1 /*
2  * Device driver for the thermostats & fan controller of  the
3  * Apple G5 "PowerMac7,2" desktop machines.
4  *
5  * (c) Copyright IBM Corp. 2003-2004
6  *
7  * Maintained by: Benjamin Herrenschmidt
8  *                <benh@kernel.crashing.org>
9  *
10  *
11  * The algorithm used is the PID control algorithm, used the same
12  * way the published Darwin code does, using the same values that
13  * are present in the Darwin 7.0 snapshot property lists.
14  *
15  * As far as the CPUs control loops are concerned, I use the
16  * calibration & PID constants provided by the EEPROM,
17  * I do _not_ embed any value from the property lists, as the ones
18  * provided by Darwin 7.0 seem to always have an older version that
19  * what I've seen on the actual computers.
20  * It would be interesting to verify that though. Darwin has a
21  * version code of 1.0.0d11 for all control loops it seems, while
22  * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
23  *
24  * Darwin doesn't provide source to all parts, some missing
25  * bits like the AppleFCU driver or the actual scale of some
26  * of the values returned by sensors had to be "guessed" some
27  * way... or based on what Open Firmware does.
28  *
29  * I didn't yet figure out how to get the slots power consumption
30  * out of the FCU, so that part has not been implemented yet and
31  * the slots fan is set to a fixed 50% PWM, hoping this value is
32  * safe enough ...
33  *
34  * Note: I have observed strange oscillations of the CPU control
35  * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
36  * oscillates slowly (over several minutes) between the minimum
37  * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
38  * this, it could be some incorrect constant or an error in the
39  * way I ported the algorithm, or it could be just normal. I
40  * don't have full understanding on the way Apple tweaked the PID
41  * algorithm for the CPU control, it is definitely not a standard
42  * implementation...
43  *
44  * TODO:  - Check MPU structure version/signature
45  *        - Add things like /sbin/overtemp for non-critical
46  *          overtemp conditions so userland can take some policy
47  *          decisions, like slowing down CPUs
48  *	  - Deal with fan and i2c failures in a better way
49  *	  - Maybe do a generic PID based on params used for
50  *	    U3 and Drives ? Definitely need to factor code a bit
51  *          better... also make sensor detection more robust using
52  *          the device-tree to probe for them
53  *        - Figure out how to get the slots consumption and set the
54  *          slots fan accordingly
55  *
56  * History:
57  *
58  *  Nov. 13, 2003 : 0.5
59  *	- First release
60  *
61  *  Nov. 14, 2003 : 0.6
62  *	- Read fan speed from FCU, low level fan routines now deal
63  *	  with errors & check fan status, though higher level don't
64  *	  do much.
65  *	- Move a bunch of definitions to .h file
66  *
67  *  Nov. 18, 2003 : 0.7
68  *	- Fix build on ppc64 kernel
69  *	- Move back statics definitions to .c file
70  *	- Avoid calling schedule_timeout with a negative number
71  *
72  *  Dec. 18, 2003 : 0.8
73  *	- Fix typo when reading back fan speed on 2 CPU machines
74  *
75  *  Mar. 11, 2004 : 0.9
76  *	- Rework code accessing the ADC chips, make it more robust and
77  *	  closer to the chip spec. Also make sure it is configured properly,
78  *        I've seen yet unexplained cases where on startup, I would have stale
79  *        values in the configuration register
80  *	- Switch back to use of target fan speed for PID, thus lowering
81  *        pressure on i2c
82  *
83  *  Oct. 20, 2004 : 1.1
84  *	- Add device-tree lookup for fan IDs, should detect liquid cooling
85  *        pumps when present
86  *	- Enable driver for PowerMac7,3 machines
87  *	- Split the U3/Backside cooling on U3 & U3H versions as Darwin does
88  *	- Add new CPU cooling algorithm for machines with liquid cooling
89  *	- Workaround for some PowerMac7,3 with empty "fan" node in the devtree
90  *	- Fix a signed/unsigned compare issue in some PID loops
91  *
92  *  Mar. 10, 2005 : 1.2
93  *	- Add basic support for Xserve G5
94  *	- Retrieve pumps min/max from EEPROM image in device-tree (broken)
95  *	- Use min/max macros here or there
96  *	- Latest darwin updated U3H min fan speed to 20% PWM
97  *
98  *  July. 06, 2006 : 1.3
99  *	- Fix setting of RPM fans on Xserve G5 (they were going too fast)
100  *      - Add missing slots fan control loop for Xserve G5
101  *	- Lower fixed slots fan speed from 50% to 40% on desktop G5s. We
102  *        still can't properly implement the control loop for these, so let's
103  *        reduce the noise a little bit, it appears that 40% still gives us
104  *        a pretty good air flow
105  *	- Add code to "tickle" the FCU regulary so it doesn't think that
106  *        we are gone while in fact, the machine just didn't need any fan
107  *        speed change lately
108  *
109  */
110 
111 #include <linux/types.h>
112 #include <linux/module.h>
113 #include <linux/errno.h>
114 #include <linux/kernel.h>
115 #include <linux/delay.h>
116 #include <linux/sched.h>
117 #include <linux/init.h>
118 #include <linux/spinlock.h>
119 #include <linux/wait.h>
120 #include <linux/reboot.h>
121 #include <linux/kmod.h>
122 #include <linux/i2c.h>
123 #include <linux/kthread.h>
124 #include <linux/mutex.h>
125 #include <linux/of_device.h>
126 #include <linux/of_platform.h>
127 #include <asm/prom.h>
128 #include <asm/machdep.h>
129 #include <asm/io.h>
130 #include <asm/system.h>
131 #include <asm/sections.h>
132 #include <asm/macio.h>
133 
134 #include "therm_pm72.h"
135 
136 #define VERSION "1.3"
137 
138 #undef DEBUG
139 
140 #ifdef DEBUG
141 #define DBG(args...)	printk(args)
142 #else
143 #define DBG(args...)	do { } while(0)
144 #endif
145 
146 
147 /*
148  * Driver statics
149  */
150 
151 static struct platform_device *		of_dev;
152 static struct i2c_adapter *		u3_0;
153 static struct i2c_adapter *		u3_1;
154 static struct i2c_adapter *		k2;
155 static struct i2c_client *		fcu;
156 static struct cpu_pid_state		processor_state[2];
157 static struct basckside_pid_params	backside_params;
158 static struct backside_pid_state	backside_state;
159 static struct drives_pid_state		drives_state;
160 static struct dimm_pid_state		dimms_state;
161 static struct slots_pid_state		slots_state;
162 static int				state;
163 static int				cpu_count;
164 static int				cpu_pid_type;
165 static struct task_struct		*ctrl_task;
166 static struct completion		ctrl_complete;
167 static int				critical_state;
168 static int				rackmac;
169 static s32				dimm_output_clamp;
170 static int 				fcu_rpm_shift;
171 static int				fcu_tickle_ticks;
172 static DEFINE_MUTEX(driver_lock);
173 
174 /*
175  * We have 3 types of CPU PID control. One is "split" old style control
176  * for intake & exhaust fans, the other is "combined" control for both
177  * CPUs that also deals with the pumps when present. To be "compatible"
178  * with OS X at this point, we only use "COMBINED" on the machines that
179  * are identified as having the pumps (though that identification is at
180  * least dodgy). Ultimately, we could probably switch completely to this
181  * algorithm provided we hack it to deal with the UP case
182  */
183 #define CPU_PID_TYPE_SPLIT	0
184 #define CPU_PID_TYPE_COMBINED	1
185 #define CPU_PID_TYPE_RACKMAC	2
186 
187 /*
188  * This table describes all fans in the FCU. The "id" and "type" values
189  * are defaults valid for all earlier machines. Newer machines will
190  * eventually override the table content based on the device-tree
191  */
192 struct fcu_fan_table
193 {
194 	char*	loc;	/* location code */
195 	int	type;	/* 0 = rpm, 1 = pwm, 2 = pump */
196 	int	id;	/* id or -1 */
197 };
198 
199 #define FCU_FAN_RPM		0
200 #define FCU_FAN_PWM		1
201 
202 #define FCU_FAN_ABSENT_ID	-1
203 
204 #define FCU_FAN_COUNT		ARRAY_SIZE(fcu_fans)
205 
206 struct fcu_fan_table	fcu_fans[] = {
207 	[BACKSIDE_FAN_PWM_INDEX] = {
208 		.loc	= "BACKSIDE,SYS CTRLR FAN",
209 		.type	= FCU_FAN_PWM,
210 		.id	= BACKSIDE_FAN_PWM_DEFAULT_ID,
211 	},
212 	[DRIVES_FAN_RPM_INDEX] = {
213 		.loc	= "DRIVE BAY",
214 		.type	= FCU_FAN_RPM,
215 		.id	= DRIVES_FAN_RPM_DEFAULT_ID,
216 	},
217 	[SLOTS_FAN_PWM_INDEX] = {
218 		.loc	= "SLOT,PCI FAN",
219 		.type	= FCU_FAN_PWM,
220 		.id	= SLOTS_FAN_PWM_DEFAULT_ID,
221 	},
222 	[CPUA_INTAKE_FAN_RPM_INDEX] = {
223 		.loc	= "CPU A INTAKE",
224 		.type	= FCU_FAN_RPM,
225 		.id	= CPUA_INTAKE_FAN_RPM_DEFAULT_ID,
226 	},
227 	[CPUA_EXHAUST_FAN_RPM_INDEX] = {
228 		.loc	= "CPU A EXHAUST",
229 		.type	= FCU_FAN_RPM,
230 		.id	= CPUA_EXHAUST_FAN_RPM_DEFAULT_ID,
231 	},
232 	[CPUB_INTAKE_FAN_RPM_INDEX] = {
233 		.loc	= "CPU B INTAKE",
234 		.type	= FCU_FAN_RPM,
235 		.id	= CPUB_INTAKE_FAN_RPM_DEFAULT_ID,
236 	},
237 	[CPUB_EXHAUST_FAN_RPM_INDEX] = {
238 		.loc	= "CPU B EXHAUST",
239 		.type	= FCU_FAN_RPM,
240 		.id	= CPUB_EXHAUST_FAN_RPM_DEFAULT_ID,
241 	},
242 	/* pumps aren't present by default, have to be looked up in the
243 	 * device-tree
244 	 */
245 	[CPUA_PUMP_RPM_INDEX] = {
246 		.loc	= "CPU A PUMP",
247 		.type	= FCU_FAN_RPM,
248 		.id	= FCU_FAN_ABSENT_ID,
249 	},
250 	[CPUB_PUMP_RPM_INDEX] = {
251 		.loc	= "CPU B PUMP",
252 		.type	= FCU_FAN_RPM,
253 		.id	= FCU_FAN_ABSENT_ID,
254 	},
255 	/* Xserve fans */
256 	[CPU_A1_FAN_RPM_INDEX] = {
257 		.loc	= "CPU A 1",
258 		.type	= FCU_FAN_RPM,
259 		.id	= FCU_FAN_ABSENT_ID,
260 	},
261 	[CPU_A2_FAN_RPM_INDEX] = {
262 		.loc	= "CPU A 2",
263 		.type	= FCU_FAN_RPM,
264 		.id	= FCU_FAN_ABSENT_ID,
265 	},
266 	[CPU_A3_FAN_RPM_INDEX] = {
267 		.loc	= "CPU A 3",
268 		.type	= FCU_FAN_RPM,
269 		.id	= FCU_FAN_ABSENT_ID,
270 	},
271 	[CPU_B1_FAN_RPM_INDEX] = {
272 		.loc	= "CPU B 1",
273 		.type	= FCU_FAN_RPM,
274 		.id	= FCU_FAN_ABSENT_ID,
275 	},
276 	[CPU_B2_FAN_RPM_INDEX] = {
277 		.loc	= "CPU B 2",
278 		.type	= FCU_FAN_RPM,
279 		.id	= FCU_FAN_ABSENT_ID,
280 	},
281 	[CPU_B3_FAN_RPM_INDEX] = {
282 		.loc	= "CPU B 3",
283 		.type	= FCU_FAN_RPM,
284 		.id	= FCU_FAN_ABSENT_ID,
285 	},
286 };
287 
288 static struct i2c_driver therm_pm72_driver;
289 
290 /*
291  * Utility function to create an i2c_client structure and
292  * attach it to one of u3 adapters
293  */
attach_i2c_chip(int id,const char * name)294 static struct i2c_client *attach_i2c_chip(int id, const char *name)
295 {
296 	struct i2c_client *clt;
297 	struct i2c_adapter *adap;
298 	struct i2c_board_info info;
299 
300 	if (id & 0x200)
301 		adap = k2;
302 	else if (id & 0x100)
303 		adap = u3_1;
304 	else
305 		adap = u3_0;
306 	if (adap == NULL)
307 		return NULL;
308 
309 	memset(&info, 0, sizeof(struct i2c_board_info));
310 	info.addr = (id >> 1) & 0x7f;
311 	strlcpy(info.type, "therm_pm72", I2C_NAME_SIZE);
312 	clt = i2c_new_device(adap, &info);
313 	if (!clt) {
314 		printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id);
315 		return NULL;
316 	}
317 
318 	/*
319 	 * Let i2c-core delete that device on driver removal.
