1 /*
2  * CARMA DATA-FPGA Access Driver
3  *
4  * Copyright (c) 2009-2011 Ira W. Snyder <iws@ovro.caltech.edu>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the
8  * Free Software Foundation; either version 2 of the License, or (at your
9  * option) any later version.
10  */
11 
12 /*
13  * FPGA Memory Dump Format
14  *
15  * FPGA #0 control registers (32 x 32-bit words)
16  * FPGA #1 control registers (32 x 32-bit words)
17  * FPGA #2 control registers (32 x 32-bit words)
18  * FPGA #3 control registers (32 x 32-bit words)
19  * SYSFPGA control registers (32 x 32-bit words)
20  * FPGA #0 correlation array (NUM_CORL0 correlation blocks)
21  * FPGA #1 correlation array (NUM_CORL1 correlation blocks)
22  * FPGA #2 correlation array (NUM_CORL2 correlation blocks)
23  * FPGA #3 correlation array (NUM_CORL3 correlation blocks)
24  *
25  * Each correlation array consists of:
26  *
27  * Correlation Data      (2 x NUM_LAGSn x 32-bit words)
28  * Pipeline Metadata     (2 x NUM_METAn x 32-bit words)
29  * Quantization Counters (2 x NUM_QCNTn x 32-bit words)
30  *
31  * The NUM_CORLn, NUM_LAGSn, NUM_METAn, and NUM_QCNTn values come from
32  * the FPGA configuration registers. They do not change once the FPGA's
33  * have been programmed, they only change on re-programming.
34  */
35 
36 /*
37  * Basic Description:
38  *
39  * This driver is used to capture correlation spectra off of the four data
40  * processing FPGAs. The FPGAs are often reprogrammed at runtime, therefore
41  * this driver supports dynamic enable/disable of capture while the device
42  * remains open.
43  *
44  * The nominal capture rate is 64Hz (every 15.625ms). To facilitate this fast
45  * capture rate, all buffers are pre-allocated to avoid any potentially long
46  * running memory allocations while capturing.
47  *
48  * There are two lists and one pointer which are used to keep track of the
49  * different states of data buffers.
50  *
51  * 1) free list
52  * This list holds all empty data buffers which are ready to receive data.
53  *
54  * 2) inflight pointer
55  * This pointer holds the currently inflight data buffer. This buffer is having
56  * data copied into it by the DMA engine.
57  *
58  * 3) used list
59  * This list holds data buffers which have been filled, and are waiting to be
60  * read by userspace.
61  *
62  * All buffers start life on the free list, then move successively to the
63  * inflight pointer, and then to the used list. After they have been read by
64  * userspace, they are moved back to the free list. The cycle repeats as long
65  * as necessary.
66  *
67  * It should be noted that all buffers are mapped and ready for DMA when they
68  * are on any of the three lists. They are only unmapped when they are in the
69  * process of being read by userspace.
70  */
71 
72 /*
73  * Notes on the IRQ masking scheme:
74  *
75  * The IRQ masking scheme here is different than most other hardware. The only
76  * way for the DATA-FPGAs to detect if the kernel has taken too long to copy
77  * the data is if the status registers are not cleared before the next
78  * correlation data dump is ready.
79  *
80  * The interrupt line is connected to the status registers, such that when they
81  * are cleared, the interrupt is de-asserted. Therein lies our problem. We need
82  * to schedule a long-running DMA operation and return from the interrupt
83  * handler quickly, but we cannot clear the status registers.
84  *
85  * To handle this, the system controller FPGA has the capability to connect the
86  * interrupt line to a user-controlled GPIO pin. This pin is driven high
87  * (unasserted) and left that way. To mask the interrupt, we change the
88  * interrupt source to the GPIO pin. Tada, we hid the interrupt. :)
89  */
90 
91 #include <linux/of_platform.h>
92 #include <linux/dma-mapping.h>
93 #include <linux/miscdevice.h>
94 #include <linux/interrupt.h>
95 #include <linux/dmaengine.h>
96 #include <linux/seq_file.h>
97 #include <linux/highmem.h>
98 #include <linux/debugfs.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/poll.h>
102 #include <linux/init.h>
103 #include <linux/slab.h>
104 #include <linux/kref.h>
105 #include <linux/io.h>
106 
107 #include <media/videobuf-dma-sg.h>
108 
109 /* system controller registers */
110 #define SYS_IRQ_SOURCE_CTL	0x24
111 #define SYS_IRQ_OUTPUT_EN	0x28
112 #define SYS_IRQ_OUTPUT_DATA	0x2C
113 #define SYS_IRQ_INPUT_DATA	0x30
114 #define SYS_FPGA_CONFIG_STATUS	0x44
115 
116 /* GPIO IRQ line assignment */
117 #define IRQ_CORL_DONE		0x10
118 
119 /* FPGA registers */
120 #define MMAP_REG_VERSION	0x00
121 #define MMAP_REG_CORL_CONF1	0x08
122 #define MMAP_REG_CORL_CONF2	0x0C
123 #define MMAP_REG_STATUS		0x48
124 
125 #define SYS_FPGA_BLOCK		0xF0000000
126 
127 #define DATA_FPGA_START		0x400000
128 #define DATA_FPGA_SIZE		0x80000
129 
130 static const char drv_name[] = "carma-fpga";
131 
132 #define NUM_FPGA	4
133 
134 #define MIN_DATA_BUFS	8
135 #define MAX_DATA_BUFS	64
136 
137 struct fpga_info {
138 	unsigned int num_lag_ram;
139 	unsigned int blk_size;
140 };
141 
142 struct data_buf {
143 	struct list_head entry;
144 	struct videobuf_dmabuf vb;
145 	size_t size;
146 };
147 
148 struct fpga_device {
149 	/* character device */
150 	struct miscdevice miscdev;
151 	struct device *dev;
152 	struct mutex mutex;
153 
154 	/* reference count */
155 	struct kref ref;
156 
157 	/* FPGA registers and information */
158 	struct fpga_info info[NUM_FPGA];
159 	void __iomem *regs;
160 	int irq;
161 
162 	/* FPGA Physical Address/Size Information */
163 	resource_size_t phys_addr;
164 	size_t phys_size;
165 
166 	/* DMA structures */
167 	struct sg_table corl_table;
168 	unsigned int corl_nents;
169 	struct dma_chan *chan;
170 
171 	/* Protection for all members below */
172 	spinlock_t lock;
173 
174 	/* Device enable/disable flag */
175 	bool enabled;
176 
177 	/* Correlation data buffers */
178 	wait_queue_head_t wait;
179 	struct list_head free;
180 	struct list_head used;
181 	struct data_buf *inflight;
182 
183 	/* Information about data buffers */
184 	unsigned int num_dropped;
185 	unsigned int num_buffers;
186 	size_t bufsize;
187 	struct dentry *dbg_entry;
188 };
189 
190 struct fpga_reader {
191 	struct fpga_device *priv;
192 	struct data_buf *buf;
193 	off_t buf_start;
194 };
195 
fpga_device_release(struct kref * ref)196 static void fpga_device_release(struct kref *ref)
197 {
198 	struct fpga_device *priv = container_of(ref, struct fpga_device, ref);
199 
200 	/* the last reader has exited, cleanup the last bits */
201 	mutex_destroy(&priv->mutex);
202 	kfree(priv);
203 }
204 
205 /*
206  * Data Buffer Allocation Helpers
207  */
208 
209 /**
210  * data_free_buffer() - free a single data buffer and all allocated memory
211  * @buf: the buffer to free
212  *
213  * This will free all of the pages allocated to the given data buffer, and
214  * then free the structure itself
215  */
data_free_buffer(struct data_buf * buf)216 static void data_free_buffer(struct data_buf *buf)
217 {
218 	/* It is ok to free a NULL buffer */
219 	if (!buf)
220 		return;
221 
222 	/* free all memory */
223 	videobuf_dma_free(&buf->vb);
224 	kfree(buf);
225 }
226 
227 /**
228  * data_alloc_buffer() - allocate and fill a data buffer with pages
229  * @bytes: the number of bytes required
230  *
231  * This allocates all space needed for a data buffer. It must be mapped before
232  * use in a DMA transaction using videobuf_dma_map().
