1 /*
2  *  linux/drivers/mmc/card/mmc_test.c
3  *
4  *  Copyright 2007-2008 Pierre Ossman
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or (at
9  * your option) any later version.
10  */
11 
12 #include <linux/mmc/core.h>
13 #include <linux/mmc/card.h>
14 #include <linux/mmc/host.h>
15 #include <linux/mmc/mmc.h>
16 #include <linux/slab.h>
17 
18 #include <linux/scatterlist.h>
19 #include <linux/swap.h>		/* For nr_free_buffer_pages() */
20 #include <linux/list.h>
21 
22 #include <linux/debugfs.h>
23 #include <linux/uaccess.h>
24 #include <linux/seq_file.h>
25 #include <linux/module.h>
26 
27 #define RESULT_OK		0
28 #define RESULT_FAIL		1
29 #define RESULT_UNSUP_HOST	2
30 #define RESULT_UNSUP_CARD	3
31 
32 #define BUFFER_ORDER		2
33 #define BUFFER_SIZE		(PAGE_SIZE << BUFFER_ORDER)
34 
35 /*
36  * Limit the test area size to the maximum MMC HC erase group size.  Note that
37  * the maximum SD allocation unit size is just 4MiB.
38  */
39 #define TEST_AREA_MAX_SIZE (128 * 1024 * 1024)
40 
41 /**
42  * struct mmc_test_pages - pages allocated by 'alloc_pages()'.
43  * @page: first page in the allocation
44  * @order: order of the number of pages allocated
45  */
46 struct mmc_test_pages {
47 	struct page *page;
48 	unsigned int order;
49 };
50 
51 /**
52  * struct mmc_test_mem - allocated memory.
53  * @arr: array of allocations
54  * @cnt: number of allocations
55  */
56 struct mmc_test_mem {
57 	struct mmc_test_pages *arr;
58 	unsigned int cnt;
59 };
60 
61 /**
62  * struct mmc_test_area - information for performance tests.
63  * @max_sz: test area size (in bytes)
64  * @dev_addr: address on card at which to do performance tests
65  * @max_tfr: maximum transfer size allowed by driver (in bytes)
66  * @max_segs: maximum segments allowed by driver in scatterlist @sg
67  * @max_seg_sz: maximum segment size allowed by driver
68  * @blocks: number of (512 byte) blocks currently mapped by @sg
69  * @sg_len: length of currently mapped scatterlist @sg
70  * @mem: allocated memory
71  * @sg: scatterlist
72  */
73 struct mmc_test_area {
74 	unsigned long max_sz;
75 	unsigned int dev_addr;
76 	unsigned int max_tfr;
77 	unsigned int max_segs;
78 	unsigned int max_seg_sz;
79 	unsigned int blocks;
80 	unsigned int sg_len;
81 	struct mmc_test_mem *mem;
82 	struct scatterlist *sg;
83 };
84 
85 /**
86  * struct mmc_test_transfer_result - transfer results for performance tests.
87  * @link: double-linked list
88  * @count: amount of group of sectors to check
89  * @sectors: amount of sectors to check in one group
90  * @ts: time values of transfer
91  * @rate: calculated transfer rate
92  * @iops: I/O operations per second (times 100)
93  */
94 struct mmc_test_transfer_result {
95 	struct list_head link;
96 	unsigned int count;
97 	unsigned int sectors;
98 	struct timespec ts;
99 	unsigned int rate;
100 	unsigned int iops;
101 };
102 
103 /**
104  * struct mmc_test_general_result - results for tests.
105  * @link: double-linked list
106  * @card: card under test
107  * @testcase: number of test case
108  * @result: result of test run
109  * @tr_lst: transfer measurements if any as mmc_test_transfer_result
110  */
111 struct mmc_test_general_result {
112 	struct list_head link;
113 	struct mmc_card *card;
114 	int testcase;
115 	int result;
116 	struct list_head tr_lst;
117 };
118 
119 /**
120  * struct mmc_test_dbgfs_file - debugfs related file.
121  * @link: double-linked list
122  * @card: card under test
123  * @file: file created under debugfs
124  */
125 struct mmc_test_dbgfs_file {
126 	struct list_head link;
127 	struct mmc_card *card;
128 	struct dentry *file;
129 };
130 
131 /**
132  * struct mmc_test_card - test information.
133  * @card: card under test
134  * @scratch: transfer buffer
135  * @buffer: transfer buffer
136  * @highmem: buffer for highmem tests
137  * @area: information for performance tests
138  * @gr: pointer to results of current testcase
139  */
140 struct mmc_test_card {
141 	struct mmc_card	*card;
142 
143 	u8		scratch[BUFFER_SIZE];
144 	u8		*buffer;
145 #ifdef CONFIG_HIGHMEM
146 	struct page	*highmem;
147 #endif
148 	struct mmc_test_area		area;
149 	struct mmc_test_general_result	*gr;
150 };
151 
152 enum mmc_test_prep_media {
153 	MMC_TEST_PREP_NONE = 0,
154 	MMC_TEST_PREP_WRITE_FULL = 1 << 0,
155 	MMC_TEST_PREP_ERASE = 1 << 1,
156 };
157 
158 struct mmc_test_multiple_rw {
159 	unsigned int *sg_len;
160 	unsigned int *bs;
161 	unsigned int len;
162 	unsigned int size;
163 	bool do_write;
164 	bool do_nonblock_req;
165 	enum mmc_test_prep_media prepare;
166 };
167 
168 struct mmc_test_async_req {
169 	struct mmc_async_req areq;
170 	struct mmc_test_card *test;
171 };
172 
173 /*******************************************************************/
174 /*  General helper functions                                       */
175 /*******************************************************************/
176 
177 /*
178  * Configure correct block size in card
179  */
mmc_test_set_blksize(struct mmc_test_card * test,unsigned size)180 static int mmc_test_set_blksize(struct mmc_test_card *test, unsigned size)
181 {
182 	return mmc_set_blocklen(test->card, size);
183 }
184 
185 /*
186  * Fill in the mmc_request structure given a set of transfer parameters.
187  */
mmc_test_prepare_mrq(struct mmc_test_card * test,struct mmc_request * mrq,struct scatterlist * sg,unsigned sg_len,unsigned dev_addr,unsigned blocks,unsigned blksz,int write)188 static void mmc_test_prepare_mrq(struct mmc_test_card *test,
189 	struct mmc_request *mrq, struct scatterlist *sg, unsigned sg_len,
190 	unsigned dev_addr, unsigned blocks, unsigned blksz, int write)
191 {
192 	BUG_ON(!mrq || !mrq->cmd || !mrq->data || !mrq->stop);
193 
194 	if (blocks > 1) {
195 		mrq->cmd->opcode = write ?
196 			MMC_WRITE_MULTIPLE_BLOCK : MMC_READ_MULTIPLE_BLOCK;
197 	} else {
198 		mrq->cmd->opcode = write ?
199 			MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
200 	}
201 
202 	mrq->cmd->arg = dev_addr;
203 	if (!mmc_card_blockaddr(test->card))
204 		mrq->cmd->arg <<= 9;
205 
206 	mrq->cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC;
207 
208 	if (blocks == 1)
209 		mrq->stop = NULL;
210 	else {
211 		mrq->stop->opcode = MMC_STOP_TRANSMISSION;
212 		mrq->stop->arg = 0;
213 		mrq->stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
214 	}
215 
216 	mrq->data->blksz = blksz;
217 	mrq->data->blocks = blocks;
218 	mrq->data->flags = write ? MMC_DATA_WRITE : MMC_DATA_READ;
219 	mrq->data->sg = sg;
220 	mrq->data->sg_len = sg_len;
221 
222 	mmc_set_data_timeout(mrq->data, test->card);
223 }
224 
mmc_test_busy(struct mmc_command * cmd)225 static int mmc_test_busy(struct mmc_command *cmd)
226 {
227 	return !(cmd->resp[0] & R1_READY_FOR_DATA) ||
228 		(R1_CURRENT_STATE(cmd->resp[0]) == R1_STATE_PRG);
229 }
230 
231 /*
232  * Wait for the card to finish the busy state
233  */
mmc_test_wait_busy(struct mmc_test_card * test)234 static int mmc_test_wait_busy(struct mmc_test_card *test)
235 {
236 	int ret, busy;
237 	struct mmc_command cmd = {0};
238 
239 	busy = 0;
240 	do {
241 		memset(&cmd, 0, sizeof(struct mmc_command));
242 
243 		cmd.opcode = MMC_SEND_STATUS;
244 		cmd.arg = test->card->rca << 16;
245 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
246 
247 		ret = mmc_wait_for_cmd(test->card->host, &cmd, 0);
248 		if (ret)
249 			break;
250 
251 		if (!busy && mmc_test_busy(&cmd)) {
252 			busy = 1;
253 			if (test->card->host->caps & MMC_CAP_WAIT_WHILE_BUSY)
254 				pr_info("%s: Warning: Host did not "
255 					"wait for busy state to end.\n",
256 					mmc_hostname(test->card->host));
257 		}
258 	} while (mmc_test_busy(&cmd));
259 
260 	return ret;
261 }
262 
263 /*
264  * Transfer a single sector of kernel addressable data
265  */
mmc_test_buffer_transfer(struct mmc_test_card * test,u8 * buffer,unsigned addr,unsigned blksz,int write)266 static int mmc_test_buffer_transfer(struct mmc_test_card *test,
267 	u8 *buffer, unsigned addr, unsigned blksz, int write)
268 {
269 	int ret;
270 
271 	struct mmc_request mrq = {0};
272 	struct mmc_command cmd = {0};
273 	struct mmc_command stop = {0};
274 	struct mmc_data data = {0};
275 
276 	struct scatterlist sg;
277 
278 	mrq.cmd = &cmd;
279 	mrq.data = &data;
280 	mrq.stop = &stop;
281 
282 	sg_init_one(&sg, buffer, blksz);
283 
284 	mmc_test_prepare_mrq(test, &mrq, &sg, 1, addr, 1, blksz, write);
285 
286 	mmc_wait_for_req(test->card->host, &mrq);
287 
288 	if (cmd.error)
289 		return cmd.error;
290 	if (data.error)
291 		return data.error;
292 
293 	ret = mmc_test_wait_busy(test);
294 	if (ret)
295 		return ret;
296 
297 	return 0;
298 }
299 
mmc_test_free_mem(struct mmc_test_mem * mem)300 static void mmc_test_free_mem(struct mmc_test_mem *mem)
301 {
302 	if (!mem)
303 		return;
304 	while (mem->cnt--)
305 		__free_pages(mem->arr[mem->cnt].page,
306 			     mem->arr[mem->cnt].order);
307 	kfree(mem->arr);
308 	kfree(mem);
309 }
310 
311 /*
312  * Allocate a lot of memory, preferably max_sz but at least min_sz.  In case
313  * there isn't much memory do not exceed 1/16th total lowmem pages.  Also do
314  * not exceed a maximum number of segments and try not to make segments much
315  * bigger than maximum segment size.
316  */
mmc_test_alloc_mem(unsigned long min_sz,unsigned long max_sz,unsigned int max_segs,unsigned int max_seg_sz)317 static struct mmc_test_mem *mmc_test_alloc_mem(unsigned long min_sz,
318 					       unsigned long max_sz,
319 					       unsigned int max_segs,
320 					       unsigned int max_seg_sz)
321 {
322 	unsigned long max_page_cnt = DIV_ROUND_UP(max_sz, PAGE_SIZE);
323 	unsigned long min_page_cnt = DIV_ROUND_UP(min_sz, PAGE_SIZE);
324 	unsigned long max_seg_page_cnt = DIV_ROUND_UP(max_seg_sz, PAGE_SIZE);
325 	unsigned long page_cnt = 0;
326 	unsigned long limit = nr_free_buffer_pages() >> 4;
327 	struct mmc_test_mem *mem;
328 
329 	if (max_page_cnt > limit)
330 		max_page_cnt = limit;
331 	if (min_page_cnt > max_page_cnt)
332 		min_page_cnt = max_page_cnt;
333 
334 	if (max_seg_page_cnt > max_page_cnt)
335 		max_seg_page_cnt = max_page_cnt;
336 
337 	if (max_segs > max_page_cnt)
338 		max_segs = max_page_cnt;
339 
340 	mem = kzalloc(sizeof(struct mmc_test_mem), GFP_KERNEL);
341 	if (!mem)
342 		return NULL;
343 
344 	mem->arr = kzalloc(sizeof(struct mmc_test_pages) * max_segs,
345 			   GFP_KERNEL);
346 	if (!mem->arr)
347 		goto out_free;
348 
349 	while (max_page_cnt) {
350 		struct page *page;
351 		unsigned int order;
352 		gfp_t flags = GFP_KERNEL | GFP_DMA | __GFP_NOWARN |
353 				__GFP_NORETRY;
354 
355 		order = get_order(max_seg_page_cnt << PAGE_SHIFT);
356 		while (1) {
357 			page = alloc_pages(flags, order);
358 			if (page || !order)
359 				break;
360 			order -= 1;
361 		}
362 		if (!page) {
363 			if (page_cnt < min_page_cnt)
364 				goto out_free;
365 			break;
366 		}
367 		mem->arr[mem->cnt].page = page;
368 		mem->arr[mem->cnt].order = order;
369 		mem->cnt += 1;
370 		if (max_page_cnt <= (1UL << order))
371 			break;
372 		max_page_cnt -= 1UL << order;
373 		page_cnt += 1UL << order;
374 		if (mem->cnt >= max_segs) {
375 			if (page_cnt < min_page_cnt)
376 				goto out_free;
377 			break;
378 		}
379 	}
380 
381 	return mem;
382 
383 out_free:
384 	mmc_test_free_mem(mem);
385 	return NULL;
386 }
387 
388 /*
389  * Map memory into a scatterlist.  Optionally allow the same memory to be
390  * mapped more than once.
