1 /*
2  *  Copyright (C) 2003 Rick Bronson
3  *
4  *  Derived from drivers/mtd/nand/autcpu12.c
5  *	 Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de)
6  *
7  *  Derived from drivers/mtd/spia.c
8  *	 Copyright (C) 2000 Steven J. Hill (sjhill@cotw.com)
9  *
10  *
11  *  Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
12  *     Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright (C) 2007
13  *
14  *     Derived from Das U-Boot source code
15  *     		(u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
16  *     (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
17  *
18  *
19  * This program is free software; you can redistribute it and/or modify
20  * it under the terms of the GNU General Public License version 2 as
21  * published by the Free Software Foundation.
22  *
23  */
24 
25 #include <linux/dma-mapping.h>
26 #include <linux/slab.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/platform_device.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/nand.h>
32 #include <linux/mtd/partitions.h>
33 
34 #include <linux/dmaengine.h>
35 #include <linux/gpio.h>
36 #include <linux/io.h>
37 
38 #include <mach/board.h>
39 #include <mach/cpu.h>
40 
41 #ifdef CONFIG_MTD_NAND_ATMEL_ECC_HW
42 #define hard_ecc	1
43 #else
44 #define hard_ecc	0
45 #endif
46 
47 #ifdef CONFIG_MTD_NAND_ATMEL_ECC_NONE
48 #define no_ecc		1
49 #else
50 #define no_ecc		0
51 #endif
52 
53 static int use_dma = 1;
54 module_param(use_dma, int, 0);
55 
56 static int on_flash_bbt = 0;
57 module_param(on_flash_bbt, int, 0);
58 
59 /* Register access macros */
60 #define ecc_readl(add, reg)				\
61 	__raw_readl(add + ATMEL_ECC_##reg)
62 #define ecc_writel(add, reg, value)			\
63 	__raw_writel((value), add + ATMEL_ECC_##reg)
64 
65 #include "atmel_nand_ecc.h"	/* Hardware ECC registers */
66 
67 /* oob layout for large page size
68  * bad block info is on bytes 0 and 1
69  * the bytes have to be consecutives to avoid
70  * several NAND_CMD_RNDOUT during read
71  */
72 static struct nand_ecclayout atmel_oobinfo_large = {
73 	.eccbytes = 4,
74 	.eccpos = {60, 61, 62, 63},
75 	.oobfree = {
76 		{2, 58}
77 	},
78 };
79 
80 /* oob layout for small page size
81  * bad block info is on bytes 4 and 5
82  * the bytes have to be consecutives to avoid
83  * several NAND_CMD_RNDOUT during read
84  */
85 static struct nand_ecclayout atmel_oobinfo_small = {
86 	.eccbytes = 4,
87 	.eccpos = {0, 1, 2, 3},
88 	.oobfree = {
89 		{6, 10}
90 	},
91 };
92 
93 struct atmel_nand_host {
94 	struct nand_chip	nand_chip;
95 	struct mtd_info		mtd;
96 	void __iomem		*io_base;
97 	dma_addr_t		io_phys;
98 	struct atmel_nand_data	*board;
99 	struct device		*dev;
100 	void __iomem		*ecc;
101 
102 	struct completion	comp;
103 	struct dma_chan		*dma_chan;
104 };
105 
cpu_has_dma(void)106 static int cpu_has_dma(void)
107 {
108 	return cpu_is_at91sam9rl() || cpu_is_at91sam9g45();
109 }
110 
111 /*
112  * Enable NAND.
113  */
atmel_nand_enable(struct atmel_nand_host * host)114 static void atmel_nand_enable(struct atmel_nand_host *host)
115 {
116 	if (gpio_is_valid(host->board->enable_pin))
117 		gpio_set_value(host->board->enable_pin, 0);
118 }
119 
120 /*
121  * Disable NAND.