320 	 * This is safe because i2c-core holds the core_lock mutex for us.
321 	 */
322 	list_add_tail(&clt->detected, &therm_pm72_driver.clients);
323 	return clt;
324 }
325 
326 /*
327  * Here are the i2c chip access wrappers
328  */
329 
initialize_adc(struct cpu_pid_state * state)330 static void initialize_adc(struct cpu_pid_state *state)
331 {
332 	int rc;
333 	u8 buf[2];
334 
335 	/* Read ADC the configuration register and cache it. We
336 	 * also make sure Config2 contains proper values, I've seen
337 	 * cases where we got stale grabage in there, thus preventing
338 	 * proper reading of conv. values
339 	 */
340 
341 	/* Clear Config2 */
342 	buf[0] = 5;
343 	buf[1] = 0;
344 	i2c_master_send(state->monitor, buf, 2);
345 
346 	/* Read & cache Config1 */
347 	buf[0] = 1;
348 	rc = i2c_master_send(state->monitor, buf, 1);
349 	if (rc > 0) {
350 		rc = i2c_master_recv(state->monitor, buf, 1);
351 		if (rc > 0) {
352 			state->adc_config = buf[0];
353 			DBG("ADC config reg: %02x\n", state->adc_config);
354 			/* Disable shutdown mode */
355 		       	state->adc_config &= 0xfe;
356 			buf[0] = 1;
357 			buf[1] = state->adc_config;
358 			rc = i2c_master_send(state->monitor, buf, 2);
359 		}
360 	}
361 	if (rc <= 0)
362 		printk(KERN_ERR "therm_pm72: Error reading ADC config"
363 		       " register !\n");
364 }
365 
read_smon_adc(struct cpu_pid_state * state,int chan)366 static int read_smon_adc(struct cpu_pid_state *state, int chan)
367 {
368 	int rc, data, tries = 0;
369 	u8 buf[2];
370 
371 	for (;;) {
372 		/* Set channel */
373 		buf[0] = 1;
374 		buf[1] = (state->adc_config & 0x1f) | (chan << 5);
375 		rc = i2c_master_send(state->monitor, buf, 2);
376 		if (rc <= 0)
377 			goto error;
378 		/* Wait for conversion */
379 		msleep(1);
380 		/* Switch to data register */
381 		buf[0] = 4;
382 		rc = i2c_master_send(state->monitor, buf, 1);
383 		if (rc <= 0)
384 			goto error;
385 		/* Read result */
386 		rc = i2c_master_recv(state->monitor, buf, 2);
387 		if (rc < 0)
388 			goto error;
389 		data = ((u16)buf[0]) << 8 | (u16)buf[1];
390 		return data >> 6;
391 	error:
392 		DBG("Error reading ADC, retrying...\n");
393 		if (++tries > 10) {
394 			printk(KERN_ERR "therm_pm72: Error reading ADC !\n");
395 			return -1;
396 		}
397 		msleep(10);
398 	}
399 }
400 
read_lm87_reg(struct i2c_client * chip,int reg)401 static int read_lm87_reg(struct i2c_client * chip, int reg)
402 {
403 	int rc, tries = 0;
404 	u8 buf;
405 
406 	for (;;) {
407 		/* Set address */
408 		buf = (u8)reg;
409 		rc = i2c_master_send(chip, &buf, 1);
410 		if (rc <= 0)
411 			goto error;
412 		rc = i2c_master_recv(chip, &buf, 1);
413 		if (rc <= 0)
414 			goto error;
415 		return (int)buf;
416 	error:
417 		DBG("Error reading LM87, retrying...\n");
418 		if (++tries > 10) {
419 			printk(KERN_ERR "therm_pm72: Error reading LM87 !\n");
420 			return -1;
421 		}
422 		msleep(10);
423 	}
424 }
425 
fan_read_reg(int reg,unsigned char * buf,int nb)426 static int fan_read_reg(int reg, unsigned char *buf, int nb)
427 {
428 	int tries, nr, nw;
429 
430 	buf[0] = reg;
431 	tries = 0;
432 	for (;;) {
433 		nw = i2c_master_send(fcu, buf, 1);
434 		if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
435 			break;
436 		msleep(10);
437 		++tries;
438 	}
439 	if (nw <= 0) {
440 		printk(KERN_ERR "Failure writing address to FCU: %d", nw);
441 		return -EIO;
442 	}
443 	tries = 0;
444 	for (;;) {
445 		nr = i2c_master_recv(fcu, buf, nb);
446 		if (nr > 0 || (nr < 0 && nr != -ENODEV) || tries >= 100)
447 			break;
448 		msleep(10);
449 		++tries;
450 	}
451 	if (nr <= 0)
452 		printk(KERN_ERR "Failure reading data from FCU: %d", nw);
453 	return nr;
454 }
455 
fan_write_reg(int reg,const unsigned char * ptr,int nb)456 static int fan_write_reg(int reg, const unsigned char *ptr, int nb)
457 {
458 	int tries, nw;
459 	unsigned char buf[16];
460 
461 	buf[0] = reg;
462 	memcpy(buf+1, ptr, nb);
463 	++nb;
464 	tries = 0;
465 	for (;;) {
466 		nw = i2c_master_send(fcu, buf, nb);
467 		if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
468 			break;
469 		msleep(10);
470 		++tries;
471 	}
472 	if (nw < 0)
473 		printk(KERN_ERR "Failure writing to FCU: %d", nw);
474 	return nw;
475 }
476 
start_fcu(void)477 static int start_fcu(void)
478 {
479 	unsigned char buf = 0xff;
480 	int rc;
481 
482 	rc = fan_write_reg(0xe, &buf, 1);
483 	if (rc < 0)
484 		return -EIO;
485 	rc = fan_write_reg(0x2e, &buf, 1);
486 	if (rc < 0)
487 		return -EIO;
488 	rc = fan_read_reg(0, &buf, 1);
489 	if (rc < 0)
490 		return -EIO;
491 	fcu_rpm_shift = (buf == 1) ? 2 : 3;
492 	printk(KERN_DEBUG "FCU Initialized, RPM fan shift is %d\n",
493 	       fcu_rpm_shift);
494 
495 	return 0;
496 }
497 
set_rpm_fan(int fan_index,int rpm)498 static int set_rpm_fan(int fan_index, int rpm)
499 {
500 	unsigned char buf[2];
501 	int rc, id, min, max;
502 
503 	if (fcu_fans[fan_index].type != FCU_FAN_RPM)
504 		return -EINVAL;
505 	id = fcu_fans[fan_index].id;
506 	if (id == FCU_FAN_ABSENT_ID)
507 		return -EINVAL;
508 
509 	min = 2400 >> fcu_rpm_shift;
510 	max = 56000 >> fcu_rpm_shift;
511 
512 	if (rpm < min)
513 		rpm = min;
514 	else if (rpm > max)
515 		rpm = max;
516 	buf[0] = rpm >> (8 - fcu_rpm_shift);
517 	buf[1] = rpm << fcu_rpm_shift;
518 	rc = fan_write_reg(0x10 + (id * 2), buf, 2);
519 	if (rc < 0)
520 		return -EIO;
521 	return 0;
522 }
523 
get_rpm_fan(int fan_index,int programmed)524 static int get_rpm_fan(int fan_index, int programmed)
525 {
526 	unsigned char failure;
527 	unsigned char active;
528 	unsigned char buf[2];
529 	int rc, id, reg_base;
530 
531 	if (fcu_fans[fan_index].type != FCU_FAN_RPM)
532 		return -EINVAL;
533 	id = fcu_fans[fan_index].id;
534 	if (id == FCU_FAN_ABSENT_ID)
535 		return -EINVAL;
536 
537 	rc = fan_read_reg(0xb, &failure, 1);
538 	if (rc != 1)
539 		return -EIO;
540 	if ((failure & (1 << id)) != 0)
541 		return -EFAULT;
542 	rc = fan_read_reg(0xd, &active, 1);
543 	if (rc != 1)
544 		return -EIO;
545 	if ((active & (1 << id)) == 0)
546 		return -ENXIO;
547 
548 	/* Programmed value or real current speed */
549 	reg_base = programmed ? 0x10 : 0x11;
550 	rc = fan_read_reg(reg_base + (id * 2), buf, 2);
551 	if (rc != 2)
552 		return -EIO;
553 
554 	return (buf[0] << (8 - fcu_rpm_shift)) | buf[1] >> fcu_rpm_shift;
555 }
556 
set_pwm_fan(int fan_index,int pwm)557 static int set_pwm_fan(int fan_index, int pwm)
558 {
559 	unsigned char buf[2];
560 	int rc, id;
561 
562 	if (fcu_fans[fan_index].type != FCU_FAN_PWM)
563 		return -EINVAL;
564 	id = fcu_fans[fan_index].id;
565 	if (id == FCU_FAN_ABSENT_ID)
566 		return -EINVAL;
567 
568 	if (pwm < 10)
569 		pwm = 10;
570 	else if (pwm > 100)
571 		pwm = 100;
572 	pwm = (pwm * 2559) / 1000;
573 	buf[0] = pwm;
574 	rc = fan_write_reg(0x30 + (id * 2), buf, 1);
575 	if (rc < 0)
576 		return rc;
577 	return 0;
578 }
579 
get_pwm_fan(int fan_index)580 static int get_pwm_fan(int fan_index)
581 {
582 	unsigned char failure;
583 	unsigned char active;
584 	unsigned char buf[2];
585 	int rc, id;
586 
587 	if (fcu_fans[fan_index].type != FCU_FAN_PWM)
