1 /*
2  *  Driver for Xceive XC5000 "QAM/8VSB single chip tuner"
3  *
4  *  Copyright (c) 2007 Xceive Corporation
5  *  Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
6  *  Copyright (c) 2009 Devin Heitmueller <dheitmueller@kernellabs.com>
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/videodev2.h>
27 #include <linux/delay.h>
28 #include <linux/dvb/frontend.h>
29 #include <linux/i2c.h>
30 
31 #include "dvb_frontend.h"
32 
33 #include "xc5000.h"
34 #include "tuner-i2c.h"
35 
36 static int debug;
37 module_param(debug, int, 0644);
38 MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
39 
40 static int no_poweroff;
41 module_param(no_poweroff, int, 0644);
42 MODULE_PARM_DESC(no_poweroff, "0 (default) powers device off when not used.\n"
43 	"\t\t1 keep device energized and with tuner ready all the times.\n"
44 	"\t\tFaster, but consumes more power and keeps the device hotter");
45 
46 static DEFINE_MUTEX(xc5000_list_mutex);
47 static LIST_HEAD(hybrid_tuner_instance_list);
48 
49 #define dprintk(level, fmt, arg...) if (debug >= level) \
50 	printk(KERN_INFO "%s: " fmt, "xc5000", ## arg)
51 
52 #define XC5000_DEFAULT_FIRMWARE "dvb-fe-xc5000-1.6.114.fw"
53 #define XC5000_DEFAULT_FIRMWARE_SIZE 12401
54 
55 struct xc5000_priv {
56 	struct tuner_i2c_props i2c_props;
57 	struct list_head hybrid_tuner_instance_list;
58 
59 	u32 if_khz;
60 	u32 freq_hz;
61 	u32 bandwidth;
62 	u8  video_standard;
63 	u8  rf_mode;
64 	u8  radio_input;
65 };
66 
67 /* Misc Defines */
68 #define MAX_TV_STANDARD			24
69 #define XC_MAX_I2C_WRITE_LENGTH		64
70 
71 /* Signal Types */
72 #define XC_RF_MODE_AIR			0
73 #define XC_RF_MODE_CABLE		1
74 
75 /* Result codes */
76 #define XC_RESULT_SUCCESS		0
77 #define XC_RESULT_RESET_FAILURE		1
78 #define XC_RESULT_I2C_WRITE_FAILURE	2
79 #define XC_RESULT_I2C_READ_FAILURE	3
80 #define XC_RESULT_OUT_OF_RANGE		5
81 
82 /* Product id */
83 #define XC_PRODUCT_ID_FW_NOT_LOADED	0x2000
84 #define XC_PRODUCT_ID_FW_LOADED 	0x1388
85 
86 /* Registers */
87 #define XREG_INIT         0x00
88 #define XREG_VIDEO_MODE   0x01
89 #define XREG_AUDIO_MODE   0x02
90 #define XREG_RF_FREQ      0x03
91 #define XREG_D_CODE       0x04
92 #define XREG_IF_OUT       0x05
93 #define XREG_SEEK_MODE    0x07
94 #define XREG_POWER_DOWN   0x0A /* Obsolete */
95 /* Set the output amplitude - SIF for analog, DTVP/DTVN for digital */
96 #define XREG_OUTPUT_AMP   0x0B
97 #define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */
98 #define XREG_SMOOTHEDCVBS 0x0E
99 #define XREG_XTALFREQ     0x0F
100 #define XREG_FINERFREQ    0x10
101 #define XREG_DDIMODE      0x11
102 
103 #define XREG_ADC_ENV      0x00
104 #define XREG_QUALITY      0x01
105 #define XREG_FRAME_LINES  0x02
106 #define XREG_HSYNC_FREQ   0x03
107 #define XREG_LOCK         0x04
108 #define XREG_FREQ_ERROR   0x05
109 #define XREG_SNR          0x06
110 #define XREG_VERSION      0x07
111 #define XREG_PRODUCT_ID   0x08
112 #define XREG_BUSY         0x09
113 #define XREG_BUILD        0x0D
114 
115 /*
116    Basic firmware description. This will remain with
117    the driver for documentation purposes.
118 
119    This represents an I2C firmware file encoded as a
120    string of unsigned char. Format is as follows:
121 
122    char[0  ]=len0_MSB  -> len = len_MSB * 256 + len_LSB
123    char[1  ]=len0_LSB  -> length of first write transaction
124    char[2  ]=data0 -> first byte to be sent
125    char[3  ]=data1
126    char[4  ]=data2
127    char[   ]=...
128    char[M  ]=dataN  -> last byte to be sent
129    char[M+1]=len1_MSB  -> len = len_MSB * 256 + len_LSB
130    char[M+2]=len1_LSB  -> length of second write transaction
131    char[M+3]=data0
132    char[M+4]=data1
133    ...
134    etc.
135 
136    The [len] value should be interpreted as follows:
137 
138    len= len_MSB _ len_LSB
139    len=1111_1111_1111_1111   : End of I2C_SEQUENCE
140    len=0000_0000_0000_0000   : Reset command: Do hardware reset
141    len=0NNN_NNNN_NNNN_NNNN   : Normal transaction: number of bytes = {1:32767)
142    len=1WWW_WWWW_WWWW_WWWW   : Wait command: wait for {1:32767} ms
143 
144    For the RESET and WAIT commands, the two following bytes will contain
145    immediately the length of the following transaction.
