1 
2 /*
3  * MTD driver for the 28F160F3 Flash Memory (non-CFI) on LART.
4  *
5  * Author: Abraham vd Merwe <abraham@2d3d.co.za>
6  *
7  * Copyright (c) 2001, 2d3D, Inc.
8  *
9  * This code is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * References:
14  *
15  *    [1] 3 Volt Fast Boot Block Flash Memory" Intel Datasheet
16  *           - Order Number: 290644-005
17  *           - January 2000
18  *
19  *    [2] MTD internal API documentation
20  *           - http://www.linux-mtd.infradead.org/
21  *
22  * Limitations:
23  *
24  *    Even though this driver is written for 3 Volt Fast Boot
25  *    Block Flash Memory, it is rather specific to LART. With
26  *    Minor modifications, notably the without data/address line
27  *    mangling and different bus settings, etc. it should be
28  *    trivial to adapt to other platforms.
29  *
30  *    If somebody would sponsor me a different board, I'll
31  *    adapt the driver (:
32  */
33 
34 /* debugging */
35 //#define LART_DEBUG
36 
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/types.h>
40 #include <linux/init.h>
41 #include <linux/errno.h>
42 #include <linux/string.h>
43 #include <linux/mtd/mtd.h>
44 #include <linux/mtd/partitions.h>
45 
46 #ifndef CONFIG_SA1100_LART
47 #error This is for LART architecture only
48 #endif
49 
50 static char module_name[] = "lart";
51 
52 /*
53  * These values is specific to 28Fxxxx3 flash memory.
54  * See section 2.3.1 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
55  */
56 #define FLASH_BLOCKSIZE_PARAM		(4096 * BUSWIDTH)
57 #define FLASH_NUMBLOCKS_16m_PARAM	8
58 #define FLASH_NUMBLOCKS_8m_PARAM	8
59 
60 /*
61  * These values is specific to 28Fxxxx3 flash memory.
62  * See section 2.3.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
63  */
64 #define FLASH_BLOCKSIZE_MAIN		(32768 * BUSWIDTH)
65 #define FLASH_NUMBLOCKS_16m_MAIN	31
66 #define FLASH_NUMBLOCKS_8m_MAIN		15
67 
68 /*
69  * These values are specific to LART
70  */
71 
72 /* general */
73 #define BUSWIDTH			4				/* don't change this - a lot of the code _will_ break if you change this */
74 #define FLASH_OFFSET		0xe8000000		/* see linux/arch/arm/mach-sa1100/lart.c */
75 
76 /* blob */
77 #define NUM_BLOB_BLOCKS		FLASH_NUMBLOCKS_16m_PARAM
78 #define BLOB_START			0x00000000
79 #define BLOB_LEN			(NUM_BLOB_BLOCKS * FLASH_BLOCKSIZE_PARAM)
80 
81 /* kernel */
82 #define NUM_KERNEL_BLOCKS	7
83 #define KERNEL_START		(BLOB_START + BLOB_LEN)
84 #define KERNEL_LEN			(NUM_KERNEL_BLOCKS * FLASH_BLOCKSIZE_MAIN)
85 
86 /* initial ramdisk */
87 #define NUM_INITRD_BLOCKS	24
88 #define INITRD_START		(KERNEL_START + KERNEL_LEN)
89 #define INITRD_LEN			(NUM_INITRD_BLOCKS * FLASH_BLOCKSIZE_MAIN)
90 
91 /*
92  * See section 4.0 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
93  */
94 #define READ_ARRAY			0x00FF00FF		/* Read Array/Reset */
95 #define READ_ID_CODES		0x00900090		/* Read Identifier Codes */
96 #define ERASE_SETUP			0x00200020		/* Block Erase */
97 #define ERASE_CONFIRM		0x00D000D0		/* Block Erase and Program Resume */
98 #define PGM_SETUP			0x00400040		/* Program */
99 #define STATUS_READ			0x00700070		/* Read Status Register */
100 #define STATUS_CLEAR		0x00500050		/* Clear Status Register */
