1 /*
2  * Copyright (C) Ericsson AB 2007-2008
3  * Copyright (C) ST-Ericsson SA 2008-2010
4  * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5  * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6  * License terms: GNU General Public License (GPL) version 2
7  */
8 
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/pm.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/err.h>
20 #include <linux/amba/bus.h>
21 
22 #include <plat/ste_dma40.h>
23 
24 #include "ste_dma40_ll.h"
25 
26 #define D40_NAME "dma40"
27 
28 #define D40_PHY_CHAN -1
29 
30 /* For masking out/in 2 bit channel positions */
31 #define D40_CHAN_POS(chan)  (2 * (chan / 2))
32 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
33 
34 /* Maximum iterations taken before giving up suspending a channel */
35 #define D40_SUSPEND_MAX_IT 500
36 
37 /* Milliseconds */
38 #define DMA40_AUTOSUSPEND_DELAY	100
39 
40 /* Hardware requirement on LCLA alignment */
41 #define LCLA_ALIGNMENT 0x40000
42 
43 /* Max number of links per event group */
44 #define D40_LCLA_LINK_PER_EVENT_GRP 128
45 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
46 
47 /* Attempts before giving up to trying to get pages that are aligned */
48 #define MAX_LCLA_ALLOC_ATTEMPTS 256
49 
50 /* Bit markings for allocation map */
51 #define D40_ALLOC_FREE		(1 << 31)
52 #define D40_ALLOC_PHY		(1 << 30)
53 #define D40_ALLOC_LOG_FREE	0
54 
55 /**
56  * enum 40_command - The different commands and/or statuses.
57  *
58  * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
59  * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
60  * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
61  * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
62  */
63 enum d40_command {
64 	D40_DMA_STOP		= 0,
65 	D40_DMA_RUN		= 1,
66 	D40_DMA_SUSPEND_REQ	= 2,
67 	D40_DMA_SUSPENDED	= 3
68 };
69 
70 /*
71  * These are the registers that has to be saved and later restored
72  * when the DMA hw is powered off.
73  * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
74  */
75 static u32 d40_backup_regs[] = {
76 	D40_DREG_LCPA,
77 	D40_DREG_LCLA,
78 	D40_DREG_PRMSE,
79 	D40_DREG_PRMSO,
80 	D40_DREG_PRMOE,
81 	D40_DREG_PRMOO,
82 };
83 
84 #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
85 
86 /* TODO: Check if all these registers have to be saved/restored on dma40 v3 */
87 static u32 d40_backup_regs_v3[] = {
88 	D40_DREG_PSEG1,
89 	D40_DREG_PSEG2,
90 	D40_DREG_PSEG3,
91 	D40_DREG_PSEG4,
92 	D40_DREG_PCEG1,
93 	D40_DREG_PCEG2,
94 	D40_DREG_PCEG3,
95 	D40_DREG_PCEG4,
96 	D40_DREG_RSEG1,
97 	D40_DREG_RSEG2,
98 	D40_DREG_RSEG3,
99 	D40_DREG_RSEG4,
100 	D40_DREG_RCEG1,
101 	D40_DREG_RCEG2,
102 	D40_DREG_RCEG3,
103 	D40_DREG_RCEG4,
104 };
105 
106 #define BACKUP_REGS_SZ_V3 ARRAY_SIZE(d40_backup_regs_v3)
107 
108 static u32 d40_backup_regs_chan[] = {
109 	D40_CHAN_REG_SSCFG,
110 	D40_CHAN_REG_SSELT,
111 	D40_CHAN_REG_SSPTR,
112 	D40_CHAN_REG_SSLNK,
113 	D40_CHAN_REG_SDCFG,
114 	D40_CHAN_REG_SDELT,
115 	D40_CHAN_REG_SDPTR,
116 	D40_CHAN_REG_SDLNK,
117 };
118 
119 /**
120  * struct d40_lli_pool - Structure for keeping LLIs in memory
121  *
122  * @base: Pointer to memory area when the pre_alloc_lli's are not large
123  * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
124  * pre_alloc_lli is used.
125  * @dma_addr: DMA address, if mapped
126  * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
127  * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
128  * one buffer to one buffer.
129  */
130 struct d40_lli_pool {
131 	void	*base;
132 	int	 size;
133 	dma_addr_t	dma_addr;
134 	/* Space for dst and src, plus an extra for padding */
135 	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
136 };
137 
138 /**
139  * struct d40_desc - A descriptor is one DMA job.
140  *
141  * @lli_phy: LLI settings for physical channel. Both src and dst=
142  * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
143  * lli_len equals one.
144  * @lli_log: Same as above but for logical channels.
145  * @lli_pool: The pool with two entries pre-allocated.
146  * @lli_len: Number of llis of current descriptor.
147  * @lli_current: Number of transferred llis.
148  * @lcla_alloc: Number of LCLA entries allocated.
149  * @txd: DMA engine struct. Used for among other things for communication
150  * during a transfer.
151  * @node: List entry.
152  * @is_in_client_list: true if the client owns this descriptor.
153  * @cyclic: true if this is a cyclic job
154  *
155  * This descriptor is used for both logical and physical transfers.
156  */
157 struct d40_desc {
158 	/* LLI physical */
159 	struct d40_phy_lli_bidir	 lli_phy;
160 	/* LLI logical */
161 	struct d40_log_lli_bidir	 lli_log;
162 
163 	struct d40_lli_pool		 lli_pool;
164 	int				 lli_len;
165 	int				 lli_current;
166 	int				 lcla_alloc;
167 
168 	struct dma_async_tx_descriptor	 txd;
169 	struct list_head		 node;
170 
171 	bool				 is_in_client_list;
172 	bool				 cyclic;
173 };
174 
175 /**
176  * struct d40_lcla_pool - LCLA pool settings and data.
177  *
178  * @base: The virtual address of LCLA. 18 bit aligned.
179  * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
180  * This pointer is only there for clean-up on error.
181  * @pages: The number of pages needed for all physical channels.
182  * Only used later for clean-up on error
183  * @lock: Lock to protect the content in this struct.
184  * @alloc_map: big map over which LCLA entry is own by which job.
185  */
186 struct d40_lcla_pool {
187 	void		*base;
188 	dma_addr_t	dma_addr;
189 	void		*base_unaligned;
190 	int		 pages;
191 	spinlock_t	 lock;
192 	struct d40_desc	**alloc_map;
193 };
194 
195 /**
196  * struct d40_phy_res - struct for handling eventlines mapped to physical
197  * channels.
198  *
199  * @lock: A lock protection this entity.
200  * @reserved: True if used by secure world or otherwise.
201  * @num: The physical channel number of this entity.
202  * @allocated_src: Bit mapped to show which src event line's are mapped to
203  * this physical channel. Can also be free or physically allocated.
204  * @allocated_dst: Same as for src but is dst.
205  * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
206  * event line number.
207  */
208 struct d40_phy_res {
209 	spinlock_t lock;
210 	bool	   reserved;
211 	int	   num;
212 	u32	   allocated_src;
213 	u32	   allocated_dst;
214 };
215 
216 struct d40_base;
217 
218 /**
219  * struct d40_chan - Struct that describes a channel.
220  *
221  * @lock: A spinlock to protect this struct.
222  * @log_num: The logical number, if any of this channel.
223  * @completed: Starts with 1, after first interrupt it is set to dma engine's
224  * current cookie.
225  * @pending_tx: The number of pending transfers. Used between interrupt handler
226  * and tasklet.
227  * @busy: Set to true when transfer is ongoing on this channel.
228  * @phy_chan: Pointer to physical channel which this instance runs on. If this
229  * point is NULL, then the channel is not allocated.
230  * @chan: DMA engine handle.
231  * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
232  * transfer and call client callback.
233  * @client: Cliented owned descriptor list.
234  * @pending_queue: Submitted jobs, to be issued by issue_pending()
235  * @active: Active descriptor.
236  * @queue: Queued jobs.
237  * @prepare_queue: Prepared jobs.
238  * @dma_cfg: The client configuration of this dma channel.
239  * @configured: whether the dma_cfg configuration is valid
240  * @base: Pointer to the device instance struct.
241  * @src_def_cfg: Default cfg register setting for src.
242  * @dst_def_cfg: Default cfg register setting for dst.
243  * @log_def: Default logical channel settings.
244  * @lcpa: Pointer to dst and src lcpa settings.