146 
147 */
148 struct XC_TV_STANDARD {
149 	char *Name;
150 	u16 AudioMode;
151 	u16 VideoMode;
152 };
153 
154 /* Tuner standards */
155 #define MN_NTSC_PAL_BTSC	0
156 #define MN_NTSC_PAL_A2		1
157 #define MN_NTSC_PAL_EIAJ	2
158 #define MN_NTSC_PAL_Mono	3
159 #define BG_PAL_A2		4
160 #define BG_PAL_NICAM		5
161 #define BG_PAL_MONO		6
162 #define I_PAL_NICAM		7
163 #define I_PAL_NICAM_MONO	8
164 #define DK_PAL_A2		9
165 #define DK_PAL_NICAM		10
166 #define DK_PAL_MONO		11
167 #define DK_SECAM_A2DK1		12
168 #define DK_SECAM_A2LDK3 	13
169 #define DK_SECAM_A2MONO 	14
170 #define L_SECAM_NICAM		15
171 #define LC_SECAM_NICAM		16
172 #define DTV6			17
173 #define DTV8			18
174 #define DTV7_8			19
175 #define DTV7			20
176 #define FM_Radio_INPUT2 	21
177 #define FM_Radio_INPUT1 	22
178 #define FM_Radio_INPUT1_MONO	23
179 
180 static struct XC_TV_STANDARD XC5000_Standard[MAX_TV_STANDARD] = {
181 	{"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020},
182 	{"M/N-NTSC/PAL-A2",   0x0600, 0x8020},
183 	{"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020},
184 	{"M/N-NTSC/PAL-Mono", 0x0478, 0x8020},
185 	{"B/G-PAL-A2",        0x0A00, 0x8049},
186 	{"B/G-PAL-NICAM",     0x0C04, 0x8049},
187 	{"B/G-PAL-MONO",      0x0878, 0x8059},
188 	{"I-PAL-NICAM",       0x1080, 0x8009},
189 	{"I-PAL-NICAM-MONO",  0x0E78, 0x8009},
190 	{"D/K-PAL-A2",        0x1600, 0x8009},
191 	{"D/K-PAL-NICAM",     0x0E80, 0x8009},
192 	{"D/K-PAL-MONO",      0x1478, 0x8009},
193 	{"D/K-SECAM-A2 DK1",  0x1200, 0x8009},
194 	{"D/K-SECAM-A2 L/DK3", 0x0E00, 0x8009},
195 	{"D/K-SECAM-A2 MONO", 0x1478, 0x8009},
196 	{"L-SECAM-NICAM",     0x8E82, 0x0009},
197 	{"L'-SECAM-NICAM",    0x8E82, 0x4009},
198 	{"DTV6",              0x00C0, 0x8002},
199 	{"DTV8",              0x00C0, 0x800B},
200 	{"DTV7/8",            0x00C0, 0x801B},
201 	{"DTV7",              0x00C0, 0x8007},
202 	{"FM Radio-INPUT2",   0x9802, 0x9002},
203 	{"FM Radio-INPUT1",   0x0208, 0x9002},
204 	{"FM Radio-INPUT1_MONO", 0x0278, 0x9002}
205 };
206 
207 static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe);
208 static int xc5000_is_firmware_loaded(struct dvb_frontend *fe);
209 static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val);
210 static int xc5000_TunerReset(struct dvb_frontend *fe);
211 
xc_send_i2c_data(struct xc5000_priv * priv,u8 * buf,int len)212 static int xc_send_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
213 {
214 	struct i2c_msg msg = { .addr = priv->i2c_props.addr,
215 			       .flags = 0, .buf = buf, .len = len };
216 
217 	if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
218 		printk(KERN_ERR "xc5000: I2C write failed (len=%i)\n", len);
219 		return XC_RESULT_I2C_WRITE_FAILURE;
220 	}
221 	return XC_RESULT_SUCCESS;
222 }
223 
224 #if 0
225 /* This routine is never used because the only time we read data from the
226    i2c bus is when we read registers, and we want that to be an atomic i2c
227    transaction in case we are on a multi-master bus */
228 static int xc_read_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
229 {
230 	struct i2c_msg msg = { .addr = priv->i2c_props.addr,
231 		.flags = I2C_M_RD, .buf = buf, .len = len };
232 
233 	if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
234 		printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n", len);
235 		return -EREMOTEIO;
236 	}
237 	return 0;
238 }
239 #endif
240 
xc5000_readreg(struct xc5000_priv * priv,u16 reg,u16 * val)241 static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val)
242 {
243 	u8 buf[2] = { reg >> 8, reg & 0xff };
244 	u8 bval[2] = { 0, 0 };
245 	struct i2c_msg msg[2] = {
246 		{ .addr = priv->i2c_props.addr,
247 			.flags = 0, .buf = &buf[0], .len = 2 },
248 		{ .addr = priv->i2c_props.addr,
249 			.flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
250 	};
251 
252 	if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) {
253 		printk(KERN_WARNING "xc5000: I2C read failed\n");
254 		return -EREMOTEIO;
255 	}
256 
257 	*val = (bval[0] << 8) | bval[1];
258 	return XC_RESULT_SUCCESS;
259 }
260 
xc_wait(int wait_ms)261 static void xc_wait(int wait_ms)
262 {
263 	msleep(wait_ms);
264 }
265 
xc5000_TunerReset(struct dvb_frontend * fe)266 static int xc5000_TunerReset(struct dvb_frontend *fe)
267 {
268 	struct xc5000_priv *priv = fe->tuner_priv;
269 	int ret;
270 
271 	dprintk(1, "%s()\n", __func__);
272 
273 	if (fe->callback) {
274 		ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ?