101 #define STATUS_BUSY			0x00800080		/* Write State Machine Status (WSMS) */
102 #define STATUS_ERASE_ERR	0x00200020		/* Erase Status (ES) */
103 #define STATUS_PGM_ERR		0x00100010		/* Program Status (PS) */
104 
105 /*
106  * See section 4.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
107  */
108 #define FLASH_MANUFACTURER			0x00890089
109 #define FLASH_DEVICE_8mbit_TOP		0x88f188f1
110 #define FLASH_DEVICE_8mbit_BOTTOM	0x88f288f2
111 #define FLASH_DEVICE_16mbit_TOP		0x88f388f3
112 #define FLASH_DEVICE_16mbit_BOTTOM	0x88f488f4
113 
114 /***************************************************************************************************/
115 
116 /*
117  * The data line mapping on LART is as follows:
118  *
119  *   	 U2  CPU |   U3  CPU
120  *   	 -------------------
121  *   	  0  20  |   0   12
122  *   	  1  22  |   1   14
123  *   	  2  19  |   2   11
124  *   	  3  17  |   3   9
125  *   	  4  24  |   4   0
126  *   	  5  26  |   5   2
127  *   	  6  31  |   6   7
128  *   	  7  29  |   7   5
129  *   	  8  21  |   8   13
130  *   	  9  23  |   9   15
131  *   	  10 18  |   10  10
132  *   	  11 16  |   11  8
133  *   	  12 25  |   12  1
134  *   	  13 27  |   13  3
135  *   	  14 30  |   14  6
136  *   	  15 28  |   15  4
137  */
138 
139 /* Mangle data (x) */
140 #define DATA_TO_FLASH(x)				\
141 	(									\
142 		(((x) & 0x08009000) >> 11)	+	\
143 		(((x) & 0x00002000) >> 10)	+	\
144 		(((x) & 0x04004000) >> 8)	+	\
145 		(((x) & 0x00000010) >> 4)	+	\
146 		(((x) & 0x91000820) >> 3)	+	\
147 		(((x) & 0x22080080) >> 2)	+	\
148 		((x) & 0x40000400)			+	\
149 		(((x) & 0x00040040) << 1)	+	\
150 		(((x) & 0x00110000) << 4)	+	\
151 		(((x) & 0x00220100) << 5)	+	\
152 		(((x) & 0x00800208) << 6)	+	\
153 		(((x) & 0x00400004) << 9)	+	\
154 		(((x) & 0x00000001) << 12)	+	\
155 		(((x) & 0x00000002) << 13)		\
156 	)
157 
158 /* Unmangle data (x) */
159 #define FLASH_TO_DATA(x)				\
160 	(									\
161 		(((x) & 0x00010012) << 11)	+	\
162 		(((x) & 0x00000008) << 10)	+	\
163 		(((x) & 0x00040040) << 8)	+	\
164 		(((x) & 0x00000001) << 4)	+	\
165 		(((x) & 0x12200104) << 3)	+	\
166 		(((x) & 0x08820020) << 2)	+	\
167 		((x) & 0x40000400)			+	\
168 		(((x) & 0x00080080) >> 1)	+	\
169 		(((x) & 0x01100000) >> 4)	+	\
170 		(((x) & 0x04402000) >> 5)	+	\
171 		(((x) & 0x20008200) >> 6)	+	\
172 		(((x) & 0x80000800) >> 9)	+	\
173 		(((x) & 0x00001000) >> 12)	+	\
174 		(((x) & 0x00004000) >> 13)		\
175 	)
176 
177 /*
178  * The address line mapping on LART is as follows:
179  *
180  *   	 U3  CPU |   U2  CPU
181  *   	 -------------------
182  *   	  0  2   |   0   2
183  *   	  1  3   |   1   3
184  *   	  2  9   |   2   9
185  *   	  3  13  |   3   8
186  *   	  4  8   |   4   7
187  *   	  5  12  |   5   6
188  *   	  6  11  |   6   5
189  *   	  7  10  |   7   4
190  *   	  8  4   |   8   10
191  *   	  9  5   |   9   11
192  *   	 10  6   |   10  12
193  *   	 11  7   |   11  13
194  *
195  *   	 BOOT BLOCK BOUNDARY
196  *
197  *   	 12  15  |   12  15
198  *   	 13  14  |   13  14
199  *   	 14  16  |   14  16
200  *
201  *   	 MAIN BLOCK BOUNDARY
202  *
203  *   	 15  17  |   15  18
204  *   	 16  18  |   16  17
