1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27 
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include "drmP.h"
32 #include "drm.h"
33 #include "drm_crtc.h"
34 #include "drm_crtc_helper.h"
35 #include "intel_drv.h"
36 #include "i915_drm.h"
37 #include "i915_drv.h"
38 #include "drm_dp_helper.h"
39 
40 #define DP_RECEIVER_CAP_SIZE	0xf
41 #define DP_LINK_STATUS_SIZE	6
42 #define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
43 
44 #define DP_LINK_CONFIGURATION_SIZE	9
45 
46 struct intel_dp {
47 	struct intel_encoder base;
48 	uint32_t output_reg;
49 	uint32_t DP;
50 	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
51 	bool has_audio;
52 	int force_audio;
53 	uint32_t color_range;
54 	int dpms_mode;
55 	uint8_t link_bw;
56 	uint8_t lane_count;
57 	uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
58 	struct i2c_adapter adapter;
59 	struct i2c_algo_dp_aux_data algo;
60 	bool is_pch_edp;
61 	uint8_t	train_set[4];
62 	int panel_power_up_delay;
63 	int panel_power_down_delay;
64 	int panel_power_cycle_delay;
65 	int backlight_on_delay;
66 	int backlight_off_delay;
67 	struct drm_display_mode *panel_fixed_mode;  /* for eDP */
68 	struct delayed_work panel_vdd_work;
69 	bool want_panel_vdd;
70 };
71 
72 /**
73  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
74  * @intel_dp: DP struct
75  *
76  * If a CPU or PCH DP output is attached to an eDP panel, this function
77  * will return true, and false otherwise.
78  */
is_edp(struct intel_dp * intel_dp)79 static bool is_edp(struct intel_dp *intel_dp)
80 {
81 	return intel_dp->base.type == INTEL_OUTPUT_EDP;
82 }
83 
84 /**
85  * is_pch_edp - is the port on the PCH and attached to an eDP panel?
86  * @intel_dp: DP struct
87  *
88  * Returns true if the given DP struct corresponds to a PCH DP port attached
89  * to an eDP panel, false otherwise.  Helpful for determining whether we
90  * may need FDI resources for a given DP output or not.
91  */
is_pch_edp(struct intel_dp * intel_dp)92 static bool is_pch_edp(struct intel_dp *intel_dp)
93 {
94 	return intel_dp->is_pch_edp;
95 }
96 
97 /**
98  * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
99  * @intel_dp: DP struct
100  *
101  * Returns true if the given DP struct corresponds to a CPU eDP port.
102  */
is_cpu_edp(struct intel_dp * intel_dp)103 static bool is_cpu_edp(struct intel_dp *intel_dp)
104 {
105 	return is_edp(intel_dp) && !is_pch_edp(intel_dp);
106 }
107 
enc_to_intel_dp(struct drm_encoder * encoder)108 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
109 {
110 	return container_of(encoder, struct intel_dp, base.base);
111 }
112 
intel_attached_dp(struct drm_connector * connector)113 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
114 {
115 	return container_of(intel_attached_encoder(connector),
116 			    struct intel_dp, base);
117 }
118 
119 /**
120  * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
121  * @encoder: DRM encoder
122  *
123  * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
124  * by intel_display.c.
125  */
intel_encoder_is_pch_edp(struct drm_encoder * encoder)126 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
127 {
128 	struct intel_dp *intel_dp;
129 
130 	if (!encoder)
131 		return false;
132 
133 	intel_dp = enc_to_intel_dp(encoder);
134 
135 	return is_pch_edp(intel_dp);
136 }
137 
138 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
139 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
140 static void intel_dp_link_down(struct intel_dp *intel_dp);
141 
142 void
intel_edp_link_config(struct intel_encoder * intel_encoder,int * lane_num,int * link_bw)143 intel_edp_link_config(struct intel_encoder *intel_encoder,
144 		       int *lane_num, int *link_bw)
145 {
146 	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
147 
148 	*lane_num = intel_dp->lane_count;
149 	if (intel_dp->link_bw == DP_LINK_BW_1_62)
150 		*link_bw = 162000;
151 	else if (intel_dp->link_bw == DP_LINK_BW_2_7)
152 		*link_bw = 270000;
153 }
154 
155 static int
intel_dp_max_lane_count(struct intel_dp * intel_dp)156 intel_dp_max_lane_count(struct intel_dp *intel_dp)
157 {
158 	int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
159 	switch (max_lane_count) {
160 	case 1: case 2: case 4:
161 		break;
162 	default:
163 		max_lane_count = 4;
164 	}
165 	return max_lane_count;
166 }
167 
168 static int
intel_dp_max_link_bw(struct intel_dp * intel_dp)169 intel_dp_max_link_bw(struct intel_dp *intel_dp)
170 {
171 	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
172 
173 	switch (max_link_bw) {
174 	case DP_LINK_BW_1_62:
175 	case DP_LINK_BW_2_7:
176 		break;
177 	default:
178 		max_link_bw = DP_LINK_BW_1_62;
179 		break;
180 	}
181 	return max_link_bw;
182 }
183 
184 static int
intel_dp_link_clock(uint8_t link_bw)185 intel_dp_link_clock(uint8_t link_bw)
186 {
187 	if (link_bw == DP_LINK_BW_2_7)
188 		return 270000;
189 	else
190 		return 162000;
191 }
192 
193 /*
194  * The units on the numbers in the next two are... bizarre.  Examples will
195  * make it clearer; this one parallels an example in the eDP spec.
196  *
197  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
198  *
199  *     270000 * 1 * 8 / 10 == 216000
200  *
201  * The actual data capacity of that configuration is 2.16Gbit/s, so the
202  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
203  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
204  * 119000.  At 18bpp that's 2142000 kilobits per second.
205  *
206  * Thus the strange-looking division by 10 in intel_dp_link_required, to
207  * get the result in decakilobits instead of kilobits.
208  */
209 
210 static int
intel_dp_link_required(int pixel_clock,int bpp)211 intel_dp_link_required(int pixel_clock, int bpp)
212 {
213 	return (pixel_clock * bpp + 9) / 10;
214 }
215 
216 static int
intel_dp_max_data_rate(int max_link_clock,int max_lanes)217 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
218 {
219 	return (max_link_clock * max_lanes * 8) / 10;
220 }
221 
222 static int
intel_dp_mode_valid(struct drm_connector * connector,struct drm_display_mode * mode)223 intel_dp_mode_valid(struct drm_connector *connector,
224 		    struct drm_display_mode *mode)
225 {
226 	struct intel_dp *intel_dp = intel_attached_dp(connector);
227 	int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
228 	int max_lanes = intel_dp_max_lane_count(intel_dp);
229 	int max_rate, mode_rate;
230 
231 	if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
232 		if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
233 			return MODE_PANEL;
234 
235 		if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
236 			return MODE_PANEL;
237 	}
238 
239 	mode_rate = intel_dp_link_required(mode->clock, 24);
240 	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
241 
242 	if (mode_rate > max_rate) {
243 			mode_rate = intel_dp_link_required(mode->clock, 18);
244 			if (mode_rate > max_rate)
245 				return MODE_CLOCK_HIGH;
246 			else
247 				mode->private_flags |= INTEL_MODE_DP_FORCE_6BPC;
248 	}
249 
250 	if (mode->clock < 10000)
251 		return MODE_CLOCK_LOW;
252 
253 	return MODE_OK;
254 }
255 
256 static uint32_t
pack_aux(uint8_t * src,int src_bytes)257 pack_aux(uint8_t *src, int src_bytes)
258 {
259 	int	i;
260 	uint32_t v = 0;
261 
262 	if (src_bytes > 4)
263 		src_bytes = 4;
264 	for (i = 0; i < src_bytes; i++)
265 		v |= ((uint32_t) src[i]) << ((3-i) * 8);
266 	return v;
267 }
268 
269 static void
unpack_aux(uint32_t src,uint8_t * dst,int dst_bytes)270 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
271 {
272 	int i;
273 	if (dst_bytes > 4)
274 		dst_bytes = 4;
275 	for (i = 0; i < dst_bytes; i++)
276 		dst[i] = src >> ((3-i) * 8);
277 }
278 
279 /* hrawclock is 1/4 the FSB frequency */
280 static int
intel_hrawclk(struct drm_device * dev)281 intel_hrawclk(struct drm_device *dev)
282 {
283 	struct drm_i915_private *dev_priv = dev->dev_private;
284 	uint32_t clkcfg;
285 
286 	clkcfg = I915_READ(CLKCFG);
287 	switch (clkcfg & CLKCFG_FSB_MASK) {
288 	case CLKCFG_FSB_400:
289 		return 100;
290 	case CLKCFG_FSB_533:
291 		return 133;
292 	case CLKCFG_FSB_667:
293 		return 166;
294 	case CLKCFG_FSB_800:
295 		return 200;
296 	case CLKCFG_FSB_1067:
297 		return 266;
298 	case CLKCFG_FSB_1333:
299 		return 333;
300 	/* these two are just a guess; one of them might be right */
301 	case CLKCFG_FSB_1600:
302 	case CLKCFG_FSB_1600_ALT:
303 		return 400;
304 	default:
305 		return 133;
306 	}
307 }
308 
ironlake_edp_have_panel_power(struct intel_dp * intel_dp)309 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
310 {
311 	struct drm_device *dev = intel_dp->base.base.dev;
312 	struct drm_i915_private *dev_priv = dev->dev_private;
313 
314 	return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
315 }
316 
ironlake_edp_have_panel_vdd(struct intel_dp * intel_dp)317 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
318 {
319 	struct drm_device *dev = intel_dp->base.base.dev;
320 	struct drm_i915_private *dev_priv = dev->dev_private;
321 
322 	return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
323 }
324 
325 static void
intel_dp_check_edp(struct intel_dp * intel_dp)326 intel_dp_check_edp(struct intel_dp *intel_dp)
327 {
328 	struct drm_device *dev = intel_dp->base.base.dev;
329 	struct drm_i915_private *dev_priv = dev->dev_private;
330 
331 	if (!is_edp(intel_dp))
332 		return;
333 	if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
334 		WARN(1, "eDP powered off while attempting aux channel communication.\n");
335 		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
336 			      I915_READ(PCH_PP_STATUS),
337 			      I915_READ(PCH_PP_CONTROL));
338 	}
339 }
340 
341 static int
intel_dp_aux_ch(struct intel_dp * intel_dp,uint8_t * send,int send_bytes,uint8_t * recv,int recv_size)342 intel_dp_aux_ch(struct intel_dp *intel_dp,
343 		uint8_t *send, int send_bytes,
344 		uint8_t *recv, int recv_size)
345 {
346 	uint32_t output_reg = intel_dp->output_reg;
347 	struct drm_device *dev = intel_dp->base.base.dev;
348 	struct drm_i915_private *dev_priv = dev->dev_private;
349 	uint32_t ch_ctl = output_reg + 0x10;
350 	uint32_t ch_data = ch_ctl + 4;
351 	int i;
352 	int recv_bytes;
353 	uint32_t status;
354 	uint32_t aux_clock_divider;
355 	int try, precharge;
356 
357 	intel_dp_check_edp(intel_dp);
358 	/* The clock divider is based off the hrawclk,
359 	 * and would like to run at 2MHz. So, take the
360 	 * hrawclk value and divide by 2 and use that
361 	 *
362 	 * Note that PCH attached eDP panels should use a 125MHz input
363 	 * clock divider.
