1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include "md.h"
28 #include "raid10.h"
29 #include "raid0.h"
30 #include "bitmap.h"
31 
32 /*
33  * RAID10 provides a combination of RAID0 and RAID1 functionality.
34  * The layout of data is defined by
35  *    chunk_size
36  *    raid_disks
37  *    near_copies (stored in low byte of layout)
38  *    far_copies (stored in second byte of layout)
39  *    far_offset (stored in bit 16 of layout )
40  *
41  * The data to be stored is divided into chunks using chunksize.
42  * Each device is divided into far_copies sections.
43  * In each section, chunks are laid out in a style similar to raid0, but
44  * near_copies copies of each chunk is stored (each on a different drive).
45  * The starting device for each section is offset near_copies from the starting
46  * device of the previous section.
47  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
48  * drive.
49  * near_copies and far_copies must be at least one, and their product is at most
50  * raid_disks.
51  *
52  * If far_offset is true, then the far_copies are handled a bit differently.
53  * The copies are still in different stripes, but instead of be very far apart
54  * on disk, there are adjacent stripes.
55  */
56 
57 /*
58  * Number of guaranteed r10bios in case of extreme VM load:
59  */
60 #define	NR_RAID10_BIOS 256
61 
62 /* When there are this many requests queue to be written by
63  * the raid10 thread, we become 'congested' to provide back-pressure
64  * for writeback.
65  */
66 static int max_queued_requests = 1024;
67 
68 static void allow_barrier(struct r10conf *conf);
69 static void lower_barrier(struct r10conf *conf);
70 static int enough(struct r10conf *conf, int ignore);
71 
r10bio_pool_alloc(gfp_t gfp_flags,void * data)72 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
73 {
74 	struct r10conf *conf = data;
75 	int size = offsetof(struct r10bio, devs[conf->copies]);
76 
77 	/* allocate a r10bio with room for raid_disks entries in the
78 	 * bios array */
79 	return kzalloc(size, gfp_flags);
80 }
81 
r10bio_pool_free(void * r10_bio,void * data)82 static void r10bio_pool_free(void *r10_bio, void *data)
83 {
84 	kfree(r10_bio);
85 }
86 
87 /* Maximum size of each resync request */
88 #define RESYNC_BLOCK_SIZE (64*1024)
89 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
90 /* amount of memory to reserve for resync requests */
91 #define RESYNC_WINDOW (1024*1024)
92 /* maximum number of concurrent requests, memory permitting */
93 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
94 
95 /*
96  * When performing a resync, we need to read and compare, so
97  * we need as many pages are there are copies.
98  * When performing a recovery, we need 2 bios, one for read,
99  * one for write (we recover only one drive per r10buf)
100  *
101  */
r10buf_pool_alloc(gfp_t gfp_flags,void * data)102 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
103 {
104 	struct r10conf *conf = data;
105 	struct page *page;
106 	struct r10bio *r10_bio;
107 	struct bio *bio;
108 	int i, j;
109 	int nalloc;
110 
111 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
112 	if (!r10_bio)
113 		return NULL;
114 
115 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
116 		nalloc = conf->copies; /* resync */
117 	else
118 		nalloc = 2; /* recovery */
119 
120 	/*
121 	 * Allocate bios.
122 	 */
123 	for (j = nalloc ; j-- ; ) {
124 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
125 		if (!bio)
126 			goto out_free_bio;
127 		r10_bio->devs[j].bio = bio;
128 		if (!conf->have_replacement)
129 			continue;
130 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
131 		if (!bio)
132 			goto out_free_bio;
133 		r10_bio->devs[j].repl_bio = bio;
134 	}
135 	/*
136 	 * Allocate RESYNC_PAGES data pages and attach them
137 	 * where needed.
138 	 */
139 	for (j = 0 ; j < nalloc; j++) {
140 		struct bio *rbio = r10_bio->devs[j].repl_bio;
141 		bio = r10_bio->devs[j].bio;
142 		for (i = 0; i < RESYNC_PAGES; i++) {
143 			if (j == 1 && !test_bit(MD_RECOVERY_SYNC,
144 						&conf->mddev->recovery)) {
145 				/* we can share bv_page's during recovery */
146 				struct bio *rbio = r10_bio->devs[0].bio;
147 				page = rbio->bi_io_vec[i].bv_page;
148 				get_page(page);
149 			} else
150 				page = alloc_page(gfp_flags);
151 			if (unlikely(!page))
152 				goto out_free_pages;
153 
154 			bio->bi_io_vec[i].bv_page = page;
155 			if (rbio)
156 				rbio->bi_io_vec[i].bv_page = page;
157 		}
158 	}
159 
160 	return r10_bio;
161 
162 out_free_pages:
163 	for ( ; i > 0 ; i--)
164 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
165 	while (j--)
166 		for (i = 0; i < RESYNC_PAGES ; i++)
167 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
168 	j = -1;
169 out_free_bio:
170 	while (++j < nalloc) {
171 		bio_put(r10_bio->devs[j].bio);
172 		if (r10_bio->devs[j].repl_bio)
173 			bio_put(r10_bio->devs[j].repl_bio);
174 	}
175 	r10bio_pool_free(r10_bio, conf);
176 	return NULL;
177 }
178 
r10buf_pool_free(void * __r10_bio,void * data)179 static void r10buf_pool_free(void *__r10_bio, void *data)
180 {
181 	int i;
182 	struct r10conf *conf = data;
183 	struct r10bio *r10bio = __r10_bio;
184 	int j;
185 
186 	for (j=0; j < conf->copies; j++) {
187 		struct bio *bio = r10bio->devs[j].bio;
188 		if (bio) {
189 			for (i = 0; i < RESYNC_PAGES; i++) {
190 				safe_put_page(bio->bi_io_vec[i].bv_page);
191 				bio->bi_io_vec[i].bv_page = NULL;
192 			}
193 			bio_put(bio);
194 		}
195 		bio = r10bio->devs[j].repl_bio;
196 		if (bio)
197 			bio_put(bio);
198 	}
199 	r10bio_pool_free(r10bio, conf);
200 }
201 
put_all_bios(struct r10conf * conf,struct r10bio * r10_bio)202 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
203 {
204 	int i;
205 
206 	for (i = 0; i < conf->copies; i++) {
207 		struct bio **bio = & r10_bio->devs[i].bio;
208 		if (!BIO_SPECIAL(*bio))
209 			bio_put(*bio);
210 		*bio = NULL;
211 		bio = &r10_bio->devs[i].repl_bio;
212 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
213 			bio_put(*bio);
214 		*bio = NULL;
215 	}
216 }
217 
free_r10bio(struct r10bio * r10_bio)218 static void free_r10bio(struct r10bio *r10_bio)
219 {
220 	struct r10conf *conf = r10_bio->mddev->private;
221 
222 	put_all_bios(conf, r10_bio);
223 	mempool_free(r10_bio, conf->r10bio_pool);
224 }
225 
put_buf(struct r10bio * r10_bio)226 static void put_buf(struct r10bio *r10_bio)
227 {
228 	struct r10conf *conf = r10_bio->mddev->private;
229 
230 	mempool_free(r10_bio, conf->r10buf_pool);
231 
232 	lower_barrier(conf);
233 }
234 
reschedule_retry(struct r10bio * r10_bio)235 static void reschedule_retry(struct r10bio *r10_bio)
236 {
237 	unsigned long flags;
238 	struct mddev *mddev = r10_bio->mddev;
239 	struct r10conf *conf = mddev->private;
240 
241 	spin_lock_irqsave(&conf->device_lock, flags);
242 	list_add(&r10_bio->retry_list, &conf->retry_list);
243 	conf->nr_queued ++;
244 	spin_unlock_irqrestore(&conf->device_lock, flags);
245 
246 	/* wake up frozen array... */
247 	wake_up(&conf->wait_barrier);
248 
249 	md_wakeup_thread(mddev->thread);
250 }
251 
252 /*
253  * raid_end_bio_io() is called when we have finished servicing a mirrored
254  * operation and are ready to return a success/failure code to the buffer
255  * cache layer.
256  */
raid_end_bio_io(struct r10bio * r10_bio)257 static void raid_end_bio_io(struct r10bio *r10_bio)
258 {
259 	struct bio *bio = r10_bio->master_bio;
260 	int done;
261 	struct r10conf *conf = r10_bio->mddev->private;
262 
263 	if (bio->bi_phys_segments) {
264 		unsigned long flags;
265 		spin_lock_irqsave(&conf->device_lock, flags);
266 		bio->bi_phys_segments--;
267 		done = (bio->bi_phys_segments == 0);
268 		spin_unlock_irqrestore(&conf->device_lock, flags);
269 	} else
270 		done = 1;
271 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
272 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
273 	if (done) {
274 		bio_endio(bio, 0);
275 		/*
276 		 * Wake up any possible resync thread that waits for the device
277 		 * to go idle.
278 		 */
279 		allow_barrier(conf);
280 	}
281 	free_r10bio(r10_bio);
282 }
283 
284 /*
285  * Update disk head position estimator based on IRQ completion info.
286  */
update_head_pos(int slot,struct r10bio * r10_bio)287 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
288 {
289 	struct r10conf *conf = r10_bio->mddev->private;
290 
291 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
292 		r10_bio->devs[slot].addr + (r10_bio->sectors);
293 }
294 
295 /*
296  * Find the disk number which triggered given bio
297  */
find_bio_disk(struct r10conf * conf,struct r10bio * r10_bio,struct bio * bio,int * slotp,int * replp)298 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
299 			 struct bio *bio, int *slotp, int *replp)
300 {
301 	int slot;
302 	int repl = 0;
303 
304 	for (slot = 0; slot < conf->copies; slot++) {
305 		if (r10_bio->devs[slot].bio == bio)
306 			break;
307 		if (r10_bio->devs[slot].repl_bio == bio) {
308 			repl = 1;
309 			break;
310 		}
311 	}
312 
313 	BUG_ON(slot == conf->copies);
314 	update_head_pos(slot, r10_bio);
315 
316 	if (slotp)
317 		*slotp = slot;
318 	if (replp)
319 		*replp = repl;
320 	return r10_bio->devs[slot].devnum;
321 }
322 
raid10_end_read_request(struct bio * bio,int error)323 static void raid10_end_read_request(struct bio *bio, int error)
324 {
325 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
326 	struct r10bio *r10_bio = bio->bi_private;
327 	int slot, dev;
328 	struct md_rdev *rdev;
329 	struct r10conf *conf = r10_bio->mddev->private;
330 
331 
332 	slot = r10_bio->read_slot;
333 	dev = r10_bio->devs[slot].devnum;
334 	rdev = r10_bio->devs[slot].rdev;
335 	/*
336 	 * this branch is our 'one mirror IO has finished' event handler:
337 	 */
338 	update_head_pos(slot, r10_bio);
339 
340 	if (uptodate) {
341 		/*
342 		 * Set R10BIO_Uptodate in our master bio, so that
343 		 * we will return a good error code to the higher
344 		 * levels even if IO on some other mirrored buffer fails.
345 		 *
346 		 * The 'master' represents the composite IO operation to
347 		 * user-side. So if something waits for IO, then it will
348 		 * wait for the 'master' bio.
349 		 */
350 		set_bit(R10BIO_Uptodate, &r10_bio->state);
351 	} else {
352 		/* If all other devices that store this block have
353 		 * failed, we want to return the error upwards rather
354 		 * than fail the last device.  Here we redefine
355 		 * "uptodate" to mean "Don't want to retry"
356 		 */
357 		unsigned long flags;
358 		spin_lock_irqsave(&conf->device_lock, flags);
359 		if (!enough(conf, rdev->raid_disk))
360 			uptodate = 1;
361 		spin_unlock_irqrestore(&conf->device_lock, flags);
362 	}
363 	if (uptodate) {
364 		raid_end_bio_io(r10_bio);
365 		rdev_dec_pending(rdev, conf->mddev);
366 	} else {
367 		/*
368 		 * oops, read error - keep the refcount on the rdev
369 		 */
370 		char b[BDEVNAME_SIZE];
371 		printk_ratelimited(KERN_ERR
372 				   "md/raid10:%s: %s: rescheduling sector %llu\n",
373 				   mdname(conf->mddev),
374 				   bdevname(rdev->bdev, b),
375 				   (unsigned long long)r10_bio->sector);
376 		set_bit(R10BIO_ReadError, &r10_bio->state);
377 		reschedule_retry(r10_bio);
378 	}
379 }
380 
close_write(struct r10bio * r10_bio)381 static void close_write(struct r10bio *r10_bio)
382 {
383 	/* clear the bitmap if all writes complete successfully */
384 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
385 			r10_bio->sectors,
386 			!test_bit(R10BIO_Degraded, &r10_bio->state),
387 			0);
388 	md_write_end(r10_bio->mddev);
389 }
390 
one_write_done(struct r10bio * r10_bio)391 static void one_write_done(struct r10bio *r10_bio)
392 {
393 	if (atomic_dec_and_test(&r10_bio->remaining)) {
394 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
395 			reschedule_retry(r10_bio);
396 		else {
397 			close_write(r10_bio);
398 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
399 				reschedule_retry(r10_bio);
400 			else
401 				raid_end_bio_io(r10_bio);
402 		}
403 	}
404 }
405 
raid10_end_write_request(struct bio * bio,int error)406 static void raid10_end_write_request(struct bio *bio, int error)
407 {
408 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
409 	struct r10bio *r10_bio = bio->bi_private;
410 	int dev;
411 	int dec_rdev = 1;
412 	struct r10conf *conf = r10_bio->mddev->private;
413 	int slot, repl;
414 	struct md_rdev *rdev = NULL;
415 
416 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
417 
418 	if (repl)
419 		rdev = conf->mirrors[dev].replacement;
420 	if (!rdev) {
421 		smp_rmb();
422 		repl = 0;
423 		rdev = conf->mirrors[dev].rdev;
424 	}
425 	/*
426 	 * this branch is our 'one mirror IO has finished' event handler:
427 	 */
428 	if (!uptodate) {
429 		if (repl)
430 			/* Never record new bad blocks to replacement,
431 			 * just fail it.
432 			 */
433 			md_error(rdev->mddev, rdev);
434 		else {
435 			set_bit(WriteErrorSeen,	&rdev->flags);
436 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
437 				set_bit(MD_RECOVERY_NEEDED,
438 					&rdev->mddev->recovery);
439 			set_bit(R10BIO_WriteError, &r10_bio->state);
440 			dec_rdev = 0;
441 		}
442 	} else {
443 		/*
444 		 * Set R10BIO_Uptodate in our master bio, so that
445 		 * we will return a good error code for to the higher
446 		 * levels even if IO on some other mirrored buffer fails.
447 		 *
448 		 * The 'master' represents the composite IO operation to
449 		 * user-side. So if something waits for IO, then it will
450 		 * wait for the 'master' bio.
451 		 */
452 		sector_t first_bad;
453 		int bad_sectors;
454 
455 		set_bit(R10BIO_Uptodate, &r10_bio->state);
456 
457 		/* Maybe we can clear some bad blocks. */
458 		if (is_badblock(rdev,
459 				r10_bio->devs[slot].addr,
460 				r10_bio->sectors,
461 				&first_bad, &bad_sectors)) {
462 			bio_put(bio);
463 			if (repl)
464 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
465 			else
466 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
467 			dec_rdev = 0;
468 			set_bit(R10BIO_MadeGood, &r10_bio->state);
469 		}
470 	}
471 
472 	/*
473 	 *
474 	 * Let's see if all mirrored write operations have finished
475 	 * already.
