1 /*
2 * linux/drivers/mmc/core/core.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/suspend.h>
27 #include <linux/fault-inject.h>
28 #include <linux/random.h>
29
30 #include <linux/mmc/card.h>
31 #include <linux/mmc/host.h>
32 #include <linux/mmc/mmc.h>
33 #include <linux/mmc/sd.h>
34
35 #include "core.h"
36 #include "bus.h"
37 #include "host.h"
38 #include "sdio_bus.h"
39
40 #include "mmc_ops.h"
41 #include "sd_ops.h"
42 #include "sdio_ops.h"
43
44 static struct workqueue_struct *workqueue;
45
46 /*
47 * Enabling software CRCs on the data blocks can be a significant (30%)
48 * performance cost, and for other reasons may not always be desired.
49 * So we allow it it to be disabled.
50 */
51 bool use_spi_crc = 1;
52 module_param(use_spi_crc, bool, 0);
53
54 /*
55 * We normally treat cards as removed during suspend if they are not
56 * known to be on a non-removable bus, to avoid the risk of writing
57 * back data to a different card after resume. Allow this to be
58 * overridden if necessary.
59 */
60 #ifdef CONFIG_MMC_UNSAFE_RESUME
61 bool mmc_assume_removable;
62 #else
63 bool mmc_assume_removable = 1;
64 #endif
65 EXPORT_SYMBOL(mmc_assume_removable);
66 module_param_named(removable, mmc_assume_removable, bool, 0644);
67 MODULE_PARM_DESC(
68 removable,
69 "MMC/SD cards are removable and may be removed during suspend");
70
71 /*
72 * Internal function. Schedule delayed work in the MMC work queue.
73 */
mmc_schedule_delayed_work(struct delayed_work * work,unsigned long delay)74 static int mmc_schedule_delayed_work(struct delayed_work *work,
75 unsigned long delay)
76 {
77 return queue_delayed_work(workqueue, work, delay);
78 }
79
80 /*
81 * Internal function. Flush all scheduled work from the MMC work queue.
82 */
mmc_flush_scheduled_work(void)83 static void mmc_flush_scheduled_work(void)
84 {
85 flush_workqueue(workqueue);
86 }
87
88 #ifdef CONFIG_FAIL_MMC_REQUEST
89
90 /*
91 * Internal function. Inject random data errors.
92 * If mmc_data is NULL no errors are injected.
93 */
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)94 static void mmc_should_fail_request(struct mmc_host *host,
95 struct mmc_request *mrq)
96 {
97 struct mmc_command *cmd = mrq->cmd;
98 struct mmc_data *data = mrq->data;
99 static const int data_errors[] = {
100 -ETIMEDOUT,
101 -EILSEQ,
102 -EIO,
103 };
104
105 if (!data)
106 return;
107
108 if (cmd->error || data->error ||
109 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
110 return;
111
112 data->error = data_errors[random32() % ARRAY_SIZE(data_errors)];
113 data->bytes_xfered = (random32() % (data->bytes_xfered >> 9)) << 9;
114 }
115
116 #else /* CONFIG_FAIL_MMC_REQUEST */
117
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)118 static inline void mmc_should_fail_request(struct mmc_host *host,
119 struct mmc_request *mrq)
120 {
121 }
122
123 #endif /* CONFIG_FAIL_MMC_REQUEST */
124
125 /**
126 * mmc_request_done - finish processing an MMC request
127 * @host: MMC host which completed request
128 * @mrq: MMC request which request
129 *
130 * MMC drivers should call this function when they have completed
131 * their processing of a request.
132 */
mmc_request_done(struct mmc_host * host,struct mmc_request * mrq)133 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
134 {
135 struct mmc_command *cmd = mrq->cmd;
136 int err = cmd->error;
137
138 if (err && cmd->retries && mmc_host_is_spi(host)) {
139 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
140 cmd->retries = 0;
141 }
142
143 if (err && cmd->retries && !mmc_card_removed(host->card)) {
144 /*
145 * Request starter must handle retries - see
146 * mmc_wait_for_req_done().
147 */
148 if (mrq->done)
149 mrq->done(mrq);
150 } else {
151 mmc_should_fail_request(host, mrq);
152
153 led_trigger_event(host->led, LED_OFF);
154
155 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
156 mmc_hostname(host), cmd->opcode, err,
157 cmd->resp[0], cmd->resp[1],
158 cmd->resp[2], cmd->resp[3]);
159
160 if (mrq->data) {
161 pr_debug("%s: %d bytes transferred: %d\n",
162 mmc_hostname(host),
163 mrq->data->bytes_xfered, mrq->data->error);
164 }
165
166 if (mrq->stop) {
167 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
168 mmc_hostname(host), mrq->stop->opcode,
169 mrq->stop->error,
170 mrq->stop->resp[0], mrq->stop->resp[1],
171 mrq->stop->resp[2], mrq->stop->resp[3]);
172 }
173
174 if (mrq->done)
175 mrq->done(mrq);
176
177 mmc_host_clk_release(host);
178 }
179 }
180
181 EXPORT_SYMBOL(mmc_request_done);
182
183 static void
mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)184 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
185 {
186 #ifdef CONFIG_MMC_DEBUG
187 unsigned int i, sz;
188 struct scatterlist *sg;
189 #endif
190
191 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
192 mmc_hostname(host), mrq->cmd->opcode,
193 mrq->cmd->arg, mrq->cmd->flags);
194
195 if (mrq->data) {
196 pr_debug("%s: blksz %d blocks %d flags %08x "
197 "tsac %d ms nsac %d\n",
198 mmc_hostname(host), mrq->data->blksz,
199 mrq->data->blocks, mrq->data->flags,
200 mrq->data->timeout_ns / 1000000,
201 mrq->data->timeout_clks);
202 }
203
204 if (mrq->stop) {
205 pr_debug("%s: CMD%u arg %08x flags %08x\n",
206 mmc_hostname(host), mrq->stop->opcode,
207 mrq->stop->arg, mrq->stop->flags);
208 }
209
210 WARN_ON(!host->claimed);
211
212 mrq->cmd->error = 0;
213 mrq->cmd->mrq = mrq;
214 if (mrq->data) {
215 BUG_ON(mrq->data->blksz > host->max_blk_size);
216 BUG_ON(mrq->data->blocks > host->max_blk_count);
217 BUG_ON(mrq->data->blocks * mrq->data->blksz >
218 host->max_req_size);
219
220 #ifdef CONFIG_MMC_DEBUG
221 sz = 0;
222 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
223 sz += sg->length;
224 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
225 #endif
226
227 mrq->cmd->data = mrq->data;
228 mrq->data->error = 0;
229 mrq->data->mrq = mrq;
230 if (mrq->stop) {
231 mrq->data->stop = mrq->stop;
232 mrq->stop->error = 0;
233 mrq->stop->mrq = mrq;
234 }
235 }
236 mmc_host_clk_hold(host);
237 led_trigger_event(host->led, LED_FULL);
238 host->ops->request(host, mrq);
239 }
240
mmc_wait_done(struct mmc_request * mrq)241 static void mmc_wait_done(struct mmc_request *mrq)
242 {
243 complete(&mrq->completion);
244 }
245
__mmc_start_req(struct mmc_host * host,struct mmc_request * mrq)246 static void __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
247 {
248 init_completion(&mrq->completion);
249 mrq->done = mmc_wait_done;
250 if (mmc_card_removed(host->card)) {
251 mrq->cmd->error = -ENOMEDIUM;
252 complete(&mrq->completion);
253 return;
254 }
255 mmc_start_request(host, mrq);
256 }
257
mmc_wait_for_req_done(struct mmc_host * host,struct mmc_request * mrq)258 static void mmc_wait_for_req_done(struct mmc_host *host,
259 struct mmc_request *mrq)
260 {
261 struct mmc_command *cmd;
262
263 while (1) {
264 wait_for_completion(&mrq->completion);
265
266 cmd = mrq->cmd;
267 if (!cmd->error || !cmd->retries ||
268 mmc_card_removed(host->card))
269 break;
270
271 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
272 mmc_hostname(host), cmd->opcode, cmd->error);
273 cmd->retries--;
274 cmd->error = 0;
275 host->ops->request(host, mrq);
276 }
277 }
278
279 /**
280 * mmc_pre_req - Prepare for a new request
281 * @host: MMC host to prepare command
282 * @mrq: MMC request to prepare for
283 * @is_first_req: true if there is no previous started request
284 * that may run in parellel to this call, otherwise false
285 *
286 * mmc_pre_req() is called in prior to mmc_start_req() to let
287 * host prepare for the new request. Preparation of a request may be
288 * performed while another request is running on the host.
289 */
mmc_pre_req(struct mmc_host * host,struct mmc_request * mrq,bool is_first_req)290 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
291 bool is_first_req)
292 {
293 if (host->ops->pre_req) {
294 mmc_host_clk_hold(host);
295 host->ops->pre_req(host, mrq, is_first_req);
296 mmc_host_clk_release(host);
297 }
298 }
299
300 /**
301 * mmc_post_req - Post process a completed request
302 * @host: MMC host to post process command
303 * @mrq: MMC request to post process for
304 * @err: Error, if non zero, clean up any resources made in pre_req
305 *
306 * Let the host post process a completed request. Post processing of
307 * a request may be performed while another reuqest is running.
308 */
mmc_post_req(struct mmc_host * host,struct mmc_request * mrq,int err)309 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
310 int err)
311 {
312 if (host->ops->post_req) {
313 mmc_host_clk_hold(host);
314 host->ops->post_req(host, mrq, err);
315 mmc_host_clk_release(host);
316 }
317 }
318
319 /**
320 * mmc_start_req - start a non-blocking request
321 * @host: MMC host to start command
322 * @areq: async request to start
323 * @error: out parameter returns 0 for success, otherwise non zero
324 *
325 * Start a new MMC custom command request for a host.
326 * If there is on ongoing async request wait for completion
327 * of that request and start the new one and return.
328 * Does not wait for the new request to complete.
329 *
330 * Returns the completed request, NULL in case of none completed.
331 * Wait for the an ongoing request (previoulsy started) to complete and
332 * return the completed request. If there is no ongoing request, NULL
333 * is returned without waiting. NULL is not an error condition.