588 		return -EINVAL;
589 	id = fcu_fans[fan_index].id;
590 	if (id == FCU_FAN_ABSENT_ID)
591 		return -EINVAL;
592 
593 	rc = fan_read_reg(0x2b, &failure, 1);
594 	if (rc != 1)
595 		return -EIO;
596 	if ((failure & (1 << id)) != 0)
597 		return -EFAULT;
598 	rc = fan_read_reg(0x2d, &active, 1);
599 	if (rc != 1)
600 		return -EIO;
601 	if ((active & (1 << id)) == 0)
602 		return -ENXIO;
603 
604 	/* Programmed value or real current speed */
605 	rc = fan_read_reg(0x30 + (id * 2), buf, 1);
606 	if (rc != 1)
607 		return -EIO;
608 
609 	return (buf[0] * 1000) / 2559;
610 }
611 
tickle_fcu(void)612 static void tickle_fcu(void)
613 {
614 	int pwm;
615 
616 	pwm = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
617 
618 	DBG("FCU Tickle, slots fan is: %d\n", pwm);
619 	if (pwm < 0)
620 		pwm = 100;
621 
622 	if (!rackmac) {
623 		pwm = SLOTS_FAN_DEFAULT_PWM;
624 	} else if (pwm < SLOTS_PID_OUTPUT_MIN)
625 		pwm = SLOTS_PID_OUTPUT_MIN;
626 
627 	/* That is hopefully enough to make the FCU happy */
628 	set_pwm_fan(SLOTS_FAN_PWM_INDEX, pwm);
629 }
630 
631 
632 /*
633  * Utility routine to read the CPU calibration EEPROM data
634  * from the device-tree
635  */
read_eeprom(int cpu,struct mpu_data * out)636 static int read_eeprom(int cpu, struct mpu_data *out)
637 {
638 	struct device_node *np;
639 	char nodename[64];
640 	const u8 *data;
641 	int len;
642 
643 	/* prom.c routine for finding a node by path is a bit brain dead
644 	 * and requires exact @xxx unit numbers. This is a bit ugly but
645 	 * will work for these machines
646 	 */
647 	sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0);
648 	np = of_find_node_by_path(nodename);
649 	if (np == NULL) {
650 		printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid node from device-tree\n");
651 		return -ENODEV;
652 	}
653 	data = of_get_property(np, "cpuid", &len);
654 	if (data == NULL) {
655 		printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid property from device-tree\n");
656 		of_node_put(np);
657 		return -ENODEV;
658 	}
659 	memcpy(out, data, sizeof(struct mpu_data));
660 	of_node_put(np);
661 
662 	return 0;
663 }
664 
fetch_cpu_pumps_minmax(void)665 static void fetch_cpu_pumps_minmax(void)
666 {
667 	struct cpu_pid_state *state0 = &processor_state[0];
668 	struct cpu_pid_state *state1 = &processor_state[1];
669 	u16 pump_min = 0, pump_max = 0xffff;
670 	u16 tmp[4];
671 
672 	/* Try to fetch pumps min/max infos from eeprom */
673 
674 	memcpy(&tmp, &state0->mpu.processor_part_num, 8);
675 	if (tmp[0] != 0xffff && tmp[1] != 0xffff) {
676 		pump_min = max(pump_min, tmp[0]);
677 		pump_max = min(pump_max, tmp[1]);
678 	}
679 	if (tmp[2] != 0xffff && tmp[3] != 0xffff) {
680 		pump_min = max(pump_min, tmp[2]);
681 		pump_max = min(pump_max, tmp[3]);
682 	}
683 
684 	/* Double check the values, this _IS_ needed as the EEPROM on
685 	 * some dual 2.5Ghz G5s seem, at least, to have both min & max
686 	 * same to the same value ... (grrrr)
687 	 */
688 	if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) {
689 		pump_min = CPU_PUMP_OUTPUT_MIN;
690 		pump_max = CPU_PUMP_OUTPUT_MAX;
691 	}
692 
693 	state0->pump_min = state1->pump_min = pump_min;
694 	state0->pump_max = state1->pump_max = pump_max;
695 }
696 
697 /*
698  * Now, unfortunately, sysfs doesn't give us a nice void * we could
699  * pass around to the attribute functions, so we don't really have
700  * choice but implement a bunch of them...
701  *
702  * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
703  * the input twice... I accept patches :)
704  */
705 #define BUILD_SHOW_FUNC_FIX(name, data)				\
706 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)	\
707 {								\
708 	ssize_t r;						\
709 	mutex_lock(&driver_lock);					\
710 	r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data));	\
711 	mutex_unlock(&driver_lock);					\
712 	return r;						\
713 }
714 #define BUILD_SHOW_FUNC_INT(name, data)				\
715 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)	\
716 {								\
717 	return sprintf(buf, "%d", data);			\
718 }
719 
720 BUILD_SHOW_FUNC_FIX(cpu0_temperature, processor_state[0].last_temp)
721 BUILD_SHOW_FUNC_FIX(cpu0_voltage, processor_state[0].voltage)
722 BUILD_SHOW_FUNC_FIX(cpu0_current, processor_state[0].current_a)
723 BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, processor_state[0].rpm)
724 BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, processor_state[0].intake_rpm)
725 
726 BUILD_SHOW_FUNC_FIX(cpu1_temperature, processor_state[1].last_temp)
727 BUILD_SHOW_FUNC_FIX(cpu1_voltage, processor_state[1].voltage)
728 BUILD_SHOW_FUNC_FIX(cpu1_current, processor_state[1].current_a)
729 BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, processor_state[1].rpm)
730 BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, processor_state[1].intake_rpm)
731 
732 BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp)
733 BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm)
734 
735 BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp)
736 BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm)
737 
738 BUILD_SHOW_FUNC_FIX(slots_temperature, slots_state.last_temp)
739 BUILD_SHOW_FUNC_INT(slots_fan_pwm, slots_state.pwm)
740 
741 BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp)
742 
743 static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL);
744 static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL);
745 static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL);
746 static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL);
747 static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL);
748 
749 static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL);
750 static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL);
751 static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL);
752 static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL);
753 static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL);
754 
755 static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL);
756 static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL);
757 
758 static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL);
759 static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL);
760 
761 static DEVICE_ATTR(slots_temperature,S_IRUGO,show_slots_temperature,NULL);
762 static DEVICE_ATTR(slots_fan_pwm,S_IRUGO,show_slots_fan_pwm,NULL);
763 
764 static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL);
765 
766 /*
767  * CPUs fans control loop
768  */
769 
do_read_one_cpu_values(struct cpu_pid_state * state,s32 * temp,s32 * power)770 static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, s32 *power)
771 {
772 	s32 ltemp, volts, amps;
773 	int index, rc = 0;
774 
775 	/* Default (in case of error) */
776 	*temp = state->cur_temp;
777 	*power = state->cur_power;
778 
779 	if (cpu_pid_type == CPU_PID_TYPE_RACKMAC)
780 		index = (state->index == 0) ?
781 			CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX;
782 	else
783 		index = (state->index == 0) ?
