1 /* Copyright (c) 2010-2011, Code Aurora Forum. All rights reserved.
2  *
3  * This program is free software; you can redistribute it and/or modify
4  * it under the terms of the GNU General Public License version 2 and
5  * only version 2 as published by the Free Software Foundation.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software
14  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
15  * 02110-1301, USA.
16  *
17  */
18 #define pr_fmt(fmt) "%s: " fmt, __func__
19 
20 #include <linux/bitmap.h>
21 #include <linux/bitops.h>
22 #include <linux/gpio.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/io.h>
26 #include <linux/irq.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/spinlock.h>
30 
31 #include <asm/mach/irq.h>
32 
33 #include <mach/msm_gpiomux.h>
34 #include <mach/msm_iomap.h>
35 
36 /* Bits of interest in the GPIO_IN_OUT register.
37  */
38 enum {
39 	GPIO_IN  = 0,
40 	GPIO_OUT = 1
41 };
42 
43 /* Bits of interest in the GPIO_INTR_STATUS register.
44  */
45 enum {
46 	INTR_STATUS = 0,
47 };
48 
49 /* Bits of interest in the GPIO_CFG register.
50  */
51 enum {
52 	GPIO_OE = 9,
53 };
54 
55 /* Bits of interest in the GPIO_INTR_CFG register.
56  * When a GPIO triggers, two separate decisions are made, controlled
57  * by two separate flags.
58  *
59  * - First, INTR_RAW_STATUS_EN controls whether or not the GPIO_INTR_STATUS
60  * register for that GPIO will be updated to reflect the triggering of that
61  * gpio.  If this bit is 0, this register will not be updated.
62  * - Second, INTR_ENABLE controls whether an interrupt is triggered.
63  *
64  * If INTR_ENABLE is set and INTR_RAW_STATUS_EN is NOT set, an interrupt
65  * can be triggered but the status register will not reflect it.
66  */
67 enum {
68 	INTR_ENABLE        = 0,
69 	INTR_POL_CTL       = 1,
70 	INTR_DECT_CTL      = 2,
71 	INTR_RAW_STATUS_EN = 3,
72 };
73 
74 /* Codes of interest in GPIO_INTR_CFG_SU.
75  */
76 enum {
77 	TARGET_PROC_SCORPION = 4,
78 	TARGET_PROC_NONE     = 7,
79 };
80 
81 
82 #define GPIO_INTR_CFG_SU(gpio)    (MSM_TLMM_BASE + 0x0400 + (0x04 * (gpio)))
83 #define GPIO_CONFIG(gpio)         (MSM_TLMM_BASE + 0x1000 + (0x10 * (gpio)))
84 #define GPIO_IN_OUT(gpio)         (MSM_TLMM_BASE + 0x1004 + (0x10 * (gpio)))
85 #define GPIO_INTR_CFG(gpio)       (MSM_TLMM_BASE + 0x1008 + (0x10 * (gpio)))
86 #define GPIO_INTR_STATUS(gpio)    (MSM_TLMM_BASE + 0x100c + (0x10 * (gpio)))
87 
88 /**
89  * struct msm_gpio_dev: the MSM8660 SoC GPIO device structure
90  *
91  * @enabled_irqs: a bitmap used to optimize the summary-irq handler.  By
92  * keeping track of which gpios are unmasked as irq sources, we avoid
93  * having to do readl calls on hundreds of iomapped registers each time
94  * the summary interrupt fires in order to locate the active interrupts.
95  *
96  * @wake_irqs: a bitmap for tracking which interrupt lines are enabled
97  * as wakeup sources.  When the device is suspended, interrupts which are
98  * not wakeup sources are disabled.
99  *
100  * @dual_edge_irqs: a bitmap used to track which irqs are configured
101  * as dual-edge, as this is not supported by the hardware and requires
102  * some special handling in the driver.
