1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/suspend.h>
27 #include <linux/fault-inject.h>
28 #include <linux/random.h>
29 
30 #include <linux/mmc/card.h>
31 #include <linux/mmc/host.h>
32 #include <linux/mmc/mmc.h>
33 #include <linux/mmc/sd.h>
34 
35 #include "core.h"
36 #include "bus.h"
37 #include "host.h"
38 #include "sdio_bus.h"
39 
40 #include "mmc_ops.h"
41 #include "sd_ops.h"
42 #include "sdio_ops.h"
43 
44 static struct workqueue_struct *workqueue;
45 
46 /*
47  * Enabling software CRCs on the data blocks can be a significant (30%)
48  * performance cost, and for other reasons may not always be desired.
49  * So we allow it it to be disabled.
50  */
51 bool use_spi_crc = 1;
52 module_param(use_spi_crc, bool, 0);
53 
54 /*
55  * We normally treat cards as removed during suspend if they are not
56  * known to be on a non-removable bus, to avoid the risk of writing
57  * back data to a different card after resume.  Allow this to be
58  * overridden if necessary.
59  */
60 #ifdef CONFIG_MMC_UNSAFE_RESUME
61 bool mmc_assume_removable;
62 #else
63 bool mmc_assume_removable = 1;
64 #endif
65 EXPORT_SYMBOL(mmc_assume_removable);
66 module_param_named(removable, mmc_assume_removable, bool, 0644);
67 MODULE_PARM_DESC(
68 	removable,
69 	"MMC/SD cards are removable and may be removed during suspend");
70 
71 /*
72  * Internal function. Schedule delayed work in the MMC work queue.
73  */
mmc_schedule_delayed_work(struct delayed_work * work,unsigned long delay)74 static int mmc_schedule_delayed_work(struct delayed_work *work,
75 				     unsigned long delay)
76 {
77 	return queue_delayed_work(workqueue, work, delay);
78 }
79 
80 /*
81  * Internal function. Flush all scheduled work from the MMC work queue.
82  */
mmc_flush_scheduled_work(void)83 static void mmc_flush_scheduled_work(void)
84 {
85 	flush_workqueue(workqueue);
86 }
87 
88 #ifdef CONFIG_FAIL_MMC_REQUEST
89 
90 /*
91  * Internal function. Inject random data errors.
92  * If mmc_data is NULL no errors are injected.
93  */
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)94 static void mmc_should_fail_request(struct mmc_host *host,
95 				    struct mmc_request *mrq)
96 {
97 	struct mmc_command *cmd = mrq->cmd;
98 	struct mmc_data *data = mrq->data;
99 	static const int data_errors[] = {
100 		-ETIMEDOUT,
101 		-EILSEQ,
102 		-EIO,
103 	};
104 
105 	if (!data)
106 		return;
107 
108 	if (cmd->error || data->error ||
109 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
110 		return;
111 
112 	data->error = data_errors[random32() % ARRAY_SIZE(data_errors)];
113 	data->bytes_xfered = (random32() % (data->bytes_xfered >> 9)) << 9;
114 }
115 
116 #else /* CONFIG_FAIL_MMC_REQUEST */
117 
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)118 static inline void mmc_should_fail_request(struct mmc_host *host,
119 					   struct mmc_request *mrq)
120 {
121 }
122 
123 #endif /* CONFIG_FAIL_MMC_REQUEST */
124 
125 /**
126  *	mmc_request_done - finish processing an MMC request
127  *	@host: MMC host which completed request
128  *	@mrq: MMC request which request
129  *
130  *	MMC drivers should call this function when they have completed
131  *	their processing of a request.
132  */
mmc_request_done(struct mmc_host * host,struct mmc_request * mrq)133 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
134 {
135 	struct mmc_command *cmd = mrq->cmd;
136 	int err = cmd->error;
137 
138 	if (err && cmd->retries && mmc_host_is_spi(host)) {
139 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
140 			cmd->retries = 0;
141 	}
142 
143 	if (err && cmd->retries && !mmc_card_removed(host->card)) {
144 		/*
145 		 * Request starter must handle retries - see
146 		 * mmc_wait_for_req_done().
147 		 */
148 		if (mrq->done)
149 			mrq->done(mrq);
150 	} else {
151 		mmc_should_fail_request(host, mrq);
152 
153 		led_trigger_event(host->led, LED_OFF);
154 
155 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
156 			mmc_hostname(host), cmd->opcode, err,
157 			cmd->resp[0], cmd->resp[1],
158 			cmd->resp[2], cmd->resp[3]);
159 
160 		if (mrq->data) {
161 			pr_debug("%s:     %d bytes transferred: %d\n",
162 				mmc_hostname(host),
163 				mrq->data->bytes_xfered, mrq->data->error);
164 		}
165 
166 		if (mrq->stop) {
167 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
168 				mmc_hostname(host), mrq->stop->opcode,
169 				mrq->stop->error,
170 				mrq->stop->resp[0], mrq->stop->resp[1],
171 				mrq->stop->resp[2], mrq->stop->resp[3]);
172 		}
173 
174 		if (mrq->done)
175 			mrq->done(mrq);
176 
177 		mmc_host_clk_release(host);
178 	}
179 }
180 
181 EXPORT_SYMBOL(mmc_request_done);
182 
183 static void
mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)184 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
185 {
186 #ifdef CONFIG_MMC_DEBUG
187 	unsigned int i, sz;
188 	struct scatterlist *sg;
189 #endif
190 
191 	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
192 		 mmc_hostname(host), mrq->cmd->opcode,
193 		 mrq->cmd->arg, mrq->cmd->flags);
194 
195 	if (mrq->data) {
196 		pr_debug("%s:     blksz %d blocks %d flags %08x "
197 			"tsac %d ms nsac %d\n",
198 			mmc_hostname(host), mrq->data->blksz,
199 			mrq->data->blocks, mrq->data->flags,
200 			mrq->data->timeout_ns / 1000000,
201 			mrq->data->timeout_clks);
202 	}
203 
204 	if (mrq->stop) {
205 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
206 			 mmc_hostname(host), mrq->stop->opcode,
207 			 mrq->stop->arg, mrq->stop->flags);
208 	}
209 
210 	WARN_ON(!host->claimed);
211 
212 	mrq->cmd->error = 0;
213 	mrq->cmd->mrq = mrq;
214 	if (mrq->data) {
215 		BUG_ON(mrq->data->blksz > host->max_blk_size);
216 		BUG_ON(mrq->data->blocks > host->max_blk_count);
217 		BUG_ON(mrq->data->blocks * mrq->data->blksz >
218 			host->max_req_size);
219 
220 #ifdef CONFIG_MMC_DEBUG
221 		sz = 0;
222 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
223 			sz += sg->length;
224 		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
225 #endif
226 
227 		mrq->cmd->data = mrq->data;
228 		mrq->data->error = 0;
229 		mrq->data->mrq = mrq;
230 		if (mrq->stop) {
231 			mrq->data->stop = mrq->stop;
232 			mrq->stop->error = 0;
233 			mrq->stop->mrq = mrq;
234 		}
235 	}
236 	mmc_host_clk_hold(host);
237 	led_trigger_event(host->led, LED_FULL);
238 	host->ops->request(host, mrq);
239 }
240 
mmc_wait_done(struct mmc_request * mrq)241 static void mmc_wait_done(struct mmc_request *mrq)
242 {
243 	complete(&mrq->completion);
244 }
245 
__mmc_start_req(struct mmc_host * host,struct mmc_request * mrq)246 static void __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
247 {
248 	init_completion(&mrq->completion);
249 	mrq->done = mmc_wait_done;
250 	if (mmc_card_removed(host->card)) {
251 		mrq->cmd->error = -ENOMEDIUM;
252 		complete(&mrq->completion);
253 		return;
254 	}
255 	mmc_start_request(host, mrq);
256 }
257 
mmc_wait_for_req_done(struct mmc_host * host,struct mmc_request * mrq)258 static void mmc_wait_for_req_done(struct mmc_host *host,
259 				  struct mmc_request *mrq)
260 {
261 	struct mmc_command *cmd;
262 
263 	while (1) {
264 		wait_for_completion(&mrq->completion);
265 
266 		cmd = mrq->cmd;
267 		if (!cmd->error || !cmd->retries ||
268 		    mmc_card_removed(host->card))
269 			break;
270 
271 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
272 			 mmc_hostname(host), cmd->opcode, cmd->error);
273 		cmd->retries--;
274 		cmd->error = 0;
275 		host->ops->request(host, mrq);
276 	}
277 }
278 
279 /**
280  *	mmc_pre_req - Prepare for a new request
281  *	@host: MMC host to prepare command
282  *	@mrq: MMC request to prepare for
283  *	@is_first_req: true if there is no previous started request
284  *                     that may run in parellel to this call, otherwise false
285  *
286  *	mmc_pre_req() is called in prior to mmc_start_req() to let
287  *	host prepare for the new request. Preparation of a request may be
288  *	performed while another request is running on the host.
289  */
mmc_pre_req(struct mmc_host * host,struct mmc_request * mrq,bool is_first_req)290 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
291 		 bool is_first_req)
292 {
293 	if (host->ops->pre_req) {
294 		mmc_host_clk_hold(host);
295 		host->ops->pre_req(host, mrq, is_first_req);
296 		mmc_host_clk_release(host);
297 	}
298 }
299 
300 /**
301  *	mmc_post_req - Post process a completed request
302  *	@host: MMC host to post process command
303  *	@mrq: MMC request to post process for
304  *	@err: Error, if non zero, clean up any resources made in pre_req
305  *
306  *	Let the host post process a completed request. Post processing of
307  *	a request may be performed while another reuqest is running.
308  */
mmc_post_req(struct mmc_host * host,struct mmc_request * mrq,int err)309 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
310 			 int err)
311 {
312 	if (host->ops->post_req) {
313 		mmc_host_clk_hold(host);
314 		host->ops->post_req(host, mrq, err);
315 		mmc_host_clk_release(host);
316 	}
317 }
318 
319 /**
320  *	mmc_start_req - start a non-blocking request
321  *	@host: MMC host to start command
322  *	@areq: async request to start
323  *	@error: out parameter returns 0 for success, otherwise non zero
324  *
325  *	Start a new MMC custom command request for a host.
326  *	If there is on ongoing async request wait for completion
327  *	of that request and start the new one and return.
328  *	Does not wait for the new request to complete.
329  *
330  *      Returns the completed request, NULL in case of none completed.
331  *	Wait for the an ongoing request (previoulsy started) to complete and
332  *	return the completed request. If there is no ongoing request, NULL
333  *	is returned without waiting. NULL is not an error condition.