784 			CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX;
785 
786 	/* Read current fan status */
787 	rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED);
788 	if (rc < 0) {
789 		/* XXX What do we do now ? Nothing for now, keep old value, but
790 		 * return error upstream
791 		 */
792 		DBG("  cpu %d, fan reading error !\n", state->index);
793 	} else {
794 		state->rpm = rc;
795 		DBG("  cpu %d, exhaust RPM: %d\n", state->index, state->rpm);
796 	}
797 
798 	/* Get some sensor readings and scale it */
799 	ltemp = read_smon_adc(state, 1);
800 	if (ltemp == -1) {
801 		/* XXX What do we do now ? */
802 		state->overtemp++;
803 		if (rc == 0)
804 			rc = -EIO;
805 		DBG("  cpu %d, temp reading error !\n", state->index);
806 	} else {
807 		/* Fixup temperature according to diode calibration
808 		 */
809 		DBG("  cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
810 		    state->index,
811 		    ltemp, state->mpu.mdiode, state->mpu.bdiode);
812 		*temp = ((s32)ltemp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2;
813 		state->last_temp = *temp;
814 		DBG("  temp: %d.%03d\n", FIX32TOPRINT((*temp)));
815 	}
816 
817 	/*
818 	 * Read voltage & current and calculate power
819 	 */
820 	volts = read_smon_adc(state, 3);
821 	amps = read_smon_adc(state, 4);
822 
823 	/* Scale voltage and current raw sensor values according to fixed scales
824 	 * obtained in Darwin and calculate power from I and V
825 	 */
826 	volts *= ADC_CPU_VOLTAGE_SCALE;
827 	amps *= ADC_CPU_CURRENT_SCALE;
828 	*power = (((u64)volts) * ((u64)amps)) >> 16;
829 	state->voltage = volts;
830 	state->current_a = amps;
831 	state->last_power = *power;
832 
833 	DBG("  cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
834 	    state->index, FIX32TOPRINT(state->current_a),
835 	    FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power));
836 
837 	return 0;
838 }
839 
do_cpu_pid(struct cpu_pid_state * state,s32 temp,s32 power)840 static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power)
841 {
842 	s32 power_target, integral, derivative, proportional, adj_in_target, sval;
843 	s64 integ_p, deriv_p, prop_p, sum;
844 	int i;
845 
846 	/* Calculate power target value (could be done once for all)
847 	 * and convert to a 16.16 fp number
848 	 */
849 	power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16;
850 	DBG("  power target: %d.%03d, error: %d.%03d\n",
851 	    FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power));
852 
853 	/* Store temperature and power in history array */
854 	state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
855 	state->temp_history[state->cur_temp] = temp;
856 	state->cur_power = (state->cur_power + 1) % state->count_power;
857 	state->power_history[state->cur_power] = power;
858 	state->error_history[state->cur_power] = power_target - power;
859 
860 	/* If first loop, fill the history table */
861 	if (state->first) {
862 		for (i = 0; i < (state->count_power - 1); i++) {
863 			state->cur_power = (state->cur_power + 1) % state->count_power;
864 			state->power_history[state->cur_power] = power;
865 			state->error_history[state->cur_power] = power_target - power;
866 		}
867 		for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) {
868 			state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
869 			state->temp_history[state->cur_temp] = temp;
870 		}
871 		state->first = 0;
872 	}
873 
874 	/* Calculate the integral term normally based on the "power" values */
875 	sum = 0;
876 	integral = 0;
877 	for (i = 0; i < state->count_power; i++)
878 		integral += state->error_history[i];
879 	integral *= CPU_PID_INTERVAL;
880 	DBG("  integral: %08x\n", integral);
881 
882 	/* Calculate the adjusted input (sense value).
883 	 *   G_r is 12.20
884 	 *   integ is 16.16
885 	 *   so the result is 28.36
886 	 *
887 	 * input target is mpu.ttarget, input max is mpu.tmax
888 	 */
889 	integ_p = ((s64)state->mpu.pid_gr) * (s64)integral;
890 	DBG("   integ_p: %d\n", (int)(integ_p >> 36));
891 	sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff);
892 	adj_in_target = (state->mpu.ttarget << 16);
893 	if (adj_in_target > sval)
894 		adj_in_target = sval;
895 	DBG("   adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target),
896 	    state->mpu.ttarget);
897 
898 	/* Calculate the derivative term */
899 	derivative = state->temp_history[state->cur_temp] -
900 		state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1)
901 				    % CPU_TEMP_HISTORY_SIZE];
902 	derivative /= CPU_PID_INTERVAL;
903 	deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative;
904 	DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
905 	sum += deriv_p;
906 
907 	/* Calculate the proportional term */
908 	proportional = temp - adj_in_target;
909 	prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional;
910 	DBG("   prop_p: %d\n", (int)(prop_p >> 36));
911 	sum += prop_p;
912 
913 	/* Scale sum */
914 	sum >>= 36;
915 
916 	DBG("   sum: %d\n", (int)sum);
917 	state->rpm += (s32)sum;
918 }
919 
do_monitor_cpu_combined(void)920 static void do_monitor_cpu_combined(void)
921 {
922 	struct cpu_pid_state *state0 = &processor_state[0];
923 	struct cpu_pid_state *state1 = &processor_state[1];
924 	s32 temp0, power0, temp1, power1;
925 	s32 temp_combi, power_combi;
926 	int rc, intake, pump;
927 
928 	rc = do_read_one_cpu_values(state0, &temp0, &power0);
929 	if (rc < 0) {
930 		/* XXX What do we do now ? */
931 	}
932 	state1->overtemp = 0;
933 	rc = do_read_one_cpu_values(state1, &temp1, &power1);
934 	if (rc < 0) {
935 		/* XXX What do we do now ? */
936 	}
937 	if (state1->overtemp)
938 		state0->overtemp++;
939 
940 	temp_combi = max(temp0, temp1);
941 	power_combi = max(power0, power1);
942 
943 	/* Check tmax, increment overtemp if we are there. At tmax+8, we go
944 	 * full blown immediately and try to trigger a shutdown
945 	 */
946 	if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) {
947 		printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n",
948 		       temp_combi >> 16);
949 		state0->overtemp += CPU_MAX_OVERTEMP / 4;
950 	} else if (temp_combi > (state0->mpu.tmax << 16)) {
951 		state0->overtemp++;
952 		printk(KERN_WARNING "Temperature %d above max %d. overtemp %d\n",
953 		       temp_combi >> 16, state0->mpu.tmax, state0->overtemp);
954 	} else {
955 		if (state0->overtemp)
956 			printk(KERN_WARNING "Temperature back down to %d\n",
957 			       temp_combi >> 16);
958 		state0->overtemp = 0;
959 	}
960 	if (state0->overtemp >= CPU_MAX_OVERTEMP)
961 		critical_state = 1;
962 	if (state0->overtemp > 0) {
963 		state0->rpm = state0->mpu.rmaxn_exhaust_fan;
964 		state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan;
965 		pump = state0->pump_max;
966 		goto do_set_fans;
967 	}
968 
969 	/* Do the PID */
970 	do_cpu_pid(state0, temp_combi, power_combi);
971 
972 	/* Range check */
973 	state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan);
974 	state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan);
975 
976 	/* Calculate intake fan speed */
977 	intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16;
978 	intake = max(intake, (int)state0->mpu.rminn_intake_fan);
979 	intake = min(intake, (int)state0->mpu.rmaxn_intake_fan);
980 	state0->intake_rpm = intake;
981 
982 	/* Calculate pump speed */
983 	pump = (state0->rpm * state0->pump_max) /
984 		state0->mpu.rmaxn_exhaust_fan;
985 	pump = min(pump, state0->pump_max);
986 	pump = max(pump, state0->pump_min);
987 
988  do_set_fans:
989 	/* We copy values from state 0 to state 1 for /sysfs */
990 	state1->rpm = state0->rpm;
991 	state1->intake_rpm = state0->intake_rpm;
992 
993 	DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
994 	    state1->index, (int)state1->rpm, intake, pump, state1->overtemp);
995 
996 	/* We should check for errors, shouldn't we ? But then, what
997 	 * do we do once the error occurs ? For FCU notified fan
998 	 * failures (-EFAULT) we probably want to notify userland
999 	 * some way...
1000 	 */
1001 	set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1002 	set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm);
1003 	set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1004 	set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm);
1005 
1006 	if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1007 		set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump);
1008 	if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1009 		set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump);
1010 }
1011 
do_monitor_cpu_split(struct cpu_pid_state * state)1012 static void do_monitor_cpu_split(struct cpu_pid_state *state)
1013 {
1014 	s32 temp, power;
1015 	int rc, intake;
1016 
1017 	/* Read current fan status */
1018 	rc = do_read_one_cpu_values(state, &temp, &power);
1019 	if (rc < 0) {
1020 		/* XXX What do we do now ? */
1021 	}
1022 
1023 	/* Check tmax, increment overtemp if we are there. At tmax+8, we go
1024 	 * full blown immediately and try to trigger a shutdown
1025 	 */
1026 	if (temp >= ((state->mpu.tmax + 8) << 16)) {
1027 		printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1028 		       " (%d) !\n",
1029 		       state->index, temp >> 16);
1030 		state->overtemp += CPU_MAX_OVERTEMP / 4;
1031 	} else if (temp > (state->mpu.tmax << 16)) {
1032 		state->overtemp++;
1033 		printk(KERN_WARNING "CPU %d temperature %d above max %d. overtemp %d\n",
1034 		       state->index, temp >> 16, state->mpu.tmax, state->overtemp);
1035 	} else {
1036 		if (state->overtemp)
1037 			printk(KERN_WARNING "CPU %d temperature back down to %d\n",
1038 			       state->index, temp >> 16);
1039 		state->overtemp = 0;
1040 	}
1041 	if (state->overtemp >= CPU_MAX_OVERTEMP)
1042 		critical_state = 1;
1043 	if (state->overtemp > 0) {
1044 		state->rpm = state->mpu.rmaxn_exhaust_fan;
1045 		state->intake_rpm = intake = state->mpu.rmaxn_intake_fan;
1046 		goto do_set_fans;
1047 	}
1048 
1049 	/* Do the PID */
1050 	do_cpu_pid(state, temp, power);
1051 
1052 	/* Range check */
1053 	state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan);
1054 	state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan);
1055 
1056 	/* Calculate intake fan */
1057 	intake = (state->rpm * CPU_INTAKE_SCALE) >> 16;
1058 	intake = max(intake, (int)state->mpu.rminn_intake_fan);
1059 	intake = min(intake, (int)state->mpu.rmaxn_intake_fan);
1060 	state->intake_rpm = intake;
1061 
1062  do_set_fans:
1063 	DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
1064 	    state->index, (int)state->rpm, intake, state->overtemp);
1065 
1066 	/* We should check for errors, shouldn't we ? But then, what
1067 	 * do we do once the error occurs ? For FCU notified fan
1068 	 * failures (-EFAULT) we probably want to notify userland
1069 	 * some way...