103  */
104 struct msm_gpio_dev {
105 	struct gpio_chip gpio_chip;
106 	DECLARE_BITMAP(enabled_irqs, NR_GPIO_IRQS);
107 	DECLARE_BITMAP(wake_irqs, NR_GPIO_IRQS);
108 	DECLARE_BITMAP(dual_edge_irqs, NR_GPIO_IRQS);
109 };
110 
111 static DEFINE_SPINLOCK(tlmm_lock);
112 
to_msm_gpio_dev(struct gpio_chip * chip)113 static inline struct msm_gpio_dev *to_msm_gpio_dev(struct gpio_chip *chip)
114 {
115 	return container_of(chip, struct msm_gpio_dev, gpio_chip);
116 }
117 
set_gpio_bits(unsigned n,void __iomem * reg)118 static inline void set_gpio_bits(unsigned n, void __iomem *reg)
119 {
120 	writel(readl(reg) | n, reg);
121 }
122 
clear_gpio_bits(unsigned n,void __iomem * reg)123 static inline void clear_gpio_bits(unsigned n, void __iomem *reg)
124 {
125 	writel(readl(reg) & ~n, reg);
126 }
127 
msm_gpio_get(struct gpio_chip * chip,unsigned offset)128 static int msm_gpio_get(struct gpio_chip *chip, unsigned offset)
129 {
130 	return readl(GPIO_IN_OUT(offset)) & BIT(GPIO_IN);
131 }
132 
msm_gpio_set(struct gpio_chip * chip,unsigned offset,int val)133 static void msm_gpio_set(struct gpio_chip *chip, unsigned offset, int val)
134 {
135 	writel(val ? BIT(GPIO_OUT) : 0, GPIO_IN_OUT(offset));
136 }
137 
msm_gpio_direction_input(struct gpio_chip * chip,unsigned offset)138 static int msm_gpio_direction_input(struct gpio_chip *chip, unsigned offset)
139 {
140 	unsigned long irq_flags;
141 
142 	spin_lock_irqsave(&tlmm_lock, irq_flags);
143 	clear_gpio_bits(BIT(GPIO_OE), GPIO_CONFIG(offset));
144 	spin_unlock_irqrestore(&tlmm_lock, irq_flags);
145 	return 0;
146 }
147 
msm_gpio_direction_output(struct gpio_chip * chip,unsigned offset,int val)148 static int msm_gpio_direction_output(struct gpio_chip *chip,
149 				unsigned offset,
150 				int val)
151 {
152 	unsigned long irq_flags;
153 
154 	spin_lock_irqsave(&tlmm_lock, irq_flags);
155 	msm_gpio_set(chip, offset, val);
156 	set_gpio_bits(BIT(GPIO_OE), GPIO_CONFIG(offset));
157 	spin_unlock_irqrestore(&tlmm_lock, irq_flags);
158 	return 0;
159 }
160 
msm_gpio_request(struct gpio_chip * chip,unsigned offset)161 static int msm_gpio_request(struct gpio_chip *chip, unsigned offset)
162 {
163 	return msm_gpiomux_get(chip->base + offset);
164 }
165 
msm_gpio_free(struct gpio_chip * chip,unsigned offset)166 static void msm_gpio_free(struct gpio_chip *chip, unsigned offset)
167 {
168 	msm_gpiomux_put(chip->base + offset);
169 }
170 
msm_gpio_to_irq(struct gpio_chip * chip,unsigned offset)171 static int msm_gpio_to_irq(struct gpio_chip *chip, unsigned offset)
172 {
173 	return MSM_GPIO_TO_INT(chip->base + offset);
174 }
175 
msm_irq_to_gpio(struct gpio_chip * chip,unsigned irq)176 static inline int msm_irq_to_gpio(struct gpio_chip *chip, unsigned irq)
177 {
178 	return irq - MSM_GPIO_TO_INT(chip->base);
179 }
180 
181 static struct msm_gpio_dev msm_gpio = {
182 	.gpio_chip = {
183 		.base             = 0,
184 		.ngpio            = NR_GPIO_IRQS,
185 		.direction_input  = msm_gpio_direction_input,
186 		.direction_output = msm_gpio_direction_output,
187 		.get              = msm_gpio_get,
188 		.set              = msm_gpio_set,
189 		.to_irq           = msm_gpio_to_irq,
190 		.request          = msm_gpio_request,
191 		.free             = msm_gpio_free,
192 	},
193 };
194 
195 /* For dual-edge interrupts in software, since the hardware has no
196  * such support:
197  *
198  * At appropriate moments, this function may be called to flip the polarity
199  * settings of both-edge irq lines to try and catch the next edge.