334  */
mmc_start_req(struct mmc_host * host,struct mmc_async_req * areq,int * error)335 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
336 				    struct mmc_async_req *areq, int *error)
337 {
338 	int err = 0;
339 	struct mmc_async_req *data = host->areq;
340 
341 	/* Prepare a new request */
342 	if (areq)
343 		mmc_pre_req(host, areq->mrq, !host->areq);
344 
345 	if (host->areq) {
346 		mmc_wait_for_req_done(host, host->areq->mrq);
347 		err = host->areq->err_check(host->card, host->areq);
348 		if (err) {
349 			/* post process the completed failed request */
350 			mmc_post_req(host, host->areq->mrq, 0);
351 			if (areq)
352 				/*
353 				 * Cancel the new prepared request, because
354 				 * it can't run until the failed
355 				 * request has been properly handled.
356 				 */
357 				mmc_post_req(host, areq->mrq, -EINVAL);
358 
359 			host->areq = NULL;
360 			goto out;
361 		}
362 	}
363 
364 	if (areq)
365 		__mmc_start_req(host, areq->mrq);
366 
367 	if (host->areq)
368 		mmc_post_req(host, host->areq->mrq, 0);
369 
370 	host->areq = areq;
371  out:
372 	if (error)
373 		*error = err;
374 	return data;
375 }
376 EXPORT_SYMBOL(mmc_start_req);
377 
378 /**
379  *	mmc_wait_for_req - start a request and wait for completion
380  *	@host: MMC host to start command
381  *	@mrq: MMC request to start
382  *
383  *	Start a new MMC custom command request for a host, and wait
384  *	for the command to complete. Does not attempt to parse the
385  *	response.
386  */
mmc_wait_for_req(struct mmc_host * host,struct mmc_request * mrq)387 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
388 {
389 	__mmc_start_req(host, mrq);
390 	mmc_wait_for_req_done(host, mrq);
391 }
392 EXPORT_SYMBOL(mmc_wait_for_req);
393 
394 /**
395  *	mmc_interrupt_hpi - Issue for High priority Interrupt
396  *	@card: the MMC card associated with the HPI transfer
397  *
398  *	Issued High Priority Interrupt, and check for card status
399  *	util out-of prg-state.
400  */
mmc_interrupt_hpi(struct mmc_card * card)401 int mmc_interrupt_hpi(struct mmc_card *card)
402 {
403 	int err;
404 	u32 status;
405 
406 	BUG_ON(!card);
407 
408 	if (!card->ext_csd.hpi_en) {
409 		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
410 		return 1;
411 	}
412 
413 	mmc_claim_host(card->host);
414 	err = mmc_send_status(card, &status);
415 	if (err) {
416 		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
417 		goto out;
418 	}
419 
420 	/*
421 	 * If the card status is in PRG-state, we can send the HPI command.
422 	 */
423 	if (R1_CURRENT_STATE(status) == R1_STATE_PRG) {
424 		do {
425 			/*
426 			 * We don't know when the HPI command will finish
427 			 * processing, so we need to resend HPI until out
428 			 * of prg-state, and keep checking the card status
429 			 * with SEND_STATUS.  If a timeout error occurs when
430 			 * sending the HPI command, we are already out of
431 			 * prg-state.
432 			 */
433 			err = mmc_send_hpi_cmd(card, &status);
434 			if (err)
435 				pr_debug("%s: abort HPI (%d error)\n",
436 					 mmc_hostname(card->host), err);
437 
438 			err = mmc_send_status(card, &status);
439 			if (err)
440 				break;
441 		} while (R1_CURRENT_STATE(status) == R1_STATE_PRG);
442 	} else
443 		pr_debug("%s: Left prg-state\n", mmc_hostname(card->host));
444 
445 out:
446 	mmc_release_host(card->host);
447 	return err;
448 }
449 EXPORT_SYMBOL(mmc_interrupt_hpi);
450 
451 /**
452  *	mmc_wait_for_cmd - start a command and wait for completion
453  *	@host: MMC host to start command
454  *	@cmd: MMC command to start
455  *	@retries: maximum number of retries
456  *
457  *	Start a new MMC command for a host, and wait for the command
458  *	to complete.  Return any error that occurred while the command
459  *	was executing.  Do not attempt to parse the response.
460  */
mmc_wait_for_cmd(struct mmc_host * host,struct mmc_command * cmd,int retries)461 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
462 {
463 	struct mmc_request mrq = {NULL};
464 
465 	WARN_ON(!host->claimed);
466 
467 	memset(cmd->resp, 0, sizeof(cmd->resp));
468 	cmd->retries = retries;
469 
470 	mrq.cmd = cmd;
471 	cmd->data = NULL;
472 
473 	mmc_wait_for_req(host, &mrq);
474 
475 	return cmd->error;
476 }
477 
478 EXPORT_SYMBOL(mmc_wait_for_cmd);
479 
480 /**
481  *	mmc_set_data_timeout - set the timeout for a data command
482  *	@data: data phase for command
483  *	@card: the MMC card associated with the data transfer
484  *
485  *	Computes the data timeout parameters according to the
486  *	correct algorithm given the card type.
487  */
mmc_set_data_timeout(struct mmc_data * data,const struct mmc_card * card)488 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
489 {
490 	unsigned int mult;
491 
492 	/*
493 	 * SDIO cards only define an upper 1 s limit on access.
494 	 */
495 	if (mmc_card_sdio(card)) {
496 		data->timeout_ns = 1000000000;
497 		data->timeout_clks = 0;
498 		return;
499 	}
500 
501 	/*
502 	 * SD cards use a 100 multiplier rather than 10
503 	 */
504 	mult = mmc_card_sd(card) ? 100 : 10;
505 
506 	/*
507 	 * Scale up the multiplier (and therefore the timeout) by
508 	 * the r2w factor for writes.
509 	 */
510 	if (data->flags & MMC_DATA_WRITE)
511 		mult <<= card->csd.r2w_factor;
512 
513 	data->timeout_ns = card->csd.tacc_ns * mult;
514 	data->timeout_clks = card->csd.tacc_clks * mult;
515 
516 	/*
517 	 * SD cards also have an upper limit on the timeout.
518 	 */
519 	if (mmc_card_sd(card)) {
520 		unsigned int timeout_us, limit_us;
521 
522 		timeout_us = data->timeout_ns / 1000;
523 		if (mmc_host_clk_rate(card->host))
524 			timeout_us += data->timeout_clks * 1000 /
525 				(mmc_host_clk_rate(card->host) / 1000);
526 
527 		if (data->flags & MMC_DATA_WRITE)
528 			/*
529 			 * The limit is really 250 ms, but that is
530 			 * insufficient for some crappy cards.
531 			 */
532 			limit_us = 300000;
533 		else
534 			limit_us = 100000;
535 
536 		/*
537 		 * SDHC cards always use these fixed values.
538 		 */
539 		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
540 			data->timeout_ns = limit_us * 1000;
541 			data->timeout_clks = 0;
542 		}
543 	}
544 
545 	/*
546 	 * Some cards require longer data read timeout than indicated in CSD.
547 	 * Address this by setting the read timeout to a "reasonably high"
548 	 * value. For the cards tested, 300ms has proven enough. If necessary,
549 	 * this value can be increased if other problematic cards require this.
550 	 */
551 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
552 		data->timeout_ns = 300000000;
553 		data->timeout_clks = 0;
554 	}
555 
556 	/*
557 	 * Some cards need very high timeouts if driven in SPI mode.
558 	 * The worst observed timeout was 900ms after writing a
559 	 * continuous stream of data until the internal logic
560 	 * overflowed.
561 	 */
562 	if (mmc_host_is_spi(card->host)) {
563 		if (data->flags & MMC_DATA_WRITE) {
564 			if (data->timeout_ns < 1000000000)
565 				data->timeout_ns = 1000000000;	/* 1s */
566 		} else {
567 			if (data->timeout_ns < 100000000)
568 				data->timeout_ns =  100000000;	/* 100ms */
569 		}
570 	}
571 }
572 EXPORT_SYMBOL(mmc_set_data_timeout);
573 
574 /**
575  *	mmc_align_data_size - pads a transfer size to a more optimal value
576  *	@card: the MMC card associated with the data transfer
577  *	@sz: original transfer size
578  *
579  *	Pads the original data size with a number of extra bytes in
580  *	order to avoid controller bugs and/or performance hits
581  *	(e.g. some controllers revert to PIO for certain sizes).
582  *
583  *	Returns the improved size, which might be unmodified.
584  *
585  *	Note that this function is only relevant when issuing a
586  *	single scatter gather entry.
587  */
mmc_align_data_size(struct mmc_card * card,unsigned int sz)588 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
589 {
590 	/*
591 	 * FIXME: We don't have a system for the controller to tell
592 	 * the core about its problems yet, so for now we just 32-bit
593 	 * align the size.
594 	 */
595 	sz = ((sz + 3) / 4) * 4;
596 
597 	return sz;
598 }
599 EXPORT_SYMBOL(mmc_align_data_size);
600 
601 /**
602  *	mmc_host_enable - enable a host.
603  *	@host: mmc host to enable
604  *
605  *	Hosts that support power saving can use the 'enable' and 'disable'
606  *	methods to exit and enter power saving states. For more information
607  *	see comments for struct mmc_host_ops.
608  */
mmc_host_enable(struct mmc_host * host)609 int mmc_host_enable(struct mmc_host *host)
610 {
611 	if (!(host->caps & MMC_CAP_DISABLE))
612 		return 0;
613 
614 	if (host->en_dis_recurs)
615 		return 0;
616 
617 	if (host->nesting_cnt++)
618 		return 0;
619 
620 	cancel_delayed_work_sync(&host->disable);
621 
622 	if (host->enabled)
623 		return 0;
624 
625 	if (host->ops->enable) {
626 		int err;
627 
628 		host->en_dis_recurs = 1;
629 		mmc_host_clk_hold(host);
630 		err = host->ops->enable(host);
631 		mmc_host_clk_release(host);
632 		host->en_dis_recurs = 0;
633 
634 		if (err) {
635 			pr_debug("%s: enable error %d\n",
636 				 mmc_hostname(host), err);
637 			return err;
638 		}
639 	}
640 	host->enabled = 1;
641 	return 0;
642 }
643 EXPORT_SYMBOL(mmc_host_enable);
644 
mmc_host_do_disable(struct mmc_host * host,int lazy)645 static int mmc_host_do_disable(struct mmc_host *host, int lazy)
646 {
647 	if (host->ops->disable) {
648 		int err;
649 
650 		host->en_dis_recurs = 1;
651 		mmc_host_clk_hold(host);
652 		err = host->ops->disable(host, lazy);
653 		mmc_host_clk_release(host);
654 		host->en_dis_recurs = 0;
655 
656 		if (err < 0) {
657 			pr_debug("%s: disable error %d\n",
658 				 mmc_hostname(host), err);
659 			return err;
660 		}
661 		if (err > 0) {
662 			unsigned long delay = msecs_to_jiffies(err);
663 
664 			mmc_schedule_delayed_work(&host->disable, delay);
665 		}
666 	}
667 	host->enabled = 0;
668 	return 0;
669 }
670 
671 /**
672  *	mmc_host_disable - disable a host.