1070 	 */
1071 	if (state->index == 0) {
1072 		set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1073 		set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm);
1074 	} else {
1075 		set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1076 		set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm);
1077 	}
1078 }
1079 
do_monitor_cpu_rack(struct cpu_pid_state * state)1080 static void do_monitor_cpu_rack(struct cpu_pid_state *state)
1081 {
1082 	s32 temp, power, fan_min;
1083 	int rc;
1084 
1085 	/* Read current fan status */
1086 	rc = do_read_one_cpu_values(state, &temp, &power);
1087 	if (rc < 0) {
1088 		/* XXX What do we do now ? */
1089 	}
1090 
1091 	/* Check tmax, increment overtemp if we are there. At tmax+8, we go
1092 	 * full blown immediately and try to trigger a shutdown
1093 	 */
1094 	if (temp >= ((state->mpu.tmax + 8) << 16)) {
1095 		printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1096 		       " (%d) !\n",
1097 		       state->index, temp >> 16);
1098 		state->overtemp = CPU_MAX_OVERTEMP / 4;
1099 	} else if (temp > (state->mpu.tmax << 16)) {
1100 		state->overtemp++;
1101 		printk(KERN_WARNING "CPU %d temperature %d above max %d. overtemp %d\n",
1102 		       state->index, temp >> 16, state->mpu.tmax, state->overtemp);
1103 	} else {
1104 		if (state->overtemp)
1105 			printk(KERN_WARNING "CPU %d temperature back down to %d\n",
1106 			       state->index, temp >> 16);
1107 		state->overtemp = 0;
1108 	}
1109 	if (state->overtemp >= CPU_MAX_OVERTEMP)
1110 		critical_state = 1;
1111 	if (state->overtemp > 0) {
1112 		state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan;
1113 		goto do_set_fans;
1114 	}
1115 
1116 	/* Do the PID */
1117 	do_cpu_pid(state, temp, power);
1118 
1119 	/* Check clamp from dimms */
1120 	fan_min = dimm_output_clamp;
1121 	fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan);
1122 
1123 	DBG(" CPU min mpu = %d, min dimm = %d\n",
1124 	    state->mpu.rminn_intake_fan, dimm_output_clamp);
1125 
1126 	state->rpm = max(state->rpm, (int)fan_min);
1127 	state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan);
1128 	state->intake_rpm = state->rpm;
1129 
1130  do_set_fans:
1131 	DBG("** CPU %d RPM: %d overtemp: %d\n",
1132 	    state->index, (int)state->rpm, state->overtemp);
1133 
1134 	/* We should check for errors, shouldn't we ? But then, what
1135 	 * do we do once the error occurs ? For FCU notified fan
1136 	 * failures (-EFAULT) we probably want to notify userland
1137 	 * some way...
1138 	 */
1139 	if (state->index == 0) {
1140 		set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm);
1141 		set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm);
1142 		set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm);
1143 	} else {
1144 		set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm);
1145 		set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm);
1146 		set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm);
1147 	}
1148 }
1149 
1150 /*
1151  * Initialize the state structure for one CPU control loop
1152  */
init_processor_state(struct cpu_pid_state * state,int index)1153 static int init_processor_state(struct cpu_pid_state *state, int index)
1154 {
1155 	int err;
1156 
1157 	state->index = index;
1158 	state->first = 1;
1159 	state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000;
1160 	state->overtemp = 0;
1161 	state->adc_config = 0x00;
1162 
1163 
1164 	if (index == 0)
1165 		state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor");
1166 	else if (index == 1)
1167 		state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor");
1168 	if (state->monitor == NULL)
1169 		goto fail;
1170 
1171 	if (read_eeprom(index, &state->mpu))
1172 		goto fail;
1173 
1174 	state->count_power = state->mpu.tguardband;
1175 	if (state->count_power > CPU_POWER_HISTORY_SIZE) {
1176 		printk(KERN_WARNING "Warning ! too many power history slots\n");
1177 		state->count_power = CPU_POWER_HISTORY_SIZE;
1178 	}
1179 	DBG("CPU %d Using %d power history entries\n", index, state->count_power);
1180 
1181 	if (index == 0) {
1182 		err = device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1183 		err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1184 		err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_current);
1185 		err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1186 		err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1187 	} else {
1188 		err = device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1189 		err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1190 		err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_current);
1191 		err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1192 		err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1193 	}
1194 	if (err)
1195 		printk(KERN_WARNING "Failed to create some of the attribute"
1196 			"files for CPU %d\n", index);
1197 
1198 	return 0;
1199  fail:
1200 	state->monitor = NULL;
1201 
1202 	return -ENODEV;
1203 }
1204 
1205 /*
1206  * Dispose of the state data for one CPU control loop
1207  */
dispose_processor_state(struct cpu_pid_state * state)1208 static void dispose_processor_state(struct cpu_pid_state *state)
1209 {
1210 	if (state->monitor == NULL)
1211 		return;
1212 
1213 	if (state->index == 0) {
1214 		device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1215 		device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1216 		device_remove_file(&of_dev->dev, &dev_attr_cpu0_current);
1217 		device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1218 		device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1219 	} else {
1220 		device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1221 		device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1222 		device_remove_file(&of_dev->dev, &dev_attr_cpu1_current);
1223 		device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1224 		device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1225 	}
1226 
1227 	state->monitor = NULL;
1228 }
1229 
1230 /*
1231  * Motherboard backside & U3 heatsink fan control loop
1232  */
do_monitor_backside(struct backside_pid_state * state)1233 static void do_monitor_backside(struct backside_pid_state *state)
1234 {
1235 	s32 temp, integral, derivative, fan_min;
1236 	s64 integ_p, deriv_p, prop_p, sum;
1237 	int i, rc;
1238 
1239 	if (--state->ticks != 0)
1240 		return;
1241 	state->ticks = backside_params.interval;
1242 
1243 	DBG("backside:\n");
1244 
1245 	/* Check fan status */
1246 	rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX);
1247 	if (rc < 0) {
1248 		printk(KERN_WARNING "Error %d reading backside fan !\n", rc);
1249 		/* XXX What do we do now ? */
1250 	} else
1251 		state->pwm = rc;
1252 	DBG("  current pwm: %d\n", state->pwm);
1253 
1254 	/* Get some sensor readings */
1255 	temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16;
1256 	state->last_temp = temp;
1257 	DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1258 	    FIX32TOPRINT(backside_params.input_target));
1259 
1260 	/* Store temperature and error in history array */
1261 	state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE;
1262 	state->sample_history[state->cur_sample] = temp;
1263 	state->error_history[state->cur_sample] = temp - backside_params.input_target;
1264 
1265 	/* If first loop, fill the history table */
1266 	if (state->first) {
1267 		for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) {
1268 			state->cur_sample = (state->cur_sample + 1) %
1269 				BACKSIDE_PID_HISTORY_SIZE;
1270 			state->sample_history[state->cur_sample] = temp;
1271 			state->error_history[state->cur_sample] =
1272 				temp - backside_params.input_target;
1273 		}
1274 		state->first = 0;
1275 	}
1276 
1277 	/* Calculate the integral term */
1278 	sum = 0;
1279 	integral = 0;
1280 	for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++)
1281 		integral += state->error_history[i];
1282 	integral *= backside_params.interval;
1283 	DBG("  integral: %08x\n", integral);
1284 	integ_p = ((s64)backside_params.G_r) * (s64)integral;
1285 	DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1286 	sum += integ_p;
1287 
1288 	/* Calculate the derivative term */
1289 	derivative = state->error_history[state->cur_sample] -
1290 		state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1)
1291 				    % BACKSIDE_PID_HISTORY_SIZE];
1292 	derivative /= backside_params.interval;
1293 	deriv_p = ((s64)backside_params.G_d) * (s64)derivative;
1294 	DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1295 	sum += deriv_p;
1296 
1297 	/* Calculate the proportional term */
1298 	prop_p = ((s64)backside_params.G_p) * (s64)(state->error_history[state->cur_sample]);
1299 	DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1300 	sum += prop_p;
1301 
1302 	/* Scale sum */
1303 	sum >>= 36;
1304 
1305 	DBG("   sum: %d\n", (int)sum);
1306 	if (backside_params.additive)
1307 		state->pwm += (s32)sum;
1308 	else
1309 		state->pwm = sum;
1310 
1311 	/* Check for clamp */
1312 	fan_min = (dimm_output_clamp * 100) / 14000;
1313 	fan_min = max(fan_min, backside_params.output_min);
1314 
1315 	state->pwm = max(state->pwm, fan_min);
1316 	state->pwm = min(state->pwm, backside_params.output_max);
1317 
1318 	DBG("** BACKSIDE PWM: %d\n", (int)state->pwm);
1319 	set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm);
1320 }
1321 
1322 /*
1323  * Initialize the state structure for the backside fan control loop
1324  */
init_backside_state(struct backside_pid_state * state)1325 static int init_backside_state(struct backside_pid_state *state)
1326 {
1327 	struct device_node *u3;
1328 	int u3h = 1; /* conservative by default */
1329 	int err;
1330 
1331 	/*
1332 	 * There are different PID params for machines with U3 and machines
1333 	 * with U3H, pick the right ones now
1334 	 */
1335 	u3 = of_find_node_by_path("/u3@0,f8000000");
1336 	if (u3 != NULL) {
1337 		const u32 *vers = of_get_property(u3, "device-rev", NULL);
1338 		if (vers)
1339 			if (((*vers) & 0x3f) < 0x34)
1340 				u3h = 0;
1341 		of_node_put(u3);
1342 	}
1343 
1344 	if (rackmac) {
1345 		backside_params.G_d = BACKSIDE_PID_RACK_G_d;
1346 		backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET;
1347 		backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1348 		backside_params.interval = BACKSIDE_PID_RACK_INTERVAL;
1349 		backside_params.G_p = BACKSIDE_PID_RACK_G_p;
1350 		backside_params.G_r = BACKSIDE_PID_G_r;
1351 		backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1352 		backside_params.additive = 0;
1353 	} else if (u3h) {
1354 		backside_params.G_d = BACKSIDE_PID_U3H_G_d;
1355 		backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET;
1356 		backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1357 		backside_params.interval = BACKSIDE_PID_INTERVAL;
1358 		backside_params.G_p = BACKSIDE_PID_G_p;
1359 		backside_params.G_r = BACKSIDE_PID_G_r;
1360 		backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1361 		backside_params.additive = 1;
1362 	} else {
1363 		backside_params.G_d = BACKSIDE_PID_U3_G_d;
1364 		backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET;
1365 		backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN;
1366 		backside_params.interval = BACKSIDE_PID_INTERVAL;