245  * @runtime_addr: runtime configured address.
246  * @runtime_direction: runtime configured direction.
247  *
248  * This struct can either "be" a logical or a physical channel.
249  */
250 struct d40_chan {
251 	spinlock_t			 lock;
252 	int				 log_num;
253 	/* ID of the most recent completed transfer */
254 	int				 completed;
255 	int				 pending_tx;
256 	bool				 busy;
257 	struct d40_phy_res		*phy_chan;
258 	struct dma_chan			 chan;
259 	struct tasklet_struct		 tasklet;
260 	struct list_head		 client;
261 	struct list_head		 pending_queue;
262 	struct list_head		 active;
263 	struct list_head		 queue;
264 	struct list_head		 prepare_queue;
265 	struct stedma40_chan_cfg	 dma_cfg;
266 	bool				 configured;
267 	struct d40_base			*base;
268 	/* Default register configurations */
269 	u32				 src_def_cfg;
270 	u32				 dst_def_cfg;
271 	struct d40_def_lcsp		 log_def;
272 	struct d40_log_lli_full		*lcpa;
273 	/* Runtime reconfiguration */
274 	dma_addr_t			runtime_addr;
275 	enum dma_transfer_direction	runtime_direction;
276 };
277 
278 /**
279  * struct d40_base - The big global struct, one for each probe'd instance.
280  *
281  * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
282  * @execmd_lock: Lock for execute command usage since several channels share
283  * the same physical register.
284  * @dev: The device structure.
285  * @virtbase: The virtual base address of the DMA's register.
286  * @rev: silicon revision detected.
287  * @clk: Pointer to the DMA clock structure.
288  * @phy_start: Physical memory start of the DMA registers.
289  * @phy_size: Size of the DMA register map.
290  * @irq: The IRQ number.
291  * @num_phy_chans: The number of physical channels. Read from HW. This
292  * is the number of available channels for this driver, not counting "Secure
293  * mode" allocated physical channels.
294  * @num_log_chans: The number of logical channels. Calculated from
295  * num_phy_chans.
296  * @dma_both: dma_device channels that can do both memcpy and slave transfers.
297  * @dma_slave: dma_device channels that can do only do slave transfers.
298  * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
299  * @phy_chans: Room for all possible physical channels in system.
300  * @log_chans: Room for all possible logical channels in system.
301  * @lookup_log_chans: Used to map interrupt number to logical channel. Points
302  * to log_chans entries.
303  * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
304  * to phy_chans entries.
305  * @plat_data: Pointer to provided platform_data which is the driver
306  * configuration.
307  * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
308  * @phy_res: Vector containing all physical channels.
309  * @lcla_pool: lcla pool settings and data.
310  * @lcpa_base: The virtual mapped address of LCPA.
311  * @phy_lcpa: The physical address of the LCPA.
312  * @lcpa_size: The size of the LCPA area.
313  * @desc_slab: cache for descriptors.
314  * @reg_val_backup: Here the values of some hardware registers are stored
315  * before the DMA is powered off. They are restored when the power is back on.
316  * @reg_val_backup_v3: Backup of registers that only exits on dma40 v3 and
317  * later.
318  * @reg_val_backup_chan: Backup data for standard channel parameter registers.
319  * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
320  * @initialized: true if the dma has been initialized
321  */
322 struct d40_base {
323 	spinlock_t			 interrupt_lock;
324 	spinlock_t			 execmd_lock;
325 	struct device			 *dev;
326 	void __iomem			 *virtbase;
327 	u8				  rev:4;
328 	struct clk			 *clk;
329 	phys_addr_t			  phy_start;
330 	resource_size_t			  phy_size;
331 	int				  irq;
332 	int				  num_phy_chans;
333 	int				  num_log_chans;
334 	struct dma_device		  dma_both;
335 	struct dma_device		  dma_slave;
336 	struct dma_device		  dma_memcpy;
337 	struct d40_chan			 *phy_chans;
338 	struct d40_chan			 *log_chans;
339 	struct d40_chan			**lookup_log_chans;
340 	struct d40_chan			**lookup_phy_chans;
341 	struct stedma40_platform_data	 *plat_data;
342 	struct regulator		 *lcpa_regulator;
343 	/* Physical half channels */
344 	struct d40_phy_res		 *phy_res;
345 	struct d40_lcla_pool		  lcla_pool;
346 	void				 *lcpa_base;
347 	dma_addr_t			  phy_lcpa;
348 	resource_size_t			  lcpa_size;
349 	struct kmem_cache		 *desc_slab;
350 	u32				  reg_val_backup[BACKUP_REGS_SZ];
351 	u32				  reg_val_backup_v3[BACKUP_REGS_SZ_V3];
352 	u32				 *reg_val_backup_chan;
353 	u16				  gcc_pwr_off_mask;
354 	bool				  initialized;
355 };
356 
357 /**
358  * struct d40_interrupt_lookup - lookup table for interrupt handler
359  *
360  * @src: Interrupt mask register.
361  * @clr: Interrupt clear register.
362  * @is_error: true if this is an error interrupt.
363  * @offset: start delta in the lookup_log_chans in d40_base. If equals to
364  * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
365  */
366 struct d40_interrupt_lookup {
367 	u32 src;
368 	u32 clr;
369 	bool is_error;
370 	int offset;
371 };
372 
373 /**
374  * struct d40_reg_val - simple lookup struct
375  *
376  * @reg: The register.
377  * @val: The value that belongs to the register in reg.
378  */
379 struct d40_reg_val {
380 	unsigned int reg;
381 	unsigned int val;
382 };
383 
chan2dev(struct d40_chan * d40c)384 static struct device *chan2dev(struct d40_chan *d40c)
385 {
386 	return &d40c->chan.dev->device;
387 }
388 
chan_is_physical(struct d40_chan * chan)389 static bool chan_is_physical(struct d40_chan *chan)
390 {
391 	return chan->log_num == D40_PHY_CHAN;
392 }
393 
chan_is_logical(struct d40_chan * chan)394 static bool chan_is_logical(struct d40_chan *chan)
395 {
396 	return !chan_is_physical(chan);
397 }
398 
chan_base(struct d40_chan * chan)399 static void __iomem *chan_base(struct d40_chan *chan)
400 {
401 	return chan->base->virtbase + D40_DREG_PCBASE +
402 	       chan->phy_chan->num * D40_DREG_PCDELTA;
403 }
404 
405 #define d40_err(dev, format, arg...)		\
406 	dev_err(dev, "[%s] " format, __func__, ## arg)
407 
408 #define chan_err(d40c, format, arg...)		\
409 	d40_err(chan2dev(d40c), format, ## arg)
410 
d40_pool_lli_alloc(struct d40_chan * d40c,struct d40_desc * d40d,int lli_len)411 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
412 			      int lli_len)
413 {
414 	bool is_log = chan_is_logical(d40c);
415 	u32 align;
416 	void *base;
417 
418 	if (is_log)
419 		align = sizeof(struct d40_log_lli);
420 	else
421 		align = sizeof(struct d40_phy_lli);
422 
423 	if (lli_len == 1) {
424 		base = d40d->lli_pool.pre_alloc_lli;
425 		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
426 		d40d->lli_pool.base = NULL;
427 	} else {
428 		d40d->lli_pool.size = lli_len * 2 * align;
429 
430 		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
431 		d40d->lli_pool.base = base;
432 
433 		if (d40d->lli_pool.base == NULL)
434 			return -ENOMEM;
435 	}
436 
437 	if (is_log) {
438 		d40d->lli_log.src = PTR_ALIGN(base, align);
439 		d40d->lli_log.dst = d40d->lli_log.src + lli_len;
440 
441 		d40d->lli_pool.dma_addr = 0;
442 	} else {
443 		d40d->lli_phy.src = PTR_ALIGN(base, align);
444 		d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
445 
446 		d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
447 							 d40d->lli_phy.src,
448 							 d40d->lli_pool.size,
449 							 DMA_TO_DEVICE);
450 
451 		if (dma_mapping_error(d40c->base->dev,
452 				      d40d->lli_pool.dma_addr)) {
453 			kfree(d40d->lli_pool.base);
454 			d40d->lli_pool.base = NULL;
455 			d40d->lli_pool.dma_addr = 0;
456 			return -ENOMEM;
457 		}
458 	}
459 
460 	return 0;
461 }
462 
d40_pool_lli_free(struct d40_chan * d40c,struct d40_desc * d40d)463 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
464 {
465 	if (d40d->lli_pool.dma_addr)
466 		dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
467 				 d40d->lli_pool.size, DMA_TO_DEVICE);
468 
469 	kfree(d40d->lli_pool.base);
470 	d40d->lli_pool.base = NULL;
471 	d40d->lli_pool.size = 0;
472 	d40d->lli_log.src = NULL;
473 	d40d->lli_log.dst = NULL;
474 	d40d->lli_phy.src = NULL;
475 	d40d->lli_phy.dst = NULL;
476 }
477 
d40_lcla_alloc_one(struct d40_chan * d40c,struct d40_desc * d40d)478 static int d40_lcla_alloc_one(struct d40_chan *d40c,
479 			      struct d40_desc *d40d)
480 {
481 	unsigned long flags;
482 	int i;
483 	int ret = -EINVAL;
484 	int p;
485 
486 	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
487 
488 	p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
489 
490 	/*
491 	 * Allocate both src and dst at the same time, therefore the half
492 	 * start on 1 since 0 can't be used since zero is used as end marker.