673  *	@host: mmc host to disable
674  *
675  *	Hosts that support power saving can use the 'enable' and 'disable'
676  *	methods to exit and enter power saving states. For more information
677  *	see comments for struct mmc_host_ops.
678  */
mmc_host_disable(struct mmc_host * host)679 int mmc_host_disable(struct mmc_host *host)
680 {
681 	int err;
682 
683 	if (!(host->caps & MMC_CAP_DISABLE))
684 		return 0;
685 
686 	if (host->en_dis_recurs)
687 		return 0;
688 
689 	if (--host->nesting_cnt)
690 		return 0;
691 
692 	if (!host->enabled)
693 		return 0;
694 
695 	err = mmc_host_do_disable(host, 0);
696 	return err;
697 }
698 EXPORT_SYMBOL(mmc_host_disable);
699 
700 /**
701  *	__mmc_claim_host - exclusively claim a host
702  *	@host: mmc host to claim
703  *	@abort: whether or not the operation should be aborted
704  *
705  *	Claim a host for a set of operations.  If @abort is non null and
706  *	dereference a non-zero value then this will return prematurely with
707  *	that non-zero value without acquiring the lock.  Returns zero
708  *	with the lock held otherwise.
709  */
__mmc_claim_host(struct mmc_host * host,atomic_t * abort)710 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
711 {
712 	DECLARE_WAITQUEUE(wait, current);
713 	unsigned long flags;
714 	int stop;
715 
716 	might_sleep();
717 
718 	add_wait_queue(&host->wq, &wait);
719 	spin_lock_irqsave(&host->lock, flags);
720 	while (1) {
721 		set_current_state(TASK_UNINTERRUPTIBLE);
722 		stop = abort ? atomic_read(abort) : 0;
723 		if (stop || !host->claimed || host->claimer == current)
724 			break;
725 		spin_unlock_irqrestore(&host->lock, flags);
726 		schedule();
727 		spin_lock_irqsave(&host->lock, flags);
728 	}
729 	set_current_state(TASK_RUNNING);
730 	if (!stop) {
731 		host->claimed = 1;
732 		host->claimer = current;
733 		host->claim_cnt += 1;
734 	} else
735 		wake_up(&host->wq);
736 	spin_unlock_irqrestore(&host->lock, flags);
737 	remove_wait_queue(&host->wq, &wait);
738 	if (!stop)
739 		mmc_host_enable(host);
740 	return stop;
741 }
742 
743 EXPORT_SYMBOL(__mmc_claim_host);
744 
745 /**
746  *	mmc_try_claim_host - try exclusively to claim a host
747  *	@host: mmc host to claim
748  *
749  *	Returns %1 if the host is claimed, %0 otherwise.
750  */
mmc_try_claim_host(struct mmc_host * host)751 int mmc_try_claim_host(struct mmc_host *host)
752 {
753 	int claimed_host = 0;
754 	unsigned long flags;
755 
756 	spin_lock_irqsave(&host->lock, flags);
757 	if (!host->claimed || host->claimer == current) {
758 		host->claimed = 1;
759 		host->claimer = current;
760 		host->claim_cnt += 1;
761 		claimed_host = 1;
762 	}
763 	spin_unlock_irqrestore(&host->lock, flags);
764 	return claimed_host;
765 }
766 EXPORT_SYMBOL(mmc_try_claim_host);
767 
768 /**
769  *	mmc_do_release_host - release a claimed host
770  *	@host: mmc host to release
771  *
772  *	If you successfully claimed a host, this function will
773  *	release it again.
774  */
mmc_do_release_host(struct mmc_host * host)775 void mmc_do_release_host(struct mmc_host *host)
776 {
777 	unsigned long flags;
778 
779 	spin_lock_irqsave(&host->lock, flags);
780 	if (--host->claim_cnt) {
781 		/* Release for nested claim */
782 		spin_unlock_irqrestore(&host->lock, flags);
783 	} else {
784 		host->claimed = 0;
785 		host->claimer = NULL;
786 		spin_unlock_irqrestore(&host->lock, flags);
787 		wake_up(&host->wq);
788 	}
789 }
790 EXPORT_SYMBOL(mmc_do_release_host);
791 
mmc_host_deeper_disable(struct work_struct * work)792 void mmc_host_deeper_disable(struct work_struct *work)
793 {
794 	struct mmc_host *host =
795 		container_of(work, struct mmc_host, disable.work);
796 
797 	/* If the host is claimed then we do not want to disable it anymore */
798 	if (!mmc_try_claim_host(host))
799 		return;
800 	mmc_host_do_disable(host, 1);
801 	mmc_do_release_host(host);
802 }
803 
804 /**
805  *	mmc_host_lazy_disable - lazily disable a host.
806  *	@host: mmc host to disable
807  *
808  *	Hosts that support power saving can use the 'enable' and 'disable'
809  *	methods to exit and enter power saving states. For more information
810  *	see comments for struct mmc_host_ops.
811  */
mmc_host_lazy_disable(struct mmc_host * host)812 int mmc_host_lazy_disable(struct mmc_host *host)
813 {
814 	if (!(host->caps & MMC_CAP_DISABLE))
815 		return 0;
816 
817 	if (host->en_dis_recurs)
818 		return 0;
819 
820 	if (--host->nesting_cnt)
821 		return 0;
822 
823 	if (!host->enabled)
824 		return 0;
825 
826 	if (host->disable_delay) {
827 		mmc_schedule_delayed_work(&host->disable,
828 				msecs_to_jiffies(host->disable_delay));
829 		return 0;
830 	} else
831 		return mmc_host_do_disable(host, 1);
832 }
833 EXPORT_SYMBOL(mmc_host_lazy_disable);
834 
835 /**
836  *	mmc_release_host - release a host
837  *	@host: mmc host to release
838  *
839  *	Release a MMC host, allowing others to claim the host
840  *	for their operations.
841  */
mmc_release_host(struct mmc_host * host)842 void mmc_release_host(struct mmc_host *host)
843 {
844 	WARN_ON(!host->claimed);
845 
846 	mmc_host_lazy_disable(host);
847 
848 	mmc_do_release_host(host);
849 }
850 
851 EXPORT_SYMBOL(mmc_release_host);
852 
853 /*
854  * Internal function that does the actual ios call to the host driver,
855  * optionally printing some debug output.
856  */
mmc_set_ios(struct mmc_host * host)857 static inline void mmc_set_ios(struct mmc_host *host)
858 {
859 	struct mmc_ios *ios = &host->ios;
860 
861 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
862 		"width %u timing %u\n",
863 		 mmc_hostname(host), ios->clock, ios->bus_mode,
864 		 ios->power_mode, ios->chip_select, ios->vdd,
865 		 ios->bus_width, ios->timing);
866 
867 	if (ios->clock > 0)
868 		mmc_set_ungated(host);
869 	host->ops->set_ios(host, ios);
870 }
871 
872 /*
873  * Control chip select pin on a host.
874  */
mmc_set_chip_select(struct mmc_host * host,int mode)875 void mmc_set_chip_select(struct mmc_host *host, int mode)
876 {
877 	mmc_host_clk_hold(host);
878 	host->ios.chip_select = mode;
879 	mmc_set_ios(host);
880 	mmc_host_clk_release(host);
881 }
882 
883 /*
884  * Sets the host clock to the highest possible frequency that
885  * is below "hz".
886  */
__mmc_set_clock(struct mmc_host * host,unsigned int hz)887 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
888 {
889 	WARN_ON(hz < host->f_min);
890 
891 	if (hz > host->f_max)
892 		hz = host->f_max;
893 
894 	host->ios.clock = hz;
895 	mmc_set_ios(host);
896 }
897 
mmc_set_clock(struct mmc_host * host,unsigned int hz)898 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
899 {
900 	mmc_host_clk_hold(host);
901 	__mmc_set_clock(host, hz);
902 	mmc_host_clk_release(host);
903 }
904 
905 #ifdef CONFIG_MMC_CLKGATE
906 /*
907  * This gates the clock by setting it to 0 Hz.
908  */
mmc_gate_clock(struct mmc_host * host)909 void mmc_gate_clock(struct mmc_host *host)
910 {
911 	unsigned long flags;
912 
913 	spin_lock_irqsave(&host->clk_lock, flags);
914 	host->clk_old = host->ios.clock;
915 	host->ios.clock = 0;
916 	host->clk_gated = true;
917 	spin_unlock_irqrestore(&host->clk_lock, flags);
918 	mmc_set_ios(host);
919 }
920 
921 /*
922  * This restores the clock from gating by using the cached
923  * clock value.
924  */
mmc_ungate_clock(struct mmc_host * host)925 void mmc_ungate_clock(struct mmc_host *host)
926 {
927 	/*
928 	 * We should previously have gated the clock, so the clock shall
929 	 * be 0 here! The clock may however be 0 during initialization,
930 	 * when some request operations are performed before setting
931 	 * the frequency. When ungate is requested in that situation
932 	 * we just ignore the call.
933 	 */
934 	if (host->clk_old) {
935 		BUG_ON(host->ios.clock);
936 		/* This call will also set host->clk_gated to false */
937 		__mmc_set_clock(host, host->clk_old);
938 	}
939 }
940 
mmc_set_ungated(struct mmc_host * host)941 void mmc_set_ungated(struct mmc_host *host)
942 {
943 	unsigned long flags;
944 
945 	/*
946 	 * We've been given a new frequency while the clock is gated,
947 	 * so make sure we regard this as ungating it.
948 	 */
949 	spin_lock_irqsave(&host->clk_lock, flags);
950 	host->clk_gated = false;
951 	spin_unlock_irqrestore(&host->clk_lock, flags);
952 }
953 
954 #else
mmc_set_ungated(struct mmc_host * host)955 void mmc_set_ungated(struct mmc_host *host)
956 {
957 }
958 #endif
959 
960 /*
961  * Change the bus mode (open drain/push-pull) of a host.
962  */
mmc_set_bus_mode(struct mmc_host * host,unsigned int mode)963 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
964 {
965 	mmc_host_clk_hold(host);
966 	host->ios.bus_mode = mode;
967 	mmc_set_ios(host);
968 	mmc_host_clk_release(host);
969 }
970 
971 /*
972  * Change data bus width of a host.
973  */
mmc_set_bus_width(struct mmc_host * host,unsigned int width)974 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
975 {
976 	mmc_host_clk_hold(host);
977 	host->ios.bus_width = width;
978 	mmc_set_ios(host);
979 	mmc_host_clk_release(host);
980 }
981 
982 /**
983  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
984  * @vdd:	voltage (mV)
985  * @low_bits:	prefer low bits in boundary cases
986  *
987  * This function returns the OCR bit number according to the provided @vdd
988  * value. If conversion is not possible a negative errno value returned.