391  */
mmc_test_map_sg(struct mmc_test_mem * mem,unsigned long size,struct scatterlist * sglist,int repeat,unsigned int max_segs,unsigned int max_seg_sz,unsigned int * sg_len,int min_sg_len)392 static int mmc_test_map_sg(struct mmc_test_mem *mem, unsigned long size,
393 			   struct scatterlist *sglist, int repeat,
394 			   unsigned int max_segs, unsigned int max_seg_sz,
395 			   unsigned int *sg_len, int min_sg_len)
396 {
397 	struct scatterlist *sg = NULL;
398 	unsigned int i;
399 	unsigned long sz = size;
400 
401 	sg_init_table(sglist, max_segs);
402 	if (min_sg_len > max_segs)
403 		min_sg_len = max_segs;
404 
405 	*sg_len = 0;
406 	do {
407 		for (i = 0; i < mem->cnt; i++) {
408 			unsigned long len = PAGE_SIZE << mem->arr[i].order;
409 
410 			if (min_sg_len && (size / min_sg_len < len))
411 				len = ALIGN(size / min_sg_len, 512);
412 			if (len > sz)
413 				len = sz;
414 			if (len > max_seg_sz)
415 				len = max_seg_sz;
416 			if (sg)
417 				sg = sg_next(sg);
418 			else
419 				sg = sglist;
420 			if (!sg)
421 				return -EINVAL;
422 			sg_set_page(sg, mem->arr[i].page, len, 0);
423 			sz -= len;
424 			*sg_len += 1;
425 			if (!sz)
426 				break;
427 		}
428 	} while (sz && repeat);
429 
430 	if (sz)
431 		return -EINVAL;
432 
433 	if (sg)
434 		sg_mark_end(sg);
435 
436 	return 0;
437 }
438 
439 /*
440  * Map memory into a scatterlist so that no pages are contiguous.  Allow the
441  * same memory to be mapped more than once.
442  */
mmc_test_map_sg_max_scatter(struct mmc_test_mem * mem,unsigned long sz,struct scatterlist * sglist,unsigned int max_segs,unsigned int max_seg_sz,unsigned int * sg_len)443 static int mmc_test_map_sg_max_scatter(struct mmc_test_mem *mem,
444 				       unsigned long sz,
445 				       struct scatterlist *sglist,
446 				       unsigned int max_segs,
447 				       unsigned int max_seg_sz,
448 				       unsigned int *sg_len)
449 {
450 	struct scatterlist *sg = NULL;
451 	unsigned int i = mem->cnt, cnt;
452 	unsigned long len;
453 	void *base, *addr, *last_addr = NULL;
454 
455 	sg_init_table(sglist, max_segs);
456 
457 	*sg_len = 0;
458 	while (sz) {
459 		base = page_address(mem->arr[--i].page);
460 		cnt = 1 << mem->arr[i].order;
461 		while (sz && cnt) {
462 			addr = base + PAGE_SIZE * --cnt;
463 			if (last_addr && last_addr + PAGE_SIZE == addr)
464 				continue;
465 			last_addr = addr;
466 			len = PAGE_SIZE;
467 			if (len > max_seg_sz)
468 				len = max_seg_sz;
469 			if (len > sz)
470 				len = sz;
471 			if (sg)
472 				sg = sg_next(sg);
473 			else
474 				sg = sglist;
475 			if (!sg)
476 				return -EINVAL;
477 			sg_set_page(sg, virt_to_page(addr), len, 0);
478 			sz -= len;
479 			*sg_len += 1;
480 		}
481 		if (i == 0)
482 			i = mem->cnt;
483 	}
484 
485 	if (sg)
486 		sg_mark_end(sg);
487 
488 	return 0;
489 }
490 
491 /*
492  * Calculate transfer rate in bytes per second.
493  */
mmc_test_rate(uint64_t bytes,struct timespec * ts)494 static unsigned int mmc_test_rate(uint64_t bytes, struct timespec *ts)
495 {
496 	uint64_t ns;
497 
498 	ns = ts->tv_sec;
499 	ns *= 1000000000;
500 	ns += ts->tv_nsec;
501 
502 	bytes *= 1000000000;
503 
504 	while (ns > UINT_MAX) {
505 		bytes >>= 1;
506 		ns >>= 1;
507 	}
508 
509 	if (!ns)
510 		return 0;
511 
512 	do_div(bytes, (uint32_t)ns);
513 
514 	return bytes;
515 }
516 
517 /*
518  * Save transfer results for future usage
519  */
mmc_test_save_transfer_result(struct mmc_test_card * test,unsigned int count,unsigned int sectors,struct timespec ts,unsigned int rate,unsigned int iops)520 static void mmc_test_save_transfer_result(struct mmc_test_card *test,
521 	unsigned int count, unsigned int sectors, struct timespec ts,
522 	unsigned int rate, unsigned int iops)
523 {
524 	struct mmc_test_transfer_result *tr;
525 
526 	if (!test->gr)
527 		return;
528 
529 	tr = kmalloc(sizeof(struct mmc_test_transfer_result), GFP_KERNEL);
530 	if (!tr)
531 		return;
532 
533 	tr->count = count;
534 	tr->sectors = sectors;
535 	tr->ts = ts;
536 	tr->rate = rate;
537 	tr->iops = iops;
538 
539 	list_add_tail(&tr->link, &test->gr->tr_lst);
540 }
541 
542 /*
543  * Print the transfer rate.
544  */
mmc_test_print_rate(struct mmc_test_card * test,uint64_t bytes,struct timespec * ts1,struct timespec * ts2)545 static void mmc_test_print_rate(struct mmc_test_card *test, uint64_t bytes,
546 				struct timespec *ts1, struct timespec *ts2)
547 {
548 	unsigned int rate, iops, sectors = bytes >> 9;
549 	struct timespec ts;
550 
551 	ts = timespec_sub(*ts2, *ts1);
552 
553 	rate = mmc_test_rate(bytes, &ts);
554 	iops = mmc_test_rate(100, &ts); /* I/O ops per sec x 100 */
555 
556 	pr_info("%s: Transfer of %u sectors (%u%s KiB) took %lu.%09lu "
557 			 "seconds (%u kB/s, %u KiB/s, %u.%02u IOPS)\n",
558 			 mmc_hostname(test->card->host), sectors, sectors >> 1,
559 			 (sectors & 1 ? ".5" : ""), (unsigned long)ts.tv_sec,
560 			 (unsigned long)ts.tv_nsec, rate / 1000, rate / 1024,
561 			 iops / 100, iops % 100);
562 
563 	mmc_test_save_transfer_result(test, 1, sectors, ts, rate, iops);
564 }
565 
566 /*
567  * Print the average transfer rate.
568  */
mmc_test_print_avg_rate(struct mmc_test_card * test,uint64_t bytes,unsigned int count,struct timespec * ts1,struct timespec * ts2)569 static void mmc_test_print_avg_rate(struct mmc_test_card *test, uint64_t bytes,
570 				    unsigned int count, struct timespec *ts1,
571 				    struct timespec *ts2)
572 {
573 	unsigned int rate, iops, sectors = bytes >> 9;
574 	uint64_t tot = bytes * count;
575 	struct timespec ts;
576 
577 	ts = timespec_sub(*ts2, *ts1);
578 
579 	rate = mmc_test_rate(tot, &ts);
580 	iops = mmc_test_rate(count * 100, &ts); /* I/O ops per sec x 100 */
581 
582 	pr_info("%s: Transfer of %u x %u sectors (%u x %u%s KiB) took "
583 			 "%lu.%09lu seconds (%u kB/s, %u KiB/s, "
584 			 "%u.%02u IOPS, sg_len %d)\n",
585 			 mmc_hostname(test->card->host), count, sectors, count,
586 			 sectors >> 1, (sectors & 1 ? ".5" : ""),
587 			 (unsigned long)ts.tv_sec, (unsigned long)ts.tv_nsec,
588 			 rate / 1000, rate / 1024, iops / 100, iops % 100,
589 			 test->area.sg_len);
590 
591 	mmc_test_save_transfer_result(test, count, sectors, ts, rate, iops);
592 }
593 
594 /*
595  * Return the card size in sectors.
596  */
mmc_test_capacity(struct mmc_card * card)597 static unsigned int mmc_test_capacity(struct mmc_card *card)
598 {
599 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card))
600 		return card->ext_csd.sectors;
601 	else
602 		return card->csd.capacity << (card->csd.read_blkbits - 9);
603 }
604 
605 /*******************************************************************/
606 /*  Test preparation and cleanup                                   */
607 /*******************************************************************/
608 
609 /*
610  * Fill the first couple of sectors of the card with known data
611  * so that bad reads/writes can be detected
612  */
__mmc_test_prepare(struct mmc_test_card * test,int write)613 static int __mmc_test_prepare(struct mmc_test_card *test, int write)
614 {
615 	int ret, i;
616 
617 	ret = mmc_test_set_blksize(test, 512);
618 	if (ret)
619 		return ret;
620 
621 	if (write)
622 		memset(test->buffer, 0xDF, 512);
623 	else {
624 		for (i = 0;i < 512;i++)
625 			test->buffer[i] = i;
626 	}
627 
628 	for (i = 0;i < BUFFER_SIZE / 512;i++) {
629 		ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
630 		if (ret)
631 			return ret;
632 	}
633 
634 	return 0;
635 }
636 
mmc_test_prepare_write(struct mmc_test_card * test)637 static int mmc_test_prepare_write(struct mmc_test_card *test)
638 {
639 	return __mmc_test_prepare(test, 1);
640 }
641 
mmc_test_prepare_read(struct mmc_test_card * test)642 static int mmc_test_prepare_read(struct mmc_test_card *test)
643 {
644 	return __mmc_test_prepare(test, 0);
645 }
646 
mmc_test_cleanup(struct mmc_test_card * test)647 static int mmc_test_cleanup(struct mmc_test_card *test)
648 {
649 	int ret, i;
650 
651 	ret = mmc_test_set_blksize(test, 512);
652 	if (ret)
653 		return ret;
654 
655 	memset(test->buffer, 0, 512);
656 
657 	for (i = 0;i < BUFFER_SIZE / 512;i++) {
658 		ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
659 		if (ret)
660 			return ret;
661 	}
662 
663 	return 0;
664 }
665 
666 /*******************************************************************/
667 /*  Test execution helpers                                         */
668 /*******************************************************************/
669 
670 /*
671  * Modifies the mmc_request to perform the "short transfer" tests
672  */
mmc_test_prepare_broken_mrq(struct mmc_test_card * test,struct mmc_request * mrq,int write)673 static void mmc_test_prepare_broken_mrq(struct mmc_test_card *test,
674 	struct mmc_request *mrq, int write)
675 {
676 	BUG_ON(!mrq || !mrq->cmd || !mrq->data);
677 
678 	if (mrq->data->blocks > 1) {
679 		mrq->cmd->opcode = write ?
