1 /*
2  * Support for Moorestown/Medfield I2C chip
3  *
4  * Copyright (c) 2009 Intel Corporation.
5  * Copyright (c) 2009 Synopsys. Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License, version
9  * 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT ANY
12  * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
13  * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
14  * details.
15  *
16  * You should have received a copy of the GNU General Public License along
17  * with this program; if not, write to the Free Software Foundation, Inc., 51
18  * Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19  *
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/err.h>
25 #include <linux/slab.h>
26 #include <linux/stat.h>
27 #include <linux/delay.h>
28 #include <linux/i2c.h>
29 #include <linux/init.h>
30 #include <linux/pci.h>
31 #include <linux/interrupt.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/io.h>
34 
35 #define DRIVER_NAME	"i2c-intel-mid"
36 #define VERSION		"Version 0.5ac2"
37 #define PLATFORM	"Moorestown/Medfield"
38 
39 /* Tables use: 0 Moorestown, 1 Medfield */
40 #define NUM_PLATFORMS	2
41 enum platform_enum {
42 	MOORESTOWN = 0,
43 	MEDFIELD = 1,
44 };
45 
46 enum mid_i2c_status {
47 	STATUS_IDLE = 0,
48 	STATUS_READ_START,
49 	STATUS_READ_IN_PROGRESS,
50 	STATUS_READ_SUCCESS,
51 	STATUS_WRITE_START,
52 	STATUS_WRITE_SUCCESS,
53 	STATUS_XFER_ABORT,
54 	STATUS_STANDBY
55 };
56 
57 /**
58  * struct intel_mid_i2c_private	- per device I²C context
59  * @adap: core i2c layer adapter information
60  * @dev: device reference for power management
61  * @base: register base
62  * @speed: speed mode for this port
63  * @complete: completion object for transaction wait
64  * @abort: reason for last abort
65  * @rx_buf: pointer into working receive buffer
66  * @rx_buf_len: receive buffer length
67  * @status: adapter state machine
68  * @msg: the message we are currently processing
69  * @platform: the MID device type we are part of
70  * @lock: transaction serialization
71  *
72  * We allocate one of these per device we discover, it holds the core
73  * i2c layer objects and the data we need to track privately.
74  */
75 struct intel_mid_i2c_private {
76 	struct i2c_adapter adap;
77 	struct device *dev;
78 	void __iomem *base;
79 	int speed;
80 	struct completion complete;
81 	int abort;
82 	u8 *rx_buf;
83 	int rx_buf_len;
84 	enum mid_i2c_status status;
85 	struct i2c_msg *msg;
86 	enum platform_enum platform;
87 	struct mutex lock;
88 };
89 
90 #define NUM_SPEEDS		3
91 
92 #define ACTIVE			0
93 #define STANDBY			1
94 
95 
96 /* Control register */
97 #define IC_CON			0x00
98 #define SLV_DIS			(1 << 6)	/* Disable slave mode */
99 #define RESTART			(1 << 5)	/* Send a Restart condition */
100 #define	ADDR_10BIT		(1 << 4)	/* 10-bit addressing */
101 #define	STANDARD_MODE		(1 << 1)	/* standard mode */
102 #define FAST_MODE		(2 << 1)	/* fast mode */
103 #define HIGH_MODE		(3 << 1)	/* high speed mode */
104 #define	MASTER_EN		(1 << 0)	/* Master mode */
105 
106 /* Target address register */
107 #define IC_TAR			0x04
108 #define IC_TAR_10BIT_ADDR	(1 << 12)	/* 10-bit addressing */
109 #define IC_TAR_SPECIAL		(1 << 11)	/* Perform special I2C cmd */
110 #define IC_TAR_GC_OR_START	(1 << 10)	/* 0: Gerneral Call Address */
111 						/* 1: START BYTE */
112 /* Slave Address Register */
113 #define IC_SAR			0x08		/* Not used in Master mode */
114 
115 /* High Speed Master Mode Code Address Register */
116 #define IC_HS_MADDR		0x0c
117 
118 /* Rx/Tx Data Buffer and Command Register */
119 #define IC_DATA_CMD		0x10
120 #define IC_RD			(1 << 8)	/* 1: Read 0: Write */
121 
122 /* Standard Speed Clock SCL High Count Register */
123 #define IC_SS_SCL_HCNT		0x14
124 
125 /* Standard Speed Clock SCL Low Count Register */
126 #define IC_SS_SCL_LCNT		0x18
127 
128 /* Fast Speed Clock SCL High Count Register */
129 #define IC_FS_SCL_HCNT		0x1c
130 
131 /* Fast Spedd Clock SCL Low Count Register */
132 #define IC_FS_SCL_LCNT		0x20
133 
134 /* High Speed Clock SCL High Count Register */
135 #define IC_HS_SCL_HCNT		0x24
136 
137 /* High Speed Clock SCL Low Count Register */
138 #define IC_HS_SCL_LCNT		0x28
139 
140 /* Interrupt Status Register */
141 #define IC_INTR_STAT		0x2c		/* Read only */
142 #define R_GEN_CALL		(1 << 11)
143 #define R_START_DET		(1 << 10)
144 #define R_STOP_DET		(1 << 9)
145 #define R_ACTIVITY		(1 << 8)
146 #define R_RX_DONE		(1 << 7)
147 #define	R_TX_ABRT		(1 << 6)
148 #define R_RD_REQ		(1 << 5)
149 #define R_TX_EMPTY		(1 << 4)
150 #define R_TX_OVER		(1 << 3)
151 #define	R_RX_FULL		(1 << 2)
152 #define	R_RX_OVER		(1 << 1)
153 #define R_RX_UNDER		(1 << 0)
154 
155 /* Interrupt Mask Register */
156 #define IC_INTR_MASK		0x30		/* Read and Write */
157 #define M_GEN_CALL		(1 << 11)
158 #define M_START_DET		(1 << 10)
159 #define M_STOP_DET		(1 << 9)
160 #define M_ACTIVITY		(1 << 8)
161 #define M_RX_DONE		(1 << 7)
162 #define	M_TX_ABRT		(1 << 6)
163 #define M_RD_REQ		(1 << 5)
164 #define M_TX_EMPTY		(1 << 4)
165 #define M_TX_OVER		(1 << 3)