233  *
234  * Returns NULL on failure
235  */
data_alloc_buffer(const size_t bytes)236 static struct data_buf *data_alloc_buffer(const size_t bytes)
237 {
238 	unsigned int nr_pages;
239 	struct data_buf *buf;
240 	int ret;
241 
242 	/* calculate the number of pages necessary */
243 	nr_pages = DIV_ROUND_UP(bytes, PAGE_SIZE);
244 
245 	/* allocate the buffer structure */
246 	buf = kzalloc(sizeof(*buf), GFP_KERNEL);
247 	if (!buf)
248 		goto out_return;
249 
250 	/* initialize internal fields */
251 	INIT_LIST_HEAD(&buf->entry);
252 	buf->size = bytes;
253 
254 	/* allocate the videobuf */
255 	videobuf_dma_init(&buf->vb);
256 	ret = videobuf_dma_init_kernel(&buf->vb, DMA_FROM_DEVICE, nr_pages);
257 	if (ret)
258 		goto out_free_buf;
259 
260 	return buf;
261 
262 out_free_buf:
263 	kfree(buf);
264 out_return:
265 	return NULL;
266 }
267 
268 /**
269  * data_free_buffers() - free all allocated buffers
270  * @priv: the driver's private data structure
271  *
272  * Free all buffers allocated by the driver (except those currently in the
273  * process of being read by userspace).
274  *
275  * LOCKING: must hold dev->mutex
276  * CONTEXT: user
277  */
data_free_buffers(struct fpga_device * priv)278 static void data_free_buffers(struct fpga_device *priv)
279 {
280 	struct data_buf *buf, *tmp;
281 
282 	/* the device should be stopped, no DMA in progress */
283 	BUG_ON(priv->inflight != NULL);
284 
285 	list_for_each_entry_safe(buf, tmp, &priv->free, entry) {
286 		list_del_init(&buf->entry);
287 		videobuf_dma_unmap(priv->dev, &buf->vb);
288 		data_free_buffer(buf);
289 	}
290 
291 	list_for_each_entry_safe(buf, tmp, &priv->used, entry) {
292 		list_del_init(&buf->entry);
293 		videobuf_dma_unmap(priv->dev, &buf->vb);
294 		data_free_buffer(buf);
295 	}
296 
297 	priv->num_buffers = 0;
298 	priv->bufsize = 0;
299 }
300 
301 /**
302  * data_alloc_buffers() - allocate 1 seconds worth of data buffers
303  * @priv: the driver's private data structure
304  *
305  * Allocate enough buffers for a whole second worth of data
306  *
307  * This routine will attempt to degrade nicely by succeeding even if a full
308  * second worth of data buffers could not be allocated, as long as a minimum
309  * number were allocated. In this case, it will print a message to the kernel
310  * log.
311  *
312  * The device must not be modifying any lists when this is called.
313  *
314  * CONTEXT: user
315  * LOCKING: must hold dev->mutex
316  *
317  * Returns 0 on success, -ERRNO otherwise
318  */
data_alloc_buffers(struct fpga_device * priv)319 static int data_alloc_buffers(struct fpga_device *priv)
320 {
321 	struct data_buf *buf;
322 	int i, ret;
323 
324 	for (i = 0; i < MAX_DATA_BUFS; i++) {
325 
326 		/* allocate a buffer */
327 		buf = data_alloc_buffer(priv->bufsize);
328 		if (!buf)
329 			break;
330 
331 		/* map it for DMA */
332 		ret = videobuf_dma_map(priv->dev, &buf->vb);
333 		if (ret) {
334 			data_free_buffer(buf);
335 			break;
336 		}
337 
338 		/* add it to the list of free buffers */
339 		list_add_tail(&buf->entry, &priv->free);
340 		priv->num_buffers++;
341 	}
342 
343 	/* Make sure we allocated the minimum required number of buffers */
344 	if (priv->num_buffers < MIN_DATA_BUFS) {
345 		dev_err(priv->dev, "Unable to allocate enough data buffers\n");
346 		data_free_buffers(priv);
347 		return -ENOMEM;
348 	}
349 
350 	/* Warn if we are running in a degraded state, but do not fail */
351 	if (priv->num_buffers < MAX_DATA_BUFS) {
352 		dev_warn(priv->dev,
353 			 "Unable to allocate %d buffers, using %d buffers instead\n",
354 			 MAX_DATA_BUFS, i);
355 	}
356 
357 	return 0;
358 }
359 
360 /*
361  * DMA Operations Helpers
362  */
363 
364 /**
365  * fpga_start_addr() - get the physical address a DATA-FPGA
366  * @priv: the driver's private data structure
367  * @fpga: the DATA-FPGA number (zero based)
368  */
fpga_start_addr(struct fpga_device * priv,unsigned int fpga)369 static dma_addr_t fpga_start_addr(struct fpga_device *priv, unsigned int fpga)
370 {
371 	return priv->phys_addr + 0x400000 + (0x80000 * fpga);
372 }
373 
374 /**
375  * fpga_block_addr() - get the physical address of a correlation data block
376  * @priv: the driver's private data structure
377  * @fpga: the DATA-FPGA number (zero based)
378  * @blknum: the correlation block number (zero based)
379  */
fpga_block_addr(struct fpga_device * priv,unsigned int fpga,unsigned int blknum)380 static dma_addr_t fpga_block_addr(struct fpga_device *priv, unsigned int fpga,
381 				  unsigned int blknum)
382 {
383 	return fpga_start_addr(priv, fpga) + (0x10000 * (1 + blknum));
384 }
385 
386 #define REG_BLOCK_SIZE	(32 * 4)
387 
388 /**
389  * data_setup_corl_table() - create the scatterlist for correlation dumps
390  * @priv: the driver's private data structure
391  *
392  * Create the scatterlist for transferring a correlation dump from the
393  * DATA FPGAs. This structure will be reused for each buffer than needs
394  * to be filled with correlation data.