334 */
mmc_start_req(struct mmc_host * host,struct mmc_async_req * areq,int * error)335 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
336 struct mmc_async_req *areq, int *error)
337 {
338 int err = 0;
339 struct mmc_async_req *data = host->areq;
340
341 /* Prepare a new request */
342 if (areq)
343 mmc_pre_req(host, areq->mrq, !host->areq);
344
345 if (host->areq) {
346 mmc_wait_for_req_done(host, host->areq->mrq);
347 err = host->areq->err_check(host->card, host->areq);
348 if (err) {
349 /* post process the completed failed request */
350 mmc_post_req(host, host->areq->mrq, 0);
351 if (areq)
352 /*
353 * Cancel the new prepared request, because
354 * it can't run until the failed
355 * request has been properly handled.
356 */
357 mmc_post_req(host, areq->mrq, -EINVAL);
358
359 host->areq = NULL;
360 goto out;
361 }
362 }
363
364 if (areq)
365 __mmc_start_req(host, areq->mrq);
366
367 if (host->areq)
368 mmc_post_req(host, host->areq->mrq, 0);
369
370 host->areq = areq;
371 out:
372 if (error)
373 *error = err;
374 return data;
375 }
376 EXPORT_SYMBOL(mmc_start_req);
377
378 /**
379 * mmc_wait_for_req - start a request and wait for completion
380 * @host: MMC host to start command
381 * @mrq: MMC request to start
382 *
383 * Start a new MMC custom command request for a host, and wait
384 * for the command to complete. Does not attempt to parse the
385 * response.
386 */
mmc_wait_for_req(struct mmc_host * host,struct mmc_request * mrq)387 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
388 {
389 __mmc_start_req(host, mrq);
390 mmc_wait_for_req_done(host, mrq);
391 }
392 EXPORT_SYMBOL(mmc_wait_for_req);
393
394 /**
395 * mmc_interrupt_hpi - Issue for High priority Interrupt
396 * @card: the MMC card associated with the HPI transfer
397 *
398 * Issued High Priority Interrupt, and check for card status
399 * util out-of prg-state.
400 */
mmc_interrupt_hpi(struct mmc_card * card)401 int mmc_interrupt_hpi(struct mmc_card *card)
402 {
403 int err;
404 u32 status;
405
406 BUG_ON(!card);
407
408 if (!card->ext_csd.hpi_en) {
409 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
410 return 1;
411 }
412
413 mmc_claim_host(card->host);
414 err = mmc_send_status(card, &status);
415 if (err) {
416 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
417 goto out;
418 }
419
420 /*
421 * If the card status is in PRG-state, we can send the HPI command.
422 */
423 if (R1_CURRENT_STATE(status) == R1_STATE_PRG) {
424 do {
425 /*
426 * We don't know when the HPI command will finish
427 * processing, so we need to resend HPI until out
428 * of prg-state, and keep checking the card status
429 * with SEND_STATUS. If a timeout error occurs when
430 * sending the HPI command, we are already out of
431 * prg-state.
432 */
433 err = mmc_send_hpi_cmd(card, &status);
434 if (err)
435 pr_debug("%s: abort HPI (%d error)\n",
436 mmc_hostname(card->host), err);
437
438 err = mmc_send_status(card, &status);
439 if (err)
440 break;
441 } while (R1_CURRENT_STATE(status) == R1_STATE_PRG);
442 } else
443 pr_debug("%s: Left prg-state\n", mmc_hostname(card->host));
444
445 out:
446 mmc_release_host(card->host);
447 return err;
448 }
449 EXPORT_SYMBOL(mmc_interrupt_hpi);
450
451 /**
452 * mmc_wait_for_cmd - start a command and wait for completion
453 * @host: MMC host to start command
454 * @cmd: MMC command to start
455 * @retries: maximum number of retries
456 *
457 * Start a new MMC command for a host, and wait for the command
458 * to complete. Return any error that occurred while the command
459 * was executing. Do not attempt to parse the response.
460 */
mmc_wait_for_cmd(struct mmc_host * host,struct mmc_command * cmd,int retries)461 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
462 {
463 struct mmc_request mrq = {NULL};
464
465 WARN_ON(!host->claimed);
466
467 memset(cmd->resp, 0, sizeof(cmd->resp));
468 cmd->retries = retries;
469
470 mrq.cmd = cmd;
471 cmd->data = NULL;
472
473 mmc_wait_for_req(host, &mrq);
474
475 return cmd->error;
476 }
477
478 EXPORT_SYMBOL(mmc_wait_for_cmd);
479
480 /**
481 * mmc_set_data_timeout - set the timeout for a data command
482 * @data: data phase for command
483 * @card: the MMC card associated with the data transfer
484 *
485 * Computes the data timeout parameters according to the
486 * correct algorithm given the card type.
487 */
mmc_set_data_timeout(struct mmc_data * data,const struct mmc_card * card)488 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
489 {
490 unsigned int mult;
491
492 /*
493 * SDIO cards only define an upper 1 s limit on access.
494 */
495 if (mmc_card_sdio(card)) {
496 data->timeout_ns = 1000000000;
497 data->timeout_clks = 0;
498 return;
499 }
500
501 /*
502 * SD cards use a 100 multiplier rather than 10
503 */
504 mult = mmc_card_sd(card) ? 100 : 10;
505
506 /*
507 * Scale up the multiplier (and therefore the timeout) by
508 * the r2w factor for writes.
509 */
510 if (data->flags & MMC_DATA_WRITE)
511 mult <<= card->csd.r2w_factor;
512
513 data->timeout_ns = card->csd.tacc_ns * mult;
514 data->timeout_clks = card->csd.tacc_clks * mult;
515
516 /*
517 * SD cards also have an upper limit on the timeout.
518 */
519 if (mmc_card_sd(card)) {
520 unsigned int timeout_us, limit_us;
521
522 timeout_us = data->timeout_ns / 1000;
523 if (mmc_host_clk_rate(card->host))
524 timeout_us += data->timeout_clks * 1000 /
525 (mmc_host_clk_rate(card->host) / 1000);
526
527 if (data->flags & MMC_DATA_WRITE)
528 /*
529 * The limit is really 250 ms, but that is
530 * insufficient for some crappy cards.
531 */
532 limit_us = 300000;
533 else
534 limit_us = 100000;
535
536 /*
537 * SDHC cards always use these fixed values.
538 */
539 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
540 data->timeout_ns = limit_us * 1000;
541 data->timeout_clks = 0;
542 }
543 }
544
545 /*
546 * Some cards require longer data read timeout than indicated in CSD.
547 * Address this by setting the read timeout to a "reasonably high"
548 * value. For the cards tested, 300ms has proven enough. If necessary,
549 * this value can be increased if other problematic cards require this.
550 */
551 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
552 data->timeout_ns = 300000000;
553 data->timeout_clks = 0;
554 }
555
556 /*
557 * Some cards need very high timeouts if driven in SPI mode.
558 * The worst observed timeout was 900ms after writing a
559 * continuous stream of data until the internal logic
560 * overflowed.
561 */
562 if (mmc_host_is_spi(card->host)) {
563 if (data->flags & MMC_DATA_WRITE) {
564 if (data->timeout_ns < 1000000000)
565 data->timeout_ns = 1000000000; /* 1s */
566 } else {
567 if (data->timeout_ns < 100000000)
568 data->timeout_ns = 100000000; /* 100ms */
569 }
570 }
571 }
572 EXPORT_SYMBOL(mmc_set_data_timeout);
573
574 /**
575 * mmc_align_data_size - pads a transfer size to a more optimal value
576 * @card: the MMC card associated with the data transfer
577 * @sz: original transfer size
578 *
579 * Pads the original data size with a number of extra bytes in
580 * order to avoid controller bugs and/or performance hits
581 * (e.g. some controllers revert to PIO for certain sizes).
582 *
583 * Returns the improved size, which might be unmodified.
584 *
585 * Note that this function is only relevant when issuing a
586 * single scatter gather entry.
587 */
mmc_align_data_size(struct mmc_card * card,unsigned int sz)588 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
589 {
590 /*
591 * FIXME: We don't have a system for the controller to tell
592 * the core about its problems yet, so for now we just 32-bit
593 * align the size.
594 */
595 sz = ((sz + 3) / 4) * 4;
596
597 return sz;
598 }
599 EXPORT_SYMBOL(mmc_align_data_size);
600
601 /**
602 * mmc_host_enable - enable a host.
603 * @host: mmc host to enable
604 *
605 * Hosts that support power saving can use the 'enable' and 'disable'
606 * methods to exit and enter power saving states. For more information
607 * see comments for struct mmc_host_ops.
608 */
mmc_host_enable(struct mmc_host * host)609 int mmc_host_enable(struct mmc_host *host)
610 {
611 if (!(host->caps & MMC_CAP_DISABLE))
612 return 0;
613
614 if (host->en_dis_recurs)
615 return 0;
616
617 if (host->nesting_cnt++)
618 return 0;
619
620 cancel_delayed_work_sync(&host->disable);
621
622 if (host->enabled)
623 return 0;
624
625 if (host->ops->enable) {
626 int err;
627
628 host->en_dis_recurs = 1;
629 mmc_host_clk_hold(host);
630 err = host->ops->enable(host);
631 mmc_host_clk_release(host);
632 host->en_dis_recurs = 0;
633
634 if (err) {
635 pr_debug("%s: enable error %d\n",
636 mmc_hostname(host), err);
637 return err;
638 }
639 }
640 host->enabled = 1;
641 return 0;
642 }
643 EXPORT_SYMBOL(mmc_host_enable);
644
mmc_host_do_disable(struct mmc_host * host,int lazy)645 static int mmc_host_do_disable(struct mmc_host *host, int lazy)
646 {
647 if (host->ops->disable) {
648 int err;
649
650 host->en_dis_recurs = 1;
651 mmc_host_clk_hold(host);
652 err = host->ops->disable(host, lazy);
653 mmc_host_clk_release(host);
654 host->en_dis_recurs = 0;
655
656 if (err < 0) {
657 pr_debug("%s: disable error %d\n",
658 mmc_hostname(host), err);
659 return err;
660 }
661 if (err > 0) {
662 unsigned long delay = msecs_to_jiffies(err);
663
664 mmc_schedule_delayed_work(&host->disable, delay);
665 }
666 }
667 host->enabled = 0;
668 return 0;
669 }
670
671 /**
672 * mmc_host_disable - disable a host.
673 * @host: mmc host to disable
674 *
675 * Hosts that support power saving can use the 'enable' and 'disable'
676 * methods to exit and enter power saving states. For more information
677 * see comments for struct mmc_host_ops.