166 #define	M_RX_FULL		(1 << 2)
167 #define	M_RX_OVER		(1 << 1)
168 #define M_RX_UNDER		(1 << 0)
169 
170 /* Raw Interrupt Status Register */
171 #define IC_RAW_INTR_STAT	0x34		/* Read Only */
172 #define GEN_CALL		(1 << 11)	/* General call */
173 #define START_DET		(1 << 10)	/* (RE)START occurred */
174 #define STOP_DET		(1 << 9)	/* STOP occurred */
175 #define ACTIVITY		(1 << 8)	/* Bus busy */
176 #define RX_DONE			(1 << 7)	/* Not used in Master mode */
177 #define	TX_ABRT			(1 << 6)	/* Transmit Abort */
178 #define RD_REQ			(1 << 5)	/* Not used in Master mode */
179 #define TX_EMPTY		(1 << 4)	/* TX FIFO <= threshold */
180 #define TX_OVER			(1 << 3)	/* TX FIFO overflow */
181 #define	RX_FULL			(1 << 2)	/* RX FIFO >= threshold */
182 #define	RX_OVER			(1 << 1)	/* RX FIFO overflow */
183 #define RX_UNDER		(1 << 0)	/* RX FIFO empty */
184 
185 /* Receive FIFO Threshold Register */
186 #define IC_RX_TL		0x38
187 
188 /* Transmit FIFO Treshold Register */
189 #define IC_TX_TL		0x3c
190 
191 /* Clear Combined and Individual Interrupt Register */
192 #define IC_CLR_INTR		0x40
193 #define CLR_INTR		(1 << 0)
194 
195 /* Clear RX_UNDER Interrupt Register */
196 #define IC_CLR_RX_UNDER		0x44
197 #define CLR_RX_UNDER		(1 << 0)
198 
199 /* Clear RX_OVER Interrupt Register */
200 #define IC_CLR_RX_OVER		0x48
201 #define CLR_RX_OVER		(1 << 0)
202 
203 /* Clear TX_OVER Interrupt Register */
204 #define IC_CLR_TX_OVER		0x4c
205 #define CLR_TX_OVER		(1 << 0)
206 
207 #define IC_CLR_RD_REQ		0x50
208 
209 /* Clear TX_ABRT Interrupt Register */
210 #define IC_CLR_TX_ABRT		0x54
211 #define CLR_TX_ABRT		(1 << 0)
212 #define IC_CLR_RX_DONE		0x58
213 
214 /* Clear ACTIVITY Interrupt Register */
215 #define IC_CLR_ACTIVITY		0x5c
216 #define CLR_ACTIVITY		(1 << 0)
217 
218 /* Clear STOP_DET Interrupt Register */
219 #define IC_CLR_STOP_DET		0x60
220 #define CLR_STOP_DET		(1 << 0)
221 
222 /* Clear START_DET Interrupt Register */
223 #define IC_CLR_START_DET	0x64
224 #define CLR_START_DET		(1 << 0)
225 
226 /* Clear GEN_CALL Interrupt Register */
227 #define IC_CLR_GEN_CALL		0x68
228 #define CLR_GEN_CALL		(1 << 0)
229 
230 /* Enable Register */
231 #define IC_ENABLE		0x6c
232 #define ENABLE			(1 << 0)
233 
234 /* Status Register */
235 #define IC_STATUS		0x70		/* Read Only */
236 #define STAT_SLV_ACTIVITY	(1 << 6)	/* Slave not in idle */
237 #define STAT_MST_ACTIVITY	(1 << 5)	/* Master not in idle */
238 #define STAT_RFF		(1 << 4)	/* RX FIFO Full */
239 #define STAT_RFNE		(1 << 3)	/* RX FIFO Not Empty */
240 #define STAT_TFE		(1 << 2)	/* TX FIFO Empty */
241 #define STAT_TFNF		(1 << 1)	/* TX FIFO Not Full */
242 #define STAT_ACTIVITY		(1 << 0)	/* Activity Status */
243 
244 /* Transmit FIFO Level Register */
245 #define IC_TXFLR		0x74		/* Read Only */
246 #define TXFLR			(1 << 0)	/* TX FIFO level */
247 
248 /* Receive FIFO Level Register */
249 #define IC_RXFLR		0x78		/* Read Only */
250 #define RXFLR			(1 << 0)	/* RX FIFO level */
251 
252 /* Transmit Abort Source Register */
253 #define IC_TX_ABRT_SOURCE	0x80
254 #define ABRT_SLVRD_INTX		(1 << 15)
255 #define ABRT_SLV_ARBLOST	(1 << 14)
256 #define ABRT_SLVFLUSH_TXFIFO	(1 << 13)
257 #define	ARB_LOST		(1 << 12)
258 #define ABRT_MASTER_DIS		(1 << 11)
259 #define ABRT_10B_RD_NORSTRT	(1 << 10)
260 #define ABRT_SBYTE_NORSTRT	(1 << 9)
261 #define ABRT_HS_NORSTRT		(1 << 8)
262 #define ABRT_SBYTE_ACKDET	(1 << 7)
263 #define ABRT_HS_ACKDET		(1 << 6)
264 #define ABRT_GCALL_READ		(1 << 5)
265 #define ABRT_GCALL_NOACK	(1 << 4)
266 #define ABRT_TXDATA_NOACK	(1 << 3)
267 #define ABRT_10ADDR2_NOACK	(1 << 2)
268 #define ABRT_10ADDR1_NOACK	(1 << 1)
269 #define ABRT_7B_ADDR_NOACK	(1 << 0)
270 
271 /* Enable Status Register */
272 #define IC_ENABLE_STATUS	0x9c
273 #define IC_EN			(1 << 0)	/* I2C in an enabled state */
274 
275 /* Component Parameter Register 1*/
276 #define IC_COMP_PARAM_1		0xf4
277 #define APB_DATA_WIDTH		(0x3 << 0)
278 
279 /* added by xiaolin --begin */
280 #define SS_MIN_SCL_HIGH         4000
281 #define SS_MIN_SCL_LOW          4700
282 #define FS_MIN_SCL_HIGH         600
283 #define FS_MIN_SCL_LOW          1300
284 #define HS_MIN_SCL_HIGH_100PF   60
285 #define HS_MIN_SCL_LOW_100PF    120
286 
287 #define STANDARD		0
288 #define FAST			1
289 #define HIGH			2
290 
291 #define NUM_SPEEDS		3
292 
293 static int speed_mode[6] = {
294 	FAST,
295 	FAST,
296 	FAST,
297 	STANDARD,
298 	FAST,
299 	FAST
300 };
301 
302 static int ctl_num = 6;
303 module_param_array(speed_mode, int, &ctl_num, S_IRUGO);
304 MODULE_PARM_DESC(speed_mode, "Set the speed of the i2c interface (0-2)");
305 
306 /**
307  * intel_mid_i2c_disable - Disable I2C controller
308  * @adap: struct pointer to i2c_adapter
309  *
310  * Return Value:
311  * 0		success
312  * -EBUSY	if device is busy
313  * -ETIMEDOUT	if i2c cannot be disabled within the given time
314  *
315  * I2C bus state should be checked prior to disabling the hardware. If bus is
316  * not in idle state, an errno is returned. Write "0" to IC_ENABLE to disable
317  * I2C controller.