395  *
396  * Returns 0 on success, -ERRNO otherwise
397  */
data_setup_corl_table(struct fpga_device * priv)398 static int data_setup_corl_table(struct fpga_device *priv)
399 {
400 	struct sg_table *table = &priv->corl_table;
401 	struct scatterlist *sg;
402 	struct fpga_info *info;
403 	int i, j, ret;
404 
405 	/* Calculate the number of entries needed */
406 	priv->corl_nents = (1 + NUM_FPGA) * REG_BLOCK_SIZE;
407 	for (i = 0; i < NUM_FPGA; i++)
408 		priv->corl_nents += priv->info[i].num_lag_ram;
409 
410 	/* Allocate the scatterlist table */
411 	ret = sg_alloc_table(table, priv->corl_nents, GFP_KERNEL);
412 	if (ret) {
413 		dev_err(priv->dev, "unable to allocate DMA table\n");
414 		return ret;
415 	}
416 
417 	/* Add the DATA FPGA registers to the scatterlist */
418 	sg = table->sgl;
419 	for (i = 0; i < NUM_FPGA; i++) {
420 		sg_dma_address(sg) = fpga_start_addr(priv, i);
421 		sg_dma_len(sg) = REG_BLOCK_SIZE;
422 		sg = sg_next(sg);
423 	}
424 
425 	/* Add the SYS-FPGA registers to the scatterlist */
426 	sg_dma_address(sg) = SYS_FPGA_BLOCK;
427 	sg_dma_len(sg) = REG_BLOCK_SIZE;
428 	sg = sg_next(sg);
429 
430 	/* Add the FPGA correlation data blocks to the scatterlist */
431 	for (i = 0; i < NUM_FPGA; i++) {
432 		info = &priv->info[i];
433 		for (j = 0; j < info->num_lag_ram; j++) {
434 			sg_dma_address(sg) = fpga_block_addr(priv, i, j);
435 			sg_dma_len(sg) = info->blk_size;
436 			sg = sg_next(sg);
437 		}
438 	}
439 
440 	/*
441 	 * All physical addresses and lengths are present in the structure
442 	 * now. It can be reused for every FPGA DATA interrupt
443 	 */
444 	return 0;
445 }
446 
447 /*
448  * FPGA Register Access Helpers
449  */
450 
fpga_write_reg(struct fpga_device * priv,unsigned int fpga,unsigned int reg,u32 val)451 static void fpga_write_reg(struct fpga_device *priv, unsigned int fpga,
452 			   unsigned int reg, u32 val)
453 {
454 	const int fpga_start = DATA_FPGA_START + (fpga * DATA_FPGA_SIZE);
455 	iowrite32be(val, priv->regs + fpga_start + reg);
456 }
457 
fpga_read_reg(struct fpga_device * priv,unsigned int fpga,unsigned int reg)458 static u32 fpga_read_reg(struct fpga_device *priv, unsigned int fpga,
459 			 unsigned int reg)
460 {
461 	const int fpga_start = DATA_FPGA_START + (fpga * DATA_FPGA_SIZE);
462 	return ioread32be(priv->regs + fpga_start + reg);
463 }
464 
465 /**
466  * data_calculate_bufsize() - calculate the data buffer size required
467  * @priv: the driver's private data structure
468  *
469  * Calculate the total buffer size needed to hold a single block
470  * of correlation data
471  *
472  * CONTEXT: user
473  *
474  * Returns 0 on success, -ERRNO otherwise
475  */
data_calculate_bufsize(struct fpga_device * priv)476 static int data_calculate_bufsize(struct fpga_device *priv)
477 {
478 	u32 num_corl, num_lags, num_meta, num_qcnt, num_pack;
479 	u32 conf1, conf2, version;
480 	u32 num_lag_ram, blk_size;
481 	int i;
482 
483 	/* Each buffer starts with the 5 FPGA register areas */
484 	priv->bufsize = (1 + NUM_FPGA) * REG_BLOCK_SIZE;
485 
486 	/* Read and store the configuration data for each FPGA */
487 	for (i = 0; i < NUM_FPGA; i++) {
488 		version = fpga_read_reg(priv, i, MMAP_REG_VERSION);
489 		conf1 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF1);
490 		conf2 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF2);
491 
492 		/* minor version 2 and later */
493 		if ((version & 0x000000FF) >= 2) {
494 			num_corl = (conf1 & 0x000000F0) >> 4;
495 			num_pack = (conf1 & 0x00000F00) >> 8;
496 			num_lags = (conf1 & 0x00FFF000) >> 12;
497 			num_meta = (conf1 & 0x7F000000) >> 24;
498 			num_qcnt = (conf2 & 0x00000FFF) >> 0;
499 		} else {
500 			num_corl = (conf1 & 0x000000F0) >> 4;
501 			num_pack = 1; /* implied */
502 			num_lags = (conf1 & 0x000FFF00) >> 8;
503 			num_meta = (conf1 & 0x7FF00000) >> 20;
504 			num_qcnt = (conf2 & 0x00000FFF) >> 0;
505 		}
506 
507 		num_lag_ram = (num_corl + num_pack - 1) / num_pack;
508 		blk_size = ((num_pack * num_lags) + num_meta + num_qcnt) * 8;
509 
510 		priv->info[i].num_lag_ram = num_lag_ram;
511 		priv->info[i].blk_size = blk_size;
512 		priv->bufsize += num_lag_ram * blk_size;
513 
514 		dev_dbg(priv->dev, "FPGA %d NUM_CORL: %d\n", i, num_corl);
515 		dev_dbg(priv->dev, "FPGA %d NUM_PACK: %d\n", i, num_pack);
516 		dev_dbg(priv->dev, "FPGA %d NUM_LAGS: %d\n", i, num_lags);
517 		dev_dbg(priv->dev, "FPGA %d NUM_META: %d\n", i, num_meta);
518 		dev_dbg(priv->dev, "FPGA %d NUM_QCNT: %d\n", i, num_qcnt);
519 		dev_dbg(priv->dev, "FPGA %d BLK_SIZE: %d\n", i, blk_size);
520 	}
521 
522 	dev_dbg(priv->dev, "TOTAL BUFFER SIZE: %zu bytes\n", priv->bufsize);
523 	return 0;
524 }
525 
526 /*
527  * Interrupt Handling
528  */
529 
530 /**
531  * data_disable_interrupts() - stop the device from generating interrupts
532  * @priv: the driver's private data structure
533  *
534  * Hide interrupts by switching to GPIO interrupt source
535  *
536  * LOCKING: must hold dev->lock
537  */
data_disable_interrupts(struct fpga_device * priv)538 static void data_disable_interrupts(struct fpga_device *priv)
539 {
540 	/* hide the interrupt by switching the IRQ driver to GPIO */
541 	iowrite32be(0x2F, priv->regs + SYS_IRQ_SOURCE_CTL);
542 }
543 
544 /**
545  * data_enable_interrupts() - allow the device to generate interrupts
546  * @priv: the driver's private data structure
547  *
548  * Unhide interrupts by switching to the FPGA interrupt source. At the
549  * same time, clear the DATA-FPGA status registers.