364 	 */
365 	if (is_cpu_edp(intel_dp)) {
366 		if (IS_GEN6(dev) || IS_GEN7(dev))
367 			aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
368 		else
369 			aux_clock_divider = 225; /* eDP input clock at 450Mhz */
370 	} else if (HAS_PCH_SPLIT(dev))
371 		aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
372 	else
373 		aux_clock_divider = intel_hrawclk(dev) / 2;
374 
375 	if (IS_GEN6(dev))
376 		precharge = 3;
377 	else
378 		precharge = 5;
379 
380 	/* Try to wait for any previous AUX channel activity */
381 	for (try = 0; try < 3; try++) {
382 		status = I915_READ(ch_ctl);
383 		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
384 			break;
385 		msleep(1);
386 	}
387 
388 	if (try == 3) {
389 		WARN(1, "dp_aux_ch not started status 0x%08x\n",
390 		     I915_READ(ch_ctl));
391 		return -EBUSY;
392 	}
393 
394 	/* Must try at least 3 times according to DP spec */
395 	for (try = 0; try < 5; try++) {
396 		/* Load the send data into the aux channel data registers */
397 		for (i = 0; i < send_bytes; i += 4)
398 			I915_WRITE(ch_data + i,
399 				   pack_aux(send + i, send_bytes - i));
400 
401 		/* Send the command and wait for it to complete */
402 		I915_WRITE(ch_ctl,
403 			   DP_AUX_CH_CTL_SEND_BUSY |
404 			   DP_AUX_CH_CTL_TIME_OUT_400us |
405 			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
406 			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
407 			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
408 			   DP_AUX_CH_CTL_DONE |
409 			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
410 			   DP_AUX_CH_CTL_RECEIVE_ERROR);
411 		for (;;) {
412 			status = I915_READ(ch_ctl);
413 			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
414 				break;
415 			udelay(100);
416 		}
417 
418 		/* Clear done status and any errors */
419 		I915_WRITE(ch_ctl,
420 			   status |
421 			   DP_AUX_CH_CTL_DONE |
422 			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
423 			   DP_AUX_CH_CTL_RECEIVE_ERROR);
424 		if (status & DP_AUX_CH_CTL_DONE)
425 			break;
426 	}
427 
428 	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
429 		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
430 		return -EBUSY;
431 	}
432 
433 	/* Check for timeout or receive error.
434 	 * Timeouts occur when the sink is not connected
435 	 */
436 	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
437 		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
438 		return -EIO;
439 	}
440 
441 	/* Timeouts occur when the device isn't connected, so they're
442 	 * "normal" -- don't fill the kernel log with these */
443 	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
444 		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
445 		return -ETIMEDOUT;
446 	}
447 
448 	/* Unload any bytes sent back from the other side */
449 	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
450 		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
451 	if (recv_bytes > recv_size)
452 		recv_bytes = recv_size;
453 
454 	for (i = 0; i < recv_bytes; i += 4)
455 		unpack_aux(I915_READ(ch_data + i),
456 			   recv + i, recv_bytes - i);
457 
458 	return recv_bytes;
459 }
460 
461 /* Write data to the aux channel in native mode */
462 static int
intel_dp_aux_native_write(struct intel_dp * intel_dp,uint16_t address,uint8_t * send,int send_bytes)463 intel_dp_aux_native_write(struct intel_dp *intel_dp,
464 			  uint16_t address, uint8_t *send, int send_bytes)
465 {
466 	int ret;
467 	uint8_t	msg[20];
468 	int msg_bytes;
469 	uint8_t	ack;
470 
471 	intel_dp_check_edp(intel_dp);
472 	if (send_bytes > 16)
473 		return -1;
474 	msg[0] = AUX_NATIVE_WRITE << 4;
475 	msg[1] = address >> 8;
476 	msg[2] = address & 0xff;
477 	msg[3] = send_bytes - 1;
478 	memcpy(&msg[4], send, send_bytes);
479 	msg_bytes = send_bytes + 4;
480 	for (;;) {
481 		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
482 		if (ret < 0)
483 			return ret;
484 		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
485 			break;
486 		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
487 			udelay(100);
488 		else
489 			return -EIO;
490 	}
491 	return send_bytes;
492 }
493 
494 /* Write a single byte to the aux channel in native mode */
495 static int
intel_dp_aux_native_write_1(struct intel_dp * intel_dp,uint16_t address,uint8_t byte)496 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
497 			    uint16_t address, uint8_t byte)
498 {
499 	return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
500 }
501 
502 /* read bytes from a native aux channel */
503 static int
intel_dp_aux_native_read(struct intel_dp * intel_dp,uint16_t address,uint8_t * recv,int recv_bytes)504 intel_dp_aux_native_read(struct intel_dp *intel_dp,
505 			 uint16_t address, uint8_t *recv, int recv_bytes)
506 {
507 	uint8_t msg[4];
508 	int msg_bytes;
509 	uint8_t reply[20];
510 	int reply_bytes;
511 	uint8_t ack;
512 	int ret;
513 
514 	intel_dp_check_edp(intel_dp);
515 	msg[0] = AUX_NATIVE_READ << 4;
516 	msg[1] = address >> 8;
517 	msg[2] = address & 0xff;
518 	msg[3] = recv_bytes - 1;
519 
520 	msg_bytes = 4;
521 	reply_bytes = recv_bytes + 1;
522 
523 	for (;;) {
524 		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
525 				      reply, reply_bytes);
526 		if (ret == 0)
527 			return -EPROTO;
528 		if (ret < 0)
529 			return ret;
530 		ack = reply[0];
531 		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
532 			memcpy(recv, reply + 1, ret - 1);
533 			return ret - 1;
534 		}
535 		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
536 			udelay(100);
537 		else
538 			return -EIO;
539 	}
540 }
541 
542 static int
intel_dp_i2c_aux_ch(struct i2c_adapter * adapter,int mode,uint8_t write_byte,uint8_t * read_byte)543 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
544 		    uint8_t write_byte, uint8_t *read_byte)
545 {
546 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
547 	struct intel_dp *intel_dp = container_of(adapter,
548 						struct intel_dp,
549 						adapter);
550 	uint16_t address = algo_data->address;
551 	uint8_t msg[5];
552 	uint8_t reply[2];
553 	unsigned retry;
554 	int msg_bytes;
555 	int reply_bytes;
556 	int ret;
557 
558 	intel_dp_check_edp(intel_dp);
559 	/* Set up the command byte */
560 	if (mode & MODE_I2C_READ)
561 		msg[0] = AUX_I2C_READ << 4;
562 	else
563 		msg[0] = AUX_I2C_WRITE << 4;
564 
565 	if (!(mode & MODE_I2C_STOP))
566 		msg[0] |= AUX_I2C_MOT << 4;
567 
568 	msg[1] = address >> 8;
569 	msg[2] = address;
570 
571 	switch (mode) {
572 	case MODE_I2C_WRITE:
573 		msg[3] = 0;
574 		msg[4] = write_byte;
575 		msg_bytes = 5;
576 		reply_bytes = 1;
577 		break;
578 	case MODE_I2C_READ:
579 		msg[3] = 0;
580 		msg_bytes = 4;
581 		reply_bytes = 2;
582 		break;
583 	default:
584 		msg_bytes = 3;
585 		reply_bytes = 1;
586 		break;
587 	}
588 
589 	for (retry = 0; retry < 5; retry++) {
590 		ret = intel_dp_aux_ch(intel_dp,
591 				      msg, msg_bytes,
592 				      reply, reply_bytes);
593 		if (ret < 0) {
594 			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
595 			return ret;
596 		}
597 
598 		switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
599 		case AUX_NATIVE_REPLY_ACK:
600 			/* I2C-over-AUX Reply field is only valid
601 			 * when paired with AUX ACK.
602 			 */
603 			break;
604 		case AUX_NATIVE_REPLY_NACK:
605 			DRM_DEBUG_KMS("aux_ch native nack\n");
606 			return -EREMOTEIO;
607 		case AUX_NATIVE_REPLY_DEFER:
608 			udelay(100);
609 			continue;
610 		default:
611 			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
612 				  reply[0]);
613 			return -EREMOTEIO;
614 		}
615 
616 		switch (reply[0] & AUX_I2C_REPLY_MASK) {
617 		case AUX_I2C_REPLY_ACK:
618 			if (mode == MODE_I2C_READ) {
619 				*read_byte = reply[1];
620 			}
621 			return reply_bytes - 1;
622 		case AUX_I2C_REPLY_NACK:
623 			DRM_DEBUG_KMS("aux_i2c nack\n");
624 			return -EREMOTEIO;
625 		case AUX_I2C_REPLY_DEFER:
626 			DRM_DEBUG_KMS("aux_i2c defer\n");
627 			udelay(100);
628 			break;
629 		default:
630 			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
631 			return -EREMOTEIO;
632 		}
633 	}
634 
635 	DRM_ERROR("too many retries, giving up\n");
636 	return -EREMOTEIO;
637 }
638 
639 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
640 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
641 
642 static int
intel_dp_i2c_init(struct intel_dp * intel_dp,struct intel_connector * intel_connector,const char * name)643 intel_dp_i2c_init(struct intel_dp *intel_dp,
644 		  struct intel_connector *intel_connector, const char *name)
645 {
646 	int	ret;
647 
648 	DRM_DEBUG_KMS("i2c_init %s\n", name);
649 	intel_dp->algo.running = false;
650 	intel_dp->algo.address = 0;
651 	intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
652 
653 	memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
654 	intel_dp->adapter.owner = THIS_MODULE;
655 	intel_dp->adapter.class = I2C_CLASS_DDC;
656 	strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
657 	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
658 	intel_dp->adapter.algo_data = &intel_dp->algo;
659 	intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
660 
661 	ironlake_edp_panel_vdd_on(intel_dp);
662 	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
663 	ironlake_edp_panel_vdd_off(intel_dp, false);
664 	return ret;
665 }
666 
667 static bool
intel_dp_mode_fixup(struct drm_encoder * encoder,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)668 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
669 		    struct drm_display_mode *adjusted_mode)
670 {
671 	struct drm_device *dev = encoder->dev;
672 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
673 	int lane_count, clock;
674 	int max_lane_count = intel_dp_max_lane_count(intel_dp);
675 	int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
676 	int bpp = mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
677 	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
678 
679 	if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
680 		intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
681 		intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
682 					mode, adjusted_mode);
683 		/*
684 		 * the mode->clock is used to calculate the Data&Link M/N
685 		 * of the pipe. For the eDP the fixed clock should be used.