275 					   fe->dvb->priv :
276 					   priv->i2c_props.adap->algo_data,
277 					   DVB_FRONTEND_COMPONENT_TUNER,
278 					   XC5000_TUNER_RESET, 0);
279 		if (ret) {
280 			printk(KERN_ERR "xc5000: reset failed\n");
281 			return XC_RESULT_RESET_FAILURE;
282 		}
283 	} else {
284 		printk(KERN_ERR "xc5000: no tuner reset callback function, fatal\n");
285 		return XC_RESULT_RESET_FAILURE;
286 	}
287 	return XC_RESULT_SUCCESS;
288 }
289 
xc_write_reg(struct xc5000_priv * priv,u16 regAddr,u16 i2cData)290 static int xc_write_reg(struct xc5000_priv *priv, u16 regAddr, u16 i2cData)
291 {
292 	u8 buf[4];
293 	int WatchDogTimer = 100;
294 	int result;
295 
296 	buf[0] = (regAddr >> 8) & 0xFF;
297 	buf[1] = regAddr & 0xFF;
298 	buf[2] = (i2cData >> 8) & 0xFF;
299 	buf[3] = i2cData & 0xFF;
300 	result = xc_send_i2c_data(priv, buf, 4);
301 	if (result == XC_RESULT_SUCCESS) {
302 		/* wait for busy flag to clear */
303 		while ((WatchDogTimer > 0) && (result == XC_RESULT_SUCCESS)) {
304 			result = xc5000_readreg(priv, XREG_BUSY, (u16 *)buf);
305 			if (result == XC_RESULT_SUCCESS) {
306 				if ((buf[0] == 0) && (buf[1] == 0)) {
307 					/* busy flag cleared */
308 					break;
309 				} else {
310 					xc_wait(5); /* wait 5 ms */
311 					WatchDogTimer--;
312 				}
313 			}
314 		}
315 	}
316 	if (WatchDogTimer < 0)
317 		result = XC_RESULT_I2C_WRITE_FAILURE;
318 
319 	return result;
320 }
321 
xc_load_i2c_sequence(struct dvb_frontend * fe,const u8 * i2c_sequence)322 static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence)
323 {
324 	struct xc5000_priv *priv = fe->tuner_priv;
325 
326 	int i, nbytes_to_send, result;
327 	unsigned int len, pos, index;
328 	u8 buf[XC_MAX_I2C_WRITE_LENGTH];
329 
330 	index = 0;
331 	while ((i2c_sequence[index] != 0xFF) ||
332 		(i2c_sequence[index + 1] != 0xFF)) {
333 		len = i2c_sequence[index] * 256 + i2c_sequence[index+1];
334 		if (len == 0x0000) {
335 			/* RESET command */
336 			result = xc5000_TunerReset(fe);
337 			index += 2;
338 			if (result != XC_RESULT_SUCCESS)
339 				return result;
340 		} else if (len & 0x8000) {
341 			/* WAIT command */
342 			xc_wait(len & 0x7FFF);
343 			index += 2;
344 		} else {
345 			/* Send i2c data whilst ensuring individual transactions
346 			 * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
347 			 */
348 			index += 2;
349 			buf[0] = i2c_sequence[index];
350 			buf[1] = i2c_sequence[index + 1];
351 			pos = 2;
352 			while (pos < len) {
353 				if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2)
354 					nbytes_to_send =
355 						XC_MAX_I2C_WRITE_LENGTH;
356 				else
357 					nbytes_to_send = (len - pos + 2);
358 				for (i = 2; i < nbytes_to_send; i++) {
359 					buf[i] = i2c_sequence[index + pos +
360 						i - 2];
361 				}
362 				result = xc_send_i2c_data(priv, buf,
363 					nbytes_to_send);
364 
365 				if (result != XC_RESULT_SUCCESS)
366 					return result;
367 
368 				pos += nbytes_to_send - 2;
369 			}
370 			index += len;
371 		}
372 	}
373 	return XC_RESULT_SUCCESS;
374 }
375 
xc_initialize(struct xc5000_priv * priv)376 static int xc_initialize(struct xc5000_priv *priv)
377 {
378 	dprintk(1, "%s()\n", __func__);
379 	return xc_write_reg(priv, XREG_INIT, 0);
380 }
381 
xc_SetTVStandard(struct xc5000_priv * priv,u16 VideoMode,u16 AudioMode)382 static int xc_SetTVStandard(struct xc5000_priv *priv,
383 	u16 VideoMode, u16 AudioMode)
384 {
385 	int ret;
386 	dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, VideoMode, AudioMode);
387 	dprintk(1, "%s() Standard = %s\n",
388 		__func__,
389 		XC5000_Standard[priv->video_standard].Name);
390 
391 	ret = xc_write_reg(priv, XREG_VIDEO_MODE, VideoMode);
392 	if (ret == XC_RESULT_SUCCESS)
393 		ret = xc_write_reg(priv, XREG_AUDIO_MODE, AudioMode);
394 
395 	return ret;
396 }
397 
xc_SetSignalSource(struct xc5000_priv * priv,u16 rf_mode)398 static int xc_SetSignalSource(struct xc5000_priv *priv, u16 rf_mode)
399 {
400 	dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode,
401 		rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");
402 
403 	if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) {
404 		rf_mode = XC_RF_MODE_CABLE;
405 		printk(KERN_ERR
406 			"%s(), Invalid mode, defaulting to CABLE",
407 			__func__);
408 	}
409 	return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
410 }
411 
412 static const struct dvb_tuner_ops xc5000_tuner_ops;
413 
xc_set_RF_frequency(struct xc5000_priv * priv,u32 freq_hz)414 static int xc_set_RF_frequency(struct xc5000_priv *priv, u32 freq_hz)
415 {
416 	u16 freq_code;
417 
418 	dprintk(1, "%s(%u)\n", __func__, freq_hz);
419 
420 	if ((freq_hz > xc5000_tuner_ops.info.frequency_max) ||
421 		(freq_hz < xc5000_tuner_ops.info.frequency_min))
422 		return XC_RESULT_OUT_OF_RANGE;
423 
424 	freq_code = (u16)(freq_hz / 15625);
425 
426 	/* Starting in firmware version 1.1.44, Xceive recommends using the
427 	   FINERFREQ for all normal tuning (the doc indicates reg 0x03 should
428 	   only be used for fast scanning for channel lock) */
429 	return xc_write_reg(priv, XREG_FINERFREQ, freq_code);
430 }
431 
432 
xc_set_IF_frequency(struct xc5000_priv * priv,u32 freq_khz)433 static int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_khz)
434 {