678 */
mmc_host_disable(struct mmc_host * host)679 int mmc_host_disable(struct mmc_host *host)
680 {
681 int err;
682
683 if (!(host->caps & MMC_CAP_DISABLE))
684 return 0;
685
686 if (host->en_dis_recurs)
687 return 0;
688
689 if (--host->nesting_cnt)
690 return 0;
691
692 if (!host->enabled)
693 return 0;
694
695 err = mmc_host_do_disable(host, 0);
696 return err;
697 }
698 EXPORT_SYMBOL(mmc_host_disable);
699
700 /**
701 * __mmc_claim_host - exclusively claim a host
702 * @host: mmc host to claim
703 * @abort: whether or not the operation should be aborted
704 *
705 * Claim a host for a set of operations. If @abort is non null and
706 * dereference a non-zero value then this will return prematurely with
707 * that non-zero value without acquiring the lock. Returns zero
708 * with the lock held otherwise.
709 */
__mmc_claim_host(struct mmc_host * host,atomic_t * abort)710 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
711 {
712 DECLARE_WAITQUEUE(wait, current);
713 unsigned long flags;
714 int stop;
715
716 might_sleep();
717
718 add_wait_queue(&host->wq, &wait);
719 spin_lock_irqsave(&host->lock, flags);
720 while (1) {
721 set_current_state(TASK_UNINTERRUPTIBLE);
722 stop = abort ? atomic_read(abort) : 0;
723 if (stop || !host->claimed || host->claimer == current)
724 break;
725 spin_unlock_irqrestore(&host->lock, flags);
726 schedule();
727 spin_lock_irqsave(&host->lock, flags);
728 }
729 set_current_state(TASK_RUNNING);
730 if (!stop) {
731 host->claimed = 1;
732 host->claimer = current;
733 host->claim_cnt += 1;
734 } else
735 wake_up(&host->wq);
736 spin_unlock_irqrestore(&host->lock, flags);
737 remove_wait_queue(&host->wq, &wait);
738 if (!stop)
739 mmc_host_enable(host);
740 return stop;
741 }
742
743 EXPORT_SYMBOL(__mmc_claim_host);
744
745 /**
746 * mmc_try_claim_host - try exclusively to claim a host
747 * @host: mmc host to claim
748 *
749 * Returns %1 if the host is claimed, %0 otherwise.
750 */
mmc_try_claim_host(struct mmc_host * host)751 int mmc_try_claim_host(struct mmc_host *host)
752 {
753 int claimed_host = 0;
754 unsigned long flags;
755
756 spin_lock_irqsave(&host->lock, flags);
757 if (!host->claimed || host->claimer == current) {
758 host->claimed = 1;
759 host->claimer = current;
760 host->claim_cnt += 1;
761 claimed_host = 1;
762 }
763 spin_unlock_irqrestore(&host->lock, flags);
764 return claimed_host;
765 }
766 EXPORT_SYMBOL(mmc_try_claim_host);
767
768 /**
769 * mmc_do_release_host - release a claimed host
770 * @host: mmc host to release
771 *
772 * If you successfully claimed a host, this function will
773 * release it again.
774 */
mmc_do_release_host(struct mmc_host * host)775 void mmc_do_release_host(struct mmc_host *host)
776 {
777 unsigned long flags;
778
779 spin_lock_irqsave(&host->lock, flags);
780 if (--host->claim_cnt) {
781 /* Release for nested claim */
782 spin_unlock_irqrestore(&host->lock, flags);
783 } else {
784 host->claimed = 0;
785 host->claimer = NULL;
786 spin_unlock_irqrestore(&host->lock, flags);
787 wake_up(&host->wq);
788 }
789 }
790 EXPORT_SYMBOL(mmc_do_release_host);
791
mmc_host_deeper_disable(struct work_struct * work)792 void mmc_host_deeper_disable(struct work_struct *work)
793 {
794 struct mmc_host *host =
795 container_of(work, struct mmc_host, disable.work);
796
797 /* If the host is claimed then we do not want to disable it anymore */
798 if (!mmc_try_claim_host(host))
799 return;
800 mmc_host_do_disable(host, 1);
801 mmc_do_release_host(host);
802 }
803
804 /**
805 * mmc_host_lazy_disable - lazily disable a host.
806 * @host: mmc host to disable
807 *
808 * Hosts that support power saving can use the 'enable' and 'disable'
809 * methods to exit and enter power saving states. For more information
810 * see comments for struct mmc_host_ops.
811 */
mmc_host_lazy_disable(struct mmc_host * host)812 int mmc_host_lazy_disable(struct mmc_host *host)
813 {
814 if (!(host->caps & MMC_CAP_DISABLE))
815 return 0;
816
817 if (host->en_dis_recurs)
818 return 0;
819
820 if (--host->nesting_cnt)
821 return 0;
822
823 if (!host->enabled)
824 return 0;
825
826 if (host->disable_delay) {
827 mmc_schedule_delayed_work(&host->disable,
828 msecs_to_jiffies(host->disable_delay));
829 return 0;
830 } else
831 return mmc_host_do_disable(host, 1);
832 }
833 EXPORT_SYMBOL(mmc_host_lazy_disable);
834
835 /**
836 * mmc_release_host - release a host
837 * @host: mmc host to release
838 *
839 * Release a MMC host, allowing others to claim the host
840 * for their operations.
841 */
mmc_release_host(struct mmc_host * host)842 void mmc_release_host(struct mmc_host *host)
843 {
844 WARN_ON(!host->claimed);
845
846 mmc_host_lazy_disable(host);
847
848 mmc_do_release_host(host);
849 }
850
851 EXPORT_SYMBOL(mmc_release_host);
852
853 /*
854 * Internal function that does the actual ios call to the host driver,
855 * optionally printing some debug output.
856 */
mmc_set_ios(struct mmc_host * host)857 static inline void mmc_set_ios(struct mmc_host *host)
858 {
859 struct mmc_ios *ios = &host->ios;
860
861 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
862 "width %u timing %u\n",
863 mmc_hostname(host), ios->clock, ios->bus_mode,
864 ios->power_mode, ios->chip_select, ios->vdd,
865 ios->bus_width, ios->timing);
866
867 if (ios->clock > 0)
868 mmc_set_ungated(host);
869 host->ops->set_ios(host, ios);
870 }
871
872 /*
873 * Control chip select pin on a host.
874 */
mmc_set_chip_select(struct mmc_host * host,int mode)875 void mmc_set_chip_select(struct mmc_host *host, int mode)
876 {
877 mmc_host_clk_hold(host);
878 host->ios.chip_select = mode;
879 mmc_set_ios(host);
880 mmc_host_clk_release(host);
881 }
882
883 /*
884 * Sets the host clock to the highest possible frequency that
885 * is below "hz".
886 */
__mmc_set_clock(struct mmc_host * host,unsigned int hz)887 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
888 {
889 WARN_ON(hz < host->f_min);
890
891 if (hz > host->f_max)
892 hz = host->f_max;
893
894 host->ios.clock = hz;
895 mmc_set_ios(host);
896 }
897
mmc_set_clock(struct mmc_host * host,unsigned int hz)898 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
899 {
900 mmc_host_clk_hold(host);
901 __mmc_set_clock(host, hz);
902 mmc_host_clk_release(host);
903 }
904
905 #ifdef CONFIG_MMC_CLKGATE
906 /*
907 * This gates the clock by setting it to 0 Hz.
908 */
mmc_gate_clock(struct mmc_host * host)909 void mmc_gate_clock(struct mmc_host *host)
910 {
911 unsigned long flags;
912
913 spin_lock_irqsave(&host->clk_lock, flags);
914 host->clk_old = host->ios.clock;
915 host->ios.clock = 0;
916 host->clk_gated = true;
917 spin_unlock_irqrestore(&host->clk_lock, flags);
918 mmc_set_ios(host);
919 }
920
921 /*
922 * This restores the clock from gating by using the cached
923 * clock value.
924 */
mmc_ungate_clock(struct mmc_host * host)925 void mmc_ungate_clock(struct mmc_host *host)
926 {
927 /*
928 * We should previously have gated the clock, so the clock shall
929 * be 0 here! The clock may however be 0 during initialization,
930 * when some request operations are performed before setting
931 * the frequency. When ungate is requested in that situation
932 * we just ignore the call.
933 */
934 if (host->clk_old) {
935 BUG_ON(host->ios.clock);
936 /* This call will also set host->clk_gated to false */
937 __mmc_set_clock(host, host->clk_old);
938 }
939 }
940
mmc_set_ungated(struct mmc_host * host)941 void mmc_set_ungated(struct mmc_host *host)
942 {
943 unsigned long flags;
944
945 /*
946 * We've been given a new frequency while the clock is gated,
947 * so make sure we regard this as ungating it.
948 */
949 spin_lock_irqsave(&host->clk_lock, flags);
950 host->clk_gated = false;
951 spin_unlock_irqrestore(&host->clk_lock, flags);
952 }
953
954 #else
mmc_set_ungated(struct mmc_host * host)955 void mmc_set_ungated(struct mmc_host *host)
956 {
957 }
958 #endif
959
960 /*
961 * Change the bus mode (open drain/push-pull) of a host.
962 */
mmc_set_bus_mode(struct mmc_host * host,unsigned int mode)963 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
964 {
965 mmc_host_clk_hold(host);
966 host->ios.bus_mode = mode;
967 mmc_set_ios(host);
968 mmc_host_clk_release(host);
969 }
970
971 /*
972 * Change data bus width of a host.
973 */
mmc_set_bus_width(struct mmc_host * host,unsigned int width)974 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
975 {
976 mmc_host_clk_hold(host);
977 host->ios.bus_width = width;
978 mmc_set_ios(host);
979 mmc_host_clk_release(host);
980 }
981
982 /**
983 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
984 * @vdd: voltage (mV)
985 * @low_bits: prefer low bits in boundary cases
986 *
987 * This function returns the OCR bit number according to the provided @vdd
988 * value. If conversion is not possible a negative errno value returned.