122  */
atmel_nand_disable(struct atmel_nand_host * host)123 static void atmel_nand_disable(struct atmel_nand_host *host)
124 {
125 	if (gpio_is_valid(host->board->enable_pin))
126 		gpio_set_value(host->board->enable_pin, 1);
127 }
128 
129 /*
130  * Hardware specific access to control-lines
131  */
atmel_nand_cmd_ctrl(struct mtd_info * mtd,int cmd,unsigned int ctrl)132 static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
133 {
134 	struct nand_chip *nand_chip = mtd->priv;
135 	struct atmel_nand_host *host = nand_chip->priv;
136 
137 	if (ctrl & NAND_CTRL_CHANGE) {
138 		if (ctrl & NAND_NCE)
139 			atmel_nand_enable(host);
140 		else
141 			atmel_nand_disable(host);
142 	}
143 	if (cmd == NAND_CMD_NONE)
144 		return;
145 
146 	if (ctrl & NAND_CLE)
147 		writeb(cmd, host->io_base + (1 << host->board->cle));
148 	else
149 		writeb(cmd, host->io_base + (1 << host->board->ale));
150 }
151 
152 /*
153  * Read the Device Ready pin.
154  */
atmel_nand_device_ready(struct mtd_info * mtd)155 static int atmel_nand_device_ready(struct mtd_info *mtd)
156 {
157 	struct nand_chip *nand_chip = mtd->priv;
158 	struct atmel_nand_host *host = nand_chip->priv;
159 
160 	return gpio_get_value(host->board->rdy_pin) ^
161                 !!host->board->rdy_pin_active_low;
162 }
163 
164 /*
165  * Minimal-overhead PIO for data access.
166  */
atmel_read_buf8(struct mtd_info * mtd,u8 * buf,int len)167 static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len)
168 {
169 	struct nand_chip	*nand_chip = mtd->priv;
170 
171 	__raw_readsb(nand_chip->IO_ADDR_R, buf, len);
172 }
173 
atmel_read_buf16(struct mtd_info * mtd,u8 * buf,int len)174 static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len)
175 {
176 	struct nand_chip	*nand_chip = mtd->priv;
177 
178 	__raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2);
179 }
180 
atmel_write_buf8(struct mtd_info * mtd,const u8 * buf,int len)181 static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len)
182 {
183 	struct nand_chip	*nand_chip = mtd->priv;
184 
185 	__raw_writesb(nand_chip->IO_ADDR_W, buf, len);
186 }
187 
atmel_write_buf16(struct mtd_info * mtd,const u8 * buf,int len)188 static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len)
189 {
190 	struct nand_chip	*nand_chip = mtd->priv;
191 
192 	__raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2);
193 }
194 
dma_complete_func(void * completion)195 static void dma_complete_func(void *completion)
196 {
197 	complete(completion);
198 }
199 
atmel_nand_dma_op(struct mtd_info * mtd,void * buf,int len,int is_read)200 static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len,
201 			       int is_read)
202 {
203 	struct dma_device *dma_dev;
204 	enum dma_ctrl_flags flags;
205 	dma_addr_t dma_src_addr, dma_dst_addr, phys_addr;
206 	struct dma_async_tx_descriptor *tx = NULL;
207 	dma_cookie_t cookie;
208 	struct nand_chip *chip = mtd->priv;
209 	struct atmel_nand_host *host = chip->priv;
210 	void *p = buf;
211 	int err = -EIO;
212 	enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
213 
214 	if (buf >= high_memory)
215 		goto err_buf;
216 
217 	dma_dev = host->dma_chan->device;
218 
219 	flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT | DMA_COMPL_SKIP_SRC_UNMAP |
220 		DMA_COMPL_SKIP_DEST_UNMAP;
221 
222 	phys_addr = dma_map_single(dma_dev->dev, p, len, dir);
223 	if (dma_mapping_error(dma_dev->dev, phys_addr)) {
224 		dev_err(host->dev, "Failed to dma_map_single\n");
225 		goto err_buf;
226 	}
227 
228 	if (is_read) {
229 		dma_src_addr = host->io_phys;
230 		dma_dst_addr = phys_addr;
231 	} else {
232 		dma_src_addr = phys_addr;
233 		dma_dst_addr = host->io_phys;
234 	}
235 
236 	tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr,
237 					     dma_src_addr, len, flags);
238 	if (!tx) {
239 		dev_err(host->dev, "Failed to prepare DMA memcpy\n");
240 		goto err_dma;
241 	}
242 