1367 		backside_params.G_p = BACKSIDE_PID_G_p;
1368 		backside_params.G_r = BACKSIDE_PID_G_r;
1369 		backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1370 		backside_params.additive = 1;
1371 	}
1372 
1373 	state->ticks = 1;
1374 	state->first = 1;
1375 	state->pwm = 50;
1376 
1377 	state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp");
1378 	if (state->monitor == NULL)
1379 		return -ENODEV;
1380 
1381 	err = device_create_file(&of_dev->dev, &dev_attr_backside_temperature);
1382 	err |= device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1383 	if (err)
1384 		printk(KERN_WARNING "Failed to create attribute file(s)"
1385 			" for backside fan\n");
1386 
1387 	return 0;
1388 }
1389 
1390 /*
1391  * Dispose of the state data for the backside control loop
1392  */
dispose_backside_state(struct backside_pid_state * state)1393 static void dispose_backside_state(struct backside_pid_state *state)
1394 {
1395 	if (state->monitor == NULL)
1396 		return;
1397 
1398 	device_remove_file(&of_dev->dev, &dev_attr_backside_temperature);
1399 	device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1400 
1401 	state->monitor = NULL;
1402 }
1403 
1404 /*
1405  * Drives bay fan control loop
1406  */
do_monitor_drives(struct drives_pid_state * state)1407 static void do_monitor_drives(struct drives_pid_state *state)
1408 {
1409 	s32 temp, integral, derivative;
1410 	s64 integ_p, deriv_p, prop_p, sum;
1411 	int i, rc;
1412 
1413 	if (--state->ticks != 0)
1414 		return;
1415 	state->ticks = DRIVES_PID_INTERVAL;
1416 
1417 	DBG("drives:\n");
1418 
1419 	/* Check fan status */
1420 	rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED);
1421 	if (rc < 0) {
1422 		printk(KERN_WARNING "Error %d reading drives fan !\n", rc);
1423 		/* XXX What do we do now ? */
1424 	} else
1425 		state->rpm = rc;
1426 	DBG("  current rpm: %d\n", state->rpm);
1427 
1428 	/* Get some sensor readings */
1429 	temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1430 						    DS1775_TEMP)) << 8;
1431 	state->last_temp = temp;
1432 	DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1433 	    FIX32TOPRINT(DRIVES_PID_INPUT_TARGET));
1434 
1435 	/* Store temperature and error in history array */
1436 	state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE;
1437 	state->sample_history[state->cur_sample] = temp;
1438 	state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET;
1439 
1440 	/* If first loop, fill the history table */
1441 	if (state->first) {
1442 		for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) {
1443 			state->cur_sample = (state->cur_sample + 1) %
1444 				DRIVES_PID_HISTORY_SIZE;
1445 			state->sample_history[state->cur_sample] = temp;
1446 			state->error_history[state->cur_sample] =
1447 				temp - DRIVES_PID_INPUT_TARGET;
1448 		}
1449 		state->first = 0;
1450 	}
1451 
1452 	/* Calculate the integral term */
1453 	sum = 0;
1454 	integral = 0;
1455 	for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++)
1456 		integral += state->error_history[i];
1457 	integral *= DRIVES_PID_INTERVAL;
1458 	DBG("  integral: %08x\n", integral);
1459 	integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral;
1460 	DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1461 	sum += integ_p;
1462 
1463 	/* Calculate the derivative term */
1464 	derivative = state->error_history[state->cur_sample] -
1465 		state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1)
1466 				    % DRIVES_PID_HISTORY_SIZE];
1467 	derivative /= DRIVES_PID_INTERVAL;
1468 	deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative;
1469 	DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1470 	sum += deriv_p;
1471 
1472 	/* Calculate the proportional term */
1473 	prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1474 	DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1475 	sum += prop_p;
1476 
1477 	/* Scale sum */
1478 	sum >>= 36;
1479 
1480 	DBG("   sum: %d\n", (int)sum);
1481 	state->rpm += (s32)sum;
1482 
1483 	state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN);
1484 	state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX);
1485 
1486 	DBG("** DRIVES RPM: %d\n", (int)state->rpm);
1487 	set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm);
1488 }
1489 
1490 /*
1491  * Initialize the state structure for the drives bay fan control loop
1492  */
init_drives_state(struct drives_pid_state * state)1493 static int init_drives_state(struct drives_pid_state *state)
1494 {
1495 	int err;
1496 
1497 	state->ticks = 1;
1498 	state->first = 1;
1499 	state->rpm = 1000;
1500 
1501 	state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp");
1502 	if (state->monitor == NULL)
1503 		return -ENODEV;
1504 
1505 	err = device_create_file(&of_dev->dev, &dev_attr_drives_temperature);
1506 	err |= device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1507 	if (err)
1508 		printk(KERN_WARNING "Failed to create attribute file(s)"
1509 			" for drives bay fan\n");
1510 
1511 	return 0;
1512 }
1513 
1514 /*
1515  * Dispose of the state data for the drives control loop
1516  */
dispose_drives_state(struct drives_pid_state * state)1517 static void dispose_drives_state(struct drives_pid_state *state)
1518 {
1519 	if (state->monitor == NULL)
1520 		return;
1521 
1522 	device_remove_file(&of_dev->dev, &dev_attr_drives_temperature);
1523 	device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1524 
1525 	state->monitor = NULL;
1526 }
1527 
1528 /*
1529  * DIMMs temp control loop
1530  */
do_monitor_dimms(struct dimm_pid_state * state)1531 static void do_monitor_dimms(struct dimm_pid_state *state)
1532 {
1533 	s32 temp, integral, derivative, fan_min;
1534 	s64 integ_p, deriv_p, prop_p, sum;
1535 	int i;
1536 
1537 	if (--state->ticks != 0)
1538 		return;
1539 	state->ticks = DIMM_PID_INTERVAL;
1540 
1541 	DBG("DIMM:\n");
1542 
1543 	DBG("  current value: %d\n", state->output);
1544 
1545 	temp = read_lm87_reg(state->monitor, LM87_INT_TEMP);
1546 	if (temp < 0)
1547 		return;
1548 	temp <<= 16;
1549 	state->last_temp = temp;
1550 	DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1551 	    FIX32TOPRINT(DIMM_PID_INPUT_TARGET));
1552 
1553 	/* Store temperature and error in history array */
1554 	state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE;
1555 	state->sample_history[state->cur_sample] = temp;
1556 	state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET;
1557 
1558 	/* If first loop, fill the history table */
1559 	if (state->first) {
1560 		for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) {
1561 			state->cur_sample = (state->cur_sample + 1) %
1562 				DIMM_PID_HISTORY_SIZE;
1563 			state->sample_history[state->cur_sample] = temp;
1564 			state->error_history[state->cur_sample] =
1565 				temp - DIMM_PID_INPUT_TARGET;
1566 		}
1567 		state->first = 0;
1568 	}
1569 
1570 	/* Calculate the integral term */
1571 	sum = 0;
1572 	integral = 0;
1573 	for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++)
1574 		integral += state->error_history[i];
1575 	integral *= DIMM_PID_INTERVAL;
1576 	DBG("  integral: %08x\n", integral);
1577 	integ_p = ((s64)DIMM_PID_G_r) * (s64)integral;
1578 	DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1579 	sum += integ_p;
1580 
1581 	/* Calculate the derivative term */
1582 	derivative = state->error_history[state->cur_sample] -
1583 		state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE - 1)
1584 				    % DIMM_PID_HISTORY_SIZE];
1585 	derivative /= DIMM_PID_INTERVAL;
1586 	deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative;
1587 	DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1588 	sum += deriv_p;
1589 
1590 	/* Calculate the proportional term */
1591 	prop_p = ((s64)DIMM_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1592 	DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1593 	sum += prop_p;
1594 
1595 	/* Scale sum */
1596 	sum >>= 36;
1597 
1598 	DBG("   sum: %d\n", (int)sum);
1599 	state->output = (s32)sum;
1600 	state->output = max(state->output, DIMM_PID_OUTPUT_MIN);
1601 	state->output = min(state->output, DIMM_PID_OUTPUT_MAX);
1602 	dimm_output_clamp = state->output;
1603 
1604 	DBG("** DIMM clamp value: %d\n", (int)state->output);
1605 
1606 	/* Backside PID is only every 5 seconds, force backside fan clamping now */
1607 	fan_min = (dimm_output_clamp * 100) / 14000;
1608 	fan_min = max(fan_min, backside_params.output_min);
1609 	if (backside_state.pwm < fan_min) {
1610 		backside_state.pwm = fan_min;
1611 		DBG(" -> applying clamp to backside fan now: %d  !\n", fan_min);
1612 		set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min);
1613 	}
1614 }
1615 
1616 /*
1617  * Initialize the state structure for the DIMM temp control loop
1618  */
init_dimms_state(struct dimm_pid_state * state)1619 static int init_dimms_state(struct dimm_pid_state *state)
1620 {
1621 	state->ticks = 1;
1622 	state->first = 1;
1623 	state->output = 4000;
1624 
1625 	state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp");
1626 	if (state->monitor == NULL)
1627 		return -ENODEV;
1628 
1629 	if (device_create_file(&of_dev->dev, &dev_attr_dimms_temperature))
1630 		printk(KERN_WARNING "Failed to create attribute file"
1631 			" for DIMM temperature\n");
1632 
1633 	return 0;
1634 }
1635 
1636 /*
1637  * Dispose of the state data for the DIMM control loop
1638  */
dispose_dimms_state(struct dimm_pid_state * state)1639 static void dispose_dimms_state(struct dimm_pid_state *state)
1640 {
1641 	if (state->monitor == NULL)
1642 		return;
1643 
1644 	device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature);
1645 
1646 	state->monitor = NULL;
1647 }
1648 
1649 /*
1650  * Slots fan control loop
1651  */
do_monitor_slots(struct slots_pid_state * state)1652 static void do_monitor_slots(struct slots_pid_state *state)
1653 {
1654 	s32 temp, integral, derivative;
1655 	s64 integ_p, deriv_p, prop_p, sum;
1656 	int i, rc;
1657 
1658 	if (--state->ticks != 0)
1659 		return;
1660 	state->ticks = SLOTS_PID_INTERVAL;
1661 
1662 	DBG("slots:\n");
1663 
1664 	/* Check fan status */
1665 	rc = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
1666 	if (rc < 0) {
1667 		printk(KERN_WARNING "Error %d reading slots fan !\n", rc);
1668 		/* XXX What do we do now ? */
1669 	} else
1670 		state->pwm = rc;
1671 	DBG("  current pwm: %d\n", state->pwm);
1672 
1673 	/* Get some sensor readings */
1674 	temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1675 						    DS1775_TEMP)) << 8;
1676 	state->last_temp = temp;
1677 	DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1678 	    FIX32TOPRINT(SLOTS_PID_INPUT_TARGET));
1679 
1680 	/* Store temperature and error in history array */
1681 	state->cur_sample = (state->cur_sample + 1) % SLOTS_PID_HISTORY_SIZE;
1682 	state->sample_history[state->cur_sample] = temp;
1683 	state->error_history[state->cur_sample] = temp - SLOTS_PID_INPUT_TARGET;
1684 
1685 	/* If first loop, fill the history table */
1686 	if (state->first) {
1687 		for (i = 0; i < (SLOTS_PID_HISTORY_SIZE - 1); i++) {
1688 			state->cur_sample = (state->cur_sample + 1) %
1689 				SLOTS_PID_HISTORY_SIZE;
1690 			state->sample_history[state->cur_sample] = temp;
1691 			state->error_history[state->cur_sample] =
1692 				temp - SLOTS_PID_INPUT_TARGET;
1693 		}
1694 		state->first = 0;
1695 	}
1696 