989 *
990 * Depending on the @low_bits flag the function prefers low or high OCR bits
991 * on boundary voltages. For example,
992 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
993 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
994 *
995 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
996 */
mmc_vdd_to_ocrbitnum(int vdd,bool low_bits)997 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
998 {
999 const int max_bit = ilog2(MMC_VDD_35_36);
1000 int bit;
1001
1002 if (vdd < 1650 || vdd > 3600)
1003 return -EINVAL;
1004
1005 if (vdd >= 1650 && vdd <= 1950)
1006 return ilog2(MMC_VDD_165_195);
1007
1008 if (low_bits)
1009 vdd -= 1;
1010
1011 /* Base 2000 mV, step 100 mV, bit's base 8. */
1012 bit = (vdd - 2000) / 100 + 8;
1013 if (bit > max_bit)
1014 return max_bit;
1015 return bit;
1016 }
1017
1018 /**
1019 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1020 * @vdd_min: minimum voltage value (mV)
1021 * @vdd_max: maximum voltage value (mV)
1022 *
1023 * This function returns the OCR mask bits according to the provided @vdd_min
1024 * and @vdd_max values. If conversion is not possible the function returns 0.
1025 *
1026 * Notes wrt boundary cases:
1027 * This function sets the OCR bits for all boundary voltages, for example
1028 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1029 * MMC_VDD_34_35 mask.
1030 */
mmc_vddrange_to_ocrmask(int vdd_min,int vdd_max)1031 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1032 {
1033 u32 mask = 0;
1034
1035 if (vdd_max < vdd_min)
1036 return 0;
1037
1038 /* Prefer high bits for the boundary vdd_max values. */
1039 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1040 if (vdd_max < 0)
1041 return 0;
1042
1043 /* Prefer low bits for the boundary vdd_min values. */
1044 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1045 if (vdd_min < 0)
1046 return 0;
1047
1048 /* Fill the mask, from max bit to min bit. */
1049 while (vdd_max >= vdd_min)
1050 mask |= 1 << vdd_max--;
1051
1052 return mask;
1053 }
1054 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1055
1056 #ifdef CONFIG_REGULATOR
1057
1058 /**
1059 * mmc_regulator_get_ocrmask - return mask of supported voltages
1060 * @supply: regulator to use
1061 *
1062 * This returns either a negative errno, or a mask of voltages that
1063 * can be provided to MMC/SD/SDIO devices using the specified voltage
1064 * regulator. This would normally be called before registering the
1065 * MMC host adapter.
1066 */
mmc_regulator_get_ocrmask(struct regulator * supply)1067 int mmc_regulator_get_ocrmask(struct regulator *supply)
1068 {
1069 int result = 0;
1070 int count;
1071 int i;
1072
1073 count = regulator_count_voltages(supply);
1074 if (count < 0)
1075 return count;
1076
1077 for (i = 0; i < count; i++) {
1078 int vdd_uV;
1079 int vdd_mV;
1080
1081 vdd_uV = regulator_list_voltage(supply, i);
1082 if (vdd_uV <= 0)
1083 continue;
1084
1085 vdd_mV = vdd_uV / 1000;
1086 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1087 }
1088
1089 return result;
1090 }
1091 EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
1092
1093 /**
1094 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1095 * @mmc: the host to regulate
1096 * @supply: regulator to use
1097 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1098 *
1099 * Returns zero on success, else negative errno.
1100 *
1101 * MMC host drivers may use this to enable or disable a regulator using
1102 * a particular supply voltage. This would normally be called from the
1103 * set_ios() method.
1104 */
mmc_regulator_set_ocr(struct mmc_host * mmc,struct regulator * supply,unsigned short vdd_bit)1105 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1106 struct regulator *supply,
1107 unsigned short vdd_bit)
1108 {
1109 int result = 0;
1110 int min_uV, max_uV;
1111
1112 if (vdd_bit) {
1113 int tmp;
1114 int voltage;
1115
1116 /* REVISIT mmc_vddrange_to_ocrmask() may have set some
1117 * bits this regulator doesn't quite support ... don't
1118 * be too picky, most cards and regulators are OK with
1119 * a 0.1V range goof (it's a small error percentage).
1120 */
1121 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1122 if (tmp == 0) {
1123 min_uV = 1650 * 1000;
1124 max_uV = 1950 * 1000;
1125 } else {
1126 min_uV = 1900 * 1000 + tmp * 100 * 1000;
1127 max_uV = min_uV + 100 * 1000;
1128 }
1129
1130 /* avoid needless changes to this voltage; the regulator
1131 * might not allow this operation
1132 */
1133 voltage = regulator_get_voltage(supply);
1134
1135 if (mmc->caps2 & MMC_CAP2_BROKEN_VOLTAGE)
1136 min_uV = max_uV = voltage;
1137
1138 if (voltage < 0)
1139 result = voltage;
1140 else if (voltage < min_uV || voltage > max_uV)
1141 result = regulator_set_voltage(supply, min_uV, max_uV);
1142 else
1143 result = 0;
1144
1145 if (result == 0 && !mmc->regulator_enabled) {
1146 result = regulator_enable(supply);
1147 if (!result)
1148 mmc->regulator_enabled = true;
1149 }
1150 } else if (mmc->regulator_enabled) {
1151 result = regulator_disable(supply);
1152 if (result == 0)
1153 mmc->regulator_enabled = false;
1154 }
1155
1156 if (result)
1157 dev_err(mmc_dev(mmc),
1158 "could not set regulator OCR (%d)\n", result);
1159 return result;
1160 }
1161 EXPORT_SYMBOL(mmc_regulator_set_ocr);
1162
1163 #endif /* CONFIG_REGULATOR */
1164
1165 /*
1166 * Mask off any voltages we don't support and select
1167 * the lowest voltage
1168 */
mmc_select_voltage(struct mmc_host * host,u32 ocr)1169 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1170 {
1171 int bit;
1172
1173 ocr &= host->ocr_avail;
1174
1175 bit = ffs(ocr);
1176 if (bit) {
1177 bit -= 1;
1178
1179 ocr &= 3 << bit;
1180
1181 mmc_host_clk_hold(host);
1182 host->ios.vdd = bit;
1183 mmc_set_ios(host);
1184 mmc_host_clk_release(host);
1185 } else {
1186 pr_warning("%s: host doesn't support card's voltages\n",
1187 mmc_hostname(host));
1188 ocr = 0;
1189 }
1190
1191 return ocr;
1192 }
1193
mmc_set_signal_voltage(struct mmc_host * host,int signal_voltage,bool cmd11)1194 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11)
1195 {
1196 struct mmc_command cmd = {0};
1197 int err = 0;
1198
1199 BUG_ON(!host);
1200
1201 /*
1202 * Send CMD11 only if the request is to switch the card to
1203 * 1.8V signalling.
1204 */
1205 if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) {
1206 cmd.opcode = SD_SWITCH_VOLTAGE;
1207 cmd.arg = 0;
1208 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1209
1210 err = mmc_wait_for_cmd(host, &cmd, 0);
1211 if (err)
1212 return err;
1213
1214 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1215 return -EIO;
1216 }
1217
1218 host->ios.signal_voltage = signal_voltage;
1219
1220 if (host->ops->start_signal_voltage_switch) {
1221 mmc_host_clk_hold(host);
1222 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1223 mmc_host_clk_release(host);
1224 }
1225
1226 return err;
1227 }
1228
1229 /*
1230 * Select timing parameters for host.
1231 */
mmc_set_timing(struct mmc_host * host,unsigned int timing)1232 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1233 {
1234 mmc_host_clk_hold(host);
1235 host->ios.timing = timing;
1236 mmc_set_ios(host);
1237 mmc_host_clk_release(host);
1238 }
1239
1240 /*
1241 * Select appropriate driver type for host.
1242 */
mmc_set_driver_type(struct mmc_host * host,unsigned int drv_type)1243 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1244 {
1245 mmc_host_clk_hold(host);
1246 host->ios.drv_type = drv_type;
1247 mmc_set_ios(host);
1248 mmc_host_clk_release(host);
1249 }
1250
mmc_poweroff_notify(struct mmc_host * host)1251 static void mmc_poweroff_notify(struct mmc_host *host)
1252 {
1253 struct mmc_card *card;
1254 unsigned int timeout;
1255 unsigned int notify_type = EXT_CSD_NO_POWER_NOTIFICATION;
1256 int err = 0;
1257
1258 card = host->card;
1259 mmc_claim_host(host);
1260
1261 /*
1262 * Send power notify command only if card
1263 * is mmc and notify state is powered ON
1264 */
1265 if (card && mmc_card_mmc(card) &&
1266 (card->poweroff_notify_state == MMC_POWERED_ON)) {
1267
1268 if (host->power_notify_type == MMC_HOST_PW_NOTIFY_SHORT) {
1269 notify_type = EXT_CSD_POWER_OFF_SHORT;
1270 timeout = card->ext_csd.generic_cmd6_time;
1271 card->poweroff_notify_state = MMC_POWEROFF_SHORT;
1272 } else {
1273 notify_type = EXT_CSD_POWER_OFF_LONG;
1274 timeout = card->ext_csd.power_off_longtime;
1275 card->poweroff_notify_state = MMC_POWEROFF_LONG;
1276 }
1277
1278 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1279 EXT_CSD_POWER_OFF_NOTIFICATION,
1280 notify_type, timeout);
1281
1282 if (err && err != -EBADMSG)
1283 pr_err("Device failed to respond within %d poweroff "
1284 "time. Forcefully powering down the device\n",
1285 timeout);
1286
1287 /* Set the card state to no notification after the poweroff */
1288 card->poweroff_notify_state = MMC_NO_POWER_NOTIFICATION;
1289 }
1290 mmc_release_host(host);
1291 }
1292
1293 /*
1294 * Apply power to the MMC stack. This is a two-stage process.
1295 * First, we enable power to the card without the clock running.
1296 * We then wait a bit for the power to stabilise. Finally,
1297 * enable the bus drivers and clock to the card.
1298 *
1299 * We must _NOT_ enable the clock prior to power stablising.
1300 *
1301 * If a host does all the power sequencing itself, ignore the
1302 * initial MMC_POWER_UP stage.
1303 */
mmc_power_up(struct mmc_host * host)1304 static void mmc_power_up(struct mmc_host *host)
1305 {
1306 int bit;
1307
1308 mmc_host_clk_hold(host);
1309
1310 /* If ocr is set, we use it */
1311 if (host->ocr)
1312 bit = ffs(host->ocr) - 1;
1313 else
1314 bit = fls(host->ocr_avail) - 1;
1315
1316 host->ios.vdd = bit;
1317 if (mmc_host_is_spi(host))
1318 host->ios.chip_select = MMC_CS_HIGH;
1319 else
1320 host->ios.chip_select = MMC_CS_DONTCARE;
1321 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1322 host->ios.power_mode = MMC_POWER_UP;
1323 host->ios.bus_width = MMC_BUS_WIDTH_1;
1324 host->ios.timing = MMC_TIMING_LEGACY;
1325 mmc_set_ios(host);
1326
1327 /*
1328 * This delay should be sufficient to allow the power supply
1329 * to reach the minimum voltage.