686 		 */
687 		mode->clock = intel_dp->panel_fixed_mode->clock;
688 	}
689 
690 	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
691 		for (clock = 0; clock <= max_clock; clock++) {
692 			int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
693 
694 			if (intel_dp_link_required(mode->clock, bpp)
695 					<= link_avail) {
696 				intel_dp->link_bw = bws[clock];
697 				intel_dp->lane_count = lane_count;
698 				adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
699 				DRM_DEBUG_KMS("Display port link bw %02x lane "
700 						"count %d clock %d\n",
701 				       intel_dp->link_bw, intel_dp->lane_count,
702 				       adjusted_mode->clock);
703 				return true;
704 			}
705 		}
706 	}
707 
708 	return false;
709 }
710 
711 struct intel_dp_m_n {
712 	uint32_t	tu;
713 	uint32_t	gmch_m;
714 	uint32_t	gmch_n;
715 	uint32_t	link_m;
716 	uint32_t	link_n;
717 };
718 
719 static void
intel_reduce_ratio(uint32_t * num,uint32_t * den)720 intel_reduce_ratio(uint32_t *num, uint32_t *den)
721 {
722 	while (*num > 0xffffff || *den > 0xffffff) {
723 		*num >>= 1;
724 		*den >>= 1;
725 	}
726 }
727 
728 static void
intel_dp_compute_m_n(int bpp,int nlanes,int pixel_clock,int link_clock,struct intel_dp_m_n * m_n)729 intel_dp_compute_m_n(int bpp,
730 		     int nlanes,
731 		     int pixel_clock,
732 		     int link_clock,
733 		     struct intel_dp_m_n *m_n)
734 {
735 	m_n->tu = 64;
736 	m_n->gmch_m = (pixel_clock * bpp) >> 3;
737 	m_n->gmch_n = link_clock * nlanes;
738 	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
739 	m_n->link_m = pixel_clock;
740 	m_n->link_n = link_clock;
741 	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
742 }
743 
744 void
intel_dp_set_m_n(struct drm_crtc * crtc,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)745 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
746 		 struct drm_display_mode *adjusted_mode)
747 {
748 	struct drm_device *dev = crtc->dev;
749 	struct drm_mode_config *mode_config = &dev->mode_config;
750 	struct drm_encoder *encoder;
751 	struct drm_i915_private *dev_priv = dev->dev_private;
752 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
753 	int lane_count = 4;
754 	struct intel_dp_m_n m_n;
755 	int pipe = intel_crtc->pipe;
756 
757 	/*
758 	 * Find the lane count in the intel_encoder private
759 	 */
760 	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
761 		struct intel_dp *intel_dp;
762 
763 		if (encoder->crtc != crtc)
764 			continue;
765 
766 		intel_dp = enc_to_intel_dp(encoder);
767 		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
768 		    intel_dp->base.type == INTEL_OUTPUT_EDP)
769 		{
770 			lane_count = intel_dp->lane_count;
771 			break;
772 		}
773 	}
774 
775 	/*
776 	 * Compute the GMCH and Link ratios. The '3' here is
777 	 * the number of bytes_per_pixel post-LUT, which we always
778 	 * set up for 8-bits of R/G/B, or 3 bytes total.
779 	 */
780 	intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
781 			     mode->clock, adjusted_mode->clock, &m_n);
782 
783 	if (HAS_PCH_SPLIT(dev)) {
784 		I915_WRITE(TRANSDATA_M1(pipe),
785 			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
786 			   m_n.gmch_m);
787 		I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
788 		I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
789 		I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
790 	} else {
791 		I915_WRITE(PIPE_GMCH_DATA_M(pipe),
792 			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
793 			   m_n.gmch_m);
794 		I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
795 		I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
796 		I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
797 	}
798 }
799 
800 static void ironlake_edp_pll_on(struct drm_encoder *encoder);
801 static void ironlake_edp_pll_off(struct drm_encoder *encoder);
802 
803 static void
intel_dp_mode_set(struct drm_encoder * encoder,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)804 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
805 		  struct drm_display_mode *adjusted_mode)
806 {
807 	struct drm_device *dev = encoder->dev;
808 	struct drm_i915_private *dev_priv = dev->dev_private;
809 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
810 	struct drm_crtc *crtc = intel_dp->base.base.crtc;
811 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
812 
813 	/* Turn on the eDP PLL if needed */
814 	if (is_edp(intel_dp)) {
815 		if (!is_pch_edp(intel_dp))
816 			ironlake_edp_pll_on(encoder);
817 		else
818 			ironlake_edp_pll_off(encoder);
819 	}
820 
821 	/*
822 	 * There are four kinds of DP registers:
823 	 *
824 	 * 	IBX PCH
825 	 * 	SNB CPU
826 	 *	IVB CPU
827 	 * 	CPT PCH
828 	 *
829 	 * IBX PCH and CPU are the same for almost everything,
830 	 * except that the CPU DP PLL is configured in this
831 	 * register
832 	 *
833 	 * CPT PCH is quite different, having many bits moved
834 	 * to the TRANS_DP_CTL register instead. That
835 	 * configuration happens (oddly) in ironlake_pch_enable
836 	 */
837 
838 	/* Preserve the BIOS-computed detected bit. This is
839 	 * supposed to be read-only.
840 	 */
841 	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
842 	intel_dp->DP |=  DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
843 
844 	/* Handle DP bits in common between all three register formats */
845 
846 	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
847 
848 	switch (intel_dp->lane_count) {
849 	case 1:
850 		intel_dp->DP |= DP_PORT_WIDTH_1;
851 		break;
852 	case 2:
853 		intel_dp->DP |= DP_PORT_WIDTH_2;
854 		break;
855 	case 4:
856 		intel_dp->DP |= DP_PORT_WIDTH_4;
857 		break;
858 	}
859 	if (intel_dp->has_audio) {
860 		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
861 				 pipe_name(intel_crtc->pipe));
862 		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
863 		intel_write_eld(encoder, adjusted_mode);
864 	}
865 	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
866 	intel_dp->link_configuration[0] = intel_dp->link_bw;
867 	intel_dp->link_configuration[1] = intel_dp->lane_count;
868 	intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
869 	/*
870 	 * Check for DPCD version > 1.1 and enhanced framing support
871 	 */
872 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
873 	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
874 		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
875 	}
876 
877 	/* Split out the IBX/CPU vs CPT settings */
878 
879 	if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
880 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
881 			intel_dp->DP |= DP_SYNC_HS_HIGH;
882 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
883 			intel_dp->DP |= DP_SYNC_VS_HIGH;
884 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
885 
886 		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
887 			intel_dp->DP |= DP_ENHANCED_FRAMING;
888 
889 		intel_dp->DP |= intel_crtc->pipe << 29;
890 
891 		/* don't miss out required setting for eDP */
892 		intel_dp->DP |= DP_PLL_ENABLE;
893 		if (adjusted_mode->clock < 200000)
894 			intel_dp->DP |= DP_PLL_FREQ_160MHZ;
895 		else
896 			intel_dp->DP |= DP_PLL_FREQ_270MHZ;
897 	} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
898 		intel_dp->DP |= intel_dp->color_range;
899 
900 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
901 			intel_dp->DP |= DP_SYNC_HS_HIGH;
902 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
903 			intel_dp->DP |= DP_SYNC_VS_HIGH;
904 		intel_dp->DP |= DP_LINK_TRAIN_OFF;
905 
906 		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
907 			intel_dp->DP |= DP_ENHANCED_FRAMING;
908 
909 		if (intel_crtc->pipe == 1)
910 			intel_dp->DP |= DP_PIPEB_SELECT;
911 
912 		if (is_cpu_edp(intel_dp)) {
913 			/* don't miss out required setting for eDP */
914 			intel_dp->DP |= DP_PLL_ENABLE;
915 			if (adjusted_mode->clock < 200000)
916 				intel_dp->DP |= DP_PLL_FREQ_160MHZ;
917 			else
918 				intel_dp->DP |= DP_PLL_FREQ_270MHZ;
919 		}
920 	} else {
921 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
922 	}
923 }
924 
925 #define IDLE_ON_MASK		(PP_ON | 0 	  | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
926 #define IDLE_ON_VALUE   	(PP_ON | 0 	  | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
927 
928 #define IDLE_OFF_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
929 #define IDLE_OFF_VALUE		(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
930 
931 #define IDLE_CYCLE_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
932 #define IDLE_CYCLE_VALUE	(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
933 
ironlake_wait_panel_status(struct intel_dp * intel_dp,u32 mask,u32 value)934 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
935 				       u32 mask,
936 				       u32 value)
937 {
938 	struct drm_device *dev = intel_dp->base.base.dev;
939 	struct drm_i915_private *dev_priv = dev->dev_private;
940 
941 	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
942 		      mask, value,
943 		      I915_READ(PCH_PP_STATUS),
944 		      I915_READ(PCH_PP_CONTROL));
945 
946 	if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
947 		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
948 			  I915_READ(PCH_PP_STATUS),
949 			  I915_READ(PCH_PP_CONTROL));
950 	}
951 }
952 
ironlake_wait_panel_on(struct intel_dp * intel_dp)953 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
954 {
955 	DRM_DEBUG_KMS("Wait for panel power on\n");
956 	ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
957 }
958 
ironlake_wait_panel_off(struct intel_dp * intel_dp)959 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
960 {
961 	DRM_DEBUG_KMS("Wait for panel power off time\n");
962 	ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
963 }
964 
ironlake_wait_panel_power_cycle(struct intel_dp * intel_dp)965 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
966 {
967 	DRM_DEBUG_KMS("Wait for panel power cycle\n");
968 	ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
969 }
970 
971 
972 /* Read the current pp_control value, unlocking the register if it
973  * is locked
974  */
975 
ironlake_get_pp_control(struct drm_i915_private * dev_priv)976 static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
977 {
978 	u32	control = I915_READ(PCH_PP_CONTROL);
979 
980 	control &= ~PANEL_UNLOCK_MASK;
981 	control |= PANEL_UNLOCK_REGS;
982 	return control;
983 }
984 
ironlake_edp_panel_vdd_on(struct intel_dp * intel_dp)985 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
986 {
987 	struct drm_device *dev = intel_dp->base.base.dev;
988 	struct drm_i915_private *dev_priv = dev->dev_private;
989 	u32 pp;
990 
991 	if (!is_edp(intel_dp))
992 		return;
993 	DRM_DEBUG_KMS("Turn eDP VDD on\n");