318  */
intel_mid_i2c_disable(struct i2c_adapter * adap)319 static int intel_mid_i2c_disable(struct i2c_adapter *adap)
320 {
321 	struct intel_mid_i2c_private *i2c = i2c_get_adapdata(adap);
322 	int err = 0;
323 	int count = 0;
324 	int ret1, ret2;
325 	static const u16 delay[NUM_SPEEDS] = {100, 25, 3};
326 
327 	/* Set IC_ENABLE to 0 */
328 	writel(0, i2c->base + IC_ENABLE);
329 
330 	/* Check if device is busy */
331 	dev_dbg(&adap->dev, "mrst i2c disable\n");
332 	while ((ret1 = readl(i2c->base + IC_ENABLE_STATUS) & 0x1)
333 		|| (ret2 = readl(i2c->base + IC_STATUS) & 0x1)) {
334 		udelay(delay[i2c->speed]);
335 		writel(0, i2c->base + IC_ENABLE);
336 		dev_dbg(&adap->dev, "i2c is busy, count is %d speed %d\n",
337 			count, i2c->speed);
338 		if (count++ > 10) {
339 			err = -ETIMEDOUT;
340 			break;
341 		}
342 	}
343 
344 	/* Clear all interrupts */
345 	readl(i2c->base + IC_CLR_INTR);
346 	readl(i2c->base + IC_CLR_STOP_DET);
347 	readl(i2c->base + IC_CLR_START_DET);
348 	readl(i2c->base + IC_CLR_ACTIVITY);
349 	readl(i2c->base + IC_CLR_TX_ABRT);
350 	readl(i2c->base + IC_CLR_RX_OVER);
351 	readl(i2c->base + IC_CLR_RX_UNDER);
352 	readl(i2c->base + IC_CLR_TX_OVER);
353 	readl(i2c->base + IC_CLR_RX_DONE);
354 	readl(i2c->base + IC_CLR_GEN_CALL);
355 
356 	/* Disable all interupts */
357 	writel(0x0000, i2c->base + IC_INTR_MASK);
358 
359 	return err;
360 }
361 
362 /**
363  * intel_mid_i2c_hwinit - Initialize the I2C hardware registers
364  * @dev: pci device struct pointer
365  *
366  * This function will be called in intel_mid_i2c_probe() before device
367  * registration.
368  *
369  * Return Values:
370  * 0		success
371  * -EBUSY	i2c cannot be disabled
372  * -ETIMEDOUT	i2c cannot be disabled
373  * -EFAULT	If APB data width is not 32-bit wide
374  *
375  * I2C should be disabled prior to other register operation. If failed, an
376  * errno is returned. Mask and Clear all interrpts, this should be done at
377  * first.  Set common registers which will not be modified during normal
378  * transfers, including: control register, FIFO threshold and clock freq.
379  * Check APB data width at last.
380  */
intel_mid_i2c_hwinit(struct intel_mid_i2c_private * i2c)381 static int intel_mid_i2c_hwinit(struct intel_mid_i2c_private *i2c)
382 {
383 	int err;
384 
385 	static const u16 hcnt[NUM_PLATFORMS][NUM_SPEEDS] = {
386 		{ 0x75,  0x15, 0x07 },
387 		{ 0x04c,  0x10, 0x06 }
388 	};
389 	static const u16 lcnt[NUM_PLATFORMS][NUM_SPEEDS] = {
390 		{ 0x7C,  0x21, 0x0E },
391 		{ 0x053, 0x19, 0x0F }
392 	};
393 
394 	/* Disable i2c first */
395 	err = intel_mid_i2c_disable(&i2c->adap);
396 	if (err)
397 		return err;
398 
399 	/*
400 	 * Setup clock frequency and speed mode
401 	 * Enable restart condition,
402 	 * enable master FSM, disable slave FSM,
403 	 * use target address when initiating transfer
404 	 */
405 
406 	writel((i2c->speed + 1) << 1 | SLV_DIS | RESTART | MASTER_EN,
407 		i2c->base + IC_CON);
408 	writel(hcnt[i2c->platform][i2c->speed],
409 		i2c->base + (IC_SS_SCL_HCNT + (i2c->speed << 3)));
410 	writel(lcnt[i2c->platform][i2c->speed],
411 		i2c->base + (IC_SS_SCL_LCNT + (i2c->speed << 3)));
412 
413 	/* Set tranmit & receive FIFO threshold to zero */
414 	writel(0x0, i2c->base + IC_RX_TL);
415 	writel(0x0, i2c->base + IC_TX_TL);
416 
417 	return 0;
418 }
419 
420 /**
421  * intel_mid_i2c_func - Return the supported three I2C operations.