1330 */
1331 mmc_delay(10);
1332
1333 host->ios.clock = host->f_init;
1334
1335 host->ios.power_mode = MMC_POWER_ON;
1336 mmc_set_ios(host);
1337
1338 /*
1339 * This delay must be at least 74 clock sizes, or 1 ms, or the
1340 * time required to reach a stable voltage.
1341 */
1342 mmc_delay(10);
1343
1344 mmc_host_clk_release(host);
1345 }
1346
mmc_power_off(struct mmc_host * host)1347 void mmc_power_off(struct mmc_host *host)
1348 {
1349 int err = 0;
1350 mmc_host_clk_hold(host);
1351
1352 host->ios.clock = 0;
1353 host->ios.vdd = 0;
1354
1355 /*
1356 * For eMMC 4.5 device send AWAKE command before
1357 * POWER_OFF_NOTIFY command, because in sleep state
1358 * eMMC 4.5 devices respond to only RESET and AWAKE cmd
1359 */
1360 if (host->card && mmc_card_is_sleep(host->card) &&
1361 host->bus_ops->resume) {
1362 err = host->bus_ops->resume(host);
1363
1364 if (!err)
1365 mmc_poweroff_notify(host);
1366 else
1367 pr_warning("%s: error %d during resume "
1368 "(continue with poweroff sequence)\n",
1369 mmc_hostname(host), err);
1370 }
1371
1372 /*
1373 * Reset ocr mask to be the highest possible voltage supported for
1374 * this mmc host. This value will be used at next power up.
1375 */
1376 host->ocr = 1 << (fls(host->ocr_avail) - 1);
1377
1378 if (!mmc_host_is_spi(host)) {
1379 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1380 host->ios.chip_select = MMC_CS_DONTCARE;
1381 }
1382 host->ios.power_mode = MMC_POWER_OFF;
1383 host->ios.bus_width = MMC_BUS_WIDTH_1;
1384 host->ios.timing = MMC_TIMING_LEGACY;
1385 mmc_set_ios(host);
1386
1387 /*
1388 * Some configurations, such as the 802.11 SDIO card in the OLPC
1389 * XO-1.5, require a short delay after poweroff before the card
1390 * can be successfully turned on again.
1391 */
1392 mmc_delay(1);
1393
1394 mmc_host_clk_release(host);
1395 }
1396
1397 /*
1398 * Cleanup when the last reference to the bus operator is dropped.
1399 */
__mmc_release_bus(struct mmc_host * host)1400 static void __mmc_release_bus(struct mmc_host *host)
1401 {
1402 BUG_ON(!host);
1403 BUG_ON(host->bus_refs);
1404 BUG_ON(!host->bus_dead);
1405
1406 host->bus_ops = NULL;
1407 }
1408
1409 /*
1410 * Increase reference count of bus operator
1411 */
mmc_bus_get(struct mmc_host * host)1412 static inline void mmc_bus_get(struct mmc_host *host)
1413 {
1414 unsigned long flags;
1415
1416 spin_lock_irqsave(&host->lock, flags);
1417 host->bus_refs++;
1418 spin_unlock_irqrestore(&host->lock, flags);
1419 }
1420
1421 /*
1422 * Decrease reference count of bus operator and free it if
1423 * it is the last reference.
1424 */
mmc_bus_put(struct mmc_host * host)1425 static inline void mmc_bus_put(struct mmc_host *host)
1426 {
1427 unsigned long flags;
1428
1429 spin_lock_irqsave(&host->lock, flags);
1430 host->bus_refs--;
1431 if ((host->bus_refs == 0) && host->bus_ops)
1432 __mmc_release_bus(host);
1433 spin_unlock_irqrestore(&host->lock, flags);
1434 }
1435
1436 /*
1437 * Assign a mmc bus handler to a host. Only one bus handler may control a
1438 * host at any given time.
1439 */
mmc_attach_bus(struct mmc_host * host,const struct mmc_bus_ops * ops)1440 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1441 {
1442 unsigned long flags;
1443
1444 BUG_ON(!host);
1445 BUG_ON(!ops);
1446
1447 WARN_ON(!host->claimed);
1448
1449 spin_lock_irqsave(&host->lock, flags);
1450
1451 BUG_ON(host->bus_ops);
1452 BUG_ON(host->bus_refs);
1453
1454 host->bus_ops = ops;
1455 host->bus_refs = 1;
1456 host->bus_dead = 0;
1457
1458 spin_unlock_irqrestore(&host->lock, flags);
1459 }
1460
1461 /*
1462 * Remove the current bus handler from a host.
1463 */
mmc_detach_bus(struct mmc_host * host)1464 void mmc_detach_bus(struct mmc_host *host)
1465 {
1466 unsigned long flags;
1467
1468 BUG_ON(!host);
1469
1470 WARN_ON(!host->claimed);
1471 WARN_ON(!host->bus_ops);
1472
1473 spin_lock_irqsave(&host->lock, flags);
1474
1475 host->bus_dead = 1;
1476
1477 spin_unlock_irqrestore(&host->lock, flags);
1478
1479 mmc_bus_put(host);
1480 }
1481
1482 /**
1483 * mmc_detect_change - process change of state on a MMC socket
1484 * @host: host which changed state.
1485 * @delay: optional delay to wait before detection (jiffies)
1486 *
1487 * MMC drivers should call this when they detect a card has been
1488 * inserted or removed. The MMC layer will confirm that any
1489 * present card is still functional, and initialize any newly
1490 * inserted.
1491 */
mmc_detect_change(struct mmc_host * host,unsigned long delay)1492 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1493 {
1494 #ifdef CONFIG_MMC_DEBUG
1495 unsigned long flags;
1496 spin_lock_irqsave(&host->lock, flags);
1497 WARN_ON(host->removed);
1498 spin_unlock_irqrestore(&host->lock, flags);
1499 #endif
1500 host->detect_change = 1;
1501 mmc_schedule_delayed_work(&host->detect, delay);
1502 }
1503
1504 EXPORT_SYMBOL(mmc_detect_change);
1505
mmc_init_erase(struct mmc_card * card)1506 void mmc_init_erase(struct mmc_card *card)
1507 {
1508 unsigned int sz;
1509
1510 if (is_power_of_2(card->erase_size))
1511 card->erase_shift = ffs(card->erase_size) - 1;
1512 else
1513 card->erase_shift = 0;
1514
1515 /*
1516 * It is possible to erase an arbitrarily large area of an SD or MMC
1517 * card. That is not desirable because it can take a long time
1518 * (minutes) potentially delaying more important I/O, and also the
1519 * timeout calculations become increasingly hugely over-estimated.
1520 * Consequently, 'pref_erase' is defined as a guide to limit erases
1521 * to that size and alignment.
1522 *
1523 * For SD cards that define Allocation Unit size, limit erases to one
1524 * Allocation Unit at a time. For MMC cards that define High Capacity
1525 * Erase Size, whether it is switched on or not, limit to that size.
1526 * Otherwise just have a stab at a good value. For modern cards it
1527 * will end up being 4MiB. Note that if the value is too small, it
1528 * can end up taking longer to erase.
1529 */
1530 if (mmc_card_sd(card) && card->ssr.au) {
1531 card->pref_erase = card->ssr.au;
1532 card->erase_shift = ffs(card->ssr.au) - 1;
1533 } else if (card->ext_csd.hc_erase_size) {
1534 card->pref_erase = card->ext_csd.hc_erase_size;
1535 } else {
1536 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1537 if (sz < 128)
1538 card->pref_erase = 512 * 1024 / 512;
1539 else if (sz < 512)
1540 card->pref_erase = 1024 * 1024 / 512;
1541 else if (sz < 1024)
1542 card->pref_erase = 2 * 1024 * 1024 / 512;
1543 else
1544 card->pref_erase = 4 * 1024 * 1024 / 512;
1545 if (card->pref_erase < card->erase_size)
1546 card->pref_erase = card->erase_size;
1547 else {
1548 sz = card->pref_erase % card->erase_size;
1549 if (sz)
1550 card->pref_erase += card->erase_size - sz;
1551 }
1552 }
1553 }
1554
mmc_mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1555 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1556 unsigned int arg, unsigned int qty)
1557 {
1558 unsigned int erase_timeout;
1559
1560 if (card->ext_csd.erase_group_def & 1) {
1561 /* High Capacity Erase Group Size uses HC timeouts */
1562 if (arg == MMC_TRIM_ARG)
1563 erase_timeout = card->ext_csd.trim_timeout;
1564 else
1565 erase_timeout = card->ext_csd.hc_erase_timeout;
1566 } else {
1567 /* CSD Erase Group Size uses write timeout */
1568 unsigned int mult = (10 << card->csd.r2w_factor);
1569 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1570 unsigned int timeout_us;
1571
1572 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1573 if (card->csd.tacc_ns < 1000000)
1574 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1575 else
1576 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1577
1578 /*
1579 * ios.clock is only a target. The real clock rate might be
1580 * less but not that much less, so fudge it by multiplying by 2.
1581 */
1582 timeout_clks <<= 1;
1583 timeout_us += (timeout_clks * 1000) /
1584 (mmc_host_clk_rate(card->host) / 1000);
1585
1586 erase_timeout = timeout_us / 1000;
1587
1588 /*
1589 * Theoretically, the calculation could underflow so round up
1590 * to 1ms in that case.
1591 */
1592 if (!erase_timeout)
1593 erase_timeout = 1;
1594 }
1595
1596 /* Multiplier for secure operations */
1597 if (arg & MMC_SECURE_ARGS) {
1598 if (arg == MMC_SECURE_ERASE_ARG)
1599 erase_timeout *= card->ext_csd.sec_erase_mult;
1600 else
1601 erase_timeout *= card->ext_csd.sec_trim_mult;
1602 }
1603
1604 erase_timeout *= qty;
1605
1606 /*
1607 * Ensure at least a 1 second timeout for SPI as per
1608 * 'mmc_set_data_timeout()'
1609 */
1610 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1611 erase_timeout = 1000;
1612
1613 return erase_timeout;
1614 }
1615
mmc_sd_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1616 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1617 unsigned int arg,
1618 unsigned int qty)
1619 {
1620 unsigned int erase_timeout;
1621
1622 if (card->ssr.erase_timeout) {
1623 /* Erase timeout specified in SD Status Register (SSR) */
1624 erase_timeout = card->ssr.erase_timeout * qty +
1625 card->ssr.erase_offset;
1626 } else {
1627 /*
1628 * Erase timeout not specified in SD Status Register (SSR) so
1629 * use 250ms per write block.