680 			MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
681 		mrq->stop = NULL;
682 	} else {
683 		mrq->cmd->opcode = MMC_SEND_STATUS;
684 		mrq->cmd->arg = test->card->rca << 16;
685 	}
686 }
687 
688 /*
689  * Checks that a normal transfer didn't have any errors
690  */
mmc_test_check_result(struct mmc_test_card * test,struct mmc_request * mrq)691 static int mmc_test_check_result(struct mmc_test_card *test,
692 				 struct mmc_request *mrq)
693 {
694 	int ret;
695 
696 	BUG_ON(!mrq || !mrq->cmd || !mrq->data);
697 
698 	ret = 0;
699 
700 	if (!ret && mrq->cmd->error)
701 		ret = mrq->cmd->error;
702 	if (!ret && mrq->data->error)
703 		ret = mrq->data->error;
704 	if (!ret && mrq->stop && mrq->stop->error)
705 		ret = mrq->stop->error;
706 	if (!ret && mrq->data->bytes_xfered !=
707 		mrq->data->blocks * mrq->data->blksz)
708 		ret = RESULT_FAIL;
709 
710 	if (ret == -EINVAL)
711 		ret = RESULT_UNSUP_HOST;
712 
713 	return ret;
714 }
715 
mmc_test_check_result_async(struct mmc_card * card,struct mmc_async_req * areq)716 static int mmc_test_check_result_async(struct mmc_card *card,
717 				       struct mmc_async_req *areq)
718 {
719 	struct mmc_test_async_req *test_async =
720 		container_of(areq, struct mmc_test_async_req, areq);
721 
722 	mmc_test_wait_busy(test_async->test);
723 
724 	return mmc_test_check_result(test_async->test, areq->mrq);
725 }
726 
727 /*
728  * Checks that a "short transfer" behaved as expected
729  */
mmc_test_check_broken_result(struct mmc_test_card * test,struct mmc_request * mrq)730 static int mmc_test_check_broken_result(struct mmc_test_card *test,
731 	struct mmc_request *mrq)
732 {
733 	int ret;
734 
735 	BUG_ON(!mrq || !mrq->cmd || !mrq->data);
736 
737 	ret = 0;
738 
739 	if (!ret && mrq->cmd->error)
740 		ret = mrq->cmd->error;
741 	if (!ret && mrq->data->error == 0)
742 		ret = RESULT_FAIL;
743 	if (!ret && mrq->data->error != -ETIMEDOUT)
744 		ret = mrq->data->error;
745 	if (!ret && mrq->stop && mrq->stop->error)
746 		ret = mrq->stop->error;
747 	if (mrq->data->blocks > 1) {
748 		if (!ret && mrq->data->bytes_xfered > mrq->data->blksz)
749 			ret = RESULT_FAIL;
750 	} else {
751 		if (!ret && mrq->data->bytes_xfered > 0)
752 			ret = RESULT_FAIL;
753 	}
754 
755 	if (ret == -EINVAL)
756 		ret = RESULT_UNSUP_HOST;
757 
758 	return ret;
759 }
760 
761 /*
762  * Tests nonblock transfer with certain parameters
763  */
mmc_test_nonblock_reset(struct mmc_request * mrq,struct mmc_command * cmd,struct mmc_command * stop,struct mmc_data * data)764 static void mmc_test_nonblock_reset(struct mmc_request *mrq,
765 				    struct mmc_command *cmd,
766 				    struct mmc_command *stop,
767 				    struct mmc_data *data)
768 {
769 	memset(mrq, 0, sizeof(struct mmc_request));
770 	memset(cmd, 0, sizeof(struct mmc_command));
771 	memset(data, 0, sizeof(struct mmc_data));
772 	memset(stop, 0, sizeof(struct mmc_command));
773 
774 	mrq->cmd = cmd;
775 	mrq->data = data;
776 	mrq->stop = stop;
777 }
mmc_test_nonblock_transfer(struct mmc_test_card * test,struct scatterlist * sg,unsigned sg_len,unsigned dev_addr,unsigned blocks,unsigned blksz,int write,int count)778 static int mmc_test_nonblock_transfer(struct mmc_test_card *test,
779 				      struct scatterlist *sg, unsigned sg_len,
780 				      unsigned dev_addr, unsigned blocks,
781 				      unsigned blksz, int write, int count)
782 {
783 	struct mmc_request mrq1;
784 	struct mmc_command cmd1;
785 	struct mmc_command stop1;
786 	struct mmc_data data1;
787 
788 	struct mmc_request mrq2;
789 	struct mmc_command cmd2;
790 	struct mmc_command stop2;
791 	struct mmc_data data2;
792 
793 	struct mmc_test_async_req test_areq[2];
794 	struct mmc_async_req *done_areq;
795 	struct mmc_async_req *cur_areq = &test_areq[0].areq;
796 	struct mmc_async_req *other_areq = &test_areq[1].areq;
797 	int i;
798 	int ret;
799 
800 	test_areq[0].test = test;
801 	test_areq[1].test = test;
802 
803 	mmc_test_nonblock_reset(&mrq1, &cmd1, &stop1, &data1);
804 	mmc_test_nonblock_reset(&mrq2, &cmd2, &stop2, &data2);
805 
806 	cur_areq->mrq = &mrq1;
807 	cur_areq->err_check = mmc_test_check_result_async;
808 	other_areq->mrq = &mrq2;
809 	other_areq->err_check = mmc_test_check_result_async;
810 
811 	for (i = 0; i < count; i++) {
812 		mmc_test_prepare_mrq(test, cur_areq->mrq, sg, sg_len, dev_addr,
813 				     blocks, blksz, write);
814 		done_areq = mmc_start_req(test->card->host, cur_areq, &ret);
815 
816 		if (ret || (!done_areq && i > 0))
817 			goto err;
818 
819 		if (done_areq) {
820 			if (done_areq->mrq == &mrq2)
821 				mmc_test_nonblock_reset(&mrq2, &cmd2,
822 							&stop2, &data2);
823 			else
824 				mmc_test_nonblock_reset(&mrq1, &cmd1,
825 							&stop1, &data1);
826 		}
827 		done_areq = cur_areq;
828 		cur_areq = other_areq;
829 		other_areq = done_areq;
830 		dev_addr += blocks;
831 	}
832 
833 	done_areq = mmc_start_req(test->card->host, NULL, &ret);
834 
835 	return ret;
836 err:
837 	return ret;
838 }
839 
840 /*
841  * Tests a basic transfer with certain parameters
842  */
mmc_test_simple_transfer(struct mmc_test_card * test,struct scatterlist * sg,unsigned sg_len,unsigned dev_addr,unsigned blocks,unsigned blksz,int write)843 static int mmc_test_simple_transfer(struct mmc_test_card *test,
844 	struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
845 	unsigned blocks, unsigned blksz, int write)
846 {
847 	struct mmc_request mrq = {0};
848 	struct mmc_command cmd = {0};
849 	struct mmc_command stop = {0};
850 	struct mmc_data data = {0};
851 
852 	mrq.cmd = &cmd;
853 	mrq.data = &data;
854 	mrq.stop = &stop;
855 
856 	mmc_test_prepare_mrq(test, &mrq, sg, sg_len, dev_addr,
857 		blocks, blksz, write);
858 
859 	mmc_wait_for_req(test->card->host, &mrq);
860 
861 	mmc_test_wait_busy(test);
862 
863 	return mmc_test_check_result(test, &mrq);
864 }
865 
866 /*
867  * Tests a transfer where the card will fail completely or partly
868  */
mmc_test_broken_transfer(struct mmc_test_card * test,unsigned blocks,unsigned blksz,int write)869 static int mmc_test_broken_transfer(struct mmc_test_card *test,
870 	unsigned blocks, unsigned blksz, int write)
871 {
872 	struct mmc_request mrq = {0};
873 	struct mmc_command cmd = {0};
874 	struct mmc_command stop = {0};
875 	struct mmc_data data = {0};
876 
877 	struct scatterlist sg;
878 
879 	mrq.cmd = &cmd;
880 	mrq.data = &data;
881 	mrq.stop = &stop;
882 
883 	sg_init_one(&sg, test->buffer, blocks * blksz);
884 
885 	mmc_test_prepare_mrq(test, &mrq, &sg, 1, 0, blocks, blksz, write);
886 	mmc_test_prepare_broken_mrq(test, &mrq, write);
887 
888 	mmc_wait_for_req(test->card->host, &mrq);
889 
890 	mmc_test_wait_busy(test);
891 
892 	return mmc_test_check_broken_result(test, &mrq);
893 }
894 
895 /*
896  * Does a complete transfer test where data is also validated
897  *
898  * Note: mmc_test_prepare() must have been done before this call
899  */
mmc_test_transfer(struct mmc_test_card * test,struct scatterlist * sg,unsigned sg_len,unsigned dev_addr,unsigned blocks,unsigned blksz,int write)900 static int mmc_test_transfer(struct mmc_test_card *test,
901 	struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
902 	unsigned blocks, unsigned blksz, int write)
903 {
904 	int ret, i;
905 	unsigned long flags;
906 
907 	if (write) {
908 		for (i = 0;i < blocks * blksz;i++)
909 			test->scratch[i] = i;
910 	} else {
911 		memset(test->scratch, 0, BUFFER_SIZE);
912 	}
913 	local_irq_save(flags);
914 	sg_copy_from_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
915 	local_irq_restore(flags);
916 
917 	ret = mmc_test_set_blksize(test, blksz);
918 	if (ret)
919 		return ret;
920 
921 	ret = mmc_test_simple_transfer(test, sg, sg_len, dev_addr,
922 		blocks, blksz, write);
923 	if (ret)
924 		return ret;
925 
926 	if (write) {
927 		int sectors;
928 
929 		ret = mmc_test_set_blksize(test, 512);
930 		if (ret)
931 			return ret;
932 
933 		sectors = (blocks * blksz + 511) / 512;
934 		if ((sectors * 512) == (blocks * blksz))
935 			sectors++;
936 
937 		if ((sectors * 512) > BUFFER_SIZE)
938 			return -EINVAL;
939 
940 		memset(test->buffer, 0, sectors * 512);
941 
942 		for (i = 0;i < sectors;i++) {
943 			ret = mmc_test_buffer_transfer(test,
944 				test->buffer + i * 512,
945 				dev_addr + i, 512, 0);
946 			if (ret)
947 				return ret;
948 		}
949 
950 		for (i = 0;i < blocks * blksz;i++) {
951 			if (test->buffer[i] != (u8)i)
952 				return RESULT_FAIL;
953 		}
954 
955 		for (;i < sectors * 512;i++) {
956 			if (test->buffer[i] != 0xDF)
957 				return RESULT_FAIL;
958 		}
959 	} else {
960 		local_irq_save(flags);
961 		sg_copy_to_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
962 		local_irq_restore(flags);
963 		for (i = 0;i < blocks * blksz;i++) {
964 			if (test->scratch[i] != (u8)i)
965 				return RESULT_FAIL;
966 		}
967 	}
968 
969 	return 0;
970 }
971 
972 /*******************************************************************/
973 /*  Tests                                                          */
974 /*******************************************************************/
975 
976 struct mmc_test_case {
977 	const char *name;
978 
979 	int (*prepare)(struct mmc_test_card *);
980 	int (*run)(struct mmc_test_card *);
981 	int (*cleanup)(struct mmc_test_card *);
982 };
983 
mmc_test_basic_write(struct mmc_test_card * test)984 static int mmc_test_basic_write(struct mmc_test_card *test)
985 {
986 	int ret;
987 	struct scatterlist sg;
988 
989 	ret = mmc_test_set_blksize(test, 512);
990 	if (ret)
991 		return ret;
992 
993 	sg_init_one(&sg, test->buffer, 512);
994 
995 	ret = mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 1);
996 	if (ret)
997 		return ret;
998 
999 	return 0;
1000 }
1001 
mmc_test_basic_read(struct mmc_test_card * test)1002 static int mmc_test_basic_read(struct mmc_test_card *test)
1003 {
1004 	int ret;
1005 	struct scatterlist sg;
1006 
1007 	ret = mmc_test_set_blksize(test, 512);
1008 	if (ret)
1009 		return ret;
1010 
1011 	sg_init_one(&sg, test->buffer, 512);
1012 
1013 	ret = mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 0);
1014 	if (ret)
1015 		return ret;
1016 
1017 	return 0;
1018 }
1019 
mmc_test_verify_write(struct mmc_test_card * test)1020 static int mmc_test_verify_write(struct mmc_test_card *test)
1021 {
1022 	int ret;
1023 	struct scatterlist sg;
1024 
1025 	sg_init_one(&sg, test->buffer, 512);
1026 
1027 	ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1028 	if (ret)
1029 		return ret;
1030 
1031 	return 0;
1032 }
1033 
mmc_test_verify_read(struct mmc_test_card * test)1034 static int mmc_test_verify_read(struct mmc_test_card *test)
1035 {
1036 	int ret;
1037 	struct scatterlist sg;
1038 
1039 	sg_init_one(&sg, test->buffer, 512);
1040 
1041 	ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1042 	if (ret)
1043 		return ret;
1044 
1045 	return 0;
1046 }
1047 
mmc_test_multi_write(struct mmc_test_card * test)1048 static int mmc_test_multi_write(struct mmc_test_card *test)
1049 {
1050 	int ret;
1051 	unsigned int size;
1052 	struct scatterlist sg;
1053 
1054 	if (test->card->host->max_blk_count == 1)
1055 		return RESULT_UNSUP_HOST;
1056 
1057 	size = PAGE_SIZE * 2;
1058 	size = min(size, test->card->host->max_req_size);
1059 	size = min(size, test->card->host->max_seg_size);
1060 	size = min(size, test->card->host->max_blk_count * 512);
1061 
1062 	if (size < 1024)
1063 		return RESULT_UNSUP_HOST;
1064 
1065 	sg_init_one(&sg, test->buffer, size);
1066 
1067 	ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 1);
1068 	if (ret)
1069 		return ret;
1070 
1071 	return 0;
1072 }
1073 
mmc_test_multi_read(struct mmc_test_card * test)1074 static int mmc_test_multi_read(struct mmc_test_card *test)
1075 {
1076 	int ret;
1077 	unsigned int size;
1078 	struct scatterlist sg;
1079 
1080 	if (test->card->host->max_blk_count == 1)
1081 		return RESULT_UNSUP_HOST;
1082 
1083 	size = PAGE_SIZE * 2;
1084 	size = min(size, test->card->host->max_req_size);
1085 	size = min(size, test->card->host->max_seg_size);
1086 	size = min(size, test->card->host->max_blk_count * 512);
1087 
1088 	if (size < 1024)
1089 		return RESULT_UNSUP_HOST;
1090 
1091 	sg_init_one(&sg, test->buffer, size);
1092 
1093 	ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 0);
1094 	if (ret)
1095 		return ret;
1096 
1097 	return 0;
1098 }
1099 
mmc_test_pow2_write(struct mmc_test_card * test)1100 static int mmc_test_pow2_write(struct mmc_test_card *test)
1101 {
1102 	int ret, i;
1103 	struct scatterlist sg;
1104 
1105 	if (!test->card->csd.write_partial)
1106 		return RESULT_UNSUP_CARD;
1107 
1108 	for (i = 1; i < 512;i <<= 1) {
1109 		sg_init_one(&sg, test->buffer, i);
1110 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1111 		if (ret)
1112 			return ret;
1113 	}
1114 
1115 	return 0;
1116 }
1117 
