1 /*
2  * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3  * Author: Joerg Roedel <joerg.roedel@amd.com>
4  *         Leo Duran <leo.duran@amd.com>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  */
19 
20 #include <linux/ratelimit.h>
21 #include <linux/pci.h>
22 #include <linux/pci-ats.h>
23 #include <linux/bitmap.h>
24 #include <linux/slab.h>
25 #include <linux/debugfs.h>
26 #include <linux/scatterlist.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/iommu-helper.h>
29 #include <linux/iommu.h>
30 #include <linux/delay.h>
31 #include <linux/amd-iommu.h>
32 #include <linux/notifier.h>
33 #include <linux/export.h>
34 #include <asm/msidef.h>
35 #include <asm/proto.h>
36 #include <asm/iommu.h>
37 #include <asm/gart.h>
38 #include <asm/dma.h>
39 
40 #include "amd_iommu_proto.h"
41 #include "amd_iommu_types.h"
42 
43 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
44 
45 #define LOOP_TIMEOUT	100000
46 
47 /*
48  * This bitmap is used to advertise the page sizes our hardware support
49  * to the IOMMU core, which will then use this information to split
50  * physically contiguous memory regions it is mapping into page sizes
51  * that we support.
52  *
53  * Traditionally the IOMMU core just handed us the mappings directly,
54  * after making sure the size is an order of a 4KiB page and that the
55  * mapping has natural alignment.
56  *
57  * To retain this behavior, we currently advertise that we support
58  * all page sizes that are an order of 4KiB.
59  *
60  * If at some point we'd like to utilize the IOMMU core's new behavior,
61  * we could change this to advertise the real page sizes we support.
62  */
63 #define AMD_IOMMU_PGSIZES	(~0xFFFUL)
64 
65 static DEFINE_RWLOCK(amd_iommu_devtable_lock);
66 
67 /* A list of preallocated protection domains */
68 static LIST_HEAD(iommu_pd_list);
69 static DEFINE_SPINLOCK(iommu_pd_list_lock);
70 
71 /* List of all available dev_data structures */
72 static LIST_HEAD(dev_data_list);
73 static DEFINE_SPINLOCK(dev_data_list_lock);
74 
75 /*
76  * Domain for untranslated devices - only allocated
77  * if iommu=pt passed on kernel cmd line.
78  */
79 static struct protection_domain *pt_domain;
80 
81 static struct iommu_ops amd_iommu_ops;
82 
83 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
84 int amd_iommu_max_glx_val = -1;
85 
86 /*
87  * general struct to manage commands send to an IOMMU
88  */
89 struct iommu_cmd {
90 	u32 data[4];
91 };
92 
93 static void update_domain(struct protection_domain *domain);
94 static int __init alloc_passthrough_domain(void);
95 
96 /****************************************************************************
97  *
98  * Helper functions
99  *
100  ****************************************************************************/
101 
alloc_dev_data(u16 devid)102 static struct iommu_dev_data *alloc_dev_data(u16 devid)
103 {
104 	struct iommu_dev_data *dev_data;
105 	unsigned long flags;
106 
107 	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
108 	if (!dev_data)
109 		return NULL;
110 
111 	dev_data->devid = devid;
112 	atomic_set(&dev_data->bind, 0);
113 
114 	spin_lock_irqsave(&dev_data_list_lock, flags);
115 	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
116 	spin_unlock_irqrestore(&dev_data_list_lock, flags);
117 
118 	return dev_data;
119 }
120 
free_dev_data(struct iommu_dev_data * dev_data)121 static void free_dev_data(struct iommu_dev_data *dev_data)
122 {
123 	unsigned long flags;
124 
125 	spin_lock_irqsave(&dev_data_list_lock, flags);
126 	list_del(&dev_data->dev_data_list);
127 	spin_unlock_irqrestore(&dev_data_list_lock, flags);
128 
129 	kfree(dev_data);
130 }
131 
search_dev_data(u16 devid)132 static struct iommu_dev_data *search_dev_data(u16 devid)
133 {
134 	struct iommu_dev_data *dev_data;
135 	unsigned long flags;
136 
137 	spin_lock_irqsave(&dev_data_list_lock, flags);
138 	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
139 		if (dev_data->devid == devid)
140 			goto out_unlock;
141 	}
142 
143 	dev_data = NULL;
144 
145 out_unlock:
146 	spin_unlock_irqrestore(&dev_data_list_lock, flags);
147 
148 	return dev_data;
149 }
150 
find_dev_data(u16 devid)151 static struct iommu_dev_data *find_dev_data(u16 devid)
152 {
153 	struct iommu_dev_data *dev_data;
154 
155 	dev_data = search_dev_data(devid);
156 
157 	if (dev_data == NULL)
158 		dev_data = alloc_dev_data(devid);
159 
160 	return dev_data;
161 }
162 
get_device_id(struct device * dev)163 static inline u16 get_device_id(struct device *dev)
164 {
165 	struct pci_dev *pdev = to_pci_dev(dev);
166 
167 	return calc_devid(pdev->bus->number, pdev->devfn);
168 }
169 
get_dev_data(struct device * dev)170 static struct iommu_dev_data *get_dev_data(struct device *dev)
171 {
172 	return dev->archdata.iommu;
173 }
174 
pci_iommuv2_capable(struct pci_dev * pdev)175 static bool pci_iommuv2_capable(struct pci_dev *pdev)
176 {
177 	static const int caps[] = {
178 		PCI_EXT_CAP_ID_ATS,
179 		PCI_EXT_CAP_ID_PRI,
180 		PCI_EXT_CAP_ID_PASID,
181 	};
182 	int i, pos;
183 
184 	for (i = 0; i < 3; ++i) {
185 		pos = pci_find_ext_capability(pdev, caps[i]);
186 		if (pos == 0)
187 			return false;
188 	}
189 
190 	return true;
191 }
192 
pdev_pri_erratum(struct pci_dev * pdev,u32 erratum)193 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
194 {
195 	struct iommu_dev_data *dev_data;
196 
197 	dev_data = get_dev_data(&pdev->dev);
198 
199 	return dev_data->errata & (1 << erratum) ? true : false;
200 }
201 
202 /*
203  * In this function the list of preallocated protection domains is traversed to
204  * find the domain for a specific device
205  */
find_protection_domain(u16 devid)206 static struct dma_ops_domain *find_protection_domain(u16 devid)
207 {
208 	struct dma_ops_domain *entry, *ret = NULL;
209 	unsigned long flags;
210 	u16 alias = amd_iommu_alias_table[devid];
211 
212 	if (list_empty(&iommu_pd_list))
213 		return NULL;
214 
215 	spin_lock_irqsave(&iommu_pd_list_lock, flags);
216 
217 	list_for_each_entry(entry, &iommu_pd_list, list) {
218 		if (entry->target_dev == devid ||
219 		    entry->target_dev == alias) {
220 			ret = entry;
221 			break;
222 		}
223 	}
224 
225 	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
226 
227 	return ret;
228 }
229 
230 /*
231  * This function checks if the driver got a valid device from the caller to
232  * avoid dereferencing invalid pointers.
233  */
check_device(struct device * dev)234 static bool check_device(struct device *dev)
235 {
236 	u16 devid;
237 
238 	if (!dev || !dev->dma_mask)
239 		return false;
240 
241 	/* No device or no PCI device */
242 	if (dev->bus != &pci_bus_type)
243 		return false;
244 
245 	devid = get_device_id(dev);
246 
247 	/* Out of our scope? */
248 	if (devid > amd_iommu_last_bdf)
249 		return false;
250 
251 	if (amd_iommu_rlookup_table[devid] == NULL)
252 		return false;
253 
254 	return true;
255 }
256 
iommu_init_device(struct device * dev)257 static int iommu_init_device(struct device *dev)
258 {
259 	struct pci_dev *pdev = to_pci_dev(dev);
260 	struct iommu_dev_data *dev_data;
261 	u16 alias;
262 
263 	if (dev->archdata.iommu)
264 		return 0;
265 
266 	dev_data = find_dev_data(get_device_id(dev));
267 	if (!dev_data)
268 		return -ENOMEM;
269 
270 	alias = amd_iommu_alias_table[dev_data->devid];
271 	if (alias != dev_data->devid) {
272 		struct iommu_dev_data *alias_data;
273 
274 		alias_data = find_dev_data(alias);
275 		if (alias_data == NULL) {
276 			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
277 					dev_name(dev));
278 			free_dev_data(dev_data);
279 			return -ENOTSUPP;
280 		}
281 		dev_data->alias_data = alias_data;
282 	}
283 
284 	if (pci_iommuv2_capable(pdev)) {
285 		struct amd_iommu *iommu;
286 
287 		iommu              = amd_iommu_rlookup_table[dev_data->devid];
288 		dev_data->iommu_v2 = iommu->is_iommu_v2;
289 	}
290 
291 	dev->archdata.iommu = dev_data;
292 
293 	return 0;
294 }
295 
iommu_ignore_device(struct device * dev)296 static void iommu_ignore_device(struct device *dev)
297 {
298 	u16 devid, alias;
299 
300 	devid = get_device_id(dev);
301 	alias = amd_iommu_alias_table[devid];
302 
303 	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
304 	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
305 
306 	amd_iommu_rlookup_table[devid] = NULL;
307 	amd_iommu_rlookup_table[alias] = NULL;
308 }
309 
iommu_uninit_device(struct device * dev)310 static void iommu_uninit_device(struct device *dev)
311 {
312 	/*
313 	 * Nothing to do here - we keep dev_data around for unplugged devices
314 	 * and reuse it when the device is re-plugged - not doing so would
315 	 * introduce a ton of races.
316 	 */
317 }
318 
amd_iommu_uninit_devices(void)319 void __init amd_iommu_uninit_devices(void)
320 {
321 	struct iommu_dev_data *dev_data, *n;
322 	struct pci_dev *pdev = NULL;
323 
324 	for_each_pci_dev(pdev) {
325 
326 		if (!check_device(&pdev->dev))
327 			continue;
328 
329 		iommu_uninit_device(&pdev->dev);
330 	}
331 
332 	/* Free all of our dev_data structures */
333 	list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
334 		free_dev_data(dev_data);
335 }
336 
amd_iommu_init_devices(void)337 int __init amd_iommu_init_devices(void)
338 {
339 	struct pci_dev *pdev = NULL;
340 	int ret = 0;
341 
342 	for_each_pci_dev(pdev) {
343 
344 		if (!check_device(&pdev->dev))
345 			continue;
346 
347 		ret = iommu_init_device(&pdev->dev);
348 		if (ret == -ENOTSUPP)
349 			iommu_ignore_device(&pdev->dev);
350 		else if (ret)
351 			goto out_free;
352 	}
353 
354 	return 0;
355 
356 out_free:
357 
358 	amd_iommu_uninit_devices();
359 
360 	return ret;
361 }
362 #ifdef CONFIG_AMD_IOMMU_STATS
363 
364 /*
365  * Initialization code for statistics collection
366  */
367 
368 DECLARE_STATS_COUNTER(compl_wait);
369 DECLARE_STATS_COUNTER(cnt_map_single);
370 DECLARE_STATS_COUNTER(cnt_unmap_single);
371 DECLARE_STATS_COUNTER(cnt_map_sg);
372 DECLARE_STATS_COUNTER(cnt_unmap_sg);
373 DECLARE_STATS_COUNTER(cnt_alloc_coherent);
374 DECLARE_STATS_COUNTER(cnt_free_coherent);
375 DECLARE_STATS_COUNTER(cross_page);
376 DECLARE_STATS_COUNTER(domain_flush_single);
377 DECLARE_STATS_COUNTER(domain_flush_all);
378 DECLARE_STATS_COUNTER(alloced_io_mem);
379 DECLARE_STATS_COUNTER(total_map_requests);
380 DECLARE_STATS_COUNTER(complete_ppr);
381 DECLARE_STATS_COUNTER(invalidate_iotlb);
382 DECLARE_STATS_COUNTER(invalidate_iotlb_all);
383 DECLARE_STATS_COUNTER(pri_requests);
384 
385 
386 static struct dentry *stats_dir;
387 static struct dentry *de_fflush;
388 
amd_iommu_stats_add(struct __iommu_counter * cnt)389 static void amd_iommu_stats_add(struct __iommu_counter *cnt)
390 {
391 	if (stats_dir == NULL)
392 		return;
393 
394 	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
395 				       &cnt->value);
396 }
397 
amd_iommu_stats_init(void)398 static void amd_iommu_stats_init(void)
399 {
400 	stats_dir = debugfs_create_dir("amd-iommu", NULL);
401 	if (stats_dir == NULL)
402 		return;
403 
404 	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
405 					 (u32 *)&amd_iommu_unmap_flush);
406 
407 	amd_iommu_stats_add(&compl_wait);
408 	amd_iommu_stats_add(&cnt_map_single);
409 	amd_iommu_stats_add(&cnt_unmap_single);
410 	amd_iommu_stats_add(&cnt_map_sg);
411 	amd_iommu_stats_add(&cnt_unmap_sg);
412 	amd_iommu_stats_add(&cnt_alloc_coherent);
413 	amd_iommu_stats_add(&cnt_free_coherent);
414 	amd_iommu_stats_add(&cross_page);
415 	amd_iommu_stats_add(&domain_flush_single);
416 	amd_iommu_stats_add(&domain_flush_all);
417 	amd_iommu_stats_add(&alloced_io_mem);
418 	amd_iommu_stats_add(&total_map_requests);
419 	amd_iommu_stats_add(&complete_ppr);
420 	amd_iommu_stats_add(&invalidate_iotlb);
421 	amd_iommu_stats_add(&invalidate_iotlb_all);
422 	amd_iommu_stats_add(&pri_requests);
423 }
424 
425 #endif
426 
427 /****************************************************************************
428  *
429  * Interrupt handling functions
430  *
431  ****************************************************************************/
432 
dump_dte_entry(u16 devid)433 static void dump_dte_entry(u16 devid)
434 {
435 	int i;
436 
437 	for (i = 0; i < 4; ++i)
438 		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
439 			amd_iommu_dev_table[devid].data[i]);
440 }
441 
dump_command(unsigned long phys_addr)442 static void dump_command(unsigned long phys_addr)
443 {
444 	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
445 	int i;
446 
447 	for (i = 0; i < 4; ++i)
448 		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
449 }
450 
iommu_print_event(struct amd_iommu * iommu,void * __evt)451 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
452 {
453 	u32 *event = __evt;
454 	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
455 	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
456 	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
457 	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
458 	u64 address = (u64)(((u64)event[3]) << 32) | event[2];
459 
460 	printk(KERN_ERR "AMD-Vi: Event logged [");
461 
462 	switch (type) {
463 	case EVENT_TYPE_ILL_DEV:
464 		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
465 		       "address=0x%016llx flags=0x%04x]\n",
466 		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
467 		       address, flags);
468 		dump_dte_entry(devid);
469 		break;
470 	case EVENT_TYPE_IO_FAULT:
471 		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
472 		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
473 		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
474 		       domid, address, flags);
475 		break;
476 	case EVENT_TYPE_DEV_TAB_ERR:
477 		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
478 		       "address=0x%016llx flags=0x%04x]\n",
479 		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
480 		       address, flags);
481 		break;
482 	case EVENT_TYPE_PAGE_TAB_ERR:
483 		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
484 		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
485 		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
486 		       domid, address, flags);
487 		break;
488 	case EVENT_TYPE_ILL_CMD:
489 		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
490 		dump_command(address);
491 		break;
492 	case EVENT_TYPE_CMD_HARD_ERR:
493 		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
494 		       "flags=0x%04x]\n", address, flags);
495 		break;
496 	case EVENT_TYPE_IOTLB_INV_TO:
497 		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
498 		       "address=0x%016llx]\n",
499 		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
500 		       address);
501 		break;
502 	case EVENT_TYPE_INV_DEV_REQ:
503 		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
504 		       "address=0x%016llx flags=0x%04x]\n",
505 		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
506 		       address, flags);
507 		break;
508 	default:
509 		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
510 	}
511 }
512 
iommu_poll_events(struct amd_iommu * iommu)513 static void iommu_poll_events(struct amd_iommu *iommu)
514 {
515 	u32 head, tail;
516 	unsigned long flags;
517 
518 	spin_lock_irqsave(&iommu->lock, flags);
519 
520 	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
521 	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
522 
523 	while (head != tail) {
524 		iommu_print_event(iommu, iommu->evt_buf + head);
525 		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
526 	}
527 
528 	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
529 
530 	spin_unlock_irqrestore(&iommu->lock, flags);
531 }
532 
iommu_handle_ppr_entry(struct amd_iommu * iommu,u32 head)533 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u32 head)
534 {
535 	struct amd_iommu_fault fault;
536 	volatile u64 *raw;
537 	int i;
538 
539 	INC_STATS_COUNTER(pri_requests);
540 
541 	raw = (u64 *)(iommu->ppr_log + head);
542 
543 	/*
544 	 * Hardware bug: Interrupt may arrive before the entry is written to
545 	 * memory. If this happens we need to wait for the entry to arrive.