435 	u32 freq_code = (freq_khz * 1024)/1000;
436 	dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n",
437 		__func__, freq_khz, freq_code);
438 
439 	return xc_write_reg(priv, XREG_IF_OUT, freq_code);
440 }
441 
442 
xc_get_ADC_Envelope(struct xc5000_priv * priv,u16 * adc_envelope)443 static int xc_get_ADC_Envelope(struct xc5000_priv *priv, u16 *adc_envelope)
444 {
445 	return xc5000_readreg(priv, XREG_ADC_ENV, adc_envelope);
446 }
447 
xc_get_frequency_error(struct xc5000_priv * priv,u32 * freq_error_hz)448 static int xc_get_frequency_error(struct xc5000_priv *priv, u32 *freq_error_hz)
449 {
450 	int result;
451 	u16 regData;
452 	u32 tmp;
453 
454 	result = xc5000_readreg(priv, XREG_FREQ_ERROR, &regData);
455 	if (result != XC_RESULT_SUCCESS)
456 		return result;
457 
458 	tmp = (u32)regData;
459 	(*freq_error_hz) = (tmp * 15625) / 1000;
460 	return result;
461 }
462 
xc_get_lock_status(struct xc5000_priv * priv,u16 * lock_status)463 static int xc_get_lock_status(struct xc5000_priv *priv, u16 *lock_status)
464 {
465 	return xc5000_readreg(priv, XREG_LOCK, lock_status);
466 }
467 
xc_get_version(struct xc5000_priv * priv,u8 * hw_majorversion,u8 * hw_minorversion,u8 * fw_majorversion,u8 * fw_minorversion)468 static int xc_get_version(struct xc5000_priv *priv,
469 	u8 *hw_majorversion, u8 *hw_minorversion,
470 	u8 *fw_majorversion, u8 *fw_minorversion)
471 {
472 	u16 data;
473 	int result;
474 
475 	result = xc5000_readreg(priv, XREG_VERSION, &data);
476 	if (result != XC_RESULT_SUCCESS)
477 		return result;
478 
479 	(*hw_majorversion) = (data >> 12) & 0x0F;
480 	(*hw_minorversion) = (data >>  8) & 0x0F;
481 	(*fw_majorversion) = (data >>  4) & 0x0F;
482 	(*fw_minorversion) = data & 0x0F;
483 
484 	return 0;
485 }
486 
xc_get_buildversion(struct xc5000_priv * priv,u16 * buildrev)487 static int xc_get_buildversion(struct xc5000_priv *priv, u16 *buildrev)
488 {
489 	return xc5000_readreg(priv, XREG_BUILD, buildrev);
490 }
491 
xc_get_hsync_freq(struct xc5000_priv * priv,u32 * hsync_freq_hz)492 static int xc_get_hsync_freq(struct xc5000_priv *priv, u32 *hsync_freq_hz)
493 {
494 	u16 regData;
495 	int result;
496 
497 	result = xc5000_readreg(priv, XREG_HSYNC_FREQ, &regData);
498 	if (result != XC_RESULT_SUCCESS)
499 		return result;
500 
501 	(*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100;
502 	return result;
503 }
504 
xc_get_frame_lines(struct xc5000_priv * priv,u16 * frame_lines)505 static int xc_get_frame_lines(struct xc5000_priv *priv, u16 *frame_lines)
506 {
507 	return xc5000_readreg(priv, XREG_FRAME_LINES, frame_lines);
508 }
509 
xc_get_quality(struct xc5000_priv * priv,u16 * quality)510 static int xc_get_quality(struct xc5000_priv *priv, u16 *quality)
511 {
512 	return xc5000_readreg(priv, XREG_QUALITY, quality);
513 }
514 
WaitForLock(struct xc5000_priv * priv)515 static u16 WaitForLock(struct xc5000_priv *priv)
516 {
517 	u16 lockState = 0;
518 	int watchDogCount = 40;
519 
520 	while ((lockState == 0) && (watchDogCount > 0)) {
521 		xc_get_lock_status(priv, &lockState);
522 		if (lockState != 1) {
523 			xc_wait(5);
524 			watchDogCount--;
525 		}
526 	}
527 	return lockState;
528 }
529 
530 #define XC_TUNE_ANALOG  0
531 #define XC_TUNE_DIGITAL 1
xc_tune_channel(struct xc5000_priv * priv,u32 freq_hz,int mode)532 static int xc_tune_channel(struct xc5000_priv *priv, u32 freq_hz, int mode)
533 {
534 	int found = 0;
535 
536 	dprintk(1, "%s(%u)\n", __func__, freq_hz);
537 
538 	if (xc_set_RF_frequency(priv, freq_hz) != XC_RESULT_SUCCESS)
539 		return 0;
540 
541 	if (mode == XC_TUNE_ANALOG) {
542 		if (WaitForLock(priv) == 1)
543 			found = 1;
544 	}
545 
546 	return found;
547 }
548 
549 
xc5000_fwupload(struct dvb_frontend * fe)550 static int xc5000_fwupload(struct dvb_frontend *fe)
551 {
552 	struct xc5000_priv *priv = fe->tuner_priv;
553 	const struct firmware *fw;
554 	int ret;
555 
556 	/* request the firmware, this will block and timeout */
557 	printk(KERN_INFO "xc5000: waiting for firmware upload (%s)...\n",
558 		XC5000_DEFAULT_FIRMWARE);
559 
560 	ret = request_firmware(&fw, XC5000_DEFAULT_FIRMWARE,
561 		priv->i2c_props.adap->dev.parent);
562 	if (ret) {
563 		printk(KERN_ERR "xc5000: Upload failed. (file not found?)\n");
564 		ret = XC_RESULT_RESET_FAILURE;
565 		goto out;
566 	} else {
567 		printk(KERN_DEBUG "xc5000: firmware read %Zu bytes.\n",
568 		       fw->size);
569 		ret = XC_RESULT_SUCCESS;
570 	}
571 
572 	if (fw->size != XC5000_DEFAULT_FIRMWARE_SIZE) {
573 		printk(KERN_ERR "xc5000: firmware incorrect size\n");
574 		ret = XC_RESULT_RESET_FAILURE;
575 	} else {
576 		printk(KERN_INFO "xc5000: firmware uploading...\n");
577 		ret = xc_load_i2c_sequence(fe,  fw->data);
578 		printk(KERN_INFO "xc5000: firmware upload complete...\n");
579 	}
580 
581 out:
582 	release_firmware(fw);
583 	return ret;
584 }
585 
xc_debug_dump(struct xc5000_priv * priv)586 static void xc_debug_dump(struct xc5000_priv *priv)
587 {
588 	u16 adc_envelope;
589 	u32 freq_error_hz = 0;
590 	u16 lock_status;
591 	u32 hsync_freq_hz = 0;
592 	u16 frame_lines;
593 	u16 quality;
594 	u8 hw_majorversion = 0, hw_minorversion = 0;
595 	u8 fw_majorversion = 0, fw_minorversion = 0;
596 	u16 fw_buildversion = 0;
597 
598 	/* Wait for stats to stabilize.