mmc_test_pow2_read(struct mmc_test_card * test)1118 static int mmc_test_pow2_read(struct mmc_test_card *test)
1119 {
1120 	int ret, i;
1121 	struct scatterlist sg;
1122 
1123 	if (!test->card->csd.read_partial)
1124 		return RESULT_UNSUP_CARD;
1125 
1126 	for (i = 1; i < 512;i <<= 1) {
1127 		sg_init_one(&sg, test->buffer, i);
1128 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1129 		if (ret)
1130 			return ret;
1131 	}
1132 
1133 	return 0;
1134 }
1135 
mmc_test_weird_write(struct mmc_test_card * test)1136 static int mmc_test_weird_write(struct mmc_test_card *test)
1137 {
1138 	int ret, i;
1139 	struct scatterlist sg;
1140 
1141 	if (!test->card->csd.write_partial)
1142 		return RESULT_UNSUP_CARD;
1143 
1144 	for (i = 3; i < 512;i += 7) {
1145 		sg_init_one(&sg, test->buffer, i);
1146 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1147 		if (ret)
1148 			return ret;
1149 	}
1150 
1151 	return 0;
1152 }
1153 
mmc_test_weird_read(struct mmc_test_card * test)1154 static int mmc_test_weird_read(struct mmc_test_card *test)
1155 {
1156 	int ret, i;
1157 	struct scatterlist sg;
1158 
1159 	if (!test->card->csd.read_partial)
1160 		return RESULT_UNSUP_CARD;
1161 
1162 	for (i = 3; i < 512;i += 7) {
1163 		sg_init_one(&sg, test->buffer, i);
1164 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1165 		if (ret)
1166 			return ret;
1167 	}
1168 
1169 	return 0;
1170 }
1171 
mmc_test_align_write(struct mmc_test_card * test)1172 static int mmc_test_align_write(struct mmc_test_card *test)
1173 {
1174 	int ret, i;
1175 	struct scatterlist sg;
1176 
1177 	for (i = 1;i < 4;i++) {
1178 		sg_init_one(&sg, test->buffer + i, 512);
1179 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1180 		if (ret)
1181 			return ret;
1182 	}
1183 
1184 	return 0;
1185 }
1186 
mmc_test_align_read(struct mmc_test_card * test)1187 static int mmc_test_align_read(struct mmc_test_card *test)
1188 {
1189 	int ret, i;
1190 	struct scatterlist sg;
1191 
1192 	for (i = 1;i < 4;i++) {
1193 		sg_init_one(&sg, test->buffer + i, 512);
1194 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1195 		if (ret)
1196 			return ret;
1197 	}
1198 
1199 	return 0;
1200 }
1201 
mmc_test_align_multi_write(struct mmc_test_card * test)1202 static int mmc_test_align_multi_write(struct mmc_test_card *test)
1203 {
1204 	int ret, i;
1205 	unsigned int size;
1206 	struct scatterlist sg;
1207 
1208 	if (test->card->host->max_blk_count == 1)
1209 		return RESULT_UNSUP_HOST;
1210 
1211 	size = PAGE_SIZE * 2;
1212 	size = min(size, test->card->host->max_req_size);
1213 	size = min(size, test->card->host->max_seg_size);
1214 	size = min(size, test->card->host->max_blk_count * 512);
1215 
1216 	if (size < 1024)
1217 		return RESULT_UNSUP_HOST;
1218 
1219 	for (i = 1;i < 4;i++) {
1220 		sg_init_one(&sg, test->buffer + i, size);
1221 		ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 1);
1222 		if (ret)
1223 			return ret;
1224 	}
1225 
1226 	return 0;
1227 }
1228 
mmc_test_align_multi_read(struct mmc_test_card * test)1229 static int mmc_test_align_multi_read(struct mmc_test_card *test)
1230 {
1231 	int ret, i;
1232 	unsigned int size;
1233 	struct scatterlist sg;
1234 
1235 	if (test->card->host->max_blk_count == 1)
1236 		return RESULT_UNSUP_HOST;
1237 
1238 	size = PAGE_SIZE * 2;
1239 	size = min(size, test->card->host->max_req_size);
1240 	size = min(size, test->card->host->max_seg_size);
1241 	size = min(size, test->card->host->max_blk_count * 512);
1242 
1243 	if (size < 1024)
1244 		return RESULT_UNSUP_HOST;
1245 
1246 	for (i = 1;i < 4;i++) {
1247 		sg_init_one(&sg, test->buffer + i, size);
1248 		ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 0);
1249 		if (ret)
1250 			return ret;
1251 	}
1252 
1253 	return 0;
1254 }
1255 
mmc_test_xfersize_write(struct mmc_test_card * test)1256 static int mmc_test_xfersize_write(struct mmc_test_card *test)
1257 {
1258 	int ret;
1259 
1260 	ret = mmc_test_set_blksize(test, 512);
1261 	if (ret)
1262 		return ret;
1263 
1264 	ret = mmc_test_broken_transfer(test, 1, 512, 1);
1265 	if (ret)
1266 		return ret;
1267 
1268 	return 0;
1269 }
1270 
mmc_test_xfersize_read(struct mmc_test_card * test)1271 static int mmc_test_xfersize_read(struct mmc_test_card *test)
1272 {
1273 	int ret;
1274 
1275 	ret = mmc_test_set_blksize(test, 512);
1276 	if (ret)
1277 		return ret;
1278 
1279 	ret = mmc_test_broken_transfer(test, 1, 512, 0);
1280 	if (ret)
1281 		return ret;
1282 
1283 	return 0;
1284 }
1285 
mmc_test_multi_xfersize_write(struct mmc_test_card * test)1286 static int mmc_test_multi_xfersize_write(struct mmc_test_card *test)
1287 {
1288 	int ret;
1289 
1290 	if (test->card->host->max_blk_count == 1)
1291 		return RESULT_UNSUP_HOST;
1292 
1293 	ret = mmc_test_set_blksize(test, 512);
1294 	if (ret)
1295 		return ret;
1296 
1297 	ret = mmc_test_broken_transfer(test, 2, 512, 1);
1298 	if (ret)
1299 		return ret;
1300 
1301 	return 0;
1302 }
1303 
mmc_test_multi_xfersize_read(struct mmc_test_card * test)1304 static int mmc_test_multi_xfersize_read(struct mmc_test_card *test)
1305 {
1306 	int ret;
1307 
1308 	if (test->card->host->max_blk_count == 1)
1309 		return RESULT_UNSUP_HOST;
1310 
1311 	ret = mmc_test_set_blksize(test, 512);
1312 	if (ret)
1313 		return ret;
1314 
1315 	ret = mmc_test_broken_transfer(test, 2, 512, 0);
1316 	if (ret)
1317 		return ret;
1318 
1319 	return 0;
1320 }
1321 
1322 #ifdef CONFIG_HIGHMEM
1323 
mmc_test_write_high(struct mmc_test_card * test)1324 static int mmc_test_write_high(struct mmc_test_card *test)
1325 {
1326 	int ret;
1327 	struct scatterlist sg;
1328 
1329 	sg_init_table(&sg, 1);
1330 	sg_set_page(&sg, test->highmem, 512, 0);
1331 
1332 	ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1333 	if (ret)
1334 		return ret;
1335 
1336 	return 0;
1337 }
1338 
mmc_test_read_high(struct mmc_test_card * test)1339 static int mmc_test_read_high(struct mmc_test_card *test)
1340 {
1341 	int ret;
1342 	struct scatterlist sg;
1343 
1344 	sg_init_table(&sg, 1);
1345 	sg_set_page(&sg, test->highmem, 512, 0);
1346 
1347 	ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1348 	if (ret)
1349 		return ret;
1350 
1351 	return 0;
1352 }
1353 
mmc_test_multi_write_high(struct mmc_test_card * test)1354 static int mmc_test_multi_write_high(struct mmc_test_card *test)
1355 {
1356 	int ret;
1357 	unsigned int size;
1358 	struct scatterlist sg;
1359 
1360 	if (test->card->host->max_blk_count == 1)
1361 		return RESULT_UNSUP_HOST;
1362 
1363 	size = PAGE_SIZE * 2;
1364 	size = min(size, test->card->host->max_req_size);
1365 	size = min(size, test->card->host->max_seg_size);
1366 	size = min(size, test->card->host->max_blk_count * 512);
1367 
1368 	if (size < 1024)
1369 		return RESULT_UNSUP_HOST;
1370 
1371 	sg_init_table(&sg, 1);
1372 	sg_set_page(&sg, test->highmem, size, 0);
1373 
1374 	ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 1);
1375 	if (ret)
1376 		return ret;
1377 
1378 	return 0;
1379 }
1380 
mmc_test_multi_read_high(struct mmc_test_card * test)1381 static int mmc_test_multi_read_high(struct mmc_test_card *test)
1382 {
1383 	int ret;
1384 	unsigned int size;
1385 	struct scatterlist sg;
1386 
1387 	if (test->card->host->max_blk_count == 1)
1388 		return RESULT_UNSUP_HOST;
1389 
1390 	size = PAGE_SIZE * 2;
1391 	size = min(size, test->card->host->max_req_size);
1392 	size = min(size, test->card->host->max_seg_size);
1393 	size = min(size, test->card->host->max_blk_count * 512);
1394 
1395 	if (size < 1024)
1396 		return RESULT_UNSUP_HOST;
1397 
1398 	sg_init_table(&sg, 1);
1399 	sg_set_page(&sg, test->highmem, size, 0);
1400 
1401 	ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 0);
1402 	if (ret)
1403 		return ret;
1404 
1405 	return 0;
1406 }
1407 
1408 #else
1409 
mmc_test_no_highmem(struct mmc_test_card * test)1410 static int mmc_test_no_highmem(struct mmc_test_card *test)
1411 {
1412 	pr_info("%s: Highmem not configured - test skipped\n",
1413 	       mmc_hostname(test->card->host));
1414 	return 0;
1415 }
1416 
1417 #endif /* CONFIG_HIGHMEM */
1418 
1419 /*
1420  * Map sz bytes so that it can be transferred.
1421  */
mmc_test_area_map(struct mmc_test_card * test,unsigned long sz,int max_scatter,int min_sg_len)1422 static int mmc_test_area_map(struct mmc_test_card *test, unsigned long sz,
1423 			     int max_scatter, int min_sg_len)
1424 {
1425 	struct mmc_test_area *t = &test->area;
1426 	int err;
1427 
1428 	t->blocks = sz >> 9;
1429 
1430 	if (max_scatter) {
1431 		err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg,
1432 						  t->max_segs, t->max_seg_sz,
1433 				       &t->sg_len);
1434 	} else {
1435 		err = mmc_test_map_sg(t->mem, sz, t->sg, 1, t->max_segs,
1436 				      t->max_seg_sz, &t->sg_len, min_sg_len);
1437 	}
1438 	if (err)
1439 		pr_info("%s: Failed to map sg list\n",
1440 		       mmc_hostname(test->card->host));
1441 	return err;
1442 }
1443 
1444 /*
1445  * Transfer bytes mapped by mmc_test_area_map().
1446  */
mmc_test_area_transfer(struct mmc_test_card * test,unsigned int dev_addr,int write)1447 static int mmc_test_area_transfer(struct mmc_test_card *test,
1448 				  unsigned int dev_addr, int write)
1449 {
1450 	struct mmc_test_area *t = &test->area;
1451 
1452 	return mmc_test_simple_transfer(test, t->sg, t->sg_len, dev_addr,
1453 					t->blocks, 512, write);
1454 }
1455 
1456 /*
1457  * Map and transfer bytes for multiple transfers.
1458  */
mmc_test_area_io_seq(struct mmc_test_card * test,unsigned long sz,unsigned int dev_addr,int write,int max_scatter,int timed,int count,bool nonblock,int min_sg_len)1459 static int mmc_test_area_io_seq(struct mmc_test_card *test, unsigned long sz,
1460 				unsigned int dev_addr, int write,
1461 				int max_scatter, int timed, int count,
1462 				bool nonblock, int min_sg_len)
1463 {
1464 	struct timespec ts1, ts2;
1465 	int ret = 0;
1466 	int i;
1467 	struct mmc_test_area *t = &test->area;
1468 
1469 	/*
1470 	 * In the case of a maximally scattered transfer, the maximum transfer
1471 	 * size is further limited by using PAGE_SIZE segments.
1472 	 */
1473 	if (max_scatter) {
1474 		struct mmc_test_area *t = &test->area;
1475 		unsigned long max_tfr;
1476 
1477 		if (t->max_seg_sz >= PAGE_SIZE)
1478 			max_tfr = t->max_segs * PAGE_SIZE;
1479 		else
1480 			max_tfr = t->max_segs * t->max_seg_sz;
1481 		if (sz > max_tfr)
1482 			sz = max_tfr;
1483 	}
1484 
1485 	ret = mmc_test_area_map(test, sz, max_scatter, min_sg_len);
1486 	if (ret)
1487 		return ret;
1488 
1489 	if (timed)
1490 		getnstimeofday(&ts1);
1491 	if (nonblock)
1492 		ret = mmc_test_nonblock_transfer(test, t->sg, t->sg_len,
1493 				 dev_addr, t->blocks, 512, write, count);
1494 	else
1495 		for (i = 0; i < count && ret == 0; i++) {
1496 			ret = mmc_test_area_transfer(test, dev_addr, write);
1497 			dev_addr += sz >> 9;
1498 		}
1499 
1500 	if (ret)
1501 		return ret;
1502 
1503 	if (timed)
1504 		getnstimeofday(&ts2);
1505 
1506 	if (timed)
1507 		mmc_test_print_avg_rate(test, sz, count, &ts1, &ts2);
1508 
1509 	return 0;
1510 }
1511 
mmc_test_area_io(struct mmc_test_card * test,unsigned long sz,unsigned int dev_addr,int write,int max_scatter,int timed)1512 static int mmc_test_area_io(struct mmc_test_card *test, unsigned long sz,
1513 			    unsigned int dev_addr, int write, int max_scatter,
1514 			    int timed)
1515 {
1516 	return mmc_test_area_io_seq(test, sz, dev_addr, write, max_scatter,
1517 				    timed, 1, false, 0);
1518 }
1519 
1520 /*
1521  * Write the test area entirely.
1522  */
mmc_test_area_fill(struct mmc_test_card * test)1523 static int mmc_test_area_fill(struct mmc_test_card *test)
1524 {
1525 	struct mmc_test_area *t = &test->area;
1526 
1527 	return mmc_test_area_io(test, t->max_tfr, t->dev_addr, 1, 0, 0);
1528 }
1529 
1530 /*
1531  * Erase the test area entirely.
1532  */
mmc_test_area_erase(struct mmc_test_card * test)1533 static int mmc_test_area_erase(struct mmc_test_card *test)
1534 {
1535 	struct mmc_test_area *t = &test->area;
1536 
1537 	if (!mmc_can_erase(test->card))
1538 		return 0;
1539 
1540 	return mmc_erase(test->card, t->dev_addr, t->max_sz >> 9,
1541 			 MMC_ERASE_ARG);
1542 }
1543 
1544 /*
1545  * Cleanup struct mmc_test_area.
1546  */
mmc_test_area_cleanup(struct mmc_test_card * test)1547 static int mmc_test_area_cleanup(struct mmc_test_card *test)
1548 {
1549 	struct mmc_test_area *t = &test->area;
1550 
1551 	kfree(t->sg);
1552 	mmc_test_free_mem(t->mem);
1553 
1554 	return 0;
1555 }
1556 
1557 /*
1558  * Initialize an area for testing large transfers.  The test area is set to the
1559  * middle of the card because cards may have different charateristics at the
1560  * front (for FAT file system optimization).  Optionally, the area is erased
1561  * (if the card supports it) which may improve write performance.  Optionally,
1562  * the area is filled with data for subsequent read tests.