546 	 */
547 	for (i = 0; i < LOOP_TIMEOUT; ++i) {
548 		if (PPR_REQ_TYPE(raw[0]) != 0)
549 			break;
550 		udelay(1);
551 	}
552 
553 	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
554 		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
555 		return;
556 	}
557 
558 	fault.address   = raw[1];
559 	fault.pasid     = PPR_PASID(raw[0]);
560 	fault.device_id = PPR_DEVID(raw[0]);
561 	fault.tag       = PPR_TAG(raw[0]);
562 	fault.flags     = PPR_FLAGS(raw[0]);
563 
564 	/*
565 	 * To detect the hardware bug we need to clear the entry
566 	 * to back to zero.
567 	 */
568 	raw[0] = raw[1] = 0;
569 
570 	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
571 }
572 
iommu_poll_ppr_log(struct amd_iommu * iommu)573 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
574 {
575 	unsigned long flags;
576 	u32 head, tail;
577 
578 	if (iommu->ppr_log == NULL)
579 		return;
580 
581 	spin_lock_irqsave(&iommu->lock, flags);
582 
583 	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
584 	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
585 
586 	while (head != tail) {
587 
588 		/* Handle PPR entry */
589 		iommu_handle_ppr_entry(iommu, head);
590 
591 		/* Update and refresh ring-buffer state*/
592 		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
593 		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
594 		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
595 	}
596 
597 	/* enable ppr interrupts again */
598 	writel(MMIO_STATUS_PPR_INT_MASK, iommu->mmio_base + MMIO_STATUS_OFFSET);
599 
600 	spin_unlock_irqrestore(&iommu->lock, flags);
601 }
602 
amd_iommu_int_thread(int irq,void * data)603 irqreturn_t amd_iommu_int_thread(int irq, void *data)
604 {
605 	struct amd_iommu *iommu;
606 
607 	for_each_iommu(iommu) {
608 		iommu_poll_events(iommu);
609 		iommu_poll_ppr_log(iommu);
610 	}
611 
612 	return IRQ_HANDLED;
613 }
614 
amd_iommu_int_handler(int irq,void * data)615 irqreturn_t amd_iommu_int_handler(int irq, void *data)
616 {
617 	return IRQ_WAKE_THREAD;
618 }
619 
620 /****************************************************************************
621  *
622  * IOMMU command queuing functions
623  *
624  ****************************************************************************/
625 
wait_on_sem(volatile u64 * sem)626 static int wait_on_sem(volatile u64 *sem)
627 {
628 	int i = 0;
629 
630 	while (*sem == 0 && i < LOOP_TIMEOUT) {
631 		udelay(1);
632 		i += 1;
633 	}
634 
635 	if (i == LOOP_TIMEOUT) {
636 		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
637 		return -EIO;
638 	}
639 
640 	return 0;
641 }
642 
copy_cmd_to_buffer(struct amd_iommu * iommu,struct iommu_cmd * cmd,u32 tail)643 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
644 			       struct iommu_cmd *cmd,
645 			       u32 tail)
646 {
647 	u8 *target;
648 
649 	target = iommu->cmd_buf + tail;
650 	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
651 
652 	/* Copy command to buffer */
653 	memcpy(target, cmd, sizeof(*cmd));
654 
655 	/* Tell the IOMMU about it */
656 	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
657 }
658 
build_completion_wait(struct iommu_cmd * cmd,u64 address)659 static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
660 {
661 	WARN_ON(address & 0x7ULL);
662 
663 	memset(cmd, 0, sizeof(*cmd));
664 	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
665 	cmd->data[1] = upper_32_bits(__pa(address));
666 	cmd->data[2] = 1;
667 	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
668 }
669 
build_inv_dte(struct iommu_cmd * cmd,u16 devid)670 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
671 {
672 	memset(cmd, 0, sizeof(*cmd));
673 	cmd->data[0] = devid;
674 	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
675 }
676 
build_inv_iommu_pages(struct iommu_cmd * cmd,u64 address,size_t size,u16 domid,int pde)677 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
678 				  size_t size, u16 domid, int pde)
679 {
680 	u64 pages;
681 	int s;
682 
683 	pages = iommu_num_pages(address, size, PAGE_SIZE);
684 	s     = 0;
685 
686 	if (pages > 1) {
687 		/*
688 		 * If we have to flush more than one page, flush all
689 		 * TLB entries for this domain
690 		 */
691 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
692 		s = 1;
693 	}
694 
695 	address &= PAGE_MASK;
696 
697 	memset(cmd, 0, sizeof(*cmd));
698 	cmd->data[1] |= domid;
699 	cmd->data[2]  = lower_32_bits(address);
700 	cmd->data[3]  = upper_32_bits(address);
701 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
702 	if (s) /* size bit - we flush more than one 4kb page */
703 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
704 	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
705 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
706 }
707 
build_inv_iotlb_pages(struct iommu_cmd * cmd,u16 devid,int qdep,u64 address,size_t size)708 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
709 				  u64 address, size_t size)
710 {
711 	u64 pages;
712 	int s;
713 
714 	pages = iommu_num_pages(address, size, PAGE_SIZE);
715 	s     = 0;
716 
717 	if (pages > 1) {
718 		/*
719 		 * If we have to flush more than one page, flush all
720 		 * TLB entries for this domain
721 		 */
722 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
723 		s = 1;
724 	}
725 
726 	address &= PAGE_MASK;
727 
728 	memset(cmd, 0, sizeof(*cmd));
729 	cmd->data[0]  = devid;
730 	cmd->data[0] |= (qdep & 0xff) << 24;
731 	cmd->data[1]  = devid;
732 	cmd->data[2]  = lower_32_bits(address);
733 	cmd->data[3]  = upper_32_bits(address);
734 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
735 	if (s)
736 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
737 }
738 
build_inv_iommu_pasid(struct iommu_cmd * cmd,u16 domid,int pasid,u64 address,bool size)739 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
740 				  u64 address, bool size)
741 {
742 	memset(cmd, 0, sizeof(*cmd));
743 
744 	address &= ~(0xfffULL);
745 
746 	cmd->data[0]  = pasid & PASID_MASK;
747 	cmd->data[1]  = domid;
748 	cmd->data[2]  = lower_32_bits(address);
749 	cmd->data[3]  = upper_32_bits(address);
750 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
751 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
752 	if (size)
753 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
754 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
755 }
756 
build_inv_iotlb_pasid(struct iommu_cmd * cmd,u16 devid,int pasid,int qdep,u64 address,bool size)757 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
758 				  int qdep, u64 address, bool size)
759 {
760 	memset(cmd, 0, sizeof(*cmd));
761 
762 	address &= ~(0xfffULL);
763 
764 	cmd->data[0]  = devid;
765 	cmd->data[0] |= (pasid & 0xff) << 16;
766 	cmd->data[0] |= (qdep  & 0xff) << 24;
767 	cmd->data[1]  = devid;
768 	cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
769 	cmd->data[2]  = lower_32_bits(address);
770 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
771 	cmd->data[3]  = upper_32_bits(address);
772 	if (size)
773 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
774 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
775 }
776 
build_complete_ppr(struct iommu_cmd * cmd,u16 devid,int pasid,int status,int tag,bool gn)777 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
778 			       int status, int tag, bool gn)
779 {
780 	memset(cmd, 0, sizeof(*cmd));
781 
782 	cmd->data[0]  = devid;
783 	if (gn) {
784 		cmd->data[1]  = pasid & PASID_MASK;
785 		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
786 	}
787 	cmd->data[3]  = tag & 0x1ff;
788 	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
789 
790 	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
791 }
792 
build_inv_all(struct iommu_cmd * cmd)793 static void build_inv_all(struct iommu_cmd *cmd)
794 {
795 	memset(cmd, 0, sizeof(*cmd));
796 	CMD_SET_TYPE(cmd, CMD_INV_ALL);
797 }
798 
799 /*
800  * Writes the command to the IOMMUs command buffer and informs the
801  * hardware about the new command.
802  */
iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)803 static int iommu_queue_command_sync(struct amd_iommu *iommu,
804 				    struct iommu_cmd *cmd,
805 				    bool sync)
806 {
807 	u32 left, tail, head, next_tail;
808 	unsigned long flags;
809 
810 	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
811 
812 again:
813 	spin_lock_irqsave(&iommu->lock, flags);
814 
815 	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
816 	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
817 	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
818 	left      = (head - next_tail) % iommu->cmd_buf_size;
819 
820 	if (left <= 2) {
821 		struct iommu_cmd sync_cmd;
822 		volatile u64 sem = 0;
823 		int ret;
824 
825 		build_completion_wait(&sync_cmd, (u64)&sem);
826 		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
827 
828 		spin_unlock_irqrestore(&iommu->lock, flags);
829 
830 		if ((ret = wait_on_sem(&sem)) != 0)
831 			return ret;
832 
833 		goto again;
834 	}
835 
836 	copy_cmd_to_buffer(iommu, cmd, tail);
837 
838 	/* We need to sync now to make sure all commands are processed */
839 	iommu->need_sync = sync;
840 
841 	spin_unlock_irqrestore(&iommu->lock, flags);
842 
843 	return 0;
844 }
845 
iommu_queue_command(struct amd_iommu * iommu,struct iommu_cmd * cmd)846 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
847 {
848 	return iommu_queue_command_sync(iommu, cmd, true);
849 }
850 
851 /*
852  * This function queues a completion wait command into the command
853  * buffer of an IOMMU
854  */
iommu_completion_wait(struct amd_iommu * iommu)855 static int iommu_completion_wait(struct amd_iommu *iommu)
856 {
857 	struct iommu_cmd cmd;
858 	volatile u64 sem = 0;
859 	int ret;
860 
861 	if (!iommu->need_sync)
862 		return 0;
863 
864 	build_completion_wait(&cmd, (u64)&sem);
865 
866 	ret = iommu_queue_command_sync(iommu, &cmd, false);
867 	if (ret)
868 		return ret;
869 
870 	return wait_on_sem(&sem);
871 }
872 
iommu_flush_dte(struct amd_iommu * iommu,u16 devid)873 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
874 {
875 	struct iommu_cmd cmd;
876 
877 	build_inv_dte(&cmd, devid);
878 
879 	return iommu_queue_command(iommu, &cmd);
880 }
881 
iommu_flush_dte_all(struct amd_iommu * iommu)882 static void iommu_flush_dte_all(struct amd_iommu *iommu)
883 {
884 	u32 devid;
885 
886 	for (devid = 0; devid <= 0xffff; ++devid)
887 		iommu_flush_dte(iommu, devid);
888 
889 	iommu_completion_wait(iommu);
890 }
891 
892 /*
893  * This function uses heavy locking and may disable irqs for some time. But
894  * this is no issue because it is only called during resume.
895  */
iommu_flush_tlb_all(struct amd_iommu * iommu)896 static void iommu_flush_tlb_all(struct amd_iommu *iommu)
897 {
898 	u32 dom_id;
899 
900 	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
901 		struct iommu_cmd cmd;
902 		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
903 				      dom_id, 1);
904 		iommu_queue_command(iommu, &cmd);
905 	}
906 
907 	iommu_completion_wait(iommu);
908 }
909 
iommu_flush_all(struct amd_iommu * iommu)910 static void iommu_flush_all(struct amd_iommu *iommu)
911 {
912 	struct iommu_cmd cmd;
913 
914 	build_inv_all(&cmd);
915 
916 	iommu_queue_command(iommu, &cmd);
917 	iommu_completion_wait(iommu);
918 }
919 
iommu_flush_all_caches(struct amd_iommu * iommu)920 void iommu_flush_all_caches(struct amd_iommu *iommu)
921 {
922 	if (iommu_feature(iommu, FEATURE_IA)) {
923 		iommu_flush_all(iommu);
924 	} else {
925 		iommu_flush_dte_all(iommu);
926 		iommu_flush_tlb_all(iommu);
927 	}
928 }
929 
930 /*
931  * Command send function for flushing on-device TLB
932  */
device_flush_iotlb(struct iommu_dev_data * dev_data,u64 address,size_t size)933 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
934 			      u64 address, size_t size)
935 {
936 	struct amd_iommu *iommu;
937 	struct iommu_cmd cmd;
938 	int qdep;
939 
940 	qdep     = dev_data->ats.qdep;
941 	iommu    = amd_iommu_rlookup_table[dev_data->devid];
942 
943 	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
944 
945 	return iommu_queue_command(iommu, &cmd);
946 }
947 
948 /*
949  * Command send function for invalidating a device table entry
950  */
device_flush_dte(struct iommu_dev_data * dev_data)951 static int device_flush_dte(struct iommu_dev_data *dev_data)
952 {
953 	struct amd_iommu *iommu;
954 	int ret;
955 
956 	iommu = amd_iommu_rlookup_table[dev_data->devid];
957 
958 	ret = iommu_flush_dte(iommu, dev_data->devid);
959 	if (ret)
960 		return ret;
961 
962 	if (dev_data->ats.enabled)
963 		ret = device_flush_iotlb(dev_data, 0, ~0UL);
964 
965 	return ret;
966 }
967 
968 /*
969  * TLB invalidation function which is called from the mapping functions.