989  *
990  * Depending on the @low_bits flag the function prefers low or high OCR bits
991  * on boundary voltages. For example,
992  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
993  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
994  *
995  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
996  */
mmc_vdd_to_ocrbitnum(int vdd,bool low_bits)997 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
998 {
999 	const int max_bit = ilog2(MMC_VDD_35_36);
1000 	int bit;
1001 
1002 	if (vdd < 1650 || vdd > 3600)
1003 		return -EINVAL;
1004 
1005 	if (vdd >= 1650 && vdd <= 1950)
1006 		return ilog2(MMC_VDD_165_195);
1007 
1008 	if (low_bits)
1009 		vdd -= 1;
1010 
1011 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1012 	bit = (vdd - 2000) / 100 + 8;
1013 	if (bit > max_bit)
1014 		return max_bit;
1015 	return bit;
1016 }
1017 
1018 /**
1019  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1020  * @vdd_min:	minimum voltage value (mV)
1021  * @vdd_max:	maximum voltage value (mV)
1022  *
1023  * This function returns the OCR mask bits according to the provided @vdd_min
1024  * and @vdd_max values. If conversion is not possible the function returns 0.
1025  *
1026  * Notes wrt boundary cases:
1027  * This function sets the OCR bits for all boundary voltages, for example
1028  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1029  * MMC_VDD_34_35 mask.
1030  */
mmc_vddrange_to_ocrmask(int vdd_min,int vdd_max)1031 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1032 {
1033 	u32 mask = 0;
1034 
1035 	if (vdd_max < vdd_min)
1036 		return 0;
1037 
1038 	/* Prefer high bits for the boundary vdd_max values. */
1039 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1040 	if (vdd_max < 0)
1041 		return 0;
1042 
1043 	/* Prefer low bits for the boundary vdd_min values. */
1044 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1045 	if (vdd_min < 0)
1046 		return 0;
1047 
1048 	/* Fill the mask, from max bit to min bit. */
1049 	while (vdd_max >= vdd_min)
1050 		mask |= 1 << vdd_max--;
1051 
1052 	return mask;
1053 }
1054 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1055 
1056 #ifdef CONFIG_REGULATOR
1057 
1058 /**
1059  * mmc_regulator_get_ocrmask - return mask of supported voltages
1060  * @supply: regulator to use
1061  *
1062  * This returns either a negative errno, or a mask of voltages that
1063  * can be provided to MMC/SD/SDIO devices using the specified voltage
1064  * regulator.  This would normally be called before registering the
1065  * MMC host adapter.
1066  */
mmc_regulator_get_ocrmask(struct regulator * supply)1067 int mmc_regulator_get_ocrmask(struct regulator *supply)
1068 {
1069 	int			result = 0;
1070 	int			count;
1071 	int			i;
1072 
1073 	count = regulator_count_voltages(supply);
1074 	if (count < 0)
1075 		return count;
1076 
1077 	for (i = 0; i < count; i++) {
1078 		int		vdd_uV;
1079 		int		vdd_mV;
1080 
1081 		vdd_uV = regulator_list_voltage(supply, i);
1082 		if (vdd_uV <= 0)
1083 			continue;
1084 
1085 		vdd_mV = vdd_uV / 1000;
1086 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1087 	}
1088 
1089 	return result;
1090 }
1091 EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
1092 
1093 /**
1094  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1095  * @mmc: the host to regulate
1096  * @supply: regulator to use
1097  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1098  *
1099  * Returns zero on success, else negative errno.
1100  *
1101  * MMC host drivers may use this to enable or disable a regulator using
1102  * a particular supply voltage.  This would normally be called from the
1103  * set_ios() method.
1104  */
mmc_regulator_set_ocr(struct mmc_host * mmc,struct regulator * supply,unsigned short vdd_bit)1105 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1106 			struct regulator *supply,
1107 			unsigned short vdd_bit)
1108 {
1109 	int			result = 0;
1110 	int			min_uV, max_uV;
1111 
1112 	if (vdd_bit) {
1113 		int		tmp;
1114 		int		voltage;
1115 
1116 		/* REVISIT mmc_vddrange_to_ocrmask() may have set some
1117 		 * bits this regulator doesn't quite support ... don't
1118 		 * be too picky, most cards and regulators are OK with
1119 		 * a 0.1V range goof (it's a small error percentage).
1120 		 */
1121 		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1122 		if (tmp == 0) {
1123 			min_uV = 1650 * 1000;
1124 			max_uV = 1950 * 1000;
1125 		} else {
1126 			min_uV = 1900 * 1000 + tmp * 100 * 1000;
1127 			max_uV = min_uV + 100 * 1000;
1128 		}
1129 
1130 		/* avoid needless changes to this voltage; the regulator
1131 		 * might not allow this operation
1132 		 */
1133 		voltage = regulator_get_voltage(supply);
1134 
1135 		if (mmc->caps2 & MMC_CAP2_BROKEN_VOLTAGE)
1136 			min_uV = max_uV = voltage;
1137 
1138 		if (voltage < 0)
1139 			result = voltage;
1140 		else if (voltage < min_uV || voltage > max_uV)
1141 			result = regulator_set_voltage(supply, min_uV, max_uV);
1142 		else
1143 			result = 0;
1144 
1145 		if (result == 0 && !mmc->regulator_enabled) {
1146 			result = regulator_enable(supply);
1147 			if (!result)
1148 				mmc->regulator_enabled = true;
1149 		}
1150 	} else if (mmc->regulator_enabled) {
1151 		result = regulator_disable(supply);
1152 		if (result == 0)
1153 			mmc->regulator_enabled = false;
1154 	}
1155 
1156 	if (result)
1157 		dev_err(mmc_dev(mmc),
1158 			"could not set regulator OCR (%d)\n", result);
1159 	return result;
1160 }
1161 EXPORT_SYMBOL(mmc_regulator_set_ocr);
1162 
1163 #endif /* CONFIG_REGULATOR */
1164 
1165 /*
1166  * Mask off any voltages we don't support and select
1167  * the lowest voltage
1168  */
mmc_select_voltage(struct mmc_host * host,u32 ocr)1169 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1170 {
1171 	int bit;
1172 
1173 	ocr &= host->ocr_avail;
1174 
1175 	bit = ffs(ocr);
1176 	if (bit) {
1177 		bit -= 1;
1178 
1179 		ocr &= 3 << bit;
1180 
1181 		mmc_host_clk_hold(host);
1182 		host->ios.vdd = bit;
1183 		mmc_set_ios(host);
1184 		mmc_host_clk_release(host);
1185 	} else {
1186 		pr_warning("%s: host doesn't support card's voltages\n",
1187 				mmc_hostname(host));
1188 		ocr = 0;
1189 	}
1190 
1191 	return ocr;
1192 }
1193 
mmc_set_signal_voltage(struct mmc_host * host,int signal_voltage,bool cmd11)1194 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11)
1195 {
1196 	struct mmc_command cmd = {0};
1197 	int err = 0;
1198 
1199 	BUG_ON(!host);
1200 
1201 	/*
1202 	 * Send CMD11 only if the request is to switch the card to
1203 	 * 1.8V signalling.
1204 	 */
1205 	if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) {
1206 		cmd.opcode = SD_SWITCH_VOLTAGE;
1207 		cmd.arg = 0;
1208 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1209 
1210 		err = mmc_wait_for_cmd(host, &cmd, 0);
1211 		if (err)
1212 			return err;
1213 
1214 		if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1215 			return -EIO;
1216 	}
1217 
1218 	host->ios.signal_voltage = signal_voltage;
1219 
1220 	if (host->ops->start_signal_voltage_switch) {
1221 		mmc_host_clk_hold(host);
1222 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1223 		mmc_host_clk_release(host);
1224 	}
1225 
1226 	return err;
1227 }
1228 
1229 /*
1230  * Select timing parameters for host.
1231  */
mmc_set_timing(struct mmc_host * host,unsigned int timing)1232 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1233 {
1234 	mmc_host_clk_hold(host);
1235 	host->ios.timing = timing;
1236 	mmc_set_ios(host);
1237 	mmc_host_clk_release(host);
1238 }
1239 
1240 /*
1241  * Select appropriate driver type for host.
1242  */
mmc_set_driver_type(struct mmc_host * host,unsigned int drv_type)1243 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1244 {
1245 	mmc_host_clk_hold(host);
1246 	host->ios.drv_type = drv_type;
1247 	mmc_set_ios(host);
1248 	mmc_host_clk_release(host);
1249 }
1250 
mmc_poweroff_notify(struct mmc_host * host)1251 static void mmc_poweroff_notify(struct mmc_host *host)
1252 {
1253 	struct mmc_card *card;
1254 	unsigned int timeout;
1255 	unsigned int notify_type = EXT_CSD_NO_POWER_NOTIFICATION;
1256 	int err = 0;
1257 
1258 	card = host->card;
1259 	mmc_claim_host(host);
1260 
1261 	/*
1262 	 * Send power notify command only if card
1263 	 * is mmc and notify state is powered ON
1264 	 */
1265 	if (card && mmc_card_mmc(card) &&
1266 	    (card->poweroff_notify_state == MMC_POWERED_ON)) {
1267 
1268 		if (host->power_notify_type == MMC_HOST_PW_NOTIFY_SHORT) {
1269 			notify_type = EXT_CSD_POWER_OFF_SHORT;
1270 			timeout = card->ext_csd.generic_cmd6_time;
1271 			card->poweroff_notify_state = MMC_POWEROFF_SHORT;
1272 		} else {
1273 			notify_type = EXT_CSD_POWER_OFF_LONG;
1274 			timeout = card->ext_csd.power_off_longtime;
1275 			card->poweroff_notify_state = MMC_POWEROFF_LONG;
1276 		}
1277 
1278 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1279 				 EXT_CSD_POWER_OFF_NOTIFICATION,
1280 				 notify_type, timeout);
1281 
1282 		if (err && err != -EBADMSG)
1283 			pr_err("Device failed to respond within %d poweroff "
1284 			       "time. Forcefully powering down the device\n",
1285 			       timeout);
1286 
1287 		/* Set the card state to no notification after the poweroff */
1288 		card->poweroff_notify_state = MMC_NO_POWER_NOTIFICATION;
1289 	}
1290 	mmc_release_host(host);
1291 }
1292 
1293 /*
1294  * Apply power to the MMC stack.  This is a two-stage process.
1295  * First, we enable power to the card without the clock running.
1296  * We then wait a bit for the power to stabilise.  Finally,
1297  * enable the bus drivers and clock to the card.
1298  *
1299  * We must _NOT_ enable the clock prior to power stablising.
1300  *
1301  * If a host does all the power sequencing itself, ignore the
1302  * initial MMC_POWER_UP stage.
1303  */
mmc_power_up(struct mmc_host * host)1304 static void mmc_power_up(struct mmc_host *host)
1305 {
1306 	int bit;
1307 
1308 	mmc_host_clk_hold(host);
1309 
1310 	/* If ocr is set, we use it */
1311 	if (host->ocr)
1312 		bit = ffs(host->ocr) - 1;
1313 	else
1314 		bit = fls(host->ocr_avail) - 1;
1315 
1316 	host->ios.vdd = bit;
1317 	if (mmc_host_is_spi(host))
1318 		host->ios.chip_select = MMC_CS_HIGH;
1319 	else
1320 		host->ios.chip_select = MMC_CS_DONTCARE;
1321 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1322 	host->ios.power_mode = MMC_POWER_UP;
1323 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1324 	host->ios.timing = MMC_TIMING_LEGACY;
1325 	mmc_set_ios(host);
1326 
1327 	/*
1328 	 * This delay should be sufficient to allow the power supply
1329 	 * to reach the minimum voltage.