599 	 * Frame Lines needs two frame times after initial lock
600 	 * before it is valid.
601 	 */
602 	xc_wait(100);
603 
604 	xc_get_ADC_Envelope(priv,  &adc_envelope);
605 	dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);
606 
607 	xc_get_frequency_error(priv, &freq_error_hz);
608 	dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);
609 
610 	xc_get_lock_status(priv,  &lock_status);
611 	dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
612 		lock_status);
613 
614 	xc_get_version(priv,  &hw_majorversion, &hw_minorversion,
615 		&fw_majorversion, &fw_minorversion);
616 	xc_get_buildversion(priv,  &fw_buildversion);
617 	dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x.%04x\n",
618 		hw_majorversion, hw_minorversion,
619 		fw_majorversion, fw_minorversion, fw_buildversion);
620 
621 	xc_get_hsync_freq(priv,  &hsync_freq_hz);
622 	dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz);
623 
624 	xc_get_frame_lines(priv,  &frame_lines);
625 	dprintk(1, "*** Frame lines = %d\n", frame_lines);
626 
627 	xc_get_quality(priv,  &quality);
628 	dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality);
629 }
630 
xc5000_set_params(struct dvb_frontend * fe)631 static int xc5000_set_params(struct dvb_frontend *fe)
632 {
633 	int ret, b;
634 	struct xc5000_priv *priv = fe->tuner_priv;
635 	u32 bw = fe->dtv_property_cache.bandwidth_hz;
636 	u32 freq = fe->dtv_property_cache.frequency;
637 	u32 delsys  = fe->dtv_property_cache.delivery_system;
638 
639 	if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
640 		if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
641 			dprintk(1, "Unable to load firmware and init tuner\n");
642 			return -EINVAL;
643 		}
644 	}
645 
646 	dprintk(1, "%s() frequency=%d (Hz)\n", __func__, freq);
647 
648 	switch (delsys) {
649 	case SYS_ATSC:
650 		dprintk(1, "%s() VSB modulation\n", __func__);
651 		priv->rf_mode = XC_RF_MODE_AIR;
652 		priv->freq_hz = freq - 1750000;
653 		priv->video_standard = DTV6;
654 		break;
655 	case SYS_DVBC_ANNEX_B:
656 		dprintk(1, "%s() QAM modulation\n", __func__);
657 		priv->rf_mode = XC_RF_MODE_CABLE;
658 		priv->freq_hz = freq - 1750000;
659 		priv->video_standard = DTV6;
660 		break;
661 	case SYS_DVBT:
662 	case SYS_DVBT2:
663 		dprintk(1, "%s() OFDM\n", __func__);
664 		switch (bw) {
665 		case 6000000:
666 			priv->video_standard = DTV6;
667 			priv->freq_hz = freq - 1750000;
668 			break;
669 		case 7000000:
670 			priv->video_standard = DTV7;
671 			priv->freq_hz = freq - 2250000;
672 			break;
673 		case 8000000:
674 			priv->video_standard = DTV8;
675 			priv->freq_hz = freq - 2750000;
676 			break;
677 		default:
678 			printk(KERN_ERR "xc5000 bandwidth not set!\n");
679 			return -EINVAL;
680 		}
681 		priv->rf_mode = XC_RF_MODE_AIR;
682 	case SYS_DVBC_ANNEX_A:
683 	case SYS_DVBC_ANNEX_C:
684 		dprintk(1, "%s() QAM modulation\n", __func__);
685 		priv->rf_mode = XC_RF_MODE_CABLE;
686 		if (bw <= 6000000) {
687 			priv->video_standard = DTV6;
688 			priv->freq_hz = freq - 1750000;
689 			b = 6;
690 		} else if (bw <= 7000000) {
691 			priv->video_standard = DTV7;
692 			priv->freq_hz = freq - 2250000;
693 			b = 7;
694 		} else {
695 			priv->video_standard = DTV7_8;
696 			priv->freq_hz = freq - 2750000;
697 			b = 8;
698 		}
699 		dprintk(1, "%s() Bandwidth %dMHz (%d)\n", __func__,
700 			b, bw);
701 		break;
702 	default:
703 		printk(KERN_ERR "xc5000: delivery system is not supported!\n");
704 		return -EINVAL;
705 	}
706 
707 	dprintk(1, "%s() frequency=%d (compensated to %d)\n",
708 		__func__, freq, priv->freq_hz);
709 
710 	ret = xc_SetSignalSource(priv, priv->rf_mode);
711 	if (ret != XC_RESULT_SUCCESS) {
712 		printk(KERN_ERR
713 			"xc5000: xc_SetSignalSource(%d) failed\n",
714 			priv->rf_mode);
715 		return -EREMOTEIO;
716 	}
717 
718 	ret = xc_SetTVStandard(priv,
719 		XC5000_Standard[priv->video_standard].VideoMode,
720 		XC5000_Standard[priv->video_standard].AudioMode);
721 	if (ret != XC_RESULT_SUCCESS) {
722 		printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
723 		return -EREMOTEIO;
724 	}
725 