970  * It invalidates a single PTE if the range to flush is within a single
971  * page. Otherwise it flushes the whole TLB of the IOMMU.
972  */
__domain_flush_pages(struct protection_domain * domain,u64 address,size_t size,int pde)973 static void __domain_flush_pages(struct protection_domain *domain,
974 				 u64 address, size_t size, int pde)
975 {
976 	struct iommu_dev_data *dev_data;
977 	struct iommu_cmd cmd;
978 	int ret = 0, i;
979 
980 	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
981 
982 	for (i = 0; i < amd_iommus_present; ++i) {
983 		if (!domain->dev_iommu[i])
984 			continue;
985 
986 		/*
987 		 * Devices of this domain are behind this IOMMU
988 		 * We need a TLB flush
989 		 */
990 		ret |= iommu_queue_command(amd_iommus[i], &cmd);
991 	}
992 
993 	list_for_each_entry(dev_data, &domain->dev_list, list) {
994 
995 		if (!dev_data->ats.enabled)
996 			continue;
997 
998 		ret |= device_flush_iotlb(dev_data, address, size);
999 	}
1000 
1001 	WARN_ON(ret);
1002 }
1003 
domain_flush_pages(struct protection_domain * domain,u64 address,size_t size)1004 static void domain_flush_pages(struct protection_domain *domain,
1005 			       u64 address, size_t size)
1006 {
1007 	__domain_flush_pages(domain, address, size, 0);
1008 }
1009 
1010 /* Flush the whole IO/TLB for a given protection domain */
domain_flush_tlb(struct protection_domain * domain)1011 static void domain_flush_tlb(struct protection_domain *domain)
1012 {
1013 	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1014 }
1015 
1016 /* Flush the whole IO/TLB for a given protection domain - including PDE */
domain_flush_tlb_pde(struct protection_domain * domain)1017 static void domain_flush_tlb_pde(struct protection_domain *domain)
1018 {
1019 	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1020 }
1021 
domain_flush_complete(struct protection_domain * domain)1022 static void domain_flush_complete(struct protection_domain *domain)
1023 {
1024 	int i;
1025 
1026 	for (i = 0; i < amd_iommus_present; ++i) {
1027 		if (!domain->dev_iommu[i])
1028 			continue;
1029 
1030 		/*
1031 		 * Devices of this domain are behind this IOMMU
1032 		 * We need to wait for completion of all commands.
1033 		 */
1034 		iommu_completion_wait(amd_iommus[i]);
1035 	}
1036 }
1037 
1038 
1039 /*
1040  * This function flushes the DTEs for all devices in domain
1041  */
domain_flush_devices(struct protection_domain * domain)1042 static void domain_flush_devices(struct protection_domain *domain)
1043 {
1044 	struct iommu_dev_data *dev_data;
1045 
1046 	list_for_each_entry(dev_data, &domain->dev_list, list)
1047 		device_flush_dte(dev_data);
1048 }
1049 
1050 /****************************************************************************
1051  *
1052  * The functions below are used the create the page table mappings for
1053  * unity mapped regions.
1054  *
1055  ****************************************************************************/
1056 
1057 /*
1058  * This function is used to add another level to an IO page table. Adding
1059  * another level increases the size of the address space by 9 bits to a size up
1060  * to 64 bits.
1061  */
increase_address_space(struct protection_domain * domain,gfp_t gfp)1062 static bool increase_address_space(struct protection_domain *domain,
1063 				   gfp_t gfp)
1064 {
1065 	u64 *pte;
1066 
1067 	if (domain->mode == PAGE_MODE_6_LEVEL)
1068 		/* address space already 64 bit large */
1069 		return false;
1070 
1071 	pte = (void *)get_zeroed_page(gfp);
1072 	if (!pte)
1073 		return false;
1074 
1075 	*pte             = PM_LEVEL_PDE(domain->mode,
1076 					virt_to_phys(domain->pt_root));
1077 	domain->pt_root  = pte;
1078 	domain->mode    += 1;
1079 	domain->updated  = true;
1080 
1081 	return true;
1082 }
1083 
alloc_pte(struct protection_domain * domain,unsigned long address,unsigned long page_size,u64 ** pte_page,gfp_t gfp)1084 static u64 *alloc_pte(struct protection_domain *domain,
1085 		      unsigned long address,
1086 		      unsigned long page_size,
1087 		      u64 **pte_page,
1088 		      gfp_t gfp)
1089 {
1090 	int level, end_lvl;
1091 	u64 *pte, *page;
1092 
1093 	BUG_ON(!is_power_of_2(page_size));
1094 
1095 	while (address > PM_LEVEL_SIZE(domain->mode))
1096 		increase_address_space(domain, gfp);
1097 
1098 	level   = domain->mode - 1;
1099 	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1100 	address = PAGE_SIZE_ALIGN(address, page_size);
1101 	end_lvl = PAGE_SIZE_LEVEL(page_size);
1102 
1103 	while (level > end_lvl) {
1104 		if (!IOMMU_PTE_PRESENT(*pte)) {
1105 			page = (u64 *)get_zeroed_page(gfp);
1106 			if (!page)
1107 				return NULL;
1108 			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1109 		}
1110 
1111 		/* No level skipping support yet */
1112 		if (PM_PTE_LEVEL(*pte) != level)
1113 			return NULL;
1114 
1115 		level -= 1;
1116 
1117 		pte = IOMMU_PTE_PAGE(*pte);
1118 
1119 		if (pte_page && level == end_lvl)
1120 			*pte_page = pte;
1121 
1122 		pte = &pte[PM_LEVEL_INDEX(level, address)];
1123 	}
1124 
1125 	return pte;
1126 }
1127 
1128 /*
1129  * This function checks if there is a PTE for a given dma address. If
1130  * there is one, it returns the pointer to it.
1131  */
fetch_pte(struct protection_domain * domain,unsigned long address)1132 static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
1133 {
1134 	int level;
1135 	u64 *pte;
1136 
1137 	if (address > PM_LEVEL_SIZE(domain->mode))
1138 		return NULL;
1139 
1140 	level   =  domain->mode - 1;
1141 	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1142 
1143 	while (level > 0) {
1144 
1145 		/* Not Present */
1146 		if (!IOMMU_PTE_PRESENT(*pte))
1147 			return NULL;
1148 
1149 		/* Large PTE */
1150 		if (PM_PTE_LEVEL(*pte) == 0x07) {
1151 			unsigned long pte_mask, __pte;
1152 
1153 			/*
1154 			 * If we have a series of large PTEs, make
1155 			 * sure to return a pointer to the first one.
1156 			 */
1157 			pte_mask = PTE_PAGE_SIZE(*pte);
1158 			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1159 			__pte    = ((unsigned long)pte) & pte_mask;
1160 
1161 			return (u64 *)__pte;
1162 		}
1163 
1164 		/* No level skipping support yet */
1165 		if (PM_PTE_LEVEL(*pte) != level)
1166 			return NULL;
1167 
1168 		level -= 1;
1169 
1170 		/* Walk to the next level */
1171 		pte = IOMMU_PTE_PAGE(*pte);
1172 		pte = &pte[PM_LEVEL_INDEX(level, address)];
1173 	}
1174 
1175 	return pte;
1176 }
1177 
1178 /*
1179  * Generic mapping functions. It maps a physical address into a DMA
1180  * address space. It allocates the page table pages if necessary.
1181  * In the future it can be extended to a generic mapping function
1182  * supporting all features of AMD IOMMU page tables like level skipping
1183  * and full 64 bit address spaces.
1184  */
iommu_map_page(struct protection_domain * dom,unsigned long bus_addr,unsigned long phys_addr,int prot,unsigned long page_size)1185 static int iommu_map_page(struct protection_domain *dom,
1186 			  unsigned long bus_addr,
1187 			  unsigned long phys_addr,
1188 			  int prot,
1189 			  unsigned long page_size)
1190 {
1191 	u64 __pte, *pte;
1192 	int i, count;
1193 
1194 	if (!(prot & IOMMU_PROT_MASK))
1195 		return -EINVAL;
1196 
1197 	bus_addr  = PAGE_ALIGN(bus_addr);
1198 	phys_addr = PAGE_ALIGN(phys_addr);
1199 	count     = PAGE_SIZE_PTE_COUNT(page_size);
1200 	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1201 
1202 	for (i = 0; i < count; ++i)
1203 		if (IOMMU_PTE_PRESENT(pte[i]))
1204 			return -EBUSY;
1205 
1206 	if (page_size > PAGE_SIZE) {
1207 		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
1208 		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1209 	} else
1210 		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1211 
1212 	if (prot & IOMMU_PROT_IR)
1213 		__pte |= IOMMU_PTE_IR;
1214 	if (prot & IOMMU_PROT_IW)
1215 		__pte |= IOMMU_PTE_IW;
1216 
1217 	for (i = 0; i < count; ++i)
1218 		pte[i] = __pte;
1219 
1220 	update_domain(dom);
1221 
1222 	return 0;
1223 }
1224 
iommu_unmap_page(struct protection_domain * dom,unsigned long bus_addr,unsigned long page_size)1225 static unsigned long iommu_unmap_page(struct protection_domain *dom,
1226 				      unsigned long bus_addr,
1227 				      unsigned long page_size)
1228 {
1229 	unsigned long long unmap_size, unmapped;
1230 	u64 *pte;
1231 
1232 	BUG_ON(!is_power_of_2(page_size));
1233 
1234 	unmapped = 0;
1235 
1236 	while (unmapped < page_size) {
1237 
1238 		pte = fetch_pte(dom, bus_addr);
1239 
1240 		if (!pte) {
1241 			/*
1242 			 * No PTE for this address
1243 			 * move forward in 4kb steps
1244 			 */
1245 			unmap_size = PAGE_SIZE;
1246 		} else if (PM_PTE_LEVEL(*pte) == 0) {
1247 			/* 4kb PTE found for this address */
1248 			unmap_size = PAGE_SIZE;
1249 			*pte       = 0ULL;
1250 		} else {
1251 			int count, i;
1252 
1253 			/* Large PTE found which maps this address */
1254 			unmap_size = PTE_PAGE_SIZE(*pte);
1255 			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
1256 			for (i = 0; i < count; i++)
1257 				pte[i] = 0ULL;
1258 		}
1259 
1260 		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1261 		unmapped += unmap_size;
1262 	}
1263 
1264 	BUG_ON(!is_power_of_2(unmapped));
1265 
1266 	return unmapped;
1267 }
1268 
1269 /*
1270  * This function checks if a specific unity mapping entry is needed for
1271  * this specific IOMMU.
1272  */
iommu_for_unity_map(struct amd_iommu * iommu,struct unity_map_entry * entry)1273 static int iommu_for_unity_map(struct amd_iommu *iommu,
1274 			       struct unity_map_entry *entry)
1275 {
1276 	u16 bdf, i;
1277 
1278 	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1279 		bdf = amd_iommu_alias_table[i];
1280 		if (amd_iommu_rlookup_table[bdf] == iommu)
1281 			return 1;
1282 	}
1283 
1284 	return 0;
1285 }
1286 
1287 /*
1288  * This function actually applies the mapping to the page table of the
1289  * dma_ops domain.
1290  */
dma_ops_unity_map(struct dma_ops_domain * dma_dom,struct unity_map_entry * e)1291 static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1292 			     struct unity_map_entry *e)
1293 {
1294 	u64 addr;
1295 	int ret;
1296 
1297 	for (addr = e->address_start; addr < e->address_end;
1298 	     addr += PAGE_SIZE) {
1299 		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1300 				     PAGE_SIZE);
1301 		if (ret)
1302 			return ret;
1303 		/*
1304 		 * if unity mapping is in aperture range mark the page
1305 		 * as allocated in the aperture
1306 		 */
1307 		if (addr < dma_dom->aperture_size)
1308 			__set_bit(addr >> PAGE_SHIFT,
1309 				  dma_dom->aperture[0]->bitmap);
1310 	}
1311 
1312 	return 0;
1313 }
1314 
1315 /*
1316  * Init the unity mappings for a specific IOMMU in the system
1317  *
1318  * Basically iterates over all unity mapping entries and applies them to
1319  * the default domain DMA of that IOMMU if necessary.
1320  */
iommu_init_unity_mappings(struct amd_iommu * iommu)1321 static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1322 {
1323 	struct unity_map_entry *entry;
1324 	int ret;
1325 
1326 	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1327 		if (!iommu_for_unity_map(iommu, entry))
1328 			continue;
1329 		ret = dma_ops_unity_map(iommu->default_dom, entry);
1330 		if (ret)
1331 			return ret;
1332 	}
1333 
1334 	return 0;
1335 }
1336 
1337 /*
1338  * Inits the unity mappings required for a specific device
1339  */
init_unity_mappings_for_device(struct dma_ops_domain * dma_dom,u16 devid)1340 static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1341 					  u16 devid)
1342 {
1343 	struct unity_map_entry *e;
1344 	int ret;
1345 
1346 	list_for_each_entry(e, &amd_iommu_unity_map, list) {
1347 		if (!(devid >= e->devid_start && devid <= e->devid_end))
1348 			continue;
1349 		ret = dma_ops_unity_map(dma_dom, e);
1350 		if (ret)
1351 			return ret;
1352 	}
1353 
1354 	return 0;
1355 }
1356 
1357 /****************************************************************************
1358  *
1359  * The next functions belong to the address allocator for the dma_ops
1360  * interface functions. They work like the allocators in the other IOMMU
1361  * drivers. Its basically a bitmap which marks the allocated pages in
1362  * the aperture. Maybe it could be enhanced in the future to a more
1363  * efficient allocator.
1364  *
1365  ****************************************************************************/
1366 
1367 /*
1368  * The address allocator core functions.
1369  *
1370  * called with domain->lock held
1371  */
1372 
1373 /*
1374  * Used to reserve address ranges in the aperture (e.g. for exclusion
1375  * ranges.