550  *
551  * LOCKING: must hold dev->lock
552  */
data_enable_interrupts(struct fpga_device * priv)553 static void data_enable_interrupts(struct fpga_device *priv)
554 {
555 	/* clear the actual FPGA corl_done interrupt */
556 	fpga_write_reg(priv, 0, MMAP_REG_STATUS, 0x0);
557 	fpga_write_reg(priv, 1, MMAP_REG_STATUS, 0x0);
558 	fpga_write_reg(priv, 2, MMAP_REG_STATUS, 0x0);
559 	fpga_write_reg(priv, 3, MMAP_REG_STATUS, 0x0);
560 
561 	/* flush the writes */
562 	fpga_read_reg(priv, 0, MMAP_REG_STATUS);
563 
564 	/* switch back to the external interrupt source */
565 	iowrite32be(0x3F, priv->regs + SYS_IRQ_SOURCE_CTL);
566 }
567 
568 /**
569  * data_dma_cb() - DMAEngine callback for DMA completion
570  * @data: the driver's private data structure
571  *
572  * Complete a DMA transfer from the DATA-FPGA's
573  *
574  * This is called via the DMA callback mechanism, and will handle moving the
575  * completed DMA transaction to the used list, and then wake any processes
576  * waiting for new data
577  *
578  * CONTEXT: any, softirq expected
579  */
data_dma_cb(void * data)580 static void data_dma_cb(void *data)
581 {
582 	struct fpga_device *priv = data;
583 	unsigned long flags;
584 
585 	spin_lock_irqsave(&priv->lock, flags);
586 
587 	/* If there is no inflight buffer, we've got a bug */
588 	BUG_ON(priv->inflight == NULL);
589 
590 	/* Move the inflight buffer onto the used list */
591 	list_move_tail(&priv->inflight->entry, &priv->used);
592 	priv->inflight = NULL;
593 
594 	/* clear the FPGA status and re-enable interrupts */
595 	data_enable_interrupts(priv);
596 
597 	spin_unlock_irqrestore(&priv->lock, flags);
598 
599 	/*
600 	 * We've changed both the inflight and used lists, so we need
601 	 * to wake up any processes that are blocking for those events
602 	 */
603 	wake_up(&priv->wait);
604 }
605 
606 /**
607  * data_submit_dma() - prepare and submit the required DMA to fill a buffer
608  * @priv: the driver's private data structure
609  * @buf: the data buffer
610  *
611  * Prepare and submit the necessary DMA transactions to fill a correlation
612  * data buffer.
613  *
614  * LOCKING: must hold dev->lock
615  * CONTEXT: hardirq only
616  *
617  * Returns 0 on success, -ERRNO otherwise
618  */
data_submit_dma(struct fpga_device * priv,struct data_buf * buf)619 static int data_submit_dma(struct fpga_device *priv, struct data_buf *buf)
620 {
621 	struct scatterlist *dst_sg, *src_sg;
622 	unsigned int dst_nents, src_nents;
623 	struct dma_chan *chan = priv->chan;
624 	struct dma_async_tx_descriptor *tx;
625 	dma_cookie_t cookie;
626 	dma_addr_t dst, src;
627 
628 	dst_sg = buf->vb.sglist;
629 	dst_nents = buf->vb.sglen;
630 
631 	src_sg = priv->corl_table.sgl;
632 	src_nents = priv->corl_nents;
633 
634 	/*
635 	 * All buffers passed to this function should be ready and mapped
636 	 * for DMA already. Therefore, we don't need to do anything except
637 	 * submit it to the Freescale DMA Engine for processing
638 	 */
639 
640 	/* setup the scatterlist to scatterlist transfer */
641 	tx = chan->device->device_prep_dma_sg(chan,
642 					      dst_sg, dst_nents,
643 					      src_sg, src_nents,
644 					      0);
645 	if (!tx) {
646 		dev_err(priv->dev, "unable to prep scatterlist DMA\n");
647 		return -ENOMEM;
648 	}
649 
650 	/* submit the transaction to the DMA controller */
651 	cookie = tx->tx_submit(tx);
652 	if (dma_submit_error(cookie)) {
653 		dev_err(priv->dev, "unable to submit scatterlist DMA\n");
654 		return -ENOMEM;
655 	}
656 
657 	/* Prepare the re-read of the SYS-FPGA block */
658 	dst = sg_dma_address(dst_sg) + (NUM_FPGA * REG_BLOCK_SIZE);
659 	src = SYS_FPGA_BLOCK;
660 	tx = chan->device->device_prep_dma_memcpy(chan, dst, src,
661 						  REG_BLOCK_SIZE,
662 						  DMA_PREP_INTERRUPT);
663 	if (!tx) {
664 		dev_err(priv->dev, "unable to prep SYS-FPGA DMA\n");
665 		return -ENOMEM;
666 	}
667 
668 	/* Setup the callback */
669 	tx->callback = data_dma_cb;
670 	tx->callback_param = priv;
671 
672 	/* submit the transaction to the DMA controller */
673 	cookie = tx->tx_submit(tx);
674 	if (dma_submit_error(cookie)) {
675 		dev_err(priv->dev, "unable to submit SYS-FPGA DMA\n");
676 		return -ENOMEM;
677 	}
678 
679 	return 0;
680 }
681 
682 #define CORL_DONE	0x1
683 #define CORL_ERR	0x2
684 
data_irq(int irq,void * dev_id)685 static irqreturn_t data_irq(int irq, void *dev_id)
686 {
687 	struct fpga_device *priv = dev_id;
688 	bool submitted = false;
689 	struct data_buf *buf;
690 	u32 status;
691 	int i;
692 
693 	/* detect spurious interrupts via FPGA status */
694 	for (i = 0; i < 4; i++) {
695 		status = fpga_read_reg(priv, i, MMAP_REG_STATUS);
696 		if (!(status & (CORL_DONE | CORL_ERR))) {
697 			dev_err(priv->dev, "spurious irq detected (FPGA)\n");
698 			return IRQ_NONE;
699 		}
700 	}
701 