476 	 */
477 	one_write_done(r10_bio);
478 	if (dec_rdev)
479 		rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
480 }
481 
482 /*
483  * RAID10 layout manager
484  * As well as the chunksize and raid_disks count, there are two
485  * parameters: near_copies and far_copies.
486  * near_copies * far_copies must be <= raid_disks.
487  * Normally one of these will be 1.
488  * If both are 1, we get raid0.
489  * If near_copies == raid_disks, we get raid1.
490  *
491  * Chunks are laid out in raid0 style with near_copies copies of the
492  * first chunk, followed by near_copies copies of the next chunk and
493  * so on.
494  * If far_copies > 1, then after 1/far_copies of the array has been assigned
495  * as described above, we start again with a device offset of near_copies.
496  * So we effectively have another copy of the whole array further down all
497  * the drives, but with blocks on different drives.
498  * With this layout, and block is never stored twice on the one device.
499  *
500  * raid10_find_phys finds the sector offset of a given virtual sector
501  * on each device that it is on.
502  *
503  * raid10_find_virt does the reverse mapping, from a device and a
504  * sector offset to a virtual address
505  */
506 
raid10_find_phys(struct r10conf * conf,struct r10bio * r10bio)507 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
508 {
509 	int n,f;
510 	sector_t sector;
511 	sector_t chunk;
512 	sector_t stripe;
513 	int dev;
514 
515 	int slot = 0;
516 
517 	/* now calculate first sector/dev */
518 	chunk = r10bio->sector >> conf->chunk_shift;
519 	sector = r10bio->sector & conf->chunk_mask;
520 
521 	chunk *= conf->near_copies;
522 	stripe = chunk;
523 	dev = sector_div(stripe, conf->raid_disks);
524 	if (conf->far_offset)
525 		stripe *= conf->far_copies;
526 
527 	sector += stripe << conf->chunk_shift;
528 
529 	/* and calculate all the others */
530 	for (n=0; n < conf->near_copies; n++) {
531 		int d = dev;
532 		sector_t s = sector;
533 		r10bio->devs[slot].addr = sector;
534 		r10bio->devs[slot].devnum = d;
535 		slot++;
536 
537 		for (f = 1; f < conf->far_copies; f++) {
538 			d += conf->near_copies;
539 			if (d >= conf->raid_disks)
540 				d -= conf->raid_disks;
541 			s += conf->stride;
542 			r10bio->devs[slot].devnum = d;
543 			r10bio->devs[slot].addr = s;
544 			slot++;
545 		}
546 		dev++;
547 		if (dev >= conf->raid_disks) {
548 			dev = 0;
549 			sector += (conf->chunk_mask + 1);
550 		}
551 	}
552 	BUG_ON(slot != conf->copies);
553 }
554 
raid10_find_virt(struct r10conf * conf,sector_t sector,int dev)555 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
556 {
557 	sector_t offset, chunk, vchunk;
558 
559 	offset = sector & conf->chunk_mask;
560 	if (conf->far_offset) {
561 		int fc;
562 		chunk = sector >> conf->chunk_shift;
563 		fc = sector_div(chunk, conf->far_copies);
564 		dev -= fc * conf->near_copies;
565 		if (dev < 0)
566 			dev += conf->raid_disks;
567 	} else {
568 		while (sector >= conf->stride) {
569 			sector -= conf->stride;
570 			if (dev < conf->near_copies)
571 				dev += conf->raid_disks - conf->near_copies;
572 			else
573 				dev -= conf->near_copies;
574 		}
575 		chunk = sector >> conf->chunk_shift;
576 	}
577 	vchunk = chunk * conf->raid_disks + dev;
578 	sector_div(vchunk, conf->near_copies);
579 	return (vchunk << conf->chunk_shift) + offset;
580 }
581 
582 /**
583  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
584  *	@q: request queue
585  *	@bvm: properties of new bio
586  *	@biovec: the request that could be merged to it.
587  *
588  *	Return amount of bytes we can accept at this offset
589  *      If near_copies == raid_disk, there are no striping issues,
590  *      but in that case, the function isn't called at all.
591  */
raid10_mergeable_bvec(struct request_queue * q,struct bvec_merge_data * bvm,struct bio_vec * biovec)592 static int raid10_mergeable_bvec(struct request_queue *q,
593 				 struct bvec_merge_data *bvm,
594 				 struct bio_vec *biovec)
595 {
596 	struct mddev *mddev = q->queuedata;
597 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
598 	int max;
599 	unsigned int chunk_sectors = mddev->chunk_sectors;
600 	unsigned int bio_sectors = bvm->bi_size >> 9;
601 
602 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
603 	if (max < 0) max = 0; /* bio_add cannot handle a negative return */
604 	if (max <= biovec->bv_len && bio_sectors == 0)
605 		return biovec->bv_len;
606 	else
607 		return max;
608 }
609 
610 /*
611  * This routine returns the disk from which the requested read should
612  * be done. There is a per-array 'next expected sequential IO' sector
613  * number - if this matches on the next IO then we use the last disk.
614  * There is also a per-disk 'last know head position' sector that is
615  * maintained from IRQ contexts, both the normal and the resync IO
616  * completion handlers update this position correctly. If there is no
617  * perfect sequential match then we pick the disk whose head is closest.
618  *
619  * If there are 2 mirrors in the same 2 devices, performance degrades
620  * because position is mirror, not device based.
621  *
622  * The rdev for the device selected will have nr_pending incremented.
623  */
624 
625 /*
626  * FIXME: possibly should rethink readbalancing and do it differently
627  * depending on near_copies / far_copies geometry.
628  */
read_balance(struct r10conf * conf,struct r10bio * r10_bio,int * max_sectors)629 static struct md_rdev *read_balance(struct r10conf *conf,
630 				    struct r10bio *r10_bio,
631 				    int *max_sectors)
632 {
633 	const sector_t this_sector = r10_bio->sector;
634 	int disk, slot;
635 	int sectors = r10_bio->sectors;
636 	int best_good_sectors;
637 	sector_t new_distance, best_dist;
638 	struct md_rdev *rdev, *best_rdev;
639 	int do_balance;
640 	int best_slot;
641 
642 	raid10_find_phys(conf, r10_bio);
643 	rcu_read_lock();
644 retry:
645 	sectors = r10_bio->sectors;
646 	best_slot = -1;
647 	best_rdev = NULL;
648 	best_dist = MaxSector;
649 	best_good_sectors = 0;
650 	do_balance = 1;
651 	/*
652 	 * Check if we can balance. We can balance on the whole
653 	 * device if no resync is going on (recovery is ok), or below
654 	 * the resync window. We take the first readable disk when
655 	 * above the resync window.
656 	 */
657 	if (conf->mddev->recovery_cp < MaxSector
658 	    && (this_sector + sectors >= conf->next_resync))
659 		do_balance = 0;
660 
661 	for (slot = 0; slot < conf->copies ; slot++) {
662 		sector_t first_bad;
663 		int bad_sectors;
664 		sector_t dev_sector;
665 
666 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
667 			continue;
668 		disk = r10_bio->devs[slot].devnum;
669 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
670 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
671 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
672 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
673 		if (rdev == NULL)
674 			continue;
675 		if (test_bit(Faulty, &rdev->flags))
676 			continue;
677 		if (!test_bit(In_sync, &rdev->flags) &&
678 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
679 			continue;
680 
681 		dev_sector = r10_bio->devs[slot].addr;
682 		if (is_badblock(rdev, dev_sector, sectors,
683 				&first_bad, &bad_sectors)) {
684 			if (best_dist < MaxSector)
685 				/* Already have a better slot */
686 				continue;
687 			if (first_bad <= dev_sector) {
688 				/* Cannot read here.  If this is the
689 				 * 'primary' device, then we must not read
690 				 * beyond 'bad_sectors' from another device.
691 				 */
692 				bad_sectors -= (dev_sector - first_bad);
693 				if (!do_balance && sectors > bad_sectors)
694 					sectors = bad_sectors;
695 				if (best_good_sectors > sectors)
696 					best_good_sectors = sectors;
697 			} else {
698 				sector_t good_sectors =
699 					first_bad - dev_sector;
700 				if (good_sectors > best_good_sectors) {
701 					best_good_sectors = good_sectors;
702 					best_slot = slot;
703 					best_rdev = rdev;
704 				}
705 				if (!do_balance)
706 					/* Must read from here */
707 					break;
708 			}
709 			continue;
710 		} else
711 			best_good_sectors = sectors;
712 
713 		if (!do_balance)
714 			break;
715 
716 		/* This optimisation is debatable, and completely destroys
717 		 * sequential read speed for 'far copies' arrays.  So only
718 		 * keep it for 'near' arrays, and review those later.
719 		 */
720 		if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending))
721 			break;
722 
723 		/* for far > 1 always use the lowest address */
724 		if (conf->far_copies > 1)
725 			new_distance = r10_bio->devs[slot].addr;
726 		else
727 			new_distance = abs(r10_bio->devs[slot].addr -
728 					   conf->mirrors[disk].head_position);
729 		if (new_distance < best_dist) {
730 			best_dist = new_distance;
731 			best_slot = slot;
732 			best_rdev = rdev;
733 		}
734 	}
735 	if (slot >= conf->copies) {
736 		slot = best_slot;
737 		rdev = best_rdev;
738 	}
739 
740 	if (slot >= 0) {
741 		atomic_inc(&rdev->nr_pending);
742 		if (test_bit(Faulty, &rdev->flags)) {
743 			/* Cannot risk returning a device that failed
744 			 * before we inc'ed nr_pending
745 			 */
746 			rdev_dec_pending(rdev, conf->mddev);
747 			goto retry;
748 		}
749 		r10_bio->read_slot = slot;
750 	} else
751 		rdev = NULL;
752 	rcu_read_unlock();
753 	*max_sectors = best_good_sectors;
754 
755 	return rdev;
756 }
757 
raid10_congested(void * data,int bits)758 static int raid10_congested(void *data, int bits)
759 {
760 	struct mddev *mddev = data;
761 	struct r10conf *conf = mddev->private;
762 	int i, ret = 0;
763 
764 	if ((bits & (1 << BDI_async_congested)) &&
765 	    conf->pending_count >= max_queued_requests)
766 		return 1;
767 
768 	if (mddev_congested(mddev, bits))
769 		return 1;
770 	rcu_read_lock();
771 	for (i = 0; i < conf->raid_disks && ret == 0; i++) {
772 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
773 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
774 			struct request_queue *q = bdev_get_queue(rdev->bdev);
775 
776 			ret |= bdi_congested(&q->backing_dev_info, bits);
777 		}
778 	}
779 	rcu_read_unlock();
780 	return ret;
781 }
782 
flush_pending_writes(struct r10conf * conf)783 static void flush_pending_writes(struct r10conf *conf)
784 {
785 	/* Any writes that have been queued but are awaiting
786 	 * bitmap updates get flushed here.
787 	 */
788 	spin_lock_irq(&conf->device_lock);
789 
790 	if (conf->pending_bio_list.head) {
791 		struct bio *bio;
792 		bio = bio_list_get(&conf->pending_bio_list);
793 		conf->pending_count = 0;
794 		spin_unlock_irq(&conf->device_lock);
795 		/* flush any pending bitmap writes to disk
796 		 * before proceeding w/ I/O */
797 		bitmap_unplug(conf->mddev->bitmap);
798 		wake_up(&conf->wait_barrier);
799 
800 		while (bio) { /* submit pending writes */
801 			struct bio *next = bio->bi_next;
802 			bio->bi_next = NULL;
803 			generic_make_request(bio);
804 			bio = next;
805 		}
806 	} else
807 		spin_unlock_irq(&conf->device_lock);
808 }
809 
810 /* Barriers....
811  * Sometimes we need to suspend IO while we do something else,
812  * either some resync/recovery, or reconfigure the array.
813  * To do this we raise a 'barrier'.
814  * The 'barrier' is a counter that can be raised multiple times
815  * to count how many activities are happening which preclude
816  * normal IO.
817  * We can only raise the barrier if there is no pending IO.
818  * i.e. if nr_pending == 0.
819  * We choose only to raise the barrier if no-one is waiting for the
820  * barrier to go down.  This means that as soon as an IO request
821  * is ready, no other operations which require a barrier will start
822  * until the IO request has had a chance.
823  *
824  * So: regular IO calls 'wait_barrier'.  When that returns there
825  *    is no backgroup IO happening,  It must arrange to call
826  *    allow_barrier when it has finished its IO.
827  * backgroup IO calls must call raise_barrier.  Once that returns
828  *    there is no normal IO happeing.  It must arrange to call
829  *    lower_barrier when the particular background IO completes.
830  */
831 
raise_barrier(struct r10conf * conf,int force)832 static void raise_barrier(struct r10conf *conf, int force)
833 {
834 	BUG_ON(force && !conf->barrier);
835 	spin_lock_irq(&conf->resync_lock);
836 
837 	/* Wait until no block IO is waiting (unless 'force') */
838 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
839 			    conf->resync_lock, );
840 
841 	/* block any new IO from starting */
842 	conf->barrier++;
843 
844 	/* Now wait for all pending IO to complete */
845 	wait_event_lock_irq(conf->wait_barrier,
846 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
847 			    conf->resync_lock, );
848 
849 	spin_unlock_irq(&conf->resync_lock);
850 }
851 
lower_barrier(struct r10conf * conf)852 static void lower_barrier(struct r10conf *conf)
853 {
854 	unsigned long flags;
855 	spin_lock_irqsave(&conf->resync_lock, flags);
856 	conf->barrier--;
857 	spin_unlock_irqrestore(&conf->resync_lock, flags);
858 	wake_up(&conf->wait_barrier);
859 }
860 
wait_barrier(struct r10conf * conf)861 static void wait_barrier(struct r10conf *conf)
862 {
863 	spin_lock_irq(&conf->resync_lock);
864 	if (conf->barrier) {
865 		conf->nr_waiting++;
866 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
867 				    conf->resync_lock,
868 				    );
869 		conf->nr_waiting--;
870 	}
871 	conf->nr_pending++;
872 	spin_unlock_irq(&conf->resync_lock);
873 }
874 
allow_barrier(struct r10conf * conf)875 static void allow_barrier(struct r10conf *conf)
876 {
877 	unsigned long flags;
878 	spin_lock_irqsave(&conf->resync_lock, flags);
879 	conf->nr_pending--;
880 	spin_unlock_irqrestore(&conf->resync_lock, flags);
881 	wake_up(&conf->wait_barrier);
882 }
883 
freeze_array(struct r10conf * conf)884 static void freeze_array(struct r10conf *conf)
885 {
886 	/* stop syncio and normal IO and wait for everything to
887 	 * go quiet.
888 	 * We increment barrier and nr_waiting, and then
889 	 * wait until nr_pending match nr_queued+1
890 	 * This is called in the context of one normal IO request
891 	 * that has failed. Thus any sync request that might be pending
892 	 * will be blocked by nr_pending, and we need to wait for
893 	 * pending IO requests to complete or be queued for re-try.
894 	 * Thus the number queued (nr_queued) plus this request (1)
895 	 * must match the number of pending IOs (nr_pending) before
896 	 * we continue.