243 	init_completion(&host->comp);
244 	tx->callback = dma_complete_func;
245 	tx->callback_param = &host->comp;
246 
247 	cookie = tx->tx_submit(tx);
248 	if (dma_submit_error(cookie)) {
249 		dev_err(host->dev, "Failed to do DMA tx_submit\n");
250 		goto err_dma;
251 	}
252 
253 	dma_async_issue_pending(host->dma_chan);
254 	wait_for_completion(&host->comp);
255 
256 	err = 0;
257 
258 err_dma:
259 	dma_unmap_single(dma_dev->dev, phys_addr, len, dir);
260 err_buf:
261 	if (err != 0)
262 		dev_warn(host->dev, "Fall back to CPU I/O\n");
263 	return err;
264 }
265 
atmel_read_buf(struct mtd_info * mtd,u8 * buf,int len)266 static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len)
267 {
268 	struct nand_chip *chip = mtd->priv;
269 	struct atmel_nand_host *host = chip->priv;
270 
271 	if (use_dma && len > mtd->oobsize)
272 		/* only use DMA for bigger than oob size: better performances */
273 		if (atmel_nand_dma_op(mtd, buf, len, 1) == 0)
274 			return;
275 
276 	if (host->board->bus_width_16)
277 		atmel_read_buf16(mtd, buf, len);
278 	else
279 		atmel_read_buf8(mtd, buf, len);
280 }
281 
atmel_write_buf(struct mtd_info * mtd,const u8 * buf,int len)282 static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
283 {
284 	struct nand_chip *chip = mtd->priv;
285 	struct atmel_nand_host *host = chip->priv;
286 
287 	if (use_dma && len > mtd->oobsize)
288 		/* only use DMA for bigger than oob size: better performances */
289 		if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0)
290 			return;
291 
292 	if (host->board->bus_width_16)
293 		atmel_write_buf16(mtd, buf, len);
294 	else
295 		atmel_write_buf8(mtd, buf, len);
296 }
297 
298 /*
299  * Calculate HW ECC
300  *
301  * function called after a write
302  *
303  * mtd:        MTD block structure
304  * dat:        raw data (unused)
305  * ecc_code:   buffer for ECC
306  */
atmel_nand_calculate(struct mtd_info * mtd,const u_char * dat,unsigned char * ecc_code)307 static int atmel_nand_calculate(struct mtd_info *mtd,
308 		const u_char *dat, unsigned char *ecc_code)
309 {
310 	struct nand_chip *nand_chip = mtd->priv;
311 	struct atmel_nand_host *host = nand_chip->priv;
312 	unsigned int ecc_value;
313 
314 	/* get the first 2 ECC bytes */
315 	ecc_value = ecc_readl(host->ecc, PR);
316 
317 	ecc_code[0] = ecc_value & 0xFF;
318 	ecc_code[1] = (ecc_value >> 8) & 0xFF;
319 
320 	/* get the last 2 ECC bytes */
321 	ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY;
322 
323 	ecc_code[2] = ecc_value & 0xFF;
324 	ecc_code[3] = (ecc_value >> 8) & 0xFF;
325 
326 	return 0;
327 }
328 
329 /*
330  * HW ECC read page function
331  *
332  * mtd:        mtd info structure
333  * chip:       nand chip info structure
334  * buf:        buffer to store read data
335  */
atmel_nand_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int page)336 static int atmel_nand_read_page(struct mtd_info *mtd,
337 		struct nand_chip *chip, uint8_t *buf, int page)
338 {
339 	int eccsize = chip->ecc.size;
340 	int eccbytes = chip->ecc.bytes;
341 	uint32_t *eccpos = chip->ecc.layout->eccpos;
342 	uint8_t *p = buf;
343 	uint8_t *oob = chip->oob_poi;
344 	uint8_t *ecc_pos;
345 	int stat;
346 
347 	/*
348 	 * Errata: ALE is incorrectly wired up to the ECC controller
349 	 * on the AP7000, so it will include the address cycles in the
350 	 * ECC calculation.
351 	 *
352 	 * Workaround: Reset the parity registers before reading the
353 	 * actual data.
354 	 */
355 	if (cpu_is_at32ap7000()) {
356 		struct atmel_nand_host *host = chip->priv;
357 		ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
358 	}
359 
360 	/* read the page */
361 	chip->read_buf(mtd, p, eccsize);
362 
363 	/* move to ECC position if needed */
364 	if (eccpos[0] != 0) {
365 		/* This only works on large pages
366 		 * because the ECC controller waits for
367 		 * NAND_CMD_RNDOUTSTART after the
368 		 * NAND_CMD_RNDOUT.