493 	 */
494 	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
495 		if (!d40c->base->lcla_pool.alloc_map[p + i]) {
496 			d40c->base->lcla_pool.alloc_map[p + i] = d40d;
497 			d40d->lcla_alloc++;
498 			ret = i;
499 			break;
500 		}
501 	}
502 
503 	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
504 
505 	return ret;
506 }
507 
d40_lcla_free_all(struct d40_chan * d40c,struct d40_desc * d40d)508 static int d40_lcla_free_all(struct d40_chan *d40c,
509 			     struct d40_desc *d40d)
510 {
511 	unsigned long flags;
512 	int i;
513 	int ret = -EINVAL;
514 
515 	if (chan_is_physical(d40c))
516 		return 0;
517 
518 	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
519 
520 	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
521 		if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
522 						    D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
523 			d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
524 							D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
525 			d40d->lcla_alloc--;
526 			if (d40d->lcla_alloc == 0) {
527 				ret = 0;
528 				break;
529 			}
530 		}
531 	}
532 
533 	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
534 
535 	return ret;
536 
537 }
538 
d40_desc_remove(struct d40_desc * d40d)539 static void d40_desc_remove(struct d40_desc *d40d)
540 {
541 	list_del(&d40d->node);
542 }
543 
d40_desc_get(struct d40_chan * d40c)544 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
545 {
546 	struct d40_desc *desc = NULL;
547 
548 	if (!list_empty(&d40c->client)) {
549 		struct d40_desc *d;
550 		struct d40_desc *_d;
551 
552 		list_for_each_entry_safe(d, _d, &d40c->client, node) {
553 			if (async_tx_test_ack(&d->txd)) {
554 				d40_desc_remove(d);
555 				desc = d;
556 				memset(desc, 0, sizeof(*desc));
557 				break;
558 			}
559 		}
560 	}
561 
562 	if (!desc)
563 		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
564 
565 	if (desc)
566 		INIT_LIST_HEAD(&desc->node);
567 
568 	return desc;
569 }
570 
d40_desc_free(struct d40_chan * d40c,struct d40_desc * d40d)571 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
572 {
573 
574 	d40_pool_lli_free(d40c, d40d);
575 	d40_lcla_free_all(d40c, d40d);
576 	kmem_cache_free(d40c->base->desc_slab, d40d);
577 }
578 
d40_desc_submit(struct d40_chan * d40c,struct d40_desc * desc)579 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
580 {
581 	list_add_tail(&desc->node, &d40c->active);
582 }
583 
d40_phy_lli_load(struct d40_chan * chan,struct d40_desc * desc)584 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
585 {
586 	struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
587 	struct d40_phy_lli *lli_src = desc->lli_phy.src;
588 	void __iomem *base = chan_base(chan);
589 
590 	writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
591 	writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
592 	writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
593 	writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
594 
595 	writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
596 	writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
597 	writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
598 	writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
599 }
600 
d40_log_lli_to_lcxa(struct d40_chan * chan,struct d40_desc * desc)601 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
602 {
603 	struct d40_lcla_pool *pool = &chan->base->lcla_pool;
604 	struct d40_log_lli_bidir *lli = &desc->lli_log;
605 	int lli_current = desc->lli_current;
606 	int lli_len = desc->lli_len;
607 	bool cyclic = desc->cyclic;
608 	int curr_lcla = -EINVAL;
609 	int first_lcla = 0;
610 	bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
611 	bool linkback;
612 
613 	/*
614 	 * We may have partially running cyclic transfers, in case we did't get
615 	 * enough LCLA entries.
616 	 */
617 	linkback = cyclic && lli_current == 0;
618 
619 	/*
620 	 * For linkback, we need one LCLA even with only one link, because we
621 	 * can't link back to the one in LCPA space
622 	 */
623 	if (linkback || (lli_len - lli_current > 1)) {
624 		curr_lcla = d40_lcla_alloc_one(chan, desc);
625 		first_lcla = curr_lcla;
626 	}
627 
628 	/*
629 	 * For linkback, we normally load the LCPA in the loop since we need to
630 	 * link it to the second LCLA and not the first.  However, if we
631 	 * couldn't even get a first LCLA, then we have to run in LCPA and
632 	 * reload manually.
633 	 */
634 	if (!linkback || curr_lcla == -EINVAL) {
635 		unsigned int flags = 0;
636 
637 		if (curr_lcla == -EINVAL)
638 			flags |= LLI_TERM_INT;
639 
640 		d40_log_lli_lcpa_write(chan->lcpa,
641 				       &lli->dst[lli_current],
642 				       &lli->src[lli_current],
643 				       curr_lcla,
644 				       flags);
645 		lli_current++;
646 	}
647 
648 	if (curr_lcla < 0)
649 		goto out;
650 
651 	for (; lli_current < lli_len; lli_current++) {
652 		unsigned int lcla_offset = chan->phy_chan->num * 1024 +
653 					   8 * curr_lcla * 2;
654 		struct d40_log_lli *lcla = pool->base + lcla_offset;
655 		unsigned int flags = 0;
656 		int next_lcla;
657 
658 		if (lli_current + 1 < lli_len)
659 			next_lcla = d40_lcla_alloc_one(chan, desc);
660 		else
661 			next_lcla = linkback ? first_lcla : -EINVAL;
662 
663 		if (cyclic || next_lcla == -EINVAL)
664 			flags |= LLI_TERM_INT;
665 
666 		if (linkback && curr_lcla == first_lcla) {
667 			/* First link goes in both LCPA and LCLA */
668 			d40_log_lli_lcpa_write(chan->lcpa,
669 					       &lli->dst[lli_current],
670 					       &lli->src[lli_current],
671 					       next_lcla, flags);
672 		}
673 
674 		/*
675 		 * One unused LCLA in the cyclic case if the very first
676 		 * next_lcla fails...