422  * @adapter: i2c_adapter struct pointer
423  */
intel_mid_i2c_func(struct i2c_adapter * adapter)424 static u32 intel_mid_i2c_func(struct i2c_adapter *adapter)
425 {
426 	return I2C_FUNC_I2C | I2C_FUNC_10BIT_ADDR | I2C_FUNC_SMBUS_EMUL;
427 }
428 
429 /**
430  * intel_mid_i2c_address_neq - To check if the addresses for different i2c messages
431  * are equal.
432  * @p1: first i2c_msg
433  * @p2: second i2c_msg
434  *
435  * Return Values:
436  * 0	 if addresses are equal
437  * 1	 if not equal
438  *
439  * Within a single transfer, the I2C client may need to send its address more
440  * than once. So a check if the addresses match is needed.
441  */
intel_mid_i2c_address_neq(const struct i2c_msg * p1,const struct i2c_msg * p2)442 static inline bool intel_mid_i2c_address_neq(const struct i2c_msg *p1,
443 				       const struct i2c_msg *p2)
444 {
445 	if (p1->addr != p2->addr)
446 		return 1;
447 	if ((p1->flags ^ p2->flags) & I2C_M_TEN)
448 		return 1;
449 	return 0;
450 }
451 
452 /**
453  * intel_mid_i2c_abort - To handle transfer abortions and print error messages.
454  * @adap: i2c_adapter struct pointer
455  *
456  * By reading register IC_TX_ABRT_SOURCE, various transfer errors can be
457  * distingushed. At present, no circumstances have been found out that
458  * multiple errors would be occurred simutaneously, so we simply use the
459  * register value directly.
460  *
461  * At last the error bits are cleared. (Note clear ABRT_SBYTE_NORSTRT bit need
462  * a few extra steps)
463  */
intel_mid_i2c_abort(struct intel_mid_i2c_private * i2c)464 static void intel_mid_i2c_abort(struct intel_mid_i2c_private *i2c)
465 {
466 	/* Read about source register */
467 	int abort = i2c->abort;
468 	struct i2c_adapter *adap = &i2c->adap;
469 
470 	/* Single transfer error check:
471 	 * According to databook, TX/RX FIFOs would be flushed when
472 	 * the abort interrupt occurred.
473 	 */
474 	if (abort & ABRT_MASTER_DIS)
475 		dev_err(&adap->dev,
476 		"initiate master operation with master mode disabled.\n");
477 	if (abort & ABRT_10B_RD_NORSTRT)
478 		dev_err(&adap->dev,
479 	"RESTART disabled and master sent READ cmd in 10-bit addressing.\n");
480 
481 	if (abort & ABRT_SBYTE_NORSTRT) {
482 		dev_err(&adap->dev,
483 		"RESTART disabled and user is trying to send START byte.\n");
484 		writel(~ABRT_SBYTE_NORSTRT, i2c->base + IC_TX_ABRT_SOURCE);
485 		writel(RESTART, i2c->base + IC_CON);
486 		writel(~IC_TAR_SPECIAL, i2c->base + IC_TAR);
487 	}
488 
489 	if (abort & ABRT_SBYTE_ACKDET)
490 		dev_err(&adap->dev,
491 			"START byte was not acknowledged.\n");
492 	if (abort & ABRT_TXDATA_NOACK)
493 		dev_dbg(&adap->dev,
494 			"No acknowledgement received from slave.\n");
495 	if (abort & ABRT_10ADDR2_NOACK)
496 		dev_dbg(&adap->dev,
497 	"The 2nd address byte of the 10-bit address was not acknowledged.\n");
498 	if (abort & ABRT_10ADDR1_NOACK)
499 		dev_dbg(&adap->dev,
500 	"The 1st address byte of 10-bit address was not acknowledged.\n");
501 	if (abort & ABRT_7B_ADDR_NOACK)
502 		dev_dbg(&adap->dev,
503 			"I2C slave device not acknowledged.\n");
504 
505 	/* Clear TX_ABRT bit */
506 	readl(i2c->base + IC_CLR_TX_ABRT);
507 	i2c->status = STATUS_XFER_ABORT;
508 }
509 
510 /**
511  * xfer_read - Internal function to implement master read transfer.
512  * @adap: i2c_adapter struct pointer
513  * @buf: buffer in i2c_msg
514  * @length: number of bytes to be read
515  *
516  * Return Values:
517  * 0		if the read transfer succeeds
518  * -ETIMEDOUT	if cannot read the "raw" interrupt register
519  * -EINVAL	if a transfer abort occurred
520  *
521  * For every byte, a "READ" command will be loaded into IC_DATA_CMD prior to
522  * data transfer. The actual "read" operation will be performed if an RX_FULL
523  * interrupt occurred.
524  *
525  * Note there may be two interrupt signals captured, one should read
526  * IC_RAW_INTR_STAT to separate between errors and actual data.
527  */
xfer_read(struct i2c_adapter * adap,unsigned char * buf,int length)528 static int xfer_read(struct i2c_adapter *adap, unsigned char *buf, int length)
529 {
530 	struct intel_mid_i2c_private *i2c = i2c_get_adapdata(adap);
531 	int i = length;
532 	int err;
533 
534 	if (length >= 256) {
535 		dev_err(&adap->dev,
536 			"I2C FIFO cannot support larger than 256 bytes\n");
537 		return -EMSGSIZE;
538 	}
539 
540 	INIT_COMPLETION(i2c->complete);
541 
542 	readl(i2c->base + IC_CLR_INTR);
543 	writel(0x0044, i2c->base + IC_INTR_MASK);
544 
545 	i2c->status = STATUS_READ_START;
546 
547 	while (i--)
548 		writel(IC_RD, i2c->base + IC_DATA_CMD);
549 
550 	i2c->status = STATUS_READ_START;
551 	err = wait_for_completion_interruptible_timeout(&i2c->complete, HZ);
552 	if (!err) {
553 		dev_err(&adap->dev, "Timeout for ACK from I2C slave device\n");
554 		intel_mid_i2c_hwinit(i2c);
555 		return -ETIMEDOUT;
556 	}
557 	if (i2c->status == STATUS_READ_SUCCESS)
558 		return 0;
559 	else
560 		return -EIO;
561 }
562 
563 /**
564  * xfer_write - Internal function to implement master write transfer.