369 		 * anyway, for small pages, the eccpos[0] == 0
370 		 */
371 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
372 				mtd->writesize + eccpos[0], -1);
373 	}
374 
375 	/* the ECC controller needs to read the ECC just after the data */
376 	ecc_pos = oob + eccpos[0];
377 	chip->read_buf(mtd, ecc_pos, eccbytes);
378 
379 	/* check if there's an error */
380 	stat = chip->ecc.correct(mtd, p, oob, NULL);
381 
382 	if (stat < 0)
383 		mtd->ecc_stats.failed++;
384 	else
385 		mtd->ecc_stats.corrected += stat;
386 
387 	/* get back to oob start (end of page) */
388 	chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
389 
390 	/* read the oob */
391 	chip->read_buf(mtd, oob, mtd->oobsize);
392 
393 	return 0;
394 }
395 
396 /*
397  * HW ECC Correction
398  *
399  * function called after a read
400  *
401  * mtd:        MTD block structure
402  * dat:        raw data read from the chip
403  * read_ecc:   ECC from the chip (unused)
404  * isnull:     unused
405  *
406  * Detect and correct a 1 bit error for a page
407  */
atmel_nand_correct(struct mtd_info * mtd,u_char * dat,u_char * read_ecc,u_char * isnull)408 static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
409 		u_char *read_ecc, u_char *isnull)
410 {
411 	struct nand_chip *nand_chip = mtd->priv;
412 	struct atmel_nand_host *host = nand_chip->priv;
413 	unsigned int ecc_status;
414 	unsigned int ecc_word, ecc_bit;
415 
416 	/* get the status from the Status Register */
417 	ecc_status = ecc_readl(host->ecc, SR);
418 
419 	/* if there's no error */
420 	if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
421 		return 0;
422 
423 	/* get error bit offset (4 bits) */
424 	ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR;
425 	/* get word address (12 bits) */
426 	ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR;
427 	ecc_word >>= 4;
428 
429 	/* if there are multiple errors */
430 	if (ecc_status & ATMEL_ECC_MULERR) {
431 		/* check if it is a freshly erased block
432 		 * (filled with 0xff) */
433 		if ((ecc_bit == ATMEL_ECC_BITADDR)
434 				&& (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
435 			/* the block has just been erased, return OK */
436 			return 0;
437 		}
438 		/* it doesn't seems to be a freshly
439 		 * erased block.
440 		 * We can't correct so many errors */
441 		dev_dbg(host->dev, "atmel_nand : multiple errors detected."
442 				" Unable to correct.\n");
443 		return -EIO;
444 	}
445 
446 	/* if there's a single bit error : we can correct it */
447 	if (ecc_status & ATMEL_ECC_ECCERR) {
448 		/* there's nothing much to do here.
449 		 * the bit error is on the ECC itself.
450 		 */
451 		dev_dbg(host->dev, "atmel_nand : one bit error on ECC code."
452 				" Nothing to correct\n");
453 		return 0;
454 	}
455 
456 	dev_dbg(host->dev, "atmel_nand : one bit error on data."
457 			" (word offset in the page :"
458 			" 0x%x bit offset : 0x%x)\n",
459 			ecc_word, ecc_bit);
460 	/* correct the error */
461 	if (nand_chip->options & NAND_BUSWIDTH_16) {
462 		/* 16 bits words */
463 		((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
464 	} else {
465 		/* 8 bits words */
466 		dat[ecc_word] ^= (1 << ecc_bit);
467 	}
468 	dev_dbg(host->dev, "atmel_nand : error corrected\n");
469 	return 1;
470 }
471 
472 /*
473  * Enable HW ECC : unused on most chips
474  */
atmel_nand_hwctl(struct mtd_info * mtd,int mode)475 static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
476 {
477 	if (cpu_is_at32ap7000()) {
478 		struct nand_chip *nand_chip = mtd->priv;
479 		struct atmel_nand_host *host = nand_chip->priv;
480 		ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
481 	}
482 }
483 
484 /*
485  * Probe for the NAND device.