994 
995 	WARN(intel_dp->want_panel_vdd,
996 	     "eDP VDD already requested on\n");
997 
998 	intel_dp->want_panel_vdd = true;
999 
1000 	if (ironlake_edp_have_panel_vdd(intel_dp)) {
1001 		DRM_DEBUG_KMS("eDP VDD already on\n");
1002 		return;
1003 	}
1004 
1005 	if (!ironlake_edp_have_panel_power(intel_dp))
1006 		ironlake_wait_panel_power_cycle(intel_dp);
1007 
1008 	pp = ironlake_get_pp_control(dev_priv);
1009 	pp |= EDP_FORCE_VDD;
1010 	I915_WRITE(PCH_PP_CONTROL, pp);
1011 	POSTING_READ(PCH_PP_CONTROL);
1012 	DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1013 		      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1014 
1015 	/*
1016 	 * If the panel wasn't on, delay before accessing aux channel
1017 	 */
1018 	if (!ironlake_edp_have_panel_power(intel_dp)) {
1019 		DRM_DEBUG_KMS("eDP was not running\n");
1020 		msleep(intel_dp->panel_power_up_delay);
1021 	}
1022 }
1023 
ironlake_panel_vdd_off_sync(struct intel_dp * intel_dp)1024 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1025 {
1026 	struct drm_device *dev = intel_dp->base.base.dev;
1027 	struct drm_i915_private *dev_priv = dev->dev_private;
1028 	u32 pp;
1029 
1030 	if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1031 		pp = ironlake_get_pp_control(dev_priv);
1032 		pp &= ~EDP_FORCE_VDD;
1033 		I915_WRITE(PCH_PP_CONTROL, pp);
1034 		POSTING_READ(PCH_PP_CONTROL);
1035 
1036 		/* Make sure sequencer is idle before allowing subsequent activity */
1037 		DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1038 			      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1039 
1040 		msleep(intel_dp->panel_power_down_delay);
1041 	}
1042 }
1043 
ironlake_panel_vdd_work(struct work_struct * __work)1044 static void ironlake_panel_vdd_work(struct work_struct *__work)
1045 {
1046 	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1047 						 struct intel_dp, panel_vdd_work);
1048 	struct drm_device *dev = intel_dp->base.base.dev;
1049 
1050 	mutex_lock(&dev->mode_config.mutex);
1051 	ironlake_panel_vdd_off_sync(intel_dp);
1052 	mutex_unlock(&dev->mode_config.mutex);
1053 }
1054 
ironlake_edp_panel_vdd_off(struct intel_dp * intel_dp,bool sync)1055 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1056 {
1057 	if (!is_edp(intel_dp))
1058 		return;
1059 
1060 	DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1061 	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1062 
1063 	intel_dp->want_panel_vdd = false;
1064 
1065 	if (sync) {
1066 		ironlake_panel_vdd_off_sync(intel_dp);
1067 	} else {
1068 		/*
1069 		 * Queue the timer to fire a long
1070 		 * time from now (relative to the power down delay)
1071 		 * to keep the panel power up across a sequence of operations
1072 		 */
1073 		schedule_delayed_work(&intel_dp->panel_vdd_work,
1074 				      msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1075 	}
1076 }
1077 
ironlake_edp_panel_on(struct intel_dp * intel_dp)1078 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1079 {
1080 	struct drm_device *dev = intel_dp->base.base.dev;
1081 	struct drm_i915_private *dev_priv = dev->dev_private;
1082 	u32 pp;
1083 
1084 	if (!is_edp(intel_dp))
1085 		return;
1086 
1087 	DRM_DEBUG_KMS("Turn eDP power on\n");
1088 
1089 	if (ironlake_edp_have_panel_power(intel_dp)) {
1090 		DRM_DEBUG_KMS("eDP power already on\n");
1091 		return;
1092 	}
1093 
1094 	ironlake_wait_panel_power_cycle(intel_dp);
1095 
1096 	pp = ironlake_get_pp_control(dev_priv);
1097 	if (IS_GEN5(dev)) {
1098 		/* ILK workaround: disable reset around power sequence */
1099 		pp &= ~PANEL_POWER_RESET;
1100 		I915_WRITE(PCH_PP_CONTROL, pp);
1101 		POSTING_READ(PCH_PP_CONTROL);
1102 	}
1103 
1104 	pp |= POWER_TARGET_ON;
1105 	if (!IS_GEN5(dev))
1106 		pp |= PANEL_POWER_RESET;
1107 
1108 	I915_WRITE(PCH_PP_CONTROL, pp);
1109 	POSTING_READ(PCH_PP_CONTROL);
1110 
1111 	ironlake_wait_panel_on(intel_dp);
1112 
1113 	if (IS_GEN5(dev)) {
1114 		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1115 		I915_WRITE(PCH_PP_CONTROL, pp);
1116 		POSTING_READ(PCH_PP_CONTROL);
1117 	}
1118 }
1119 
ironlake_edp_panel_off(struct intel_dp * intel_dp)1120 static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1121 {
1122 	struct drm_device *dev = intel_dp->base.base.dev;
1123 	struct drm_i915_private *dev_priv = dev->dev_private;
1124 	u32 pp;
1125 
1126 	if (!is_edp(intel_dp))
1127 		return;
1128 
1129 	DRM_DEBUG_KMS("Turn eDP power off\n");
1130 
1131 	WARN(intel_dp->want_panel_vdd, "Cannot turn power off while VDD is on\n");
1132 
1133 	pp = ironlake_get_pp_control(dev_priv);
1134 	pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1135 	I915_WRITE(PCH_PP_CONTROL, pp);
1136 	POSTING_READ(PCH_PP_CONTROL);
1137 
1138 	ironlake_wait_panel_off(intel_dp);
1139 }
1140 
ironlake_edp_backlight_on(struct intel_dp * intel_dp)1141 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1142 {
1143 	struct drm_device *dev = intel_dp->base.base.dev;
1144 	struct drm_i915_private *dev_priv = dev->dev_private;
1145 	u32 pp;
1146 
1147 	if (!is_edp(intel_dp))
1148 		return;
1149 
1150 	DRM_DEBUG_KMS("\n");
1151 	/*
1152 	 * If we enable the backlight right away following a panel power
1153 	 * on, we may see slight flicker as the panel syncs with the eDP
1154 	 * link.  So delay a bit to make sure the image is solid before
1155 	 * allowing it to appear.
1156 	 */
1157 	msleep(intel_dp->backlight_on_delay);
1158 	pp = ironlake_get_pp_control(dev_priv);
1159 	pp |= EDP_BLC_ENABLE;
1160 	I915_WRITE(PCH_PP_CONTROL, pp);
1161 	POSTING_READ(PCH_PP_CONTROL);
1162 }
1163 
ironlake_edp_backlight_off(struct intel_dp * intel_dp)1164 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1165 {
1166 	struct drm_device *dev = intel_dp->base.base.dev;
1167 	struct drm_i915_private *dev_priv = dev->dev_private;
1168 	u32 pp;
1169 
1170 	if (!is_edp(intel_dp))
1171 		return;
1172 
1173 	DRM_DEBUG_KMS("\n");
1174 	pp = ironlake_get_pp_control(dev_priv);
1175 	pp &= ~EDP_BLC_ENABLE;
1176 	I915_WRITE(PCH_PP_CONTROL, pp);
1177 	POSTING_READ(PCH_PP_CONTROL);
1178 	msleep(intel_dp->backlight_off_delay);
1179 }
1180 
ironlake_edp_pll_on(struct drm_encoder * encoder)1181 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1182 {
1183 	struct drm_device *dev = encoder->dev;
1184 	struct drm_i915_private *dev_priv = dev->dev_private;
1185 	u32 dpa_ctl;
1186 
1187 	DRM_DEBUG_KMS("\n");
1188 	dpa_ctl = I915_READ(DP_A);
1189 	dpa_ctl |= DP_PLL_ENABLE;
1190 	I915_WRITE(DP_A, dpa_ctl);
1191 	POSTING_READ(DP_A);
1192 	udelay(200);
1193 }
1194 
ironlake_edp_pll_off(struct drm_encoder * encoder)1195 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1196 {
1197 	struct drm_device *dev = encoder->dev;
1198 	struct drm_i915_private *dev_priv = dev->dev_private;
1199 	u32 dpa_ctl;
1200 
1201 	dpa_ctl = I915_READ(DP_A);
1202 	dpa_ctl &= ~DP_PLL_ENABLE;
1203 	I915_WRITE(DP_A, dpa_ctl);
1204 	POSTING_READ(DP_A);
1205 	udelay(200);
1206 }
1207 
1208 /* If the sink supports it, try to set the power state appropriately */
intel_dp_sink_dpms(struct intel_dp * intel_dp,int mode)1209 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1210 {
1211 	int ret, i;
1212 
1213 	/* Should have a valid DPCD by this point */
1214 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1215 		return;
1216 
1217 	if (mode != DRM_MODE_DPMS_ON) {
1218 		ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1219 						  DP_SET_POWER_D3);
1220 		if (ret != 1)
1221 			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1222 	} else {
1223 		/*
1224 		 * When turning on, we need to retry for 1ms to give the sink
1225 		 * time to wake up.
1226 		 */
1227 		for (i = 0; i < 3; i++) {
1228 			ret = intel_dp_aux_native_write_1(intel_dp,
1229 							  DP_SET_POWER,
1230 							  DP_SET_POWER_D0);
1231 			if (ret == 1)
1232 				break;
1233 			msleep(1);
1234 		}
1235 	}
1236 }
1237 
intel_dp_prepare(struct drm_encoder * encoder)1238 static void intel_dp_prepare(struct drm_encoder *encoder)
1239 {
1240 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1241 
1242 	ironlake_edp_backlight_off(intel_dp);
1243 	ironlake_edp_panel_off(intel_dp);
1244 
1245 	/* Wake up the sink first */
1246 	ironlake_edp_panel_vdd_on(intel_dp);
1247 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1248 	intel_dp_link_down(intel_dp);
1249 	ironlake_edp_panel_vdd_off(intel_dp, false);
1250 
1251 	/* Make sure the panel is off before trying to
1252 	 * change the mode
1253 	 */
1254 }
1255 
intel_dp_commit(struct drm_encoder * encoder)1256 static void intel_dp_commit(struct drm_encoder *encoder)
1257 {
1258 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1259 	struct drm_device *dev = encoder->dev;
1260 	struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1261 
1262 	ironlake_edp_panel_vdd_on(intel_dp);
1263 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1264 	intel_dp_start_link_train(intel_dp);
1265 	ironlake_edp_panel_on(intel_dp);
1266 	ironlake_edp_panel_vdd_off(intel_dp, true);
1267 	intel_dp_complete_link_train(intel_dp);
1268 	ironlake_edp_backlight_on(intel_dp);
1269 
1270 	intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1271 
1272 	if (HAS_PCH_CPT(dev))
1273 		intel_cpt_verify_modeset(dev, intel_crtc->pipe);
1274 }
1275 
1276 static void
intel_dp_dpms(struct drm_encoder * encoder,int mode)1277 intel_dp_dpms(struct drm_encoder *encoder, int mode)
1278 {
1279 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1280 	struct drm_device *dev = encoder->dev;
1281 	struct drm_i915_private *dev_priv = dev->dev_private;
1282 	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1283 
1284 	if (mode != DRM_MODE_DPMS_ON) {
1285 		ironlake_edp_backlight_off(intel_dp);
1286 		ironlake_edp_panel_off(intel_dp);
1287 
1288 		ironlake_edp_panel_vdd_on(intel_dp);
1289 		intel_dp_sink_dpms(intel_dp, mode);
1290 		intel_dp_link_down(intel_dp);
1291 		ironlake_edp_panel_vdd_off(intel_dp, false);
1292 
1293 		if (is_cpu_edp(intel_dp))
1294 			ironlake_edp_pll_off(encoder);
1295 	} else {
1296 		if (is_cpu_edp(intel_dp))
1297 			ironlake_edp_pll_on(encoder);
1298 
1299 		ironlake_edp_panel_vdd_on(intel_dp);
1300 		intel_dp_sink_dpms(intel_dp, mode);
1301 		if (!(dp_reg & DP_PORT_EN)) {
1302 			intel_dp_start_link_train(intel_dp);
1303 			ironlake_edp_panel_on(intel_dp);
1304 			ironlake_edp_panel_vdd_off(intel_dp, true);
1305 			intel_dp_complete_link_train(intel_dp);
1306 		} else
1307 			ironlake_edp_panel_vdd_off(intel_dp, false);
1308 		ironlake_edp_backlight_on(intel_dp);
1309 	}
1310 	intel_dp->dpms_mode = mode;
1311 }
1312 
1313 /*
1314  * Native read with retry for link status and receiver capability reads for
1315  * cases where the sink may still be asleep.