726 	ret = xc_set_IF_frequency(priv, priv->if_khz);
727 	if (ret != XC_RESULT_SUCCESS) {
728 		printk(KERN_ERR "xc5000: xc_Set_IF_frequency(%d) failed\n",
729 		       priv->if_khz);
730 		return -EIO;
731 	}
732 
733 	xc_write_reg(priv, XREG_OUTPUT_AMP, 0x8a);
734 
735 	xc_tune_channel(priv, priv->freq_hz, XC_TUNE_DIGITAL);
736 
737 	if (debug)
738 		xc_debug_dump(priv);
739 
740 	priv->bandwidth = bw;
741 
742 	return 0;
743 }
744 
xc5000_is_firmware_loaded(struct dvb_frontend * fe)745 static int xc5000_is_firmware_loaded(struct dvb_frontend *fe)
746 {
747 	struct xc5000_priv *priv = fe->tuner_priv;
748 	int ret;
749 	u16 id;
750 
751 	ret = xc5000_readreg(priv, XREG_PRODUCT_ID, &id);
752 	if (ret == XC_RESULT_SUCCESS) {
753 		if (id == XC_PRODUCT_ID_FW_NOT_LOADED)
754 			ret = XC_RESULT_RESET_FAILURE;
755 		else
756 			ret = XC_RESULT_SUCCESS;
757 	}
758 
759 	dprintk(1, "%s() returns %s id = 0x%x\n", __func__,
760 		ret == XC_RESULT_SUCCESS ? "True" : "False", id);
761 	return ret;
762 }
763 
xc5000_set_tv_freq(struct dvb_frontend * fe,struct analog_parameters * params)764 static int xc5000_set_tv_freq(struct dvb_frontend *fe,
765 	struct analog_parameters *params)
766 {
767 	struct xc5000_priv *priv = fe->tuner_priv;
768 	int ret;
769 
770 	dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n",
771 		__func__, params->frequency);
772 
773 	/* Fix me: it could be air. */
774 	priv->rf_mode = params->mode;
775 	if (params->mode > XC_RF_MODE_CABLE)
776 		priv->rf_mode = XC_RF_MODE_CABLE;
777 
778 	/* params->frequency is in units of 62.5khz */
779 	priv->freq_hz = params->frequency * 62500;
780 
781 	/* FIX ME: Some video standards may have several possible audio
782 		   standards. We simply default to one of them here.
783 	 */
784 	if (params->std & V4L2_STD_MN) {
785 		/* default to BTSC audio standard */
786 		priv->video_standard = MN_NTSC_PAL_BTSC;
787 		goto tune_channel;
788 	}
789 
790 	if (params->std & V4L2_STD_PAL_BG) {
791 		/* default to NICAM audio standard */
792 		priv->video_standard = BG_PAL_NICAM;
793 		goto tune_channel;
794 	}
795 
796 	if (params->std & V4L2_STD_PAL_I) {
797 		/* default to NICAM audio standard */
798 		priv->video_standard = I_PAL_NICAM;
799 		goto tune_channel;
800 	}
801 
802 	if (params->std & V4L2_STD_PAL_DK) {
803 		/* default to NICAM audio standard */
804 		priv->video_standard = DK_PAL_NICAM;
805 		goto tune_channel;
806 	}
807 
808 	if (params->std & V4L2_STD_SECAM_DK) {
809 		/* default to A2 DK1 audio standard */
810 		priv->video_standard = DK_SECAM_A2DK1;
811 		goto tune_channel;
812 	}
813 
814 	if (params->std & V4L2_STD_SECAM_L) {
815 		priv->video_standard = L_SECAM_NICAM;
816 		goto tune_channel;
817 	}
818 
819 	if (params->std & V4L2_STD_SECAM_LC) {
820 		priv->video_standard = LC_SECAM_NICAM;
821 		goto tune_channel;
822 	}
823 
824 tune_channel:
825 	ret = xc_SetSignalSource(priv, priv->rf_mode);
826 	if (ret != XC_RESULT_SUCCESS) {
827 		printk(KERN_ERR
828 			"xc5000: xc_SetSignalSource(%d) failed\n",
829 			priv->rf_mode);
830 		return -EREMOTEIO;
831 	}
832 
833 	ret = xc_SetTVStandard(priv,
834 		XC5000_Standard[priv->video_standard].VideoMode,
835 		XC5000_Standard[priv->video_standard].AudioMode);
836 	if (ret != XC_RESULT_SUCCESS) {
837 		printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
838 		return -EREMOTEIO;
839 	}
840 
841 	xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09);
842 
843 	xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG);
844 
845 	if (debug)
846 		xc_debug_dump(priv);
847 
848 	return 0;
849 }
850 
xc5000_set_radio_freq(struct dvb_frontend * fe,struct analog_parameters * params)851 static int xc5000_set_radio_freq(struct dvb_frontend *fe,
852 	struct analog_parameters *params)
853 {
854 	struct xc5000_priv *priv = fe->tuner_priv;
855 	int ret = -EINVAL;
856 	u8 radio_input;
857 
858 	dprintk(1, "%s() frequency=%d (in units of khz)\n",
859 		__func__, params->frequency);
860 
861 	if (priv->radio_input == XC5000_RADIO_NOT_CONFIGURED) {
862 		dprintk(1, "%s() radio input not configured\n", __func__);
863 		return -EINVAL;
864 	}
865 