702 	/* detect spurious interrupts via raw IRQ pin readback */
703 	status = ioread32be(priv->regs + SYS_IRQ_INPUT_DATA);
704 	if (status & IRQ_CORL_DONE) {
705 		dev_err(priv->dev, "spurious irq detected (IRQ)\n");
706 		return IRQ_NONE;
707 	}
708 
709 	spin_lock(&priv->lock);
710 
711 	/* hide the interrupt by switching the IRQ driver to GPIO */
712 	data_disable_interrupts(priv);
713 
714 	/* If there are no free buffers, drop this data */
715 	if (list_empty(&priv->free)) {
716 		priv->num_dropped++;
717 		goto out;
718 	}
719 
720 	buf = list_first_entry(&priv->free, struct data_buf, entry);
721 	list_del_init(&buf->entry);
722 	BUG_ON(buf->size != priv->bufsize);
723 
724 	/* Submit a DMA transfer to get the correlation data */
725 	if (data_submit_dma(priv, buf)) {
726 		dev_err(priv->dev, "Unable to setup DMA transfer\n");
727 		list_move_tail(&buf->entry, &priv->free);
728 		goto out;
729 	}
730 
731 	/* Save the buffer for the DMA callback */
732 	priv->inflight = buf;
733 	submitted = true;
734 
735 	/* Start the DMA Engine */
736 	dma_async_memcpy_issue_pending(priv->chan);
737 
738 out:
739 	/* If no DMA was submitted, re-enable interrupts */
740 	if (!submitted)
741 		data_enable_interrupts(priv);
742 
743 	spin_unlock(&priv->lock);
744 	return IRQ_HANDLED;
745 }
746 
747 /*
748  * Realtime Device Enable Helpers
749  */
750 
751 /**
752  * data_device_enable() - enable the device for buffered dumping
753  * @priv: the driver's private data structure
754  *
755  * Enable the device for buffered dumping. Allocates buffers and hooks up
756  * the interrupt handler. When this finishes, data will come pouring in.
757  *
758  * LOCKING: must hold dev->mutex
759  * CONTEXT: user context only
760  *
761  * Returns 0 on success, -ERRNO otherwise
762  */
data_device_enable(struct fpga_device * priv)763 static int data_device_enable(struct fpga_device *priv)
764 {
765 	u32 val;
766 	int ret;
767 
768 	/* multiple enables are safe: they do nothing */
769 	if (priv->enabled)
770 		return 0;
771 
772 	/* check that the FPGAs are programmed */
773 	val = ioread32be(priv->regs + SYS_FPGA_CONFIG_STATUS);
774 	if (!(val & (1 << 18))) {
775 		dev_err(priv->dev, "DATA-FPGAs are not enabled\n");
776 		return -ENODATA;
777 	}
778 
779 	/* read the FPGAs to calculate the buffer size */
780 	ret = data_calculate_bufsize(priv);
781 	if (ret) {
782 		dev_err(priv->dev, "unable to calculate buffer size\n");
783 		goto out_error;
784 	}
785 
786 	/* allocate the correlation data buffers */
787 	ret = data_alloc_buffers(priv);
788 	if (ret) {
789 		dev_err(priv->dev, "unable to allocate buffers\n");
790 		goto out_error;
791 	}
792 
793 	/* setup the source scatterlist for dumping correlation data */
794 	ret = data_setup_corl_table(priv);
795 	if (ret) {
796 		dev_err(priv->dev, "unable to setup correlation DMA table\n");
797 		goto out_error;
798 	}
799 
800 	/* hookup the irq handler */
801 	ret = request_irq(priv->irq, data_irq, IRQF_SHARED, drv_name, priv);
802 	if (ret) {
803 		dev_err(priv->dev, "unable to request IRQ handler\n");
804 		goto out_error;
805 	}
806 
807 	/* switch to the external FPGA IRQ line */
808 	data_enable_interrupts(priv);
809 
810 	/* success, we're enabled */
811 	priv->enabled = true;
812 	return 0;
813 
814 out_error:
815 	sg_free_table(&priv->corl_table);
816 	priv->corl_nents = 0;
817 
818 	data_free_buffers(priv);
819 	return ret;
820 }
821 
822 /**
823  * data_device_disable() - disable the device for buffered dumping
824  * @priv: the driver's private data structure
825  *
826  * Disable the device for buffered dumping. Stops new DMA transactions from
827  * being generated, waits for all outstanding DMA to complete, and then frees
828  * all buffers.
829  *
830  * LOCKING: must hold dev->mutex
831  * CONTEXT: user only
832  *
833  * Returns 0 on success, -ERRNO otherwise
834  */
data_device_disable(struct fpga_device * priv)835 static int data_device_disable(struct fpga_device *priv)
836 {
837 	int ret;
838 
839 	/* allow multiple disable */
840 	if (!priv->enabled)
841 		return 0;
842 
843 	/* switch to the internal GPIO IRQ line */
844 	data_disable_interrupts(priv);
845 
846 	/* unhook the irq handler */
847 	free_irq(priv->irq, priv);
848 
849 	/*
850 	 * wait for all outstanding DMA to complete
851 	 *
852 	 * Device interrupts are disabled, therefore another buffer cannot
853 	 * be marked inflight.
854 	 */
855 	ret = wait_event_interruptible(priv->wait, priv->inflight == NULL);
856 	if (ret)
857 		return ret;
858 
859 	/* free the correlation table */
860 	sg_free_table(&priv->corl_table);
861 	priv->corl_nents = 0;
862 
863 	/*
864 	 * We are taking the spinlock not to protect priv->enabled, but instead
865 	 * to make sure that there are no readers in the process of altering
866 	 * the free or used lists while we are setting this flag.