1316  */
1317 static bool
intel_dp_aux_native_read_retry(struct intel_dp * intel_dp,uint16_t address,uint8_t * recv,int recv_bytes)1318 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1319 			       uint8_t *recv, int recv_bytes)
1320 {
1321 	int ret, i;
1322 
1323 	/*
1324 	 * Sinks are *supposed* to come up within 1ms from an off state,
1325 	 * but we're also supposed to retry 3 times per the spec.
1326 	 */
1327 	for (i = 0; i < 3; i++) {
1328 		ret = intel_dp_aux_native_read(intel_dp, address, recv,
1329 					       recv_bytes);
1330 		if (ret == recv_bytes)
1331 			return true;
1332 		msleep(1);
1333 	}
1334 
1335 	return false;
1336 }
1337 
1338 /*
1339  * Fetch AUX CH registers 0x202 - 0x207 which contain
1340  * link status information
1341  */
1342 static bool
intel_dp_get_link_status(struct intel_dp * intel_dp,uint8_t link_status[DP_LINK_STATUS_SIZE])1343 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1344 {
1345 	return intel_dp_aux_native_read_retry(intel_dp,
1346 					      DP_LANE0_1_STATUS,
1347 					      link_status,
1348 					      DP_LINK_STATUS_SIZE);
1349 }
1350 
1351 static uint8_t
intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],int r)1352 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1353 		     int r)
1354 {
1355 	return link_status[r - DP_LANE0_1_STATUS];
1356 }
1357 
1358 static uint8_t
intel_get_adjust_request_voltage(uint8_t adjust_request[2],int lane)1359 intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1360 				 int lane)
1361 {
1362 	int	    s = ((lane & 1) ?
1363 			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1364 			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1365 	uint8_t l = adjust_request[lane>>1];
1366 
1367 	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1368 }
1369 
1370 static uint8_t
intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],int lane)1371 intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1372 				      int lane)
1373 {
1374 	int	    s = ((lane & 1) ?
1375 			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1376 			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1377 	uint8_t l = adjust_request[lane>>1];
1378 
1379 	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1380 }
1381 
1382 
1383 #if 0
1384 static char	*voltage_names[] = {
1385 	"0.4V", "0.6V", "0.8V", "1.2V"
1386 };
1387 static char	*pre_emph_names[] = {
1388 	"0dB", "3.5dB", "6dB", "9.5dB"
1389 };
1390 static char	*link_train_names[] = {
1391 	"pattern 1", "pattern 2", "idle", "off"
1392 };
1393 #endif
1394 
1395 /*
1396  * These are source-specific values; current Intel hardware supports
1397  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1398  */
1399 
1400 static uint8_t
intel_dp_voltage_max(struct intel_dp * intel_dp)1401 intel_dp_voltage_max(struct intel_dp *intel_dp)
1402 {
1403 	struct drm_device *dev = intel_dp->base.base.dev;
1404 
1405 	if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1406 		return DP_TRAIN_VOLTAGE_SWING_800;
1407 	else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1408 		return DP_TRAIN_VOLTAGE_SWING_1200;
1409 	else
1410 		return DP_TRAIN_VOLTAGE_SWING_800;
1411 }
1412 
1413 static uint8_t
intel_dp_pre_emphasis_max(struct intel_dp * intel_dp,uint8_t voltage_swing)1414 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1415 {
1416 	struct drm_device *dev = intel_dp->base.base.dev;
1417 
1418 	if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1419 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1420 		case DP_TRAIN_VOLTAGE_SWING_400:
1421 			return DP_TRAIN_PRE_EMPHASIS_6;
1422 		case DP_TRAIN_VOLTAGE_SWING_600:
1423 		case DP_TRAIN_VOLTAGE_SWING_800:
1424 			return DP_TRAIN_PRE_EMPHASIS_3_5;
1425 		default:
1426 			return DP_TRAIN_PRE_EMPHASIS_0;
1427 		}
1428 	} else {
1429 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1430 		case DP_TRAIN_VOLTAGE_SWING_400:
1431 			return DP_TRAIN_PRE_EMPHASIS_6;
1432 		case DP_TRAIN_VOLTAGE_SWING_600:
1433 			return DP_TRAIN_PRE_EMPHASIS_6;
1434 		case DP_TRAIN_VOLTAGE_SWING_800:
1435 			return DP_TRAIN_PRE_EMPHASIS_3_5;
1436 		case DP_TRAIN_VOLTAGE_SWING_1200:
1437 		default:
1438 			return DP_TRAIN_PRE_EMPHASIS_0;
1439 		}
1440 	}
1441 }
1442 
1443 static void
intel_get_adjust_train(struct intel_dp * intel_dp,uint8_t link_status[DP_LINK_STATUS_SIZE])1444 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1445 {
1446 	uint8_t v = 0;
1447 	uint8_t p = 0;
1448 	int lane;
1449 	uint8_t	*adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1450 	uint8_t voltage_max;
1451 	uint8_t preemph_max;
1452 
1453 	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1454 		uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1455 		uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1456 
1457 		if (this_v > v)
1458 			v = this_v;
1459 		if (this_p > p)
1460 			p = this_p;
1461 	}
1462 
1463 	voltage_max = intel_dp_voltage_max(intel_dp);
1464 	if (v >= voltage_max)
1465 		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1466 
1467 	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1468 	if (p >= preemph_max)
1469 		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1470 
1471 	for (lane = 0; lane < 4; lane++)
1472 		intel_dp->train_set[lane] = v | p;
1473 }
1474 
1475 static uint32_t
intel_dp_signal_levels(uint8_t train_set)1476 intel_dp_signal_levels(uint8_t train_set)
1477 {
1478 	uint32_t	signal_levels = 0;
1479 
1480 	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1481 	case DP_TRAIN_VOLTAGE_SWING_400:
1482 	default:
1483 		signal_levels |= DP_VOLTAGE_0_4;
1484 		break;
1485 	case DP_TRAIN_VOLTAGE_SWING_600:
1486 		signal_levels |= DP_VOLTAGE_0_6;
1487 		break;
1488 	case DP_TRAIN_VOLTAGE_SWING_800:
1489 		signal_levels |= DP_VOLTAGE_0_8;
1490 		break;
1491 	case DP_TRAIN_VOLTAGE_SWING_1200:
1492 		signal_levels |= DP_VOLTAGE_1_2;
1493 		break;
1494 	}
1495 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1496 	case DP_TRAIN_PRE_EMPHASIS_0:
1497 	default:
1498 		signal_levels |= DP_PRE_EMPHASIS_0;
1499 		break;
1500 	case DP_TRAIN_PRE_EMPHASIS_3_5:
1501 		signal_levels |= DP_PRE_EMPHASIS_3_5;
1502 		break;
1503 	case DP_TRAIN_PRE_EMPHASIS_6:
1504 		signal_levels |= DP_PRE_EMPHASIS_6;
1505 		break;
1506 	case DP_TRAIN_PRE_EMPHASIS_9_5:
1507 		signal_levels |= DP_PRE_EMPHASIS_9_5;
1508 		break;
1509 	}
1510 	return signal_levels;
1511 }
1512 
1513 /* Gen6's DP voltage swing and pre-emphasis control */
1514 static uint32_t
intel_gen6_edp_signal_levels(uint8_t train_set)1515 intel_gen6_edp_signal_levels(uint8_t train_set)
1516 {
1517 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1518 					 DP_TRAIN_PRE_EMPHASIS_MASK);
1519 	switch (signal_levels) {
1520 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1521 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1522 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1523 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1524 		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1525 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1526 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1527 		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1528 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1529 	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1530 		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1531 	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1532 	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1533 		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1534 	default:
1535 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1536 			      "0x%x\n", signal_levels);
1537 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1538 	}
1539 }
1540 
1541 /* Gen7's DP voltage swing and pre-emphasis control */
1542 static uint32_t
intel_gen7_edp_signal_levels(uint8_t train_set)1543 intel_gen7_edp_signal_levels(uint8_t train_set)
1544 {
1545 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1546 					 DP_TRAIN_PRE_EMPHASIS_MASK);
1547 	switch (signal_levels) {
1548 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1549 		return EDP_LINK_TRAIN_400MV_0DB_IVB;
1550 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1551 		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1552 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1553 		return EDP_LINK_TRAIN_400MV_6DB_IVB;
1554 
1555 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1556 		return EDP_LINK_TRAIN_600MV_0DB_IVB;
1557 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1558 		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1559 
1560 	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1561 		return EDP_LINK_TRAIN_800MV_0DB_IVB;
1562 	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1563 		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1564 
1565 	default:
1566 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1567 			      "0x%x\n", signal_levels);
1568 		return EDP_LINK_TRAIN_500MV_0DB_IVB;
1569 	}
1570 }
1571 
1572 static uint8_t
intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],int lane)1573 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1574 		      int lane)
1575 {
1576 	int s = (lane & 1) * 4;
1577 	uint8_t l = link_status[lane>>1];
1578 
1579 	return (l >> s) & 0xf;
1580 }
1581 
1582 /* Check for clock recovery is done on all channels */
1583 static bool
intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE],int lane_count)1584 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1585 {
1586 	int lane;
1587 	uint8_t lane_status;
1588 
1589 	for (lane = 0; lane < lane_count; lane++) {
1590 		lane_status = intel_get_lane_status(link_status, lane);
1591 		if ((lane_status & DP_LANE_CR_DONE) == 0)
1592 			return false;
1593 	}
1594 	return true;
1595 }
1596 
1597 /* Check to see if channel eq is done on all channels */
1598 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1599 			 DP_LANE_CHANNEL_EQ_DONE|\
1600 			 DP_LANE_SYMBOL_LOCKED)
1601 static bool
intel_channel_eq_ok(struct intel_dp * intel_dp,uint8_t link_status[DP_LINK_STATUS_SIZE])1602 intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1603 {
1604 	uint8_t lane_align;
1605 	uint8_t lane_status;
1606 	int lane;
1607 
1608 	lane_align = intel_dp_link_status(link_status,
1609 					  DP_LANE_ALIGN_STATUS_UPDATED);
1610 	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1611 		return false;
1612 	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1613 		lane_status = intel_get_lane_status(link_status, lane);
1614 		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1615 			return false;
1616 	}
1617 	return true;
1618 }
1619 
1620 static bool
intel_dp_set_link_train(struct intel_dp * intel_dp,uint32_t dp_reg_value,uint8_t dp_train_pat)1621 intel_dp_set_link_train(struct intel_dp *intel_dp,
1622 			uint32_t dp_reg_value,
1623 			uint8_t dp_train_pat)
1624 {
1625 	struct drm_device *dev = intel_dp->base.base.dev;
1626 	struct drm_i915_private *dev_priv = dev->dev_private;
1627 	int ret;
1628 
1629 	I915_WRITE(intel_dp->output_reg, dp_reg_value);
1630 	POSTING_READ(intel_dp->output_reg);
1631 
1632 	intel_dp_aux_native_write_1(intel_dp,
1633 				    DP_TRAINING_PATTERN_SET,
1634 				    dp_train_pat);
1635 
1636 	ret = intel_dp_aux_native_write(intel_dp,
1637 					DP_TRAINING_LANE0_SET,
1638 					intel_dp->train_set,
1639 					intel_dp->lane_count);
1640 	if (ret != intel_dp->lane_count)
1641 		return false;
1642 
1643 	return true;
1644 }
1645 
1646 /* Enable corresponding port and start training pattern 1 */
1647 static void
intel_dp_start_link_train(struct intel_dp * intel_dp)1648 intel_dp_start_link_train(struct intel_dp *intel_dp)
1649 {
1650 	struct drm_device *dev = intel_dp->base.base.dev;
1651 	struct drm_i915_private *dev_priv = dev->dev_private;
1652 	struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1653 	int i;
1654 	uint8_t voltage;
1655 	bool clock_recovery = false;
1656 	int voltage_tries, loop_tries;
1657 	u32 reg;
1658 	uint32_t DP = intel_dp->DP;
1659 
1660 	/*
1661 	 * On CPT we have to enable the port in training pattern 1, which
1662 	 * will happen below in intel_dp_set_link_train.  Otherwise, enable
1663 	 * the port and wait for it to become active.