200  *
201  * The attempt is considered successful if:
202  * - the status bit goes high, indicating that an edge was caught, or
203  * - the input value of the gpio doesn't change during the attempt.
204  * If the value changes twice during the process, that would cause the first
205  * test to fail but would force the second, as two opposite
206  * transitions would cause a detection no matter the polarity setting.
207  *
208  * The do-loop tries to sledge-hammer closed the timing hole between
209  * the initial value-read and the polarity-write - if the line value changes
210  * during that window, an interrupt is lost, the new polarity setting is
211  * incorrect, and the first success test will fail, causing a retry.
212  *
213  * Algorithm comes from Google's msmgpio driver, see mach-msm/gpio.c.
214  */
msm_gpio_update_dual_edge_pos(unsigned gpio)215 static void msm_gpio_update_dual_edge_pos(unsigned gpio)
216 {
217 	int loop_limit = 100;
218 	unsigned val, val2, intstat;
219 
220 	do {
221 		val = readl(GPIO_IN_OUT(gpio)) & BIT(GPIO_IN);
222 		if (val)
223 			clear_gpio_bits(BIT(INTR_POL_CTL), GPIO_INTR_CFG(gpio));
224 		else
225 			set_gpio_bits(BIT(INTR_POL_CTL), GPIO_INTR_CFG(gpio));
226 		val2 = readl(GPIO_IN_OUT(gpio)) & BIT(GPIO_IN);
227 		intstat = readl(GPIO_INTR_STATUS(gpio)) & BIT(INTR_STATUS);
228 		if (intstat || val == val2)
229 			return;
230 	} while (loop_limit-- > 0);
231 	pr_err("dual-edge irq failed to stabilize, "
232 	       "interrupts dropped. %#08x != %#08x\n",
233 	       val, val2);
234 }
235 
msm_gpio_irq_ack(struct irq_data * d)236 static void msm_gpio_irq_ack(struct irq_data *d)
237 {
238 	int gpio = msm_irq_to_gpio(&msm_gpio.gpio_chip, d->irq);
239 
240 	writel(BIT(INTR_STATUS), GPIO_INTR_STATUS(gpio));
241 	if (test_bit(gpio, msm_gpio.dual_edge_irqs))
242 		msm_gpio_update_dual_edge_pos(gpio);
243 }
244 
msm_gpio_irq_mask(struct irq_data * d)245 static void msm_gpio_irq_mask(struct irq_data *d)
246 {
247 	int gpio = msm_irq_to_gpio(&msm_gpio.gpio_chip, d->irq);
248 	unsigned long irq_flags;
249 
250 	spin_lock_irqsave(&tlmm_lock, irq_flags);
251 	writel(TARGET_PROC_NONE, GPIO_INTR_CFG_SU(gpio));
252 	clear_gpio_bits(INTR_RAW_STATUS_EN | INTR_ENABLE, GPIO_INTR_CFG(gpio));
253 	__clear_bit(gpio, msm_gpio.enabled_irqs);
254 	spin_unlock_irqrestore(&tlmm_lock, irq_flags);
255 }
256 
msm_gpio_irq_unmask(struct irq_data * d)257 static void msm_gpio_irq_unmask(struct irq_data *d)
258 {
259 	int gpio = msm_irq_to_gpio(&msm_gpio.gpio_chip, d->irq);
260 	unsigned long irq_flags;
261 
262 	spin_lock_irqsave(&tlmm_lock, irq_flags);
263 	__set_bit(gpio, msm_gpio.enabled_irqs);
264 	set_gpio_bits(INTR_RAW_STATUS_EN | INTR_ENABLE, GPIO_INTR_CFG(gpio));