1630 */
1631 erase_timeout = 250 * qty;
1632 }
1633
1634 /* Must not be less than 1 second */
1635 if (erase_timeout < 1000)
1636 erase_timeout = 1000;
1637
1638 return erase_timeout;
1639 }
1640
mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1641 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1642 unsigned int arg,
1643 unsigned int qty)
1644 {
1645 if (mmc_card_sd(card))
1646 return mmc_sd_erase_timeout(card, arg, qty);
1647 else
1648 return mmc_mmc_erase_timeout(card, arg, qty);
1649 }
1650
mmc_do_erase(struct mmc_card * card,unsigned int from,unsigned int to,unsigned int arg)1651 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1652 unsigned int to, unsigned int arg)
1653 {
1654 struct mmc_command cmd = {0};
1655 unsigned int qty = 0;
1656 int err;
1657
1658 /*
1659 * qty is used to calculate the erase timeout which depends on how many
1660 * erase groups (or allocation units in SD terminology) are affected.
1661 * We count erasing part of an erase group as one erase group.
1662 * For SD, the allocation units are always a power of 2. For MMC, the
1663 * erase group size is almost certainly also power of 2, but it does not
1664 * seem to insist on that in the JEDEC standard, so we fall back to
1665 * division in that case. SD may not specify an allocation unit size,
1666 * in which case the timeout is based on the number of write blocks.
1667 *
1668 * Note that the timeout for secure trim 2 will only be correct if the
1669 * number of erase groups specified is the same as the total of all
1670 * preceding secure trim 1 commands. Since the power may have been
1671 * lost since the secure trim 1 commands occurred, it is generally
1672 * impossible to calculate the secure trim 2 timeout correctly.
1673 */
1674 if (card->erase_shift)
1675 qty += ((to >> card->erase_shift) -
1676 (from >> card->erase_shift)) + 1;
1677 else if (mmc_card_sd(card))
1678 qty += to - from + 1;
1679 else
1680 qty += ((to / card->erase_size) -
1681 (from / card->erase_size)) + 1;
1682
1683 if (!mmc_card_blockaddr(card)) {
1684 from <<= 9;
1685 to <<= 9;
1686 }
1687
1688 if (mmc_card_sd(card))
1689 cmd.opcode = SD_ERASE_WR_BLK_START;
1690 else
1691 cmd.opcode = MMC_ERASE_GROUP_START;
1692 cmd.arg = from;
1693 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1694 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1695 if (err) {
1696 pr_err("mmc_erase: group start error %d, "
1697 "status %#x\n", err, cmd.resp[0]);
1698 err = -EIO;
1699 goto out;
1700 }
1701
1702 memset(&cmd, 0, sizeof(struct mmc_command));
1703 if (mmc_card_sd(card))
1704 cmd.opcode = SD_ERASE_WR_BLK_END;
1705 else
1706 cmd.opcode = MMC_ERASE_GROUP_END;
1707 cmd.arg = to;
1708 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1709 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1710 if (err) {
1711 pr_err("mmc_erase: group end error %d, status %#x\n",
1712 err, cmd.resp[0]);
1713 err = -EIO;
1714 goto out;
1715 }
1716
1717 memset(&cmd, 0, sizeof(struct mmc_command));
1718 cmd.opcode = MMC_ERASE;
1719 cmd.arg = arg;
1720 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1721 cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1722 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1723 if (err) {
1724 pr_err("mmc_erase: erase error %d, status %#x\n",
1725 err, cmd.resp[0]);
1726 err = -EIO;
1727 goto out;
1728 }
1729
1730 if (mmc_host_is_spi(card->host))
1731 goto out;
1732
1733 do {
1734 memset(&cmd, 0, sizeof(struct mmc_command));
1735 cmd.opcode = MMC_SEND_STATUS;
1736 cmd.arg = card->rca << 16;
1737 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1738 /* Do not retry else we can't see errors */
1739 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1740 if (err || (cmd.resp[0] & 0xFDF92000)) {
1741 pr_err("error %d requesting status %#x\n",
1742 err, cmd.resp[0]);
1743 err = -EIO;
1744 goto out;
1745 }
1746 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1747 R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG);
1748 out:
1749 return err;
1750 }
1751
1752 /**
1753 * mmc_erase - erase sectors.
1754 * @card: card to erase
1755 * @from: first sector to erase
1756 * @nr: number of sectors to erase
1757 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1758 *
1759 * Caller must claim host before calling this function.
1760 */
mmc_erase(struct mmc_card * card,unsigned int from,unsigned int nr,unsigned int arg)1761 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1762 unsigned int arg)
1763 {
1764 unsigned int rem, to = from + nr;
1765
1766 if (!(card->host->caps & MMC_CAP_ERASE) ||
1767 !(card->csd.cmdclass & CCC_ERASE))
1768 return -EOPNOTSUPP;
1769
1770 if (!card->erase_size)
1771 return -EOPNOTSUPP;
1772
1773 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1774 return -EOPNOTSUPP;
1775
1776 if ((arg & MMC_SECURE_ARGS) &&
1777 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1778 return -EOPNOTSUPP;
1779
1780 if ((arg & MMC_TRIM_ARGS) &&
1781 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1782 return -EOPNOTSUPP;
1783
1784 if (arg == MMC_SECURE_ERASE_ARG) {
1785 if (from % card->erase_size || nr % card->erase_size)
1786 return -EINVAL;
1787 }
1788
1789 if (arg == MMC_ERASE_ARG) {
1790 rem = from % card->erase_size;
1791 if (rem) {
1792 rem = card->erase_size - rem;
1793 from += rem;
1794 if (nr > rem)
1795 nr -= rem;
1796 else
1797 return 0;
1798 }
1799 rem = nr % card->erase_size;
1800 if (rem)
1801 nr -= rem;
1802 }
1803
1804 if (nr == 0)
1805 return 0;
1806
1807 to = from + nr;
1808
1809 if (to <= from)
1810 return -EINVAL;
1811
1812 /* 'from' and 'to' are inclusive */
1813 to -= 1;
1814
1815 return mmc_do_erase(card, from, to, arg);
1816 }
1817 EXPORT_SYMBOL(mmc_erase);
1818
mmc_can_erase(struct mmc_card * card)1819 int mmc_can_erase(struct mmc_card *card)
1820 {
1821 if ((card->host->caps & MMC_CAP_ERASE) &&
1822 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1823 return 1;
1824 return 0;
1825 }
1826 EXPORT_SYMBOL(mmc_can_erase);
1827
mmc_can_trim(struct mmc_card * card)1828 int mmc_can_trim(struct mmc_card *card)
1829 {
1830 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1831 return 1;
1832 if (mmc_can_discard(card))
1833 return 1;
1834 return 0;
1835 }
1836 EXPORT_SYMBOL(mmc_can_trim);
1837
mmc_can_discard(struct mmc_card * card)1838 int mmc_can_discard(struct mmc_card *card)
1839 {
1840 /*
1841 * As there's no way to detect the discard support bit at v4.5
1842 * use the s/w feature support filed.
1843 */
1844 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1845 return 1;
1846 return 0;
1847 }
1848 EXPORT_SYMBOL(mmc_can_discard);
1849
mmc_can_sanitize(struct mmc_card * card)1850 int mmc_can_sanitize(struct mmc_card *card)
1851 {
1852 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1853 return 1;
1854 return 0;
1855 }
1856 EXPORT_SYMBOL(mmc_can_sanitize);
1857
mmc_can_secure_erase_trim(struct mmc_card * card)1858 int mmc_can_secure_erase_trim(struct mmc_card *card)
1859 {
1860 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1861 return 1;
1862 return 0;
1863 }
1864 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1865
mmc_erase_group_aligned(struct mmc_card * card,unsigned int from,unsigned int nr)1866 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1867 unsigned int nr)
1868 {
1869 if (!card->erase_size)
1870 return 0;
1871 if (from % card->erase_size || nr % card->erase_size)
1872 return 0;
1873 return 1;
1874 }
1875 EXPORT_SYMBOL(mmc_erase_group_aligned);
1876
mmc_do_calc_max_discard(struct mmc_card * card,unsigned int arg)1877 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1878 unsigned int arg)
1879 {
1880 struct mmc_host *host = card->host;
1881 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
1882 unsigned int last_timeout = 0;
1883
1884 if (card->erase_shift)
1885 max_qty = UINT_MAX >> card->erase_shift;
1886 else if (mmc_card_sd(card))
1887 max_qty = UINT_MAX;
1888 else
1889 max_qty = UINT_MAX / card->erase_size;
1890
1891 /* Find the largest qty with an OK timeout */
1892 do {
1893 y = 0;
1894 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1895 timeout = mmc_erase_timeout(card, arg, qty + x);
1896 if (timeout > host->max_discard_to)
1897 break;
1898 if (timeout < last_timeout)
1899 break;
1900 last_timeout = timeout;
1901 y = x;
1902 }
1903 qty += y;
1904 } while (y);
1905
1906 if (!qty)
1907 return 0;
1908
1909 if (qty == 1)
1910 return 1;
1911
1912 /* Convert qty to sectors */
1913 if (card->erase_shift)
1914 max_discard = --qty << card->erase_shift;
1915 else if (mmc_card_sd(card))
1916 max_discard = qty;
1917 else
1918 max_discard = --qty * card->erase_size;
1919
1920 return max_discard;
1921 }
1922
mmc_calc_max_discard(struct mmc_card * card)1923 unsigned int mmc_calc_max_discard(struct mmc_card *card)
1924 {
1925 struct mmc_host *host = card->host;
1926 unsigned int max_discard, max_trim;
1927
1928 if (!host->max_discard_to)
1929 return UINT_MAX;
1930
1931 /*
1932 * Without erase_group_def set, MMC erase timeout depends on clock
1933 * frequence which can change. In that case, the best choice is
1934 * just the preferred erase size.