1664 	 */
1665 	if (!HAS_PCH_CPT(dev)) {
1666 		I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1667 		POSTING_READ(intel_dp->output_reg);
1668 		intel_wait_for_vblank(dev, intel_crtc->pipe);
1669 	}
1670 
1671 	/* Write the link configuration data */
1672 	intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1673 				  intel_dp->link_configuration,
1674 				  DP_LINK_CONFIGURATION_SIZE);
1675 
1676 	DP |= DP_PORT_EN;
1677 
1678 	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1679 		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1680 	else
1681 		DP &= ~DP_LINK_TRAIN_MASK;
1682 	memset(intel_dp->train_set, 0, 4);
1683 	voltage = 0xff;
1684 	voltage_tries = 0;
1685 	loop_tries = 0;
1686 	clock_recovery = false;
1687 	for (;;) {
1688 		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1689 		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
1690 		uint32_t    signal_levels;
1691 
1692 
1693 		if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1694 			signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1695 			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1696 		} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1697 			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1698 			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1699 		} else {
1700 			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1701 			DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1702 			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1703 		}
1704 
1705 		if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1706 			reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1707 		else
1708 			reg = DP | DP_LINK_TRAIN_PAT_1;
1709 
1710 		if (!intel_dp_set_link_train(intel_dp, reg,
1711 					     DP_TRAINING_PATTERN_1 |
1712 					     DP_LINK_SCRAMBLING_DISABLE))
1713 			break;
1714 		/* Set training pattern 1 */
1715 
1716 		udelay(100);
1717 		if (!intel_dp_get_link_status(intel_dp, link_status)) {
1718 			DRM_ERROR("failed to get link status\n");
1719 			break;
1720 		}
1721 
1722 		if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1723 			DRM_DEBUG_KMS("clock recovery OK\n");
1724 			clock_recovery = true;
1725 			break;
1726 		}
1727 
1728 		/* Check to see if we've tried the max voltage */
1729 		for (i = 0; i < intel_dp->lane_count; i++)
1730 			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1731 				break;
1732 		if (i == intel_dp->lane_count) {
1733 			++loop_tries;
1734 			if (loop_tries == 5) {
1735 				DRM_DEBUG_KMS("too many full retries, give up\n");
1736 				break;
1737 			}
1738 			memset(intel_dp->train_set, 0, 4);
1739 			voltage_tries = 0;
1740 			continue;
1741 		}
1742 
1743 		/* Check to see if we've tried the same voltage 5 times */
1744 		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1745 			++voltage_tries;
1746 			if (voltage_tries == 5) {
1747 				DRM_DEBUG_KMS("too many voltage retries, give up\n");
1748 				break;
1749 			}
1750 		} else
1751 			voltage_tries = 0;
1752 		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1753 
1754 		/* Compute new intel_dp->train_set as requested by target */
1755 		intel_get_adjust_train(intel_dp, link_status);
1756 	}
1757 
1758 	intel_dp->DP = DP;
1759 }
1760 
1761 static void
intel_dp_complete_link_train(struct intel_dp * intel_dp)1762 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1763 {
1764 	struct drm_device *dev = intel_dp->base.base.dev;
1765 	struct drm_i915_private *dev_priv = dev->dev_private;
1766 	bool channel_eq = false;
1767 	int tries, cr_tries;
1768 	u32 reg;
1769 	uint32_t DP = intel_dp->DP;
1770 
1771 	/* channel equalization */
1772 	tries = 0;
1773 	cr_tries = 0;
1774 	channel_eq = false;
1775 	for (;;) {
1776 		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1777 		uint32_t    signal_levels;
1778 		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
1779 
1780 		if (cr_tries > 5) {
1781 			DRM_ERROR("failed to train DP, aborting\n");
1782 			intel_dp_link_down(intel_dp);
1783 			break;
1784 		}
1785 
1786 		if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1787 			signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1788 			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1789 		} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1790 			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1791 			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1792 		} else {
1793 			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1794 			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1795 		}
1796 
1797 		if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1798 			reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1799 		else
1800 			reg = DP | DP_LINK_TRAIN_PAT_2;
1801 
1802 		/* channel eq pattern */
1803 		if (!intel_dp_set_link_train(intel_dp, reg,
1804 					     DP_TRAINING_PATTERN_2 |
1805 					     DP_LINK_SCRAMBLING_DISABLE))
1806 			break;
1807 
1808 		udelay(400);
1809 		if (!intel_dp_get_link_status(intel_dp, link_status))
1810 			break;
1811 
1812 		/* Make sure clock is still ok */
1813 		if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1814 			intel_dp_start_link_train(intel_dp);
1815 			cr_tries++;
1816 			continue;
1817 		}
1818 
1819 		if (intel_channel_eq_ok(intel_dp, link_status)) {
1820 			channel_eq = true;
1821 			break;
1822 		}
1823 
1824 		/* Try 5 times, then try clock recovery if that fails */
1825 		if (tries > 5) {
1826 			intel_dp_link_down(intel_dp);
1827 			intel_dp_start_link_train(intel_dp);
1828 			tries = 0;
1829 			cr_tries++;
1830 			continue;
1831 		}
1832 
1833 		/* Compute new intel_dp->train_set as requested by target */
1834 		intel_get_adjust_train(intel_dp, link_status);
1835 		++tries;
1836 	}
1837 
1838 	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1839 		reg = DP | DP_LINK_TRAIN_OFF_CPT;
1840 	else
1841 		reg = DP | DP_LINK_TRAIN_OFF;
1842 
1843 	I915_WRITE(intel_dp->output_reg, reg);
1844 	POSTING_READ(intel_dp->output_reg);
1845 	intel_dp_aux_native_write_1(intel_dp,
1846 				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1847 }
1848 
1849 static void
intel_dp_link_down(struct intel_dp * intel_dp)1850 intel_dp_link_down(struct intel_dp *intel_dp)
1851 {
1852 	struct drm_device *dev = intel_dp->base.base.dev;
1853 	struct drm_i915_private *dev_priv = dev->dev_private;
1854 	uint32_t DP = intel_dp->DP;
1855 
1856 	if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1857 		return;
1858 
1859 	DRM_DEBUG_KMS("\n");
1860 
1861 	if (is_edp(intel_dp)) {
1862 		DP &= ~DP_PLL_ENABLE;
1863 		I915_WRITE(intel_dp->output_reg, DP);
1864 		POSTING_READ(intel_dp->output_reg);
1865 		udelay(100);
1866 	}
1867 
1868 	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1869 		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1870 		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1871 	} else {
1872 		DP &= ~DP_LINK_TRAIN_MASK;
1873 		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1874 	}
1875 	POSTING_READ(intel_dp->output_reg);
1876 
1877 	msleep(17);
1878 
1879 	if (is_edp(intel_dp)) {
1880 		if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1881 			DP |= DP_LINK_TRAIN_OFF_CPT;
1882 		else
1883 			DP |= DP_LINK_TRAIN_OFF;
1884 	}
1885 
1886 	if (!HAS_PCH_CPT(dev) &&
1887 	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1888 		struct drm_crtc *crtc = intel_dp->base.base.crtc;
1889 
1890 		/* Hardware workaround: leaving our transcoder select
1891 		 * set to transcoder B while it's off will prevent the
1892 		 * corresponding HDMI output on transcoder A.
1893 		 *
1894 		 * Combine this with another hardware workaround:
1895 		 * transcoder select bit can only be cleared while the
1896 		 * port is enabled.
1897 		 */
1898 		DP &= ~DP_PIPEB_SELECT;
1899 		I915_WRITE(intel_dp->output_reg, DP);
1900 
1901 		/* Changes to enable or select take place the vblank
1902 		 * after being written.
1903 		 */
1904 		if (crtc == NULL) {
1905 			/* We can arrive here never having been attached
1906 			 * to a CRTC, for instance, due to inheriting
1907 			 * random state from the BIOS.