1376  */
dma_ops_reserve_addresses(struct dma_ops_domain * dom,unsigned long start_page,unsigned int pages)1377 static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1378 				      unsigned long start_page,
1379 				      unsigned int pages)
1380 {
1381 	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1382 
1383 	if (start_page + pages > last_page)
1384 		pages = last_page - start_page;
1385 
1386 	for (i = start_page; i < start_page + pages; ++i) {
1387 		int index = i / APERTURE_RANGE_PAGES;
1388 		int page  = i % APERTURE_RANGE_PAGES;
1389 		__set_bit(page, dom->aperture[index]->bitmap);
1390 	}
1391 }
1392 
1393 /*
1394  * This function is used to add a new aperture range to an existing
1395  * aperture in case of dma_ops domain allocation or address allocation
1396  * failure.
1397  */
alloc_new_range(struct dma_ops_domain * dma_dom,bool populate,gfp_t gfp)1398 static int alloc_new_range(struct dma_ops_domain *dma_dom,
1399 			   bool populate, gfp_t gfp)
1400 {
1401 	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1402 	struct amd_iommu *iommu;
1403 	unsigned long i, old_size;
1404 
1405 #ifdef CONFIG_IOMMU_STRESS
1406 	populate = false;
1407 #endif
1408 
1409 	if (index >= APERTURE_MAX_RANGES)
1410 		return -ENOMEM;
1411 
1412 	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1413 	if (!dma_dom->aperture[index])
1414 		return -ENOMEM;
1415 
1416 	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1417 	if (!dma_dom->aperture[index]->bitmap)
1418 		goto out_free;
1419 
1420 	dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1421 
1422 	if (populate) {
1423 		unsigned long address = dma_dom->aperture_size;
1424 		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1425 		u64 *pte, *pte_page;
1426 
1427 		for (i = 0; i < num_ptes; ++i) {
1428 			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1429 					&pte_page, gfp);
1430 			if (!pte)
1431 				goto out_free;
1432 
1433 			dma_dom->aperture[index]->pte_pages[i] = pte_page;
1434 
1435 			address += APERTURE_RANGE_SIZE / 64;
1436 		}
1437 	}
1438 
1439 	old_size                = dma_dom->aperture_size;
1440 	dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1441 
1442 	/* Reserve address range used for MSI messages */
1443 	if (old_size < MSI_ADDR_BASE_LO &&
1444 	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1445 		unsigned long spage;
1446 		int pages;
1447 
1448 		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1449 		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1450 
1451 		dma_ops_reserve_addresses(dma_dom, spage, pages);
1452 	}
1453 
1454 	/* Initialize the exclusion range if necessary */
1455 	for_each_iommu(iommu) {
1456 		if (iommu->exclusion_start &&
1457 		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
1458 		    && iommu->exclusion_start < dma_dom->aperture_size) {
1459 			unsigned long startpage;
1460 			int pages = iommu_num_pages(iommu->exclusion_start,
1461 						    iommu->exclusion_length,
1462 						    PAGE_SIZE);
1463 			startpage = iommu->exclusion_start >> PAGE_SHIFT;
1464 			dma_ops_reserve_addresses(dma_dom, startpage, pages);
1465 		}
1466 	}
1467 
1468 	/*
1469 	 * Check for areas already mapped as present in the new aperture
1470 	 * range and mark those pages as reserved in the allocator. Such
1471 	 * mappings may already exist as a result of requested unity
1472 	 * mappings for devices.
1473 	 */
1474 	for (i = dma_dom->aperture[index]->offset;
1475 	     i < dma_dom->aperture_size;
1476 	     i += PAGE_SIZE) {
1477 		u64 *pte = fetch_pte(&dma_dom->domain, i);
1478 		if (!pte || !IOMMU_PTE_PRESENT(*pte))
1479 			continue;
1480 
1481 		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1482 	}
1483 
1484 	update_domain(&dma_dom->domain);
1485 
1486 	return 0;
1487 
1488 out_free:
1489 	update_domain(&dma_dom->domain);
1490 
1491 	free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1492 
1493 	kfree(dma_dom->aperture[index]);
1494 	dma_dom->aperture[index] = NULL;
1495 
1496 	return -ENOMEM;
1497 }
1498 
dma_ops_area_alloc(struct device * dev,struct dma_ops_domain * dom,unsigned int pages,unsigned long align_mask,u64 dma_mask,unsigned long start)1499 static unsigned long dma_ops_area_alloc(struct device *dev,
1500 					struct dma_ops_domain *dom,
1501 					unsigned int pages,
1502 					unsigned long align_mask,
1503 					u64 dma_mask,
1504 					unsigned long start)
1505 {
1506 	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1507 	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1508 	int i = start >> APERTURE_RANGE_SHIFT;
1509 	unsigned long boundary_size;
1510 	unsigned long address = -1;
1511 	unsigned long limit;
1512 
1513 	next_bit >>= PAGE_SHIFT;
1514 
1515 	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1516 			PAGE_SIZE) >> PAGE_SHIFT;
1517 
1518 	for (;i < max_index; ++i) {
1519 		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1520 
1521 		if (dom->aperture[i]->offset >= dma_mask)
1522 			break;
1523 
1524 		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1525 					       dma_mask >> PAGE_SHIFT);
1526 
1527 		address = iommu_area_alloc(dom->aperture[i]->bitmap,
1528 					   limit, next_bit, pages, 0,
1529 					    boundary_size, align_mask);
1530 		if (address != -1) {
1531 			address = dom->aperture[i]->offset +
1532 				  (address << PAGE_SHIFT);
1533 			dom->next_address = address + (pages << PAGE_SHIFT);
1534 			break;
1535 		}
1536 
1537 		next_bit = 0;
1538 	}
1539 
1540 	return address;
1541 }
1542 
dma_ops_alloc_addresses(struct device * dev,struct dma_ops_domain * dom,unsigned int pages,unsigned long align_mask,u64 dma_mask)1543 static unsigned long dma_ops_alloc_addresses(struct device *dev,
1544 					     struct dma_ops_domain *dom,
1545 					     unsigned int pages,
1546 					     unsigned long align_mask,
1547 					     u64 dma_mask)
1548 {
1549 	unsigned long address;
1550 
1551 #ifdef CONFIG_IOMMU_STRESS
1552 	dom->next_address = 0;
1553 	dom->need_flush = true;
1554 #endif
1555 
1556 	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1557 				     dma_mask, dom->next_address);
1558 
1559 	if (address == -1) {
1560 		dom->next_address = 0;
1561 		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1562 					     dma_mask, 0);
1563 		dom->need_flush = true;
1564 	}
1565 
1566 	if (unlikely(address == -1))
1567 		address = DMA_ERROR_CODE;
1568 
1569 	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1570 
1571 	return address;
1572 }
1573 
1574 /*
1575  * The address free function.
1576  *
1577  * called with domain->lock held
1578  */
dma_ops_free_addresses(struct dma_ops_domain * dom,unsigned long address,unsigned int pages)1579 static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1580 				   unsigned long address,
1581 				   unsigned int pages)
1582 {
1583 	unsigned i = address >> APERTURE_RANGE_SHIFT;
1584 	struct aperture_range *range = dom->aperture[i];
1585 
1586 	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1587 
1588 #ifdef CONFIG_IOMMU_STRESS
1589 	if (i < 4)
1590 		return;
1591 #endif
1592 
1593 	if (address >= dom->next_address)
1594 		dom->need_flush = true;
1595 
1596 	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1597 
1598 	bitmap_clear(range->bitmap, address, pages);
1599 
1600 }
1601 
1602 /****************************************************************************
1603  *
1604  * The next functions belong to the domain allocation. A domain is
1605  * allocated for every IOMMU as the default domain. If device isolation
1606  * is enabled, every device get its own domain. The most important thing
1607  * about domains is the page table mapping the DMA address space they
1608  * contain.
1609  *
1610  ****************************************************************************/
1611 
1612 /*
1613  * This function adds a protection domain to the global protection domain list
1614  */
add_domain_to_list(struct protection_domain * domain)1615 static void add_domain_to_list(struct protection_domain *domain)
1616 {
1617 	unsigned long flags;
1618 
1619 	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1620 	list_add(&domain->list, &amd_iommu_pd_list);
1621 	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1622 }
1623 
1624 /*
1625  * This function removes a protection domain to the global
1626  * protection domain list
1627  */
del_domain_from_list(struct protection_domain * domain)1628 static void del_domain_from_list(struct protection_domain *domain)
1629 {
1630 	unsigned long flags;
1631 
1632 	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1633 	list_del(&domain->list);
1634 	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1635 }
1636 
domain_id_alloc(void)1637 static u16 domain_id_alloc(void)
1638 {
1639 	unsigned long flags;
1640 	int id;
1641 
1642 	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1643 	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1644 	BUG_ON(id == 0);
1645 	if (id > 0 && id < MAX_DOMAIN_ID)
1646 		__set_bit(id, amd_iommu_pd_alloc_bitmap);
1647 	else
1648 		id = 0;
1649 	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1650 
1651 	return id;
1652 }
1653 
domain_id_free(int id)1654 static void domain_id_free(int id)
1655 {
1656 	unsigned long flags;
1657 
1658 	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1659 	if (id > 0 && id < MAX_DOMAIN_ID)
1660 		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1661 	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1662 }
1663 
free_pagetable(struct protection_domain * domain)1664 static void free_pagetable(struct protection_domain *domain)
1665 {
1666 	int i, j;
1667 	u64 *p1, *p2, *p3;
1668 
1669 	p1 = domain->pt_root;
1670 
1671 	if (!p1)
1672 		return;
1673 
1674 	for (i = 0; i < 512; ++i) {
1675 		if (!IOMMU_PTE_PRESENT(p1[i]))
1676 			continue;
1677 
1678 		p2 = IOMMU_PTE_PAGE(p1[i]);
1679 		for (j = 0; j < 512; ++j) {
1680 			if (!IOMMU_PTE_PRESENT(p2[j]))
1681 				continue;
1682 			p3 = IOMMU_PTE_PAGE(p2[j]);
1683 			free_page((unsigned long)p3);
1684 		}
1685 
1686 		free_page((unsigned long)p2);
1687 	}
1688 
1689 	free_page((unsigned long)p1);
1690 
1691 	domain->pt_root = NULL;
1692 }
1693 
free_gcr3_tbl_level1(u64 * tbl)1694 static void free_gcr3_tbl_level1(u64 *tbl)
1695 {
1696 	u64 *ptr;
1697 	int i;
1698 
1699 	for (i = 0; i < 512; ++i) {
1700 		if (!(tbl[i] & GCR3_VALID))
1701 			continue;
1702 
1703 		ptr = __va(tbl[i] & PAGE_MASK);
1704 
1705 		free_page((unsigned long)ptr);
1706 	}
1707 }
1708 
free_gcr3_tbl_level2(u64 * tbl)1709 static void free_gcr3_tbl_level2(u64 *tbl)
1710 {
1711 	u64 *ptr;
1712 	int i;
1713 
1714 	for (i = 0; i < 512; ++i) {
1715 		if (!(tbl[i] & GCR3_VALID))
1716 			continue;
1717 
1718 		ptr = __va(tbl[i] & PAGE_MASK);
1719 
1720 		free_gcr3_tbl_level1(ptr);
1721 	}
1722 }
1723 
free_gcr3_table(struct protection_domain * domain)1724 static void free_gcr3_table(struct protection_domain *domain)
1725 {
1726 	if (domain->glx == 2)
1727 		free_gcr3_tbl_level2(domain->gcr3_tbl);
1728 	else if (domain->glx == 1)
1729 		free_gcr3_tbl_level1(domain->gcr3_tbl);
1730 	else if (domain->glx != 0)
1731 		BUG();
1732 
1733 	free_page((unsigned long)domain->gcr3_tbl);
1734 }
1735 
1736 /*
1737  * Free a domain, only used if something went wrong in the
1738  * allocation path and we need to free an already allocated page table
1739  */
dma_ops_domain_free(struct dma_ops_domain * dom)1740 static void dma_ops_domain_free(struct dma_ops_domain *dom)
1741 {
1742 	int i;
1743 
1744 	if (!dom)
1745 		return;
1746 
1747 	del_domain_from_list(&dom->domain);
1748 
1749 	free_pagetable(&dom->domain);
1750 
1751 	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1752 		if (!dom->aperture[i])
1753 			continue;
1754 		free_page((unsigned long)dom->aperture[i]->bitmap);
1755 		kfree(dom->aperture[i]);
1756 	}
1757 
1758 	kfree(dom);
1759 }
1760 
1761 /*
1762  * Allocates a new protection domain usable for the dma_ops functions.