677 		 */
678 		d40_log_lli_lcla_write(lcla,
679 				       &lli->dst[lli_current],
680 				       &lli->src[lli_current],
681 				       next_lcla, flags);
682 
683 		/*
684 		 * Cache maintenance is not needed if lcla is
685 		 * mapped in esram
686 		 */
687 		if (!use_esram_lcla) {
688 			dma_sync_single_range_for_device(chan->base->dev,
689 						pool->dma_addr, lcla_offset,
690 						2 * sizeof(struct d40_log_lli),
691 						DMA_TO_DEVICE);
692 		}
693 		curr_lcla = next_lcla;
694 
695 		if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
696 			lli_current++;
697 			break;
698 		}
699 	}
700 
701 out:
702 	desc->lli_current = lli_current;
703 }
704 
d40_desc_load(struct d40_chan * d40c,struct d40_desc * d40d)705 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
706 {
707 	if (chan_is_physical(d40c)) {
708 		d40_phy_lli_load(d40c, d40d);
709 		d40d->lli_current = d40d->lli_len;
710 	} else
711 		d40_log_lli_to_lcxa(d40c, d40d);
712 }
713 
d40_first_active_get(struct d40_chan * d40c)714 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
715 {
716 	struct d40_desc *d;
717 
718 	if (list_empty(&d40c->active))
719 		return NULL;
720 
721 	d = list_first_entry(&d40c->active,
722 			     struct d40_desc,
723 			     node);
724 	return d;
725 }
726 
727 /* remove desc from current queue and add it to the pending_queue */
d40_desc_queue(struct d40_chan * d40c,struct d40_desc * desc)728 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
729 {
730 	d40_desc_remove(desc);
731 	desc->is_in_client_list = false;
732 	list_add_tail(&desc->node, &d40c->pending_queue);
733 }
734 
d40_first_pending(struct d40_chan * d40c)735 static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
736 {
737 	struct d40_desc *d;
738 
739 	if (list_empty(&d40c->pending_queue))
740 		return NULL;
741 
742 	d = list_first_entry(&d40c->pending_queue,
743 			     struct d40_desc,
744 			     node);
745 	return d;
746 }
747 
d40_first_queued(struct d40_chan * d40c)748 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
749 {
750 	struct d40_desc *d;
751 
752 	if (list_empty(&d40c->queue))
753 		return NULL;
754 
755 	d = list_first_entry(&d40c->queue,
756 			     struct d40_desc,
757 			     node);
758 	return d;
759 }
760 
d40_psize_2_burst_size(bool is_log,int psize)761 static int d40_psize_2_burst_size(bool is_log, int psize)
762 {
763 	if (is_log) {
764 		if (psize == STEDMA40_PSIZE_LOG_1)
765 			return 1;
766 	} else {
767 		if (psize == STEDMA40_PSIZE_PHY_1)
768 			return 1;
769 	}
770 
771 	return 2 << psize;
772 }
773 
774 /*
775  * The dma only supports transmitting packages up to
776  * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
777  * dma elements required to send the entire sg list
778  */
d40_size_2_dmalen(int size,u32 data_width1,u32 data_width2)779 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
780 {
781 	int dmalen;
782 	u32 max_w = max(data_width1, data_width2);
783 	u32 min_w = min(data_width1, data_width2);
784 	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
785 
786 	if (seg_max > STEDMA40_MAX_SEG_SIZE)
787 		seg_max -= (1 << max_w);
788 
789 	if (!IS_ALIGNED(size, 1 << max_w))
790 		return -EINVAL;
791 
792 	if (size <= seg_max)
793 		dmalen = 1;
794 	else {
795 		dmalen = size / seg_max;
796 		if (dmalen * seg_max < size)
797 			dmalen++;
798 	}
799 	return dmalen;
800 }
801 
d40_sg_2_dmalen(struct scatterlist * sgl,int sg_len,u32 data_width1,u32 data_width2)802 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
803 			   u32 data_width1, u32 data_width2)
804 {
805 	struct scatterlist *sg;
806 	int i;
807 	int len = 0;
808 	int ret;
809 
810 	for_each_sg(sgl, sg, sg_len, i) {
811 		ret = d40_size_2_dmalen(sg_dma_len(sg),
812 					data_width1, data_width2);
813 		if (ret < 0)
814 			return ret;
815 		len += ret;
816 	}
817 	return len;
818 }
819 
820 
821 #ifdef CONFIG_PM
dma40_backup(void __iomem * baseaddr,u32 * backup,u32 * regaddr,int num,bool save)822 static void dma40_backup(void __iomem *baseaddr, u32 *backup,
823 			 u32 *regaddr, int num, bool save)
824 {
825 	int i;
826 
827 	for (i = 0; i < num; i++) {
828 		void __iomem *addr = baseaddr + regaddr[i];
829 
830 		if (save)
831 			backup[i] = readl_relaxed(addr);
832 		else
833 			writel_relaxed(backup[i], addr);
834 	}
835 }
836 
d40_save_restore_registers(struct d40_base * base,bool save)837 static void d40_save_restore_registers(struct d40_base *base, bool save)
838 {
839 	int i;
840 
841 	/* Save/Restore channel specific registers */
842 	for (i = 0; i < base->num_phy_chans; i++) {
843 		void __iomem *addr;
844 		int idx;
845 
846 		if (base->phy_res[i].reserved)
847 			continue;
848 
849 		addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
850 		idx = i * ARRAY_SIZE(d40_backup_regs_chan);
851 
852 		dma40_backup(addr, &base->reg_val_backup_chan[idx],
853 			     d40_backup_regs_chan,
854 			     ARRAY_SIZE(d40_backup_regs_chan),
855 			     save);
856 	}
857 
858 	/* Save/Restore global registers */
859 	dma40_backup(base->virtbase, base->reg_val_backup,
860 		     d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
861 		     save);
862 
863 	/* Save/Restore registers only existing on dma40 v3 and later */
864 	if (base->rev >= 3)
865 		dma40_backup(base->virtbase, base->reg_val_backup_v3,
866 			     d40_backup_regs_v3,
867 			     ARRAY_SIZE(d40_backup_regs_v3),
868 			     save);
869 }
870 #else
d40_save_restore_registers(struct d40_base * base,bool save)871 static void d40_save_restore_registers(struct d40_base *base, bool save)
872 {
873 }
874 #endif
875 
d40_channel_execute_command(struct d40_chan * d40c,enum d40_command command)876 static int d40_channel_execute_command(struct d40_chan *d40c,
877 				       enum d40_command command)
878 {
879 	u32 status;
880 	int i;
881 	void __iomem *active_reg;
882 	int ret = 0;
883 	unsigned long flags;
884 	u32 wmask;
885 
886 	spin_lock_irqsave(&d40c->base->execmd_lock, flags);
887 
888 	if (d40c->phy_chan->num % 2 == 0)
889 		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
890 	else
891 		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
892 
893 	if (command == D40_DMA_SUSPEND_REQ) {
894 		status = (readl(active_reg) &
895 			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
896 			D40_CHAN_POS(d40c->phy_chan->num);
897 
898 		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
899 			goto done;
900 	}
901 
902 	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
903 	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
904 	       active_reg);
905 
906 	if (command == D40_DMA_SUSPEND_REQ) {
907 
908 		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
909 			status = (readl(active_reg) &
910 				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
911 				D40_CHAN_POS(d40c->phy_chan->num);
912 
913 			cpu_relax();
914 			/*
915 			 * Reduce the number of bus accesses while
916 			 * waiting for the DMA to suspend.
917 			 */
918 			udelay(3);
919 
920 			if (status == D40_DMA_STOP ||
921 			    status == D40_DMA_SUSPENDED)
922 				break;
923 		}
924 
925 		if (i == D40_SUSPEND_MAX_IT) {
926 			chan_err(d40c,
927 				"unable to suspend the chl %d (log: %d) status %x\n",
928 				d40c->phy_chan->num, d40c->log_num,
929 				status);
930 			dump_stack();
931 			ret = -EBUSY;
932 		}
933 
934 	}
935 done:
936 	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
937 	return ret;
938 }
939 
d40_term_all(struct d40_chan * d40c)940 static void d40_term_all(struct d40_chan *d40c)
941 {
942 	struct d40_desc *d40d;
943 	struct d40_desc *_d;
944 
945 	/* Release active descriptors */
946 	while ((d40d = d40_first_active_get(d40c))) {
947 		d40_desc_remove(d40d);
948 		d40_desc_free(d40c, d40d);
949 	}
950 
951 	/* Release queued descriptors waiting for transfer */
952 	while ((d40d = d40_first_queued(d40c))) {
953 		d40_desc_remove(d40d);
954 		d40_desc_free(d40c, d40d);
955 	}
956 
957 	/* Release pending descriptors */
958 	while ((d40d = d40_first_pending(d40c))) {
959 		d40_desc_remove(d40d);
960 		d40_desc_free(d40c, d40d);
961 	}
962 
963 	/* Release client owned descriptors */
964 	if (!list_empty(&d40c->client))
965 		list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
966 			d40_desc_remove(d40d);
967 			d40_desc_free(d40c, d40d);
968 		}
969 
970 	/* Release descriptors in prepare queue */
971 	if (!list_empty(&d40c->prepare_queue))
972 		list_for_each_entry_safe(d40d, _d,
973 					 &d40c->prepare_queue, node) {
974 			d40_desc_remove(d40d);
975 			d40_desc_free(d40c, d40d);
976 		}
977 
978 	d40c->pending_tx = 0;
979 	d40c->busy = false;
980 }
981 
__d40_config_set_event(struct d40_chan * d40c,bool enable,u32 event,int reg)982 static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
983 				   u32 event, int reg)
984 {
985 	void __iomem *addr = chan_base(d40c) + reg;
986 	int tries;
987 
988 	if (!enable) {
989 		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
990 		       | ~D40_EVENTLINE_MASK(event), addr);
991 		return;
992 	}
993 
994 	/*
995 	 * The hardware sometimes doesn't register the enable when src and dst
996 	 * event lines are active on the same logical channel.  Retry to ensure
997 	 * it does.  Usually only one retry is sufficient.