1563  */
mmc_test_area_init(struct mmc_test_card * test,int erase,int fill)1564 static int mmc_test_area_init(struct mmc_test_card *test, int erase, int fill)
1565 {
1566 	struct mmc_test_area *t = &test->area;
1567 	unsigned long min_sz = 64 * 1024, sz;
1568 	int ret;
1569 
1570 	ret = mmc_test_set_blksize(test, 512);
1571 	if (ret)
1572 		return ret;
1573 
1574 	/* Make the test area size about 4MiB */
1575 	sz = (unsigned long)test->card->pref_erase << 9;
1576 	t->max_sz = sz;
1577 	while (t->max_sz < 4 * 1024 * 1024)
1578 		t->max_sz += sz;
1579 	while (t->max_sz > TEST_AREA_MAX_SIZE && t->max_sz > sz)
1580 		t->max_sz -= sz;
1581 
1582 	t->max_segs = test->card->host->max_segs;
1583 	t->max_seg_sz = test->card->host->max_seg_size;
1584 	t->max_seg_sz -= t->max_seg_sz % 512;
1585 
1586 	t->max_tfr = t->max_sz;
1587 	if (t->max_tfr >> 9 > test->card->host->max_blk_count)
1588 		t->max_tfr = test->card->host->max_blk_count << 9;
1589 	if (t->max_tfr > test->card->host->max_req_size)
1590 		t->max_tfr = test->card->host->max_req_size;
1591 	if (t->max_tfr / t->max_seg_sz > t->max_segs)
1592 		t->max_tfr = t->max_segs * t->max_seg_sz;
1593 
1594 	/*
1595 	 * Try to allocate enough memory for a max. sized transfer.  Less is OK
1596 	 * because the same memory can be mapped into the scatterlist more than
1597 	 * once.  Also, take into account the limits imposed on scatterlist
1598 	 * segments by the host driver.
1599 	 */
1600 	t->mem = mmc_test_alloc_mem(min_sz, t->max_tfr, t->max_segs,
1601 				    t->max_seg_sz);
1602 	if (!t->mem)
1603 		return -ENOMEM;
1604 
1605 	t->sg = kmalloc(sizeof(struct scatterlist) * t->max_segs, GFP_KERNEL);
1606 	if (!t->sg) {
1607 		ret = -ENOMEM;
1608 		goto out_free;
1609 	}
1610 
1611 	t->dev_addr = mmc_test_capacity(test->card) / 2;
1612 	t->dev_addr -= t->dev_addr % (t->max_sz >> 9);
1613 
1614 	if (erase) {
1615 		ret = mmc_test_area_erase(test);
1616 		if (ret)
1617 			goto out_free;
1618 	}
1619 
1620 	if (fill) {
1621 		ret = mmc_test_area_fill(test);
1622 		if (ret)
1623 			goto out_free;
1624 	}
1625 
1626 	return 0;
1627 
1628 out_free:
1629 	mmc_test_area_cleanup(test);
1630 	return ret;
1631 }
1632 
1633 /*
1634  * Prepare for large transfers.  Do not erase the test area.
1635  */
mmc_test_area_prepare(struct mmc_test_card * test)1636 static int mmc_test_area_prepare(struct mmc_test_card *test)
1637 {
1638 	return mmc_test_area_init(test, 0, 0);
1639 }
1640 
1641 /*
1642  * Prepare for large transfers.  Do erase the test area.
1643  */
mmc_test_area_prepare_erase(struct mmc_test_card * test)1644 static int mmc_test_area_prepare_erase(struct mmc_test_card *test)
1645 {
1646 	return mmc_test_area_init(test, 1, 0);
1647 }
1648 
1649 /*
1650  * Prepare for large transfers.  Erase and fill the test area.
1651  */
mmc_test_area_prepare_fill(struct mmc_test_card * test)1652 static int mmc_test_area_prepare_fill(struct mmc_test_card *test)
1653 {
1654 	return mmc_test_area_init(test, 1, 1);
1655 }
1656 
1657 /*
1658  * Test best-case performance.  Best-case performance is expected from
1659  * a single large transfer.
1660  *
1661  * An additional option (max_scatter) allows the measurement of the same
1662  * transfer but with no contiguous pages in the scatter list.  This tests
1663  * the efficiency of DMA to handle scattered pages.
1664  */
mmc_test_best_performance(struct mmc_test_card * test,int write,int max_scatter)1665 static int mmc_test_best_performance(struct mmc_test_card *test, int write,
1666 				     int max_scatter)
1667 {
1668 	struct mmc_test_area *t = &test->area;
1669 
1670 	return mmc_test_area_io(test, t->max_tfr, t->dev_addr, write,
1671 				max_scatter, 1);
1672 }
1673 
1674 /*
1675  * Best-case read performance.
1676  */
mmc_test_best_read_performance(struct mmc_test_card * test)1677 static int mmc_test_best_read_performance(struct mmc_test_card *test)
1678 {
1679 	return mmc_test_best_performance(test, 0, 0);
1680 }
1681 
1682 /*
1683  * Best-case write performance.
1684  */
mmc_test_best_write_performance(struct mmc_test_card * test)1685 static int mmc_test_best_write_performance(struct mmc_test_card *test)
1686 {
1687 	return mmc_test_best_performance(test, 1, 0);
1688 }
1689 
1690 /*
1691  * Best-case read performance into scattered pages.
1692  */
mmc_test_best_read_perf_max_scatter(struct mmc_test_card * test)1693 static int mmc_test_best_read_perf_max_scatter(struct mmc_test_card *test)
1694 {
1695 	return mmc_test_best_performance(test, 0, 1);
1696 }
1697 
1698 /*
1699  * Best-case write performance from scattered pages.
1700  */
mmc_test_best_write_perf_max_scatter(struct mmc_test_card * test)1701 static int mmc_test_best_write_perf_max_scatter(struct mmc_test_card *test)
1702 {
1703 	return mmc_test_best_performance(test, 1, 1);
1704 }
1705 
1706 /*
1707  * Single read performance by transfer size.
1708  */
mmc_test_profile_read_perf(struct mmc_test_card * test)1709 static int mmc_test_profile_read_perf(struct mmc_test_card *test)
1710 {
1711 	struct mmc_test_area *t = &test->area;
1712 	unsigned long sz;
1713 	unsigned int dev_addr;
1714 	int ret;
1715 
1716 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1717 		dev_addr = t->dev_addr + (sz >> 9);
1718 		ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1719 		if (ret)
1720 			return ret;
1721 	}
1722 	sz = t->max_tfr;
1723 	dev_addr = t->dev_addr;
1724 	return mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1725 }
1726 
1727 /*
1728  * Single write performance by transfer size.
1729  */
mmc_test_profile_write_perf(struct mmc_test_card * test)1730 static int mmc_test_profile_write_perf(struct mmc_test_card *test)
1731 {
1732 	struct mmc_test_area *t = &test->area;
1733 	unsigned long sz;
1734 	unsigned int dev_addr;
1735 	int ret;
1736 
1737 	ret = mmc_test_area_erase(test);
1738 	if (ret)
1739 		return ret;
1740 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1741 		dev_addr = t->dev_addr + (sz >> 9);
1742 		ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1743 		if (ret)
1744 			return ret;
1745 	}
1746 	ret = mmc_test_area_erase(test);
1747 	if (ret)
1748 		return ret;
1749 	sz = t->max_tfr;
1750 	dev_addr = t->dev_addr;
1751 	return mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1752 }
1753 
1754 /*
1755  * Single trim performance by transfer size.
1756  */
mmc_test_profile_trim_perf(struct mmc_test_card * test)1757 static int mmc_test_profile_trim_perf(struct mmc_test_card *test)
1758 {
1759 	struct mmc_test_area *t = &test->area;
1760 	unsigned long sz;
1761 	unsigned int dev_addr;
1762 	struct timespec ts1, ts2;
1763 	int ret;
1764 
1765 	if (!mmc_can_trim(test->card))
1766 		return RESULT_UNSUP_CARD;
1767 
1768 	if (!mmc_can_erase(test->card))
1769 		return RESULT_UNSUP_HOST;
1770 
1771 	for (sz = 512; sz < t->max_sz; sz <<= 1) {
1772 		dev_addr = t->dev_addr + (sz >> 9);
1773 		getnstimeofday(&ts1);
1774 		ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1775 		if (ret)
1776 			return ret;
1777 		getnstimeofday(&ts2);
1778 		mmc_test_print_rate(test, sz, &ts1, &ts2);
1779 	}
1780 	dev_addr = t->dev_addr;
1781 	getnstimeofday(&ts1);
1782 	ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1783 	if (ret)
1784 		return ret;
1785 	getnstimeofday(&ts2);
1786 	mmc_test_print_rate(test, sz, &ts1, &ts2);
1787 	return 0;
1788 }
1789 
mmc_test_seq_read_perf(struct mmc_test_card * test,unsigned long sz)1790 static int mmc_test_seq_read_perf(struct mmc_test_card *test, unsigned long sz)
1791 {
1792 	struct mmc_test_area *t = &test->area;
1793 	unsigned int dev_addr, i, cnt;
1794 	struct timespec ts1, ts2;
1795 	int ret;
1796 
1797 	cnt = t->max_sz / sz;
1798 	dev_addr = t->dev_addr;
1799 	getnstimeofday(&ts1);
1800 	for (i = 0; i < cnt; i++) {
1801 		ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 0);
1802 		if (ret)
1803 			return ret;
1804 		dev_addr += (sz >> 9);
1805 	}
1806 	getnstimeofday(&ts2);
1807 	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1808 	return 0;
1809 }
1810 
1811 /*
1812  * Consecutive read performance by transfer size.
1813  */
mmc_test_profile_seq_read_perf(struct mmc_test_card * test)1814 static int mmc_test_profile_seq_read_perf(struct mmc_test_card *test)
1815 {
1816 	struct mmc_test_area *t = &test->area;
1817 	unsigned long sz;
1818 	int ret;
1819 
1820 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1821 		ret = mmc_test_seq_read_perf(test, sz);
1822 		if (ret)
1823 			return ret;
1824 	}
1825 	sz = t->max_tfr;
1826 	return mmc_test_seq_read_perf(test, sz);
1827 }
1828 
mmc_test_seq_write_perf(struct mmc_test_card * test,unsigned long sz)1829 static int mmc_test_seq_write_perf(struct mmc_test_card *test, unsigned long sz)
1830 {
1831 	struct mmc_test_area *t = &test->area;
1832 	unsigned int dev_addr, i, cnt;
1833 	struct timespec ts1, ts2;
1834 	int ret;
1835 
1836 	ret = mmc_test_area_erase(test);
1837 	if (ret)
1838 		return ret;
1839 	cnt = t->max_sz / sz;
1840 	dev_addr = t->dev_addr;
1841 	getnstimeofday(&ts1);
1842 	for (i = 0; i < cnt; i++) {
1843 		ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 0);
1844 		if (ret)
1845 			return ret;
1846 		dev_addr += (sz >> 9);
1847 	}
1848 	getnstimeofday(&ts2);
1849 	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1850 	return 0;
1851 }
1852 
1853 /*
1854  * Consecutive write performance by transfer size.
1855  */
mmc_test_profile_seq_write_perf(struct mmc_test_card * test)1856 static int mmc_test_profile_seq_write_perf(struct mmc_test_card *test)
1857 {
1858 	struct mmc_test_area *t = &test->area;
1859 	unsigned long sz;
1860 	int ret;
1861 
1862 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1863 		ret = mmc_test_seq_write_perf(test, sz);
1864 		if (ret)
1865 			return ret;
1866 	}
1867 	sz = t->max_tfr;
1868 	return mmc_test_seq_write_perf(test, sz);
1869 }
1870 
1871 /*
1872  * Consecutive trim performance by transfer size.
1873  */
mmc_test_profile_seq_trim_perf(struct mmc_test_card * test)1874 static int mmc_test_profile_seq_trim_perf(struct mmc_test_card *test)
1875 {
1876 	struct mmc_test_area *t = &test->area;
1877 	unsigned long sz;
1878 	unsigned int dev_addr, i, cnt;
1879 	struct timespec ts1, ts2;
1880 	int ret;
1881 
1882 	if (!mmc_can_trim(test->card))
1883 		return RESULT_UNSUP_CARD;
1884 
1885 	if (!mmc_can_erase(test->card))
1886 		return RESULT_UNSUP_HOST;
1887 
1888 	for (sz = 512; sz <= t->max_sz; sz <<= 1) {
1889 		ret = mmc_test_area_erase(test);
1890 		if (ret)
1891 			return ret;
1892 		ret = mmc_test_area_fill(test);
1893 		if (ret)
1894 			return ret;
1895 		cnt = t->max_sz / sz;
1896 		dev_addr = t->dev_addr;
1897 		getnstimeofday(&ts1);
1898 		for (i = 0; i < cnt; i++) {
1899 			ret = mmc_erase(test->card, dev_addr, sz >> 9,
1900 					MMC_TRIM_ARG);
1901 			if (ret)
1902 				return ret;
1903 			dev_addr += (sz >> 9);
1904 		}
1905 		getnstimeofday(&ts2);
1906 		mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1907 	}
1908 	return 0;
1909 }
1910 
1911 static unsigned int rnd_next = 1;
1912 
mmc_test_rnd_num(unsigned int rnd_cnt)1913 static unsigned int mmc_test_rnd_num(unsigned int rnd_cnt)
1914 {
1915 	uint64_t r;
1916 
1917 	rnd_next = rnd_next * 1103515245 + 12345;
1918 	r = (rnd_next >> 16) & 0x7fff;
1919 	return (r * rnd_cnt) >> 15;
1920 }
1921 
mmc_test_rnd_perf(struct mmc_test_card * test,int write,int print,unsigned long sz)1922 static int mmc_test_rnd_perf(struct mmc_test_card *test, int write, int print,
1923 			     unsigned long sz)
1924 {
1925 	unsigned int dev_addr, cnt, rnd_addr, range1, range2, last_ea = 0, ea;
1926 	unsigned int ssz;
1927 	struct timespec ts1, ts2, ts;
1928 	int ret;
1929 
1930 	ssz = sz >> 9;
1931 
1932 	rnd_addr = mmc_test_capacity(test->card) / 4;
1933 	range1 = rnd_addr / test->card->pref_erase;
1934 	range2 = range1 / ssz;
1935 
1936 	getnstimeofday(&ts1);
1937 	for (cnt = 0; cnt < UINT_MAX; cnt++) {
1938 		getnstimeofday(&ts2);
1939 		ts = timespec_sub(ts2, ts1);
1940 		if (ts.tv_sec >= 10)
1941 			break;
1942 		ea = mmc_test_rnd_num(range1);
1943 		if (ea == last_ea)
1944 			ea -= 1;
1945 		last_ea = ea;
1946 		dev_addr = rnd_addr + test->card->pref_erase * ea +
1947 			   ssz * mmc_test_rnd_num(range2);
1948 		ret = mmc_test_area_io(test, sz, dev_addr, write, 0, 0);
1949 		if (ret)
1950 			return ret;
1951 	}
1952 	if (print)
1953 		mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1954 	return 0;
1955 }
1956 
mmc_test_random_perf(struct mmc_test_card * test,int write)1957 static int mmc_test_random_perf(struct mmc_test_card *test, int write)
1958 {
1959 	struct mmc_test_area *t = &test->area;
1960 	unsigned int next;
1961 	unsigned long sz;
1962 	int ret;
1963 
1964 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1965 		/*
1966 		 * When writing, try to get more consistent results by running
1967 		 * the test twice with exactly the same I/O but outputting the
1968 		 * results only for the 2nd run.