1330 	 */
1331 	mmc_delay(10);
1332 
1333 	host->ios.clock = host->f_init;
1334 
1335 	host->ios.power_mode = MMC_POWER_ON;
1336 	mmc_set_ios(host);
1337 
1338 	/*
1339 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1340 	 * time required to reach a stable voltage.
1341 	 */
1342 	mmc_delay(10);
1343 
1344 	mmc_host_clk_release(host);
1345 }
1346 
mmc_power_off(struct mmc_host * host)1347 void mmc_power_off(struct mmc_host *host)
1348 {
1349 	int err = 0;
1350 	mmc_host_clk_hold(host);
1351 
1352 	host->ios.clock = 0;
1353 	host->ios.vdd = 0;
1354 
1355 	/*
1356 	 * For eMMC 4.5 device send AWAKE command before
1357 	 * POWER_OFF_NOTIFY command, because in sleep state
1358 	 * eMMC 4.5 devices respond to only RESET and AWAKE cmd
1359 	 */
1360 	if (host->card && mmc_card_is_sleep(host->card) &&
1361 	    host->bus_ops->resume) {
1362 		err = host->bus_ops->resume(host);
1363 
1364 		if (!err)
1365 			mmc_poweroff_notify(host);
1366 		else
1367 			pr_warning("%s: error %d during resume "
1368 				   "(continue with poweroff sequence)\n",
1369 				   mmc_hostname(host), err);
1370 	}
1371 
1372 	/*
1373 	 * Reset ocr mask to be the highest possible voltage supported for
1374 	 * this mmc host. This value will be used at next power up.
1375 	 */
1376 	host->ocr = 1 << (fls(host->ocr_avail) - 1);
1377 
1378 	if (!mmc_host_is_spi(host)) {
1379 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1380 		host->ios.chip_select = MMC_CS_DONTCARE;
1381 	}
1382 	host->ios.power_mode = MMC_POWER_OFF;
1383 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1384 	host->ios.timing = MMC_TIMING_LEGACY;
1385 	mmc_set_ios(host);
1386 
1387 	/*
1388 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1389 	 * XO-1.5, require a short delay after poweroff before the card
1390 	 * can be successfully turned on again.
1391 	 */
1392 	mmc_delay(1);
1393 
1394 	mmc_host_clk_release(host);
1395 }
1396 
1397 /*
1398  * Cleanup when the last reference to the bus operator is dropped.
1399  */
__mmc_release_bus(struct mmc_host * host)1400 static void __mmc_release_bus(struct mmc_host *host)
1401 {
1402 	BUG_ON(!host);
1403 	BUG_ON(host->bus_refs);
1404 	BUG_ON(!host->bus_dead);
1405 
1406 	host->bus_ops = NULL;
1407 }
1408 
1409 /*
1410  * Increase reference count of bus operator
1411  */
mmc_bus_get(struct mmc_host * host)1412 static inline void mmc_bus_get(struct mmc_host *host)
1413 {
1414 	unsigned long flags;
1415 
1416 	spin_lock_irqsave(&host->lock, flags);
1417 	host->bus_refs++;
1418 	spin_unlock_irqrestore(&host->lock, flags);
1419 }
1420 
1421 /*
1422  * Decrease reference count of bus operator and free it if
1423  * it is the last reference.
1424  */
mmc_bus_put(struct mmc_host * host)1425 static inline void mmc_bus_put(struct mmc_host *host)
1426 {
1427 	unsigned long flags;
1428 
1429 	spin_lock_irqsave(&host->lock, flags);
1430 	host->bus_refs--;
1431 	if ((host->bus_refs == 0) && host->bus_ops)
1432 		__mmc_release_bus(host);
1433 	spin_unlock_irqrestore(&host->lock, flags);
1434 }
1435 
1436 /*
1437  * Assign a mmc bus handler to a host. Only one bus handler may control a
1438  * host at any given time.
1439  */
mmc_attach_bus(struct mmc_host * host,const struct mmc_bus_ops * ops)1440 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1441 {
1442 	unsigned long flags;
1443 
1444 	BUG_ON(!host);
1445 	BUG_ON(!ops);
1446 
1447 	WARN_ON(!host->claimed);
1448 
1449 	spin_lock_irqsave(&host->lock, flags);
1450 
1451 	BUG_ON(host->bus_ops);
1452 	BUG_ON(host->bus_refs);
1453 
1454 	host->bus_ops = ops;
1455 	host->bus_refs = 1;
1456 	host->bus_dead = 0;
1457 
1458 	spin_unlock_irqrestore(&host->lock, flags);
1459 }
1460 
1461 /*
1462  * Remove the current bus handler from a host.
1463  */
mmc_detach_bus(struct mmc_host * host)1464 void mmc_detach_bus(struct mmc_host *host)
1465 {
1466 	unsigned long flags;
1467 
1468 	BUG_ON(!host);
1469 
1470 	WARN_ON(!host->claimed);
1471 	WARN_ON(!host->bus_ops);
1472 
1473 	spin_lock_irqsave(&host->lock, flags);
1474 
1475 	host->bus_dead = 1;
1476 
1477 	spin_unlock_irqrestore(&host->lock, flags);
1478 
1479 	mmc_bus_put(host);
1480 }
1481 
1482 /**
1483  *	mmc_detect_change - process change of state on a MMC socket
1484  *	@host: host which changed state.
1485  *	@delay: optional delay to wait before detection (jiffies)
1486  *
1487  *	MMC drivers should call this when they detect a card has been
1488  *	inserted or removed. The MMC layer will confirm that any
1489  *	present card is still functional, and initialize any newly
1490  *	inserted.
1491  */
mmc_detect_change(struct mmc_host * host,unsigned long delay)1492 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1493 {
1494 #ifdef CONFIG_MMC_DEBUG
1495 	unsigned long flags;
1496 	spin_lock_irqsave(&host->lock, flags);
1497 	WARN_ON(host->removed);
1498 	spin_unlock_irqrestore(&host->lock, flags);
1499 #endif
1500 	host->detect_change = 1;
1501 	mmc_schedule_delayed_work(&host->detect, delay);
1502 }
1503 
1504 EXPORT_SYMBOL(mmc_detect_change);
1505 
mmc_init_erase(struct mmc_card * card)1506 void mmc_init_erase(struct mmc_card *card)
1507 {
1508 	unsigned int sz;
1509 
1510 	if (is_power_of_2(card->erase_size))
1511 		card->erase_shift = ffs(card->erase_size) - 1;
1512 	else
1513 		card->erase_shift = 0;
1514 
1515 	/*
1516 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1517 	 * card.  That is not desirable because it can take a long time
1518 	 * (minutes) potentially delaying more important I/O, and also the
1519 	 * timeout calculations become increasingly hugely over-estimated.
1520 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1521 	 * to that size and alignment.
1522 	 *
1523 	 * For SD cards that define Allocation Unit size, limit erases to one
1524 	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1525 	 * Erase Size, whether it is switched on or not, limit to that size.
1526 	 * Otherwise just have a stab at a good value.  For modern cards it
1527 	 * will end up being 4MiB.  Note that if the value is too small, it
1528 	 * can end up taking longer to erase.
1529 	 */
1530 	if (mmc_card_sd(card) && card->ssr.au) {
1531 		card->pref_erase = card->ssr.au;
1532 		card->erase_shift = ffs(card->ssr.au) - 1;
1533 	} else if (card->ext_csd.hc_erase_size) {
1534 		card->pref_erase = card->ext_csd.hc_erase_size;
1535 	} else {
1536 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1537 		if (sz < 128)
1538 			card->pref_erase = 512 * 1024 / 512;
1539 		else if (sz < 512)
1540 			card->pref_erase = 1024 * 1024 / 512;
1541 		else if (sz < 1024)
1542 			card->pref_erase = 2 * 1024 * 1024 / 512;
1543 		else
1544 			card->pref_erase = 4 * 1024 * 1024 / 512;
1545 		if (card->pref_erase < card->erase_size)
1546 			card->pref_erase = card->erase_size;
1547 		else {
1548 			sz = card->pref_erase % card->erase_size;
1549 			if (sz)
1550 				card->pref_erase += card->erase_size - sz;
1551 		}
1552 	}
1553 }
1554 
mmc_mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1555 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1556 				          unsigned int arg, unsigned int qty)
1557 {
1558 	unsigned int erase_timeout;
1559 
1560 	if (card->ext_csd.erase_group_def & 1) {
1561 		/* High Capacity Erase Group Size uses HC timeouts */
1562 		if (arg == MMC_TRIM_ARG)
1563 			erase_timeout = card->ext_csd.trim_timeout;
1564 		else
1565 			erase_timeout = card->ext_csd.hc_erase_timeout;
1566 	} else {
1567 		/* CSD Erase Group Size uses write timeout */
1568 		unsigned int mult = (10 << card->csd.r2w_factor);
1569 		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1570 		unsigned int timeout_us;
1571 
1572 		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1573 		if (card->csd.tacc_ns < 1000000)
1574 			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1575 		else
1576 			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1577 
1578 		/*
1579 		 * ios.clock is only a target.  The real clock rate might be
1580 		 * less but not that much less, so fudge it by multiplying by 2.
1581 		 */
1582 		timeout_clks <<= 1;
1583 		timeout_us += (timeout_clks * 1000) /
1584 			      (mmc_host_clk_rate(card->host) / 1000);
1585 
1586 		erase_timeout = timeout_us / 1000;
1587 
1588 		/*
1589 		 * Theoretically, the calculation could underflow so round up
1590 		 * to 1ms in that case.
1591 		 */
1592 		if (!erase_timeout)
1593 			erase_timeout = 1;
1594 	}
1595 
1596 	/* Multiplier for secure operations */
1597 	if (arg & MMC_SECURE_ARGS) {
1598 		if (arg == MMC_SECURE_ERASE_ARG)
1599 			erase_timeout *= card->ext_csd.sec_erase_mult;
1600 		else
1601 			erase_timeout *= card->ext_csd.sec_trim_mult;
1602 	}
1603 
1604 	erase_timeout *= qty;
1605 
1606 	/*
1607 	 * Ensure at least a 1 second timeout for SPI as per
1608 	 * 'mmc_set_data_timeout()'
1609 	 */
1610 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1611 		erase_timeout = 1000;
1612 
1613 	return erase_timeout;
1614 }
1615 
mmc_sd_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1616 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1617 					 unsigned int arg,
1618 					 unsigned int qty)
1619 {
1620 	unsigned int erase_timeout;
1621 
1622 	if (card->ssr.erase_timeout) {
1623 		/* Erase timeout specified in SD Status Register (SSR) */
1624 		erase_timeout = card->ssr.erase_timeout * qty +
1625 				card->ssr.erase_offset;
1626 	} else {
1627 		/*
1628 		 * Erase timeout not specified in SD Status Register (SSR) so
1629 		 * use 250ms per write block.