867 	 */
868 	spin_lock_irq(&priv->lock);
869 	priv->enabled = false;
870 	spin_unlock_irq(&priv->lock);
871 
872 	/* free all buffers: the free and used lists are not being changed */
873 	data_free_buffers(priv);
874 	return 0;
875 }
876 
877 /*
878  * DEBUGFS Interface
879  */
880 #ifdef CONFIG_DEBUG_FS
881 
882 /*
883  * Count the number of entries in the given list
884  */
list_num_entries(struct list_head * list)885 static unsigned int list_num_entries(struct list_head *list)
886 {
887 	struct list_head *entry;
888 	unsigned int ret = 0;
889 
890 	list_for_each(entry, list)
891 		ret++;
892 
893 	return ret;
894 }
895 
data_debug_show(struct seq_file * f,void * offset)896 static int data_debug_show(struct seq_file *f, void *offset)
897 {
898 	struct fpga_device *priv = f->private;
899 	int ret;
900 
901 	/*
902 	 * Lock the mutex first, so that we get an accurate value for enable
903 	 * Lock the spinlock next, to get accurate list counts
904 	 */
905 	ret = mutex_lock_interruptible(&priv->mutex);
906 	if (ret)
907 		return ret;
908 
909 	spin_lock_irq(&priv->lock);
910 
911 	seq_printf(f, "enabled: %d\n", priv->enabled);
912 	seq_printf(f, "bufsize: %d\n", priv->bufsize);
913 	seq_printf(f, "num_buffers: %d\n", priv->num_buffers);
914 	seq_printf(f, "num_free: %d\n", list_num_entries(&priv->free));
915 	seq_printf(f, "inflight: %d\n", priv->inflight != NULL);
916 	seq_printf(f, "num_used: %d\n", list_num_entries(&priv->used));
917 	seq_printf(f, "num_dropped: %d\n", priv->num_dropped);
918 
919 	spin_unlock_irq(&priv->lock);
920 	mutex_unlock(&priv->mutex);
921 	return 0;
922 }
923 
data_debug_open(struct inode * inode,struct file * file)924 static int data_debug_open(struct inode *inode, struct file *file)
925 {
926 	return single_open(file, data_debug_show, inode->i_private);
927 }
928 
929 static const struct file_operations data_debug_fops = {
930 	.owner		= THIS_MODULE,
931 	.open		= data_debug_open,
932 	.read		= seq_read,
933 	.llseek		= seq_lseek,
934 	.release	= single_release,
935 };
936 
data_debugfs_init(struct fpga_device * priv)937 static int data_debugfs_init(struct fpga_device *priv)
938 {
939 	priv->dbg_entry = debugfs_create_file(drv_name, S_IRUGO, NULL, priv,
940 					      &data_debug_fops);
941 	if (IS_ERR(priv->dbg_entry))
942 		return PTR_ERR(priv->dbg_entry);
943 
944 	return 0;
945 }
946 
data_debugfs_exit(struct fpga_device * priv)947 static void data_debugfs_exit(struct fpga_device *priv)
948 {
949 	debugfs_remove(priv->dbg_entry);
950 }
951 
952 #else
953 
data_debugfs_init(struct fpga_device * priv)954 static inline int data_debugfs_init(struct fpga_device *priv)
955 {
956 	return 0;
957 }
958 
data_debugfs_exit(struct fpga_device * priv)959 static inline void data_debugfs_exit(struct fpga_device *priv)
960 {
961 }
962 
963 #endif	/* CONFIG_DEBUG_FS */
964 
965 /*
966  * SYSFS Attributes
967  */
968 
data_en_show(struct device * dev,struct device_attribute * attr,char * buf)969 static ssize_t data_en_show(struct device *dev, struct device_attribute *attr,
970 			    char *buf)
971 {
972 	struct fpga_device *priv = dev_get_drvdata(dev);
973 	return snprintf(buf, PAGE_SIZE, "%u\n", priv->enabled);
974 }
975 
data_en_set(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)976 static ssize_t data_en_set(struct device *dev, struct device_attribute *attr,
977 			   const char *buf, size_t count)
978 {
979 	struct fpga_device *priv = dev_get_drvdata(dev);
980 	unsigned long enable;
981 	int ret;
982 
983 	ret = strict_strtoul(buf, 0, &enable);
984 	if (ret) {
985 		dev_err(priv->dev, "unable to parse enable input\n");
986 		return -EINVAL;
987 	}
988 
989 	ret = mutex_lock_interruptible(&priv->mutex);
990 	if (ret)
991 		return ret;
992 
993 	if (enable)
994 		ret = data_device_enable(priv);
995 	else
996 		ret = data_device_disable(priv);
997 
998 	if (ret) {
999 		dev_err(priv->dev, "device %s failed\n",
1000 			enable ? "enable" : "disable");
1001 		count = ret;
1002 		goto out_unlock;
1003 	}
1004 
1005 out_unlock:
1006 	mutex_unlock(&priv->mutex);
1007 	return count;
1008 }
1009 
1010 static DEVICE_ATTR(enable, S_IWUSR | S_IRUGO, data_en_show, data_en_set);
1011 
1012 static struct attribute *data_sysfs_attrs[] = {
1013 	&dev_attr_enable.attr,
1014 	NULL,
1015 };
1016 
1017 static const struct attribute_group rt_sysfs_attr_group = {
1018 	.attrs = data_sysfs_attrs,
1019 };
1020 
1021 /*
1022  * FPGA Realtime Data Character Device
1023  */
1024 
data_open(struct inode * inode,struct file * filp)1025 static int data_open(struct inode *inode, struct file *filp)
1026 {
1027 	/*
1028 	 * The miscdevice layer puts our struct miscdevice into the
1029 	 * filp->private_data field. We use this to find our private
1030 	 * data and then overwrite it with our own private structure.