205  *   	 17  20  |   17  20
206  *   	 18  19  |   18  19
207  *   	 19  21  |   19  21
208  *
209  * As we can see from above, the addresses aren't mangled across
210  * block boundaries, so we don't need to worry about address
211  * translations except for sending/reading commands during
212  * initialization
213  */
214 
215 /* Mangle address (x) on chip U2 */
216 #define ADDR_TO_FLASH_U2(x)				\
217 	(									\
218 		(((x) & 0x00000f00) >> 4)	+	\
219 		(((x) & 0x00042000) << 1)	+	\
220 		(((x) & 0x0009c003) << 2)	+	\
221 		(((x) & 0x00021080) << 3)	+	\
222 		(((x) & 0x00000010) << 4)	+	\
223 		(((x) & 0x00000040) << 5)	+	\
224 		(((x) & 0x00000024) << 7)	+	\
225 		(((x) & 0x00000008) << 10)		\
226 	)
227 
228 /* Unmangle address (x) on chip U2 */
229 #define FLASH_U2_TO_ADDR(x)				\
230 	(									\
231 		(((x) << 4) & 0x00000f00)	+	\
232 		(((x) >> 1) & 0x00042000)	+	\
233 		(((x) >> 2) & 0x0009c003)	+	\
234 		(((x) >> 3) & 0x00021080)	+	\
235 		(((x) >> 4) & 0x00000010)	+	\
236 		(((x) >> 5) & 0x00000040)	+	\
237 		(((x) >> 7) & 0x00000024)	+	\
238 		(((x) >> 10) & 0x00000008)		\
239 	)
240 
241 /* Mangle address (x) on chip U3 */
242 #define ADDR_TO_FLASH_U3(x)				\
243 	(									\
244 		(((x) & 0x00000080) >> 3)	+	\
245 		(((x) & 0x00000040) >> 1)	+	\
246 		(((x) & 0x00052020) << 1)	+	\
247 		(((x) & 0x00084f03) << 2)	+	\
248 		(((x) & 0x00029010) << 3)	+	\
249 		(((x) & 0x00000008) << 5)	+	\
250 		(((x) & 0x00000004) << 7)		\
251 	)
252 
253 /* Unmangle address (x) on chip U3 */
254 #define FLASH_U3_TO_ADDR(x)				\
255 	(									\
256 		(((x) << 3) & 0x00000080)	+	\
257 		(((x) << 1) & 0x00000040)	+	\
258 		(((x) >> 1) & 0x00052020)	+	\
259 		(((x) >> 2) & 0x00084f03)	+	\
260 		(((x) >> 3) & 0x00029010)	+	\
261 		(((x) >> 5) & 0x00000008)	+	\
262 		(((x) >> 7) & 0x00000004)		\
263 	)
264 
265 /***************************************************************************************************/
266 
read8(__u32 offset)267 static __u8 read8 (__u32 offset)
268 {
269    volatile __u8 *data = (__u8 *) (FLASH_OFFSET + offset);
270 #ifdef LART_DEBUG
271    printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.2x\n", __func__, offset, *data);
272 #endif
273    return (*data);
274 }
275 
read32(__u32 offset)276 static __u32 read32 (__u32 offset)
277 {
278    volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
279 #ifdef LART_DEBUG
280    printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.8x\n", __func__, offset, *data);
281 #endif
282    return (*data);
283 }
284 
write32(__u32 x,__u32 offset)285 static void write32 (__u32 x,__u32 offset)
286 {
287    volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
288    *data = x;
289 #ifdef LART_DEBUG
290    printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, *data);
291 #endif
292 }
293 
294 /***************************************************************************************************/
295 
296 /*
297  * Probe for 16mbit flash memory on a LART board without doing
298  * too much damage. Since we need to write 1 dword to memory,
299  * we're f**cked if this happens to be DRAM since we can't
300  * restore the memory (otherwise we might exit Read Array mode).