1908 			 *
1909 			 * If the pipe is not running, play safe and
1910 			 * wait for the clocks to stabilise before
1911 			 * continuing.
1912 			 */
1913 			POSTING_READ(intel_dp->output_reg);
1914 			msleep(50);
1915 		} else
1916 			intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1917 	}
1918 
1919 	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
1920 	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1921 	POSTING_READ(intel_dp->output_reg);
1922 	msleep(intel_dp->panel_power_down_delay);
1923 }
1924 
1925 static bool
intel_dp_get_dpcd(struct intel_dp * intel_dp)1926 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1927 {
1928 	if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1929 					   sizeof(intel_dp->dpcd)) &&
1930 	    (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1931 		return true;
1932 	}
1933 
1934 	return false;
1935 }
1936 
1937 static bool
intel_dp_get_sink_irq(struct intel_dp * intel_dp,u8 * sink_irq_vector)1938 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
1939 {
1940 	int ret;
1941 
1942 	ret = intel_dp_aux_native_read_retry(intel_dp,
1943 					     DP_DEVICE_SERVICE_IRQ_VECTOR,
1944 					     sink_irq_vector, 1);
1945 	if (!ret)
1946 		return false;
1947 
1948 	return true;
1949 }
1950 
1951 static void
intel_dp_handle_test_request(struct intel_dp * intel_dp)1952 intel_dp_handle_test_request(struct intel_dp *intel_dp)
1953 {
1954 	/* NAK by default */
1955 	intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
1956 }
1957 
1958 /*
1959  * According to DP spec
1960  * 5.1.2:
1961  *  1. Read DPCD
1962  *  2. Configure link according to Receiver Capabilities
1963  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1964  *  4. Check link status on receipt of hot-plug interrupt
1965  */
1966 
1967 static void
intel_dp_check_link_status(struct intel_dp * intel_dp)1968 intel_dp_check_link_status(struct intel_dp *intel_dp)
1969 {
1970 	u8 sink_irq_vector;
1971 	u8 link_status[DP_LINK_STATUS_SIZE];
1972 
1973 	if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
1974 		return;
1975 
1976 	if (!intel_dp->base.base.crtc)
1977 		return;
1978 
1979 	/* Try to read receiver status if the link appears to be up */
1980 	if (!intel_dp_get_link_status(intel_dp, link_status)) {
1981 		intel_dp_link_down(intel_dp);
1982 		return;
1983 	}
1984 
1985 	/* Now read the DPCD to see if it's actually running */
1986 	if (!intel_dp_get_dpcd(intel_dp)) {
1987 		intel_dp_link_down(intel_dp);
1988 		return;
1989 	}
1990 
1991 	/* Try to read the source of the interrupt */
1992 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1993 	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
1994 		/* Clear interrupt source */
1995 		intel_dp_aux_native_write_1(intel_dp,
1996 					    DP_DEVICE_SERVICE_IRQ_VECTOR,
1997 					    sink_irq_vector);
1998 
1999 		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2000 			intel_dp_handle_test_request(intel_dp);
2001 		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2002 			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2003 	}
2004 
2005 	if (!intel_channel_eq_ok(intel_dp, link_status)) {
2006 		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2007 			      drm_get_encoder_name(&intel_dp->base.base));
2008 		intel_dp_start_link_train(intel_dp);
2009 		intel_dp_complete_link_train(intel_dp);
2010 	}
2011 }
2012 
2013 static enum drm_connector_status
intel_dp_detect_dpcd(struct intel_dp * intel_dp)2014 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2015 {
2016 	if (intel_dp_get_dpcd(intel_dp))
2017 		return connector_status_connected;
2018 	return connector_status_disconnected;
2019 }
2020 
2021 static enum drm_connector_status
ironlake_dp_detect(struct intel_dp * intel_dp)2022 ironlake_dp_detect(struct intel_dp *intel_dp)
2023 {
2024 	enum drm_connector_status status;
2025 
2026 	/* Can't disconnect eDP, but you can close the lid... */
2027 	if (is_edp(intel_dp)) {
2028 		status = intel_panel_detect(intel_dp->base.base.dev);
2029 		if (status == connector_status_unknown)
2030 			status = connector_status_connected;
2031 		return status;
2032 	}
2033 
2034 	return intel_dp_detect_dpcd(intel_dp);
2035 }
2036 
2037 static enum drm_connector_status
g4x_dp_detect(struct intel_dp * intel_dp)2038 g4x_dp_detect(struct intel_dp *intel_dp)
2039 {
2040 	struct drm_device *dev = intel_dp->base.base.dev;
2041 	struct drm_i915_private *dev_priv = dev->dev_private;
2042 	uint32_t temp, bit;
2043 
2044 	switch (intel_dp->output_reg) {
2045 	case DP_B:
2046 		bit = DPB_HOTPLUG_INT_STATUS;
2047 		break;
2048 	case DP_C:
2049 		bit = DPC_HOTPLUG_INT_STATUS;
2050 		break;
2051 	case DP_D:
2052 		bit = DPD_HOTPLUG_INT_STATUS;
2053 		break;
2054 	default:
2055 		return connector_status_unknown;
2056 	}
2057 
2058 	temp = I915_READ(PORT_HOTPLUG_STAT);
2059 
2060 	if ((temp & bit) == 0)
2061 		return connector_status_disconnected;
2062 
2063 	return intel_dp_detect_dpcd(intel_dp);
2064 }
2065 
2066 static struct edid *
intel_dp_get_edid(struct drm_connector * connector,struct i2c_adapter * adapter)2067 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2068 {
2069 	struct intel_dp *intel_dp = intel_attached_dp(connector);
2070 	struct edid	*edid;
2071 
2072 	ironlake_edp_panel_vdd_on(intel_dp);
2073 	edid = drm_get_edid(connector, adapter);
2074 	ironlake_edp_panel_vdd_off(intel_dp, false);
2075 	return edid;
2076 }
2077 
2078 static int
intel_dp_get_edid_modes(struct drm_connector * connector,struct i2c_adapter * adapter)2079 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2080 {
2081 	struct intel_dp *intel_dp = intel_attached_dp(connector);
2082 	int	ret;
2083 
2084 	ironlake_edp_panel_vdd_on(intel_dp);
2085 	ret = intel_ddc_get_modes(connector, adapter);
2086 	ironlake_edp_panel_vdd_off(intel_dp, false);
2087 	return ret;
2088 }
2089 
2090 
2091 /**
2092  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2093  *
2094  * \return true if DP port is connected.
2095  * \return false if DP port is disconnected.
2096  */
2097 static enum drm_connector_status
intel_dp_detect(struct drm_connector * connector,bool force)2098 intel_dp_detect(struct drm_connector *connector, bool force)
2099 {
2100 	struct intel_dp *intel_dp = intel_attached_dp(connector);
2101 	struct drm_device *dev = intel_dp->base.base.dev;
2102 	enum drm_connector_status status;
2103 	struct edid *edid = NULL;
2104 
2105 	intel_dp->has_audio = false;
2106 
2107 	if (HAS_PCH_SPLIT(dev))
2108 		status = ironlake_dp_detect(intel_dp);
2109 	else
2110 		status = g4x_dp_detect(intel_dp);
2111 
2112 	DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2113 		      intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2114 		      intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2115 		      intel_dp->dpcd[6], intel_dp->dpcd[7]);
2116 
2117 	if (status != connector_status_connected)
2118 		return status;
2119 
2120 	if (intel_dp->force_audio) {
2121 		intel_dp->has_audio = intel_dp->force_audio > 0;
2122 	} else {
2123 		edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2124 		if (edid) {
2125 			intel_dp->has_audio = drm_detect_monitor_audio(edid);
2126 			connector->display_info.raw_edid = NULL;
2127 			kfree(edid);
2128 		}
2129 	}
2130 
2131 	return connector_status_connected;
2132 }
2133 
intel_dp_get_modes(struct drm_connector * connector)2134 static int intel_dp_get_modes(struct drm_connector *connector)
2135 {
2136 	struct intel_dp *intel_dp = intel_attached_dp(connector);
2137 	struct drm_device *dev = intel_dp->base.base.dev;
2138 	struct drm_i915_private *dev_priv = dev->dev_private;
2139 	int ret;
2140 
2141 	/* We should parse the EDID data and find out if it has an audio sink
2142 	 */
2143 
2144 	ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2145 	if (ret) {
2146 		if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2147 			struct drm_display_mode *newmode;
2148 			list_for_each_entry(newmode, &connector->probed_modes,
2149 					    head) {
2150 				if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2151 					intel_dp->panel_fixed_mode =
2152 						drm_mode_duplicate(dev, newmode);
2153 					break;
2154 				}
2155 			}
2156 		}
2157 		return ret;
2158 	}
2159 
2160 	/* if eDP has no EDID, try to use fixed panel mode from VBT */
2161 	if (is_edp(intel_dp)) {
2162 		/* initialize panel mode from VBT if available for eDP */
2163 		if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2164 			intel_dp->panel_fixed_mode =
2165 				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2166 			if (intel_dp->panel_fixed_mode) {
2167 				intel_dp->panel_fixed_mode->type |=
2168 					DRM_MODE_TYPE_PREFERRED;
2169 			}
2170 		}
2171 		if (intel_dp->panel_fixed_mode) {
2172 			struct drm_display_mode *mode;
2173 			mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2174 			drm_mode_probed_add(connector, mode);
2175 			return 1;
2176 		}
2177 	}
2178 	return 0;
2179 }
2180 
2181 static bool
intel_dp_detect_audio(struct drm_connector * connector)2182 intel_dp_detect_audio(struct drm_connector *connector)
2183 {
2184 	struct intel_dp *intel_dp = intel_attached_dp(connector);
2185 	struct edid *edid;
2186 	bool has_audio = false;
2187 
2188 	edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2189 	if (edid) {
2190 		has_audio = drm_detect_monitor_audio(edid);
2191 
2192 		connector->display_info.raw_edid = NULL;
2193 		kfree(edid);
2194 	}
2195 
2196 	return has_audio;
2197 }
2198 
2199 static int
intel_dp_set_property(struct drm_connector * connector,struct drm_property * property,uint64_t val)2200 intel_dp_set_property(struct drm_connector *connector,
2201 		      struct drm_property *property,
2202 		      uint64_t val)
2203 {
2204 	struct drm_i915_private *dev_priv = connector->dev->dev_private;
2205 	struct intel_dp *intel_dp = intel_attached_dp(connector);
2206 	int ret;
2207 
2208 	ret = drm_connector_property_set_value(connector, property, val);
2209 	if (ret)
2210 		return ret;
2211 
2212 	if (property == dev_priv->force_audio_property) {
2213 		int i = val;
2214 		bool has_audio;
2215 
2216 		if (i == intel_dp->force_audio)
2217 			return 0;
2218 
2219 		intel_dp->force_audio = i;
2220 
2221 		if (i == 0)
2222 			has_audio = intel_dp_detect_audio(connector);
2223 		else
2224 			has_audio = i > 0;
2225 
2226 		if (has_audio == intel_dp->has_audio)
2227 			return 0;
2228 
2229 		intel_dp->has_audio = has_audio;