897 	 */
898 	spin_lock_irq(&conf->resync_lock);
899 	conf->barrier++;
900 	conf->nr_waiting++;
901 	wait_event_lock_irq(conf->wait_barrier,
902 			    conf->nr_pending == conf->nr_queued+1,
903 			    conf->resync_lock,
904 			    flush_pending_writes(conf));
905 
906 	spin_unlock_irq(&conf->resync_lock);
907 }
908 
unfreeze_array(struct r10conf * conf)909 static void unfreeze_array(struct r10conf *conf)
910 {
911 	/* reverse the effect of the freeze */
912 	spin_lock_irq(&conf->resync_lock);
913 	conf->barrier--;
914 	conf->nr_waiting--;
915 	wake_up(&conf->wait_barrier);
916 	spin_unlock_irq(&conf->resync_lock);
917 }
918 
make_request(struct mddev * mddev,struct bio * bio)919 static void make_request(struct mddev *mddev, struct bio * bio)
920 {
921 	struct r10conf *conf = mddev->private;
922 	struct r10bio *r10_bio;
923 	struct bio *read_bio;
924 	int i;
925 	int chunk_sects = conf->chunk_mask + 1;
926 	const int rw = bio_data_dir(bio);
927 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
928 	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
929 	unsigned long flags;
930 	struct md_rdev *blocked_rdev;
931 	int plugged;
932 	int sectors_handled;
933 	int max_sectors;
934 
935 	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
936 		md_flush_request(mddev, bio);
937 		return;
938 	}
939 
940 	/* If this request crosses a chunk boundary, we need to
941 	 * split it.  This will only happen for 1 PAGE (or less) requests.
942 	 */
943 	if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
944 		      > chunk_sects &&
945 		    conf->near_copies < conf->raid_disks)) {
946 		struct bio_pair *bp;
947 		/* Sanity check -- queue functions should prevent this happening */
948 		if (bio->bi_vcnt != 1 ||
949 		    bio->bi_idx != 0)
950 			goto bad_map;
951 		/* This is a one page bio that upper layers
952 		 * refuse to split for us, so we need to split it.
953 		 */
954 		bp = bio_split(bio,
955 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
956 
957 		/* Each of these 'make_request' calls will call 'wait_barrier'.
958 		 * If the first succeeds but the second blocks due to the resync
959 		 * thread raising the barrier, we will deadlock because the
960 		 * IO to the underlying device will be queued in generic_make_request
961 		 * and will never complete, so will never reduce nr_pending.
962 		 * So increment nr_waiting here so no new raise_barriers will
963 		 * succeed, and so the second wait_barrier cannot block.
964 		 */
965 		spin_lock_irq(&conf->resync_lock);
966 		conf->nr_waiting++;
967 		spin_unlock_irq(&conf->resync_lock);
968 
969 		make_request(mddev, &bp->bio1);
970 		make_request(mddev, &bp->bio2);
971 
972 		spin_lock_irq(&conf->resync_lock);
973 		conf->nr_waiting--;
974 		wake_up(&conf->wait_barrier);
975 		spin_unlock_irq(&conf->resync_lock);
976 
977 		bio_pair_release(bp);
978 		return;
979 	bad_map:
980 		printk("md/raid10:%s: make_request bug: can't convert block across chunks"
981 		       " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
982 		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
983 
984 		bio_io_error(bio);
985 		return;
986 	}
987 
988 	md_write_start(mddev, bio);
989 
990 	/*
991 	 * Register the new request and wait if the reconstruction
992 	 * thread has put up a bar for new requests.
993 	 * Continue immediately if no resync is active currently.
994 	 */
995 	wait_barrier(conf);
996 
997 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
998 
999 	r10_bio->master_bio = bio;
1000 	r10_bio->sectors = bio->bi_size >> 9;
1001 
1002 	r10_bio->mddev = mddev;
1003 	r10_bio->sector = bio->bi_sector;
1004 	r10_bio->state = 0;
1005 
1006 	/* We might need to issue multiple reads to different
1007 	 * devices if there are bad blocks around, so we keep
1008 	 * track of the number of reads in bio->bi_phys_segments.
1009 	 * If this is 0, there is only one r10_bio and no locking
1010 	 * will be needed when the request completes.  If it is
1011 	 * non-zero, then it is the number of not-completed requests.
1012 	 */
1013 	bio->bi_phys_segments = 0;
1014 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1015 
1016 	if (rw == READ) {
1017 		/*
1018 		 * read balancing logic:
1019 		 */
1020 		struct md_rdev *rdev;
1021 		int slot;
1022 
1023 read_again:
1024 		rdev = read_balance(conf, r10_bio, &max_sectors);
1025 		if (!rdev) {
1026 			raid_end_bio_io(r10_bio);
1027 			return;
1028 		}
1029 		slot = r10_bio->read_slot;
1030 
1031 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1032 		md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1033 			    max_sectors);
1034 
1035 		r10_bio->devs[slot].bio = read_bio;
1036 		r10_bio->devs[slot].rdev = rdev;
1037 
1038 		read_bio->bi_sector = r10_bio->devs[slot].addr +
1039 			rdev->data_offset;
1040 		read_bio->bi_bdev = rdev->bdev;
1041 		read_bio->bi_end_io = raid10_end_read_request;
1042 		read_bio->bi_rw = READ | do_sync;
1043 		read_bio->bi_private = r10_bio;
1044 
1045 		if (max_sectors < r10_bio->sectors) {
1046 			/* Could not read all from this device, so we will
1047 			 * need another r10_bio.
1048 			 */
1049 			sectors_handled = (r10_bio->sectors + max_sectors
1050 					   - bio->bi_sector);
1051 			r10_bio->sectors = max_sectors;
1052 			spin_lock_irq(&conf->device_lock);
1053 			if (bio->bi_phys_segments == 0)
1054 				bio->bi_phys_segments = 2;
1055 			else
1056 				bio->bi_phys_segments++;
1057 			spin_unlock(&conf->device_lock);
1058 			/* Cannot call generic_make_request directly
1059 			 * as that will be queued in __generic_make_request
1060 			 * and subsequent mempool_alloc might block
1061 			 * waiting for it.  so hand bio over to raid10d.
1062 			 */
1063 			reschedule_retry(r10_bio);
1064 
1065 			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1066 
1067 			r10_bio->master_bio = bio;
1068 			r10_bio->sectors = ((bio->bi_size >> 9)
1069 					    - sectors_handled);
1070 			r10_bio->state = 0;
1071 			r10_bio->mddev = mddev;
1072 			r10_bio->sector = bio->bi_sector + sectors_handled;
1073 			goto read_again;
1074 		} else
1075 			generic_make_request(read_bio);
1076 		return;
1077 	}
1078 
1079 	/*
1080 	 * WRITE:
1081 	 */
1082 	if (conf->pending_count >= max_queued_requests) {
1083 		md_wakeup_thread(mddev->thread);
1084 		wait_event(conf->wait_barrier,
1085 			   conf->pending_count < max_queued_requests);
1086 	}
1087 	/* first select target devices under rcu_lock and
1088 	 * inc refcount on their rdev.  Record them by setting
1089 	 * bios[x] to bio
1090 	 * If there are known/acknowledged bad blocks on any device
1091 	 * on which we have seen a write error, we want to avoid
1092 	 * writing to those blocks.  This potentially requires several
1093 	 * writes to write around the bad blocks.  Each set of writes
1094 	 * gets its own r10_bio with a set of bios attached.  The number
1095 	 * of r10_bios is recored in bio->bi_phys_segments just as with
1096 	 * the read case.
1097 	 */
1098 	plugged = mddev_check_plugged(mddev);
1099 
1100 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1101 	raid10_find_phys(conf, r10_bio);
1102 retry_write:
1103 	blocked_rdev = NULL;
1104 	rcu_read_lock();
1105 	max_sectors = r10_bio->sectors;
1106 
1107 	for (i = 0;  i < conf->copies; i++) {
1108 		int d = r10_bio->devs[i].devnum;
1109 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1110 		struct md_rdev *rrdev = rcu_dereference(
1111 			conf->mirrors[d].replacement);
1112 		if (rdev == rrdev)
1113 			rrdev = NULL;
1114 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1115 			atomic_inc(&rdev->nr_pending);
1116 			blocked_rdev = rdev;
1117 			break;
1118 		}
1119 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1120 			atomic_inc(&rrdev->nr_pending);
1121 			blocked_rdev = rrdev;
1122 			break;
1123 		}
1124 		if (rrdev && test_bit(Faulty, &rrdev->flags))
1125 			rrdev = NULL;
1126 
1127 		r10_bio->devs[i].bio = NULL;
1128 		r10_bio->devs[i].repl_bio = NULL;
1129 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1130 			set_bit(R10BIO_Degraded, &r10_bio->state);
1131 			continue;
1132 		}
1133 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1134 			sector_t first_bad;
1135 			sector_t dev_sector = r10_bio->devs[i].addr;
1136 			int bad_sectors;
1137 			int is_bad;
1138 
1139 			is_bad = is_badblock(rdev, dev_sector,
1140 					     max_sectors,
1141 					     &first_bad, &bad_sectors);
1142 			if (is_bad < 0) {
1143 				/* Mustn't write here until the bad block
1144 				 * is acknowledged
1145 				 */
1146 				atomic_inc(&rdev->nr_pending);
1147 				set_bit(BlockedBadBlocks, &rdev->flags);
1148 				blocked_rdev = rdev;
1149 				break;
1150 			}
1151 			if (is_bad && first_bad <= dev_sector) {
1152 				/* Cannot write here at all */
1153 				bad_sectors -= (dev_sector - first_bad);
1154 				if (bad_sectors < max_sectors)
1155 					/* Mustn't write more than bad_sectors
1156 					 * to other devices yet
1157 					 */
1158 					max_sectors = bad_sectors;
1159 				/* We don't set R10BIO_Degraded as that
1160 				 * only applies if the disk is missing,
1161 				 * so it might be re-added, and we want to
1162 				 * know to recover this chunk.
1163 				 * In this case the device is here, and the
1164 				 * fact that this chunk is not in-sync is
1165 				 * recorded in the bad block log.
1166 				 */
1167 				continue;
1168 			}
1169 			if (is_bad) {
1170 				int good_sectors = first_bad - dev_sector;
1171 				if (good_sectors < max_sectors)
1172 					max_sectors = good_sectors;
1173 			}
1174 		}
1175 		r10_bio->devs[i].bio = bio;
1176 		atomic_inc(&rdev->nr_pending);
1177 		if (rrdev) {
1178 			r10_bio->devs[i].repl_bio = bio;
1179 			atomic_inc(&rrdev->nr_pending);
1180 		}
1181 	}
1182 	rcu_read_unlock();
1183 
1184 	if (unlikely(blocked_rdev)) {
1185 		/* Have to wait for this device to get unblocked, then retry */
1186 		int j;
1187 		int d;
1188 
1189 		for (j = 0; j < i; j++) {
1190 			if (r10_bio->devs[j].bio) {
1191 				d = r10_bio->devs[j].devnum;
1192 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1193 			}
1194 			if (r10_bio->devs[j].repl_bio) {
1195 				struct md_rdev *rdev;
1196 				d = r10_bio->devs[j].devnum;
1197 				rdev = conf->mirrors[d].replacement;
1198 				if (!rdev) {
1199 					/* Race with remove_disk */
1200 					smp_mb();
1201 					rdev = conf->mirrors[d].rdev;
1202 				}
1203 				rdev_dec_pending(rdev, mddev);
1204 			}
1205 		}
1206 		allow_barrier(conf);
1207 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1208 		wait_barrier(conf);
1209 		goto retry_write;
1210 	}
1211 
1212 	if (max_sectors < r10_bio->sectors) {
1213 		/* We are splitting this into multiple parts, so
1214 		 * we need to prepare for allocating another r10_bio.
1215 		 */
1216 		r10_bio->sectors = max_sectors;
1217 		spin_lock_irq(&conf->device_lock);
1218 		if (bio->bi_phys_segments == 0)
1219 			bio->bi_phys_segments = 2;
1220 		else
1221 			bio->bi_phys_segments++;
1222 		spin_unlock_irq(&conf->device_lock);
1223 	}
1224 	sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1225 
1226 	atomic_set(&r10_bio->remaining, 1);
1227 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1228 
1229 	for (i = 0; i < conf->copies; i++) {
1230 		struct bio *mbio;
1231 		int d = r10_bio->devs[i].devnum;
1232 		if (!r10_bio->devs[i].bio)
1233 			continue;
1234 
1235 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1236 		md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1237 			    max_sectors);
1238 		r10_bio->devs[i].bio = mbio;
1239 
1240 		mbio->bi_sector	= (r10_bio->devs[i].addr+
1241 				   conf->mirrors[d].rdev->data_offset);
1242 		mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1243 		mbio->bi_end_io	= raid10_end_write_request;
1244 		mbio->bi_rw = WRITE | do_sync | do_fua;
1245 		mbio->bi_private = r10_bio;
1246 
1247 		atomic_inc(&r10_bio->remaining);
1248 		spin_lock_irqsave(&conf->device_lock, flags);
1249 		bio_list_add(&conf->pending_bio_list, mbio);
1250 		conf->pending_count++;
1251 		spin_unlock_irqrestore(&conf->device_lock, flags);
1252 
1253 		if (!r10_bio->devs[i].repl_bio)
1254 			continue;
1255 
1256 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1257 		md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1258 			    max_sectors);
1259 		r10_bio->devs[i].repl_bio = mbio;
1260 
1261 		/* We are actively writing to the original device
1262 		 * so it cannot disappear, so the replacement cannot
1263 		 * become NULL here
1264 		 */
1265 		mbio->bi_sector	= (r10_bio->devs[i].addr+
1266 				   conf->mirrors[d].replacement->data_offset);
1267 		mbio->bi_bdev = conf->mirrors[d].replacement->bdev;
1268 		mbio->bi_end_io	= raid10_end_write_request;
1269 		mbio->bi_rw = WRITE | do_sync | do_fua;
1270 		mbio->bi_private = r10_bio;
1271 
1272 		atomic_inc(&r10_bio->remaining);
1273 		spin_lock_irqsave(&conf->device_lock, flags);
1274 		bio_list_add(&conf->pending_bio_list, mbio);
1275 		conf->pending_count++;
1276 		spin_unlock_irqrestore(&conf->device_lock, flags);
1277 	}
1278 
1279 	/* Don't remove the bias on 'remaining' (one_write_done) until
1280 	 * after checking if we need to go around again.
1281 	 */
1282 
1283 	if (sectors_handled < (bio->bi_size >> 9)) {
1284 		one_write_done(r10_bio);
1285 		/* We need another r10_bio.  It has already been counted
1286 		 * in bio->bi_phys_segments.
1287 		 */
1288 		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1289 
1290 		r10_bio->master_bio = bio;
1291 		r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1292 
1293 		r10_bio->mddev = mddev;
1294 		r10_bio->sector = bio->bi_sector + sectors_handled;
1295 		r10_bio->state = 0;
1296 		goto retry_write;
1297 	}
1298 	one_write_done(r10_bio);
1299 
1300 	/* In case raid10d snuck in to freeze_array */
1301 	wake_up(&conf->wait_barrier);
1302 
1303 	if (do_sync || !mddev->bitmap || !plugged)
1304 		md_wakeup_thread(mddev->thread);
1305 }
1306 
status(struct seq_file * seq,struct mddev * mddev)1307 static void status(struct seq_file *seq, struct mddev *mddev)
1308 {
1309 	struct r10conf *conf = mddev->private;
1310 	int i;
1311 
1312 	if (conf->near_copies < conf->raid_disks)
1313 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1314 	if (conf->near_copies > 1)
1315 		seq_printf(seq, " %d near-copies", conf->near_copies);
1316 	if (conf->far_copies > 1) {
1317 		if (conf->far_offset)
1318 			seq_printf(seq, " %d offset-copies", conf->far_copies);
1319 		else
1320 			seq_printf(seq, " %d far-copies", conf->far_copies);
1321 	}
1322 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1323 					conf->raid_disks - mddev->degraded);
1324 	for (i = 0; i < conf->raid_disks; i++)
1325 		seq_printf(seq, "%s",
1326 			      conf->mirrors[i].rdev &&
1327 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1328 	seq_printf(seq, "]");
1329 }
1330 
1331 /* check if there are enough drives for
1332  * every block to appear on atleast one.