1630 		 */
1631 		erase_timeout = 250 * qty;
1632 	}
1633 
1634 	/* Must not be less than 1 second */
1635 	if (erase_timeout < 1000)
1636 		erase_timeout = 1000;
1637 
1638 	return erase_timeout;
1639 }
1640 
mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1641 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1642 				      unsigned int arg,
1643 				      unsigned int qty)
1644 {
1645 	if (mmc_card_sd(card))
1646 		return mmc_sd_erase_timeout(card, arg, qty);
1647 	else
1648 		return mmc_mmc_erase_timeout(card, arg, qty);
1649 }
1650 
mmc_do_erase(struct mmc_card * card,unsigned int from,unsigned int to,unsigned int arg)1651 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1652 			unsigned int to, unsigned int arg)
1653 {
1654 	struct mmc_command cmd = {0};
1655 	unsigned int qty = 0;
1656 	int err;
1657 
1658 	/*
1659 	 * qty is used to calculate the erase timeout which depends on how many
1660 	 * erase groups (or allocation units in SD terminology) are affected.
1661 	 * We count erasing part of an erase group as one erase group.
1662 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1663 	 * erase group size is almost certainly also power of 2, but it does not
1664 	 * seem to insist on that in the JEDEC standard, so we fall back to
1665 	 * division in that case.  SD may not specify an allocation unit size,
1666 	 * in which case the timeout is based on the number of write blocks.
1667 	 *
1668 	 * Note that the timeout for secure trim 2 will only be correct if the
1669 	 * number of erase groups specified is the same as the total of all
1670 	 * preceding secure trim 1 commands.  Since the power may have been
1671 	 * lost since the secure trim 1 commands occurred, it is generally
1672 	 * impossible to calculate the secure trim 2 timeout correctly.
1673 	 */
1674 	if (card->erase_shift)
1675 		qty += ((to >> card->erase_shift) -
1676 			(from >> card->erase_shift)) + 1;
1677 	else if (mmc_card_sd(card))
1678 		qty += to - from + 1;
1679 	else
1680 		qty += ((to / card->erase_size) -
1681 			(from / card->erase_size)) + 1;
1682 
1683 	if (!mmc_card_blockaddr(card)) {
1684 		from <<= 9;
1685 		to <<= 9;
1686 	}
1687 
1688 	if (mmc_card_sd(card))
1689 		cmd.opcode = SD_ERASE_WR_BLK_START;
1690 	else
1691 		cmd.opcode = MMC_ERASE_GROUP_START;
1692 	cmd.arg = from;
1693 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1694 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1695 	if (err) {
1696 		pr_err("mmc_erase: group start error %d, "
1697 		       "status %#x\n", err, cmd.resp[0]);
1698 		err = -EIO;
1699 		goto out;
1700 	}
1701 
1702 	memset(&cmd, 0, sizeof(struct mmc_command));
1703 	if (mmc_card_sd(card))
1704 		cmd.opcode = SD_ERASE_WR_BLK_END;
1705 	else
1706 		cmd.opcode = MMC_ERASE_GROUP_END;
1707 	cmd.arg = to;
1708 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1709 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1710 	if (err) {
1711 		pr_err("mmc_erase: group end error %d, status %#x\n",
1712 		       err, cmd.resp[0]);
1713 		err = -EIO;
1714 		goto out;
1715 	}
1716 
1717 	memset(&cmd, 0, sizeof(struct mmc_command));
1718 	cmd.opcode = MMC_ERASE;
1719 	cmd.arg = arg;
1720 	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1721 	cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1722 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1723 	if (err) {
1724 		pr_err("mmc_erase: erase error %d, status %#x\n",
1725 		       err, cmd.resp[0]);
1726 		err = -EIO;
1727 		goto out;
1728 	}
1729 
1730 	if (mmc_host_is_spi(card->host))
1731 		goto out;
1732 
1733 	do {
1734 		memset(&cmd, 0, sizeof(struct mmc_command));
1735 		cmd.opcode = MMC_SEND_STATUS;
1736 		cmd.arg = card->rca << 16;
1737 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1738 		/* Do not retry else we can't see errors */
1739 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1740 		if (err || (cmd.resp[0] & 0xFDF92000)) {
1741 			pr_err("error %d requesting status %#x\n",
1742 				err, cmd.resp[0]);
1743 			err = -EIO;
1744 			goto out;
1745 		}
1746 	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1747 		 R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG);
1748 out:
1749 	return err;
1750 }
1751 
1752 /**
1753  * mmc_erase - erase sectors.
1754  * @card: card to erase
1755  * @from: first sector to erase
1756  * @nr: number of sectors to erase
1757  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1758  *
1759  * Caller must claim host before calling this function.
1760  */
mmc_erase(struct mmc_card * card,unsigned int from,unsigned int nr,unsigned int arg)1761 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1762 	      unsigned int arg)
1763 {
1764 	unsigned int rem, to = from + nr;
1765 
1766 	if (!(card->host->caps & MMC_CAP_ERASE) ||
1767 	    !(card->csd.cmdclass & CCC_ERASE))
1768 		return -EOPNOTSUPP;
1769 
1770 	if (!card->erase_size)
1771 		return -EOPNOTSUPP;
1772 
1773 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1774 		return -EOPNOTSUPP;
1775 
1776 	if ((arg & MMC_SECURE_ARGS) &&
1777 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1778 		return -EOPNOTSUPP;
1779 
1780 	if ((arg & MMC_TRIM_ARGS) &&
1781 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1782 		return -EOPNOTSUPP;
1783 
1784 	if (arg == MMC_SECURE_ERASE_ARG) {
1785 		if (from % card->erase_size || nr % card->erase_size)
1786 			return -EINVAL;
1787 	}
1788 
1789 	if (arg == MMC_ERASE_ARG) {
1790 		rem = from % card->erase_size;
1791 		if (rem) {
1792 			rem = card->erase_size - rem;
1793 			from += rem;
1794 			if (nr > rem)
1795 				nr -= rem;
1796 			else
1797 				return 0;
1798 		}
1799 		rem = nr % card->erase_size;
1800 		if (rem)
1801 			nr -= rem;
1802 	}
1803 
1804 	if (nr == 0)
1805 		return 0;
1806 
1807 	to = from + nr;
1808 
1809 	if (to <= from)
1810 		return -EINVAL;
1811 
1812 	/* 'from' and 'to' are inclusive */
1813 	to -= 1;
1814 
1815 	return mmc_do_erase(card, from, to, arg);
1816 }
1817 EXPORT_SYMBOL(mmc_erase);
1818 
mmc_can_erase(struct mmc_card * card)1819 int mmc_can_erase(struct mmc_card *card)
1820 {
1821 	if ((card->host->caps & MMC_CAP_ERASE) &&
1822 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1823 		return 1;
1824 	return 0;
1825 }
1826 EXPORT_SYMBOL(mmc_can_erase);
1827 
mmc_can_trim(struct mmc_card * card)1828 int mmc_can_trim(struct mmc_card *card)
1829 {
1830 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1831 		return 1;
1832 	if (mmc_can_discard(card))
1833 		return 1;
1834 	return 0;
1835 }
1836 EXPORT_SYMBOL(mmc_can_trim);
1837 
mmc_can_discard(struct mmc_card * card)1838 int mmc_can_discard(struct mmc_card *card)
1839 {
1840 	/*
1841 	 * As there's no way to detect the discard support bit at v4.5
1842 	 * use the s/w feature support filed.
1843 	 */
1844 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1845 		return 1;
1846 	return 0;
1847 }
1848 EXPORT_SYMBOL(mmc_can_discard);
1849 
mmc_can_sanitize(struct mmc_card * card)1850 int mmc_can_sanitize(struct mmc_card *card)
1851 {
1852 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1853 		return 1;
1854 	return 0;
1855 }
1856 EXPORT_SYMBOL(mmc_can_sanitize);
1857 
mmc_can_secure_erase_trim(struct mmc_card * card)1858 int mmc_can_secure_erase_trim(struct mmc_card *card)
1859 {
1860 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1861 		return 1;
1862 	return 0;
1863 }
1864 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1865 
mmc_erase_group_aligned(struct mmc_card * card,unsigned int from,unsigned int nr)1866 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1867 			    unsigned int nr)
1868 {
1869 	if (!card->erase_size)
1870 		return 0;
1871 	if (from % card->erase_size || nr % card->erase_size)
1872 		return 0;
1873 	return 1;
1874 }
1875 EXPORT_SYMBOL(mmc_erase_group_aligned);
1876 
mmc_do_calc_max_discard(struct mmc_card * card,unsigned int arg)1877 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1878 					    unsigned int arg)
1879 {
1880 	struct mmc_host *host = card->host;
1881 	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
1882 	unsigned int last_timeout = 0;
1883 
1884 	if (card->erase_shift)
1885 		max_qty = UINT_MAX >> card->erase_shift;
1886 	else if (mmc_card_sd(card))
1887 		max_qty = UINT_MAX;
1888 	else
1889 		max_qty = UINT_MAX / card->erase_size;
1890 
1891 	/* Find the largest qty with an OK timeout */
1892 	do {
1893 		y = 0;
1894 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1895 			timeout = mmc_erase_timeout(card, arg, qty + x);
1896 			if (timeout > host->max_discard_to)
1897 				break;
1898 			if (timeout < last_timeout)
1899 				break;
1900 			last_timeout = timeout;
1901 			y = x;
1902 		}
1903 		qty += y;
1904 	} while (y);
1905 
1906 	if (!qty)
1907 		return 0;
1908 
1909 	if (qty == 1)
1910 		return 1;
1911 
1912 	/* Convert qty to sectors */
1913 	if (card->erase_shift)
1914 		max_discard = --qty << card->erase_shift;
1915 	else if (mmc_card_sd(card))
1916 		max_discard = qty;
1917 	else
1918 		max_discard = --qty * card->erase_size;
1919 
1920 	return max_discard;
1921 }
1922 
mmc_calc_max_discard(struct mmc_card * card)1923 unsigned int mmc_calc_max_discard(struct mmc_card *card)
1924 {
1925 	struct mmc_host *host = card->host;
1926 	unsigned int max_discard, max_trim;
1927 
1928 	if (!host->max_discard_to)
1929 		return UINT_MAX;
1930 
1931 	/*
1932 	 * Without erase_group_def set, MMC erase timeout depends on clock
1933 	 * frequence which can change.  In that case, the best choice is
1934 	 * just the preferred erase size.