866 	if (priv->radio_input == XC5000_RADIO_FM1)
867 		radio_input = FM_Radio_INPUT1;
868 	else if  (priv->radio_input == XC5000_RADIO_FM2)
869 		radio_input = FM_Radio_INPUT2;
870 	else if  (priv->radio_input == XC5000_RADIO_FM1_MONO)
871 		radio_input = FM_Radio_INPUT1_MONO;
872 	else {
873 		dprintk(1, "%s() unknown radio input %d\n", __func__,
874 			priv->radio_input);
875 		return -EINVAL;
876 	}
877 
878 	priv->freq_hz = params->frequency * 125 / 2;
879 
880 	priv->rf_mode = XC_RF_MODE_AIR;
881 
882 	ret = xc_SetTVStandard(priv, XC5000_Standard[radio_input].VideoMode,
883 			       XC5000_Standard[radio_input].AudioMode);
884 
885 	if (ret != XC_RESULT_SUCCESS) {
886 		printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
887 		return -EREMOTEIO;
888 	}
889 
890 	ret = xc_SetSignalSource(priv, priv->rf_mode);
891 	if (ret != XC_RESULT_SUCCESS) {
892 		printk(KERN_ERR
893 			"xc5000: xc_SetSignalSource(%d) failed\n",
894 			priv->rf_mode);
895 		return -EREMOTEIO;
896 	}
897 
898 	if ((priv->radio_input == XC5000_RADIO_FM1) ||
899 				(priv->radio_input == XC5000_RADIO_FM2))
900 		xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09);
901 	else if  (priv->radio_input == XC5000_RADIO_FM1_MONO)
902 		xc_write_reg(priv, XREG_OUTPUT_AMP, 0x06);
903 
904 	xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG);
905 
906 	return 0;
907 }
908 
xc5000_set_analog_params(struct dvb_frontend * fe,struct analog_parameters * params)909 static int xc5000_set_analog_params(struct dvb_frontend *fe,
910 			     struct analog_parameters *params)
911 {
912 	struct xc5000_priv *priv = fe->tuner_priv;
913 	int ret = -EINVAL;
914 
915 	if (priv->i2c_props.adap == NULL)
916 		return -EINVAL;
917 
918 	if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
919 		if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
920 			dprintk(1, "Unable to load firmware and init tuner\n");
921 			return -EINVAL;
922 		}
923 	}
924 
925 	switch (params->mode) {
926 	case V4L2_TUNER_RADIO:
927 		ret = xc5000_set_radio_freq(fe, params);
928 		break;
929 	case V4L2_TUNER_ANALOG_TV:
930 	case V4L2_TUNER_DIGITAL_TV:
931 		ret = xc5000_set_tv_freq(fe, params);
932 		break;
933 	}
934 
935 	return ret;
936 }
937 
938 
xc5000_get_frequency(struct dvb_frontend * fe,u32 * freq)939 static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq)
940 {
941 	struct xc5000_priv *priv = fe->tuner_priv;
942 	dprintk(1, "%s()\n", __func__);
943 	*freq = priv->freq_hz;
944 	return 0;
945 }
946 
xc5000_get_if_frequency(struct dvb_frontend * fe,u32 * freq)947 static int xc5000_get_if_frequency(struct dvb_frontend *fe, u32 *freq)
948 {
949 	struct xc5000_priv *priv = fe->tuner_priv;
950 	dprintk(1, "%s()\n", __func__);
951 	*freq = priv->if_khz * 1000;
952 	return 0;
953 }
954 
xc5000_get_bandwidth(struct dvb_frontend * fe,u32 * bw)955 static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
956 {
957 	struct xc5000_priv *priv = fe->tuner_priv;
958 	dprintk(1, "%s()\n", __func__);
959 
960 	*bw = priv->bandwidth;
961 	return 0;
962 }
963 
xc5000_get_status(struct dvb_frontend * fe,u32 * status)964 static int xc5000_get_status(struct dvb_frontend *fe, u32 *status)
965 {
966 	struct xc5000_priv *priv = fe->tuner_priv;
967 	u16 lock_status = 0;
968 
969 	xc_get_lock_status(priv, &lock_status);
970 
971 	dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status);
972 
973 	*status = lock_status;
974 
975 	return 0;
976 }
977 
xc_load_fw_and_init_tuner(struct dvb_frontend * fe)978 static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe)
979 {
980 	struct xc5000_priv *priv = fe->tuner_priv;
981 	int ret = 0;
982 
983 	if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
984 		ret = xc5000_fwupload(fe);
985 		if (ret != XC_RESULT_SUCCESS)
986 			return ret;
987 	}
988 
989 	/* Start the tuner self-calibration process */
990 	ret |= xc_initialize(priv);
991 
992 	/* Wait for calibration to complete.
993 	 * We could continue but XC5000 will clock stretch subsequent
994 	 * I2C transactions until calibration is complete.  This way we
995 	 * don't have to rely on clock stretching working.