1969 		 */
1970 		if (write) {
1971 			next = rnd_next;
1972 			ret = mmc_test_rnd_perf(test, write, 0, sz);
1973 			if (ret)
1974 				return ret;
1975 			rnd_next = next;
1976 		}
1977 		ret = mmc_test_rnd_perf(test, write, 1, sz);
1978 		if (ret)
1979 			return ret;
1980 	}
1981 	sz = t->max_tfr;
1982 	if (write) {
1983 		next = rnd_next;
1984 		ret = mmc_test_rnd_perf(test, write, 0, sz);
1985 		if (ret)
1986 			return ret;
1987 		rnd_next = next;
1988 	}
1989 	return mmc_test_rnd_perf(test, write, 1, sz);
1990 }
1991 
1992 /*
1993  * Random read performance by transfer size.
1994  */
mmc_test_random_read_perf(struct mmc_test_card * test)1995 static int mmc_test_random_read_perf(struct mmc_test_card *test)
1996 {
1997 	return mmc_test_random_perf(test, 0);
1998 }
1999 
2000 /*
2001  * Random write performance by transfer size.
2002  */
mmc_test_random_write_perf(struct mmc_test_card * test)2003 static int mmc_test_random_write_perf(struct mmc_test_card *test)
2004 {
2005 	return mmc_test_random_perf(test, 1);
2006 }
2007 
mmc_test_seq_perf(struct mmc_test_card * test,int write,unsigned int tot_sz,int max_scatter)2008 static int mmc_test_seq_perf(struct mmc_test_card *test, int write,
2009 			     unsigned int tot_sz, int max_scatter)
2010 {
2011 	struct mmc_test_area *t = &test->area;
2012 	unsigned int dev_addr, i, cnt, sz, ssz;
2013 	struct timespec ts1, ts2;
2014 	int ret;
2015 
2016 	sz = t->max_tfr;
2017 
2018 	/*
2019 	 * In the case of a maximally scattered transfer, the maximum transfer
2020 	 * size is further limited by using PAGE_SIZE segments.
2021 	 */
2022 	if (max_scatter) {
2023 		unsigned long max_tfr;
2024 
2025 		if (t->max_seg_sz >= PAGE_SIZE)
2026 			max_tfr = t->max_segs * PAGE_SIZE;
2027 		else
2028 			max_tfr = t->max_segs * t->max_seg_sz;
2029 		if (sz > max_tfr)
2030 			sz = max_tfr;
2031 	}
2032 
2033 	ssz = sz >> 9;
2034 	dev_addr = mmc_test_capacity(test->card) / 4;
2035 	if (tot_sz > dev_addr << 9)
2036 		tot_sz = dev_addr << 9;
2037 	cnt = tot_sz / sz;
2038 	dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2039 
2040 	getnstimeofday(&ts1);
2041 	for (i = 0; i < cnt; i++) {
2042 		ret = mmc_test_area_io(test, sz, dev_addr, write,
2043 				       max_scatter, 0);
2044 		if (ret)
2045 			return ret;
2046 		dev_addr += ssz;
2047 	}
2048 	getnstimeofday(&ts2);
2049 
2050 	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
2051 
2052 	return 0;
2053 }
2054 
mmc_test_large_seq_perf(struct mmc_test_card * test,int write)2055 static int mmc_test_large_seq_perf(struct mmc_test_card *test, int write)
2056 {
2057 	int ret, i;
2058 
2059 	for (i = 0; i < 10; i++) {
2060 		ret = mmc_test_seq_perf(test, write, 10 * 1024 * 1024, 1);
2061 		if (ret)
2062 			return ret;
2063 	}
2064 	for (i = 0; i < 5; i++) {
2065 		ret = mmc_test_seq_perf(test, write, 100 * 1024 * 1024, 1);
2066 		if (ret)
2067 			return ret;
2068 	}
2069 	for (i = 0; i < 3; i++) {
2070 		ret = mmc_test_seq_perf(test, write, 1000 * 1024 * 1024, 1);
2071 		if (ret)
2072 			return ret;
2073 	}
2074 
2075 	return ret;
2076 }
2077 
2078 /*
2079  * Large sequential read performance.
2080  */
mmc_test_large_seq_read_perf(struct mmc_test_card * test)2081 static int mmc_test_large_seq_read_perf(struct mmc_test_card *test)
2082 {
2083 	return mmc_test_large_seq_perf(test, 0);
2084 }
2085 
2086 /*
2087  * Large sequential write performance.
2088  */
mmc_test_large_seq_write_perf(struct mmc_test_card * test)2089 static int mmc_test_large_seq_write_perf(struct mmc_test_card *test)
2090 {
2091 	return mmc_test_large_seq_perf(test, 1);
2092 }
2093 
mmc_test_rw_multiple(struct mmc_test_card * test,struct mmc_test_multiple_rw * tdata,unsigned int reqsize,unsigned int size,int min_sg_len)2094 static int mmc_test_rw_multiple(struct mmc_test_card *test,
2095 				struct mmc_test_multiple_rw *tdata,
2096 				unsigned int reqsize, unsigned int size,
2097 				int min_sg_len)
2098 {
2099 	unsigned int dev_addr;
2100 	struct mmc_test_area *t = &test->area;
2101 	int ret = 0;
2102 
2103 	/* Set up test area */
2104 	if (size > mmc_test_capacity(test->card) / 2 * 512)
2105 		size = mmc_test_capacity(test->card) / 2 * 512;
2106 	if (reqsize > t->max_tfr)
2107 		reqsize = t->max_tfr;
2108 	dev_addr = mmc_test_capacity(test->card) / 4;
2109 	if ((dev_addr & 0xffff0000))
2110 		dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2111 	else
2112 		dev_addr &= 0xfffff800; /* Round to 1MiB boundary */
2113 	if (!dev_addr)
2114 		goto err;
2115 
2116 	if (reqsize > size)
2117 		return 0;
2118 
2119 	/* prepare test area */
2120 	if (mmc_can_erase(test->card) &&
2121 	    tdata->prepare & MMC_TEST_PREP_ERASE) {
2122 		ret = mmc_erase(test->card, dev_addr,
2123 				size / 512, MMC_SECURE_ERASE_ARG);
2124 		if (ret)
2125 			ret = mmc_erase(test->card, dev_addr,
2126 					size / 512, MMC_ERASE_ARG);
2127 		if (ret)
2128 			goto err;
2129 	}
2130 
2131 	/* Run test */
2132 	ret = mmc_test_area_io_seq(test, reqsize, dev_addr,
2133 				   tdata->do_write, 0, 1, size / reqsize,
2134 				   tdata->do_nonblock_req, min_sg_len);
2135 	if (ret)
2136 		goto err;
2137 
2138 	return ret;
2139  err:
2140 	pr_info("[%s] error\n", __func__);
2141 	return ret;
2142 }
2143 
mmc_test_rw_multiple_size(struct mmc_test_card * test,struct mmc_test_multiple_rw * rw)2144 static int mmc_test_rw_multiple_size(struct mmc_test_card *test,
2145 				     struct mmc_test_multiple_rw *rw)
2146 {
2147 	int ret = 0;
2148 	int i;
2149 	void *pre_req = test->card->host->ops->pre_req;
2150 	void *post_req = test->card->host->ops->post_req;
2151 
2152 	if (rw->do_nonblock_req &&
2153 	    ((!pre_req && post_req) || (pre_req && !post_req))) {
2154 		pr_info("error: only one of pre/post is defined\n");
2155 		return -EINVAL;
2156 	}
2157 
2158 	for (i = 0 ; i < rw->len && ret == 0; i++) {
2159 		ret = mmc_test_rw_multiple(test, rw, rw->bs[i], rw->size, 0);
2160 		if (ret)
2161 			break;
2162 	}
2163 	return ret;
2164 }
2165 
mmc_test_rw_multiple_sg_len(struct mmc_test_card * test,struct mmc_test_multiple_rw * rw)2166 static int mmc_test_rw_multiple_sg_len(struct mmc_test_card *test,
2167 				       struct mmc_test_multiple_rw *rw)
2168 {
2169 	int ret = 0;
2170 	int i;
2171 
2172 	for (i = 0 ; i < rw->len && ret == 0; i++) {
2173 		ret = mmc_test_rw_multiple(test, rw, 512*1024, rw->size,
2174 					   rw->sg_len[i]);
2175 		if (ret)
2176 			break;
2177 	}
2178 	return ret;
2179 }
2180 
2181 /*
2182  * Multiple blocking write 4k to 4 MB chunks
2183  */
mmc_test_profile_mult_write_blocking_perf(struct mmc_test_card * test)2184 static int mmc_test_profile_mult_write_blocking_perf(struct mmc_test_card *test)
2185 {
2186 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2187 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2188 	struct mmc_test_multiple_rw test_data = {
2189 		.bs = bs,
2190 		.size = TEST_AREA_MAX_SIZE,
2191 		.len = ARRAY_SIZE(bs),
2192 		.do_write = true,
2193 		.do_nonblock_req = false,
2194 		.prepare = MMC_TEST_PREP_ERASE,
2195 	};
2196 
2197 	return mmc_test_rw_multiple_size(test, &test_data);
2198 };
2199 
2200 /*
2201  * Multiple non-blocking write 4k to 4 MB chunks
2202  */
mmc_test_profile_mult_write_nonblock_perf(struct mmc_test_card * test)2203 static int mmc_test_profile_mult_write_nonblock_perf(struct mmc_test_card *test)
2204 {
2205 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2206 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2207 	struct mmc_test_multiple_rw test_data = {
2208 		.bs = bs,
2209 		.size = TEST_AREA_MAX_SIZE,
2210 		.len = ARRAY_SIZE(bs),
2211 		.do_write = true,
2212 		.do_nonblock_req = true,
2213 		.prepare = MMC_TEST_PREP_ERASE,
2214 	};
2215 
2216 	return mmc_test_rw_multiple_size(test, &test_data);
2217 }
2218 
2219 /*
2220  * Multiple blocking read 4k to 4 MB chunks
2221  */
mmc_test_profile_mult_read_blocking_perf(struct mmc_test_card * test)2222 static int mmc_test_profile_mult_read_blocking_perf(struct mmc_test_card *test)
2223 {
2224 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2225 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2226 	struct mmc_test_multiple_rw test_data = {
2227 		.bs = bs,
2228 		.size = TEST_AREA_MAX_SIZE,
2229 		.len = ARRAY_SIZE(bs),
2230 		.do_write = false,
2231 		.do_nonblock_req = false,
2232 		.prepare = MMC_TEST_PREP_NONE,
2233 	};
2234 
2235 	return mmc_test_rw_multiple_size(test, &test_data);
2236 }
2237 
2238 /*
2239  * Multiple non-blocking read 4k to 4 MB chunks
2240  */
mmc_test_profile_mult_read_nonblock_perf(struct mmc_test_card * test)2241 static int mmc_test_profile_mult_read_nonblock_perf(struct mmc_test_card *test)
2242 {
2243 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2244 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2245 	struct mmc_test_multiple_rw test_data = {
2246 		.bs = bs,
2247 		.size = TEST_AREA_MAX_SIZE,
2248 		.len = ARRAY_SIZE(bs),
2249 		.do_write = false,
2250 		.do_nonblock_req = true,
2251 		.prepare = MMC_TEST_PREP_NONE,
2252 	};
2253 
2254 	return mmc_test_rw_multiple_size(test, &test_data);
2255 }
2256 
2257 /*
2258  * Multiple blocking write 1 to 512 sg elements
2259  */
mmc_test_profile_sglen_wr_blocking_perf(struct mmc_test_card * test)2260 static int mmc_test_profile_sglen_wr_blocking_perf(struct mmc_test_card *test)
2261 {
2262 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2263 				 1 << 7, 1 << 8, 1 << 9};
2264 	struct mmc_test_multiple_rw test_data = {
2265 		.sg_len = sg_len,
2266 		.size = TEST_AREA_MAX_SIZE,
2267 		.len = ARRAY_SIZE(sg_len),
2268 		.do_write = true,
2269 		.do_nonblock_req = false,
2270 		.prepare = MMC_TEST_PREP_ERASE,
2271 	};
2272 
2273 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2274 };
2275 
2276 /*
2277  * Multiple non-blocking write 1 to 512 sg elements
2278  */
mmc_test_profile_sglen_wr_nonblock_perf(struct mmc_test_card * test)2279 static int mmc_test_profile_sglen_wr_nonblock_perf(struct mmc_test_card *test)
2280 {
2281 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2282 				 1 << 7, 1 << 8, 1 << 9};
2283 	struct mmc_test_multiple_rw test_data = {
2284 		.sg_len = sg_len,
2285 		.size = TEST_AREA_MAX_SIZE,
2286 		.len = ARRAY_SIZE(sg_len),
2287 		.do_write = true,
2288 		.do_nonblock_req = true,
2289 		.prepare = MMC_TEST_PREP_ERASE,
2290 	};
2291 
2292 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2293 }
2294 
2295 /*
2296  * Multiple blocking read 1 to 512 sg elements
2297  */
mmc_test_profile_sglen_r_blocking_perf(struct mmc_test_card * test)2298 static int mmc_test_profile_sglen_r_blocking_perf(struct mmc_test_card *test)
2299 {
2300 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2301 				 1 << 7, 1 << 8, 1 << 9};
2302 	struct mmc_test_multiple_rw test_data = {
2303 		.sg_len = sg_len,
2304 		.size = TEST_AREA_MAX_SIZE,
2305 		.len = ARRAY_SIZE(sg_len),
2306 		.do_write = false,
2307 		.do_nonblock_req = false,
2308 		.prepare = MMC_TEST_PREP_NONE,
2309 	};
2310 
2311 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2312 }
2313 
2314 /*
2315  * Multiple non-blocking read 1 to 512 sg elements
2316  */
mmc_test_profile_sglen_r_nonblock_perf(struct mmc_test_card * test)2317 static int mmc_test_profile_sglen_r_nonblock_perf(struct mmc_test_card *test)
2318 {
2319 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2320 				 1 << 7, 1 << 8, 1 << 9};
2321 	struct mmc_test_multiple_rw test_data = {
2322 		.sg_len = sg_len,
2323 		.size = TEST_AREA_MAX_SIZE,
2324 		.len = ARRAY_SIZE(sg_len),
2325 		.do_write = false,
2326 		.do_nonblock_req = true,
2327 		.prepare = MMC_TEST_PREP_NONE,
2328 	};
2329 
2330 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2331 }
2332 
2333 /*
2334  * eMMC hardware reset.