1697 	/* Calculate the integral term */
1698 	sum = 0;
1699 	integral = 0;
1700 	for (i = 0; i < SLOTS_PID_HISTORY_SIZE; i++)
1701 		integral += state->error_history[i];
1702 	integral *= SLOTS_PID_INTERVAL;
1703 	DBG("  integral: %08x\n", integral);
1704 	integ_p = ((s64)SLOTS_PID_G_r) * (s64)integral;
1705 	DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1706 	sum += integ_p;
1707 
1708 	/* Calculate the derivative term */
1709 	derivative = state->error_history[state->cur_sample] -
1710 		state->error_history[(state->cur_sample + SLOTS_PID_HISTORY_SIZE - 1)
1711 				    % SLOTS_PID_HISTORY_SIZE];
1712 	derivative /= SLOTS_PID_INTERVAL;
1713 	deriv_p = ((s64)SLOTS_PID_G_d) * (s64)derivative;
1714 	DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1715 	sum += deriv_p;
1716 
1717 	/* Calculate the proportional term */
1718 	prop_p = ((s64)SLOTS_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1719 	DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1720 	sum += prop_p;
1721 
1722 	/* Scale sum */
1723 	sum >>= 36;
1724 
1725 	DBG("   sum: %d\n", (int)sum);
1726 	state->pwm = (s32)sum;
1727 
1728 	state->pwm = max(state->pwm, SLOTS_PID_OUTPUT_MIN);
1729 	state->pwm = min(state->pwm, SLOTS_PID_OUTPUT_MAX);
1730 
1731 	DBG("** DRIVES PWM: %d\n", (int)state->pwm);
1732 	set_pwm_fan(SLOTS_FAN_PWM_INDEX, state->pwm);
1733 }
1734 
1735 /*
1736  * Initialize the state structure for the slots bay fan control loop
1737  */
init_slots_state(struct slots_pid_state * state)1738 static int init_slots_state(struct slots_pid_state *state)
1739 {
1740 	int err;
1741 
1742 	state->ticks = 1;
1743 	state->first = 1;
1744 	state->pwm = 50;
1745 
1746 	state->monitor = attach_i2c_chip(XSERVE_SLOTS_LM75, "slots_temp");
1747 	if (state->monitor == NULL)
1748 		return -ENODEV;
1749 
1750 	err = device_create_file(&of_dev->dev, &dev_attr_slots_temperature);
1751 	err |= device_create_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1752 	if (err)
1753 		printk(KERN_WARNING "Failed to create attribute file(s)"
1754 			" for slots bay fan\n");
1755 
1756 	return 0;
1757 }
1758 
1759 /*
1760  * Dispose of the state data for the slots control loop
1761  */
dispose_slots_state(struct slots_pid_state * state)1762 static void dispose_slots_state(struct slots_pid_state *state)
1763 {
1764 	if (state->monitor == NULL)
1765 		return;
1766 
1767 	device_remove_file(&of_dev->dev, &dev_attr_slots_temperature);
1768 	device_remove_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1769 
1770 	state->monitor = NULL;
1771 }
1772 
1773 
call_critical_overtemp(void)1774 static int call_critical_overtemp(void)
1775 {
1776 	char *argv[] = { critical_overtemp_path, NULL };
1777 	static char *envp[] = { "HOME=/",
1778 				"TERM=linux",
1779 				"PATH=/sbin:/usr/sbin:/bin:/usr/bin",
1780 				NULL };
1781 
1782 	return call_usermodehelper(critical_overtemp_path,
1783 				   argv, envp, UMH_WAIT_EXEC);
1784 }
1785 
1786 
1787 /*
1788  * Here's the kernel thread that calls the various control loops
1789  */
main_control_loop(void * x)1790 static int main_control_loop(void *x)
1791 {
1792 	DBG("main_control_loop started\n");
1793 
1794 	mutex_lock(&driver_lock);
1795 
1796 	if (start_fcu() < 0) {
1797 		printk(KERN_ERR "kfand: failed to start FCU\n");
1798 		mutex_unlock(&driver_lock);
1799 		goto out;
1800 	}
1801 
1802 	/* Set the PCI fan once for now on non-RackMac */
1803 	if (!rackmac)
1804 		set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM);
1805 
1806 	/* Initialize ADCs */
1807 	initialize_adc(&processor_state[0]);
1808 	if (processor_state[1].monitor != NULL)
1809 		initialize_adc(&processor_state[1]);
1810 
1811 	fcu_tickle_ticks = FCU_TICKLE_TICKS;
1812 
1813 	mutex_unlock(&driver_lock);
1814 
1815 	while (state == state_attached) {
1816 		unsigned long elapsed, start;
1817 
1818 		start = jiffies;
1819 
1820 		mutex_lock(&driver_lock);
1821 
1822 		/* Tickle the FCU just in case */
1823 		if (--fcu_tickle_ticks < 0) {
1824 			fcu_tickle_ticks = FCU_TICKLE_TICKS;
1825 			tickle_fcu();
1826 		}
1827 
1828 		/* First, we always calculate the new DIMMs state on an Xserve */
1829 		if (rackmac)
1830 			do_monitor_dimms(&dimms_state);
1831 
1832 		/* Then, the CPUs */
1833 		if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1834 			do_monitor_cpu_combined();
1835 		else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) {
1836 			do_monitor_cpu_rack(&processor_state[0]);
1837 			if (processor_state[1].monitor != NULL)
1838 				do_monitor_cpu_rack(&processor_state[1]);
1839 			// better deal with UP
1840 		} else {
1841 			do_monitor_cpu_split(&processor_state[0]);
1842 			if (processor_state[1].monitor != NULL)
1843 				do_monitor_cpu_split(&processor_state[1]);
1844 			// better deal with UP
1845 		}
1846 		/* Then, the rest */
1847 		do_monitor_backside(&backside_state);
1848 		if (rackmac)
1849 			do_monitor_slots(&slots_state);
1850 		else
1851 			do_monitor_drives(&drives_state);
1852 		mutex_unlock(&driver_lock);
1853 
1854 		if (critical_state == 1) {
1855 			printk(KERN_WARNING "Temperature control detected a critical condition\n");
1856 			printk(KERN_WARNING "Attempting to shut down...\n");
1857 			if (call_critical_overtemp()) {
1858 				printk(KERN_WARNING "Can't call %s, power off now!\n",
1859 				       critical_overtemp_path);
1860 				machine_power_off();
1861 			}
1862 		}
1863 		if (critical_state > 0)
1864 			critical_state++;
1865 		if (critical_state > MAX_CRITICAL_STATE) {
1866 			printk(KERN_WARNING "Shutdown timed out, power off now !\n");
1867 			machine_power_off();
1868 		}
1869 
1870 		// FIXME: Deal with signals
1871 		elapsed = jiffies - start;
1872 		if (elapsed < HZ)
1873 			schedule_timeout_interruptible(HZ - elapsed);
1874 	}
1875 
1876  out:
1877 	DBG("main_control_loop ended\n");
1878 
1879 	ctrl_task = 0;
1880 	complete_and_exit(&ctrl_complete, 0);
1881 }
1882 
1883 /*
1884  * Dispose the control loops when tearing down
1885  */
dispose_control_loops(void)1886 static void dispose_control_loops(void)
1887 {
1888 	dispose_processor_state(&processor_state[0]);
1889 	dispose_processor_state(&processor_state[1]);
1890 	dispose_backside_state(&backside_state);
1891 	dispose_drives_state(&drives_state);
1892 	dispose_slots_state(&slots_state);
1893 	dispose_dimms_state(&dimms_state);
1894 }
1895 
1896 /*
1897  * Create the control loops. U3-0 i2c bus is up, so we can now
1898  * get to the various sensors
1899  */
create_control_loops(void)1900 static int create_control_loops(void)
1901 {
1902 	struct device_node *np;
1903 
1904 	/* Count CPUs from the device-tree, we don't care how many are
1905 	 * actually used by Linux
1906 	 */
1907 	cpu_count = 0;
1908 	for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));)
1909 		cpu_count++;
1910 
1911 	DBG("counted %d CPUs in the device-tree\n", cpu_count);
1912 
1913 	/* Decide the type of PID algorithm to use based on the presence of
1914 	 * the pumps, though that may not be the best way, that is good enough
1915 	 * for now
1916 	 */
1917 	if (rackmac)
1918 		cpu_pid_type = CPU_PID_TYPE_RACKMAC;
1919 	else if (of_machine_is_compatible("PowerMac7,3")
1920 	    && (cpu_count > 1)
1921 	    && fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID
1922 	    && fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) {
1923 		printk(KERN_INFO "Liquid cooling pumps detected, using new algorithm !\n");
1924 		cpu_pid_type = CPU_PID_TYPE_COMBINED;
1925 	} else
1926 		cpu_pid_type = CPU_PID_TYPE_SPLIT;
1927 
1928 	/* Create control loops for everything. If any fail, everything
1929 	 * fails
1930 	 */
1931 	if (init_processor_state(&processor_state[0], 0))
1932 		goto fail;
1933 	if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1934 		fetch_cpu_pumps_minmax();
1935 
1936 	if (cpu_count > 1 && init_processor_state(&processor_state[1], 1))
1937 		goto fail;
1938 	if (init_backside_state(&backside_state))
1939 		goto fail;
1940 	if (rackmac && init_dimms_state(&dimms_state))
1941 		goto fail;
1942 	if (rackmac && init_slots_state(&slots_state))
1943 		goto fail;
1944 	if (!rackmac && init_drives_state(&drives_state))
1945 		goto fail;
1946 
1947 	DBG("all control loops up !\n");
1948 
1949 	return 0;
1950 
1951  fail:
1952 	DBG("failure creating control loops, disposing\n");
1953 
1954 	dispose_control_loops();
1955 
1956 	return -ENODEV;
1957 }
1958 
1959 /*
1960  * Start the control loops after everything is up, that is create
1961  * the thread that will make them run
1962  */
start_control_loops(void)1963 static void start_control_loops(void)
1964 {
1965 	init_completion(&ctrl_complete);
1966 
1967 	ctrl_task = kthread_run(main_control_loop, NULL, "kfand");
1968 }
1969 
1970 /*
1971  * Stop the control loops when tearing down
1972  */
stop_control_loops(void)1973 static void stop_control_loops(void)
1974 {
1975 	if (ctrl_task)
1976 		wait_for_completion(&ctrl_complete);
1977 }
1978 
1979 /*
1980  * Attach to the i2c FCU after detecting U3-1 bus
1981  */
attach_fcu(void)1982 static int attach_fcu(void)
1983 {
1984 	fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu");
1985 	if (fcu == NULL)
1986 		return -ENODEV;
1987 
1988 	DBG("FCU attached\n");
1989 
1990 	return 0;
1991 }
1992 
1993 /*
1994  * Detach from the i2c FCU when tearing down
1995  */
detach_fcu(void)1996 static void detach_fcu(void)
1997 {
1998 	fcu = NULL;
1999 }
2000 
2001 /*
2002  * Attach to the i2c controller. We probe the various chips based
2003  * on the device-tree nodes and build everything for the driver to
2004  * run, we then kick the driver monitoring thread
2005  */
therm_pm72_attach(struct i2c_adapter * adapter)2006 static int therm_pm72_attach(struct i2c_adapter *adapter)
2007 {
2008 	mutex_lock(&driver_lock);
2009 
2010 	/* Check state */
2011 	if (state == state_detached)
2012 		state = state_attaching;
2013 	if (state != state_attaching) {
2014 		mutex_unlock(&driver_lock);
2015 		return 0;
2016 	}
2017 
2018 	/* Check if we are looking for one of these */
2019 	if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) {
2020 		u3_0 = adapter;
2021 		DBG("found U3-0\n");
2022 		if (k2 || !rackmac)
2023 			if (create_control_loops())
2024 				u3_0 = NULL;
2025 	} else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) {
2026 		u3_1 = adapter;
2027 		DBG("found U3-1, attaching FCU\n");
2028 		if (attach_fcu())
2029 			u3_1 = NULL;
2030 	} else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) {
2031 		k2 = adapter;
2032 		DBG("Found K2\n");
2033 		if (u3_0 && rackmac)
2034 			if (create_control_loops())
2035 				k2 = NULL;
2036 	}
2037 	/* We got all we need, start control loops */
2038 	if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) {
2039 		DBG("everything up, starting control loops\n");
2040 		state = state_attached;
2041 		start_control_loops();
2042 	}
2043 	mutex_unlock(&driver_lock);
2044 
2045 	return 0;
2046 }
2047 
therm_pm72_probe(struct i2c_client * client,const struct i2c_device_id * id)2048 static int therm_pm72_probe(struct i2c_client *client,
2049 			    const struct i2c_device_id *id)
2050 {
2051 	/* Always succeed, the real work was done in therm_pm72_attach() */
2052 	return 0;
2053 }
2054 
2055 /*
2056  * Called when any of the devices which participates into thermal management
2057  * is going away.