1763  * It also initializes the page table and the address allocator data
1764  * structures required for the dma_ops interface
1765  */
dma_ops_domain_alloc(void)1766 static struct dma_ops_domain *dma_ops_domain_alloc(void)
1767 {
1768 	struct dma_ops_domain *dma_dom;
1769 
1770 	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1771 	if (!dma_dom)
1772 		return NULL;
1773 
1774 	spin_lock_init(&dma_dom->domain.lock);
1775 
1776 	dma_dom->domain.id = domain_id_alloc();
1777 	if (dma_dom->domain.id == 0)
1778 		goto free_dma_dom;
1779 	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1780 	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1781 	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1782 	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1783 	dma_dom->domain.priv = dma_dom;
1784 	if (!dma_dom->domain.pt_root)
1785 		goto free_dma_dom;
1786 
1787 	dma_dom->need_flush = false;
1788 	dma_dom->target_dev = 0xffff;
1789 
1790 	add_domain_to_list(&dma_dom->domain);
1791 
1792 	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1793 		goto free_dma_dom;
1794 
1795 	/*
1796 	 * mark the first page as allocated so we never return 0 as
1797 	 * a valid dma-address. So we can use 0 as error value
1798 	 */
1799 	dma_dom->aperture[0]->bitmap[0] = 1;
1800 	dma_dom->next_address = 0;
1801 
1802 
1803 	return dma_dom;
1804 
1805 free_dma_dom:
1806 	dma_ops_domain_free(dma_dom);
1807 
1808 	return NULL;
1809 }
1810 
1811 /*
1812  * little helper function to check whether a given protection domain is a
1813  * dma_ops domain
1814  */
dma_ops_domain(struct protection_domain * domain)1815 static bool dma_ops_domain(struct protection_domain *domain)
1816 {
1817 	return domain->flags & PD_DMA_OPS_MASK;
1818 }
1819 
set_dte_entry(u16 devid,struct protection_domain * domain,bool ats)1820 static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1821 {
1822 	u64 pte_root = 0;
1823 	u64 flags = 0;
1824 
1825 	if (domain->mode != PAGE_MODE_NONE)
1826 		pte_root = virt_to_phys(domain->pt_root);
1827 
1828 	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1829 		    << DEV_ENTRY_MODE_SHIFT;
1830 	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1831 
1832 	flags = amd_iommu_dev_table[devid].data[1];
1833 
1834 	if (ats)
1835 		flags |= DTE_FLAG_IOTLB;
1836 
1837 	if (domain->flags & PD_IOMMUV2_MASK) {
1838 		u64 gcr3 = __pa(domain->gcr3_tbl);
1839 		u64 glx  = domain->glx;
1840 		u64 tmp;
1841 
1842 		pte_root |= DTE_FLAG_GV;
1843 		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1844 
1845 		/* First mask out possible old values for GCR3 table */
1846 		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1847 		flags    &= ~tmp;
1848 
1849 		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1850 		flags    &= ~tmp;
1851 
1852 		/* Encode GCR3 table into DTE */
1853 		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1854 		pte_root |= tmp;
1855 
1856 		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1857 		flags    |= tmp;
1858 
1859 		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1860 		flags    |= tmp;
1861 	}
1862 
1863 	flags &= ~(0xffffUL);
1864 	flags |= domain->id;
1865 
1866 	amd_iommu_dev_table[devid].data[1]  = flags;
1867 	amd_iommu_dev_table[devid].data[0]  = pte_root;
1868 }
1869 
clear_dte_entry(u16 devid)1870 static void clear_dte_entry(u16 devid)
1871 {
1872 	/* remove entry from the device table seen by the hardware */
1873 	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1874 	amd_iommu_dev_table[devid].data[1] = 0;
1875 
1876 	amd_iommu_apply_erratum_63(devid);
1877 }
1878 
do_attach(struct iommu_dev_data * dev_data,struct protection_domain * domain)1879 static void do_attach(struct iommu_dev_data *dev_data,
1880 		      struct protection_domain *domain)
1881 {
1882 	struct amd_iommu *iommu;
1883 	bool ats;
1884 
1885 	iommu = amd_iommu_rlookup_table[dev_data->devid];
1886 	ats   = dev_data->ats.enabled;
1887 
1888 	/* Update data structures */
1889 	dev_data->domain = domain;
1890 	list_add(&dev_data->list, &domain->dev_list);
1891 	set_dte_entry(dev_data->devid, domain, ats);
1892 
1893 	/* Do reference counting */
1894 	domain->dev_iommu[iommu->index] += 1;
1895 	domain->dev_cnt                 += 1;
1896 
1897 	/* Flush the DTE entry */
1898 	device_flush_dte(dev_data);
1899 }
1900 
do_detach(struct iommu_dev_data * dev_data)1901 static void do_detach(struct iommu_dev_data *dev_data)
1902 {
1903 	struct amd_iommu *iommu;
1904 
1905 	iommu = amd_iommu_rlookup_table[dev_data->devid];
1906 
1907 	/* decrease reference counters */
1908 	dev_data->domain->dev_iommu[iommu->index] -= 1;
1909 	dev_data->domain->dev_cnt                 -= 1;
1910 
1911 	/* Update data structures */
1912 	dev_data->domain = NULL;
1913 	list_del(&dev_data->list);
1914 	clear_dte_entry(dev_data->devid);
1915 
1916 	/* Flush the DTE entry */
1917 	device_flush_dte(dev_data);
1918 }
1919 
1920 /*
1921  * If a device is not yet associated with a domain, this function does
1922  * assigns it visible for the hardware
1923  */
__attach_device(struct iommu_dev_data * dev_data,struct protection_domain * domain)1924 static int __attach_device(struct iommu_dev_data *dev_data,
1925 			   struct protection_domain *domain)
1926 {
1927 	int ret;
1928 
1929 	/* lock domain */
1930 	spin_lock(&domain->lock);
1931 
1932 	if (dev_data->alias_data != NULL) {
1933 		struct iommu_dev_data *alias_data = dev_data->alias_data;
1934 
1935 		/* Some sanity checks */
1936 		ret = -EBUSY;
1937 		if (alias_data->domain != NULL &&
1938 				alias_data->domain != domain)
1939 			goto out_unlock;
1940 
1941 		if (dev_data->domain != NULL &&
1942 				dev_data->domain != domain)
1943 			goto out_unlock;
1944 
1945 		/* Do real assignment */
1946 		if (alias_data->domain == NULL)
1947 			do_attach(alias_data, domain);
1948 
1949 		atomic_inc(&alias_data->bind);
1950 	}
1951 
1952 	if (dev_data->domain == NULL)
1953 		do_attach(dev_data, domain);
1954 
1955 	atomic_inc(&dev_data->bind);
1956 
1957 	ret = 0;
1958 
1959 out_unlock:
1960 
1961 	/* ready */
1962 	spin_unlock(&domain->lock);
1963 
1964 	return ret;
1965 }
1966 
1967 
pdev_iommuv2_disable(struct pci_dev * pdev)1968 static void pdev_iommuv2_disable(struct pci_dev *pdev)
1969 {
1970 	pci_disable_ats(pdev);
1971 	pci_disable_pri(pdev);
1972 	pci_disable_pasid(pdev);
1973 }
1974 
1975 /* FIXME: Change generic reset-function to do the same */
pri_reset_while_enabled(struct pci_dev * pdev)1976 static int pri_reset_while_enabled(struct pci_dev *pdev)
1977 {
1978 	u16 control;
1979 	int pos;
1980 
1981 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1982 	if (!pos)
1983 		return -EINVAL;
1984 
1985 	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
1986 	control |= PCI_PRI_CTRL_RESET;
1987 	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
1988 
1989 	return 0;
1990 }
1991 
pdev_iommuv2_enable(struct pci_dev * pdev)1992 static int pdev_iommuv2_enable(struct pci_dev *pdev)
1993 {
1994 	bool reset_enable;
1995 	int reqs, ret;
1996 
1997 	/* FIXME: Hardcode number of outstanding requests for now */
1998 	reqs = 32;
1999 	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2000 		reqs = 1;
2001 	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2002 
2003 	/* Only allow access to user-accessible pages */
2004 	ret = pci_enable_pasid(pdev, 0);
2005 	if (ret)
2006 		goto out_err;
2007 
2008 	/* First reset the PRI state of the device */
2009 	ret = pci_reset_pri(pdev);
2010 	if (ret)
2011 		goto out_err;
2012 
2013 	/* Enable PRI */
2014 	ret = pci_enable_pri(pdev, reqs);
2015 	if (ret)
2016 		goto out_err;
2017 
2018 	if (reset_enable) {
2019 		ret = pri_reset_while_enabled(pdev);
2020 		if (ret)
2021 			goto out_err;
2022 	}
2023 
2024 	ret = pci_enable_ats(pdev, PAGE_SHIFT);
2025 	if (ret)
2026 		goto out_err;
2027 
2028 	return 0;
2029 
2030 out_err:
2031 	pci_disable_pri(pdev);
2032 	pci_disable_pasid(pdev);
2033 
2034 	return ret;
2035 }
2036 
2037 /* FIXME: Move this to PCI code */
2038 #define PCI_PRI_TLP_OFF		(1 << 2)
2039 
pci_pri_tlp_required(struct pci_dev * pdev)2040 bool pci_pri_tlp_required(struct pci_dev *pdev)
2041 {
2042 	u16 control;
2043 	int pos;
2044 
2045 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2046 	if (!pos)
2047 		return false;
2048 
2049 	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2050 
2051 	return (control & PCI_PRI_TLP_OFF) ? true : false;
2052 }
2053 
2054 /*
2055  * If a device is not yet associated with a domain, this function does
2056  * assigns it visible for the hardware
2057  */
attach_device(struct device * dev,struct protection_domain * domain)2058 static int attach_device(struct device *dev,
2059 			 struct protection_domain *domain)
2060 {
2061 	struct pci_dev *pdev = to_pci_dev(dev);
2062 	struct iommu_dev_data *dev_data;
2063 	unsigned long flags;
2064 	int ret;
2065 
2066 	dev_data = get_dev_data(dev);
2067 
2068 	if (domain->flags & PD_IOMMUV2_MASK) {
2069 		if (!dev_data->iommu_v2 || !dev_data->passthrough)
2070 			return -EINVAL;
2071 
2072 		if (pdev_iommuv2_enable(pdev) != 0)
2073 			return -EINVAL;
2074 
2075 		dev_data->ats.enabled = true;
2076 		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2077 		dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2078 	} else if (amd_iommu_iotlb_sup &&
2079 		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2080 		dev_data->ats.enabled = true;
2081 		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2082 	}
2083 
2084 	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2085 	ret = __attach_device(dev_data, domain);
2086 	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2087 
2088 	/*
2089 	 * We might boot into a crash-kernel here. The crashed kernel
2090 	 * left the caches in the IOMMU dirty. So we have to flush
2091 	 * here to evict all dirty stuff.
2092 	 */
2093 	domain_flush_tlb_pde(domain);
2094 
2095 	return ret;
2096 }
2097 
2098 /*
2099  * Removes a device from a protection domain (unlocked)
2100  */
__detach_device(struct iommu_dev_data * dev_data)2101 static void __detach_device(struct iommu_dev_data *dev_data)
2102 {
2103 	struct protection_domain *domain;
2104 	unsigned long flags;
2105 
2106 	BUG_ON(!dev_data->domain);
2107 
2108 	domain = dev_data->domain;
2109 
2110 	spin_lock_irqsave(&domain->lock, flags);
2111 
2112 	if (dev_data->alias_data != NULL) {
2113 		struct iommu_dev_data *alias_data = dev_data->alias_data;
2114 
2115 		if (atomic_dec_and_test(&alias_data->bind))
2116 			do_detach(alias_data);
2117 	}
2118 
2119 	if (atomic_dec_and_test(&dev_data->bind))
2120 		do_detach(dev_data);
2121 
2122 	spin_unlock_irqrestore(&domain->lock, flags);
2123 
2124 	/*
2125 	 * If we run in passthrough mode the device must be assigned to the
2126 	 * passthrough domain if it is detached from any other domain.
2127 	 * Make sure we can deassign from the pt_domain itself.
2128 	 */
2129 	if (dev_data->passthrough &&
2130 	    (dev_data->domain == NULL && domain != pt_domain))
2131 		__attach_device(dev_data, pt_domain);
2132 }
2133 
2134 /*
2135  * Removes a device from a protection domain (with devtable_lock held)
2136  */
detach_device(struct device * dev)2137 static void detach_device(struct device *dev)
2138 {
2139 	struct protection_domain *domain;
2140 	struct iommu_dev_data *dev_data;
2141 	unsigned long flags;
2142 
2143 	dev_data = get_dev_data(dev);
2144 	domain   = dev_data->domain;
2145 
2146 	/* lock device table */
2147 	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2148 	__detach_device(dev_data);
2149 	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2150 
2151 	if (domain->flags & PD_IOMMUV2_MASK)
2152 		pdev_iommuv2_disable(to_pci_dev(dev));
2153 	else if (dev_data->ats.enabled)
2154 		pci_disable_ats(to_pci_dev(dev));
2155 
2156 	dev_data->ats.enabled = false;
2157 }
2158 
2159 /*
2160  * Find out the protection domain structure for a given PCI device. This
2161  * will give us the pointer to the page table root for example.
2162  */
domain_for_device(struct device * dev)2163 static struct protection_domain *domain_for_device(struct device *dev)
2164 {
2165 	struct iommu_dev_data *dev_data;
2166 	struct protection_domain *dom = NULL;
2167 	unsigned long flags;
2168 
2169 	dev_data   = get_dev_data(dev);
2170 
2171 	if (dev_data->domain)
2172 		return dev_data->domain;
2173 
2174 	if (dev_data->alias_data != NULL) {
2175 		struct iommu_dev_data *alias_data = dev_data->alias_data;
2176 
2177 		read_lock_irqsave(&amd_iommu_devtable_lock, flags);
2178 		if (alias_data->domain != NULL) {
2179 			__attach_device(dev_data, alias_data->domain);
2180 			dom = alias_data->domain;
2181 		}
2182 		read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2183 	}
2184 
2185 	return dom;
2186 }
2187 
device_change_notifier(struct notifier_block * nb,unsigned long action,void * data)2188 static int device_change_notifier(struct notifier_block *nb,
2189 				  unsigned long action, void *data)
2190 {
2191 	struct dma_ops_domain *dma_domain;
2192 	struct protection_domain *domain;
2193 	struct iommu_dev_data *dev_data;
2194 	struct device *dev = data;
2195 	struct amd_iommu *iommu;
2196 	unsigned long flags;
2197 	u16 devid;
2198 
2199 	if (!check_device(dev))
2200 		return 0;
2201 
2202 	devid    = get_device_id(dev);
2203 	iommu    = amd_iommu_rlookup_table[devid];
2204 	dev_data = get_dev_data(dev);
2205 
2206 	switch (action) {
2207 	case BUS_NOTIFY_UNBOUND_DRIVER:
2208 
2209 		domain = domain_for_device(dev);
2210 
2211 		if (!domain)
2212 			goto out;
2213 		if (dev_data->passthrough)
2214 			break;
2215 		detach_device(dev);
2216 		break;
2217 	case BUS_NOTIFY_ADD_DEVICE:
2218 
2219 		iommu_init_device(dev);
2220 
2221 		domain = domain_for_device(dev);
2222 
2223 		/* allocate a protection domain if a device is added */
2224 		dma_domain = find_protection_domain(devid);
2225 		if (dma_domain)
2226 			goto out;
2227 		dma_domain = dma_ops_domain_alloc();
2228 		if (!dma_domain)
2229 			goto out;
2230 		dma_domain->target_dev = devid;
2231 
2232 		spin_lock_irqsave(&iommu_pd_list_lock, flags);
2233 		list_add_tail(&dma_domain->list, &iommu_pd_list);
2234 		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
2235 
2236 		break;
2237 	case BUS_NOTIFY_DEL_DEVICE:
2238 
2239 		iommu_uninit_device(dev);
2240 
2241 	default:
2242 		goto out;
2243 	}
2244 
2245 	iommu_completion_wait(iommu);
2246 
2247 out:
2248 	return 0;
2249 }
2250 
2251 static struct notifier_block device_nb = {
2252 	.notifier_call = device_change_notifier,
2253 };
2254 
amd_iommu_init_notifier(void)2255 void amd_iommu_init_notifier(void)
2256 {
2257 	bus_register_notifier(&pci_bus_type, &device_nb);
2258 }
2259 
2260 /*****************************************************************************
2261  *
2262  * The next functions belong to the dma_ops mapping/unmapping code.
2263  *
2264  *****************************************************************************/
2265 
2266 /*
2267  * In the dma_ops path we only have the struct device. This function
2268  * finds the corresponding IOMMU, the protection domain and the
2269  * requestor id for a given device.
2270  * If the device is not yet associated with a domain this is also done
2271  * in this function.