565  * @adap: i2c_adapter struct pointer
566  * @buf: buffer in i2c_msg
567  * @length: number of bytes to be read
568  *
569  * Return Values:
570  * 0	if the read transfer succeeds
571  * -ETIMEDOUT	if we cannot read the "raw" interrupt register
572  * -EINVAL	if a transfer abort occurred
573  *
574  * For every byte, a "WRITE" command will be loaded into IC_DATA_CMD prior to
575  * data transfer. The actual "write" operation will be performed when the
576  * RX_FULL interrupt signal occurs.
577  *
578  * Note there may be two interrupt signals captured, one should read
579  * IC_RAW_INTR_STAT to separate between errors and actual data.
580  */
xfer_write(struct i2c_adapter * adap,unsigned char * buf,int length)581 static int xfer_write(struct i2c_adapter *adap,
582 		      unsigned char *buf, int length)
583 {
584 	struct intel_mid_i2c_private *i2c = i2c_get_adapdata(adap);
585 	int i, err;
586 
587 	if (length >= 256) {
588 		dev_err(&adap->dev,
589 			"I2C FIFO cannot support larger than 256 bytes\n");
590 		return -EMSGSIZE;
591 	}
592 
593 	INIT_COMPLETION(i2c->complete);
594 
595 	readl(i2c->base + IC_CLR_INTR);
596 	writel(0x0050, i2c->base + IC_INTR_MASK);
597 
598 	i2c->status = STATUS_WRITE_START;
599 	for (i = 0; i < length; i++)
600 		writel((u16)(*(buf + i)), i2c->base + IC_DATA_CMD);
601 
602 	i2c->status = STATUS_WRITE_START;
603 	err = wait_for_completion_interruptible_timeout(&i2c->complete, HZ);
604 	if (!err) {
605 		dev_err(&adap->dev, "Timeout for ACK from I2C slave device\n");
606 		intel_mid_i2c_hwinit(i2c);
607 		return -ETIMEDOUT;
608 	} else {
609 		if (i2c->status == STATUS_WRITE_SUCCESS)
610 			return 0;
611 		else
612 			return -EIO;
613 	}
614 }
615 
intel_mid_i2c_setup(struct i2c_adapter * adap,struct i2c_msg * pmsg)616 static int intel_mid_i2c_setup(struct i2c_adapter *adap,  struct i2c_msg *pmsg)
617 {
618 	struct intel_mid_i2c_private *i2c = i2c_get_adapdata(adap);
619 	int err;
620 	u32 reg;
621 	u32 bit_mask;
622 	u32 mode;
623 
624 	/* Disable device first */
625 	err = intel_mid_i2c_disable(adap);
626 	if (err) {
627 		dev_err(&adap->dev,
628 			"Cannot disable i2c controller, timeout\n");
629 		return err;
630 	}
631 
632 	mode = (1 + i2c->speed) << 1;
633 	/* set the speed mode */
634 	reg = readl(i2c->base + IC_CON);
635 	if ((reg & 0x06) != mode) {
636 		dev_dbg(&adap->dev, "set mode %d\n", i2c->speed);
637 		writel((reg & ~0x6) | mode, i2c->base + IC_CON);
638 	}
639 
640 	reg = readl(i2c->base + IC_CON);
641 	/* use 7-bit addressing */
642 	if (pmsg->flags & I2C_M_TEN) {
643 		if ((reg & ADDR_10BIT) != ADDR_10BIT) {
644 			dev_dbg(&adap->dev, "set i2c 10 bit address mode\n");
645 			writel(reg | ADDR_10BIT, i2c->base + IC_CON);
646 		}
647 	} else {
648 		if ((reg & ADDR_10BIT) != 0x0) {
649 			dev_dbg(&adap->dev, "set i2c 7 bit address mode\n");
650 			writel(reg & ~ADDR_10BIT, i2c->base + IC_CON);
651 		}
652 	}
653 	/* enable restart conditions */
654 	reg = readl(i2c->base + IC_CON);
655 	if ((reg & RESTART) != RESTART) {
656 		dev_dbg(&adap->dev, "enable restart conditions\n");
657 		writel(reg | RESTART, i2c->base + IC_CON);
658 	}
659 
660 	/* enable master FSM */
661 	reg = readl(i2c->base + IC_CON);
662 	dev_dbg(&adap->dev, "ic_con reg is 0x%x\n", reg);
663 	writel(reg | MASTER_EN, i2c->base + IC_CON);
664 	if ((reg & SLV_DIS) != SLV_DIS) {
665 		dev_dbg(&adap->dev, "enable master FSM\n");
666 		writel(reg | SLV_DIS, i2c->base + IC_CON);
667 		dev_dbg(&adap->dev, "ic_con reg is 0x%x\n", reg);
668 	}
669 
670 	/* use target address when initiating transfer */
671 	reg = readl(i2c->base + IC_TAR);
672 	bit_mask = IC_TAR_SPECIAL | IC_TAR_GC_OR_START;
673 
674 	if ((reg & bit_mask) != 0x0) {
675 		dev_dbg(&adap->dev,
676 	 "WR: use target address when intiating transfer, i2c_tx_target\n");
677 		writel(reg & ~bit_mask, i2c->base + IC_TAR);
678 	}
679 
680 	/* set target address to the I2C slave address */
681 	dev_dbg(&adap->dev,
682 		"set target address to the I2C slave address, addr is %x\n",
683 			pmsg->addr);
684 	writel(pmsg->addr | (pmsg->flags & I2C_M_TEN ? IC_TAR_10BIT_ADDR : 0),
685 		i2c->base + IC_TAR);
686 
687 	/* Enable I2C controller */
688 	writel(ENABLE, i2c->base + IC_ENABLE);
689 
690 	return 0;
691 }
692 
693 /**
694  * intel_mid_i2c_xfer - Main master transfer routine.