2058  */
therm_pm72_remove(struct i2c_client * client)2059 static int therm_pm72_remove(struct i2c_client *client)
2060 {
2061 	struct i2c_adapter *adapter = client->adapter;
2062 
2063 	mutex_lock(&driver_lock);
2064 
2065 	if (state != state_detached)
2066 		state = state_detaching;
2067 
2068 	/* Stop control loops if any */
2069 	DBG("stopping control loops\n");
2070 	mutex_unlock(&driver_lock);
2071 	stop_control_loops();
2072 	mutex_lock(&driver_lock);
2073 
2074 	if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) {
2075 		DBG("lost U3-0, disposing control loops\n");
2076 		dispose_control_loops();
2077 		u3_0 = NULL;
2078 	}
2079 
2080 	if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) {
2081 		DBG("lost U3-1, detaching FCU\n");
2082 		detach_fcu();
2083 		u3_1 = NULL;
2084 	}
2085 	if (u3_0 == NULL && u3_1 == NULL)
2086 		state = state_detached;
2087 
2088 	mutex_unlock(&driver_lock);
2089 
2090 	return 0;
2091 }
2092 
2093 /*
2094  * i2c_driver structure to attach to the host i2c controller
2095  */
2096 
2097 static const struct i2c_device_id therm_pm72_id[] = {
2098 	/*
2099 	 * Fake device name, thermal management is done by several
2100 	 * chips but we don't need to differentiate between them at
2101 	 * this point.
2102 	 */
2103 	{ "therm_pm72", 0 },
2104 	{ }
2105 };
2106 
2107 static struct i2c_driver therm_pm72_driver = {
2108 	.driver = {
2109 		.name	= "therm_pm72",
2110 	},
2111 	.attach_adapter	= therm_pm72_attach,
2112 	.probe		= therm_pm72_probe,
2113 	.remove		= therm_pm72_remove,
2114 	.id_table	= therm_pm72_id,
2115 };
2116 
fan_check_loc_match(const char * loc,int fan)2117 static int fan_check_loc_match(const char *loc, int fan)
2118 {
2119 	char	tmp[64];
2120 	char	*c, *e;
2121 
2122 	strlcpy(tmp, fcu_fans[fan].loc, 64);
2123 
2124 	c = tmp;
2125 	for (;;) {
2126 		e = strchr(c, ',');
2127 		if (e)
2128 			*e = 0;
2129 		if (strcmp(loc, c) == 0)
2130 			return 1;
2131 		if (e == NULL)
2132 			break;
2133 		c = e + 1;
2134 	}
2135 	return 0;
2136 }
2137 
fcu_lookup_fans(struct device_node * fcu_node)2138 static void fcu_lookup_fans(struct device_node *fcu_node)
2139 {
2140 	struct device_node *np = NULL;
2141 	int i;
2142 
2143 	/* The table is filled by default with values that are suitable
2144 	 * for the old machines without device-tree informations. We scan
2145 	 * the device-tree and override those values with whatever is
2146 	 * there
2147 	 */
2148 
2149 	DBG("Looking up FCU controls in device-tree...\n");
2150 
2151 	while ((np = of_get_next_child(fcu_node, np)) != NULL) {
2152 		int type = -1;
2153 		const char *loc;
2154 		const u32 *reg;
2155 
2156 		DBG(" control: %s, type: %s\n", np->name, np->type);
2157 
2158 		/* Detect control type */
2159 		if (!strcmp(np->type, "fan-rpm-control") ||
2160 		    !strcmp(np->type, "fan-rpm"))
2161 			type = FCU_FAN_RPM;
2162 		if (!strcmp(np->type, "fan-pwm-control") ||
2163 		    !strcmp(np->type, "fan-pwm"))
2164 			type = FCU_FAN_PWM;
2165 		/* Only care about fans for now */
2166 		if (type == -1)
2167 			continue;
2168 
2169 		/* Lookup for a matching location */
2170 		loc = of_get_property(np, "location", NULL);
2171 		reg = of_get_property(np, "reg", NULL);
2172 		if (loc == NULL || reg == NULL)
2173 			continue;
2174 		DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg);
2175 
2176 		for (i = 0; i < FCU_FAN_COUNT; i++) {
2177 			int fan_id;
2178 
2179 			if (!fan_check_loc_match(loc, i))
2180 				continue;
2181 			DBG(" location match, index: %d\n", i);
2182 			fcu_fans[i].id = FCU_FAN_ABSENT_ID;
2183 			if (type != fcu_fans[i].type) {
2184 				printk(KERN_WARNING "therm_pm72: Fan type mismatch "
2185 				       "in device-tree for %s\n", np->full_name);
2186 				break;
2187 			}
2188 			if (type == FCU_FAN_RPM)
2189 				fan_id = ((*reg) - 0x10) / 2;
2190 			else
2191 				fan_id = ((*reg) - 0x30) / 2;
2192 			if (fan_id > 7) {
2193 				printk(KERN_WARNING "therm_pm72: Can't parse "
2194 				       "fan ID in device-tree for %s\n", np->full_name);
2195 				break;
2196 			}
2197 			DBG(" fan id -> %d, type -> %d\n", fan_id, type);
2198 			fcu_fans[i].id = fan_id;
2199 		}
2200 	}
2201 
2202 	/* Now dump the array */
2203 	printk(KERN_INFO "Detected fan controls:\n");
2204 	for (i = 0; i < FCU_FAN_COUNT; i++) {
2205 		if (fcu_fans[i].id == FCU_FAN_ABSENT_ID)
2206 			continue;
2207 		printk(KERN_INFO "  %d: %s fan, id %d, location: %s\n", i,
2208 		       fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM",
2209 		       fcu_fans[i].id, fcu_fans[i].loc);
2210 	}
2211 }
2212 
fcu_of_probe(struct platform_device * dev)2213 static int fcu_of_probe(struct platform_device* dev)
2214 {
2215 	state = state_detached;
2216 	of_dev = dev;
2217 
2218 	dev_info(&dev->dev, "PowerMac G5 Thermal control driver %s\n", VERSION);
2219 
2220 	/* Lookup the fans in the device tree */
2221 	fcu_lookup_fans(dev->dev.of_node);
2222 
2223 	/* Add the driver */
2224 	return i2c_add_driver(&therm_pm72_driver);
2225 }
2226 
fcu_of_remove(struct platform_device * dev)2227 static int fcu_of_remove(struct platform_device* dev)
2228 {
2229 	i2c_del_driver(&therm_pm72_driver);
2230 
2231 	return 0;
2232 }
2233 
2234 static const struct of_device_id fcu_match[] =
2235 {
2236 	{
2237 	.type		= "fcu",
2238 	},
2239 	{},
2240 };
2241 MODULE_DEVICE_TABLE(of, fcu_match);
2242 
2243 static struct platform_driver fcu_of_platform_driver =
2244 {
2245 	.driver = {
2246 		.name = "temperature",
2247 		.owner = THIS_MODULE,
2248 		.of_match_table = fcu_match,
2249 	},
2250 	.probe		= fcu_of_probe,
2251 	.remove		= fcu_of_remove
2252 };
2253 
2254 /*
2255  * Check machine type, attach to i2c controller
2256  */
therm_pm72_init(void)2257 static int __init therm_pm72_init(void)
2258 {
2259 	rackmac = of_machine_is_compatible("RackMac3,1");
2260 
2261 	if (!of_machine_is_compatible("PowerMac7,2") &&
2262 	    !of_machine_is_compatible("PowerMac7,3") &&
2263 	    !rackmac)
2264 	    	return -ENODEV;
2265 
2266 	return platform_driver_register(&fcu_of_platform_driver);
2267 }
2268 
therm_pm72_exit(void)2269 static void __exit therm_pm72_exit(void)
2270 {
2271 	platform_driver_unregister(&fcu_of_platform_driver);
2272 }
2273 
2274 module_init(therm_pm72_init);
2275 module_exit(therm_pm72_exit);
2276 
2277 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
2278 MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
2279 MODULE_LICENSE("GPL");
2280 
2281