1333  * Don't consider the device numbered 'ignore'
1334  * as we might be about to remove it.
1335  */
enough(struct r10conf * conf,int ignore)1336 static int enough(struct r10conf *conf, int ignore)
1337 {
1338 	int first = 0;
1339 
1340 	do {
1341 		int n = conf->copies;
1342 		int cnt = 0;
1343 		while (n--) {
1344 			if (conf->mirrors[first].rdev &&
1345 			    first != ignore)
1346 				cnt++;
1347 			first = (first+1) % conf->raid_disks;
1348 		}
1349 		if (cnt == 0)
1350 			return 0;
1351 	} while (first != 0);
1352 	return 1;
1353 }
1354 
error(struct mddev * mddev,struct md_rdev * rdev)1355 static void error(struct mddev *mddev, struct md_rdev *rdev)
1356 {
1357 	char b[BDEVNAME_SIZE];
1358 	struct r10conf *conf = mddev->private;
1359 
1360 	/*
1361 	 * If it is not operational, then we have already marked it as dead
1362 	 * else if it is the last working disks, ignore the error, let the
1363 	 * next level up know.
1364 	 * else mark the drive as failed
1365 	 */
1366 	if (test_bit(In_sync, &rdev->flags)
1367 	    && !enough(conf, rdev->raid_disk))
1368 		/*
1369 		 * Don't fail the drive, just return an IO error.
1370 		 */
1371 		return;
1372 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1373 		unsigned long flags;
1374 		spin_lock_irqsave(&conf->device_lock, flags);
1375 		mddev->degraded++;
1376 		spin_unlock_irqrestore(&conf->device_lock, flags);
1377 		/*
1378 		 * if recovery is running, make sure it aborts.
1379 		 */
1380 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1381 	}
1382 	set_bit(Blocked, &rdev->flags);
1383 	set_bit(Faulty, &rdev->flags);
1384 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1385 	printk(KERN_ALERT
1386 	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1387 	       "md/raid10:%s: Operation continuing on %d devices.\n",
1388 	       mdname(mddev), bdevname(rdev->bdev, b),
1389 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1390 }
1391 
print_conf(struct r10conf * conf)1392 static void print_conf(struct r10conf *conf)
1393 {
1394 	int i;
1395 	struct mirror_info *tmp;
1396 
1397 	printk(KERN_DEBUG "RAID10 conf printout:\n");
1398 	if (!conf) {
1399 		printk(KERN_DEBUG "(!conf)\n");
1400 		return;
1401 	}
1402 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1403 		conf->raid_disks);
1404 
1405 	for (i = 0; i < conf->raid_disks; i++) {
1406 		char b[BDEVNAME_SIZE];
1407 		tmp = conf->mirrors + i;
1408 		if (tmp->rdev)
1409 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1410 				i, !test_bit(In_sync, &tmp->rdev->flags),
1411 			        !test_bit(Faulty, &tmp->rdev->flags),
1412 				bdevname(tmp->rdev->bdev,b));
1413 	}
1414 }
1415 
close_sync(struct r10conf * conf)1416 static void close_sync(struct r10conf *conf)
1417 {
1418 	wait_barrier(conf);
1419 	allow_barrier(conf);
1420 
1421 	mempool_destroy(conf->r10buf_pool);
1422 	conf->r10buf_pool = NULL;
1423 }
1424 
raid10_spare_active(struct mddev * mddev)1425 static int raid10_spare_active(struct mddev *mddev)
1426 {
1427 	int i;
1428 	struct r10conf *conf = mddev->private;
1429 	struct mirror_info *tmp;
1430 	int count = 0;
1431 	unsigned long flags;
1432 
1433 	/*
1434 	 * Find all non-in_sync disks within the RAID10 configuration
1435 	 * and mark them in_sync
1436 	 */
1437 	for (i = 0; i < conf->raid_disks; i++) {
1438 		tmp = conf->mirrors + i;
1439 		if (tmp->replacement
1440 		    && tmp->replacement->recovery_offset == MaxSector
1441 		    && !test_bit(Faulty, &tmp->replacement->flags)
1442 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1443 			/* Replacement has just become active */
1444 			if (!tmp->rdev
1445 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1446 				count++;
1447 			if (tmp->rdev) {
1448 				/* Replaced device not technically faulty,
1449 				 * but we need to be sure it gets removed
1450 				 * and never re-added.
1451 				 */
1452 				set_bit(Faulty, &tmp->rdev->flags);
1453 				sysfs_notify_dirent_safe(
1454 					tmp->rdev->sysfs_state);
1455 			}
1456 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1457 		} else if (tmp->rdev
1458 			   && !test_bit(Faulty, &tmp->rdev->flags)
1459 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1460 			count++;
1461 			sysfs_notify_dirent(tmp->rdev->sysfs_state);
1462 		}
1463 	}
1464 	spin_lock_irqsave(&conf->device_lock, flags);
1465 	mddev->degraded -= count;
1466 	spin_unlock_irqrestore(&conf->device_lock, flags);
1467 
1468 	print_conf(conf);
1469 	return count;
1470 }
1471 
1472 
raid10_add_disk(struct mddev * mddev,struct md_rdev * rdev)1473 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1474 {
1475 	struct r10conf *conf = mddev->private;
1476 	int err = -EEXIST;
1477 	int mirror;
1478 	int first = 0;
1479 	int last = conf->raid_disks - 1;
1480 
1481 	if (mddev->recovery_cp < MaxSector)
1482 		/* only hot-add to in-sync arrays, as recovery is
1483 		 * very different from resync
1484 		 */
1485 		return -EBUSY;
1486 	if (!enough(conf, -1))
1487 		return -EINVAL;
1488 
1489 	if (rdev->raid_disk >= 0)
1490 		first = last = rdev->raid_disk;
1491 
1492 	if (rdev->saved_raid_disk >= first &&
1493 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1494 		mirror = rdev->saved_raid_disk;
1495 	else
1496 		mirror = first;
1497 	for ( ; mirror <= last ; mirror++) {
1498 		struct mirror_info *p = &conf->mirrors[mirror];
1499 		if (p->recovery_disabled == mddev->recovery_disabled)
1500 			continue;
1501 		if (p->rdev) {
1502 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1503 			    p->replacement != NULL)
1504 				continue;
1505 			clear_bit(In_sync, &rdev->flags);
1506 			set_bit(Replacement, &rdev->flags);
1507 			rdev->raid_disk = mirror;
1508 			err = 0;
1509 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1510 					  rdev->data_offset << 9);
1511 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1512 				blk_queue_max_segments(mddev->queue, 1);
1513 				blk_queue_segment_boundary(mddev->queue,
1514 							   PAGE_CACHE_SIZE - 1);
1515 			}
1516 			conf->fullsync = 1;
1517 			rcu_assign_pointer(p->replacement, rdev);
1518 			break;
1519 		}
1520 
1521 		disk_stack_limits(mddev->gendisk, rdev->bdev,
1522 				  rdev->data_offset << 9);
1523 		/* as we don't honour merge_bvec_fn, we must
1524 		 * never risk violating it, so limit
1525 		 * ->max_segments to one lying with a single
1526 		 * page, as a one page request is never in
1527 		 * violation.
1528 		 */
1529 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1530 			blk_queue_max_segments(mddev->queue, 1);
1531 			blk_queue_segment_boundary(mddev->queue,
1532 						   PAGE_CACHE_SIZE - 1);
1533 		}
1534 
1535 		p->head_position = 0;
1536 		p->recovery_disabled = mddev->recovery_disabled - 1;
1537 		rdev->raid_disk = mirror;
1538 		err = 0;
1539 		if (rdev->saved_raid_disk != mirror)
1540 			conf->fullsync = 1;
1541 		rcu_assign_pointer(p->rdev, rdev);
1542 		break;
1543 	}
1544 
1545 	md_integrity_add_rdev(rdev, mddev);
1546 	print_conf(conf);
1547 	return err;
1548 }
1549 
raid10_remove_disk(struct mddev * mddev,struct md_rdev * rdev)1550 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1551 {
1552 	struct r10conf *conf = mddev->private;
1553 	int err = 0;
1554 	int number = rdev->raid_disk;
1555 	struct md_rdev **rdevp;
1556 	struct mirror_info *p = conf->mirrors + number;
1557 
1558 	print_conf(conf);
1559 	if (rdev == p->rdev)
1560 		rdevp = &p->rdev;
1561 	else if (rdev == p->replacement)
1562 		rdevp = &p->replacement;
1563 	else
1564 		return 0;
1565 
1566 	if (test_bit(In_sync, &rdev->flags) ||
1567 	    atomic_read(&rdev->nr_pending)) {
1568 		err = -EBUSY;
1569 		goto abort;
1570 	}
1571 	/* Only remove faulty devices if recovery
1572 	 * is not possible.
1573 	 */
1574 	if (!test_bit(Faulty, &rdev->flags) &&
1575 	    mddev->recovery_disabled != p->recovery_disabled &&
1576 	    (!p->replacement || p->replacement == rdev) &&
1577 	    enough(conf, -1)) {
1578 		err = -EBUSY;
1579 		goto abort;
1580 	}
1581 	*rdevp = NULL;
1582 	synchronize_rcu();
1583 	if (atomic_read(&rdev->nr_pending)) {
1584 		/* lost the race, try later */
1585 		err = -EBUSY;
1586 		*rdevp = rdev;
1587 		goto abort;
1588 	} else if (p->replacement) {
1589 		/* We must have just cleared 'rdev' */
1590 		p->rdev = p->replacement;
1591 		clear_bit(Replacement, &p->replacement->flags);
1592 		smp_mb(); /* Make sure other CPUs may see both as identical
1593 			   * but will never see neither -- if they are careful.
1594 			   */
1595 		p->replacement = NULL;
1596 		clear_bit(WantReplacement, &rdev->flags);
1597 	} else
1598 		/* We might have just remove the Replacement as faulty
1599 		 * Clear the flag just in case
1600 		 */
1601 		clear_bit(WantReplacement, &rdev->flags);
1602 
1603 	err = md_integrity_register(mddev);
1604 
1605 abort:
1606 
1607 	print_conf(conf);
1608 	return err;
1609 }
1610 
1611 
end_sync_read(struct bio * bio,int error)1612 static void end_sync_read(struct bio *bio, int error)
1613 {
1614 	struct r10bio *r10_bio = bio->bi_private;
1615 	struct r10conf *conf = r10_bio->mddev->private;
1616 	int d;
1617 
1618 	d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1619 
1620 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1621 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1622 	else
1623 		/* The write handler will notice the lack of
1624 		 * R10BIO_Uptodate and record any errors etc
1625 		 */
1626 		atomic_add(r10_bio->sectors,
1627 			   &conf->mirrors[d].rdev->corrected_errors);
1628 
1629 	/* for reconstruct, we always reschedule after a read.
1630 	 * for resync, only after all reads
1631 	 */
1632 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1633 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1634 	    atomic_dec_and_test(&r10_bio->remaining)) {
1635 		/* we have read all the blocks,
1636 		 * do the comparison in process context in raid10d
1637 		 */
1638 		reschedule_retry(r10_bio);
1639 	}
1640 }
1641 
end_sync_request(struct r10bio * r10_bio)1642 static void end_sync_request(struct r10bio *r10_bio)
1643 {
1644 	struct mddev *mddev = r10_bio->mddev;
1645 
1646 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1647 		if (r10_bio->master_bio == NULL) {
1648 			/* the primary of several recovery bios */
1649 			sector_t s = r10_bio->sectors;
1650 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1651 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1652 				reschedule_retry(r10_bio);
1653 			else
1654 				put_buf(r10_bio);
1655 			md_done_sync(mddev, s, 1);
1656 			break;
1657 		} else {
1658 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1659 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1660 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1661 				reschedule_retry(r10_bio);
1662 			else
1663 				put_buf(r10_bio);
1664 			r10_bio = r10_bio2;
1665 		}
1666 	}
1667 }
1668 
end_sync_write(struct bio * bio,int error)1669 static void end_sync_write(struct bio *bio, int error)
1670 {
1671 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1672 	struct r10bio *r10_bio = bio->bi_private;
1673 	struct mddev *mddev = r10_bio->mddev;
1674 	struct r10conf *conf = mddev->private;
1675 	int d;
1676 	sector_t first_bad;
1677 	int bad_sectors;
1678 	int slot;
1679 	int repl;
1680 	struct md_rdev *rdev = NULL;
1681 
1682 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1683 	if (repl)
1684 		rdev = conf->mirrors[d].replacement;
1685 	if (!rdev) {
1686 		smp_mb();
1687 		rdev = conf->mirrors[d].rdev;
1688 	}
1689 
1690 	if (!uptodate) {
1691 		if (repl)
1692 			md_error(mddev, rdev);
1693 		else {
1694 			set_bit(WriteErrorSeen, &rdev->flags);
1695 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1696 				set_bit(MD_RECOVERY_NEEDED,
1697 					&rdev->mddev->recovery);
1698 			set_bit(R10BIO_WriteError, &r10_bio->state);
1699 		}
1700 	} else if (is_badblock(rdev,
1701 			     r10_bio->devs[slot].addr,
1702 			     r10_bio->sectors,
1703 			     &first_bad, &bad_sectors))
1704 		set_bit(R10BIO_MadeGood, &r10_bio->state);
1705 
1706 	rdev_dec_pending(rdev, mddev);
1707 
1708 	end_sync_request(r10_bio);
1709 }
1710 
1711 /*
1712  * Note: sync and recover and handled very differently for raid10
1713  * This code is for resync.
1714  * For resync, we read through virtual addresses and read all blocks.
1715  * If there is any error, we schedule a write.  The lowest numbered
1716  * drive is authoritative.
1717  * However requests come for physical address, so we need to map.
1718  * For every physical address there are raid_disks/copies virtual addresses,
1719  * which is always are least one, but is not necessarly an integer.
1720  * This means that a physical address can span multiple chunks, so we may
1721  * have to submit multiple io requests for a single sync request.
1722  */
1723 /*
1724  * We check if all blocks are in-sync and only write to blocks that
1725  * aren't in sync
1726  */
sync_request_write(struct mddev * mddev,struct r10bio * r10_bio)1727 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1728 {
1729 	struct r10conf *conf = mddev->private;
1730 	int i, first;
1731 	struct bio *tbio, *fbio;
1732 
1733 	atomic_set(&r10_bio->remaining, 1);
1734 
1735 	/* find the first device with a block */
1736 	for (i=0; i<conf->copies; i++)
1737 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1738 			break;
1739 
1740 	if (i == conf->copies)
1741 		goto done;
1742 
1743 	first = i;
1744 	fbio = r10_bio->devs[i].bio;
1745 
1746 	/* now find blocks with errors */
1747 	for (i=0 ; i < conf->copies ; i++) {
1748 		int  j, d;
1749 		int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1750 
1751 		tbio = r10_bio->devs[i].bio;
1752 
1753 		if (tbio->bi_end_io != end_sync_read)
1754 			continue;
1755 		if (i == first)
1756 			continue;
1757 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1758 			/* We know that the bi_io_vec layout is the same for
1759 			 * both 'first' and 'i', so we just compare them.
1760 			 * All vec entries are PAGE_SIZE;
1761 			 */
1762 			for (j = 0; j < vcnt; j++)
1763 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1764 					   page_address(tbio->bi_io_vec[j].bv_page),
1765 					   PAGE_SIZE))
1766 					break;
1767 			if (j == vcnt)
1768 				continue;
1769 			mddev->resync_mismatches += r10_bio->sectors;
1770 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1771 				/* Don't fix anything. */
1772 				continue;
1773 		}
1774 		/* Ok, we need to write this bio, either to correct an
1775 		 * inconsistency or to correct an unreadable block.