301  *
302  * Returns 1 if we found 16mbit flash memory on LART, 0 otherwise.
303  */
flash_probe(void)304 static int flash_probe (void)
305 {
306    __u32 manufacturer,devtype;
307 
308    /* setup "Read Identifier Codes" mode */
309    write32 (DATA_TO_FLASH (READ_ID_CODES),0x00000000);
310 
311    /* probe U2. U2/U3 returns the same data since the first 3
312 	* address lines is mangled in the same way */
313    manufacturer = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000000)));
314    devtype = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000001)));
315 
316    /* put the flash back into command mode */
317    write32 (DATA_TO_FLASH (READ_ARRAY),0x00000000);
318 
319    return (manufacturer == FLASH_MANUFACTURER && (devtype == FLASH_DEVICE_16mbit_TOP || devtype == FLASH_DEVICE_16mbit_BOTTOM));
320 }
321 
322 /*
323  * Erase one block of flash memory at offset ``offset'' which is any
324  * address within the block which should be erased.
325  *
326  * Returns 1 if successful, 0 otherwise.
327  */
erase_block(__u32 offset)328 static inline int erase_block (__u32 offset)
329 {
330    __u32 status;
331 
332 #ifdef LART_DEBUG
333    printk (KERN_DEBUG "%s(): 0x%.8x\n", __func__, offset);
334 #endif
335 
336    /* erase and confirm */
337    write32 (DATA_TO_FLASH (ERASE_SETUP),offset);
338    write32 (DATA_TO_FLASH (ERASE_CONFIRM),offset);
339 
340    /* wait for block erase to finish */
341    do
342 	 {
343 		write32 (DATA_TO_FLASH (STATUS_READ),offset);
344 		status = FLASH_TO_DATA (read32 (offset));
345 	 }
346    while ((~status & STATUS_BUSY) != 0);
347 
348    /* put the flash back into command mode */
349    write32 (DATA_TO_FLASH (READ_ARRAY),offset);
350 
351    /* was the erase successful? */
352    if ((status & STATUS_ERASE_ERR))
353 	 {
354 		printk (KERN_WARNING "%s: erase error at address 0x%.8x.\n",module_name,offset);
355 		return (0);
356 	 }
357 
358    return (1);
359 }
360 
flash_erase(struct mtd_info * mtd,struct erase_info * instr)361 static int flash_erase (struct mtd_info *mtd,struct erase_info *instr)
362 {
363    __u32 addr,len;
364    int i,first;
365 
366 #ifdef LART_DEBUG
367    printk (KERN_DEBUG "%s(addr = 0x%.8x, len = %d)\n", __func__, instr->addr, instr->len);
368 #endif
369 
370    /* sanity checks */
371    if (instr->addr + instr->len > mtd->size) return (-EINVAL);
372 
373    /*
374 	* check that both start and end of the requested erase are
375 	* aligned with the erasesize at the appropriate addresses.
376 	*
377 	* skip all erase regions which are ended before the start of
378 	* the requested erase. Actually, to save on the calculations,
379 	* we skip to the first erase region which starts after the
380 	* start of the requested erase, and then go back one.