2272  */
get_domain(struct device * dev)2273 static struct protection_domain *get_domain(struct device *dev)
2274 {
2275 	struct protection_domain *domain;
2276 	struct dma_ops_domain *dma_dom;
2277 	u16 devid = get_device_id(dev);
2278 
2279 	if (!check_device(dev))
2280 		return ERR_PTR(-EINVAL);
2281 
2282 	domain = domain_for_device(dev);
2283 	if (domain != NULL && !dma_ops_domain(domain))
2284 		return ERR_PTR(-EBUSY);
2285 
2286 	if (domain != NULL)
2287 		return domain;
2288 
2289 	/* Device not bount yet - bind it */
2290 	dma_dom = find_protection_domain(devid);
2291 	if (!dma_dom)
2292 		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
2293 	attach_device(dev, &dma_dom->domain);
2294 	DUMP_printk("Using protection domain %d for device %s\n",
2295 		    dma_dom->domain.id, dev_name(dev));
2296 
2297 	return &dma_dom->domain;
2298 }
2299 
update_device_table(struct protection_domain * domain)2300 static void update_device_table(struct protection_domain *domain)
2301 {
2302 	struct iommu_dev_data *dev_data;
2303 
2304 	list_for_each_entry(dev_data, &domain->dev_list, list)
2305 		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2306 }
2307 
update_domain(struct protection_domain * domain)2308 static void update_domain(struct protection_domain *domain)
2309 {
2310 	if (!domain->updated)
2311 		return;
2312 
2313 	update_device_table(domain);
2314 
2315 	domain_flush_devices(domain);
2316 	domain_flush_tlb_pde(domain);
2317 
2318 	domain->updated = false;
2319 }
2320 
2321 /*
2322  * This function fetches the PTE for a given address in the aperture
2323  */
dma_ops_get_pte(struct dma_ops_domain * dom,unsigned long address)2324 static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2325 			    unsigned long address)
2326 {
2327 	struct aperture_range *aperture;
2328 	u64 *pte, *pte_page;
2329 
2330 	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2331 	if (!aperture)
2332 		return NULL;
2333 
2334 	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2335 	if (!pte) {
2336 		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2337 				GFP_ATOMIC);
2338 		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2339 	} else
2340 		pte += PM_LEVEL_INDEX(0, address);
2341 
2342 	update_domain(&dom->domain);
2343 
2344 	return pte;
2345 }
2346 
2347 /*
2348  * This is the generic map function. It maps one 4kb page at paddr to
2349  * the given address in the DMA address space for the domain.
2350  */
dma_ops_domain_map(struct dma_ops_domain * dom,unsigned long address,phys_addr_t paddr,int direction)2351 static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2352 				     unsigned long address,
2353 				     phys_addr_t paddr,
2354 				     int direction)
2355 {
2356 	u64 *pte, __pte;
2357 
2358 	WARN_ON(address > dom->aperture_size);
2359 
2360 	paddr &= PAGE_MASK;
2361 
2362 	pte  = dma_ops_get_pte(dom, address);
2363 	if (!pte)
2364 		return DMA_ERROR_CODE;
2365 
2366 	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2367 
2368 	if (direction == DMA_TO_DEVICE)
2369 		__pte |= IOMMU_PTE_IR;
2370 	else if (direction == DMA_FROM_DEVICE)
2371 		__pte |= IOMMU_PTE_IW;
2372 	else if (direction == DMA_BIDIRECTIONAL)
2373 		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2374 
2375 	WARN_ON(*pte);
2376 
2377 	*pte = __pte;
2378 
2379 	return (dma_addr_t)address;
2380 }
2381 
2382 /*
2383  * The generic unmapping function for on page in the DMA address space.
2384  */
dma_ops_domain_unmap(struct dma_ops_domain * dom,unsigned long address)2385 static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2386 				 unsigned long address)
2387 {
2388 	struct aperture_range *aperture;
2389 	u64 *pte;
2390 
2391 	if (address >= dom->aperture_size)
2392 		return;
2393 
2394 	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2395 	if (!aperture)
2396 		return;
2397 
2398 	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2399 	if (!pte)
2400 		return;
2401 
2402 	pte += PM_LEVEL_INDEX(0, address);
2403 
2404 	WARN_ON(!*pte);
2405 
2406 	*pte = 0ULL;
2407 }
2408 
2409 /*
2410  * This function contains common code for mapping of a physically
2411  * contiguous memory region into DMA address space. It is used by all
2412  * mapping functions provided with this IOMMU driver.
2413  * Must be called with the domain lock held.
2414  */
__map_single(struct device * dev,struct dma_ops_domain * dma_dom,phys_addr_t paddr,size_t size,int dir,bool align,u64 dma_mask)2415 static dma_addr_t __map_single(struct device *dev,
2416 			       struct dma_ops_domain *dma_dom,
2417 			       phys_addr_t paddr,
2418 			       size_t size,
2419 			       int dir,
2420 			       bool align,
2421 			       u64 dma_mask)
2422 {
2423 	dma_addr_t offset = paddr & ~PAGE_MASK;
2424 	dma_addr_t address, start, ret;
2425 	unsigned int pages;
2426 	unsigned long align_mask = 0;
2427 	int i;
2428 
2429 	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2430 	paddr &= PAGE_MASK;
2431 
2432 	INC_STATS_COUNTER(total_map_requests);
2433 
2434 	if (pages > 1)
2435 		INC_STATS_COUNTER(cross_page);
2436 
2437 	if (align)
2438 		align_mask = (1UL << get_order(size)) - 1;
2439 
2440 retry:
2441 	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2442 					  dma_mask);
2443 	if (unlikely(address == DMA_ERROR_CODE)) {
2444 		/*
2445 		 * setting next_address here will let the address
2446 		 * allocator only scan the new allocated range in the
2447 		 * first run. This is a small optimization.
2448 		 */
2449 		dma_dom->next_address = dma_dom->aperture_size;
2450 
2451 		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2452 			goto out;
2453 
2454 		/*
2455 		 * aperture was successfully enlarged by 128 MB, try
2456 		 * allocation again
2457 		 */
2458 		goto retry;
2459 	}
2460 
2461 	start = address;
2462 	for (i = 0; i < pages; ++i) {
2463 		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2464 		if (ret == DMA_ERROR_CODE)
2465 			goto out_unmap;
2466 
2467 		paddr += PAGE_SIZE;
2468 		start += PAGE_SIZE;
2469 	}
2470 	address += offset;
2471 
2472 	ADD_STATS_COUNTER(alloced_io_mem, size);
2473 
2474 	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2475 		domain_flush_tlb(&dma_dom->domain);
2476 		dma_dom->need_flush = false;
2477 	} else if (unlikely(amd_iommu_np_cache))
2478 		domain_flush_pages(&dma_dom->domain, address, size);
2479 
2480 out:
2481 	return address;
2482 
2483 out_unmap:
2484 
2485 	for (--i; i >= 0; --i) {
2486 		start -= PAGE_SIZE;
2487 		dma_ops_domain_unmap(dma_dom, start);
2488 	}
2489 
2490 	dma_ops_free_addresses(dma_dom, address, pages);
2491 
2492 	return DMA_ERROR_CODE;
2493 }
2494 
2495 /*
2496  * Does the reverse of the __map_single function. Must be called with
2497  * the domain lock held too
2498  */
__unmap_single(struct dma_ops_domain * dma_dom,dma_addr_t dma_addr,size_t size,int dir)2499 static void __unmap_single(struct dma_ops_domain *dma_dom,
2500 			   dma_addr_t dma_addr,
2501 			   size_t size,
2502 			   int dir)
2503 {
2504 	dma_addr_t flush_addr;
2505 	dma_addr_t i, start;
2506 	unsigned int pages;
2507 
2508 	if ((dma_addr == DMA_ERROR_CODE) ||
2509 	    (dma_addr + size > dma_dom->aperture_size))
2510 		return;
2511 
2512 	flush_addr = dma_addr;
2513 	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2514 	dma_addr &= PAGE_MASK;
2515 	start = dma_addr;
2516 
2517 	for (i = 0; i < pages; ++i) {
2518 		dma_ops_domain_unmap(dma_dom, start);
2519 		start += PAGE_SIZE;
2520 	}
2521 
2522 	SUB_STATS_COUNTER(alloced_io_mem, size);
2523 
2524 	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2525 
2526 	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2527 		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2528 		dma_dom->need_flush = false;
2529 	}
2530 }
2531 
2532 /*
2533  * The exported map_single function for dma_ops.
2534  */
map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)2535 static dma_addr_t map_page(struct device *dev, struct page *page,
2536 			   unsigned long offset, size_t size,
2537 			   enum dma_data_direction dir,
2538 			   struct dma_attrs *attrs)
2539 {
2540 	unsigned long flags;
2541 	struct protection_domain *domain;
2542 	dma_addr_t addr;
2543 	u64 dma_mask;
2544 	phys_addr_t paddr = page_to_phys(page) + offset;
2545 
2546 	INC_STATS_COUNTER(cnt_map_single);
2547 
2548 	domain = get_domain(dev);
2549 	if (PTR_ERR(domain) == -EINVAL)
2550 		return (dma_addr_t)paddr;
2551 	else if (IS_ERR(domain))
2552 		return DMA_ERROR_CODE;
2553 
2554 	dma_mask = *dev->dma_mask;
2555 
2556 	spin_lock_irqsave(&domain->lock, flags);
2557 
2558 	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2559 			    dma_mask);
2560 	if (addr == DMA_ERROR_CODE)
2561 		goto out;
2562 
2563 	domain_flush_complete(domain);
2564 
2565 out:
2566 	spin_unlock_irqrestore(&domain->lock, flags);
2567 
2568 	return addr;
2569 }
2570 
2571 /*
2572  * The exported unmap_single function for dma_ops.
2573  */
unmap_page(struct device * dev,dma_addr_t dma_addr,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)2574 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2575 		       enum dma_data_direction dir, struct dma_attrs *attrs)
2576 {
2577 	unsigned long flags;
2578 	struct protection_domain *domain;
2579 
2580 	INC_STATS_COUNTER(cnt_unmap_single);
2581 
2582 	domain = get_domain(dev);
2583 	if (IS_ERR(domain))
2584 		return;
2585 
2586 	spin_lock_irqsave(&domain->lock, flags);
2587 
2588 	__unmap_single(domain->priv, dma_addr, size, dir);
2589 
2590 	domain_flush_complete(domain);
2591 
2592 	spin_unlock_irqrestore(&domain->lock, flags);
2593 }
2594 
2595 /*
2596  * This is a special map_sg function which is used if we should map a
2597  * device which is not handled by an AMD IOMMU in the system.
2598  */
map_sg_no_iommu(struct device * dev,struct scatterlist * sglist,int nelems,int dir)2599 static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
2600 			   int nelems, int dir)
2601 {
2602 	struct scatterlist *s;
2603 	int i;
2604 
2605 	for_each_sg(sglist, s, nelems, i) {
2606 		s->dma_address = (dma_addr_t)sg_phys(s);
2607 		s->dma_length  = s->length;
2608 	}
2609 
2610 	return nelems;
2611 }
2612 
2613 /*
2614  * The exported map_sg function for dma_ops (handles scatter-gather
2615  * lists).
2616  */
map_sg(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction dir,struct dma_attrs * attrs)2617 static int map_sg(struct device *dev, struct scatterlist *sglist,
2618 		  int nelems, enum dma_data_direction dir,
2619 		  struct dma_attrs *attrs)
2620 {
2621 	unsigned long flags;
2622 	struct protection_domain *domain;
2623 	int i;
2624 	struct scatterlist *s;
2625 	phys_addr_t paddr;
2626 	int mapped_elems = 0;
2627 	u64 dma_mask;
2628 
2629 	INC_STATS_COUNTER(cnt_map_sg);
2630 
2631 	domain = get_domain(dev);
2632 	if (PTR_ERR(domain) == -EINVAL)
2633 		return map_sg_no_iommu(dev, sglist, nelems, dir);
2634 	else if (IS_ERR(domain))
2635 		return 0;
2636 
2637 	dma_mask = *dev->dma_mask;
2638 
2639 	spin_lock_irqsave(&domain->lock, flags);
2640 
2641 	for_each_sg(sglist, s, nelems, i) {
2642 		paddr = sg_phys(s);
2643 
2644 		s->dma_address = __map_single(dev, domain->priv,
2645 					      paddr, s->length, dir, false,
2646 					      dma_mask);
2647 
2648 		if (s->dma_address) {
2649 			s->dma_length = s->length;
2650 			mapped_elems++;
2651 		} else
2652 			goto unmap;
2653 	}
2654 
2655 	domain_flush_complete(domain);
2656 
2657 out:
2658 	spin_unlock_irqrestore(&domain->lock, flags);
2659 
2660 	return mapped_elems;
2661 unmap:
2662 	for_each_sg(sglist, s, mapped_elems, i) {
2663 		if (s->dma_address)
2664 			__unmap_single(domain->priv, s->dma_address,
2665 				       s->dma_length, dir);
2666 		s->dma_address = s->dma_length = 0;
2667 	}
2668 
2669 	mapped_elems = 0;
2670 
2671 	goto out;
2672 }
2673 
2674 /*
2675  * The exported map_sg function for dma_ops (handles scatter-gather
2676  * lists).
2677  */
unmap_sg(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction dir,struct dma_attrs * attrs)2678 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2679 		     int nelems, enum dma_data_direction dir,
2680 		     struct dma_attrs *attrs)
2681 {
2682 	unsigned long flags;
2683 	struct protection_domain *domain;
2684 	struct scatterlist *s;
2685 	int i;
2686 
2687 	INC_STATS_COUNTER(cnt_unmap_sg);
2688 
2689 	domain = get_domain(dev);
2690 	if (IS_ERR(domain))
2691 		return;
2692 
2693 	spin_lock_irqsave(&domain->lock, flags);
2694 
2695 	for_each_sg(sglist, s, nelems, i) {
2696 		__unmap_single(domain->priv, s->dma_address,
2697 			       s->dma_length, dir);
2698 		s->dma_address = s->dma_length = 0;
2699 	}
2700 
2701 	domain_flush_complete(domain);
2702 
2703 	spin_unlock_irqrestore(&domain->lock, flags);
2704 }
2705 
2706 /*
2707  * The exported alloc_coherent function for dma_ops.