998 	 */
999 	tries = 100;
1000 	while (--tries) {
1001 		writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1002 		       | ~D40_EVENTLINE_MASK(event), addr);
1003 
1004 		if (readl(addr) & D40_EVENTLINE_MASK(event))
1005 			break;
1006 	}
1007 
1008 	if (tries != 99)
1009 		dev_dbg(chan2dev(d40c),
1010 			"[%s] workaround enable S%cLNK (%d tries)\n",
1011 			__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1012 			100 - tries);
1013 
1014 	WARN_ON(!tries);
1015 }
1016 
d40_config_set_event(struct d40_chan * d40c,bool do_enable)1017 static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
1018 {
1019 	unsigned long flags;
1020 
1021 	spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1022 
1023 	/* Enable event line connected to device (or memcpy) */
1024 	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
1025 	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
1026 		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1027 
1028 		__d40_config_set_event(d40c, do_enable, event,
1029 				       D40_CHAN_REG_SSLNK);
1030 	}
1031 
1032 	if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
1033 		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1034 
1035 		__d40_config_set_event(d40c, do_enable, event,
1036 				       D40_CHAN_REG_SDLNK);
1037 	}
1038 
1039 	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1040 }
1041 
d40_chan_has_events(struct d40_chan * d40c)1042 static u32 d40_chan_has_events(struct d40_chan *d40c)
1043 {
1044 	void __iomem *chanbase = chan_base(d40c);
1045 	u32 val;
1046 
1047 	val = readl(chanbase + D40_CHAN_REG_SSLNK);
1048 	val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1049 
1050 	return val;
1051 }
1052 
d40_get_prmo(struct d40_chan * d40c)1053 static u32 d40_get_prmo(struct d40_chan *d40c)
1054 {
1055 	static const unsigned int phy_map[] = {
1056 		[STEDMA40_PCHAN_BASIC_MODE]
1057 			= D40_DREG_PRMO_PCHAN_BASIC,
1058 		[STEDMA40_PCHAN_MODULO_MODE]
1059 			= D40_DREG_PRMO_PCHAN_MODULO,
1060 		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
1061 			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1062 	};
1063 	static const unsigned int log_map[] = {
1064 		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1065 			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1066 		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1067 			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1068 		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1069 			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1070 	};
1071 
1072 	if (chan_is_physical(d40c))
1073 		return phy_map[d40c->dma_cfg.mode_opt];
1074 	else
1075 		return log_map[d40c->dma_cfg.mode_opt];
1076 }
1077 
d40_config_write(struct d40_chan * d40c)1078 static void d40_config_write(struct d40_chan *d40c)
1079 {
1080 	u32 addr_base;
1081 	u32 var;
1082 
1083 	/* Odd addresses are even addresses + 4 */
1084 	addr_base = (d40c->phy_chan->num % 2) * 4;
1085 	/* Setup channel mode to logical or physical */
1086 	var = ((u32)(chan_is_logical(d40c)) + 1) <<
1087 		D40_CHAN_POS(d40c->phy_chan->num);
1088 	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1089 
1090 	/* Setup operational mode option register */
1091 	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1092 
1093 	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1094 
1095 	if (chan_is_logical(d40c)) {
1096 		int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1097 			   & D40_SREG_ELEM_LOG_LIDX_MASK;
1098 		void __iomem *chanbase = chan_base(d40c);
1099 
1100 		/* Set default config for CFG reg */
1101 		writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1102 		writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1103 
1104 		/* Set LIDX for lcla */
1105 		writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1106 		writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1107 
1108 		/* Clear LNK which will be used by d40_chan_has_events() */
1109 		writel(0, chanbase + D40_CHAN_REG_SSLNK);
1110 		writel(0, chanbase + D40_CHAN_REG_SDLNK);
1111 	}
1112 }
1113 
d40_residue(struct d40_chan * d40c)1114 static u32 d40_residue(struct d40_chan *d40c)
1115 {
1116 	u32 num_elt;
1117 
1118 	if (chan_is_logical(d40c))
1119 		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1120 			>> D40_MEM_LCSP2_ECNT_POS;
1121 	else {
1122 		u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1123 		num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1124 			  >> D40_SREG_ELEM_PHY_ECNT_POS;
1125 	}
1126 
1127 	return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
1128 }
1129 
d40_tx_is_linked(struct d40_chan * d40c)1130 static bool d40_tx_is_linked(struct d40_chan *d40c)
1131 {
1132 	bool is_link;
1133 
1134 	if (chan_is_logical(d40c))
1135 		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1136 	else
1137 		is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1138 			  & D40_SREG_LNK_PHYS_LNK_MASK;
1139 
1140 	return is_link;
1141 }
1142 
d40_pause(struct d40_chan * d40c)1143 static int d40_pause(struct d40_chan *d40c)
1144 {
1145 	int res = 0;
1146 	unsigned long flags;
1147 
1148 	if (!d40c->busy)
1149 		return 0;
1150 
1151 	pm_runtime_get_sync(d40c->base->dev);
1152 	spin_lock_irqsave(&d40c->lock, flags);
1153 
1154 	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1155 	if (res == 0) {
1156 		if (chan_is_logical(d40c)) {
1157 			d40_config_set_event(d40c, false);
1158 			/* Resume the other logical channels if any */
1159 			if (d40_chan_has_events(d40c))
1160 				res = d40_channel_execute_command(d40c,
1161 								  D40_DMA_RUN);
1162 		}
1163 	}
1164 	pm_runtime_mark_last_busy(d40c->base->dev);
1165 	pm_runtime_put_autosuspend(d40c->base->dev);
1166 	spin_unlock_irqrestore(&d40c->lock, flags);
1167 	return res;
1168 }
1169 
d40_resume(struct d40_chan * d40c)1170 static int d40_resume(struct d40_chan *d40c)
1171 {
1172 	int res = 0;
1173 	unsigned long flags;
1174 
1175 	if (!d40c->busy)
1176 		return 0;
1177 
1178 	spin_lock_irqsave(&d40c->lock, flags);
1179 	pm_runtime_get_sync(d40c->base->dev);
1180 	if (d40c->base->rev == 0)
1181 		if (chan_is_logical(d40c)) {
1182 			res = d40_channel_execute_command(d40c,
1183 							  D40_DMA_SUSPEND_REQ);
1184 			goto no_suspend;
1185 		}
1186 
1187 	/* If bytes left to transfer or linked tx resume job */
1188 	if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
1189 
1190 		if (chan_is_logical(d40c))
1191 			d40_config_set_event(d40c, true);
1192 
1193 		res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1194 	}
1195 
1196 no_suspend:
1197 	pm_runtime_mark_last_busy(d40c->base->dev);
1198 	pm_runtime_put_autosuspend(d40c->base->dev);
1199 	spin_unlock_irqrestore(&d40c->lock, flags);
1200 	return res;
1201 }
1202 
d40_terminate_all(struct d40_chan * chan)1203 static int d40_terminate_all(struct d40_chan *chan)
1204 {
1205 	unsigned long flags;
1206 	int ret = 0;
1207 
1208 	ret = d40_pause(chan);
1209 	if (!ret && chan_is_physical(chan))
1210 		ret = d40_channel_execute_command(chan, D40_DMA_STOP);
1211 
1212 	spin_lock_irqsave(&chan->lock, flags);
1213 	d40_term_all(chan);
1214 	spin_unlock_irqrestore(&chan->lock, flags);
1215 
1216 	return ret;
1217 }
1218 
d40_tx_submit(struct dma_async_tx_descriptor * tx)1219 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1220 {
1221 	struct d40_chan *d40c = container_of(tx->chan,
1222 					     struct d40_chan,
1223 					     chan);
1224 	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1225 	unsigned long flags;
1226 
1227 	spin_lock_irqsave(&d40c->lock, flags);
1228 
1229 	d40c->chan.cookie++;
1230 
1231 	if (d40c->chan.cookie < 0)
1232 		d40c->chan.cookie = 1;
1233 
1234 	d40d->txd.cookie = d40c->chan.cookie;
1235 
1236 	d40_desc_queue(d40c, d40d);
1237 
1238 	spin_unlock_irqrestore(&d40c->lock, flags);
1239 
1240 	return tx->cookie;
1241 }
1242 
d40_start(struct d40_chan * d40c)1243 static int d40_start(struct d40_chan *d40c)
1244 {
1245 	if (d40c->base->rev == 0) {
1246 		int err;
1247 
1248 		if (chan_is_logical(d40c)) {
1249 			err = d40_channel_execute_command(d40c,
1250 							  D40_DMA_SUSPEND_REQ);
1251 			if (err)
1252 				return err;
1253 		}
1254 	}
1255 
1256 	if (chan_is_logical(d40c))
1257 		d40_config_set_event(d40c, true);
1258 
1259 	return d40_channel_execute_command(d40c, D40_DMA_RUN);
1260 }
1261 
d40_queue_start(struct d40_chan * d40c)1262 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1263 {
1264 	struct d40_desc *d40d;
1265 	int err;
1266 
1267 	/* Start queued jobs, if any */
1268 	d40d = d40_first_queued(d40c);
1269 
1270 	if (d40d != NULL) {
1271 		if (!d40c->busy)
1272 			d40c->busy = true;
1273 
1274 		pm_runtime_get_sync(d40c->base->dev);
1275 
1276 		/* Remove from queue */
1277 		d40_desc_remove(d40d);
1278 
1279 		/* Add to active queue */
1280 		d40_desc_submit(d40c, d40d);
1281 
1282 		/* Initiate DMA job */
1283 		d40_desc_load(d40c, d40d);
1284 
1285 		/* Start dma job */
1286 		err = d40_start(d40c);
1287 
1288 		if (err)
1289 			return NULL;
1290 	}
1291 
1292 	return d40d;
1293 }
1294 
1295 /* called from interrupt context */
dma_tc_handle(struct d40_chan * d40c)1296 static void dma_tc_handle(struct d40_chan *d40c)
1297 {
1298 	struct d40_desc *d40d;
1299 
1300 	/* Get first active entry from list */
1301 	d40d = d40_first_active_get(d40c);
1302 
1303 	if (d40d == NULL)
1304 		return;
1305 
1306 	if (d40d->cyclic) {
1307 		/*
1308 		 * If this was a paritially loaded list, we need to reloaded
1309 		 * it, and only when the list is completed.  We need to check
1310 		 * for done because the interrupt will hit for every link, and
1311 		 * not just the last one.