381 	*/
382    for (i = 0; i < mtd->numeraseregions && instr->addr >= mtd->eraseregions[i].offset; i++) ;
383    i--;
384 
385    /*
386 	* ok, now i is pointing at the erase region in which this
387 	* erase request starts. Check the start of the requested
388 	* erase range is aligned with the erase size which is in
389 	* effect here.
390 	*/
391    if (i < 0 || (instr->addr & (mtd->eraseregions[i].erasesize - 1)))
392       return -EINVAL;
393 
394    /* Remember the erase region we start on */
395    first = i;
396 
397    /*
398 	* next, check that the end of the requested erase is aligned
399 	* with the erase region at that address.
400 	*
401 	* as before, drop back one to point at the region in which
402 	* the address actually falls
403 	*/
404    for (; i < mtd->numeraseregions && instr->addr + instr->len >= mtd->eraseregions[i].offset; i++) ;
405    i--;
406 
407    /* is the end aligned on a block boundary? */
408    if (i < 0 || ((instr->addr + instr->len) & (mtd->eraseregions[i].erasesize - 1)))
409       return -EINVAL;
410 
411    addr = instr->addr;
412    len = instr->len;
413 
414    i = first;
415 
416    /* now erase those blocks */
417    while (len)
418 	 {
419 		if (!erase_block (addr))
420 		  {
421 			 instr->state = MTD_ERASE_FAILED;
422 			 return (-EIO);
423 		  }
424 
425 		addr += mtd->eraseregions[i].erasesize;
426 		len -= mtd->eraseregions[i].erasesize;
427 
428 		if (addr == mtd->eraseregions[i].offset + (mtd->eraseregions[i].erasesize * mtd->eraseregions[i].numblocks)) i++;
429 	 }
430 
431    instr->state = MTD_ERASE_DONE;
432    mtd_erase_callback(instr);
433 
434    return (0);
435 }
436 
flash_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)437 static int flash_read (struct mtd_info *mtd,loff_t from,size_t len,size_t *retlen,u_char *buf)
438 {
439 #ifdef LART_DEBUG
440    printk (KERN_DEBUG "%s(from = 0x%.8x, len = %d)\n", __func__, (__u32)from, len);
441 #endif
442 
443    /* sanity checks */
444    if (!len) return (0);
445    if (from + len > mtd->size) return (-EINVAL);
446 
447    /* we always read len bytes */
448    *retlen = len;
449 
450    /* first, we read bytes until we reach a dword boundary */
451    if (from & (BUSWIDTH - 1))
452 	 {
453 		int gap = BUSWIDTH - (from & (BUSWIDTH - 1));
454 
455 		while (len && gap--) *buf++ = read8 (from++), len--;
456 	 }
457 
458    /* now we read dwords until we reach a non-dword boundary */
459    while (len >= BUSWIDTH)
460 	 {
461 		*((__u32 *) buf) = read32 (from);
462 
463 		buf += BUSWIDTH;
464 		from += BUSWIDTH;
465 		len -= BUSWIDTH;
466 	 }
467 
468    /* top up the last unaligned bytes */
469    if (len & (BUSWIDTH - 1))
470 	 while (len--) *buf++ = read8 (from++);
471 
472    return (0);
473 }
474 
475 /*
476  * Write one dword ``x'' to flash memory at offset ``offset''. ``offset''
477  * must be 32 bits, i.e. it must be on a dword boundary.
478  *
479  * Returns 1 if successful, 0 otherwise.