2230 		goto done;
2231 	}
2232 
2233 	if (property == dev_priv->broadcast_rgb_property) {
2234 		if (val == !!intel_dp->color_range)
2235 			return 0;
2236 
2237 		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2238 		goto done;
2239 	}
2240 
2241 	return -EINVAL;
2242 
2243 done:
2244 	if (intel_dp->base.base.crtc) {
2245 		struct drm_crtc *crtc = intel_dp->base.base.crtc;
2246 		drm_crtc_helper_set_mode(crtc, &crtc->mode,
2247 					 crtc->x, crtc->y,
2248 					 crtc->fb);
2249 	}
2250 
2251 	return 0;
2252 }
2253 
2254 static void
intel_dp_destroy(struct drm_connector * connector)2255 intel_dp_destroy(struct drm_connector *connector)
2256 {
2257 	struct drm_device *dev = connector->dev;
2258 
2259 	if (intel_dpd_is_edp(dev))
2260 		intel_panel_destroy_backlight(dev);
2261 
2262 	drm_sysfs_connector_remove(connector);
2263 	drm_connector_cleanup(connector);
2264 	kfree(connector);
2265 }
2266 
intel_dp_encoder_destroy(struct drm_encoder * encoder)2267 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2268 {
2269 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2270 
2271 	i2c_del_adapter(&intel_dp->adapter);
2272 	drm_encoder_cleanup(encoder);
2273 	if (is_edp(intel_dp)) {
2274 		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2275 		ironlake_panel_vdd_off_sync(intel_dp);
2276 	}
2277 	kfree(intel_dp);
2278 }
2279 
2280 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2281 	.dpms = intel_dp_dpms,
2282 	.mode_fixup = intel_dp_mode_fixup,
2283 	.prepare = intel_dp_prepare,
2284 	.mode_set = intel_dp_mode_set,
2285 	.commit = intel_dp_commit,
2286 };
2287 
2288 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2289 	.dpms = drm_helper_connector_dpms,
2290 	.detect = intel_dp_detect,
2291 	.fill_modes = drm_helper_probe_single_connector_modes,
2292 	.set_property = intel_dp_set_property,
2293 	.destroy = intel_dp_destroy,
2294 };
2295 
2296 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2297 	.get_modes = intel_dp_get_modes,
2298 	.mode_valid = intel_dp_mode_valid,
2299 	.best_encoder = intel_best_encoder,
2300 };
2301 
2302 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2303 	.destroy = intel_dp_encoder_destroy,
2304 };
2305 
2306 static void
intel_dp_hot_plug(struct intel_encoder * intel_encoder)2307 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2308 {
2309 	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2310 
2311 	intel_dp_check_link_status(intel_dp);
2312 }
2313 
2314 /* Return which DP Port should be selected for Transcoder DP control */
2315 int
intel_trans_dp_port_sel(struct drm_crtc * crtc)2316 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2317 {
2318 	struct drm_device *dev = crtc->dev;
2319 	struct drm_mode_config *mode_config = &dev->mode_config;
2320 	struct drm_encoder *encoder;
2321 
2322 	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
2323 		struct intel_dp *intel_dp;
2324 
2325 		if (encoder->crtc != crtc)
2326 			continue;
2327 
2328 		intel_dp = enc_to_intel_dp(encoder);
2329 		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2330 		    intel_dp->base.type == INTEL_OUTPUT_EDP)
2331 			return intel_dp->output_reg;
2332 	}
2333 
2334 	return -1;
2335 }
2336 
2337 /* check the VBT to see whether the eDP is on DP-D port */
intel_dpd_is_edp(struct drm_device * dev)2338 bool intel_dpd_is_edp(struct drm_device *dev)
2339 {
2340 	struct drm_i915_private *dev_priv = dev->dev_private;
2341 	struct child_device_config *p_child;
2342 	int i;
2343 
2344 	if (!dev_priv->child_dev_num)
2345 		return false;
2346 
2347 	for (i = 0; i < dev_priv->child_dev_num; i++) {
2348 		p_child = dev_priv->child_dev + i;
2349 
2350 		if (p_child->dvo_port == PORT_IDPD &&
2351 		    p_child->device_type == DEVICE_TYPE_eDP)
2352 			return true;
2353 	}
2354 	return false;
2355 }
2356 
2357 static void
intel_dp_add_properties(struct intel_dp * intel_dp,struct drm_connector * connector)2358 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2359 {
2360 	intel_attach_force_audio_property(connector);
2361 	intel_attach_broadcast_rgb_property(connector);
2362 }
2363 
2364 void
intel_dp_init(struct drm_device * dev,int output_reg)2365 intel_dp_init(struct drm_device *dev, int output_reg)
2366 {
2367 	struct drm_i915_private *dev_priv = dev->dev_private;
2368 	struct drm_connector *connector;
2369 	struct intel_dp *intel_dp;
2370 	struct intel_encoder *intel_encoder;
2371 	struct intel_connector *intel_connector;
2372 	const char *name = NULL;
2373 	int type;
2374 
2375 	intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2376 	if (!intel_dp)
2377 		return;
2378 
2379 	intel_dp->output_reg = output_reg;
2380 	intel_dp->dpms_mode = -1;
2381 
2382 	intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2383 	if (!intel_connector) {
2384 		kfree(intel_dp);
2385 		return;
2386 	}
2387 	intel_encoder = &intel_dp->base;
2388 
2389 	if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2390 		if (intel_dpd_is_edp(dev))
2391 			intel_dp->is_pch_edp = true;
2392 
2393 	if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2394 		type = DRM_MODE_CONNECTOR_eDP;
2395 		intel_encoder->type = INTEL_OUTPUT_EDP;
2396 	} else {
2397 		type = DRM_MODE_CONNECTOR_DisplayPort;
2398 		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2399 	}
2400 
2401 	connector = &intel_connector->base;
2402 	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2403 	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2404 
2405 	connector->polled = DRM_CONNECTOR_POLL_HPD;
2406 
2407 	if (output_reg == DP_B || output_reg == PCH_DP_B)
2408 		intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
2409 	else if (output_reg == DP_C || output_reg == PCH_DP_C)
2410 		intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
2411 	else if (output_reg == DP_D || output_reg == PCH_DP_D)
2412 		intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
2413 
2414 	if (is_edp(intel_dp)) {
2415 		intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
2416 		INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2417 				  ironlake_panel_vdd_work);
2418 	}
2419 
2420 	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2421 	connector->interlace_allowed = true;
2422 	connector->doublescan_allowed = 0;
2423 
2424 	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2425 			 DRM_MODE_ENCODER_TMDS);
2426 	drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2427 
2428 	intel_connector_attach_encoder(intel_connector, intel_encoder);
2429 	drm_sysfs_connector_add(connector);
2430 
2431 	/* Set up the DDC bus. */
2432 	switch (output_reg) {
2433 		case DP_A:
2434 			name = "DPDDC-A";
2435 			break;
2436 		case DP_B:
2437 		case PCH_DP_B:
2438 			dev_priv->hotplug_supported_mask |=
2439 				HDMIB_HOTPLUG_INT_STATUS;
2440 			name = "DPDDC-B";
2441 			break;
2442 		case DP_C:
2443 		case PCH_DP_C:
2444 			dev_priv->hotplug_supported_mask |=
2445 				HDMIC_HOTPLUG_INT_STATUS;
2446 			name = "DPDDC-C";
2447 			break;
2448 		case DP_D:
2449 		case PCH_DP_D:
2450 			dev_priv->hotplug_supported_mask |=
2451 				HDMID_HOTPLUG_INT_STATUS;
2452 			name = "DPDDC-D";
2453 			break;
2454 	}
2455 
2456 	/* Cache some DPCD data in the eDP case */
2457 	if (is_edp(intel_dp)) {
2458 		bool ret;
2459 		struct edp_power_seq	cur, vbt;
2460 		u32 pp_on, pp_off, pp_div;
2461 
2462 		pp_on = I915_READ(PCH_PP_ON_DELAYS);
2463 		pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2464 		pp_div = I915_READ(PCH_PP_DIVISOR);
2465 
2466 		/* Pull timing values out of registers */
2467 		cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2468 			PANEL_POWER_UP_DELAY_SHIFT;
2469 
2470 		cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2471 			PANEL_LIGHT_ON_DELAY_SHIFT;
2472 
2473 		cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2474 			PANEL_LIGHT_OFF_DELAY_SHIFT;
2475 
2476 		cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2477 			PANEL_POWER_DOWN_DELAY_SHIFT;
2478 
2479 		cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2480 			       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2481 
2482 		DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2483 			      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2484 
2485 		vbt = dev_priv->edp.pps;
2486 
2487 		DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2488 			      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2489 
2490 #define get_delay(field)	((max(cur.field, vbt.field) + 9) / 10)
2491 
2492 		intel_dp->panel_power_up_delay = get_delay(t1_t3);
2493 		intel_dp->backlight_on_delay = get_delay(t8);
2494 		intel_dp->backlight_off_delay = get_delay(t9);
2495 		intel_dp->panel_power_down_delay = get_delay(t10);
2496 		intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2497 
2498 		DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2499 			      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2500 			      intel_dp->panel_power_cycle_delay);
2501 
2502 		DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2503 			      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2504 
2505 		ironlake_edp_panel_vdd_on(intel_dp);
2506 		ret = intel_dp_get_dpcd(intel_dp);
2507 		ironlake_edp_panel_vdd_off(intel_dp, false);
2508 
2509 		if (ret) {
2510 			if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2511 				dev_priv->no_aux_handshake =
2512 					intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2513 					DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2514 		} else {
2515 			/* if this fails, presume the device is a ghost */
2516 			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2517 			intel_dp_encoder_destroy(&intel_dp->base.base);
2518 			intel_dp_destroy(&intel_connector->base);
2519 			return;
2520 		}
2521 	}
2522 
2523 	intel_dp_i2c_init(intel_dp, intel_connector, name);
2524 
2525 	intel_encoder->hot_plug = intel_dp_hot_plug;
2526 
2527 	if (is_edp(intel_dp)) {
2528 		dev_priv->int_edp_connector = connector;
2529 		intel_panel_setup_backlight(dev);
2530 	}
2531 
2532 	intel_dp_add_properties(intel_dp, connector);
2533 
2534 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2535 	 * 0xd.  Failure to do so will result in spurious interrupts being
2536 	 * generated on the port when a cable is not attached.
2537 	 */
2538 	if (IS_G4X(dev) && !IS_GM45(dev)) {
2539 		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2540 		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2541 	}
2542 }
2543