1312 		 */
1313 		if (d40d->lli_current < d40d->lli_len
1314 		    && !d40_tx_is_linked(d40c)
1315 		    && !d40_residue(d40c)) {
1316 			d40_lcla_free_all(d40c, d40d);
1317 			d40_desc_load(d40c, d40d);
1318 			(void) d40_start(d40c);
1319 
1320 			if (d40d->lli_current == d40d->lli_len)
1321 				d40d->lli_current = 0;
1322 		}
1323 	} else {
1324 		d40_lcla_free_all(d40c, d40d);
1325 
1326 		if (d40d->lli_current < d40d->lli_len) {
1327 			d40_desc_load(d40c, d40d);
1328 			/* Start dma job */
1329 			(void) d40_start(d40c);
1330 			return;
1331 		}
1332 
1333 		if (d40_queue_start(d40c) == NULL)
1334 			d40c->busy = false;
1335 		pm_runtime_mark_last_busy(d40c->base->dev);
1336 		pm_runtime_put_autosuspend(d40c->base->dev);
1337 	}
1338 
1339 	d40c->pending_tx++;
1340 	tasklet_schedule(&d40c->tasklet);
1341 
1342 }
1343 
dma_tasklet(unsigned long data)1344 static void dma_tasklet(unsigned long data)
1345 {
1346 	struct d40_chan *d40c = (struct d40_chan *) data;
1347 	struct d40_desc *d40d;
1348 	unsigned long flags;
1349 	dma_async_tx_callback callback;
1350 	void *callback_param;
1351 
1352 	spin_lock_irqsave(&d40c->lock, flags);
1353 
1354 	/* Get first active entry from list */
1355 	d40d = d40_first_active_get(d40c);
1356 	if (d40d == NULL)
1357 		goto err;
1358 
1359 	if (!d40d->cyclic)
1360 		d40c->completed = d40d->txd.cookie;
1361 
1362 	/*
1363 	 * If terminating a channel pending_tx is set to zero.
1364 	 * This prevents any finished active jobs to return to the client.
1365 	 */
1366 	if (d40c->pending_tx == 0) {
1367 		spin_unlock_irqrestore(&d40c->lock, flags);
1368 		return;
1369 	}
1370 
1371 	/* Callback to client */
1372 	callback = d40d->txd.callback;
1373 	callback_param = d40d->txd.callback_param;
1374 
1375 	if (!d40d->cyclic) {
1376 		if (async_tx_test_ack(&d40d->txd)) {
1377 			d40_desc_remove(d40d);
1378 			d40_desc_free(d40c, d40d);
1379 		} else {
1380 			if (!d40d->is_in_client_list) {
1381 				d40_desc_remove(d40d);
1382 				d40_lcla_free_all(d40c, d40d);
1383 				list_add_tail(&d40d->node, &d40c->client);
1384 				d40d->is_in_client_list = true;
1385 			}
1386 		}
1387 	}
1388 
1389 	d40c->pending_tx--;
1390 
1391 	if (d40c->pending_tx)
1392 		tasklet_schedule(&d40c->tasklet);
1393 
1394 	spin_unlock_irqrestore(&d40c->lock, flags);
1395 
1396 	if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1397 		callback(callback_param);
1398 
1399 	return;
1400 
1401  err:
1402 	/* Rescue manoeuvre if receiving double interrupts */
1403 	if (d40c->pending_tx > 0)
1404 		d40c->pending_tx--;
1405 	spin_unlock_irqrestore(&d40c->lock, flags);
1406 }
1407 
d40_handle_interrupt(int irq,void * data)1408 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1409 {
1410 	static const struct d40_interrupt_lookup il[] = {
1411 		{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
1412 		{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
1413 		{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
1414 		{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
1415 		{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
1416 		{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
1417 		{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
1418 		{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
1419 		{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
1420 		{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
1421 	};
1422 
1423 	int i;
1424 	u32 regs[ARRAY_SIZE(il)];
1425 	u32 idx;
1426 	u32 row;
1427 	long chan = -1;
1428 	struct d40_chan *d40c;
1429 	unsigned long flags;
1430 	struct d40_base *base = data;
1431 
1432 	spin_lock_irqsave(&base->interrupt_lock, flags);
1433 
1434 	/* Read interrupt status of both logical and physical channels */
1435 	for (i = 0; i < ARRAY_SIZE(il); i++)
1436 		regs[i] = readl(base->virtbase + il[i].src);
1437 
1438 	for (;;) {
1439 
1440 		chan = find_next_bit((unsigned long *)regs,
1441 				     BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
1442 
1443 		/* No more set bits found? */
1444 		if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
1445 			break;
1446 
1447 		row = chan / BITS_PER_LONG;
1448 		idx = chan & (BITS_PER_LONG - 1);
1449 
1450 		/* ACK interrupt */
1451 		writel(1 << idx, base->virtbase + il[row].clr);
1452 
1453 		if (il[row].offset == D40_PHY_CHAN)
1454 			d40c = base->lookup_phy_chans[idx];
1455 		else
1456 			d40c = base->lookup_log_chans[il[row].offset + idx];
1457 		spin_lock(&d40c->lock);
1458 
1459 		if (!il[row].is_error)
1460 			dma_tc_handle(d40c);
1461 		else
1462 			d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1463 				chan, il[row].offset, idx);
1464 
1465 		spin_unlock(&d40c->lock);
1466 	}
1467 
1468 	spin_unlock_irqrestore(&base->interrupt_lock, flags);
1469 
1470 	return IRQ_HANDLED;
1471 }
1472 
d40_validate_conf(struct d40_chan * d40c,struct stedma40_chan_cfg * conf)1473 static int d40_validate_conf(struct d40_chan *d40c,
1474 			     struct stedma40_chan_cfg *conf)
1475 {
1476 	int res = 0;
1477 	u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
1478 	u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1479 	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1480 
1481 	if (!conf->dir) {
1482 		chan_err(d40c, "Invalid direction.\n");
1483 		res = -EINVAL;
1484 	}
1485 
1486 	if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
1487 	    d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
1488 	    d40c->runtime_addr == 0) {
1489 
1490 		chan_err(d40c, "Invalid TX channel address (%d)\n",
1491 			 conf->dst_dev_type);
1492 		res = -EINVAL;
1493 	}
1494 
1495 	if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
1496 	    d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
1497 	    d40c->runtime_addr == 0) {
1498 		chan_err(d40c, "Invalid RX channel address (%d)\n",
1499 			conf->src_dev_type);
1500 		res = -EINVAL;
1501 	}
1502 
1503 	if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1504 	    dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1505 		chan_err(d40c, "Invalid dst\n");
1506 		res = -EINVAL;
1507 	}
1508 
1509 	if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1510 	    src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1511 		chan_err(d40c, "Invalid src\n");
1512 		res = -EINVAL;
1513 	}
1514 
1515 	if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
1516 	    dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1517 		chan_err(d40c, "No event line\n");
1518 		res = -EINVAL;
1519 	}
1520 
1521 	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1522 	    (src_event_group != dst_event_group)) {
1523 		chan_err(d40c, "Invalid event group\n");
1524 		res = -EINVAL;
1525 	}
1526 
1527 	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1528 		/*
1529 		 * DMAC HW supports it. Will be added to this driver,
1530 		 * in case any dma client requires it.