1935 	 */
1936 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1937 		return card->pref_erase;
1938 
1939 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1940 	if (mmc_can_trim(card)) {
1941 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1942 		if (max_trim < max_discard)
1943 			max_discard = max_trim;
1944 	} else if (max_discard < card->erase_size) {
1945 		max_discard = 0;
1946 	}
1947 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1948 		 mmc_hostname(host), max_discard, host->max_discard_to);
1949 	return max_discard;
1950 }
1951 EXPORT_SYMBOL(mmc_calc_max_discard);
1952 
mmc_set_blocklen(struct mmc_card * card,unsigned int blocklen)1953 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1954 {
1955 	struct mmc_command cmd = {0};
1956 
1957 	if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1958 		return 0;
1959 
1960 	cmd.opcode = MMC_SET_BLOCKLEN;
1961 	cmd.arg = blocklen;
1962 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1963 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1964 }
1965 EXPORT_SYMBOL(mmc_set_blocklen);
1966 
mmc_hw_reset_for_init(struct mmc_host * host)1967 static void mmc_hw_reset_for_init(struct mmc_host *host)
1968 {
1969 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1970 		return;
1971 	mmc_host_clk_hold(host);
1972 	host->ops->hw_reset(host);
1973 	mmc_host_clk_release(host);
1974 }
1975 
mmc_can_reset(struct mmc_card * card)1976 int mmc_can_reset(struct mmc_card *card)
1977 {
1978 	u8 rst_n_function;
1979 
1980 	if (!mmc_card_mmc(card))
1981 		return 0;
1982 	rst_n_function = card->ext_csd.rst_n_function;
1983 	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
1984 		return 0;
1985 	return 1;
1986 }
1987 EXPORT_SYMBOL(mmc_can_reset);
1988 
mmc_do_hw_reset(struct mmc_host * host,int check)1989 static int mmc_do_hw_reset(struct mmc_host *host, int check)
1990 {
1991 	struct mmc_card *card = host->card;
1992 
1993 	if (!host->bus_ops->power_restore)
1994 		return -EOPNOTSUPP;
1995 
1996 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1997 		return -EOPNOTSUPP;
1998 
1999 	if (!card)
2000 		return -EINVAL;
2001 
2002 	if (!mmc_can_reset(card))
2003 		return -EOPNOTSUPP;
2004 
2005 	mmc_host_clk_hold(host);
2006 	mmc_set_clock(host, host->f_init);
2007 
2008 	host->ops->hw_reset(host);
2009 
2010 	/* If the reset has happened, then a status command will fail */
2011 	if (check) {
2012 		struct mmc_command cmd = {0};
2013 		int err;
2014 
2015 		cmd.opcode = MMC_SEND_STATUS;
2016 		if (!mmc_host_is_spi(card->host))
2017 			cmd.arg = card->rca << 16;
2018 		cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2019 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
2020 		if (!err) {
2021 			mmc_host_clk_release(host);
2022 			return -ENOSYS;
2023 		}
2024 	}
2025 
2026 	host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
2027 	if (mmc_host_is_spi(host)) {
2028 		host->ios.chip_select = MMC_CS_HIGH;
2029 		host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2030 	} else {
2031 		host->ios.chip_select = MMC_CS_DONTCARE;
2032 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2033 	}
2034 	host->ios.bus_width = MMC_BUS_WIDTH_1;
2035 	host->ios.timing = MMC_TIMING_LEGACY;
2036 	mmc_set_ios(host);
2037 
2038 	mmc_host_clk_release(host);
2039 
2040 	return host->bus_ops->power_restore(host);
2041 }
2042 
mmc_hw_reset(struct mmc_host * host)2043 int mmc_hw_reset(struct mmc_host *host)
2044 {
2045 	return mmc_do_hw_reset(host, 0);
2046 }
2047 EXPORT_SYMBOL(mmc_hw_reset);
2048 
mmc_hw_reset_check(struct mmc_host * host)2049 int mmc_hw_reset_check(struct mmc_host *host)
2050 {
2051 	return mmc_do_hw_reset(host, 1);
2052 }
2053 EXPORT_SYMBOL(mmc_hw_reset_check);
2054 
mmc_rescan_try_freq(struct mmc_host * host,unsigned freq)2055 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2056 {
2057 	host->f_init = freq;
2058 
2059 #ifdef CONFIG_MMC_DEBUG
2060 	pr_info("%s: %s: trying to init card at %u Hz\n",
2061 		mmc_hostname(host), __func__, host->f_init);
2062 #endif
2063 	mmc_power_up(host);
2064 
2065 	/*
2066 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2067 	 * do a hardware reset if possible.
2068 	 */
2069 	mmc_hw_reset_for_init(host);
2070 
2071 	/* Initialization should be done at 3.3 V I/O voltage. */
2072 	mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330, 0);
2073 
2074 	/*
2075 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2076 	 * if the card is being re-initialized, just send it.  CMD52
2077 	 * should be ignored by SD/eMMC cards.
2078 	 */
2079 	sdio_reset(host);
2080 	mmc_go_idle(host);
2081 
2082 	mmc_send_if_cond(host, host->ocr_avail);
2083 
2084 	/* Order's important: probe SDIO, then SD, then MMC */
2085 	if (!mmc_attach_sdio(host))
2086 		return 0;
2087 	if (!mmc_attach_sd(host))
2088 		return 0;
2089 	if (!mmc_attach_mmc(host))
2090 		return 0;
2091 
2092 	mmc_power_off(host);
2093 	return -EIO;
2094 }
2095 
_mmc_detect_card_removed(struct mmc_host * host)2096 int _mmc_detect_card_removed(struct mmc_host *host)
2097 {
2098 	int ret;
2099 
2100 	if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive)
2101 		return 0;
2102 
2103 	if (!host->card || mmc_card_removed(host->card))
2104 		return 1;
2105 
2106 	ret = host->bus_ops->alive(host);
2107 	if (ret) {
2108 		mmc_card_set_removed(host->card);
2109 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2110 	}
2111 
2112 	return ret;
2113 }
2114 
mmc_detect_card_removed(struct mmc_host * host)2115 int mmc_detect_card_removed(struct mmc_host *host)
2116 {
2117 	struct mmc_card *card = host->card;
2118 
2119 	WARN_ON(!host->claimed);
2120 	/*
2121 	 * The card will be considered unchanged unless we have been asked to
2122 	 * detect a change or host requires polling to provide card detection.
2123 	 */
2124 	if (card && !host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2125 		return mmc_card_removed(card);
2126 
2127 	host->detect_change = 0;
2128 
2129 	return _mmc_detect_card_removed(host);
2130 }
2131 EXPORT_SYMBOL(mmc_detect_card_removed);
2132 
mmc_rescan(struct work_struct * work)2133 void mmc_rescan(struct work_struct *work)
2134 {
2135 	static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
2136 	struct mmc_host *host =
2137 		container_of(work, struct mmc_host, detect.work);
2138 	int i;
2139 
2140 	if (host->rescan_disable)
2141 		return;
2142 
2143 	mmc_bus_get(host);
2144 
2145 	/*
2146 	 * if there is a _removable_ card registered, check whether it is
2147 	 * still present
2148 	 */
2149 	if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
2150 	    && !(host->caps & MMC_CAP_NONREMOVABLE))
2151 		host->bus_ops->detect(host);
2152 
2153 	host->detect_change = 0;
2154 
2155 	/*
2156 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2157 	 * the card is no longer present.
2158 	 */
2159 	mmc_bus_put(host);
2160 	mmc_bus_get(host);
2161 
2162 	/* if there still is a card present, stop here */
2163 	if (host->bus_ops != NULL) {
2164 		mmc_bus_put(host);
2165 		goto out;
2166 	}
2167 
2168 	/*
2169 	 * Only we can add a new handler, so it's safe to
2170 	 * release the lock here.
2171 	 */
2172 	mmc_bus_put(host);
2173 
2174 	if (host->ops->get_cd && host->ops->get_cd(host) == 0)
2175 		goto out;
2176 
2177 	mmc_claim_host(host);
2178 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2179 		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2180 			break;
2181 		if (freqs[i] <= host->f_min)
2182 			break;
2183 	}
2184 	mmc_release_host(host);
2185 
2186  out:
2187 	if (host->caps & MMC_CAP_NEEDS_POLL)
2188 		mmc_schedule_delayed_work(&host->detect, HZ);
2189 }
2190 
mmc_start_host(struct mmc_host * host)2191 void mmc_start_host(struct mmc_host *host)
2192 {
2193 	mmc_power_off(host);
2194 	mmc_detect_change(host, 0);
2195 }
2196 
mmc_stop_host(struct mmc_host * host)2197 void mmc_stop_host(struct mmc_host *host)
2198 {
2199 #ifdef CONFIG_MMC_DEBUG
2200 	unsigned long flags;
2201 	spin_lock_irqsave(&host->lock, flags);
2202 	host->removed = 1;
2203 	spin_unlock_irqrestore(&host->lock, flags);
2204 #endif
2205 
2206 	if (host->caps & MMC_CAP_DISABLE)
2207 		cancel_delayed_work(&host->disable);
2208 	cancel_delayed_work_sync(&host->detect);
2209 	mmc_flush_scheduled_work();
2210 
2211 	/* clear pm flags now and let card drivers set them as needed */
2212 	host->pm_flags = 0;
2213 
2214 	mmc_bus_get(host);
2215 	if (host->bus_ops && !host->bus_dead) {
2216 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2217 		if (host->bus_ops->remove)
2218 			host->bus_ops->remove(host);
2219 
2220 		mmc_claim_host(host);
2221 		mmc_detach_bus(host);
2222 		mmc_power_off(host);
2223 		mmc_release_host(host);
2224 		mmc_bus_put(host);
2225 		return;
2226 	}
2227 	mmc_bus_put(host);
2228 
2229 	BUG_ON(host->card);
2230 
2231 	mmc_power_off(host);
2232 }
2233 
mmc_power_save_host(struct mmc_host * host)2234 int mmc_power_save_host(struct mmc_host *host)
2235 {
2236 	int ret = 0;
2237 
2238 #ifdef CONFIG_MMC_DEBUG
2239 	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2240 #endif
2241 
2242 	mmc_bus_get(host);
2243 
2244 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2245 		mmc_bus_put(host);
2246 		return -EINVAL;
2247 	}
2248 
2249 	if (host->bus_ops->power_save)
2250 		ret = host->bus_ops->power_save(host);
2251 
2252 	mmc_bus_put(host);
2253 
2254 	mmc_power_off(host);
2255 
2256 	return ret;
2257 }
2258 EXPORT_SYMBOL(mmc_power_save_host);
2259 
mmc_power_restore_host(struct mmc_host * host)2260 int mmc_power_restore_host(struct mmc_host *host)
2261 {
2262 	int ret;
2263 
2264 #ifdef CONFIG_MMC_DEBUG
2265 	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2266 #endif
2267 
2268 	mmc_bus_get(host);
2269 
2270 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2271 		mmc_bus_put(host);
2272 		return -EINVAL;
2273 	}
2274 
2275 	mmc_power_up(host);
2276 	ret = host->bus_ops->power_restore(host);
2277 
2278 	mmc_bus_put(host);
2279 
2280 	return ret;
2281 }
2282 EXPORT_SYMBOL(mmc_power_restore_host);
2283 
mmc_card_awake(struct mmc_host * host)2284 int mmc_card_awake(struct mmc_host *host)
2285 {
2286 	int err = -ENOSYS;
2287 
2288 	if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2289 		return 0;
2290 
2291 	mmc_bus_get(host);
2292 
2293 	if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
2294 		err = host->bus_ops->awake(host);
2295 
2296 	mmc_bus_put(host);
2297 
2298 	return err;
2299 }
2300 EXPORT_SYMBOL(mmc_card_awake);
2301 
mmc_card_sleep(struct mmc_host * host)2302 int mmc_card_sleep(struct mmc_host *host)
2303 {
2304 	int err = -ENOSYS;
2305 
2306 	if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2307 		return 0;
2308 
2309 	mmc_bus_get(host);
2310 
2311 	if (host->bus_ops && !host->bus_dead && host->bus_ops->sleep)
2312 		err = host->bus_ops->sleep(host);
2313 
2314 	mmc_bus_put(host);
2315 
2316 	return err;
2317 }
2318 EXPORT_SYMBOL(mmc_card_sleep);
2319 
mmc_card_can_sleep(struct mmc_host * host)2320 int mmc_card_can_sleep(struct mmc_host *host)
2321 {
2322 	struct mmc_card *card = host->card;
2323 
2324 	if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
2325 		return 1;
2326 	return 0;
2327 }
2328 EXPORT_SYMBOL(mmc_card_can_sleep);
2329 
2330 /*
2331  * Flush the cache to the non-volatile storage.