1031 	 */
1032 	struct fpga_device *priv = container_of(filp->private_data,
1033 						struct fpga_device, miscdev);
1034 	struct fpga_reader *reader;
1035 	int ret;
1036 
1037 	/* allocate private data */
1038 	reader = kzalloc(sizeof(*reader), GFP_KERNEL);
1039 	if (!reader)
1040 		return -ENOMEM;
1041 
1042 	reader->priv = priv;
1043 	reader->buf = NULL;
1044 
1045 	filp->private_data = reader;
1046 	ret = nonseekable_open(inode, filp);
1047 	if (ret) {
1048 		dev_err(priv->dev, "nonseekable-open failed\n");
1049 		kfree(reader);
1050 		return ret;
1051 	}
1052 
1053 	/*
1054 	 * success, increase the reference count of the private data structure
1055 	 * so that it doesn't disappear if the device is unbound
1056 	 */
1057 	kref_get(&priv->ref);
1058 	return 0;
1059 }
1060 
data_release(struct inode * inode,struct file * filp)1061 static int data_release(struct inode *inode, struct file *filp)
1062 {
1063 	struct fpga_reader *reader = filp->private_data;
1064 	struct fpga_device *priv = reader->priv;
1065 
1066 	/* free the per-reader structure */
1067 	data_free_buffer(reader->buf);
1068 	kfree(reader);
1069 	filp->private_data = NULL;
1070 
1071 	/* decrement our reference count to the private data */
1072 	kref_put(&priv->ref, fpga_device_release);
1073 	return 0;
1074 }
1075 
data_read(struct file * filp,char __user * ubuf,size_t count,loff_t * f_pos)1076 static ssize_t data_read(struct file *filp, char __user *ubuf, size_t count,
1077 			 loff_t *f_pos)
1078 {
1079 	struct fpga_reader *reader = filp->private_data;
1080 	struct fpga_device *priv = reader->priv;
1081 	struct list_head *used = &priv->used;
1082 	struct data_buf *dbuf;
1083 	size_t avail;
1084 	void *data;
1085 	int ret;
1086 
1087 	/* check if we already have a partial buffer */
1088 	if (reader->buf) {
1089 		dbuf = reader->buf;
1090 		goto have_buffer;
1091 	}
1092 
1093 	spin_lock_irq(&priv->lock);
1094 
1095 	/* Block until there is at least one buffer on the used list */
1096 	while (list_empty(used)) {
1097 		spin_unlock_irq(&priv->lock);
1098 
1099 		if (filp->f_flags & O_NONBLOCK)
1100 			return -EAGAIN;
1101 
1102 		ret = wait_event_interruptible(priv->wait, !list_empty(used));
1103 		if (ret)
1104 			return ret;
1105 
1106 		spin_lock_irq(&priv->lock);
1107 	}
1108 
1109 	/* Grab the first buffer off of the used list */
1110 	dbuf = list_first_entry(used, struct data_buf, entry);
1111 	list_del_init(&dbuf->entry);
1112 
1113 	spin_unlock_irq(&priv->lock);
1114 
1115 	/* Buffers are always mapped: unmap it */
1116 	videobuf_dma_unmap(priv->dev, &dbuf->vb);
1117 
1118 	/* save the buffer for later */
1119 	reader->buf = dbuf;
1120 	reader->buf_start = 0;
1121 
1122 have_buffer:
1123 	/* Get the number of bytes available */
1124 	avail = dbuf->size - reader->buf_start;
1125 	data = dbuf->vb.vaddr + reader->buf_start;
1126 
1127 	/* Get the number of bytes we can transfer */
1128 	count = min(count, avail);
1129 
1130 	/* Copy the data to the userspace buffer */
1131 	if (copy_to_user(ubuf, data, count))
1132 		return -EFAULT;
1133 
1134 	/* Update the amount of available space */
1135 	avail -= count;
1136 
1137 	/*
1138 	 * If there is still some data available, save the buffer for the
1139 	 * next userspace call to read() and return
1140 	 */
1141 	if (avail > 0) {
1142 		reader->buf_start += count;
1143 		reader->buf = dbuf;
1144 		return count;
1145 	}
1146 
1147 	/*
1148 	 * Get the buffer ready to be reused for DMA
1149 	 *
1150 	 * If it fails, we pretend that the read never happed and return
1151 	 * -EFAULT to userspace. The read will be retried.
1152 	 */
1153 	ret = videobuf_dma_map(priv->dev, &dbuf->vb);
1154 	if (ret) {
1155 		dev_err(priv->dev, "unable to remap buffer for DMA\n");
1156 		return -EFAULT;
1157 	}
1158 
1159 	/* Lock against concurrent enable/disable */
1160 	spin_lock_irq(&priv->lock);
1161 
1162 	/* the reader is finished with this buffer */
1163 	reader->buf = NULL;
1164 
1165 	/*
1166 	 * One of two things has happened, the device is disabled, or the
1167 	 * device has been reconfigured underneath us. In either case, we
1168 	 * should just throw away the buffer.
1169 	 */
1170 	if (!priv->enabled || dbuf->size != priv->bufsize) {
1171 		videobuf_dma_unmap(priv->dev, &dbuf->vb);
1172 		data_free_buffer(dbuf);
1173 		goto out_unlock;
1174 	}
1175 
1176 	/* The buffer is safe to reuse, so add it back to the free list */
1177 	list_add_tail(&dbuf->entry, &priv->free);
1178 
1179 out_unlock:
1180 	spin_unlock_irq(&priv->lock);
1181 	return count;
1182 }
1183 
data_poll(struct file * filp,struct poll_table_struct * tbl)1184 static unsigned int data_poll(struct file *filp, struct poll_table_struct *tbl)
1185 {
1186 	struct fpga_reader *reader = filp->private_data;
1187 	struct fpga_device *priv = reader->priv;
1188 	unsigned int mask = 0;
1189 
1190 	poll_wait(filp, &priv->wait, tbl);
1191 
1192 	if (!list_empty(&priv->used))
1193 		mask |= POLLIN | POLLRDNORM;
1194 
1195 	return mask;
1196 }
1197 
data_mmap(struct file * filp,struct vm_area_struct * vma)1198 static int data_mmap(struct file *filp, struct vm_area_struct *vma)
1199 {
1200 	struct fpga_reader *reader = filp->private_data;
1201 	struct fpga_device *priv = reader->priv;
1202 	unsigned long offset, vsize, psize, addr;
1203 
1204 	/* VMA properties */
1205 	offset = vma->vm_pgoff << PAGE_SHIFT;
1206 	vsize = vma->vm_end - vma->vm_start;
1207 	psize = priv->phys_size - offset;
1208 	addr = (priv->phys_addr + offset) >> PAGE_SHIFT;
1209 
1210 	/* Check against the FPGA region's physical memory size */
1211 	if (vsize > psize) {
1212 		dev_err(priv->dev, "requested mmap mapping too large\n");
1213 		return -EINVAL;
1214 	}
1215 
1216 	/* IO memory (stop cacheing) */
1217 	vma->vm_flags |= VM_IO | VM_RESERVED;
1218 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1219 
1220 	return io_remap_pfn_range(vma, vma->vm_start, addr, vsize,
1221 				  vma->vm_page_prot);
1222 }
1223 
1224 static const struct file_operations data_fops = {
1225 	.owner		= THIS_MODULE,
1226 	.open		= data_open,
1227 	.release	= data_release,
1228 	.read		= data_read,
