap_mem;
1517 	}
1518 
1519 	/* now that our ISR is registered, we can enable interrupts */
1520 	denali_set_intr_modes(denali, true);
1521 
1522 	pci_set_drvdata(dev, denali);
1523 
1524 	denali->mtd.name = "denali-nand";
1525 	denali->mtd.owner = THIS_MODULE;
1526 	denali->mtd.priv = &denali->nand;
1527 
1528 	/* register the driver with the NAND core subsystem */
1529 	denali->nand.select_chip = denali_select_chip;
1530 	denali->nand.cmdfunc = denali_cmdfunc;
1531 	denali->nand.read_byte = denali_read_byte;
1532 	denali->nand.waitfunc = denali_waitfunc;
1533 
1534 	/* scan for NAND devices attached to the controller
1535 	 * this is the first stage in a two step process to register
1536 	 * with the nand subsystem */
1537 	if (nand_scan_ident(&denali->mtd, denali->max_banks, NULL)) {
1538 		ret = -ENXIO;
1539 		goto failed_req_irq;
1540 	}
1541 
1542 	/* MTD supported page sizes vary by kernel. We validate our
1543 	 * kernel supports the device here.
1544 	 */
1545 	if (denali->mtd.writesize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) {
1546 		ret = -ENODEV;
1547 		printk(KERN_ERR "Spectra: device size not supported by this "
1548 			"version of MTD.");
1549 		goto failed_req_irq;
1550 	}
1551 
1552 	/* support for multi nand
1553 	 * MTD known nothing about multi nand,
1554 	 * so we should tell it the real pagesize
1555 	 * and anything necessery
1556 	 */
1557 	denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
1558 	denali->nand.chipsize <<= (denali->devnum - 1);
1559 	denali->nand.page_shift += (denali->devnum - 1);
1560 	denali->nand.pagemask = (denali->nand.chipsize >>
1561 						denali->nand.page_shift) - 1;
1562 	denali->nand.bbt_erase_shift += (denali->devnum - 1);
1563 	denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
1564 	denali->nand.chip_shift += (denali->devnum - 1);
1565 	denali->mtd.writesize <<= (denali->devnum - 1);
1566 	denali->mtd.oobsize <<= (denali->devnum - 1);
1567 	denali->mtd.erasesize <<= (denali->devnum - 1);
1568 	denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
1569 	denali->bbtskipbytes *= denali->devnum;
1570 
1571 	/* second stage of the NAND scan
1572 	 * this stage requires information regarding ECC and
1573 	 * bad block management. */
1574 
1575 	/* Bad block management */
1576 	denali->nand.bbt_td = &bbt_main_descr;
1577 	denali->nand.bbt_md = &bbt_mirror_descr;
1578 
1579 	/* skip the scan for now until we have OOB read and write support */
1580 	denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
1581 	denali->nand.options |= NAND_SKIP_BBTSCAN;
1582 	denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
1583 
1584 	/* Denali Controller only support 15bit and 8bit ECC in MRST,
1585 	 * so just let controller do 15bit ECC for MLC and 8bit ECC for
1586 	 * SLC if possible.
1587 	 * */
1588 	if (denali->nand.cellinfo & 0xc &&
1589 			(denali->mtd.oobsize > (denali->bbtskipbytes +
1590 			ECC_15BITS * (denali->mtd.writesize /
1591 			ECC_SECTOR_SIZE)))) {
1592 		/* if MLC OOB size is large enough, use 15bit ECC*/
1593 		denali->nand.ecc.layout = &nand_15bit_oob;
1594 		denali->nand.ecc.bytes = ECC_15BITS;
1595 		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
1596 	} else if (denali->mtd.oobsize < (denali->bbtskipbytes +
1597 			ECC_8BITS * (denali->mtd.writesize /
1598 			ECC_SECTOR_SIZE))) {
1599 		printk(KERN_ERR "Your NAND chip OOB is not large enough to"
1600 				" contain 8bit ECC correction codes");
1601 		goto failed_req_irq;
1602 	} else {
1603 		denali->nand.ecc.layout = &nand_8bit_oob;
1604 		denali->nand.ecc.bytes = ECC_8BITS;
1605 		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
1606 	}
1607 
1608 	denali->nand.ecc.bytes *= denali->devnum;
1609 	denali->nand.ecc.layout->eccbytes *=
1610 		denali->mtd.writesize / ECC_SECTOR_SIZE;
1611 	denali->nand.ecc.layout->oobfree[0].offset =
1612 		denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
1613 	denali->nand.ecc.layout->oobfree[0].length =
1614 		denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
1615 		denali->bbtskipbytes;
1616 
1617 	/* Let driver know the total blocks number and
1618 	 * how many blocks contained by each nand chip.