2335  */
mmc_test_hw_reset(struct mmc_test_card * test)2336 static int mmc_test_hw_reset(struct mmc_test_card *test)
2337 {
2338 	struct mmc_card *card = test->card;
2339 	struct mmc_host *host = card->host;
2340 	int err;
2341 
2342 	err = mmc_hw_reset_check(host);
2343 	if (!err)
2344 		return RESULT_OK;
2345 
2346 	if (err == -ENOSYS)
2347 		return RESULT_FAIL;
2348 
2349 	if (err != -EOPNOTSUPP)
2350 		return err;
2351 
2352 	if (!mmc_can_reset(card))
2353 		return RESULT_UNSUP_CARD;
2354 
2355 	return RESULT_UNSUP_HOST;
2356 }
2357 
2358 static const struct mmc_test_case mmc_test_cases[] = {
2359 	{
2360 		.name = "Basic write (no data verification)",
2361 		.run = mmc_test_basic_write,
2362 	},
2363 
2364 	{
2365 		.name = "Basic read (no data verification)",
2366 		.run = mmc_test_basic_read,
2367 	},
2368 
2369 	{
2370 		.name = "Basic write (with data verification)",
2371 		.prepare = mmc_test_prepare_write,
2372 		.run = mmc_test_verify_write,
2373 		.cleanup = mmc_test_cleanup,
2374 	},
2375 
2376 	{
2377 		.name = "Basic read (with data verification)",
2378 		.prepare = mmc_test_prepare_read,
2379 		.run = mmc_test_verify_read,
2380 		.cleanup = mmc_test_cleanup,
2381 	},
2382 
2383 	{
2384 		.name = "Multi-block write",
2385 		.prepare = mmc_test_prepare_write,
2386 		.run = mmc_test_multi_write,
2387 		.cleanup = mmc_test_cleanup,
2388 	},
2389 
2390 	{
2391 		.name = "Multi-block read",
2392 		.prepare = mmc_test_prepare_read,
2393 		.run = mmc_test_multi_read,
2394 		.cleanup = mmc_test_cleanup,
2395 	},
2396 
2397 	{
2398 		.name = "Power of two block writes",
2399 		.prepare = mmc_test_prepare_write,
2400 		.run = mmc_test_pow2_write,
2401 		.cleanup = mmc_test_cleanup,
2402 	},
2403 
2404 	{
2405 		.name = "Power of two block reads",
2406 		.prepare = mmc_test_prepare_read,
2407 		.run = mmc_test_pow2_read,
2408 		.cleanup = mmc_test_cleanup,
2409 	},
2410 
2411 	{
2412 		.name = "Weird sized block writes",
2413 		.prepare = mmc_test_prepare_write,
2414 		.run = mmc_test_weird_write,
2415 		.cleanup = mmc_test_cleanup,
2416 	},
2417 
2418 	{
2419 		.name = "Weird sized block reads",
2420 		.prepare = mmc_test_prepare_read,
2421 		.run = mmc_test_weird_read,
2422 		.cleanup = mmc_test_cleanup,
2423 	},
2424 
2425 	{
2426 		.name = "Badly aligned write",
2427 		.prepare = mmc_test_prepare_write,
2428 		.run = mmc_test_align_write,
2429 		.cleanup = mmc_test_cleanup,
2430 	},
2431 
2432 	{
2433 		.name = "Badly aligned read",
2434 		.prepare = mmc_test_prepare_read,
2435 		.run = mmc_test_align_read,
2436 		.cleanup = mmc_test_cleanup,
2437 	},
2438 
2439 	{
2440 		.name = "Badly aligned multi-block write",
2441 		.prepare = mmc_test_prepare_write,
2442 		.run = mmc_test_align_multi_write,
2443 		.cleanup = mmc_test_cleanup,
2444 	},
2445 
2446 	{
2447 		.name = "Badly aligned multi-block read",
2448 		.prepare = mmc_test_prepare_read,
2449 		.run = mmc_test_align_multi_read,
2450 		.cleanup = mmc_test_cleanup,
2451 	},
2452 
2453 	{
2454 		.name = "Correct xfer_size at write (start failure)",
2455 		.run = mmc_test_xfersize_write,
2456 	},
2457 
2458 	{
2459 		.name = "Correct xfer_size at read (start failure)",
2460 		.run = mmc_test_xfersize_read,
2461 	},
2462 
2463 	{
2464 		.name = "Correct xfer_size at write (midway failure)",
2465 		.run = mmc_test_multi_xfersize_write,
2466 	},
2467 
2468 	{
2469 		.name = "Correct xfer_size at read (midway failure)",
2470 		.run = mmc_test_multi_xfersize_read,
2471 	},
2472 
2473 #ifdef CONFIG_HIGHMEM
2474 
2475 	{
2476 		.name = "Highmem write",
2477 		.prepare = mmc_test_prepare_write,
2478 		.run = mmc_test_write_high,
2479 		.cleanup = mmc_test_cleanup,
2480 	},
2481 
2482 	{
2483 		.name = "Highmem read",
2484 		.prepare = mmc_test_prepare_read,
2485 		.run = mmc_test_read_high,
2486 		.cleanup = mmc_test_cleanup,
2487 	},
2488 
2489 	{
2490 		.name = "Multi-block highmem write",
2491 		.prepare = mmc_test_prepare_write,
2492 		.run = mmc_test_multi_write_high,
2493 		.cleanup = mmc_test_cleanup,
2494 	},
2495 
2496 	{
2497 		.name = "Multi-block highmem read",
2498 		.prepare = mmc_test_prepare_read,
2499 		.run = mmc_test_multi_read_high,
2500 		.cleanup = mmc_test_cleanup,
2501 	},
2502 
2503 #else
2504 
2505 	{
2506 		.name = "Highmem write",
2507 		.run = mmc_test_no_highmem,
2508 	},
2509 
2510 	{
2511 		.name = "Highmem read",
2512 		.run = mmc_test_no_highmem,
2513 	},
2514 
2515 	{
2516 		.name = "Multi-block highmem write",
2517 		.run = mmc_test_no_highmem,
2518 	},
2519 
2520 	{
2521 		.name = "Multi-block highmem read",
2522 		.run = mmc_test_no_highmem,
2523 	},
2524 
2525 #endif /* CONFIG_HIGHMEM */
2526 
2527 	{
2528 		.name = "Best-case read performance",
2529 		.prepare = mmc_test_area_prepare_fill,
2530 		.run = mmc_test_best_read_performance,
2531 		.cleanup = mmc_test_area_cleanup,
2532 	},
2533 
2534 	{
2535 		.name = "Best-case write performance",
2536 		.prepare = mmc_test_area_prepare_erase,
2537 		.run = mmc_test_best_write_performance,
2538 		.cleanup = mmc_test_area_cleanup,
2539 	},
2540 
2541 	{
2542 		.name = "Best-case read performance into scattered pages",
2543 		.prepare = mmc_test_area_prepare_fill,
2544 		.run = mmc_test_best_read_perf_max_scatter,
2545 		.cleanup = mmc_test_area_cleanup,
2546 	},
2547 
2548 	{
2549 		.name = "Best-case write performance from scattered pages",
2550 		.prepare = mmc_test_area_prepare_erase,
2551 		.run = mmc_test_best_write_perf_max_scatter,
2552 		.cleanup = mmc_test_area_cleanup,
2553 	},
2554 
2555 	{
2556 		.name = "Single read performance by transfer size",
2557 		.prepare = mmc_test_area_prepare_fill,
2558 		.run = mmc_test_profile_read_perf,
2559 		.cleanup = mmc_test_area_cleanup,
2560 	},
2561 
2562 	{
2563 		.name = "Single write performance by transfer size",
2564 		.prepare = mmc_test_area_prepare,
2565 		.run = mmc_test_profile_write_perf,
2566 		.cleanup = mmc_test_area_cleanup,
2567 	},
2568 
2569 	{
2570 		.name = "Single trim performance by transfer size",
2571 		.prepare = mmc_test_area_prepare_fill,
2572 		.run = mmc_test_profile_trim_perf,
2573 		.cleanup = mmc_test_area_cleanup,
2574 	},
2575 
2576 	{
2577 		.name = "Consecutive read performance by transfer size",
2578 		.prepare = mmc_test_area_prepare_fill,
2579 		.run = mmc_test_profile_seq_read_perf,
2580 		.cleanup = mmc_test_area_cleanup,
2581 	},
2582 
2583 	{
2584 		.name = "Consecutive write performance by transfer size",
2585 		.prepare = mmc_test_area_prepare,
2586 		.run = mmc_test_profile_seq_write_perf,
2587 		.cleanup = mmc_test_area_cleanup,
2588 	},
2589 
2590 	{
2591 		.name = "Consecutive trim performance by transfer size",
2592 		.prepare = mmc_test_area_prepare,
2593 		.run = mmc_test_profile_seq_trim_perf,
2594 		.cleanup = mmc_test_area_cleanup,
2595 	},
2596 
2597 	{
2598 		.name = "Random read performance by transfer size",
2599 		.prepare = mmc_test_area_prepare,
2600 		.run = mmc_test_random_read_perf,
2601 		.cleanup = mmc_test_area_cleanup,
2602 	},
2603 
2604 	{
2605 		.name = "Random write performance by transfer size",
2606 		.prepare = mmc_test_area_prepare,
2607 		.run = mmc_test_random_write_perf,
2608 		.cleanup = mmc_test_area_cleanup,
2609 	},
2610 
2611 	{
2612 		.name = "Large sequential read into scattered pages",
2613 		.prepare = mmc_test_area_prepare,
2614 		.run = mmc_test_large_seq_read_perf,
2615 		.cleanup = mmc_test_area_cleanup,
2616 	},
2617 
2618 	{
2619 		.name = "Large sequential write from scattered pages",
2620 		.prepare = mmc_test_area_prepare,
2621 		.run = mmc_test_large_seq_write_perf,
2622 		.cleanup = mmc_test_area_cleanup,
2623 	},
2624 
2625 	{
2626 		.name = "Write performance with blocking req 4k to 4MB",
2627 		.prepare = mmc_test_area_prepare,
2628 		.run = mmc_test_profile_mult_write_blocking_perf,
2629 		.cleanup = mmc_test_area_cleanup,
2630 	},
2631 
2632 	{
2633 		.name = "Write performance with non-blocking req 4k to 4MB",
2634 		.prepare = mmc_test_area_prepare,
2635 		.run = mmc_test_profile_mult_write_nonblock_perf,
2636 		.cleanup = mmc_test_area_cleanup,
2637 	},
2638 
2639 	{
2640 		.name = "Read performance with blocking req 4k to 4MB",
2641 		.prepare = mmc_test_area_prepare,
2642 		.run = mmc_test_profile_mult_read_blocking_perf,
2643 		.cleanup = mmc_test_area_cleanup,
2644 	},
2645 
2646 	{
2647 		.name = "Read performance with non-blocking req 4k to 4MB",
2648 		.prepare = mmc_test_area_prepare,
2649 		.run = mmc_test_profile_mult_read_nonblock_perf,
2650 		.cleanup = mmc_test_area_cleanup,
2651 	},
2652 
2653 	{
2654 		.name = "Write performance blocking req 1 to 512 sg elems",
2655 		.prepare = mmc_test_area_prepare,
2656 		.run = mmc_test_profile_sglen_wr_blocking_perf,
2657 		.cleanup = mmc_test_area_cleanup,
2658 	},
2659 
2660 	{
2661 		.name = "Write performance non-blocking req 1 to 512 sg elems",
2662 		.prepare = mmc_test_area_prepare,
2663 		.run = mmc_test_profile_sglen_wr_nonblock_perf,
2664 		.cleanup = mmc_test_area_cleanup,
2665 	},
2666 
2667 	{
2668 		.name = "Read performance blocking req 1 to 512 sg elems",
2669 		.prepare = mmc_test_area_prepare,
2670 		.run = mmc_test_profile_sglen_r_blocking_perf,
2671 		.cleanup = mmc_test_area_cleanup,
2672 	},
2673 
2674 	{
2675 		.name = "Read performance non-blocking req 1 to 512 sg elems",
2676 		.prepare = mmc_test_area_prepare,
2677 		.run = mmc_test_profile_sglen_r_nonblock_perf,
2678 		.cleanup = mmc_test_area_cleanup,
2679 	},
2680 
2681 	{
2682 		.name = "eMMC hardware reset",
2683 		.run = mmc_test_hw_reset,
2684 	},
2685 };
2686 
2687 static DEFINE_MUTEX(mmc_test_lock);
2688 
2689 static LIST_HEAD(mmc_test_result);
2690 
mmc_test_run(struct mmc_test_card * test,int testcase)2691 static void mmc_test_run(struct mmc_test_card *test, int testcase)
2692 {
2693 	int i, ret;
2694 
2695 	pr_info("%s: Starting tests of card %s...\n",
2696 		mmc_hostname(test->card->host), mmc_card_id(test->card));
2697 
2698 	mmc_claim_host(test->card->host);
2699 
2700 	for (i = 0;i < ARRAY_SIZE(mmc_test_cases);i++) {
2701 		struct mmc_test_general_result *gr;
2702 
2703 		if (testcase && ((i + 1) != testcase))
2704 			continue;
2705 
2706 		pr_info("%s: Test case %d. %s...\n",
2707 			mmc_hostname(test->card->host), i + 1,
2708 			mmc_test_cases[i].name);
2709 
2710 		if (mmc_test_cases[i].prepare) {
2711 			ret = mmc_test_cases[i].prepare(test);
2712 			if (ret) {
2713 				pr_info("%s: Result: Prepare "
2714 					"stage failed! (%d)\n",
2715 					mmc_hostname(test->card->host),
2716 					ret);
2717 				continue;
2718 			}
2719 		}
2720 
2721 		gr = kzalloc(sizeof(struct mmc_test_general_result),
2722 			GFP_KERNEL);
2723 		if (gr) {
2724 			INIT_LIST_HEAD(&gr->tr_lst);
2725 
2726 			/* Assign data what we know already */
2727 			gr->card = test->card;
2728 			gr->testcase = i;
2729 
2730 			/* Append container to global one */
2731 			list_add_tail(&gr->link, &mmc_test_result);
2732 
2733 			/*
2734 			 * Save the pointer to created container in our private
2735 			 * structure.