2708  */
alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_addr,gfp_t flag)2709 static void *alloc_coherent(struct device *dev, size_t size,
2710 			    dma_addr_t *dma_addr, gfp_t flag)
2711 {
2712 	unsigned long flags;
2713 	void *virt_addr;
2714 	struct protection_domain *domain;
2715 	phys_addr_t paddr;
2716 	u64 dma_mask = dev->coherent_dma_mask;
2717 
2718 	INC_STATS_COUNTER(cnt_alloc_coherent);
2719 
2720 	domain = get_domain(dev);
2721 	if (PTR_ERR(domain) == -EINVAL) {
2722 		virt_addr = (void *)__get_free_pages(flag, get_order(size));
2723 		*dma_addr = __pa(virt_addr);
2724 		return virt_addr;
2725 	} else if (IS_ERR(domain))
2726 		return NULL;
2727 
2728 	dma_mask  = dev->coherent_dma_mask;
2729 	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2730 	flag     |= __GFP_ZERO;
2731 
2732 	virt_addr = (void *)__get_free_pages(flag, get_order(size));
2733 	if (!virt_addr)
2734 		return NULL;
2735 
2736 	paddr = virt_to_phys(virt_addr);
2737 
2738 	if (!dma_mask)
2739 		dma_mask = *dev->dma_mask;
2740 
2741 	spin_lock_irqsave(&domain->lock, flags);
2742 
2743 	*dma_addr = __map_single(dev, domain->priv, paddr,
2744 				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2745 
2746 	if (*dma_addr == DMA_ERROR_CODE) {
2747 		spin_unlock_irqrestore(&domain->lock, flags);
2748 		goto out_free;
2749 	}
2750 
2751 	domain_flush_complete(domain);
2752 
2753 	spin_unlock_irqrestore(&domain->lock, flags);
2754 
2755 	return virt_addr;
2756 
2757 out_free:
2758 
2759 	free_pages((unsigned long)virt_addr, get_order(size));
2760 
2761 	return NULL;
2762 }
2763 
2764 /*
2765  * The exported free_coherent function for dma_ops.
2766  */
free_coherent(struct device * dev,size_t size,void * virt_addr,dma_addr_t dma_addr)2767 static void free_coherent(struct device *dev, size_t size,
2768 			  void *virt_addr, dma_addr_t dma_addr)
2769 {
2770 	unsigned long flags;
2771 	struct protection_domain *domain;
2772 
2773 	INC_STATS_COUNTER(cnt_free_coherent);
2774 
2775 	domain = get_domain(dev);
2776 	if (IS_ERR(domain))
2777 		goto free_mem;
2778 
2779 	spin_lock_irqsave(&domain->lock, flags);
2780 
2781 	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2782 
2783 	domain_flush_complete(domain);
2784 
2785 	spin_unlock_irqrestore(&domain->lock, flags);
2786 
2787 free_mem:
2788 	free_pages((unsigned long)virt_addr, get_order(size));
2789 }
2790 
2791 /*
2792  * This function is called by the DMA layer to find out if we can handle a
2793  * particular device. It is part of the dma_ops.
2794  */
amd_iommu_dma_supported(struct device * dev,u64 mask)2795 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2796 {
2797 	return check_device(dev);
2798 }
2799 
2800 /*
2801  * The function for pre-allocating protection domains.
2802  *
2803  * If the driver core informs the DMA layer if a driver grabs a device
2804  * we don't need to preallocate the protection domains anymore.
2805  * For now we have to.
2806  */
prealloc_protection_domains(void)2807 static void prealloc_protection_domains(void)
2808 {
2809 	struct iommu_dev_data *dev_data;
2810 	struct dma_ops_domain *dma_dom;
2811 	struct pci_dev *dev = NULL;
2812 	u16 devid;
2813 
2814 	for_each_pci_dev(dev) {
2815 
2816 		/* Do we handle this device? */
2817 		if (!check_device(&dev->dev))
2818 			continue;
2819 
2820 		dev_data = get_dev_data(&dev->dev);
2821 		if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
2822 			/* Make sure passthrough domain is allocated */
2823 			alloc_passthrough_domain();
2824 			dev_data->passthrough = true;
2825 			attach_device(&dev->dev, pt_domain);
2826 			pr_info("AMD-Vi: Using passthough domain for device %s\n",
2827 				dev_name(&dev->dev));
2828 		}
2829 
2830 		/* Is there already any domain for it? */
2831 		if (domain_for_device(&dev->dev))
2832 			continue;
2833 
2834 		devid = get_device_id(&dev->dev);
2835 
2836 		dma_dom = dma_ops_domain_alloc();
2837 		if (!dma_dom)
2838 			continue;
2839 		init_unity_mappings_for_device(dma_dom, devid);
2840 		dma_dom->target_dev = devid;
2841 
2842 		attach_device(&dev->dev, &dma_dom->domain);
2843 
2844 		list_add_tail(&dma_dom->list, &iommu_pd_list);
2845 	}
2846 }
2847 
2848 static struct dma_map_ops amd_iommu_dma_ops = {
2849 	.alloc_coherent = alloc_coherent,
2850 	.free_coherent = free_coherent,
2851 	.map_page = map_page,
2852 	.unmap_page = unmap_page,
2853 	.map_sg = map_sg,
2854 	.unmap_sg = unmap_sg,
2855 	.dma_supported = amd_iommu_dma_supported,
2856 };
2857 
device_dma_ops_init(void)2858 static unsigned device_dma_ops_init(void)
2859 {
2860 	struct iommu_dev_data *dev_data;
2861 	struct pci_dev *pdev = NULL;
2862 	unsigned unhandled = 0;
2863 
2864 	for_each_pci_dev(pdev) {
2865 		if (!check_device(&pdev->dev)) {
2866 
2867 			iommu_ignore_device(&pdev->dev);
2868 
2869 			unhandled += 1;
2870 			continue;
2871 		}
2872 
2873 		dev_data = get_dev_data(&pdev->dev);
2874 
2875 		if (!dev_data->passthrough)
2876 			pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
2877 		else
2878 			pdev->dev.archdata.dma_ops = &nommu_dma_ops;
2879 	}
2880 
2881 	return unhandled;
2882 }
2883 
2884 /*
2885  * The function which clues the AMD IOMMU driver into dma_ops.
2886  */
2887 
amd_iommu_init_api(void)2888 void __init amd_iommu_init_api(void)
2889 {
2890 	bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2891 }
2892 
amd_iommu_init_dma_ops(void)2893 int __init amd_iommu_init_dma_ops(void)
2894 {
2895 	struct amd_iommu *iommu;
2896 	int ret, unhandled;
2897 
2898 	/*
2899 	 * first allocate a default protection domain for every IOMMU we
2900 	 * found in the system. Devices not assigned to any other
2901 	 * protection domain will be assigned to the default one.
2902 	 */
2903 	for_each_iommu(iommu) {
2904 		iommu->default_dom = dma_ops_domain_alloc();
2905 		if (iommu->default_dom == NULL)
2906 			return -ENOMEM;
2907 		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2908 		ret = iommu_init_unity_mappings(iommu);
2909 		if (ret)
2910 			goto free_domains;
2911 	}
2912 
2913 	/*
2914 	 * Pre-allocate the protection domains for each device.
2915 	 */
2916 	prealloc_protection_domains();
2917 
2918 	iommu_detected = 1;
2919 	swiotlb = 0;
2920 
2921 	/* Make the driver finally visible to the drivers */
2922 	unhandled = device_dma_ops_init();
2923 	if (unhandled && max_pfn > MAX_DMA32_PFN) {
2924 		/* There are unhandled devices - initialize swiotlb for them */
2925 		swiotlb = 1;
2926 	}
2927 
2928 	amd_iommu_stats_init();
2929 
2930 	return 0;
2931 
2932 free_domains:
2933 
2934 	for_each_iommu(iommu) {
2935 		if (iommu->default_dom)
2936 			dma_ops_domain_free(iommu->default_dom);
2937 	}
2938 
2939 	return ret;
2940 }
2941 
2942 /*****************************************************************************
2943  *
2944  * The following functions belong to the exported interface of AMD IOMMU
2945  *
2946  * This interface allows access to lower level functions of the IOMMU
2947  * like protection domain handling and assignement of devices to domains
2948  * which is not possible with the dma_ops interface.
2949  *
2950  *****************************************************************************/
2951 
cleanup_domain(struct protection_domain * domain)2952 static void cleanup_domain(struct protection_domain *domain)
2953 {
2954 	struct iommu_dev_data *dev_data, *next;
2955 	unsigned long flags;
2956 
2957 	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2958 
2959 	list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
2960 		__detach_device(dev_data);
2961 		atomic_set(&dev_data->bind, 0);
2962 	}
2963 
2964 	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2965 }
2966 
protection_domain_free(struct protection_domain * domain)2967 static void protection_domain_free(struct protection_domain *domain)
2968 {
2969 	if (!domain)
2970 		return;
2971 
2972 	del_domain_from_list(domain);
2973 
2974 	if (domain->id)
2975 		domain_id_free(domain->id);
2976 
2977 	kfree(domain);
2978 }
2979 
protection_domain_alloc(void)2980 static struct protection_domain *protection_domain_alloc(void)
2981 {
2982 	struct protection_domain *domain;
2983 
2984 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2985 	if (!domain)
2986 		return NULL;
2987 
2988 	spin_lock_init(&domain->lock);
2989 	mutex_init(&domain->api_lock);
2990 	domain->id = domain_id_alloc();
2991 	if (!domain->id)
2992 		goto out_err;
2993 	INIT_LIST_HEAD(&domain->dev_list);
2994 
2995 	add_domain_to_list(domain);
2996 
2997 	return domain;
2998 
2999 out_err:
3000 	kfree(domain);
3001 
3002 	return NULL;
3003 }
3004 
alloc_passthrough_domain(void)3005 static int __init alloc_passthrough_domain(void)
3006 {
3007 	if (pt_domain != NULL)
3008 		return 0;
3009 
3010 	/* allocate passthrough domain */
3011 	pt_domain = protection_domain_alloc();
3012 	if (!pt_domain)
3013 		return -ENOMEM;
3014 
3015 	pt_domain->mode = PAGE_MODE_NONE;
3016 
3017 	return 0;
3018 }
amd_iommu_domain_init(struct iommu_domain * dom)3019 static int amd_iommu_domain_init(struct iommu_domain *dom)
3020 {
3021 	struct protection_domain *domain;
3022 
3023 	domain = protection_domain_alloc();
3024 	if (!domain)
3025 		goto out_free;
3026 
3027 	domain->mode    = PAGE_MODE_3_LEVEL;
3028 	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3029 	if (!domain->pt_root)
3030 		goto out_free;
3031 
3032 	domain->iommu_domain = dom;
3033 
3034 	dom->priv = domain;
3035 
3036 	return 0;
3037 
3038 out_free:
3039 	protection_domain_free(domain);
3040 
3041 	return -ENOMEM;
3042 }
3043 
amd_iommu_domain_destroy(struct iommu_domain * dom)3044 static void amd_iommu_domain_destroy(struct iommu_domain *dom)
3045 {
3046 	struct protection_domain *domain = dom->priv;
3047 
3048 	if (!domain)
3049 		return;
3050 
3051 	if (domain->dev_cnt > 0)
3052 		cleanup_domain(domain);
3053 
3054 	BUG_ON(domain->dev_cnt != 0);
3055 
3056 	if (domain->mode != PAGE_MODE_NONE)
3057 		free_pagetable(domain);
3058 
3059 	if (domain->flags & PD_IOMMUV2_MASK)
3060 		free_gcr3_table(domain);
3061 
3062 	protection_domain_free(domain);
3063 
3064 	dom->priv = NULL;
3065 }
3066 
amd_iommu_detach_device(struct iommu_domain * dom,struct device * dev)3067 static void amd_iommu_detach_device(struct iommu_domain *dom,
3068 				    struct device *dev)
3069 {
3070 	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3071 	struct amd_iommu *iommu;
3072 	u16 devid;
3073 
3074 	if (!check_device(dev))
3075 		return;
3076 
3077 	devid = get_device_id(dev);
3078 
3079 	if (dev_data->domain != NULL)
3080 		detach_device(dev);
3081 
3082 	iommu = amd_iommu_rlookup_table[devid];
3083 	if (!iommu)
3084 		return;
3085 
3086 	iommu_completion_wait(iommu);
3087 }
3088 
amd_iommu_attach_device(struct iommu_domain * dom,struct device * dev)3089 static int amd_iommu_attach_device(struct iommu_domain *dom,
3090 				   struct device *dev)
3091 {
3092 	struct protection_domain *domain = dom->priv;
3093 	struct iommu_dev_data *dev_data;
3094 	struct amd_iommu *iommu;
3095 	int ret;
3096 
3097 	if (!check_device(dev))
3098 		return -EINVAL;
3099 
3100 	dev_data = dev->archdata.iommu;
3101 
3102 	iommu = amd_iommu_rlookup_table[dev_data->devid];
3103 	if (!iommu)
3104 		return -EINVAL;
3105 
3106 	if (dev_data->domain)
3107 		detach_device(dev);
3108 
3109 	ret = attach_device(dev, domain);
3110 
3111 	iommu_completion_wait(iommu);
3112 
3113 	return ret;
3114 }
3115 
amd_iommu_map(struct iommu_domain * dom,unsigned long iova,phys_addr_t paddr,size_t page_size,int iommu_prot)3116 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3117 			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3118 {
3119 	struct protection_domain *domain = dom->priv;
3120 	int prot = 0;
3121 	int ret;
3122 
3123 	if (domain->mode == PAGE_MODE_NONE)
3124 		return -EINVAL;
3125 
3126 	if (iommu_prot & IOMMU_READ)
3127 		prot |= IOMMU_PROT_IR;
3128 	if (iommu_prot & IOMMU_WRITE)
3129 		prot |= IOMMU_PROT_IW;
3130 
3131 	mutex_lock(&domain->api_lock);
3132 	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3133 	mutex_unlock(&domain->api_lock);
3134 
3135 	return ret;
3136 }
3137 
amd_iommu_unmap(struct iommu_domain * dom,unsigned long iova,size_t page_size)3138 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3139 			   size_t page_size)
3140 {
3141 	struct protection_domain *domain = dom->priv;
3142 	size_t unmap_size;
3143 
3144 	if (domain->mode == PAGE_MODE_NONE)
3145 		return -EINVAL;
3146 
3147 	mutex_lock(&domain->api_lock);
3148 	unmap_size = iommu_unmap_page(domain, iova, page_size);
3149 	mutex_unlock(&domain->api_lock);
3150 
3151 	domain_flush_tlb_pde(domain);
3152 
3153 	return unmap_size;
3154 }
3155 
amd_iommu_iova_to_phys(struct iommu_domain * dom,unsigned long iova)3156 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3157 					  unsigned long iova)
3158 {
3159 	struct protection_domain *domain = dom->priv;
3160 	unsigned long offset_mask;
3161 	phys_addr_t paddr;
3162 	u64 *pte, __pte;
3163 
3164 	if (domain->mode == PAGE_MODE_NONE)
3165 		return iova;
3166 
3167 	pte = fetch_pte(domain, iova);
3168 
3169 	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3170 		return 0;
3171 
3172 	if (PM_PTE_LEVEL(*pte) == 0)
3173 		offset_mask = PAGE_SIZE - 1;
3174 	else
3175 		offset_mask = PTE_PAGE_SIZE(*pte) - 1;
3176 
3177 	__pte = *pte & PM_ADDR_MASK;
3178 	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
3179 
3180 	return paddr;
3181 }
3182 
amd_iommu_domain_has_cap(struct iommu_domain * domain,unsigned long cap)3183 static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
3184 				    unsigned long cap)
3185 {
3186 	switch (cap) {
3187 	case IOMMU_CAP_CACHE_COHERENCY:
3188 		return 1;
3189 	}
3190 
3191 	return 0;
3192 }
3193 
amd_iommu_device_group(struct device * dev,unsigned int * groupid)3194 static int amd_iommu_device_group(struct device *dev, unsigned int *groupid)
3195 {
3196 	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3197 	struct pci_dev *pdev = to_pci_dev(dev);
3198 	u16 devid;
3199 
3200 	if (!dev_data)
3201 		return -ENODEV;
3202 
3203 	if (pdev->is_virtfn || !iommu_group_mf)
3204 		devid = dev_data->devid;
3205 	else
3206 		devid = calc_devid(pdev->bus->number,
3207 				   PCI_DEVFN(PCI_SLOT(pdev->devfn), 0));
3208 
3209 	*groupid = amd_iommu_alias_table[devid];
3210 
3211 	return 0;
3212 }
3213 
3214 static struct iommu_ops amd_iommu_ops = {
3215 	.domain_init = amd_iommu_domain_init,
3216 	.domain_destroy = amd_iommu_domain_destroy,
3217 	.attach_dev = amd_iommu_attach_device,
3218 	.detach_dev = amd_iommu_detach_device,
3219 	.map = amd_iommu_map,
3220 	.unmap = amd_iommu_unmap,
3221 	.iova_to_phys = amd_iommu_iova_to_phys,
3222 	.domain_has_cap = amd_iommu_domain_has_cap,
3223 	.device_group = amd_iommu_device_group,
3224 	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3225 };
3226 
3227 /*****************************************************************************
3228  *
3229  * The next functions do a basic initialization of IOMMU for pass through
3230  * mode
3231  *
3232  * In passthrough mode the IOMMU is initialized and enabled but not used for
3233  * DMA-API translation.