480  */
write_dword(__u32 offset,__u32 x)481 static inline int write_dword (__u32 offset,__u32 x)
482 {
483    __u32 status;
484 
485 #ifdef LART_DEBUG
486    printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, x);
487 #endif
488 
489    /* setup writing */
490    write32 (DATA_TO_FLASH (PGM_SETUP),offset);
491 
492    /* write the data */
493    write32 (x,offset);
494 
495    /* wait for the write to finish */
496    do
497 	 {
498 		write32 (DATA_TO_FLASH (STATUS_READ),offset);
499 		status = FLASH_TO_DATA (read32 (offset));
500 	 }
501    while ((~status & STATUS_BUSY) != 0);
502 
503    /* put the flash back into command mode */
504    write32 (DATA_TO_FLASH (READ_ARRAY),offset);
505 
506    /* was the write successful? */
507    if ((status & STATUS_PGM_ERR) || read32 (offset) != x)
508 	 {
509 		printk (KERN_WARNING "%s: write error at address 0x%.8x.\n",module_name,offset);
510 		return (0);
511 	 }
512 
513    return (1);
514 }
515 
flash_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)516 static int flash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf)
517 {
518    __u8 tmp[4];
519    int i,n;
520 
521 #ifdef LART_DEBUG
522    printk (KERN_DEBUG "%s(to = 0x%.8x, len = %d)\n", __func__, (__u32)to, len);
523 #endif
524 
525    *retlen = 0;
526 
527    /* sanity checks */
528    if (!len) return (0);
529    if (to + len > mtd->size) return (-EINVAL);
530 
531    /* first, we write a 0xFF.... padded byte until we reach a dword boundary */
532    if (to & (BUSWIDTH - 1))
533 	 {
534 		__u32 aligned = to & ~(BUSWIDTH - 1);
535 		int gap = to - aligned;
536 
537 		i = n = 0;
538 
539 		while (gap--) tmp[i++] = 0xFF;
540 		while (len && i < BUSWIDTH) tmp[i++] = buf[n++], len--;
541 		while (i < BUSWIDTH) tmp[i++] = 0xFF;
542 
543 		if (!write_dword (aligned,*((__u32 *) tmp))) return (-EIO);
544 
545 		to += n;
546 		buf += n;
547 		*retlen += n;
548 	 }
549 
550    /* now we write dwords until we reach a non-dword boundary */
551    while (len >= BUSWIDTH)
552 	 {
553 		if (!write_dword (to,*((__u32 *) buf))) return (-EIO);
554 
555 		to += BUSWIDTH;
556 		buf += BUSWIDTH;
557 		*retlen += BUSWIDTH;
558 		len -= BUSWIDTH;
559 	 }
560 
561    /* top up the last unaligned bytes, padded with 0xFF.... */
562    if (len & (BUSWIDTH - 1))
563 	 {
564 		i = n = 0;
565 
566 		while (len--) tmp[i++] = buf[n++];
567 		while (i < BUSWIDTH) tmp[i++] = 0xFF;
568 
569 		if (!write_dword (to,*((__u32 *) tmp))) return (-EIO);
570 
571 		*retlen += n;
572 	 }
573 
574    return (0);
575 }
576 
577 /***************************************************************************************************/
578 
579 static struct mtd_info mtd;
580 
581 static struct mtd_erase_region_info erase_regions[] = {
582 	/* parameter blocks */
583 	{
584 		.offset		= 0x00000000,
585 		.erasesize	= FLASH_BLOCKSIZE_PARAM,
586 		.numblocks	= FLASH_NUMBLOCKS_16m_PARAM,
587 	},
588 	/* main blocks */
589 	{
590 		.offset	 = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM,
591 		.erasesize	= FLASH_BLOCKSIZE_MAIN,
592 		.numblocks	= FLASH_NUMBLOCKS_16m_MAIN,
593 	}
594 };
595 
596 static struct mtd_partition lart_partitions[] = {
597 	/* blob */
598 	{
599 		.name	= "blob",
600 		.offset	= BLOB_START,
601 		.size	= BLOB_LEN,
602 	},
603 	/* kernel */