486  */
atmel_nand_probe(struct platform_device * pdev)487 static int __init atmel_nand_probe(struct platform_device *pdev)
488 {
489 	struct atmel_nand_host *host;
490 	struct mtd_info *mtd;
491 	struct nand_chip *nand_chip;
492 	struct resource *regs;
493 	struct resource *mem;
494 	int res;
495 
496 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
497 	if (!mem) {
498 		printk(KERN_ERR "atmel_nand: can't get I/O resource mem\n");
499 		return -ENXIO;
500 	}
501 
502 	/* Allocate memory for the device structure (and zero it) */
503 	host = kzalloc(sizeof(struct atmel_nand_host), GFP_KERNEL);
504 	if (!host) {
505 		printk(KERN_ERR "atmel_nand: failed to allocate device structure.\n");
506 		return -ENOMEM;
507 	}
508 
509 	host->io_phys = (dma_addr_t)mem->start;
510 
511 	host->io_base = ioremap(mem->start, resource_size(mem));
512 	if (host->io_base == NULL) {
513 		printk(KERN_ERR "atmel_nand: ioremap failed\n");
514 		res = -EIO;
515 		goto err_nand_ioremap;
516 	}
517 
518 	mtd = &host->mtd;
519 	nand_chip = &host->nand_chip;
520 	host->board = pdev->dev.platform_data;
521 	host->dev = &pdev->dev;
522 
523 	nand_chip->priv = host;		/* link the private data structures */
524 	mtd->priv = nand_chip;
525 	mtd->owner = THIS_MODULE;
526 
527 	/* Set address of NAND IO lines */
528 	nand_chip->IO_ADDR_R = host->io_base;
529 	nand_chip->IO_ADDR_W = host->io_base;
530 	nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl;
531 
532 	if (gpio_is_valid(host->board->rdy_pin))
533 		nand_chip->dev_ready = atmel_nand_device_ready;
534 
535 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
536 	if (!regs && hard_ecc) {
537 		printk(KERN_ERR "atmel_nand: can't get I/O resource "
538 				"regs\nFalling back on software ECC\n");
539 	}
540 
541 	nand_chip->ecc.mode = NAND_ECC_SOFT;	/* enable ECC */
542 	if (no_ecc)
543 		nand_chip->ecc.mode = NAND_ECC_NONE;
544 	if (hard_ecc && regs) {
545 		host->ecc = ioremap(regs->start, resource_size(regs));
546 		if (host->ecc == NULL) {
547 			printk(KERN_ERR "atmel_nand: ioremap failed\n");
548 			res = -EIO;
549 			goto err_ecc_ioremap;
550 		}
551 		nand_chip->ecc.mode = NAND_ECC_HW;
552 		nand_chip->ecc.calculate = atmel_nand_calculate;
553 		nand_chip->ecc.correct = atmel_nand_correct;
554 		nand_chip->ecc.hwctl = atmel_nand_hwctl;
555 		nand_chip->ecc.read_page = atmel_nand_read_page;
556 		nand_chip->ecc.bytes = 4;
557 	}
558 
559 	nand_chip->chip_delay = 20;		/* 20us command delay time */
560 
561 	if (host->board->bus_width_16)	/* 16-bit bus width */
562 		nand_chip->options |= NAND_BUSWIDTH_16;
563 
564 	nand_chip->read_buf = atmel_read_buf;
565 	nand_chip->write_buf = atmel_write_buf;
566 
567 	platform_set_drvdata(pdev, host);
568 	atmel_nand_enable(host);
569 
570 	if (gpio_is_valid(host->board->det_pin)) {
571 		if (gpio_get_value(host->board->det_pin)) {
572 			printk(KERN_INFO "No SmartMedia card inserted.\n");
573 			res = -ENXIO;
574 			goto err_no_card;
575 		}
576 	}
577 
578 	if (on_flash_bbt) {
579 		printk(KERN_INFO "atmel_nand: Use On Flash BBT\n");
580 		nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
581 	}
582 
583 	if (!cpu_has_dma())
584 		use_dma = 0;
585 
586 	if (use_dma) {
587 		dma_cap_mask_t mask;
588 
589 		dma_cap_zero(mask);
590 		dma_cap_set(DMA_MEMCPY, mask);
591 		host->dma_chan = dma_request_channel(mask, NULL, NULL);
592 		if (!host->dma_chan) {
593 			dev_err(host->dev, "Failed to request DMA channel\n");
594 			use_dma = 0;
595 		}
596 	}
597 	if (use_dma)