265 	writel(TARGET_PROC_SCORPION, GPIO_INTR_CFG_SU(gpio));
266 	spin_unlock_irqrestore(&tlmm_lock, irq_flags);
267 }
268 
msm_gpio_irq_set_type(struct irq_data * d,unsigned int flow_type)269 static int msm_gpio_irq_set_type(struct irq_data *d, unsigned int flow_type)
270 {
271 	int gpio = msm_irq_to_gpio(&msm_gpio.gpio_chip, d->irq);
272 	unsigned long irq_flags;
273 	uint32_t bits;
274 
275 	spin_lock_irqsave(&tlmm_lock, irq_flags);
276 
277 	bits = readl(GPIO_INTR_CFG(gpio));
278 
279 	if (flow_type & IRQ_TYPE_EDGE_BOTH) {
280 		bits |= BIT(INTR_DECT_CTL);
281 		__irq_set_handler_locked(d->irq, handle_edge_irq);
282 		if ((flow_type & IRQ_TYPE_EDGE_BOTH) == IRQ_TYPE_EDGE_BOTH)
283 			__set_bit(gpio, msm_gpio.dual_edge_irqs);
284 		else
285 			__clear_bit(gpio, msm_gpio.dual_edge_irqs);
286 	} else {
287 		bits &= ~BIT(INTR_DECT_CTL);
288 		__irq_set_handler_locked(d->irq, handle_level_irq);
289 		__clear_bit(gpio, msm_gpio.dual_edge_irqs);
290 	}
291 
292 	if (flow_type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_LEVEL_HIGH))
293 		bits |= BIT(INTR_POL_CTL);
294 	else
295 		bits &= ~BIT(INTR_POL_CTL);
296 
297 	writel(bits, GPIO_INTR_CFG(gpio));
298 
299 	if ((flow_type & IRQ_TYPE_EDGE_BOTH) == IRQ_TYPE_EDGE_BOTH)
300 		msm_gpio_update_dual_edge_pos(gpio);
301 
302 	spin_unlock_irqrestore(&tlmm_lock, irq_flags);
303 
304 	return 0;
305 }
306 
307 /*
308  * When the summary IRQ is raised, any number of GPIO lines may be high.
309  * It is the job of the summary handler to find all those GPIO lines
310  * which have been set as summary IRQ lines and which are triggered,
311  * and to call their interrupt handlers.
312  */
msm_summary_irq_handler(unsigned int irq,struct irq_desc * desc)313 static void msm_summary_irq_handler(unsigned int irq, struct irq_desc *desc)
314 {
315 	unsigned long i;
316 	struct irq_chip *chip = irq_desc_get_chip(desc);
317 
318 	chained_irq_enter(chip, desc);
319 
320 	for (i = find_first_bit(msm_gpio.enabled_irqs, NR_GPIO_IRQS);
321 	     i < NR_GPIO_IRQS;
322 	     i = find_next_bit(msm_gpio.enabled_irqs, NR_GPIO_IRQS, i + 1)) {
323 		if (readl(GPIO_INTR_STATUS(i)) & BIT(INTR_STATUS))
324 			generic_handle_irq(msm_gpio_to_irq(&msm_gpio.gpio_chip,
325 							   i));
326 	}
327 
328 	chained_irq_exit(chip, desc);
329 }
330 
msm_gpio_irq_set_wake(struct irq_data * d,unsigned int on)331 static int msm_gpio_irq_set_wake(struct irq_data *d, unsigned int on)
332 {
333 	int gpio = msm_irq_to_gpio(&msm_gpio.gpio_chip, d->irq);
334 
335 	if (on) {
336 		if (bitmap_empty(msm_gpio.wake_irqs, NR_GPIO_IRQS))
337 			irq_set_irq_wake(TLMM_SCSS_SUMMARY_IRQ, 1);
338 		set_bit(gpio, msm_gpio.wake_irqs);