695  * @adap: i2c_adapter struct pointer
696  * @pmsg: i2c_msg struct pointer
697  * @num: number of i2c_msg
698  *
699  * Return Values:
700  * +		number of messages transferred
701  * -ETIMEDOUT	If cannot disable I2C controller or read IC_STATUS
702  * -EINVAL	If the address in i2c_msg is invalid
703  *
704  * This function will be registered in i2c-core and exposed to external
705  * I2C clients.
706  * 1. Disable I2C controller
707  * 2. Unmask three interrupts: RX_FULL, TX_EMPTY, TX_ABRT
708  * 3. Check if address in i2c_msg is valid
709  * 4. Enable I2C controller
710  * 5. Perform real transfer (call xfer_read or xfer_write)
711  * 6. Wait until the current transfer is finished (check bus state)
712  * 7. Mask and clear all interrupts
713  */
intel_mid_i2c_xfer(struct i2c_adapter * adap,struct i2c_msg * pmsg,int num)714 static int intel_mid_i2c_xfer(struct i2c_adapter *adap,
715 			 struct i2c_msg *pmsg,
716 			 int num)
717 {
718 	struct intel_mid_i2c_private *i2c = i2c_get_adapdata(adap);
719 	int i, err = 0;
720 
721 	/* if number of messages equal 0*/
722 	if (num == 0)
723 		return 0;
724 
725 	pm_runtime_get(i2c->dev);
726 
727 	mutex_lock(&i2c->lock);
728 	dev_dbg(&adap->dev, "intel_mid_i2c_xfer, process %d msg(s)\n", num);
729 	dev_dbg(&adap->dev, "slave address is %x\n", pmsg->addr);
730 
731 
732 	if (i2c->status != STATUS_IDLE) {
733 		dev_err(&adap->dev, "Adapter %d in transfer/standby\n",
734 								adap->nr);
735 		mutex_unlock(&i2c->lock);
736 		pm_runtime_put(i2c->dev);
737 		return -1;
738 	}
739 
740 
741 	for (i = 1; i < num; i++) {
742 		/* Message address equal? */
743 		if (unlikely(intel_mid_i2c_address_neq(&pmsg[0], &pmsg[i]))) {
744 			dev_err(&adap->dev, "Invalid address in msg[%d]\n", i);
745 			mutex_unlock(&i2c->lock);
746 			pm_runtime_put(i2c->dev);
747 			return -EINVAL;
748 		}
749 	}
750 
751 	if (intel_mid_i2c_setup(adap, pmsg)) {
752 		mutex_unlock(&i2c->lock);
753 		pm_runtime_put(i2c->dev);
754 		return -EINVAL;
755 	}
756 
757 	for (i = 0; i < num; i++) {
758 		i2c->msg = pmsg;
759 		i2c->status = STATUS_IDLE;
760 		/* Read or Write */
761 		if (pmsg->flags & I2C_M_RD) {
762 			dev_dbg(&adap->dev, "I2C_M_RD\n");
763 			err = xfer_read(adap, pmsg->buf, pmsg->len);
764 		} else {
765 			dev_dbg(&adap->dev, "I2C_M_WR\n");
766 			err = xfer_write(adap, pmsg->buf, pmsg->len);
767 		}
768 		if (err < 0)
769 			break;
770 		dev_dbg(&adap->dev, "msg[%d] transfer complete\n", i);
771 		pmsg++;		/* next message */
772 	}
773 
774 	/* Mask interrupts */
775 	writel(0x0000, i2c->base + IC_INTR_MASK);
776 	/* Clear all interrupts */
777 	readl(i2c->base + IC_CLR_INTR);
778 
779 	i2c->status = STATUS_IDLE;
780 	mutex_unlock(&i2c->lock);
781 	pm_runtime_put(i2c->dev);
782 
783 	return err;
784 }
785 
intel_mid_i2c_runtime_suspend(struct device * dev)786 static int intel_mid_i2c_runtime_suspend(struct device *dev)
787 {
788 	struct pci_dev *pdev = to_pci_dev(dev);
789 	struct intel_mid_i2c_private *i2c = pci_get_drvdata(pdev);
790 	struct i2c_adapter *adap = to_i2c_adapter(dev);
791 	int err;
792 
793 	if (i2c->status != STATUS_IDLE)
794 		return -1;
795 
796 	intel_mid_i2c_disable(adap);
797 
798 	err = pci_save_state(pdev);
799 	if (err) {
800 		dev_err(dev, "pci_save_state failed\n");
801 		return err;
802 	}
803 
804 	err = pci_set_power_state(pdev, PCI_D3hot);
805 	if (err) {
806 		dev_err(dev, "pci_set_power_state failed\n");
807 		return err;
808 	}
809 	i2c->status = STATUS_STANDBY;
810 
811 	return 0;
812 }
813 
intel_mid_i2c_runtime_resume(struct device * dev)814 static int intel_mid_i2c_runtime_resume(struct device *dev)
815 {
816 	struct pci_dev *pdev = to_pci_dev(dev);
817 	struct intel_mid_i2c_private *i2c = pci_get_drvdata(pdev);
818 	int err;
819 
820 	if (i2c->status != STATUS_STANDBY)
821 		return 0;
822 
823 	pci_set_power_state(pdev, PCI_D0);
824 	pci_restore_state(pdev);
825 	err = pci_enable_device(pdev);
826 	if (err) {
827 		dev_err(dev, "pci_enable_device failed\n");
828 		return err;
829 	}
830 
831 	i2c->status = STATUS_IDLE;
832 
833 	intel_mid_i2c_hwinit(i2c);
834 	return err;
835 }
836 
i2c_isr_read(struct intel_mid_i2c_private * i2c)837 static void i2c_isr_read(struct intel_mid_i2c_private *i2c)
838 {
839 	struct i2c_msg *msg = i2c->msg;
840 	int rx_num;
841 	u32 len;