1531 		 */
1532 		chan_err(d40c, "periph to periph not supported\n");
1533 		res = -EINVAL;
1534 	}
1535 
1536 	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1537 	    (1 << conf->src_info.data_width) !=
1538 	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1539 	    (1 << conf->dst_info.data_width)) {
1540 		/*
1541 		 * The DMAC hardware only supports
1542 		 * src (burst x width) == dst (burst x width)
1543 		 */
1544 
1545 		chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1546 		res = -EINVAL;
1547 	}
1548 
1549 	return res;
1550 }
1551 
d40_alloc_mask_set(struct d40_phy_res * phy,bool is_src,int log_event_line,bool is_log,bool * first_user)1552 static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1553 			       bool is_src, int log_event_line, bool is_log,
1554 			       bool *first_user)
1555 {
1556 	unsigned long flags;
1557 	spin_lock_irqsave(&phy->lock, flags);
1558 
1559 	*first_user = ((phy->allocated_src | phy->allocated_dst)
1560 			== D40_ALLOC_FREE);
1561 
1562 	if (!is_log) {
1563 		/* Physical interrupts are masked per physical full channel */
1564 		if (phy->allocated_src == D40_ALLOC_FREE &&
1565 		    phy->allocated_dst == D40_ALLOC_FREE) {
1566 			phy->allocated_dst = D40_ALLOC_PHY;
1567 			phy->allocated_src = D40_ALLOC_PHY;
1568 			goto found;
1569 		} else
1570 			goto not_found;
1571 	}
1572 
1573 	/* Logical channel */
1574 	if (is_src) {
1575 		if (phy->allocated_src == D40_ALLOC_PHY)
1576 			goto not_found;
1577 
1578 		if (phy->allocated_src == D40_ALLOC_FREE)
1579 			phy->allocated_src = D40_ALLOC_LOG_FREE;
1580 
1581 		if (!(phy->allocated_src & (1 << log_event_line))) {
1582 			phy->allocated_src |= 1 << log_event_line;
1583 			goto found;
1584 		} else
1585 			goto not_found;
1586 	} else {
1587 		if (phy->allocated_dst == D40_ALLOC_PHY)
1588 			goto not_found;
1589 
1590 		if (phy->allocated_dst == D40_ALLOC_FREE)
1591 			phy->allocated_dst = D40_ALLOC_LOG_FREE;
1592 
1593 		if (!(phy->allocated_dst & (1 << log_event_line))) {
1594 			phy->allocated_dst |= 1 << log_event_line;
1595 			goto found;
1596 		} else
1597 			goto not_found;
1598 	}
1599 
1600 not_found:
1601 	spin_unlock_irqrestore(&phy->lock, flags);
1602 	return false;
1603 found:
1604 	spin_unlock_irqrestore(&phy->lock, flags);
1605 	return true;
1606 }
1607 
d40_alloc_mask_free(struct d40_phy_res * phy,bool is_src,int log_event_line)1608 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1609 			       int log_event_line)
1610 {
1611 	unsigned long flags;
1612 	bool is_free = false;
1613 
1614 	spin_lock_irqsave(&phy->lock, flags);
1615 	if (!log_event_line) {
1616 		phy->allocated_dst = D40_ALLOC_FREE;
1617 		phy->allocated_src = D40_ALLOC_FREE;
1618 		is_free = true;
1619 		goto out;
1620 	}
1621 
1622 	/* Logical channel */
1623 	if (is_src) {
1624 		phy->allocated_src &= ~(1 << log_event_line);
1625 		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1626 			phy->allocated_src = D40_ALLOC_FREE;
1627 	} else {
1628 		phy->allocated_dst &= ~(1 << log_event_line);
1629 		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1630 			phy->allocated_dst = D40_ALLOC_FREE;
1631 	}
1632 
1633 	is_free = ((phy->allocated_src | phy->allocated_dst) ==
1634 		   D40_ALLOC_FREE);
1635 
1636 out:
1637 	spin_unlock_irqrestore(&phy->lock, flags);
1638 
1639 	return is_free;
1640 }
1641 
d40_allocate_channel(struct d40_chan * d40c,bool * first_phy_user)1642 static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1643 {
1644 	int dev_type;
1645 	int event_group;
1646 	int event_line;
1647 	struct d40_phy_res *phys;
1648 	int i;
1649 	int j;
1650 	int log_num;
1651 	bool is_src;
1652 	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1653 
1654 	phys = d40c->base->phy_res;
1655 
1656 	if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1657 		dev_type = d40c->dma_cfg.src_dev_type;
1658 		log_num = 2 * dev_type;
1659 		is_src = true;
1660 	} else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1661 		   d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1662 		/* dst event lines are used for logical memcpy */
1663 		dev_type = d40c->dma_cfg.dst_dev_type;
1664 		log_num = 2 * dev_type + 1;
1665 		is_src = false;
1666 	} else
1667 		return -EINVAL;
1668 
1669 	event_group = D40_TYPE_TO_GROUP(dev_type);
1670 	event_line = D40_TYPE_TO_EVENT(dev_type);
1671 
1672 	if (!is_log) {
1673 		if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1674 			/* Find physical half channel */
1675 			for (i = 0; i < d40c->base->num_phy_chans; i++) {
1676 
1677 				if (d40_alloc_mask_set(&phys[i], is_src,
1678 						       0, is_log,
1679 						       first_phy_user))
1680 					goto found_phy;
1681 			}
1682 		} else
1683 			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1684 				int phy_num = j  + event_group * 2;
1685 				for (i = phy_num; i < phy_num + 2; i++) {
1686 					if (d40_alloc_mask_set(&phys[i],
1687 							       is_src,
1688 							       0,
1689 							       is_log,
1690 							       first_phy_user))
1691 						goto found_phy;
1692 				}
1693 			}
1694 		return -EINVAL;
1695 found_phy:
1696 		d40c->phy_chan = &phys[i];
1697 		d40c->log_num = D40_PHY_CHAN;
1698 		goto out;
1699 	}
1700 	if (dev_type == -1)
1701 		return -EINVAL;
1702 
1703 	/* Find logical channel */
1704 	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1705 		int phy_num = j + event_group * 2;
1706 
1707 		if (d40c->dma_cfg.use_fixed_channel) {
1708 			i = d40c->dma_cfg.phy_channel;
1709 
1710 			if ((i != phy_num) && (i != phy_num + 1)) {
1711 				dev_err(chan2dev(d40c),
1712 					"invalid fixed phy channel %d\n", i);
1713 				return -EINVAL;
1714 			}
1715 
1716 			if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1717 					       is_log, first_phy_user))
1718 				goto found_log;
1719 
1720 			dev_err(chan2dev(d40c),
1721 				"could not allocate fixed phy channel %d\n", i);
1722 			return -EINVAL;
1723 		}
1724 
1725 		/*
1726 		 * Spread logical channels across all available physical rather
1727 		 * than pack every logical channel at the first available phy
1728 		 * channels.