1229 	.poll		= data_poll,
1230 	.mmap		= data_mmap,
1231 	.llseek		= no_llseek,
1232 };
1233 
1234 /*
1235  * OpenFirmware Device Subsystem
1236  */
1237 
dma_filter(struct dma_chan * chan,void * data)1238 static bool dma_filter(struct dma_chan *chan, void *data)
1239 {
1240 	/*
1241 	 * DMA Channel #0 is used for the FPGA Programmer, so ignore it
1242 	 *
1243 	 * This probably won't survive an unload/load cycle of the Freescale
1244 	 * DMAEngine driver, but that won't be a problem
1245 	 */
1246 	if (chan->chan_id == 0 && chan->device->dev_id == 0)
1247 		return false;
1248 
1249 	return true;
1250 }
1251 
data_of_probe(struct platform_device * op)1252 static int data_of_probe(struct platform_device *op)
1253 {
1254 	struct device_node *of_node = op->dev.of_node;
1255 	struct device *this_device;
1256 	struct fpga_device *priv;
1257 	struct resource res;
1258 	dma_cap_mask_t mask;
1259 	int ret;
1260 
1261 	/* Allocate private data */
1262 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1263 	if (!priv) {
1264 		dev_err(&op->dev, "Unable to allocate device private data\n");
1265 		ret = -ENOMEM;
1266 		goto out_return;
1267 	}
1268 
1269 	dev_set_drvdata(&op->dev, priv);
1270 	priv->dev = &op->dev;
1271 	kref_init(&priv->ref);
1272 	mutex_init(&priv->mutex);
1273 
1274 	dev_set_drvdata(priv->dev, priv);
1275 	spin_lock_init(&priv->lock);
1276 	INIT_LIST_HEAD(&priv->free);
1277 	INIT_LIST_HEAD(&priv->used);
1278 	init_waitqueue_head(&priv->wait);
1279 
1280 	/* Setup the misc device */
1281 	priv->miscdev.minor = MISC_DYNAMIC_MINOR;
1282 	priv->miscdev.name = drv_name;
1283 	priv->miscdev.fops = &data_fops;
1284 
1285 	/* Get the physical address of the FPGA registers */
1286 	ret = of_address_to_resource(of_node, 0, &res);
1287 	if (ret) {
1288 		dev_err(&op->dev, "Unable to find FPGA physical address\n");
1289 		ret = -ENODEV;
1290 		goto out_free_priv;
1291 	}
1292 
1293 	priv->phys_addr = res.start;
1294 	priv->phys_size = resource_size(&res);
1295 
1296 	/* ioremap the registers for use */
1297 	priv->regs = of_iomap(of_node, 0);
1298 	if (!priv->regs) {
1299 		dev_err(&op->dev, "Unable to ioremap registers\n");
1300 		ret = -ENOMEM;
1301 		goto out_free_priv;
1302 	}
1303 
1304 	dma_cap_zero(mask);
1305 	dma_cap_set(DMA_MEMCPY, mask);
1306 	dma_cap_set(DMA_INTERRUPT, mask);
1307 	dma_cap_set(DMA_SLAVE, mask);
1308 	dma_cap_set(DMA_SG, mask);
1309 
1310 	/* Request a DMA channel */
1311 	priv->chan = dma_request_channel(mask, dma_filter, NULL);
1312 	if (!priv->chan) {
1313 		dev_err(&op->dev, "Unable to request DMA channel\n");
1314 		ret = -ENODEV;
1315 		goto out_unmap_regs;
1316 	}
1317 
1318 	/* Find the correct IRQ number */
1319 	priv->irq = irq_of_parse_and_map(of_node, 0);
1320 	if (priv->irq == NO_IRQ) {
1321 		dev_err(&op->dev, "Unable to find IRQ line\n");
1322 		ret = -ENODEV;
1323 		goto out_release_dma;
1324 	}
1325 
1326 	/* Drive the GPIO for FPGA IRQ high (no interrupt) */
1327 	iowrite32be(IRQ_CORL_DONE, priv->regs + SYS_IRQ_OUTPUT_DATA);
1328 
1329 	/* Register the miscdevice */
1330 	ret = misc_register(&priv->miscdev);
1331 	if (ret) {
1332 		dev_err(&op->dev, "Unable to register miscdevice\n");
1333 		goto out_irq_dispose_mapping;
1334 	}
1335 
1336 	/* Create the debugfs files */
1337 	ret = data_debugfs_init(priv);
1338 	if (ret) {
1339 		dev_err(&op->dev, "Unable to create debugfs files\n");
1340 		goto out_misc_deregister;
1341 	}
1342 
1343 	/* Create the sysfs files */
1344 	this_device = priv->miscdev.this_device;
1345 	dev_set_drvdata(this_device, priv);
1346 	ret = sysfs_create_group(&this_device->kobj, &rt_sysfs_attr_group);
1347 	if (ret) {
1348 		dev_err(&op->dev, "Unable to create sysfs files\n");
1349 		goto out_data_debugfs_exit;
1350 	}
1351 
1352 	dev_info(&op->dev, "CARMA FPGA Realtime Data Driver Loaded\n");
1353 	return 0;
1354 
1355 out_data_debugfs_exit:
1356 	data_debugfs_exit(priv);
1357 out_misc_deregister:
1358 	misc_deregister(&priv->miscdev);
1359 out_irq_dispose_mapping:
1360 	irq_dispose_mapping(priv->irq);
1361 out_release_dma:
1362 	dma_release_channel(priv->chan);
1363 out_unmap_regs:
1364 	iounmap(priv->regs);
1365 out_free_priv:
1366 	kref_put(&priv->ref, fpga_device_release);
1367 out_return:
1368 	return ret;
1369 }
1370 
data_of_remove(struct platform_device * op)1371 static int data_of_remove(struct platform_device *op)
1372 {
1373 	struct fpga_device *priv = dev_get_drvdata(&op->dev);
1374 	struct device *this_device = priv->miscdev.this_device;
1375 
1376 	/* remove all sysfs files, now the device cannot be re-enabled */
1377 	sysfs_remove_group(&this_device->kobj, &rt_sysfs_attr_group);
1378 
1379 	/* remove all debugfs files */
1380 	data_debugfs_exit(priv);
1381 
1382 	/* disable the device from generating data */
1383 	data_device_disable(priv);
1384 
1385 	/* remove the character device to stop new readers from appearing */
1386 	misc_deregister(&priv->miscdev);
1387 
1388 	/* cleanup everything not needed by readers */
1389 	irq_dispose_mapping(priv->irq);
1390 	dma_release_channel(priv->chan);
1391 	iounmap(priv->regs);
1392 
1393 	/* release our reference */
1394 	kref_put(&priv->ref, fpga_device_release);
1395 	return 0;
1396 }
1397 
1398 static struct of_device_id data_of_match[] = {
1399 	{ .compatible = "carma,carma-fpga", },
1400 	{},
1401 };
1402 
1403 static struct platform_driver data_of_driver = {
1404 	.probe		= data_of_probe,
1405 	.remove		= data_of_remove,
1406 	.driver		= {
1407 		.name		= drv_name,
1408 		.of_match_table	= data_of_match,
1409 		.owner		= THIS_MODULE,
1410 	},
1411 };
1412 
1413 /*
1414  * Module Init / Exit
1415  */
1416 
data_init(void)1417 static int __init data_init(void)
1418 {
1419 	return platform_driver_register(&data_of_driver);
1420 }
1421 
data_exit(void)1422 static void __exit data_exit(void)
1423 {
1424 	platform_driver_unregister(&data_of_driver);
1425 }
1426 
1427 MODULE_AUTHOR("Ira W. Snyder <iws@ovro.caltech.edu>");
1428 MODULE_DESCRIPTION("CARMA DATA-FPGA Access Driver");
1429 MODULE_LICENSE("GPL");
1430 
1431 module_init(data_init);
1432 module_exit(data_exit);
1433