842 	u8 *buf;
843 
844 	if (!(msg->flags & I2C_M_RD))
845 		return;
846 
847 	if (i2c->status != STATUS_READ_IN_PROGRESS) {
848 		len = msg->len;
849 		buf = msg->buf;
850 	} else {
851 		len = i2c->rx_buf_len;
852 		buf = i2c->rx_buf;
853 	}
854 
855 	rx_num = readl(i2c->base + IC_RXFLR);
856 
857 	for (; len > 0 && rx_num > 0; len--, rx_num--)
858 		*buf++ = readl(i2c->base + IC_DATA_CMD);
859 
860 	if (len > 0) {
861 		i2c->status = STATUS_READ_IN_PROGRESS;
862 		i2c->rx_buf_len = len;
863 		i2c->rx_buf = buf;
864 	} else
865 		i2c->status = STATUS_READ_SUCCESS;
866 
867 	return;
868 }
869 
intel_mid_i2c_isr(int this_irq,void * dev)870 static irqreturn_t intel_mid_i2c_isr(int this_irq, void *dev)
871 {
872 	struct intel_mid_i2c_private *i2c = dev;
873 	u32 stat = readl(i2c->base + IC_INTR_STAT);
874 
875 	if (!stat)
876 		return IRQ_NONE;
877 
878 	dev_dbg(&i2c->adap.dev, "%s, stat = 0x%x\n", __func__, stat);
879 	stat &= 0x54;
880 
881 	if (i2c->status != STATUS_WRITE_START &&
882 	    i2c->status != STATUS_READ_START &&
883 	    i2c->status != STATUS_READ_IN_PROGRESS)
884 		goto err;
885 
886 	if (stat & TX_ABRT)
887 		i2c->abort = readl(i2c->base + IC_TX_ABRT_SOURCE);
888 
889 	readl(i2c->base + IC_CLR_INTR);
890 
891 	if (stat & TX_ABRT) {
892 		intel_mid_i2c_abort(i2c);
893 		goto exit;
894 	}
895 
896 	if (stat & RX_FULL) {
897 		i2c_isr_read(i2c);
898 		goto exit;
899 	}
900 
901 	if (stat & TX_EMPTY) {
902 		if (readl(i2c->base + IC_STATUS) & 0x4)
903 			i2c->status = STATUS_WRITE_SUCCESS;
904 	}
905 
906 exit:
907 	if (i2c->status == STATUS_READ_SUCCESS ||
908 	    i2c->status == STATUS_WRITE_SUCCESS ||
909 	    i2c->status == STATUS_XFER_ABORT) {
910 		/* Clear all interrupts */
911 		readl(i2c->base + IC_CLR_INTR);
912 		/* Mask interrupts */
913 		writel(0, i2c->base + IC_INTR_MASK);
914 		complete(&i2c->complete);
915 	}
916 err:
917 	return IRQ_HANDLED;
918 }
919 
920 static struct i2c_algorithm intel_mid_i2c_algorithm = {
921 	.master_xfer	= intel_mid_i2c_xfer,
922 	.functionality	= intel_mid_i2c_func,
923 };
924 
925 
926 static const struct dev_pm_ops intel_mid_i2c_pm_ops = {
927 	.runtime_suspend = intel_mid_i2c_runtime_suspend,
928 	.runtime_resume = intel_mid_i2c_runtime_resume,
929 };
930 
931 /**
932  * intel_mid_i2c_probe - I2C controller initialization routine
933  * @dev: pci device
934  * @id: device id
935  *
936  * Return Values:
937  * 0		success
938  * -ENODEV	If cannot allocate pci resource
939  * -ENOMEM	If the register base remapping failed, or
940  *		if kzalloc failed
941  *
942  * Initialization steps:
943  * 1. Request for PCI resource
944  * 2. Remap the start address of PCI resource to register base
945  * 3. Request for device memory region
946  * 4. Fill in the struct members of intel_mid_i2c_private
947  * 5. Call intel_mid_i2c_hwinit() for hardware initialization
948  * 6. Register I2C adapter in i2c-core
949  */
intel_mid_i2c_probe(struct pci_dev * dev,const struct pci_device_id * id)950 static int __devinit intel_mid_i2c_probe(struct pci_dev *dev,
951 				    const struct pci_device_id *id)
952 {
953 	struct intel_mid_i2c_private *mrst;
954 	unsigned long start, len;
955 	int err, busnum;
956 	void __iomem *base = NULL;
957 
958 	dev_dbg(&dev->dev, "Get into probe function for I2C\n");
959 	err = pci_enable_device(dev);
960 	if (err) {
961 		dev_err(&dev->dev, "Failed to enable I2C PCI device (%d)\n",
962 			err);
963 		goto exit;
964 	}
965 
966 	/* Determine the address of the I2C area */
967 	start = pci_resource_start(dev, 0);
968 	len = pci_resource_len(dev, 0);
969 	if (!start || len == 0) {
970 		dev_err(&dev->dev, "base address not set\n");
971 		err = -ENODEV;
972 		goto exit;
973 	}
974 	dev_dbg(&dev->dev, "%s i2c resource start 0x%lx, len=%ld\n",
975 		PLATFORM, start, len);
976 
977 	err = pci_request_region(dev, 0, DRIVER_NAME);
978 	if (err) {
979 		dev_err(&dev->dev, "failed to request I2C region "
980 			"0x%lx-0x%lx\n", start,
981 			(unsigned long)pci_resource_end(dev, 0));
982 		goto exit;
983 	}
984 
985 	base = ioremap_nocache(start, len);
986 	if (!base) {
987 		dev_err(&dev->dev, "I/O memory remapping failed\n");
988 		err = -ENOMEM;
989 		goto fail0;
990 	}
991 
992 	/* Allocate the per-device data structure, intel_mid_i2c_private */