604 	{
605 		.name	= "kernel",
606 		.offset	= KERNEL_START,		/* MTDPART_OFS_APPEND */
607 		.size	= KERNEL_LEN,
608 	},
609 	/* initial ramdisk / file system */
610 	{
611 		.name	= "file system",
612 		.offset	= INITRD_START,		/* MTDPART_OFS_APPEND */
613 		.size	= INITRD_LEN,		/* MTDPART_SIZ_FULL */
614 	}
615 };
616 #define NUM_PARTITIONS ARRAY_SIZE(lart_partitions)
617 
lart_flash_init(void)618 static int __init lart_flash_init (void)
619 {
620    int result;
621    memset (&mtd,0,sizeof (mtd));
622    printk ("MTD driver for LART. Written by Abraham vd Merwe <abraham@2d3d.co.za>\n");
623    printk ("%s: Probing for 28F160x3 flash on LART...\n",module_name);
624    if (!flash_probe ())
625 	 {
626 		printk (KERN_WARNING "%s: Found no LART compatible flash device\n",module_name);
627 		return (-ENXIO);
628 	 }
629    printk ("%s: This looks like a LART board to me.\n",module_name);
630    mtd.name = module_name;
631    mtd.type = MTD_NORFLASH;
632    mtd.writesize = 1;
633    mtd.flags = MTD_CAP_NORFLASH;
634    mtd.size = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM + FLASH_BLOCKSIZE_MAIN * FLASH_NUMBLOCKS_16m_MAIN;
635    mtd.erasesize = FLASH_BLOCKSIZE_MAIN;
636    mtd.numeraseregions = ARRAY_SIZE(erase_regions);
637    mtd.eraseregions = erase_regions;
638    mtd.erase = flash_erase;
639    mtd.read = flash_read;
640    mtd.write = flash_write;
641    mtd.owner = THIS_MODULE;
642 
643 #ifdef LART_DEBUG
644    printk (KERN_DEBUG
645 		   "mtd.name = %s\n"
646 		   "mtd.size = 0x%.8x (%uM)\n"
647 		   "mtd.erasesize = 0x%.8x (%uK)\n"
648 		   "mtd.numeraseregions = %d\n",
649 		   mtd.name,
650 		   mtd.size,mtd.size / (1024*1024),
651 		   mtd.erasesize,mtd.erasesize / 1024,
652 		   mtd.numeraseregions);
653 
654    if (mtd.numeraseregions)
655 	 for (result = 0; result < mtd.numeraseregions; result++)
656 	   printk (KERN_DEBUG
657 			   "\n\n"
658 			   "mtd.eraseregions[%d].offset = 0x%.8x\n"
659 			   "mtd.eraseregions[%d].erasesize = 0x%.8x (%uK)\n"
660 			   "mtd.eraseregions[%d].numblocks = %d\n",
661 			   result,mtd.eraseregions[result].offset,
662 			   result,mtd.eraseregions[result].erasesize,mtd.eraseregions[result].erasesize / 1024,
663 			   result,mtd.eraseregions[result].numblocks);
664 
665    printk ("\npartitions = %d\n", ARRAY_SIZE(lart_partitions));
666 
667    for (result = 0; result < ARRAY_SIZE(lart_partitions); result++)
668 	 printk (KERN_DEBUG
669 			 "\n\n"
670 			 "lart_partitions[%d].name = %s\n"
671 			 "lart_partitions[%d].offset = 0x%.8x\n"
672 			 "lart_partitions[%d].size = 0x%.8x (%uK)\n",
673 			 result,lart_partitions[result].name,
674 			 result,lart_partitions[result].offset,
675 			 result,lart_partitions[result].size,lart_partitions[result].size / 1024);
676 #endif
677 
678    result = mtd_device_register(&mtd, lart_partitions,
679                                 ARRAY_SIZE(lart_partitions));
680 
681    return (result);
682 }
683 
lart_flash_exit(void)684 static void __exit lart_flash_exit (void)
685 {
686    mtd_device_unregister(&mtd);
687 }
688 
689 module_init (lart_flash_init);
690 module_exit (lart_flash_exit);
691 
692 MODULE_LICENSE("GPL");
693 MODULE_AUTHOR("Abraham vd Merwe <abraham@2d3d.co.za>");
694 MODULE_DESCRIPTION("MTD driver for Intel 28F160F3 on LART board");
695