1776 		 * First we need to fixup bv_offset, bv_len and
1777 		 * bi_vecs, as the read request might have corrupted these
1778 		 */
1779 		tbio->bi_vcnt = vcnt;
1780 		tbio->bi_size = r10_bio->sectors << 9;
1781 		tbio->bi_idx = 0;
1782 		tbio->bi_phys_segments = 0;
1783 		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1784 		tbio->bi_flags |= 1 << BIO_UPTODATE;
1785 		tbio->bi_next = NULL;
1786 		tbio->bi_rw = WRITE;
1787 		tbio->bi_private = r10_bio;
1788 		tbio->bi_sector = r10_bio->devs[i].addr;
1789 
1790 		for (j=0; j < vcnt ; j++) {
1791 			tbio->bi_io_vec[j].bv_offset = 0;
1792 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1793 
1794 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1795 			       page_address(fbio->bi_io_vec[j].bv_page),
1796 			       PAGE_SIZE);
1797 		}
1798 		tbio->bi_end_io = end_sync_write;
1799 
1800 		d = r10_bio->devs[i].devnum;
1801 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1802 		atomic_inc(&r10_bio->remaining);
1803 		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1804 
1805 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1806 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1807 		generic_make_request(tbio);
1808 	}
1809 
1810 	/* Now write out to any replacement devices
1811 	 * that are active
1812 	 */
1813 	for (i = 0; i < conf->copies; i++) {
1814 		int j, d;
1815 		int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1816 
1817 		tbio = r10_bio->devs[i].repl_bio;
1818 		if (!tbio || !tbio->bi_end_io)
1819 			continue;
1820 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
1821 		    && r10_bio->devs[i].bio != fbio)
1822 			for (j = 0; j < vcnt; j++)
1823 				memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1824 				       page_address(fbio->bi_io_vec[j].bv_page),
1825 				       PAGE_SIZE);
1826 		d = r10_bio->devs[i].devnum;
1827 		atomic_inc(&r10_bio->remaining);
1828 		md_sync_acct(conf->mirrors[d].replacement->bdev,
1829 			     tbio->bi_size >> 9);
1830 		generic_make_request(tbio);
1831 	}
1832 
1833 done:
1834 	if (atomic_dec_and_test(&r10_bio->remaining)) {
1835 		md_done_sync(mddev, r10_bio->sectors, 1);
1836 		put_buf(r10_bio);
1837 	}
1838 }
1839 
1840 /*
1841  * Now for the recovery code.
1842  * Recovery happens across physical sectors.
1843  * We recover all non-is_sync drives by finding the virtual address of
1844  * each, and then choose a working drive that also has that virt address.
1845  * There is a separate r10_bio for each non-in_sync drive.
1846  * Only the first two slots are in use. The first for reading,
1847  * The second for writing.
1848  *
1849  */
fix_recovery_read_error(struct r10bio * r10_bio)1850 static void fix_recovery_read_error(struct r10bio *r10_bio)
1851 {
1852 	/* We got a read error during recovery.
1853 	 * We repeat the read in smaller page-sized sections.
1854 	 * If a read succeeds, write it to the new device or record
1855 	 * a bad block if we cannot.
1856 	 * If a read fails, record a bad block on both old and
1857 	 * new devices.
1858 	 */
1859 	struct mddev *mddev = r10_bio->mddev;
1860 	struct r10conf *conf = mddev->private;
1861 	struct bio *bio = r10_bio->devs[0].bio;
1862 	sector_t sect = 0;
1863 	int sectors = r10_bio->sectors;
1864 	int idx = 0;
1865 	int dr = r10_bio->devs[0].devnum;
1866 	int dw = r10_bio->devs[1].devnum;
1867 
1868 	while (sectors) {
1869 		int s = sectors;
1870 		struct md_rdev *rdev;
1871 		sector_t addr;
1872 		int ok;
1873 
1874 		if (s > (PAGE_SIZE>>9))
1875 			s = PAGE_SIZE >> 9;
1876 
1877 		rdev = conf->mirrors[dr].rdev;
1878 		addr = r10_bio->devs[0].addr + sect,
1879 		ok = sync_page_io(rdev,
1880 				  addr,
1881 				  s << 9,
1882 				  bio->bi_io_vec[idx].bv_page,
1883 				  READ, false);
1884 		if (ok) {
1885 			rdev = conf->mirrors[dw].rdev;
1886 			addr = r10_bio->devs[1].addr + sect;
1887 			ok = sync_page_io(rdev,
1888 					  addr,
1889 					  s << 9,
1890 					  bio->bi_io_vec[idx].bv_page,
1891 					  WRITE, false);
1892 			if (!ok) {
1893 				set_bit(WriteErrorSeen, &rdev->flags);
1894 				if (!test_and_set_bit(WantReplacement,
1895 						      &rdev->flags))
1896 					set_bit(MD_RECOVERY_NEEDED,
1897 						&rdev->mddev->recovery);
1898 			}
1899 		}
1900 		if (!ok) {
1901 			/* We don't worry if we cannot set a bad block -
1902 			 * it really is bad so there is no loss in not
1903 			 * recording it yet
1904 			 */
1905 			rdev_set_badblocks(rdev, addr, s, 0);
1906 
1907 			if (rdev != conf->mirrors[dw].rdev) {
1908 				/* need bad block on destination too */
1909 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
1910 				addr = r10_bio->devs[1].addr + sect;
1911 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
1912 				if (!ok) {
1913 					/* just abort the recovery */
1914 					printk(KERN_NOTICE
1915 					       "md/raid10:%s: recovery aborted"
1916 					       " due to read error\n",
1917 					       mdname(mddev));
1918 
1919 					conf->mirrors[dw].recovery_disabled
1920 						= mddev->recovery_disabled;
1921 					set_bit(MD_RECOVERY_INTR,
1922 						&mddev->recovery);
1923 					break;
1924 				}
1925 			}
1926 		}
1927 
1928 		sectors -= s;
1929 		sect += s;
1930 		idx++;
1931 	}
1932 }
1933 
recovery_request_write(struct mddev * mddev,struct r10bio * r10_bio)1934 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1935 {
1936 	struct r10conf *conf = mddev->private;
1937 	int d;
1938 	struct bio *wbio, *wbio2;
1939 
1940 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
1941 		fix_recovery_read_error(r10_bio);
1942 		end_sync_request(r10_bio);
1943 		return;
1944 	}
1945 
1946 	/*
1947 	 * share the pages with the first bio
1948 	 * and submit the write request
1949 	 */
1950 	d = r10_bio->devs[1].devnum;
1951 	wbio = r10_bio->devs[1].bio;
1952 	wbio2 = r10_bio->devs[1].repl_bio;
1953 	if (wbio->bi_end_io) {
1954 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1955 		md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1956 		generic_make_request(wbio);
1957 	}
1958 	if (wbio2 && wbio2->bi_end_io) {
1959 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
1960 		md_sync_acct(conf->mirrors[d].replacement->bdev,
1961 			     wbio2->bi_size >> 9);
1962 		generic_make_request(wbio2);
1963 	}
1964 }
1965 
1966 
1967 /*
1968  * Used by fix_read_error() to decay the per rdev read_errors.
1969  * We halve the read error count for every hour that has elapsed
1970  * since the last recorded read error.
1971  *
1972  */
check_decay_read_errors(struct mddev * mddev,struct md_rdev * rdev)1973 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
1974 {
1975 	struct timespec cur_time_mon;
1976 	unsigned long hours_since_last;
1977 	unsigned int read_errors = atomic_read(&rdev->read_errors);
1978 
1979 	ktime_get_ts(&cur_time_mon);
1980 
1981 	if (rdev->last_read_error.tv_sec == 0 &&
1982 	    rdev->last_read_error.tv_nsec == 0) {
1983 		/* first time we've seen a read error */
1984 		rdev->last_read_error = cur_time_mon;
1985 		return;
1986 	}
1987 
1988 	hours_since_last = (cur_time_mon.tv_sec -
1989 			    rdev->last_read_error.tv_sec) / 3600;
1990 
1991 	rdev->last_read_error = cur_time_mon;
1992 
1993 	/*
1994 	 * if hours_since_last is > the number of bits in read_errors
1995 	 * just set read errors to 0. We do this to avoid
1996 	 * overflowing the shift of read_errors by hours_since_last.
1997 	 */
1998 	if (hours_since_last >= 8 * sizeof(read_errors))
1999 		atomic_set(&rdev->read_errors, 0);
2000 	else
2001 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2002 }
2003 
r10_sync_page_io(struct md_rdev * rdev,sector_t sector,int sectors,struct page * page,int rw)2004 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2005 			    int sectors, struct page *page, int rw)
2006 {
2007 	sector_t first_bad;
2008 	int bad_sectors;
2009 
2010 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2011 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2012 		return -1;
2013 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2014 		/* success */
2015 		return 1;
2016 	if (rw == WRITE) {
2017 		set_bit(WriteErrorSeen, &rdev->flags);
2018 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2019 			set_bit(MD_RECOVERY_NEEDED,
2020 				&rdev->mddev->recovery);
2021 	}
2022 	/* need to record an error - either for the block or the device */
2023 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2024 		md_error(rdev->mddev, rdev);
2025 	return 0;
2026 }
2027 
2028 /*
2029  * This is a kernel thread which:
2030  *
2031  *	1.	Retries failed read operations on working mirrors.
2032  *	2.	Updates the raid superblock when problems encounter.
2033  *	3.	Performs writes following reads for array synchronising.
2034  */
2035 
fix_read_error(struct r10conf * conf,struct mddev * mddev,struct r10bio * r10_bio)2036 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2037 {
2038 	int sect = 0; /* Offset from r10_bio->sector */
2039 	int sectors = r10_bio->sectors;
2040 	struct md_rdev*rdev;
2041 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2042 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2043 
2044 	/* still own a reference to this rdev, so it cannot
2045 	 * have been cleared recently.
2046 	 */
2047 	rdev = conf->mirrors[d].rdev;
2048 
2049 	if (test_bit(Faulty, &rdev->flags))
2050 		/* drive has already been failed, just ignore any
2051 		   more fix_read_error() attempts */
2052 		return;
2053 
2054 	check_decay_read_errors(mddev, rdev);
2055 	atomic_inc(&rdev->read_errors);
2056 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2057 		char b[BDEVNAME_SIZE];
2058 		bdevname(rdev->bdev, b);
2059 
2060 		printk(KERN_NOTICE
2061 		       "md/raid10:%s: %s: Raid device exceeded "
2062 		       "read_error threshold [cur %d:max %d]\n",
2063 		       mdname(mddev), b,
2064 		       atomic_read(&rdev->read_errors), max_read_errors);
2065 		printk(KERN_NOTICE
2066 		       "md/raid10:%s: %s: Failing raid device\n",
2067 		       mdname(mddev), b);
2068 		md_error(mddev, conf->mirrors[d].rdev);
2069 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2070 		return;
2071 	}
2072 
2073 	while(sectors) {
2074 		int s = sectors;
2075 		int sl = r10_bio->read_slot;
2076 		int success = 0;
2077 		int start;
2078 
2079 		if (s > (PAGE_SIZE>>9))
2080 			s = PAGE_SIZE >> 9;
2081 
2082 		rcu_read_lock();
2083 		do {
2084 			sector_t first_bad;
2085 			int bad_sectors;
2086 
2087 			d = r10_bio->devs[sl].devnum;
2088 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2089 			if (rdev &&
2090 			    test_bit(In_sync, &rdev->flags) &&
2091 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2092 					&first_bad, &bad_sectors) == 0) {
2093 				atomic_inc(&rdev->nr_pending);
2094 				rcu_read_unlock();
2095 				success = sync_page_io(rdev,
2096 						       r10_bio->devs[sl].addr +
2097 						       sect,
2098 						       s<<9,
2099 						       conf->tmppage, READ, false);
2100 				rdev_dec_pending(rdev, mddev);
2101 				rcu_read_lock();
2102 				if (success)
2103 					break;
2104 			}
2105 			sl++;
2106 			if (sl == conf->copies)
2107 				sl = 0;
2108 		} while (!success && sl != r10_bio->read_slot);
2109 		rcu_read_unlock();
2110 
2111 		if (!success) {
2112 			/* Cannot read from anywhere, just mark the block
2113 			 * as bad on the first device to discourage future
2114 			 * reads.
2115 			 */
2116 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2117 			rdev = conf->mirrors[dn].rdev;
2118 
2119 			if (!rdev_set_badblocks(
2120 				    rdev,
2121 				    r10_bio->devs[r10_bio->read_slot].addr
2122 				    + sect,
2123 				    s, 0)) {
2124 				md_error(mddev, rdev);
2125 				r10_bio->devs[r10_bio->read_slot].bio
2126 					= IO_BLOCKED;
2127 			}
2128 			break;
2129 		}
2130 
2131 		start = sl;
2132 		/* write it back and re-read */
2133 		rcu_read_lock();
2134 		while (sl != r10_bio->read_slot) {
2135 			char b[BDEVNAME_SIZE];
2136 
2137 			if (sl==0)
2138 				sl = conf->copies;
2139 			sl--;
2140 			d = r10_bio->devs[sl].devnum;
2141 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2142 			if (!rdev ||
2143 			    !test_bit(In_sync, &rdev->flags))
2144 				continue;
2145 
2146 			atomic_inc(&rdev->nr_pending);
2147 			rcu_read_unlock();
2148 			if (r10_sync_page_io(rdev,
2149 					     r10_bio->devs[sl].addr +
2150 					     sect,
2151 					     s<<9, conf->tmppage, WRITE)
2152 			    == 0) {
2153 				/* Well, this device is dead */
2154 				printk(KERN_NOTICE
2155 				       "md/raid10:%s: read correction "
2156 				       "write failed"
2157 				       " (%d sectors at %llu on %s)\n",
2158 				       mdname(mddev), s,
2159 				       (unsigned long long)(
2160 					       sect + rdev->data_offset),
2161 				       bdevname(rdev->bdev, b));
2162 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2163 				       "drive\n",
2164 				       mdname(mddev),
2165 				       bdevname(rdev->bdev, b));
2166 			}
2167 			rdev_dec_pending(rdev, mddev);
2168 			rcu_read_lock();
2169 		}
2170 		sl = start;
2171 		while (sl != r10_bio->read_slot) {
2172 			char b[BDEVNAME_SIZE];
2173 
2174 			if (sl==0)
2175 				sl = conf->copies;
2176 			sl--;
2177 			d = r10_bio->devs[sl].devnum;
2178 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2179 			if (!rdev ||
2180 			    !test_bit(In_sync, &rdev->flags))
2181 				continue;
2182 
2183 			atomic_inc(&rdev->nr_pending);
2184 			rcu_read_unlock();
2185 			switch (r10_sync_page_io(rdev,
2186 					     r10_bio->devs[sl].addr +
2187 					     sect,
2188 					     s<<9, conf->tmppage,
2189 						 READ)) {
2190 			case 0:
2191 				/* Well, this device is dead */
2192 				printk(KERN_NOTICE
2193 				       "md/raid10:%s: unable to read back "
2194 				       "corrected sectors"
2195 				       " (%d sectors at %llu on %s)\n",
2196 				       mdname(mddev), s,
2197 				       (unsigned long long)(
2198 					       sect + rdev->data_offset),
2199 				       bdevname(rdev->bdev, b));
2200 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2201 				       "drive\n",
2202 				       mdname(mddev),
2203 				       bdevname(rdev->bdev, b));
2204 				break;
2205 			case 1:
2206 				printk(KERN_INFO
2207 				       "md/raid10:%s: read error corrected"
2208 				       " (%d sectors at %llu on %s)\n",
2209 				       mdname(mddev), s,
2210 				       (unsigned long long)(
2211 					       sect + rdev->data_offset),
2212 				       bdevname(rdev->bdev, b));
2213 				atomic_add(s, &rdev->corrected_errors);
2214 			}
2215 
2216 			rdev_dec_pending(rdev, mddev);
2217 			rcu_read_lock();
2218 		}
2219 		rcu_read_unlock();
2220 
2221 		sectors -= s;
2222 		sect += s;
2223 	}
2224 }
2225 
bi_complete(struct bio * bio,int error)2226 static void bi_complete(struct bio *bio, int error)
2227 {
2228 	complete((struct completion *)bio->bi_private);
2229 }
2230 
submit_bio_wait(int rw,struct bio * bio)2231 static int submit_bio_wait(int rw, struct bio *bio)
2232 {
2233 	struct completion event;
2234 	rw |= REQ_SYNC;
2235 
2236 	init_completion(&event);
2237 	bio->bi_private = &event;
2238 	bio->bi_end_io = bi_complete;
2239 	submit_bio(rw, bio);
2240 	wait_for_completion(&event);
2241 
2242 	return test_bit(BIO_UPTODATE, &bio->bi_flags);
2243 }
2244 
narrow_write_error(struct r10bio * r10_bio,int i)2245 static int narrow_write_error(struct r10bio *r10_bio, int i)
2246 {
2247 	struct bio *bio = r10_bio->master_bio;
2248 	struct mddev *mddev = r10_bio->mddev;
2249 	struct r10conf *conf = mddev->private;
2250 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2251 	/* bio has the data to be written to slot 'i' where
2252 	 * we just recently had a write error.