2736 			 */
2737 			test->gr = gr;
2738 		}
2739 
2740 		ret = mmc_test_cases[i].run(test);
2741 		switch (ret) {
2742 		case RESULT_OK:
2743 			pr_info("%s: Result: OK\n",
2744 				mmc_hostname(test->card->host));
2745 			break;
2746 		case RESULT_FAIL:
2747 			pr_info("%s: Result: FAILED\n",
2748 				mmc_hostname(test->card->host));
2749 			break;
2750 		case RESULT_UNSUP_HOST:
2751 			pr_info("%s: Result: UNSUPPORTED "
2752 				"(by host)\n",
2753 				mmc_hostname(test->card->host));
2754 			break;
2755 		case RESULT_UNSUP_CARD:
2756 			pr_info("%s: Result: UNSUPPORTED "
2757 				"(by card)\n",
2758 				mmc_hostname(test->card->host));
2759 			break;
2760 		default:
2761 			pr_info("%s: Result: ERROR (%d)\n",
2762 				mmc_hostname(test->card->host), ret);
2763 		}
2764 
2765 		/* Save the result */
2766 		if (gr)
2767 			gr->result = ret;
2768 
2769 		if (mmc_test_cases[i].cleanup) {
2770 			ret = mmc_test_cases[i].cleanup(test);
2771 			if (ret) {
2772 				pr_info("%s: Warning: Cleanup "
2773 					"stage failed! (%d)\n",
2774 					mmc_hostname(test->card->host),
2775 					ret);
2776 			}
2777 		}
2778 	}
2779 
2780 	mmc_release_host(test->card->host);
2781 
2782 	pr_info("%s: Tests completed.\n",
2783 		mmc_hostname(test->card->host));
2784 }
2785 
mmc_test_free_result(struct mmc_card * card)2786 static void mmc_test_free_result(struct mmc_card *card)
2787 {
2788 	struct mmc_test_general_result *gr, *grs;
2789 
2790 	mutex_lock(&mmc_test_lock);
2791 
2792 	list_for_each_entry_safe(gr, grs, &mmc_test_result, link) {
2793 		struct mmc_test_transfer_result *tr, *trs;
2794 
2795 		if (card && gr->card != card)
2796 			continue;
2797 
2798 		list_for_each_entry_safe(tr, trs, &gr->tr_lst, link) {
2799 			list_del(&tr->link);
2800 			kfree(tr);
2801 		}
2802 
2803 		list_del(&gr->link);
2804 		kfree(gr);
2805 	}
2806 
2807 	mutex_unlock(&mmc_test_lock);
2808 }
2809 
2810 static LIST_HEAD(mmc_test_file_test);
2811 
mtf_test_show(struct seq_file * sf,void * data)2812 static int mtf_test_show(struct seq_file *sf, void *data)
2813 {
2814 	struct mmc_card *card = (struct mmc_card *)sf->private;
2815 	struct mmc_test_general_result *gr;
2816 
2817 	mutex_lock(&mmc_test_lock);
2818 
2819 	list_for_each_entry(gr, &mmc_test_result, link) {
2820 		struct mmc_test_transfer_result *tr;
2821 
2822 		if (gr->card != card)
2823 			continue;
2824 
2825 		seq_printf(sf, "Test %d: %d\n", gr->testcase + 1, gr->result);
2826 
2827 		list_for_each_entry(tr, &gr->tr_lst, link) {
2828 			seq_printf(sf, "%u %d %lu.%09lu %u %u.%02u\n",
2829 				tr->count, tr->sectors,
2830 				(unsigned long)tr->ts.tv_sec,
2831 				(unsigned long)tr->ts.tv_nsec,
2832 				tr->rate, tr->iops / 100, tr->iops % 100);
2833 		}
2834 	}
2835 
2836 	mutex_unlock(&mmc_test_lock);
2837 
2838 	return 0;
2839 }
2840 
mtf_test_open(struct inode * inode,struct file * file)2841 static int mtf_test_open(struct inode *inode, struct file *file)
2842 {
2843 	return single_open(file, mtf_test_show, inode->i_private);
2844 }
2845 
mtf_test_write(struct file * file,const char __user * buf,size_t count,loff_t * pos)2846 static ssize_t mtf_test_write(struct file *file, const char __user *buf,
2847 	size_t count, loff_t *pos)
2848 {
2849 	struct seq_file *sf = (struct seq_file *)file->private_data;
2850 	struct mmc_card *card = (struct mmc_card *)sf->private;
2851 	struct mmc_test_card *test;
2852 	char lbuf[12];
2853 	long testcase;
2854 
2855 	if (count >= sizeof(lbuf))
2856 		return -EINVAL;
2857 
2858 	if (copy_from_user(lbuf, buf, count))
2859 		return -EFAULT;
2860 	lbuf[count] = '\0';
2861 
2862 	if (strict_strtol(lbuf, 10, &testcase))
2863 		return -EINVAL;
2864 
2865 	test = kzalloc(sizeof(struct mmc_test_card), GFP_KERNEL);
2866 	if (!test)
2867 		return -ENOMEM;
2868 
2869 	/*
2870 	 * Remove all test cases associated with given card. Thus we have only
2871 	 * actual data of the last run.
2872 	 */
2873 	mmc_test_free_result(card);
2874 
2875 	test->card = card;
2876 
2877 	test->buffer = kzalloc(BUFFER_SIZE, GFP_KERNEL);
2878 #ifdef CONFIG_HIGHMEM
2879 	test->highmem = alloc_pages(GFP_KERNEL | __GFP_HIGHMEM, BUFFER_ORDER);
2880 #endif
2881 
2882 #ifdef CONFIG_HIGHMEM
2883 	if (test->buffer && test->highmem) {
2884 #else
2885 	if (test->buffer) {
2886 #endif
2887 		mutex_lock(&mmc_test_lock);
2888 		mmc_test_run(test, testcase);
2889 		mutex_unlock(&mmc_test_lock);
2890 	}
2891 
2892 #ifdef CONFIG_HIGHMEM
2893 	__free_pages(test->highmem, BUFFER_ORDER);
2894 #endif
2895 	kfree(test->buffer);
2896 	kfree(test);
2897 
2898 	return count;
2899 }
2900 
2901 static const struct file_operations mmc_test_fops_test = {
2902 	.open		= mtf_test_open,
2903 	.read		= seq_read,
2904 	.write		= mtf_test_write,
2905 	.llseek		= seq_lseek,
2906 	.release	= single_release,
2907 };
2908 
2909 static int mtf_testlist_show(struct seq_file *sf, void *data)
2910 {
2911 	int i;
2912 
2913 	mutex_lock(&mmc_test_lock);
2914 
2915 	for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++)
2916 		seq_printf(sf, "%d:\t%s\n", i+1, mmc_test_cases[i].name);
2917 
2918 	mutex_unlock(&mmc_test_lock);
2919 
2920 	return 0;
2921 }
2922 
2923 static int mtf_testlist_open(struct inode *inode, struct file *file)
2924 {
2925 	return single_open(file, mtf_testlist_show, inode->i_private);
2926 }
2927 
2928 static const struct file_operations mmc_test_fops_testlist = {
2929 	.open		= mtf_testlist_open,
2930 	.read		= seq_read,
2931 	.llseek		= seq_lseek,
2932 	.release	= single_release,
2933 };
2934 
2935 static void mmc_test_free_dbgfs_file(struct mmc_card *card)
2936 {
2937 	struct mmc_test_dbgfs_file *df, *dfs;
2938 
2939 	mutex_lock(&mmc_test_lock);
2940 
2941 	list_for_each_entry_safe(df, dfs, &mmc_test_file_test, link) {
2942 		if (card && df->card != card)
2943 			continue;
2944 		debugfs_remove(df->file);
2945 		list_del(&df->link);
2946 		kfree(df);
2947 	}
2948 
2949 	mutex_unlock(&mmc_test_lock);
2950 }
2951 
2952 static int __mmc_test_register_dbgfs_file(struct mmc_card *card,
2953 	const char *name, umode_t mode, const struct file_operations *fops)
2954 {
2955 	struct dentry *file = NULL;
2956 	struct mmc_test_dbgfs_file *df;
2957 
2958 	if (card->debugfs_root)
2959 		file = debugfs_create_file(name, mode, card->debugfs_root,
2960 			card, fops);
2961 
2962 	if (IS_ERR_OR_NULL(file)) {
2963 		dev_err(&card->dev,
2964 			"Can't create %s. Perhaps debugfs is disabled.\n",
2965 			name);
2966 		return -ENODEV;
2967 	}
2968 
2969 	df = kmalloc(sizeof(struct mmc_test_dbgfs_file), GFP_KERNEL);
2970 	if (!df) {
2971 		debugfs_remove(file);
2972 		dev_err(&card->dev,
2973 			"Can't allocate memory for internal usage.\n");
2974 		return -ENOMEM;
2975 	}
2976 
2977 	df->card = card;
2978 	df->file = file;
2979 
2980 	list_add(&df->link, &mmc_test_file_test);
2981 	return 0;
2982 }
2983 
2984 static int mmc_test_register_dbgfs_file(struct mmc_card *card)
2985 {
2986 	int ret;
2987 
2988 	mutex_lock(&mmc_test_lock);
2989 
2990 	ret = __mmc_test_register_dbgfs_file(card, "test", S_IWUSR | S_IRUGO,
2991 		&mmc_test_fops_test);
2992 	if (ret)
2993 		goto err;
2994 
2995 	ret = __mmc_test_register_dbgfs_file(card, "testlist", S_IRUGO,
2996 		&mmc_test_fops_testlist);
2997 	if (ret)
2998 		goto err;
2999 
3000 err:
3001 	mutex_unlock(&mmc_test_lock);
3002 
3003 	return ret;
3004 }
3005 
3006 static int mmc_test_probe(struct mmc_card *card)
3007 {
3008 	int ret;
3009 
3010 	if (!mmc_card_mmc(card) && !mmc_card_sd(card))
3011 		return -ENODEV;
3012 
3013 	ret = mmc_test_register_dbgfs_file(card);
3014 	if (ret)
3015 		return ret;
3016 
3017 	dev_info(&card->dev, "Card claimed for testing.\n");
3018 
3019 	return 0;
3020 }
3021 
3022 static void mmc_test_remove(struct mmc_card *card)
3023 {
3024 	mmc_test_free_result(card);
3025 	mmc_test_free_dbgfs_file(card);
3026 }
3027 
3028 static struct mmc_driver mmc_driver = {
3029 	.drv		= {
3030 		.name	= "mmc_test",
3031 	},
3032 	.probe		= mmc_test_probe,
3033 	.remove		= mmc_test_remove,
3034 };
3035 
3036 static int __init mmc_test_init(void)
3037 {
3038 	return mmc_register_driver(&mmc_driver);
3039 }
3040 
3041 static void __exit mmc_test_exit(void)
3042 {
3043 	/* Clear stalled data if card is still plugged */
3044 	mmc_test_free_result(NULL);
3045 	mmc_test_free_dbgfs_file(NULL);
3046 
3047 	mmc_unregister_driver(&mmc_driver);
3048 }
3049 
3050 module_init(mmc_test_init);
3051 module_exit(mmc_test_exit);
3052 
3053 MODULE_LICENSE("GPL");
3054 MODULE_DESCRIPTION("Multimedia Card (MMC) host test driver");
3055 MODULE_AUTHOR("Pierre Ossman");
3056