339 	} else {
340 		clear_bit(gpio, msm_gpio.wake_irqs);
341 		if (bitmap_empty(msm_gpio.wake_irqs, NR_GPIO_IRQS))
342 			irq_set_irq_wake(TLMM_SCSS_SUMMARY_IRQ, 0);
343 	}
344 
345 	return 0;
346 }
347 
348 static struct irq_chip msm_gpio_irq_chip = {
349 	.name		= "msmgpio",
350 	.irq_mask	= msm_gpio_irq_mask,
351 	.irq_unmask	= msm_gpio_irq_unmask,
352 	.irq_ack	= msm_gpio_irq_ack,
353 	.irq_set_type	= msm_gpio_irq_set_type,
354 	.irq_set_wake	= msm_gpio_irq_set_wake,
355 };
356 
msm_gpio_probe(struct platform_device * dev)357 static int __devinit msm_gpio_probe(struct platform_device *dev)
358 {
359 	int i, irq, ret;
360 
361 	bitmap_zero(msm_gpio.enabled_irqs, NR_GPIO_IRQS);
362 	bitmap_zero(msm_gpio.wake_irqs, NR_GPIO_IRQS);
363 	bitmap_zero(msm_gpio.dual_edge_irqs, NR_GPIO_IRQS);
364 	msm_gpio.gpio_chip.label = dev->name;
365 	ret = gpiochip_add(&msm_gpio.gpio_chip);
366 	if (ret < 0)
367 		return ret;
368 
369 	for (i = 0; i < msm_gpio.gpio_chip.ngpio; ++i) {
370 		irq = msm_gpio_to_irq(&msm_gpio.gpio_chip, i);
371 		irq_set_chip_and_handler(irq, &msm_gpio_irq_chip,
372 					 handle_level_irq);
373 		set_irq_flags(irq, IRQF_VALID);
374 	}
375 
376 	irq_set_chained_handler(TLMM_SCSS_SUMMARY_IRQ,
377 				msm_summary_irq_handler);
378 	return 0;
379 }
380 
msm_gpio_remove(struct platform_device * dev)381 static int __devexit msm_gpio_remove(struct platform_device *dev)
382 {
383 	int ret = gpiochip_remove(&msm_gpio.gpio_chip);
384 
385 	if (ret < 0)
386 		return ret;
387 
388 	irq_set_handler(TLMM_SCSS_SUMMARY_IRQ, NULL);
389 
390 	return 0;
391 }
392 
393 static struct platform_driver msm_gpio_driver = {
394 	.probe = msm_gpio_probe,
395 	.remove = __devexit_p(msm_gpio_remove),
396 	.driver = {
397 		.name = "msmgpio",
398 		.owner = THIS_MODULE,
399 	},
400 };
401 
402 static struct platform_device msm_device_gpio = {
403 	.name = "msmgpio",
404 	.id   = -1,
405 };
406 
msm_gpio_init(void)407 static int __init msm_gpio_init(void)
408 {
409 	int rc;
410 
411 	rc = platform_driver_register(&msm_gpio_driver);
412 	if (!rc) {
413 		rc = platform_device_register(&msm_device_gpio);
414 		if (rc)
415 			platform_driver_unregister(&msm_gpio_driver);
416 	}
417 
418 	return rc;
419 }
420 
msm_gpio_exit(void)421 static void __exit msm_gpio_exit(void)
422 {
423 	platform_device_unregister(&msm_device_gpio);
424 	platform_driver_unregister(&msm_gpio_driver);
425 }
426 
427 postcore_initcall(msm_gpio_init);
428 module_exit(msm_gpio_exit);
429 
430 MODULE_AUTHOR("Gregory Bean <gbean@codeaurora.org>");
431 MODULE_DESCRIPTION("Driver for Qualcomm MSM TLMMv2 SoC GPIOs");
432 MODULE_LICENSE("GPL v2");
433 MODULE_ALIAS("platform:msmgpio");
434