1935 */
1936 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1937 return card->pref_erase;
1938
1939 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1940 if (mmc_can_trim(card)) {
1941 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1942 if (max_trim < max_discard)
1943 max_discard = max_trim;
1944 } else if (max_discard < card->erase_size) {
1945 max_discard = 0;
1946 }
1947 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1948 mmc_hostname(host), max_discard, host->max_discard_to);
1949 return max_discard;
1950 }
1951 EXPORT_SYMBOL(mmc_calc_max_discard);
1952
mmc_set_blocklen(struct mmc_card * card,unsigned int blocklen)1953 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1954 {
1955 struct mmc_command cmd = {0};
1956
1957 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1958 return 0;
1959
1960 cmd.opcode = MMC_SET_BLOCKLEN;
1961 cmd.arg = blocklen;
1962 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1963 return mmc_wait_for_cmd(card->host, &cmd, 5);
1964 }
1965 EXPORT_SYMBOL(mmc_set_blocklen);
1966
mmc_hw_reset_for_init(struct mmc_host * host)1967 static void mmc_hw_reset_for_init(struct mmc_host *host)
1968 {
1969 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1970 return;
1971 mmc_host_clk_hold(host);
1972 host->ops->hw_reset(host);
1973 mmc_host_clk_release(host);
1974 }
1975
mmc_can_reset(struct mmc_card * card)1976 int mmc_can_reset(struct mmc_card *card)
1977 {
1978 u8 rst_n_function;
1979
1980 if (!mmc_card_mmc(card))
1981 return 0;
1982 rst_n_function = card->ext_csd.rst_n_function;
1983 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
1984 return 0;
1985 return 1;
1986 }
1987 EXPORT_SYMBOL(mmc_can_reset);
1988
mmc_do_hw_reset(struct mmc_host * host,int check)1989 static int mmc_do_hw_reset(struct mmc_host *host, int check)
1990 {
1991 struct mmc_card *card = host->card;
1992
1993 if (!host->bus_ops->power_restore)
1994 return -EOPNOTSUPP;
1995
1996 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1997 return -EOPNOTSUPP;
1998
1999 if (!card)
2000 return -EINVAL;
2001
2002 if (!mmc_can_reset(card))
2003 return -EOPNOTSUPP;
2004
2005 mmc_host_clk_hold(host);
2006 mmc_set_clock(host, host->f_init);
2007
2008 host->ops->hw_reset(host);
2009
2010 /* If the reset has happened, then a status command will fail */
2011 if (check) {
2012 struct mmc_command cmd = {0};
2013 int err;
2014
2015 cmd.opcode = MMC_SEND_STATUS;
2016 if (!mmc_host_is_spi(card->host))
2017 cmd.arg = card->rca << 16;
2018 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2019 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2020 if (!err) {
2021 mmc_host_clk_release(host);
2022 return -ENOSYS;
2023 }
2024 }
2025
2026 host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
2027 if (mmc_host_is_spi(host)) {
2028 host->ios.chip_select = MMC_CS_HIGH;
2029 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2030 } else {
2031 host->ios.chip_select = MMC_CS_DONTCARE;
2032 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2033 }
2034 host->ios.bus_width = MMC_BUS_WIDTH_1;
2035 host->ios.timing = MMC_TIMING_LEGACY;
2036 mmc_set_ios(host);
2037
2038 mmc_host_clk_release(host);
2039
2040 return host->bus_ops->power_restore(host);
2041 }
2042
mmc_hw_reset(struct mmc_host * host)2043 int mmc_hw_reset(struct mmc_host *host)
2044 {
2045 return mmc_do_hw_reset(host, 0);
2046 }
2047 EXPORT_SYMBOL(mmc_hw_reset);
2048
mmc_hw_reset_check(struct mmc_host * host)2049 int mmc_hw_reset_check(struct mmc_host *host)
2050 {
2051 return mmc_do_hw_reset(host, 1);
2052 }
2053 EXPORT_SYMBOL(mmc_hw_reset_check);
2054
mmc_rescan_try_freq(struct mmc_host * host,unsigned freq)2055 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2056 {
2057 host->f_init = freq;
2058
2059 #ifdef CONFIG_MMC_DEBUG
2060 pr_info("%s: %s: trying to init card at %u Hz\n",
2061 mmc_hostname(host), __func__, host->f_init);
2062 #endif
2063 mmc_power_up(host);
2064
2065 /*
2066 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2067 * do a hardware reset if possible.
2068 */
2069 mmc_hw_reset_for_init(host);
2070
2071 /* Initialization should be done at 3.3 V I/O voltage. */
2072 mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330, 0);
2073
2074 /*
2075 * sdio_reset sends CMD52 to reset card. Since we do not know
2076 * if the card is being re-initialized, just send it. CMD52
2077 * should be ignored by SD/eMMC cards.
2078 */
2079 sdio_reset(host);
2080 mmc_go_idle(host);
2081
2082 mmc_send_if_cond(host, host->ocr_avail);
2083
2084 /* Order's important: probe SDIO, then SD, then MMC */
2085 if (!mmc_attach_sdio(host))
2086 return 0;
2087 if (!mmc_attach_sd(host))
2088 return 0;
2089 if (!mmc_attach_mmc(host))
2090 return 0;
2091
2092 mmc_power_off(host);
2093 return -EIO;
2094 }
2095
_mmc_detect_card_removed(struct mmc_host * host)2096 int _mmc_detect_card_removed(struct mmc_host *host)
2097 {
2098 int ret;
2099
2100 if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive)
2101 return 0;
2102
2103 if (!host->card || mmc_card_removed(host->card))
2104 return 1;
2105
2106 ret = host->bus_ops->alive(host);
2107 if (ret) {
2108 mmc_card_set_removed(host->card);
2109 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2110 }
2111
2112 return ret;
2113 }
2114
mmc_detect_card_removed(struct mmc_host * host)2115 int mmc_detect_card_removed(struct mmc_host *host)
2116 {
2117 struct mmc_card *card = host->card;
2118
2119 WARN_ON(!host->claimed);
2120 /*
2121 * The card will be considered unchanged unless we have been asked to
2122 * detect a change or host requires polling to provide card detection.
2123 */
2124 if (card && !host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2125 return mmc_card_removed(card);
2126
2127 host->detect_change = 0;
2128
2129 return _mmc_detect_card_removed(host);
2130 }
2131 EXPORT_SYMBOL(mmc_detect_card_removed);
2132
mmc_rescan(struct work_struct * work)2133 void mmc_rescan(struct work_struct *work)
2134 {
2135 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
2136 struct mmc_host *host =
2137 container_of(work, struct mmc_host, detect.work);
2138 int i;
2139
2140 if (host->rescan_disable)
2141 return;
2142
2143 mmc_bus_get(host);
2144
2145 /*
2146 * if there is a _removable_ card registered, check whether it is
2147 * still present
2148 */
2149 if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
2150 && !(host->caps & MMC_CAP_NONREMOVABLE))
2151 host->bus_ops->detect(host);
2152
2153 host->detect_change = 0;
2154
2155 /*
2156 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2157 * the card is no longer present.
2158 */
2159 mmc_bus_put(host);
2160 mmc_bus_get(host);
2161
2162 /* if there still is a card present, stop here */
2163 if (host->bus_ops != NULL) {
2164 mmc_bus_put(host);
2165 goto out;
2166 }
2167
2168 /*
2169 * Only we can add a new handler, so it's safe to
2170 * release the lock here.
2171 */
2172 mmc_bus_put(host);
2173
2174 if (host->ops->get_cd && host->ops->get_cd(host) == 0)
2175 goto out;
2176
2177 mmc_claim_host(host);
2178 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2179 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2180 break;
2181 if (freqs[i] <= host->f_min)
2182 break;
2183 }
2184 mmc_release_host(host);
2185
2186 out:
2187 if (host->caps & MMC_CAP_NEEDS_POLL)
2188 mmc_schedule_delayed_work(&host->detect, HZ);
2189 }
2190
mmc_start_host(struct mmc_host * host)2191 void mmc_start_host(struct mmc_host *host)
2192 {
2193 mmc_power_off(host);
2194 mmc_detect_change(host, 0);
2195 }
2196
mmc_stop_host(struct mmc_host * host)2197 void mmc_stop_host(struct mmc_host *host)
2198 {
2199 #ifdef CONFIG_MMC_DEBUG
2200 unsigned long flags;
2201 spin_lock_irqsave(&host->lock, flags);
2202 host->removed = 1;
2203 spin_unlock_irqrestore(&host->lock, flags);
2204 #endif
2205
2206 if (host->caps & MMC_CAP_DISABLE)
2207 cancel_delayed_work(&host->disable);
2208 cancel_delayed_work_sync(&host->detect);
2209 mmc_flush_scheduled_work();
2210
2211 /* clear pm flags now and let card drivers set them as needed */
2212 host->pm_flags = 0;
2213
2214 mmc_bus_get(host);
2215 if (host->bus_ops && !host->bus_dead) {
2216 /* Calling bus_ops->remove() with a claimed host can deadlock */
2217 if (host->bus_ops->remove)
2218 host->bus_ops->remove(host);
2219
2220 mmc_claim_host(host);
2221 mmc_detach_bus(host);
2222 mmc_power_off(host);
2223 mmc_release_host(host);
2224 mmc_bus_put(host);
2225 return;
2226 }
2227 mmc_bus_put(host);
2228
2229 BUG_ON(host->card);
2230
2231 mmc_power_off(host);
2232 }
2233
mmc_power_save_host(struct mmc_host * host)2234 int mmc_power_save_host(struct mmc_host *host)
2235 {
2236 int ret = 0;
2237
2238 #ifdef CONFIG_MMC_DEBUG
2239 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2240 #endif
2241
2242 mmc_bus_get(host);
2243
2244 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2245 mmc_bus_put(host);
2246 return -EINVAL;
2247 }
2248
2249 if (host->bus_ops->power_save)
2250 ret = host->bus_ops->power_save(host);
2251
2252 mmc_bus_put(host);
2253
2254 mmc_power_off(host);
2255
2256 return ret;
2257 }
2258 EXPORT_SYMBOL(mmc_power_save_host);
2259
mmc_power_restore_host(struct mmc_host * host)2260 int mmc_power_restore_host(struct mmc_host *host)
2261 {
2262 int ret;
2263
2264 #ifdef CONFIG_MMC_DEBUG
2265 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2266 #endif
2267
2268 mmc_bus_get(host);
2269
2270 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2271 mmc_bus_put(host);
2272 return -EINVAL;
2273 }
2274
2275 mmc_power_up(host);
2276 ret = host->bus_ops->power_restore(host);
2277
2278 mmc_bus_put(host);
2279
2280 return ret;
2281 }
2282 EXPORT_SYMBOL(mmc_power_restore_host);
2283
mmc_card_awake(struct mmc_host * host)2284 int mmc_card_awake(struct mmc_host *host)
2285 {
2286 int err = -ENOSYS;
2287
2288 if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2289 return 0;
2290
2291 mmc_bus_get(host);
2292
2293 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
2294 err = host->bus_ops->awake(host);
2295
2296 mmc_bus_put(host);
2297
2298 return err;
2299 }
2300 EXPORT_SYMBOL(mmc_card_awake);
2301
mmc_card_sleep(struct mmc_host * host)2302 int mmc_card_sleep(struct mmc_host *host)
2303 {
2304 int err = -ENOSYS;
2305
2306 if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2307 return 0;
2308
2309 mmc_bus_get(host);
2310
2311 if (host->bus_ops && !host->bus_dead && host->bus_ops->sleep)
2312 err = host->bus_ops->sleep(host);
2313
2314 mmc_bus_put(host);
2315
2316 return err;
2317 }
2318 EXPORT_SYMBOL(mmc_card_sleep);
2319
mmc_card_can_sleep(struct mmc_host * host)2320 int mmc_card_can_sleep(struct mmc_host *host)
2321 {
2322 struct mmc_card *card = host->card;
2323
2324 if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
2325 return 1;
2326 return 0;
2327 }
2328 EXPORT_SYMBOL(mmc_card_can_sleep);
2329
2330 /*
2331 * Flush the cache to the non-volatile storage.