2253 	 * We repeatedly clone the bio and trim down to one block,
2254 	 * then try the write.  Where the write fails we record
2255 	 * a bad block.
2256 	 * It is conceivable that the bio doesn't exactly align with
2257 	 * blocks.  We must handle this.
2258 	 *
2259 	 * We currently own a reference to the rdev.
2260 	 */
2261 
2262 	int block_sectors;
2263 	sector_t sector;
2264 	int sectors;
2265 	int sect_to_write = r10_bio->sectors;
2266 	int ok = 1;
2267 
2268 	if (rdev->badblocks.shift < 0)
2269 		return 0;
2270 
2271 	block_sectors = 1 << rdev->badblocks.shift;
2272 	sector = r10_bio->sector;
2273 	sectors = ((r10_bio->sector + block_sectors)
2274 		   & ~(sector_t)(block_sectors - 1))
2275 		- sector;
2276 
2277 	while (sect_to_write) {
2278 		struct bio *wbio;
2279 		if (sectors > sect_to_write)
2280 			sectors = sect_to_write;
2281 		/* Write at 'sector' for 'sectors' */
2282 		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2283 		md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2284 		wbio->bi_sector = (r10_bio->devs[i].addr+
2285 				   rdev->data_offset+
2286 				   (sector - r10_bio->sector));
2287 		wbio->bi_bdev = rdev->bdev;
2288 		if (submit_bio_wait(WRITE, wbio) == 0)
2289 			/* Failure! */
2290 			ok = rdev_set_badblocks(rdev, sector,
2291 						sectors, 0)
2292 				&& ok;
2293 
2294 		bio_put(wbio);
2295 		sect_to_write -= sectors;
2296 		sector += sectors;
2297 		sectors = block_sectors;
2298 	}
2299 	return ok;
2300 }
2301 
handle_read_error(struct mddev * mddev,struct r10bio * r10_bio)2302 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2303 {
2304 	int slot = r10_bio->read_slot;
2305 	struct bio *bio;
2306 	struct r10conf *conf = mddev->private;
2307 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2308 	char b[BDEVNAME_SIZE];
2309 	unsigned long do_sync;
2310 	int max_sectors;
2311 
2312 	/* we got a read error. Maybe the drive is bad.  Maybe just
2313 	 * the block and we can fix it.
2314 	 * We freeze all other IO, and try reading the block from
2315 	 * other devices.  When we find one, we re-write
2316 	 * and check it that fixes the read error.
2317 	 * This is all done synchronously while the array is
2318 	 * frozen.
2319 	 */
2320 	bio = r10_bio->devs[slot].bio;
2321 	bdevname(bio->bi_bdev, b);
2322 	bio_put(bio);
2323 	r10_bio->devs[slot].bio = NULL;
2324 
2325 	if (mddev->ro == 0) {
2326 		freeze_array(conf);
2327 		fix_read_error(conf, mddev, r10_bio);
2328 		unfreeze_array(conf);
2329 	} else
2330 		r10_bio->devs[slot].bio = IO_BLOCKED;
2331 
2332 	rdev_dec_pending(rdev, mddev);
2333 
2334 read_more:
2335 	rdev = read_balance(conf, r10_bio, &max_sectors);
2336 	if (rdev == NULL) {
2337 		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2338 		       " read error for block %llu\n",
2339 		       mdname(mddev), b,
2340 		       (unsigned long long)r10_bio->sector);
2341 		raid_end_bio_io(r10_bio);
2342 		return;
2343 	}
2344 
2345 	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2346 	slot = r10_bio->read_slot;
2347 	printk_ratelimited(
2348 		KERN_ERR
2349 		"md/raid10:%s: %s: redirecting"
2350 		"sector %llu to another mirror\n",
2351 		mdname(mddev),
2352 		bdevname(rdev->bdev, b),
2353 		(unsigned long long)r10_bio->sector);
2354 	bio = bio_clone_mddev(r10_bio->master_bio,
2355 			      GFP_NOIO, mddev);
2356 	md_trim_bio(bio,
2357 		    r10_bio->sector - bio->bi_sector,
2358 		    max_sectors);
2359 	r10_bio->devs[slot].bio = bio;
2360 	r10_bio->devs[slot].rdev = rdev;
2361 	bio->bi_sector = r10_bio->devs[slot].addr
2362 		+ rdev->data_offset;
2363 	bio->bi_bdev = rdev->bdev;
2364 	bio->bi_rw = READ | do_sync;
2365 	bio->bi_private = r10_bio;
2366 	bio->bi_end_io = raid10_end_read_request;
2367 	if (max_sectors < r10_bio->sectors) {
2368 		/* Drat - have to split this up more */
2369 		struct bio *mbio = r10_bio->master_bio;
2370 		int sectors_handled =
2371 			r10_bio->sector + max_sectors
2372 			- mbio->bi_sector;
2373 		r10_bio->sectors = max_sectors;
2374 		spin_lock_irq(&conf->device_lock);
2375 		if (mbio->bi_phys_segments == 0)
2376 			mbio->bi_phys_segments = 2;
2377 		else
2378 			mbio->bi_phys_segments++;
2379 		spin_unlock_irq(&conf->device_lock);
2380 		generic_make_request(bio);
2381 
2382 		r10_bio = mempool_alloc(conf->r10bio_pool,
2383 					GFP_NOIO);
2384 		r10_bio->master_bio = mbio;
2385 		r10_bio->sectors = (mbio->bi_size >> 9)
2386 			- sectors_handled;
2387 		r10_bio->state = 0;
2388 		set_bit(R10BIO_ReadError,
2389 			&r10_bio->state);
2390 		r10_bio->mddev = mddev;
2391 		r10_bio->sector = mbio->bi_sector
2392 			+ sectors_handled;
2393 
2394 		goto read_more;
2395 	} else
2396 		generic_make_request(bio);
2397 }
2398 
handle_write_completed(struct r10conf * conf,struct r10bio * r10_bio)2399 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2400 {
2401 	/* Some sort of write request has finished and it
2402 	 * succeeded in writing where we thought there was a
2403 	 * bad block.  So forget the bad block.
2404 	 * Or possibly if failed and we need to record
2405 	 * a bad block.
2406 	 */
2407 	int m;
2408 	struct md_rdev *rdev;
2409 
2410 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2411 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2412 		for (m = 0; m < conf->copies; m++) {
2413 			int dev = r10_bio->devs[m].devnum;
2414 			rdev = conf->mirrors[dev].rdev;
2415 			if (r10_bio->devs[m].bio == NULL)
2416 				continue;
2417 			if (test_bit(BIO_UPTODATE,
2418 				     &r10_bio->devs[m].bio->bi_flags)) {
2419 				rdev_clear_badblocks(
2420 					rdev,
2421 					r10_bio->devs[m].addr,
2422 					r10_bio->sectors);
2423 			} else {
2424 				if (!rdev_set_badblocks(
2425 					    rdev,
2426 					    r10_bio->devs[m].addr,
2427 					    r10_bio->sectors, 0))
2428 					md_error(conf->mddev, rdev);
2429 			}
2430 			rdev = conf->mirrors[dev].replacement;
2431 			if (r10_bio->devs[m].repl_bio == NULL)
2432 				continue;
2433 			if (test_bit(BIO_UPTODATE,
2434 				     &r10_bio->devs[m].repl_bio->bi_flags)) {
2435 				rdev_clear_badblocks(
2436 					rdev,
2437 					r10_bio->devs[m].addr,
2438 					r10_bio->sectors);
2439 			} else {
2440 				if (!rdev_set_badblocks(
2441 					    rdev,
2442 					    r10_bio->devs[m].addr,
2443 					    r10_bio->sectors, 0))
2444 					md_error(conf->mddev, rdev);
2445 			}
2446 		}
2447 		put_buf(r10_bio);
2448 	} else {
2449 		for (m = 0; m < conf->copies; m++) {
2450 			int dev = r10_bio->devs[m].devnum;
2451 			struct bio *bio = r10_bio->devs[m].bio;
2452 			rdev = conf->mirrors[dev].rdev;
2453 			if (bio == IO_MADE_GOOD) {
2454 				rdev_clear_badblocks(
2455 					rdev,
2456 					r10_bio->devs[m].addr,
2457 					r10_bio->sectors);
2458 				rdev_dec_pending(rdev, conf->mddev);
2459 			} else if (bio != NULL &&
2460 				   !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2461 				if (!narrow_write_error(r10_bio, m)) {
2462 					md_error(conf->mddev, rdev);
2463 					set_bit(R10BIO_Degraded,
2464 						&r10_bio->state);
2465 				}
2466 				rdev_dec_pending(rdev, conf->mddev);
2467 			}
2468 			bio = r10_bio->devs[m].repl_bio;
2469 			rdev = conf->mirrors[dev].replacement;
2470 			if (rdev && bio == IO_MADE_GOOD) {
2471 				rdev_clear_badblocks(
2472 					rdev,
2473 					r10_bio->devs[m].addr,
2474 					r10_bio->sectors);
2475 				rdev_dec_pending(rdev, conf->mddev);
2476 			}
2477 		}
2478 		if (test_bit(R10BIO_WriteError,
2479 			     &r10_bio->state))
2480 			close_write(r10_bio);
2481 		raid_end_bio_io(r10_bio);
2482 	}
2483 }
2484 
raid10d(struct mddev * mddev)2485 static void raid10d(struct mddev *mddev)
2486 {
2487 	struct r10bio *r10_bio;
2488 	unsigned long flags;
2489 	struct r10conf *conf = mddev->private;
2490 	struct list_head *head = &conf->retry_list;
2491 	struct blk_plug plug;
2492 
2493 	md_check_recovery(mddev);
2494 
2495 	blk_start_plug(&plug);
2496 	for (;;) {
2497 
2498 		flush_pending_writes(conf);
2499 
2500 		spin_lock_irqsave(&conf->device_lock, flags);
2501 		if (list_empty(head)) {
2502 			spin_unlock_irqrestore(&conf->device_lock, flags);
2503 			break;
2504 		}
2505 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2506 		list_del(head->prev);
2507 		conf->nr_queued--;
2508 		spin_unlock_irqrestore(&conf->device_lock, flags);
2509 
2510 		mddev = r10_bio->mddev;
2511 		conf = mddev->private;
2512 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2513 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2514 			handle_write_completed(conf, r10_bio);
2515 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2516 			sync_request_write(mddev, r10_bio);
2517 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2518 			recovery_request_write(mddev, r10_bio);
2519 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2520 			handle_read_error(mddev, r10_bio);
2521 		else {
2522 			/* just a partial read to be scheduled from a
2523 			 * separate context
2524 			 */
2525 			int slot = r10_bio->read_slot;
2526 			generic_make_request(r10_bio->devs[slot].bio);
2527 		}
2528 
2529 		cond_resched();
2530 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2531 			md_check_recovery(mddev);
2532 	}
2533 	blk_finish_plug(&plug);
2534 }
2535 
2536 
init_resync(struct r10conf * conf)2537 static int init_resync(struct r10conf *conf)
2538 {
2539 	int buffs;
2540 	int i;
2541 
2542 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2543 	BUG_ON(conf->r10buf_pool);
2544 	conf->have_replacement = 0;
2545 	for (i = 0; i < conf->raid_disks; i++)
2546 		if (conf->mirrors[i].replacement)
2547 			conf->have_replacement = 1;
2548 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2549 	if (!conf->r10buf_pool)
2550 		return -ENOMEM;
2551 	conf->next_resync = 0;
2552 	return 0;
2553 }
2554 
2555 /*
2556  * perform a "sync" on one "block"
2557  *
2558  * We need to make sure that no normal I/O request - particularly write
2559  * requests - conflict with active sync requests.
2560  *
2561  * This is achieved by tracking pending requests and a 'barrier' concept
2562  * that can be installed to exclude normal IO requests.
2563  *
2564  * Resync and recovery are handled very differently.
2565  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2566  *
2567  * For resync, we iterate over virtual addresses, read all copies,
2568  * and update if there are differences.  If only one copy is live,
2569  * skip it.
2570  * For recovery, we iterate over physical addresses, read a good
2571  * value for each non-in_sync drive, and over-write.
2572  *
2573  * So, for recovery we may have several outstanding complex requests for a
2574  * given address, one for each out-of-sync device.  We model this by allocating
2575  * a number of r10_bio structures, one for each out-of-sync device.
2576  * As we setup these structures, we collect all bio's together into a list
2577  * which we then process collectively to add pages, and then process again
2578  * to pass to generic_make_request.
2579  *
2580  * The r10_bio structures are linked using a borrowed master_bio pointer.
2581  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2582  * has its remaining count decremented to 0, the whole complex operation
2583  * is complete.
2584  *
2585  */
2586 
sync_request(struct mddev * mddev,sector_t sector_nr,int * skipped,int go_faster)2587 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2588 			     int *skipped, int go_faster)
2589 {
2590 	struct r10conf *conf = mddev->private;
2591 	struct r10bio *r10_bio;
2592 	struct bio *biolist = NULL, *bio;
2593 	sector_t max_sector, nr_sectors;
2594 	int i;
2595 	int max_sync;
2596 	sector_t sync_blocks;
2597 	sector_t sectors_skipped = 0;
2598 	int chunks_skipped = 0;
2599 
2600 	if (!conf->r10buf_pool)
2601 		if (init_resync(conf))
2602 			return 0;
2603 
2604  skipped:
2605 	max_sector = mddev->dev_sectors;
2606 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2607 		max_sector = mddev->resync_max_sectors;
2608 	if (sector_nr >= max_sector) {
2609 		/* If we aborted, we need to abort the
2610 		 * sync on the 'current' bitmap chucks (there can
2611 		 * be several when recovering multiple devices).
2612 		 * as we may have started syncing it but not finished.
2613 		 * We can find the current address in
2614 		 * mddev->curr_resync, but for recovery,
2615 		 * we need to convert that to several
2616 		 * virtual addresses.