996 	 */
997 	xc_wait(100);
998 
999 	/* Default to "CABLE" mode */
1000 	ret |= xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE);
1001 
1002 	return ret;
1003 }
1004 
xc5000_sleep(struct dvb_frontend * fe)1005 static int xc5000_sleep(struct dvb_frontend *fe)
1006 {
1007 	int ret;
1008 
1009 	dprintk(1, "%s()\n", __func__);
1010 
1011 	/* Avoid firmware reload on slow devices */
1012 	if (no_poweroff)
1013 		return 0;
1014 
1015 	/* According to Xceive technical support, the "powerdown" register
1016 	   was removed in newer versions of the firmware.  The "supported"
1017 	   way to sleep the tuner is to pull the reset pin low for 10ms */
1018 	ret = xc5000_TunerReset(fe);
1019 	if (ret != XC_RESULT_SUCCESS) {
1020 		printk(KERN_ERR
1021 			"xc5000: %s() unable to shutdown tuner\n",
1022 			__func__);
1023 		return -EREMOTEIO;
1024 	} else
1025 		return XC_RESULT_SUCCESS;
1026 }
1027 
xc5000_init(struct dvb_frontend * fe)1028 static int xc5000_init(struct dvb_frontend *fe)
1029 {
1030 	struct xc5000_priv *priv = fe->tuner_priv;
1031 	dprintk(1, "%s()\n", __func__);
1032 
1033 	if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
1034 		printk(KERN_ERR "xc5000: Unable to initialise tuner\n");
1035 		return -EREMOTEIO;
1036 	}
1037 
1038 	if (debug)
1039 		xc_debug_dump(priv);
1040 
1041 	return 0;
1042 }
1043 
xc5000_release(struct dvb_frontend * fe)1044 static int xc5000_release(struct dvb_frontend *fe)
1045 {
1046 	struct xc5000_priv *priv = fe->tuner_priv;
1047 
1048 	dprintk(1, "%s()\n", __func__);
1049 
1050 	mutex_lock(&xc5000_list_mutex);
1051 
1052 	if (priv)
1053 		hybrid_tuner_release_state(priv);
1054 
1055 	mutex_unlock(&xc5000_list_mutex);
1056 
1057 	fe->tuner_priv = NULL;
1058 
1059 	return 0;
1060 }
1061 
xc5000_set_config(struct dvb_frontend * fe,void * priv_cfg)1062 static int xc5000_set_config(struct dvb_frontend *fe, void *priv_cfg)
1063 {
1064 	struct xc5000_priv *priv = fe->tuner_priv;
1065 	struct xc5000_config *p = priv_cfg;
1066 
1067 	dprintk(1, "%s()\n", __func__);
1068 
1069 	if (p->if_khz)
1070 		priv->if_khz = p->if_khz;
1071 
1072 	if (p->radio_input)
1073 		priv->radio_input = p->radio_input;
1074 
1075 	return 0;
1076 }
1077 
1078 
1079 static const struct dvb_tuner_ops xc5000_tuner_ops = {
1080 	.info = {
1081 		.name           = "Xceive XC5000",
1082 		.frequency_min  =    1000000,
1083 		.frequency_max  = 1023000000,
1084 		.frequency_step =      50000,
1085 	},
1086 
1087 	.release	   = xc5000_release,
1088 	.init		   = xc5000_init,
1089 	.sleep		   = xc5000_sleep,
1090 
1091 	.set_config	   = xc5000_set_config,
1092 	.set_params	   = xc5000_set_params,
1093 	.set_analog_params = xc5000_set_analog_params,
1094 	.get_frequency	   = xc5000_get_frequency,
1095 	.get_if_frequency  = xc5000_get_if_frequency,
1096 	.get_bandwidth	   = xc5000_get_bandwidth,
1097 	.get_status	   = xc5000_get_status
1098 };
1099 
xc5000_attach(struct dvb_frontend * fe,struct i2c_adapter * i2c,const struct xc5000_config * cfg)1100 struct dvb_frontend *xc5000_attach(struct dvb_frontend *fe,
1101 				   struct i2c_adapter *i2c,
1102 				   const struct xc5000_config *cfg)
1103 {
1104 	struct xc5000_priv *priv = NULL;
1105 	int instance;
1106 	u16 id = 0;
1107 
1108 	dprintk(1, "%s(%d-%04x)\n", __func__,
1109 		i2c ? i2c_adapter_id(i2c) : -1,
1110 		cfg ? cfg->i2c_address : -1);
1111 
1112 	mutex_lock(&xc5000_list_mutex);
1113 
1114 	instance = hybrid_tuner_request_state(struct xc5000_priv, priv,
1115 					      hybrid_tuner_instance_list,
1116 					      i2c, cfg->i2c_address, "xc5000");
1117 	switch (instance) {
1118 	case 0:
1119 		goto fail;
1120 		break;
1121 	case 1:
1122 		/* new tuner instance */
1123 		priv->bandwidth = 6000000;
1124 		fe->tuner_priv = priv;
1125 		break;
1126 	default:
1127 		/* existing tuner instance */
1128 		fe->tuner_priv = priv;
1129 		break;
1130 	}
1131 
1132 	if (priv->if_khz == 0) {
1133 		/* If the IF hasn't been set yet, use the value provided by
1134 		   the caller (occurs in hybrid devices where the analog
1135 		   call to xc5000_attach occurs before the digital side) */
1136 		priv->if_khz = cfg->if_khz;
1137 	}
1138 
1139 	if (priv->radio_input == 0)
1140 		priv->radio_input = cfg->radio_input;
1141 
1142 	/* Check if firmware has been loaded. It is possible that another
1143 	   instance of the driver has loaded the firmware.
1144 	 */
1145 	if (xc5000_readreg(priv, XREG_PRODUCT_ID, &id) != XC_RESULT_SUCCESS)
1146 		goto fail;
1147 
1148 	switch (id) {
1149 	case XC_PRODUCT_ID_FW_LOADED:
1150 		printk(KERN_INFO
1151 			"xc5000: Successfully identified at address 0x%02x\n",
1152 			cfg->i2c_address);
1153 		printk(KERN_INFO
1154 			"xc5000: Firmware has been loaded previously\n");
1155 		break;
1156 	case XC_PRODUCT_ID_FW_NOT_LOADED:
1157 		printk(KERN_INFO
1158 			"xc5000: Successfully identified at address 0x%02x\n",
1159 			cfg->i2c_address);
1160 		printk(KERN_INFO
1161 			"xc5000: Firmware has not been loaded previously\n");
1162 		break;
1163 	default:
1164 		printk(KERN_ERR
1165 			"xc5000: Device not found at addr 0x%02x (0x%x)\n",
1166 			cfg->i2c_address, id);
1167 		goto fail;
1168 	}
1169 
1170 	mutex_unlock(&xc5000_list_mutex);
1171 
1172 	memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops,
1173 		sizeof(struct dvb_tuner_ops));
1174 
1175 	return fe;
1176 fail:
1177 	mutex_unlock(&xc5000_list_mutex);
1178 
1179 	xc5000_release(fe);
1180 	return NULL;
1181 }
1182 EXPORT_SYMBOL(xc5000_attach);
1183 
1184 MODULE_AUTHOR("Steven Toth");
1185 MODULE_DESCRIPTION("Xceive xc5000 silicon tuner driver");
1186 MODULE_LICENSE("GPL");
1187