2332  */
mmc_flush_cache(struct mmc_card * card)2333 int mmc_flush_cache(struct mmc_card *card)
2334 {
2335 	struct mmc_host *host = card->host;
2336 	int err = 0;
2337 
2338 	if (!(host->caps2 & MMC_CAP2_CACHE_CTRL))
2339 		return err;
2340 
2341 	if (mmc_card_mmc(card) &&
2342 			(card->ext_csd.cache_size > 0) &&
2343 			(card->ext_csd.cache_ctrl & 1)) {
2344 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2345 				EXT_CSD_FLUSH_CACHE, 1, 0);
2346 		if (err)
2347 			pr_err("%s: cache flush error %d\n",
2348 					mmc_hostname(card->host), err);
2349 	}
2350 
2351 	return err;
2352 }
2353 EXPORT_SYMBOL(mmc_flush_cache);
2354 
2355 /*
2356  * Turn the cache ON/OFF.
2357  * Turning the cache OFF shall trigger flushing of the data
2358  * to the non-volatile storage.
2359  */
mmc_cache_ctrl(struct mmc_host * host,u8 enable)2360 int mmc_cache_ctrl(struct mmc_host *host, u8 enable)
2361 {
2362 	struct mmc_card *card = host->card;
2363 	unsigned int timeout;
2364 	int err = 0;
2365 
2366 	if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) ||
2367 			mmc_card_is_removable(host))
2368 		return err;
2369 
2370 	if (card && mmc_card_mmc(card) &&
2371 			(card->ext_csd.cache_size > 0)) {
2372 		enable = !!enable;
2373 
2374 		if (card->ext_csd.cache_ctrl ^ enable) {
2375 			timeout = enable ? card->ext_csd.generic_cmd6_time : 0;
2376 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2377 					EXT_CSD_CACHE_CTRL, enable, timeout);
2378 			if (err)
2379 				pr_err("%s: cache %s error %d\n",
2380 						mmc_hostname(card->host),
2381 						enable ? "on" : "off",
2382 						err);
2383 			else
2384 				card->ext_csd.cache_ctrl = enable;
2385 		}
2386 	}
2387 
2388 	return err;
2389 }
2390 EXPORT_SYMBOL(mmc_cache_ctrl);
2391 
2392 #ifdef CONFIG_PM
2393 
2394 /**
2395  *	mmc_suspend_host - suspend a host
2396  *	@host: mmc host
2397  */
mmc_suspend_host(struct mmc_host * host)2398 int mmc_suspend_host(struct mmc_host *host)
2399 {
2400 	int err = 0;
2401 
2402 	if (host->caps & MMC_CAP_DISABLE)
2403 		cancel_delayed_work(&host->disable);
2404 	cancel_delayed_work(&host->detect);
2405 	mmc_flush_scheduled_work();
2406 	if (mmc_try_claim_host(host)) {
2407 		err = mmc_cache_ctrl(host, 0);
2408 		mmc_do_release_host(host);
2409 	} else {
2410 		err = -EBUSY;
2411 	}
2412 
2413 	if (err)
2414 		goto out;
2415 
2416 	mmc_bus_get(host);
2417 	if (host->bus_ops && !host->bus_dead) {
2418 
2419 		/*
2420 		 * A long response time is not acceptable for device drivers
2421 		 * when doing suspend. Prevent mmc_claim_host in the suspend
2422 		 * sequence, to potentially wait "forever" by trying to
2423 		 * pre-claim the host.
2424 		 */
2425 		if (mmc_try_claim_host(host)) {
2426 			if (host->bus_ops->suspend) {
2427 				err = host->bus_ops->suspend(host);
2428 			}
2429 			mmc_do_release_host(host);
2430 
2431 			if (err == -ENOSYS || !host->bus_ops->resume) {
2432 				/*
2433 				 * We simply "remove" the card in this case.
2434 				 * It will be redetected on resume.  (Calling
2435 				 * bus_ops->remove() with a claimed host can
2436 				 * deadlock.)
2437 				 */
2438 				if (host->bus_ops->remove)
2439 					host->bus_ops->remove(host);
2440 				mmc_claim_host(host);
2441 				mmc_detach_bus(host);
2442 				mmc_power_off(host);
2443 				mmc_release_host(host);
2444 				host->pm_flags = 0;
2445 				err = 0;
2446 			}
2447 		} else {
2448 			err = -EBUSY;
2449 		}
2450 	}
2451 	mmc_bus_put(host);
2452 
2453 	if (!err && !mmc_card_keep_power(host))
2454 		mmc_power_off(host);
2455 
2456 out:
2457 	return err;
2458 }
2459 
2460 EXPORT_SYMBOL(mmc_suspend_host);
2461 
2462 /**
2463  *	mmc_resume_host - resume a previously suspended host
2464  *	@host: mmc host
2465  */
mmc_resume_host(struct mmc_host * host)2466 int mmc_resume_host(struct mmc_host *host)
2467 {
2468 	int err = 0;
2469 
2470 	mmc_bus_get(host);
2471 	if (host->bus_ops && !host->bus_dead) {
2472 		if (!mmc_card_keep_power(host)) {
2473 			mmc_power_up(host);
2474 			mmc_select_voltage(host, host->ocr);
2475 			/*
2476 			 * Tell runtime PM core we just powered up the card,
2477 			 * since it still believes the card is powered off.
2478 			 * Note that currently runtime PM is only enabled
2479 			 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2480 			 */
2481 			if (mmc_card_sdio(host->card) &&
2482 			    (host->caps & MMC_CAP_POWER_OFF_CARD)) {
2483 				pm_runtime_disable(&host->card->dev);
2484 				pm_runtime_set_active(&host->card->dev);
2485 				pm_runtime_enable(&host->card->dev);
2486 			}
2487 		}
2488 		BUG_ON(!host->bus_ops->resume);
2489 		err = host->bus_ops->resume(host);
2490 		if (err) {
2491 			pr_warning("%s: error %d during resume "
2492 					    "(card was removed?)\n",
2493 					    mmc_hostname(host), err);
2494 			err = 0;
2495 		}
2496 	}
2497 	host->pm_flags &= ~MMC_PM_KEEP_POWER;
2498 	mmc_bus_put(host);
2499 
2500 	return err;
2501 }
2502 EXPORT_SYMBOL(mmc_resume_host);
2503 
2504 /* Do the card removal on suspend if card is assumed removeable
2505  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2506    to sync the card.
2507 */
mmc_pm_notify(struct notifier_block * notify_block,unsigned long mode,void * unused)2508 int mmc_pm_notify(struct notifier_block *notify_block,
2509 					unsigned long mode, void *unused)
2510 {
2511 	struct mmc_host *host = container_of(
2512 		notify_block, struct mmc_host, pm_notify);
2513 	unsigned long flags;
2514 
2515 
2516 	switch (mode) {
2517 	case PM_HIBERNATION_PREPARE:
2518 	case PM_SUSPEND_PREPARE:
2519 
2520 		spin_lock_irqsave(&host->lock, flags);
2521 		host->rescan_disable = 1;
2522 		host->power_notify_type = MMC_HOST_PW_NOTIFY_SHORT;
2523 		spin_unlock_irqrestore(&host->lock, flags);
2524 		cancel_delayed_work_sync(&host->detect);
2525 
2526 		if (!host->bus_ops || host->bus_ops->suspend)
2527 			break;
2528 
2529 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2530 		if (host->bus_ops->remove)
2531 			host->bus_ops->remove(host);
2532 
2533 		mmc_claim_host(host);
2534 		mmc_detach_bus(host);
2535 		mmc_power_off(host);
2536 		mmc_release_host(host);
2537 		host->pm_flags = 0;
2538 		break;
2539 
2540 	case PM_POST_SUSPEND:
2541 	case PM_POST_HIBERNATION:
2542 	case PM_POST_RESTORE:
2543 
2544 		spin_lock_irqsave(&host->lock, flags);
2545 		host->rescan_disable = 0;
2546 		host->power_notify_type = MMC_HOST_PW_NOTIFY_LONG;
2547 		spin_unlock_irqrestore(&host->lock, flags);
2548 		mmc_detect_change(host, 0);
2549 
2550 	}
2551 
2552 	return 0;
2553 }
2554 #endif
2555 
mmc_init(void)2556 static int __init mmc_init(void)
2557 {
2558 	int ret;
2559 
2560 	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2561 	if (!workqueue)
2562 		return -ENOMEM;
2563 
2564 	ret = mmc_register_bus();
2565 	if (ret)
2566 		goto destroy_workqueue;
2567 
2568 	ret = mmc_register_host_class();
2569 	if (ret)
2570 		goto unregister_bus;
2571 
2572 	ret = sdio_register_bus();
2573 	if (ret)
2574 		goto unregister_host_class;
2575 
2576 	return 0;
2577 
2578 unregister_host_class:
2579 	mmc_unregister_host_class();
2580 unregister_bus:
2581 	mmc_unregister_bus();
2582 destroy_workqueue:
2583 	destroy_workqueue(workqueue);
2584 
2585 	return ret;
2586 }
2587 
mmc_exit(void)2588 static void __exit mmc_exit(void)
2589 {
2590 	sdio_unregister_bus();
2591 	mmc_unregister_host_class();
2592 	mmc_unregister_bus();
2593 	destroy_workqueue(workqueue);
2594 }
2595 
2596 subsys_initcall(mmc_init);
2597 module_exit(mmc_exit);
2598 
2599 MODULE_LICENSE("GPL");
2600