993 	mrst = kzalloc(sizeof(struct intel_mid_i2c_private), GFP_KERNEL);
994 	if (mrst == NULL) {
995 		dev_err(&dev->dev, "can't allocate interface\n");
996 		err = -ENOMEM;
997 		goto fail1;
998 	}
999 
1000 	/* Initialize struct members */
1001 	snprintf(mrst->adap.name, sizeof(mrst->adap.name),
1002 		"Intel MID I2C at %lx", start);
1003 	mrst->adap.owner = THIS_MODULE;
1004 	mrst->adap.algo = &intel_mid_i2c_algorithm;
1005 	mrst->adap.dev.parent = &dev->dev;
1006 	mrst->dev = &dev->dev;
1007 	mrst->base = base;
1008 	mrst->speed = STANDARD;
1009 	mrst->abort = 0;
1010 	mrst->rx_buf_len = 0;
1011 	mrst->status = STATUS_IDLE;
1012 
1013 	pci_set_drvdata(dev, mrst);
1014 	i2c_set_adapdata(&mrst->adap, mrst);
1015 
1016 	mrst->adap.nr = busnum = id->driver_data;
1017 	if (dev->device <= 0x0804)
1018 		mrst->platform = MOORESTOWN;
1019 	else
1020 		mrst->platform = MEDFIELD;
1021 
1022 	dev_dbg(&dev->dev, "I2C%d\n", busnum);
1023 
1024 	if (ctl_num > busnum) {
1025 		if (speed_mode[busnum] < 0 || speed_mode[busnum] >= NUM_SPEEDS)
1026 			dev_warn(&dev->dev, "invalid speed %d ignored.\n",
1027 							speed_mode[busnum]);
1028 		else
1029 			mrst->speed = speed_mode[busnum];
1030 	}
1031 
1032 	/* Initialize i2c controller */
1033 	err = intel_mid_i2c_hwinit(mrst);
1034 	if (err < 0) {
1035 		dev_err(&dev->dev, "I2C interface initialization failed\n");
1036 		goto fail2;
1037 	}
1038 
1039 	mutex_init(&mrst->lock);
1040 	init_completion(&mrst->complete);
1041 
1042 	/* Clear all interrupts */
1043 	readl(mrst->base + IC_CLR_INTR);
1044 	writel(0x0000, mrst->base + IC_INTR_MASK);
1045 
1046 	err = request_irq(dev->irq, intel_mid_i2c_isr, IRQF_SHARED,
1047 					mrst->adap.name, mrst);
1048 	if (err) {
1049 		dev_err(&dev->dev, "Failed to request IRQ for I2C controller: "
1050 			"%s", mrst->adap.name);
1051 		goto fail2;
1052 	}
1053 
1054 	/* Adapter registration */
1055 	err = i2c_add_numbered_adapter(&mrst->adap);
1056 	if (err) {
1057 		dev_err(&dev->dev, "Adapter %s registration failed\n",
1058 			mrst->adap.name);
1059 		goto fail3;
1060 	}
1061 
1062 	dev_dbg(&dev->dev, "%s I2C bus %d driver bind success.\n",
1063 		(mrst->platform == MOORESTOWN) ? "Moorestown" : "Medfield",
1064 		busnum);
1065 
1066 	pm_runtime_enable(&dev->dev);
1067 	return 0;
1068 
1069 fail3:
1070 	free_irq(dev->irq, mrst);
1071 fail2:
1072 	pci_set_drvdata(dev, NULL);
1073 	kfree(mrst);
1074 fail1:
1075 	iounmap(base);
1076 fail0:
1077 	pci_release_region(dev, 0);
1078 exit:
1079 	return err;
1080 }
1081 
intel_mid_i2c_remove(struct pci_dev * dev)1082 static void __devexit intel_mid_i2c_remove(struct pci_dev *dev)
1083 {
1084 	struct intel_mid_i2c_private *mrst = pci_get_drvdata(dev);
1085 	intel_mid_i2c_disable(&mrst->adap);
1086 	if (i2c_del_adapter(&mrst->adap))
1087 		dev_err(&dev->dev, "Failed to delete i2c adapter");
1088 
1089 	free_irq(dev->irq, mrst);
1090 	pci_set_drvdata(dev, NULL);
1091 	iounmap(mrst->base);
1092 	kfree(mrst);
1093 	pci_release_region(dev, 0);
1094 }
1095 
1096 static DEFINE_PCI_DEVICE_TABLE(intel_mid_i2c_ids) = {
1097 	/* Moorestown */
1098 	{ PCI_VDEVICE(INTEL, 0x0802), 0 },
1099 	{ PCI_VDEVICE(INTEL, 0x0803), 1 },
1100 	{ PCI_VDEVICE(INTEL, 0x0804), 2 },
1101 	/* Medfield */
1102 	{ PCI_VDEVICE(INTEL, 0x0817), 3,},
1103 	{ PCI_VDEVICE(INTEL, 0x0818), 4 },
1104 	{ PCI_VDEVICE(INTEL, 0x0819), 5 },
1105 	{ PCI_VDEVICE(INTEL, 0x082C), 0 },
1106 	{ PCI_VDEVICE(INTEL, 0x082D), 1 },
1107 	{ PCI_VDEVICE(INTEL, 0x082E), 2 },
1108 	{ 0,}
1109 };
1110 MODULE_DEVICE_TABLE(pci, intel_mid_i2c_ids);
1111 
1112 static struct pci_driver intel_mid_i2c_driver = {
1113 	.name		= DRIVER_NAME,
1114 	.id_table	= intel_mid_i2c_ids,
1115 	.probe		= intel_mid_i2c_probe,
1116 	.remove		= __devexit_p(intel_mid_i2c_remove),
1117 };
1118 
intel_mid_i2c_init(void)1119 static int __init intel_mid_i2c_init(void)
1120 {
1121 	return pci_register_driver(&intel_mid_i2c_driver);
1122 }
1123 
intel_mid_i2c_exit(void)1124 static void __exit intel_mid_i2c_exit(void)
1125 {
1126 	pci_unregister_driver(&intel_mid_i2c_driver);
1127 }
1128 
1129 module_init(intel_mid_i2c_init);
1130 module_exit(intel_mid_i2c_exit);
1131 
1132 MODULE_AUTHOR("Ba Zheng <zheng.ba@intel.com>");
1133 MODULE_DESCRIPTION("I2C driver for Moorestown Platform");
1134 MODULE_LICENSE("GPL");
1135 MODULE_VERSION(VERSION);
1136