598 		dev_info(host->dev, "Using %s for DMA transfers.\n",
599 					dma_chan_name(host->dma_chan));
600 	else
601 		dev_info(host->dev, "No DMA support for NAND access.\n");
602 
603 	/* first scan to find the device and get the page size */
604 	if (nand_scan_ident(mtd, 1, NULL)) {
605 		res = -ENXIO;
606 		goto err_scan_ident;
607 	}
608 
609 	if (nand_chip->ecc.mode == NAND_ECC_HW) {
610 		/* ECC is calculated for the whole page (1 step) */
611 		nand_chip->ecc.size = mtd->writesize;
612 
613 		/* set ECC page size and oob layout */
614 		switch (mtd->writesize) {
615 		case 512:
616 			nand_chip->ecc.layout = &atmel_oobinfo_small;
617 			ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528);
618 			break;
619 		case 1024:
620 			nand_chip->ecc.layout = &atmel_oobinfo_large;
621 			ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056);
622 			break;
623 		case 2048:
624 			nand_chip->ecc.layout = &atmel_oobinfo_large;
625 			ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112);
626 			break;
627 		case 4096:
628 			nand_chip->ecc.layout = &atmel_oobinfo_large;
629 			ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224);
630 			break;
631 		default:
632 			/* page size not handled by HW ECC */
633 			/* switching back to soft ECC */
634 			nand_chip->ecc.mode = NAND_ECC_SOFT;
635 			nand_chip->ecc.calculate = NULL;
636 			nand_chip->ecc.correct = NULL;
637 			nand_chip->ecc.hwctl = NULL;
638 			nand_chip->ecc.read_page = NULL;
639 			nand_chip->ecc.postpad = 0;
640 			nand_chip->ecc.prepad = 0;
641 			nand_chip->ecc.bytes = 0;
642 			break;
643 		}
644 	}
645 
646 	/* second phase scan */
647 	if (nand_scan_tail(mtd)) {
648 		res = -ENXIO;
649 		goto err_scan_tail;
650 	}
651 
652 	mtd->name = "atmel_nand";
653 	res = mtd_device_parse_register(mtd, NULL, 0,
654 			host->board->parts, host->board->num_parts);
655 	if (!res)
656 		return res;
657 
658 err_scan_tail:
659 err_scan_ident:
660 err_no_card:
661 	atmel_nand_disable(host);
662 	platform_set_drvdata(pdev, NULL);
663 	if (host->dma_chan)
664 		dma_release_channel(host->dma_chan);
665 	if (host->ecc)
666 		iounmap(host->ecc);
667 err_ecc_ioremap:
668 	iounmap(host->io_base);
669 err_nand_ioremap:
670 	kfree(host);
671 	return res;
672 }
673 
674 /*
675  * Remove a NAND device.
676  */
atmel_nand_remove(struct platform_device * pdev)677 static int __exit atmel_nand_remove(struct platform_device *pdev)
678 {
679 	struct atmel_nand_host *host = platform_get_drvdata(pdev);
680 	struct mtd_info *mtd = &host->mtd;
681 
682 	nand_release(mtd);
683 
684 	atmel_nand_disable(host);
685 
686 	if (host->ecc)
687 		iounmap(host->ecc);
688 
689 	if (host->dma_chan)
690 		dma_release_channel(host->dma_chan);
691 
692 	iounmap(host->io_base);
693 	kfree(host);
694 
695 	return 0;
696 }
697 
698 static struct platform_driver atmel_nand_driver = {
699 	.remove		= __exit_p(atmel_nand_remove),
700 	.driver		= {
701 		.name	= "atmel_nand",
702 		.owner	= THIS_MODULE,
703 	},
704 };
705 
atmel_nand_init(void)706 static int __init atmel_nand_init(void)
707 {
708 	return platform_driver_probe(&atmel_nand_driver, atmel_nand_probe);
709 }
710 
711 
atmel_nand_exit(void)712 static void __exit atmel_nand_exit(void)
713 {
714 	platform_driver_unregister(&atmel_nand_driver);
715 }
716 
717 
718 module_init(atmel_nand_init);
719 module_exit(atmel_nand_exit);
720 
721 MODULE_LICENSE("GPL");
722 MODULE_AUTHOR("Rick Bronson");
723 MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");
724 MODULE_ALIAS("platform:atmel_nand");
725