1619 	 * blksperchip will help driver to know how many
1620 	 * blocks is taken by FW.
1621 	 * */
1622 	denali->totalblks = denali->mtd.size >>
1623 				denali->nand.phys_erase_shift;
1624 	denali->blksperchip = denali->totalblks / denali->nand.numchips;
1625 
1626 	/* These functions are required by the NAND core framework, otherwise,
1627 	 * the NAND core will assert. However, we don't need them, so we'll stub
1628 	 * them out. */
1629 	denali->nand.ecc.calculate = denali_ecc_calculate;
1630 	denali->nand.ecc.correct = denali_ecc_correct;
1631 	denali->nand.ecc.hwctl = denali_ecc_hwctl;
1632 
1633 	/* override the default read operations */
1634 	denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
1635 	denali->nand.ecc.read_page = denali_read_page;
1636 	denali->nand.ecc.read_page_raw = denali_read_page_raw;
1637 	denali->nand.ecc.write_page = denali_write_page;
1638 	denali->nand.ecc.write_page_raw = denali_write_page_raw;
1639 	denali->nand.ecc.read_oob = denali_read_oob;
1640 	denali->nand.ecc.write_oob = denali_write_oob;
1641 	denali->nand.erase_cmd = denali_erase;
1642 
1643 	if (nand_scan_tail(&denali->mtd)) {
1644 		ret = -ENXIO;
1645 		goto failed_req_irq;
1646 	}
1647 
1648 	ret = mtd_device_register(&denali->mtd, NULL, 0);
1649 	if (ret) {
1650 		dev_err(&dev->dev, "Spectra: Failed to register MTD: %d\n",
1651 				ret);
1652 		goto failed_req_irq;
1653 	}
1654 	return 0;
1655 
1656 failed_req_irq:
1657 	denali_irq_cleanup(dev->irq, denali);
1658 failed_remap_mem:
1659 	iounmap(denali->flash_mem);
1660 failed_remap_reg:
1661 	iounmap(denali->flash_reg);
1662 failed_req_regions:
1663 	pci_release_regions(dev);
1664 failed_dma_map:
1665 	dma_unmap_single(&dev->dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
1666 			 DMA_BIDIRECTIONAL);
1667 failed_enable_dev:
1668 	pci_disable_device(dev);
1669 failed_alloc_memery:
1670 	kfree(denali);
1671 	return ret;
1672 }
1673 
1674 /* driver exit point */
denali_pci_remove(struct pci_dev * dev)1675 static void denali_pci_remove(struct pci_dev *dev)
1676 {
1677 	struct denali_nand_info *denali = pci_get_drvdata(dev);
1678 
1679 	nand_release(&denali->mtd);
1680 
1681 	denali_irq_cleanup(dev->irq, denali);
1682 
1683 	iounmap(denali->flash_reg);
1684 	iounmap(denali->flash_mem);
1685 	pci_release_regions(dev);
1686 	pci_disable_device(dev);
1687 	dma_unmap_single(&dev->dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
1688 			 DMA_BIDIRECTIONAL);
1689 	pci_set_drvdata(dev, NULL);
1690 	kfree(denali);
1691 }
1692 
1693 MODULE_DEVICE_TABLE(pci, denali_pci_ids);
1694 
1695 static struct pci_driver denali_pci_driver = {
1696 	.name = DENALI_NAND_NAME,
1697 	.id_table = denali_pci_ids,
1698 	.probe = denali_pci_probe,
1699 	.remove = denali_pci_remove,
1700 };
1701 
denali_init(void)1702 static int __devinit denali_init(void)
1703 {
1704 	printk(KERN_INFO "Spectra MTD driver\n");
1705 	return pci_register_driver(&denali_pci_driver);
1706 }
1707 
1708 /* Free memory */
denali_exit(void)1709 static void __devexit denali_exit(void)
1710 {
1711 	pci_unregister_driver(&denali_pci_driver);
1712 }
1713 
1714 module_init(denali_init);
1715 module_exit(denali_exit);
1716