2617 		 */
2618 		if (mddev->curr_resync < max_sector) { /* aborted */
2619 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2620 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2621 						&sync_blocks, 1);
2622 			else for (i=0; i<conf->raid_disks; i++) {
2623 				sector_t sect =
2624 					raid10_find_virt(conf, mddev->curr_resync, i);
2625 				bitmap_end_sync(mddev->bitmap, sect,
2626 						&sync_blocks, 1);
2627 			}
2628 		} else {
2629 			/* completed sync */
2630 			if ((!mddev->bitmap || conf->fullsync)
2631 			    && conf->have_replacement
2632 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2633 				/* Completed a full sync so the replacements
2634 				 * are now fully recovered.
2635 				 */
2636 				for (i = 0; i < conf->raid_disks; i++)
2637 					if (conf->mirrors[i].replacement)
2638 						conf->mirrors[i].replacement
2639 							->recovery_offset
2640 							= MaxSector;
2641 			}
2642 			conf->fullsync = 0;
2643 		}
2644 		bitmap_close_sync(mddev->bitmap);
2645 		close_sync(conf);
2646 		*skipped = 1;
2647 		return sectors_skipped;
2648 	}
2649 	if (chunks_skipped >= conf->raid_disks) {
2650 		/* if there has been nothing to do on any drive,
2651 		 * then there is nothing to do at all..
2652 		 */
2653 		*skipped = 1;
2654 		return (max_sector - sector_nr) + sectors_skipped;
2655 	}
2656 
2657 	if (max_sector > mddev->resync_max)
2658 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2659 
2660 	/* make sure whole request will fit in a chunk - if chunks
2661 	 * are meaningful
2662 	 */
2663 	if (conf->near_copies < conf->raid_disks &&
2664 	    max_sector > (sector_nr | conf->chunk_mask))
2665 		max_sector = (sector_nr | conf->chunk_mask) + 1;
2666 	/*
2667 	 * If there is non-resync activity waiting for us then
2668 	 * put in a delay to throttle resync.
2669 	 */
2670 	if (!go_faster && conf->nr_waiting)
2671 		msleep_interruptible(1000);
2672 
2673 	/* Again, very different code for resync and recovery.
2674 	 * Both must result in an r10bio with a list of bios that
2675 	 * have bi_end_io, bi_sector, bi_bdev set,
2676 	 * and bi_private set to the r10bio.
2677 	 * For recovery, we may actually create several r10bios
2678 	 * with 2 bios in each, that correspond to the bios in the main one.
2679 	 * In this case, the subordinate r10bios link back through a
2680 	 * borrowed master_bio pointer, and the counter in the master
2681 	 * includes a ref from each subordinate.
2682 	 */
2683 	/* First, we decide what to do and set ->bi_end_io
2684 	 * To end_sync_read if we want to read, and
2685 	 * end_sync_write if we will want to write.
2686 	 */
2687 
2688 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2689 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2690 		/* recovery... the complicated one */
2691 		int j;
2692 		r10_bio = NULL;
2693 
2694 		for (i=0 ; i<conf->raid_disks; i++) {
2695 			int still_degraded;
2696 			struct r10bio *rb2;
2697 			sector_t sect;
2698 			int must_sync;
2699 			int any_working;
2700 			struct mirror_info *mirror = &conf->mirrors[i];
2701 
2702 			if ((mirror->rdev == NULL ||
2703 			     test_bit(In_sync, &mirror->rdev->flags))
2704 			    &&
2705 			    (mirror->replacement == NULL ||
2706 			     test_bit(Faulty,
2707 				      &mirror->replacement->flags)))
2708 				continue;
2709 
2710 			still_degraded = 0;
2711 			/* want to reconstruct this device */
2712 			rb2 = r10_bio;
2713 			sect = raid10_find_virt(conf, sector_nr, i);
2714 			/* Unless we are doing a full sync, or a replacement
2715 			 * we only need to recover the block if it is set in
2716 			 * the bitmap
2717 			 */
2718 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2719 						      &sync_blocks, 1);
2720 			if (sync_blocks < max_sync)
2721 				max_sync = sync_blocks;
2722 			if (!must_sync &&
2723 			    mirror->replacement == NULL &&
2724 			    !conf->fullsync) {
2725 				/* yep, skip the sync_blocks here, but don't assume
2726 				 * that there will never be anything to do here
2727 				 */
2728 				chunks_skipped = -1;
2729 				continue;
2730 			}
2731 
2732 			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2733 			raise_barrier(conf, rb2 != NULL);
2734 			atomic_set(&r10_bio->remaining, 0);
2735 
2736 			r10_bio->master_bio = (struct bio*)rb2;
2737 			if (rb2)
2738 				atomic_inc(&rb2->remaining);
2739 			r10_bio->mddev = mddev;
2740 			set_bit(R10BIO_IsRecover, &r10_bio->state);
2741 			r10_bio->sector = sect;
2742 
2743 			raid10_find_phys(conf, r10_bio);
2744 
2745 			/* Need to check if the array will still be
2746 			 * degraded
2747 			 */
2748 			for (j=0; j<conf->raid_disks; j++)
2749 				if (conf->mirrors[j].rdev == NULL ||
2750 				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2751 					still_degraded = 1;
2752 					break;
2753 				}
2754 
2755 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2756 						      &sync_blocks, still_degraded);
2757 
2758 			any_working = 0;
2759 			for (j=0; j<conf->copies;j++) {
2760 				int k;
2761 				int d = r10_bio->devs[j].devnum;
2762 				sector_t from_addr, to_addr;
2763 				struct md_rdev *rdev;
2764 				sector_t sector, first_bad;
2765 				int bad_sectors;
2766 				if (!conf->mirrors[d].rdev ||
2767 				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2768 					continue;
2769 				/* This is where we read from */
2770 				any_working = 1;
2771 				rdev = conf->mirrors[d].rdev;
2772 				sector = r10_bio->devs[j].addr;
2773 
2774 				if (is_badblock(rdev, sector, max_sync,
2775 						&first_bad, &bad_sectors)) {
2776 					if (first_bad > sector)
2777 						max_sync = first_bad - sector;
2778 					else {
2779 						bad_sectors -= (sector
2780 								- first_bad);
2781 						if (max_sync > bad_sectors)
2782 							max_sync = bad_sectors;
2783 						continue;
2784 					}
2785 				}
2786 				bio = r10_bio->devs[0].bio;
2787 				bio->bi_next = biolist;
2788 				biolist = bio;
2789 				bio->bi_private = r10_bio;
2790 				bio->bi_end_io = end_sync_read;
2791 				bio->bi_rw = READ;
2792 				from_addr = r10_bio->devs[j].addr;
2793 				bio->bi_sector = from_addr + rdev->data_offset;
2794 				bio->bi_bdev = rdev->bdev;
2795 				atomic_inc(&rdev->nr_pending);
2796 				/* and we write to 'i' (if not in_sync) */
2797 
2798 				for (k=0; k<conf->copies; k++)
2799 					if (r10_bio->devs[k].devnum == i)
2800 						break;
2801 				BUG_ON(k == conf->copies);
2802 				to_addr = r10_bio->devs[k].addr;
2803 				r10_bio->devs[0].devnum = d;
2804 				r10_bio->devs[0].addr = from_addr;
2805 				r10_bio->devs[1].devnum = i;
2806 				r10_bio->devs[1].addr = to_addr;
2807 
2808 				rdev = mirror->rdev;
2809 				if (!test_bit(In_sync, &rdev->flags)) {
2810 					bio = r10_bio->devs[1].bio;
2811 					bio->bi_next = biolist;
2812 					biolist = bio;
2813 					bio->bi_private = r10_bio;
2814 					bio->bi_end_io = end_sync_write;
2815 					bio->bi_rw = WRITE;
2816 					bio->bi_sector = to_addr
2817 						+ rdev->data_offset;
2818 					bio->bi_bdev = rdev->bdev;
2819 					atomic_inc(&r10_bio->remaining);
2820 				} else
2821 					r10_bio->devs[1].bio->bi_end_io = NULL;
2822 
2823 				/* and maybe write to replacement */
2824 				bio = r10_bio->devs[1].repl_bio;
2825 				if (bio)
2826 					bio->bi_end_io = NULL;
2827 				rdev = mirror->replacement;
2828 				/* Note: if rdev != NULL, then bio
2829 				 * cannot be NULL as r10buf_pool_alloc will
2830 				 * have allocated it.
2831 				 * So the second test here is pointless.
2832 				 * But it keeps semantic-checkers happy, and
2833 				 * this comment keeps human reviewers
2834 				 * happy.
2835 				 */
2836 				if (rdev == NULL || bio == NULL ||
2837 				    test_bit(Faulty, &rdev->flags))
2838 					break;
2839 				bio->bi_next = biolist;
2840 				biolist = bio;
2841 				bio->bi_private = r10_bio;
2842 				bio->bi_end_io = end_sync_write;
2843 				bio->bi_rw = WRITE;
2844 				bio->bi_sector = to_addr + rdev->data_offset;
2845 				bio->bi_bdev = rdev->bdev;
2846 				atomic_inc(&r10_bio->remaining);
2847 				break;
2848 			}
2849 			if (j == conf->copies) {
2850 				/* Cannot recover, so abort the recovery or
2851 				 * record a bad block */
2852 				put_buf(r10_bio);
2853 				if (rb2)
2854 					atomic_dec(&rb2->remaining);
2855 				r10_bio = rb2;
2856 				if (any_working) {
2857 					/* problem is that there are bad blocks
2858 					 * on other device(s)
2859 					 */
2860 					int k;
2861 					for (k = 0; k < conf->copies; k++)
2862 						if (r10_bio->devs[k].devnum == i)
2863 							break;
2864 					if (!test_bit(In_sync,
2865 						      &mirror->rdev->flags)
2866 					    && !rdev_set_badblocks(
2867 						    mirror->rdev,
2868 						    r10_bio->devs[k].addr,
2869 						    max_sync, 0))
2870 						any_working = 0;
2871 					if (mirror->replacement &&
2872 					    !rdev_set_badblocks(
2873 						    mirror->replacement,
2874 						    r10_bio->devs[k].addr,
2875 						    max_sync, 0))
2876 						any_working = 0;
2877 				}
2878 				if (!any_working)  {
2879 					if (!test_and_set_bit(MD_RECOVERY_INTR,
2880 							      &mddev->recovery))
2881 						printk(KERN_INFO "md/raid10:%s: insufficient "
2882 						       "working devices for recovery.\n",
2883 						       mdname(mddev));
2884 					mirror->recovery_disabled
2885 						= mddev->recovery_disabled;
2886 				}
2887 				break;
2888 			}
2889 		}
2890 		if (biolist == NULL) {
2891 			while (r10_bio) {
2892 				struct r10bio *rb2 = r10_bio;
2893 				r10_bio = (struct r10bio*) rb2->master_bio;
2894 				rb2->master_bio = NULL;
2895 				put_buf(rb2);
2896 			}
2897 			goto giveup;
2898 		}
2899 	} else {
2900 		/* resync. Schedule a read for every block at this virt offset */
2901 		int count = 0;
2902 
2903 		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2904 
2905 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2906 				       &sync_blocks, mddev->degraded) &&
2907 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
2908 						 &mddev->recovery)) {
2909 			/* We can skip this block */
2910 			*skipped = 1;
2911 			return sync_blocks + sectors_skipped;
2912 		}
2913 		if (sync_blocks < max_sync)
2914 			max_sync = sync_blocks;
2915 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2916 
2917 		r10_bio->mddev = mddev;
2918 		atomic_set(&r10_bio->remaining, 0);
2919 		raise_barrier(conf, 0);
2920 		conf->next_resync = sector_nr;
2921 
2922 		r10_bio->master_bio = NULL;
2923 		r10_bio->sector = sector_nr;
2924 		set_bit(R10BIO_IsSync, &r10_bio->state);
2925 		raid10_find_phys(conf, r10_bio);
2926 		r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2927 
2928 		for (i=0; i<conf->copies; i++) {
2929 			int d = r10_bio->devs[i].devnum;
2930 			sector_t first_bad, sector;
2931 			int bad_sectors;
2932 
2933 			if (r10_bio->devs[i].repl_bio)
2934 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
2935 
2936 			bio = r10_bio->devs[i].bio;
2937 			bio->bi_end_io = NULL;
2938 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
2939 			if (conf->mirrors[d].rdev == NULL ||
2940 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
2941 				continue;
2942 			sector = r10_bio->devs[i].addr;
2943 			if (is_badblock(conf->mirrors[d].rdev,
2944 					sector, max_sync,
2945 					&first_bad, &bad_sectors)) {
2946 				if (first_bad > sector)
2947 					max_sync = first_bad - sector;
2948 				else {
2949 					bad_sectors -= (sector - first_bad);
2950 					if (max_sync > bad_sectors)
2951 						max_sync = max_sync;
2952 					continue;
2953 				}
2954 			}
2955 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2956 			atomic_inc(&r10_bio->remaining);
2957 			bio->bi_next = biolist;
2958 			biolist = bio;
2959 			bio->bi_private = r10_bio;
2960 			bio->bi_end_io = end_sync_read;
2961 			bio->bi_rw = READ;
2962 			bio->bi_sector = sector +
2963 				conf->mirrors[d].rdev->data_offset;
2964 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2965 			count++;
2966 
2967 			if (conf->mirrors[d].replacement == NULL ||
2968 			    test_bit(Faulty,
2969 				     &conf->mirrors[d].replacement->flags))
2970 				continue;
2971 
2972 			/* Need to set up for writing to the replacement */
2973 			bio = r10_bio->devs[i].repl_bio;
2974 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
2975 
2976 			sector = r10_bio->devs[i].addr;
2977 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2978 			bio->bi_next = biolist;
2979 			biolist = bio;
2980 			bio->bi_private = r10_bio;
2981 			bio->bi_end_io = end_sync_write;
2982 			bio->bi_rw = WRITE;
2983 			bio->bi_sector = sector +
2984 				conf->mirrors[d].replacement->data_offset;
2985 			bio->bi_bdev = conf->mirrors[d].replacement->bdev;
2986 			count++;
2987 		}
2988 
2989 		if (count < 2) {
2990 			for (i=0; i<conf->copies; i++) {
2991 				int d = r10_bio->devs[i].devnum;
2992 				if (r10_bio->devs[i].bio->bi_end_io)
2993 					rdev_dec_pending(conf->mirrors[d].rdev,
2994 							 mddev);
2995 				if (r10_bio->devs[i].repl_bio &&
2996 				    r10_bio->devs[i].repl_bio->bi_end_io)
2997 					rdev_dec_pending(
2998 						conf->mirrors[d].replacement,
2999 						mddev);
3000 			}
3001 			put_buf(r10_bio);
3002 			biolist = NULL;
3003 			goto giveup;
3004 		}
3005 	}
3006 
3007 	for (bio = biolist; bio ; bio=bio->bi_next) {
3008 
3009 		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3010 		if (bio->bi_end_io)
3011 			bio->bi_flags |= 1 << BIO_UPTODATE;
3012 		bio->bi_vcnt = 0;
3013 		bio->bi_idx = 0;
3014 		bio->bi_phys_segments = 0;
3015 		bio->bi_size = 0;
3016 	}
3017 
3018 	nr_sectors = 0;
3019 	if (sector_nr + max_sync < max_sector)
3020 		max_sector = sector_nr + max_sync;
3021 	do {
3022 		struct page *page;
3023 		int len = PAGE_SIZE;
3024 		if (sector_nr + (len>>9) > max_sector)
3025 			len = (max_sector - sector_nr) << 9;
3026 		if (len == 0)
3027 			break;
3028 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3029 			struct bio *bio2;
3030 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3031 			if (bio_add_page(bio, page, len, 0))
3032 				continue;
3033 
3034 			/* stop here */
3035 			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3036 			for (bio2 = biolist;
3037 			     bio2 && bio2 != bio;
3038 			     bio2 = bio2->bi_next) {
3039 				/* remove last page from this bio */
3040 				bio2->bi_vcnt--;
3041 				bio2->bi_size -= len;
3042 				bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3043 			}
3044 			goto bio_full;
3045 		}
3046 		nr_sectors += len>>9;
3047 		sector_nr += len>>9;
3048 	} while (biolist->bi_vcnt < RESYNC_PAGES);
3049  bio_full:
3050 	r10_bio->sectors = nr_sectors;
3051 
3052 	while (biolist) {
3053 		bio = biolist;
3054 		biolist = biolist->bi_next;
3055 
3056 		bio->bi_next = NULL;
3057 		r10_bio = bio->bi_private;
3058 		r10_bio->sectors = nr_sectors;
3059 
3060 		if (bio->bi_end_io == end_sync_read) {
3061 			md_sync_acct(bio->bi_bdev, nr_sectors);
3062 			generic_make_request(bio);
3063 		}
3064 	}
3065 
3066 	if (sectors_skipped)
3067 		/* pretend they weren't skipped, it makes
3068 		 * no important difference in this case
3069 		 */
3070 		md_done_sync(mddev, sectors_skipped, 1);
3071 
3072 	return sectors_skipped + nr_sectors;
3073  giveup:
3074 	/* There is nowhere to write, so all non-sync
3075 	 * drives must be failed or in resync, all drives
3076 	 * have a bad block, so try the next chunk...