3234  *
3235  *****************************************************************************/
3236 
amd_iommu_init_passthrough(void)3237 int __init amd_iommu_init_passthrough(void)
3238 {
3239 	struct iommu_dev_data *dev_data;
3240 	struct pci_dev *dev = NULL;
3241 	struct amd_iommu *iommu;
3242 	u16 devid;
3243 	int ret;
3244 
3245 	ret = alloc_passthrough_domain();
3246 	if (ret)
3247 		return ret;
3248 
3249 	for_each_pci_dev(dev) {
3250 		if (!check_device(&dev->dev))
3251 			continue;
3252 
3253 		dev_data = get_dev_data(&dev->dev);
3254 		dev_data->passthrough = true;
3255 
3256 		devid = get_device_id(&dev->dev);
3257 
3258 		iommu = amd_iommu_rlookup_table[devid];
3259 		if (!iommu)
3260 			continue;
3261 
3262 		attach_device(&dev->dev, pt_domain);
3263 	}
3264 
3265 	amd_iommu_stats_init();
3266 
3267 	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3268 
3269 	return 0;
3270 }
3271 
3272 /* IOMMUv2 specific functions */
amd_iommu_register_ppr_notifier(struct notifier_block * nb)3273 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3274 {
3275 	return atomic_notifier_chain_register(&ppr_notifier, nb);
3276 }
3277 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3278 
amd_iommu_unregister_ppr_notifier(struct notifier_block * nb)3279 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3280 {
3281 	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3282 }
3283 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3284 
amd_iommu_domain_direct_map(struct iommu_domain * dom)3285 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3286 {
3287 	struct protection_domain *domain = dom->priv;
3288 	unsigned long flags;
3289 
3290 	spin_lock_irqsave(&domain->lock, flags);
3291 
3292 	/* Update data structure */
3293 	domain->mode    = PAGE_MODE_NONE;
3294 	domain->updated = true;
3295 
3296 	/* Make changes visible to IOMMUs */
3297 	update_domain(domain);
3298 
3299 	/* Page-table is not visible to IOMMU anymore, so free it */
3300 	free_pagetable(domain);
3301 
3302 	spin_unlock_irqrestore(&domain->lock, flags);
3303 }
3304 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3305 
amd_iommu_domain_enable_v2(struct iommu_domain * dom,int pasids)3306 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3307 {
3308 	struct protection_domain *domain = dom->priv;
3309 	unsigned long flags;
3310 	int levels, ret;
3311 
3312 	if (pasids <= 0 || pasids > (PASID_MASK + 1))
3313 		return -EINVAL;
3314 
3315 	/* Number of GCR3 table levels required */
3316 	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3317 		levels += 1;
3318 
3319 	if (levels > amd_iommu_max_glx_val)
3320 		return -EINVAL;
3321 
3322 	spin_lock_irqsave(&domain->lock, flags);
3323 
3324 	/*
3325 	 * Save us all sanity checks whether devices already in the
3326 	 * domain support IOMMUv2. Just force that the domain has no
3327 	 * devices attached when it is switched into IOMMUv2 mode.
3328 	 */
3329 	ret = -EBUSY;
3330 	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3331 		goto out;
3332 
3333 	ret = -ENOMEM;
3334 	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3335 	if (domain->gcr3_tbl == NULL)
3336 		goto out;
3337 
3338 	domain->glx      = levels;
3339 	domain->flags   |= PD_IOMMUV2_MASK;
3340 	domain->updated  = true;
3341 
3342 	update_domain(domain);
3343 
3344 	ret = 0;
3345 
3346 out:
3347 	spin_unlock_irqrestore(&domain->lock, flags);
3348 
3349 	return ret;
3350 }
3351 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3352 
__flush_pasid(struct protection_domain * domain,int pasid,u64 address,bool size)3353 static int __flush_pasid(struct protection_domain *domain, int pasid,
3354 			 u64 address, bool size)
3355 {
3356 	struct iommu_dev_data *dev_data;
3357 	struct iommu_cmd cmd;
3358 	int i, ret;
3359 
3360 	if (!(domain->flags & PD_IOMMUV2_MASK))
3361 		return -EINVAL;
3362 
3363 	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3364 
3365 	/*
3366 	 * IOMMU TLB needs to be flushed before Device TLB to
3367 	 * prevent device TLB refill from IOMMU TLB
3368 	 */
3369 	for (i = 0; i < amd_iommus_present; ++i) {
3370 		if (domain->dev_iommu[i] == 0)
3371 			continue;
3372 
3373 		ret = iommu_queue_command(amd_iommus[i], &cmd);
3374 		if (ret != 0)
3375 			goto out;
3376 	}
3377 
3378 	/* Wait until IOMMU TLB flushes are complete */
3379 	domain_flush_complete(domain);
3380 
3381 	/* Now flush device TLBs */
3382 	list_for_each_entry(dev_data, &domain->dev_list, list) {
3383 		struct amd_iommu *iommu;
3384 		int qdep;
3385 
3386 		BUG_ON(!dev_data->ats.enabled);
3387 
3388 		qdep  = dev_data->ats.qdep;
3389 		iommu = amd_iommu_rlookup_table[dev_data->devid];
3390 
3391 		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3392 				      qdep, address, size);
3393 
3394 		ret = iommu_queue_command(iommu, &cmd);
3395 		if (ret != 0)
3396 			goto out;
3397 	}
3398 
3399 	/* Wait until all device TLBs are flushed */
3400 	domain_flush_complete(domain);
3401 
3402 	ret = 0;
3403 
3404 out:
3405 
3406 	return ret;
3407 }
3408 
__amd_iommu_flush_page(struct protection_domain * domain,int pasid,u64 address)3409 static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3410 				  u64 address)
3411 {
3412 	INC_STATS_COUNTER(invalidate_iotlb);
3413 
3414 	return __flush_pasid(domain, pasid, address, false);
3415 }
3416 
amd_iommu_flush_page(struct iommu_domain * dom,int pasid,u64 address)3417 int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3418 			 u64 address)
3419 {
3420 	struct protection_domain *domain = dom->priv;
3421 	unsigned long flags;
3422 	int ret;
3423 
3424 	spin_lock_irqsave(&domain->lock, flags);
3425 	ret = __amd_iommu_flush_page(domain, pasid, address);
3426 	spin_unlock_irqrestore(&domain->lock, flags);
3427 
3428 	return ret;
3429 }
3430 EXPORT_SYMBOL(amd_iommu_flush_page);
3431 
__amd_iommu_flush_tlb(struct protection_domain * domain,int pasid)3432 static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3433 {
3434 	INC_STATS_COUNTER(invalidate_iotlb_all);
3435 
3436 	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3437 			     true);
3438 }
3439 
amd_iommu_flush_tlb(struct iommu_domain * dom,int pasid)3440 int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3441 {
3442 	struct protection_domain *domain = dom->priv;
3443 	unsigned long flags;
3444 	int ret;
3445 
3446 	spin_lock_irqsave(&domain->lock, flags);
3447 	ret = __amd_iommu_flush_tlb(domain, pasid);
3448 	spin_unlock_irqrestore(&domain->lock, flags);
3449 
3450 	return ret;
3451 }
3452 EXPORT_SYMBOL(amd_iommu_flush_tlb);
3453 
__get_gcr3_pte(u64 * root,int level,int pasid,bool alloc)3454 static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3455 {
3456 	int index;
3457 	u64 *pte;
3458 
3459 	while (true) {
3460 
3461 		index = (pasid >> (9 * level)) & 0x1ff;
3462 		pte   = &root[index];
3463 
3464 		if (level == 0)
3465 			break;
3466 
3467 		if (!(*pte & GCR3_VALID)) {
3468 			if (!alloc)
3469 				return NULL;
3470 
3471 			root = (void *)get_zeroed_page(GFP_ATOMIC);
3472 			if (root == NULL)
3473 				return NULL;
3474 
3475 			*pte = __pa(root) | GCR3_VALID;
3476 		}
3477 
3478 		root = __va(*pte & PAGE_MASK);
3479 
3480 		level -= 1;
3481 	}
3482 
3483 	return pte;
3484 }
3485 
__set_gcr3(struct protection_domain * domain,int pasid,unsigned long cr3)3486 static int __set_gcr3(struct protection_domain *domain, int pasid,
3487 		      unsigned long cr3)
3488 {
3489 	u64 *pte;
3490 
3491 	if (domain->mode != PAGE_MODE_NONE)
3492 		return -EINVAL;
3493 
3494 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3495 	if (pte == NULL)
3496 		return -ENOMEM;
3497 
3498 	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3499 
3500 	return __amd_iommu_flush_tlb(domain, pasid);
3501 }
3502 
__clear_gcr3(struct protection_domain * domain,int pasid)3503 static int __clear_gcr3(struct protection_domain *domain, int pasid)
3504 {
3505 	u64 *pte;
3506 
3507 	if (domain->mode != PAGE_MODE_NONE)
3508 		return -EINVAL;
3509 
3510 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3511 	if (pte == NULL)
3512 		return 0;
3513 
3514 	*pte = 0;
3515 
3516 	return __amd_iommu_flush_tlb(domain, pasid);
3517 }
3518 
amd_iommu_domain_set_gcr3(struct iommu_domain * dom,int pasid,unsigned long cr3)3519 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3520 			      unsigned long cr3)
3521 {
3522 	struct protection_domain *domain = dom->priv;
3523 	unsigned long flags;
3524 	int ret;
3525 
3526 	spin_lock_irqsave(&domain->lock, flags);
3527 	ret = __set_gcr3(domain, pasid, cr3);
3528 	spin_unlock_irqrestore(&domain->lock, flags);
3529 
3530 	return ret;
3531 }
3532 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3533 
amd_iommu_domain_clear_gcr3(struct iommu_domain * dom,int pasid)3534 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3535 {
3536 	struct protection_domain *domain = dom->priv;
3537 	unsigned long flags;
3538 	int ret;
3539 
3540 	spin_lock_irqsave(&domain->lock, flags);
3541 	ret = __clear_gcr3(domain, pasid);
3542 	spin_unlock_irqrestore(&domain->lock, flags);
3543 
3544 	return ret;
3545 }
3546 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3547 
amd_iommu_complete_ppr(struct pci_dev * pdev,int pasid,int status,int tag)3548 int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3549 			   int status, int tag)
3550 {
3551 	struct iommu_dev_data *dev_data;
3552 	struct amd_iommu *iommu;
3553 	struct iommu_cmd cmd;
3554 
3555 	INC_STATS_COUNTER(complete_ppr);
3556 
3557 	dev_data = get_dev_data(&pdev->dev);
3558 	iommu    = amd_iommu_rlookup_table[dev_data->devid];
3559 
3560 	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3561 			   tag, dev_data->pri_tlp);
3562 
3563 	return iommu_queue_command(iommu, &cmd);
3564 }
3565 EXPORT_SYMBOL(amd_iommu_complete_ppr);
3566 
amd_iommu_get_v2_domain(struct pci_dev * pdev)3567 struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3568 {
3569 	struct protection_domain *domain;
3570 
3571 	domain = get_domain(&pdev->dev);
3572 	if (IS_ERR(domain))
3573 		return NULL;
3574 
3575 	/* Only return IOMMUv2 domains */
3576 	if (!(domain->flags & PD_IOMMUV2_MASK))
3577 		return NULL;
3578 
3579 	return domain->iommu_domain;
3580 }
3581 EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3582 
amd_iommu_enable_device_erratum(struct pci_dev * pdev,u32 erratum)3583 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3584 {
3585 	struct iommu_dev_data *dev_data;
3586 
3587 	if (!amd_iommu_v2_supported())
3588 		return;
3589 
3590 	dev_data = get_dev_data(&pdev->dev);
3591 	dev_data->errata |= (1 << erratum);
3592 }
3593 EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3594 
amd_iommu_device_info(struct pci_dev * pdev,struct amd_iommu_device_info * info)3595 int amd_iommu_device_info(struct pci_dev *pdev,
3596                           struct amd_iommu_device_info *info)
3597 {
3598 	int max_pasids;
3599 	int pos;
3600 
3601 	if (pdev == NULL || info == NULL)
3602 		return -EINVAL;
3603 
3604 	if (!amd_iommu_v2_supported())
3605 		return -EINVAL;
3606 
3607 	memset(info, 0, sizeof(*info));
3608 
3609 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3610 	if (pos)
3611 		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3612 
3613 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3614 	if (pos)
3615 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3616 
3617 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3618 	if (pos) {
3619 		int features;
3620 
3621 		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3622 		max_pasids = min(max_pasids, (1 << 20));
3623 
3624 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3625 		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3626 
3627 		features = pci_pasid_features(pdev);
3628 		if (features & PCI_PASID_CAP_EXEC)
3629 			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3630 		if (features & PCI_PASID_CAP_PRIV)
3631 			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3632 	}
3633 
3634 	return 0;
3635 }
3636 EXPORT_SYMBOL(amd_iommu_device_info);
3637