2332 */
mmc_flush_cache(struct mmc_card * card)2333 int mmc_flush_cache(struct mmc_card *card)
2334 {
2335 struct mmc_host *host = card->host;
2336 int err = 0;
2337
2338 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL))
2339 return err;
2340
2341 if (mmc_card_mmc(card) &&
2342 (card->ext_csd.cache_size > 0) &&
2343 (card->ext_csd.cache_ctrl & 1)) {
2344 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2345 EXT_CSD_FLUSH_CACHE, 1, 0);
2346 if (err)
2347 pr_err("%s: cache flush error %d\n",
2348 mmc_hostname(card->host), err);
2349 }
2350
2351 return err;
2352 }
2353 EXPORT_SYMBOL(mmc_flush_cache);
2354
2355 /*
2356 * Turn the cache ON/OFF.
2357 * Turning the cache OFF shall trigger flushing of the data
2358 * to the non-volatile storage.
2359 */
mmc_cache_ctrl(struct mmc_host * host,u8 enable)2360 int mmc_cache_ctrl(struct mmc_host *host, u8 enable)
2361 {
2362 struct mmc_card *card = host->card;
2363 unsigned int timeout;
2364 int err = 0;
2365
2366 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) ||
2367 mmc_card_is_removable(host))
2368 return err;
2369
2370 if (card && mmc_card_mmc(card) &&
2371 (card->ext_csd.cache_size > 0)) {
2372 enable = !!enable;
2373
2374 if (card->ext_csd.cache_ctrl ^ enable) {
2375 timeout = enable ? card->ext_csd.generic_cmd6_time : 0;
2376 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2377 EXT_CSD_CACHE_CTRL, enable, timeout);
2378 if (err)
2379 pr_err("%s: cache %s error %d\n",
2380 mmc_hostname(card->host),
2381 enable ? "on" : "off",
2382 err);
2383 else
2384 card->ext_csd.cache_ctrl = enable;
2385 }
2386 }
2387
2388 return err;
2389 }
2390 EXPORT_SYMBOL(mmc_cache_ctrl);
2391
2392 #ifdef CONFIG_PM
2393
2394 /**
2395 * mmc_suspend_host - suspend a host
2396 * @host: mmc host
2397 */
mmc_suspend_host(struct mmc_host * host)2398 int mmc_suspend_host(struct mmc_host *host)
2399 {
2400 int err = 0;
2401
2402 if (host->caps & MMC_CAP_DISABLE)
2403 cancel_delayed_work(&host->disable);
2404 cancel_delayed_work(&host->detect);
2405 mmc_flush_scheduled_work();
2406 if (mmc_try_claim_host(host)) {
2407 err = mmc_cache_ctrl(host, 0);
2408 mmc_do_release_host(host);
2409 } else {
2410 err = -EBUSY;
2411 }
2412
2413 if (err)
2414 goto out;
2415
2416 mmc_bus_get(host);
2417 if (host->bus_ops && !host->bus_dead) {
2418
2419 /*
2420 * A long response time is not acceptable for device drivers
2421 * when doing suspend. Prevent mmc_claim_host in the suspend
2422 * sequence, to potentially wait "forever" by trying to
2423 * pre-claim the host.
2424 */
2425 if (mmc_try_claim_host(host)) {
2426 if (host->bus_ops->suspend) {
2427 err = host->bus_ops->suspend(host);
2428 }
2429 mmc_do_release_host(host);
2430
2431 if (err == -ENOSYS || !host->bus_ops->resume) {
2432 /*
2433 * We simply "remove" the card in this case.
2434 * It will be redetected on resume. (Calling
2435 * bus_ops->remove() with a claimed host can
2436 * deadlock.)
2437 */
2438 if (host->bus_ops->remove)
2439 host->bus_ops->remove(host);
2440 mmc_claim_host(host);
2441 mmc_detach_bus(host);
2442 mmc_power_off(host);
2443 mmc_release_host(host);
2444 host->pm_flags = 0;
2445 err = 0;
2446 }
2447 } else {
2448 err = -EBUSY;
2449 }
2450 }
2451 mmc_bus_put(host);
2452
2453 if (!err && !mmc_card_keep_power(host))
2454 mmc_power_off(host);
2455
2456 out:
2457 return err;
2458 }
2459
2460 EXPORT_SYMBOL(mmc_suspend_host);
2461
2462 /**
2463 * mmc_resume_host - resume a previously suspended host
2464 * @host: mmc host
2465 */
mmc_resume_host(struct mmc_host * host)2466 int mmc_resume_host(struct mmc_host *host)
2467 {
2468 int err = 0;
2469
2470 mmc_bus_get(host);
2471 if (host->bus_ops && !host->bus_dead) {
2472 if (!mmc_card_keep_power(host)) {
2473 mmc_power_up(host);
2474 mmc_select_voltage(host, host->ocr);
2475 /*
2476 * Tell runtime PM core we just powered up the card,
2477 * since it still believes the card is powered off.
2478 * Note that currently runtime PM is only enabled
2479 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2480 */
2481 if (mmc_card_sdio(host->card) &&
2482 (host->caps & MMC_CAP_POWER_OFF_CARD)) {
2483 pm_runtime_disable(&host->card->dev);
2484 pm_runtime_set_active(&host->card->dev);
2485 pm_runtime_enable(&host->card->dev);
2486 }
2487 }
2488 BUG_ON(!host->bus_ops->resume);
2489 err = host->bus_ops->resume(host);
2490 if (err) {
2491 pr_warning("%s: error %d during resume "
2492 "(card was removed?)\n",
2493 mmc_hostname(host), err);
2494 err = 0;
2495 }
2496 }
2497 host->pm_flags &= ~MMC_PM_KEEP_POWER;
2498 mmc_bus_put(host);
2499
2500 return err;
2501 }
2502 EXPORT_SYMBOL(mmc_resume_host);
2503
2504 /* Do the card removal on suspend if card is assumed removeable
2505 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2506 to sync the card.
2507 */
mmc_pm_notify(struct notifier_block * notify_block,unsigned long mode,void * unused)2508 int mmc_pm_notify(struct notifier_block *notify_block,
2509 unsigned long mode, void *unused)
2510 {
2511 struct mmc_host *host = container_of(
2512 notify_block, struct mmc_host, pm_notify);
2513 unsigned long flags;
2514
2515
2516 switch (mode) {
2517 case PM_HIBERNATION_PREPARE:
2518 case PM_SUSPEND_PREPARE:
2519
2520 spin_lock_irqsave(&host->lock, flags);
2521 host->rescan_disable = 1;
2522 host->power_notify_type = MMC_HOST_PW_NOTIFY_SHORT;
2523 spin_unlock_irqrestore(&host->lock, flags);
2524 cancel_delayed_work_sync(&host->detect);
2525
2526 if (!host->bus_ops || host->bus_ops->suspend)
2527 break;
2528
2529 /* Calling bus_ops->remove() with a claimed host can deadlock */
2530 if (host->bus_ops->remove)
2531 host->bus_ops->remove(host);
2532
2533 mmc_claim_host(host);
2534 mmc_detach_bus(host);
2535 mmc_power_off(host);
2536 mmc_release_host(host);
2537 host->pm_flags = 0;
2538 break;
2539
2540 case PM_POST_SUSPEND:
2541 case PM_POST_HIBERNATION:
2542 case PM_POST_RESTORE:
2543
2544 spin_lock_irqsave(&host->lock, flags);
2545 host->rescan_disable = 0;
2546 host->power_notify_type = MMC_HOST_PW_NOTIFY_LONG;
2547 spin_unlock_irqrestore(&host->lock, flags);
2548 mmc_detect_change(host, 0);
2549
2550 }
2551
2552 return 0;
2553 }
2554 #endif
2555
mmc_init(void)2556 static int __init mmc_init(void)
2557 {
2558 int ret;
2559
2560 workqueue = alloc_ordered_workqueue("kmmcd", 0);
2561 if (!workqueue)
2562 return -ENOMEM;
2563
2564 ret = mmc_register_bus();
2565 if (ret)
2566 goto destroy_workqueue;
2567
2568 ret = mmc_register_host_class();
2569 if (ret)
2570 goto unregister_bus;
2571
2572 ret = sdio_register_bus();
2573 if (ret)
2574 goto unregister_host_class;
2575
2576 return 0;
2577
2578 unregister_host_class:
2579 mmc_unregister_host_class();
2580 unregister_bus:
2581 mmc_unregister_bus();
2582 destroy_workqueue:
2583 destroy_workqueue(workqueue);
2584
2585 return ret;
2586 }
2587
mmc_exit(void)2588 static void __exit mmc_exit(void)
2589 {
2590 sdio_unregister_bus();
2591 mmc_unregister_host_class();
2592 mmc_unregister_bus();
2593 destroy_workqueue(workqueue);
2594 }
2595
2596 subsys_initcall(mmc_init);
2597 module_exit(mmc_exit);
2598
2599 MODULE_LICENSE("GPL");
2600