3077 	 */
3078 	if (sector_nr + max_sync < max_sector)
3079 		max_sector = sector_nr + max_sync;
3080 
3081 	sectors_skipped += (max_sector - sector_nr);
3082 	chunks_skipped ++;
3083 	sector_nr = max_sector;
3084 	goto skipped;
3085 }
3086 
3087 static sector_t
raid10_size(struct mddev * mddev,sector_t sectors,int raid_disks)3088 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3089 {
3090 	sector_t size;
3091 	struct r10conf *conf = mddev->private;
3092 
3093 	if (!raid_disks)
3094 		raid_disks = conf->raid_disks;
3095 	if (!sectors)
3096 		sectors = conf->dev_sectors;
3097 
3098 	size = sectors >> conf->chunk_shift;
3099 	sector_div(size, conf->far_copies);
3100 	size = size * raid_disks;
3101 	sector_div(size, conf->near_copies);
3102 
3103 	return size << conf->chunk_shift;
3104 }
3105 
3106 
setup_conf(struct mddev * mddev)3107 static struct r10conf *setup_conf(struct mddev *mddev)
3108 {
3109 	struct r10conf *conf = NULL;
3110 	int nc, fc, fo;
3111 	sector_t stride, size;
3112 	int err = -EINVAL;
3113 
3114 	if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
3115 	    !is_power_of_2(mddev->new_chunk_sectors)) {
3116 		printk(KERN_ERR "md/raid10:%s: chunk size must be "
3117 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3118 		       mdname(mddev), PAGE_SIZE);
3119 		goto out;
3120 	}
3121 
3122 	nc = mddev->new_layout & 255;
3123 	fc = (mddev->new_layout >> 8) & 255;
3124 	fo = mddev->new_layout & (1<<16);
3125 
3126 	if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
3127 	    (mddev->new_layout >> 17)) {
3128 		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3129 		       mdname(mddev), mddev->new_layout);
3130 		goto out;
3131 	}
3132 
3133 	err = -ENOMEM;
3134 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3135 	if (!conf)
3136 		goto out;
3137 
3138 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
3139 				GFP_KERNEL);
3140 	if (!conf->mirrors)
3141 		goto out;
3142 
3143 	conf->tmppage = alloc_page(GFP_KERNEL);
3144 	if (!conf->tmppage)
3145 		goto out;
3146 
3147 
3148 	conf->raid_disks = mddev->raid_disks;
3149 	conf->near_copies = nc;
3150 	conf->far_copies = fc;
3151 	conf->copies = nc*fc;
3152 	conf->far_offset = fo;
3153 	conf->chunk_mask = mddev->new_chunk_sectors - 1;
3154 	conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
3155 
3156 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3157 					   r10bio_pool_free, conf);
3158 	if (!conf->r10bio_pool)
3159 		goto out;
3160 
3161 	size = mddev->dev_sectors >> conf->chunk_shift;
3162 	sector_div(size, fc);
3163 	size = size * conf->raid_disks;
3164 	sector_div(size, nc);
3165 	/* 'size' is now the number of chunks in the array */
3166 	/* calculate "used chunks per device" in 'stride' */
3167 	stride = size * conf->copies;
3168 
3169 	/* We need to round up when dividing by raid_disks to
3170 	 * get the stride size.
3171 	 */
3172 	stride += conf->raid_disks - 1;
3173 	sector_div(stride, conf->raid_disks);
3174 
3175 	conf->dev_sectors = stride << conf->chunk_shift;
3176 
3177 	if (fo)
3178 		stride = 1;
3179 	else
3180 		sector_div(stride, fc);
3181 	conf->stride = stride << conf->chunk_shift;
3182 
3183 
3184 	spin_lock_init(&conf->device_lock);
3185 	INIT_LIST_HEAD(&conf->retry_list);
3186 
3187 	spin_lock_init(&conf->resync_lock);
3188 	init_waitqueue_head(&conf->wait_barrier);
3189 
3190 	conf->thread = md_register_thread(raid10d, mddev, NULL);
3191 	if (!conf->thread)
3192 		goto out;
3193 
3194 	conf->mddev = mddev;
3195 	return conf;
3196 
3197  out:
3198 	printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3199 	       mdname(mddev));
3200 	if (conf) {
3201 		if (conf->r10bio_pool)
3202 			mempool_destroy(conf->r10bio_pool);
3203 		kfree(conf->mirrors);
3204 		safe_put_page(conf->tmppage);
3205 		kfree(conf);
3206 	}
3207 	return ERR_PTR(err);
3208 }
3209 
run(struct mddev * mddev)3210 static int run(struct mddev *mddev)
3211 {
3212 	struct r10conf *conf;
3213 	int i, disk_idx, chunk_size;
3214 	struct mirror_info *disk;
3215 	struct md_rdev *rdev;
3216 	sector_t size;
3217 
3218 	/*
3219 	 * copy the already verified devices into our private RAID10
3220 	 * bookkeeping area. [whatever we allocate in run(),
3221 	 * should be freed in stop()]
3222 	 */
3223 
3224 	if (mddev->private == NULL) {
3225 		conf = setup_conf(mddev);
3226 		if (IS_ERR(conf))
3227 			return PTR_ERR(conf);
3228 		mddev->private = conf;
3229 	}
3230 	conf = mddev->private;
3231 	if (!conf)
3232 		goto out;
3233 
3234 	mddev->thread = conf->thread;
3235 	conf->thread = NULL;
3236 
3237 	chunk_size = mddev->chunk_sectors << 9;
3238 	blk_queue_io_min(mddev->queue, chunk_size);
3239 	if (conf->raid_disks % conf->near_copies)
3240 		blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
3241 	else
3242 		blk_queue_io_opt(mddev->queue, chunk_size *
3243 				 (conf->raid_disks / conf->near_copies));
3244 
3245 	list_for_each_entry(rdev, &mddev->disks, same_set) {
3246 
3247 		disk_idx = rdev->raid_disk;
3248 		if (disk_idx >= conf->raid_disks
3249 		    || disk_idx < 0)
3250 			continue;
3251 		disk = conf->mirrors + disk_idx;
3252 
3253 		if (test_bit(Replacement, &rdev->flags)) {
3254 			if (disk->replacement)
3255 				goto out_free_conf;
3256 			disk->replacement = rdev;
3257 		} else {
3258 			if (disk->rdev)
3259 				goto out_free_conf;
3260 			disk->rdev = rdev;
3261 		}
3262 
3263 		disk_stack_limits(mddev->gendisk, rdev->bdev,
3264 				  rdev->data_offset << 9);
3265 		/* as we don't honour merge_bvec_fn, we must never risk
3266 		 * violating it, so limit max_segments to 1 lying
3267 		 * within a single page.
3268 		 */
3269 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
3270 			blk_queue_max_segments(mddev->queue, 1);
3271 			blk_queue_segment_boundary(mddev->queue,
3272 						   PAGE_CACHE_SIZE - 1);
3273 		}
3274 
3275 		disk->head_position = 0;
3276 	}
3277 	/* need to check that every block has at least one working mirror */
3278 	if (!enough(conf, -1)) {
3279 		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3280 		       mdname(mddev));
3281 		goto out_free_conf;
3282 	}
3283 
3284 	mddev->degraded = 0;
3285 	for (i = 0; i < conf->raid_disks; i++) {
3286 
3287 		disk = conf->mirrors + i;
3288 
3289 		if (!disk->rdev && disk->replacement) {
3290 			/* The replacement is all we have - use it */
3291 			disk->rdev = disk->replacement;
3292 			disk->replacement = NULL;
3293 			clear_bit(Replacement, &disk->rdev->flags);
3294 		}
3295 
3296 		if (!disk->rdev ||
3297 		    !test_bit(In_sync, &disk->rdev->flags)) {
3298 			disk->head_position = 0;
3299 			mddev->degraded++;
3300 			if (disk->rdev)
3301 				conf->fullsync = 1;
3302 		}
3303 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3304 	}
3305 
3306 	if (mddev->recovery_cp != MaxSector)
3307 		printk(KERN_NOTICE "md/raid10:%s: not clean"
3308 		       " -- starting background reconstruction\n",
3309 		       mdname(mddev));
3310 	printk(KERN_INFO
3311 		"md/raid10:%s: active with %d out of %d devices\n",
3312 		mdname(mddev), conf->raid_disks - mddev->degraded,
3313 		conf->raid_disks);
3314 	/*
3315 	 * Ok, everything is just fine now
3316 	 */
3317 	mddev->dev_sectors = conf->dev_sectors;
3318 	size = raid10_size(mddev, 0, 0);
3319 	md_set_array_sectors(mddev, size);
3320 	mddev->resync_max_sectors = size;
3321 
3322 	mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3323 	mddev->queue->backing_dev_info.congested_data = mddev;
3324 
3325 	/* Calculate max read-ahead size.
3326 	 * We need to readahead at least twice a whole stripe....
3327 	 * maybe...
3328 	 */
3329 	{
3330 		int stripe = conf->raid_disks *
3331 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3332 		stripe /= conf->near_copies;
3333 		if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
3334 			mddev->queue->backing_dev_info.ra_pages = 2* stripe;
3335 	}
3336 
3337 	if (conf->near_copies < conf->raid_disks)
3338 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3339 
3340 	if (md_integrity_register(mddev))
3341 		goto out_free_conf;
3342 
3343 	return 0;
3344 
3345 out_free_conf:
3346 	md_unregister_thread(&mddev->thread);
3347 	if (conf->r10bio_pool)
3348 		mempool_destroy(conf->r10bio_pool);
3349 	safe_put_page(conf->tmppage);
3350 	kfree(conf->mirrors);
3351 	kfree(conf);
3352 	mddev->private = NULL;
3353 out:
3354 	return -EIO;
3355 }
3356 
stop(struct mddev * mddev)3357 static int stop(struct mddev *mddev)
3358 {
3359 	struct r10conf *conf = mddev->private;
3360 
3361 	raise_barrier(conf, 0);
3362 	lower_barrier(conf);
3363 
3364 	md_unregister_thread(&mddev->thread);
3365 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
3366 	if (conf->r10bio_pool)
3367 		mempool_destroy(conf->r10bio_pool);
3368 	kfree(conf->mirrors);
3369 	kfree(conf);
3370 	mddev->private = NULL;
3371 	return 0;
3372 }
3373 
raid10_quiesce(struct mddev * mddev,int state)3374 static void raid10_quiesce(struct mddev *mddev, int state)
3375 {
3376 	struct r10conf *conf = mddev->private;
3377 
3378 	switch(state) {
3379 	case 1:
3380 		raise_barrier(conf, 0);
3381 		break;
3382 	case 0:
3383 		lower_barrier(conf);
3384 		break;
3385 	}
3386 }
3387 
raid10_takeover_raid0(struct mddev * mddev)3388 static void *raid10_takeover_raid0(struct mddev *mddev)
3389 {
3390 	struct md_rdev *rdev;
3391 	struct r10conf *conf;
3392 
3393 	if (mddev->degraded > 0) {
3394 		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3395 		       mdname(mddev));
3396 		return ERR_PTR(-EINVAL);
3397 	}
3398 
3399 	/* Set new parameters */
3400 	mddev->new_level = 10;
3401 	/* new layout: far_copies = 1, near_copies = 2 */
3402 	mddev->new_layout = (1<<8) + 2;
3403 	mddev->new_chunk_sectors = mddev->chunk_sectors;
3404 	mddev->delta_disks = mddev->raid_disks;
3405 	mddev->raid_disks *= 2;
3406 	/* make sure it will be not marked as dirty */
3407 	mddev->recovery_cp = MaxSector;
3408 
3409 	conf = setup_conf(mddev);
3410 	if (!IS_ERR(conf)) {
3411 		list_for_each_entry(rdev, &mddev->disks, same_set)
3412 			if (rdev->raid_disk >= 0)
3413 				rdev->new_raid_disk = rdev->raid_disk * 2;
3414 		conf->barrier = 1;
3415 	}
3416 
3417 	return conf;
3418 }
3419 
raid10_takeover(struct mddev * mddev)3420 static void *raid10_takeover(struct mddev *mddev)
3421 {
3422 	struct r0conf *raid0_conf;
3423 
3424 	/* raid10 can take over:
3425 	 *  raid0 - providing it has only two drives
3426 	 */
3427 	if (mddev->level == 0) {
3428 		/* for raid0 takeover only one zone is supported */
3429 		raid0_conf = mddev->private;
3430 		if (raid0_conf->nr_strip_zones > 1) {
3431 			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3432 			       " with more than one zone.\n",
3433 			       mdname(mddev));
3434 			return ERR_PTR(-EINVAL);
3435 		}
3436 		return raid10_takeover_raid0(mddev);
3437 	}
3438 	return ERR_PTR(-EINVAL);
3439 }
3440 
3441 static struct md_personality raid10_personality =
3442 {
3443 	.name		= "raid10",
3444 	.level		= 10,
3445 	.owner		= THIS_MODULE,
3446 	.make_request	= make_request,
3447 	.run		= run,
3448 	.stop		= stop,
3449 	.status		= status,
3450 	.error_handler	= error,
3451 	.hot_add_disk	= raid10_add_disk,
3452 	.hot_remove_disk= raid10_remove_disk,
3453 	.spare_active	= raid10_spare_active,
3454 	.sync_request	= sync_request,
3455 	.quiesce	= raid10_quiesce,
3456 	.size		= raid10_size,
3457 	.takeover	= raid10_takeover,
3458 };
3459 
raid_init(void)3460 static int __init raid_init(void)
3461 {
3462 	return register_md_personality(&raid10_personality);
3463 }
3464 
raid_exit(void)3465 static void raid_exit(void)
3466 {
3467 	unregister_md_personality(&raid10_personality);
3468 }
3469 
3470 module_init(raid_init);
3471 module_exit(raid_exit);
3472 MODULE_LICENSE("GPL");
3473 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
3474 MODULE_ALIAS("md-personality-9"); /* RAID10 */
3475 MODULE_ALIAS("md-raid10");
3476 MODULE_ALIAS("md-level-10");
3477 
3478 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3479