1729 		 */
1730 		if (is_src) {
1731 			for (i = phy_num; i < phy_num + 2; i++) {
1732 				if (d40_alloc_mask_set(&phys[i], is_src,
1733 						       event_line, is_log,
1734 						       first_phy_user))
1735 					goto found_log;
1736 			}
1737 		} else {
1738 			for (i = phy_num + 1; i >= phy_num; i--) {
1739 				if (d40_alloc_mask_set(&phys[i], is_src,
1740 						       event_line, is_log,
1741 						       first_phy_user))
1742 					goto found_log;
1743 			}
1744 		}
1745 	}
1746 	return -EINVAL;
1747 
1748 found_log:
1749 	d40c->phy_chan = &phys[i];
1750 	d40c->log_num = log_num;
1751 out:
1752 
1753 	if (is_log)
1754 		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1755 	else
1756 		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1757 
1758 	return 0;
1759 
1760 }
1761 
d40_config_memcpy(struct d40_chan * d40c)1762 static int d40_config_memcpy(struct d40_chan *d40c)
1763 {
1764 	dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1765 
1766 	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1767 		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1768 		d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1769 		d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1770 			memcpy[d40c->chan.chan_id];
1771 
1772 	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
1773 		   dma_has_cap(DMA_SLAVE, cap)) {
1774 		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1775 	} else {
1776 		chan_err(d40c, "No memcpy\n");
1777 		return -EINVAL;
1778 	}
1779 
1780 	return 0;
1781 }
1782 
1783 
d40_free_dma(struct d40_chan * d40c)1784 static int d40_free_dma(struct d40_chan *d40c)
1785 {
1786 
1787 	int res = 0;
1788 	u32 event;
1789 	struct d40_phy_res *phy = d40c->phy_chan;
1790 	bool is_src;
1791 
1792 	/* Terminate all queued and active transfers */
1793 	d40_term_all(d40c);
1794 
1795 	if (phy == NULL) {
1796 		chan_err(d40c, "phy == null\n");
1797 		return -EINVAL;
1798 	}
1799 
1800 	if (phy->allocated_src == D40_ALLOC_FREE &&
1801 	    phy->allocated_dst == D40_ALLOC_FREE) {
1802 		chan_err(d40c, "channel already free\n");
1803 		return -EINVAL;
1804 	}
1805 
1806 	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1807 	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1808 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1809 		is_src = false;
1810 	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1811 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1812 		is_src = true;
1813 	} else {
1814 		chan_err(d40c, "Unknown direction\n");
1815 		return -EINVAL;
1816 	}
1817 
1818 	pm_runtime_get_sync(d40c->base->dev);
1819 	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1820 	if (res) {
1821 		chan_err(d40c, "suspend failed\n");
1822 		goto out;
1823 	}
1824 
1825 	if (chan_is_logical(d40c)) {
1826 		/* Release logical channel, deactivate the event line */
1827 
1828 		d40_config_set_event(d40c, false);
1829 		d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1830 
1831 		/*
1832 		 * Check if there are more logical allocation
1833 		 * on this phy channel.
1834 		 */
1835 		if (!d40_alloc_mask_free(phy, is_src, event)) {
1836 			/* Resume the other logical channels if any */
1837 			if (d40_chan_has_events(d40c)) {
1838 				res = d40_channel_execute_command(d40c,
1839 								  D40_DMA_RUN);
1840 				if (res)
1841 					chan_err(d40c,
1842 						"Executing RUN command\n");
1843 			}
1844 			goto out;
1845 		}
1846 	} else {
1847 		(void) d40_alloc_mask_free(phy, is_src, 0);
1848 	}
1849 
1850 	/* Release physical channel */
1851 	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1852 	if (res) {
1853 		chan_err(d40c, "Failed to stop channel\n");
1854 		goto out;
1855 	}
1856 
1857 	if (d40c->busy) {
1858 		pm_runtime_mark_last_busy(d40c->base->dev);
1859 		pm_runtime_put_autosuspend(d40c->base->dev);
1860 	}
1861 
1862 	d40c->busy = false;
1863 	d40c->phy_chan = NULL;
1864 	d40c->configured = false;
1865 	d40c->base->lookup_phy_chans[phy->num] = NULL;
1866 out:
1867 
1868 	pm_runtime_mark_last_busy(d40c->base->dev);
1869 	pm_runtime_put_autosuspend(d40c->base->dev);
1870 	return res;
1871 }
1872 
d40_is_paused(struct d40_chan * d40c)1873 static bool d40_is_paused(struct d40_chan *d40c)
1874 {
1875 	void __iomem *chanbase = chan_base(d40c);
1876 	bool is_paused = false;
1877 	unsigned long flags;
1878 	void __iomem *active_reg;
1879 	u32 status;
1880 	u32 event;
1881 
1882 	spin_lock_irqsave(&d40c->lock, flags);
1883 
1884 	if (chan_is_physical(d40c)) {
1885 		if (d40c->phy_chan->num % 2 == 0)
1886 			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1887 		else
1888 			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1889 
1890 		status = (readl(active_reg) &
1891 			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1892 			D40_CHAN_POS(d40c->phy_chan->num);
1893 		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1894 			is_paused = true;
1895 
1896 		goto _exit;
1897 	}
1898 
1899 	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1900 	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1901 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1902 		status = readl(chanbase + D40_CHAN_REG_SDLNK);
1903 	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1904 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1905 		status = readl(chanbase + D40_CHAN_REG_SSLNK);
1906 	} else {
1907 		chan_err(d40c, "Unknown direction\n");
1908 		goto _exit;
1909 	}
1910 
1911 	status = (status & D40_EVENTLINE_MASK(event)) >>
1912 		D40_EVENTLINE_POS(event);
1913 
1914 	if (status != D40_DMA_RUN)
1915 		is_paused = true;
1916 _exit:
1917 	spin_unlock_irqrestore(&d40c->lock, flags);
1918 	return is_paused;
1919 
1920 }
1921 
1922 
stedma40_residue(struct dma_chan * chan)1923 static u32 stedma40_residue(struct dma_chan *chan)
1924 {
1925 	struct d40_chan *d40c =
1926 		container_of(chan, struct d40_chan, chan);
1927 	u32 bytes_left;
1928 	unsigned long flags;
1929 
1930 	spin_lock_irqsave(&d40c->lock, flags);
1931 	bytes_left = d40_residue(d40c);
1932 	spin_unlock_irqrestore(&d40c->lock, flags);
1933 
1934 	return bytes_left;
1935 }
1936 
1937 static int
d40_prep_sg_log(struct d40_chan * chan,struct d40_desc * desc,struct scatterlist * sg_src,struct scatterlist * sg_dst,unsigned int sg_len,dma_addr_t src_dev_addr,dma_addr_t dst_dev_addr)1938 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
1939 		struct scatterlist *sg_src, struct scatterlist *sg_dst,
1940 		unsigned int sg_len, dma_addr_t src_dev_addr,
1941 		dma_addr_t dst_dev_addr)
1942 {
1943 	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1944 	struct stedma40_half_channel_info *src_info = &cfg->src_info;
1945 	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1946 	int ret;
1947 
1948 	ret = d40_log_sg_to_lli(sg_src, sg_len,
1949 				src_dev_addr,
1950 				desc->lli_log.src,
1951 				chan->log_def.lcsp1,
1952 				src_info->data_width,
1953 				dst_info->data_width);
1954 
1955 	ret = d40_log_sg_to_lli(sg_dst, sg_len,
1956 				dst_dev_addr,
1957 				desc->lli_log.dst,
1958 				chan->log_def.lcsp3,
1959 				dst_info->data_width,
1960 				src_info->data_width);
1961 
1962 	return ret < 0 ? ret : 0;
1963 }
1964 
1965 static int
d40_prep_sg_phy(struct d40_chan * chan,struct d40_desc * desc,struct scatterlist * sg_src,struct scatterlist * sg_dst,unsigned int sg_len,dma_addr_t src_dev_addr,dma_addr_t dst_dev_addr)1966 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
1967 		struct scatterlist *sg_src, struct scatterlist *sg_dst,
1968 		unsigned int sg_len, dma_addr_t src_dev_addr,
1969 		dma_addr_t dst_dev_addr)
1970 {
1971 	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1972 	struct stedma40_half_channel_info *src_info = &cfg->src_info;
1973 	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1974 	unsigned long flags = 0;
1975 	int ret;
1976 
1977 	if (desc->cyclic)
1978 		flags |= LLI_CYCLIC | LLI_TERM_INT;
1979 
1980 	ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
1981 				desc->lli_phy.src,
1982 				virt_to_phys(desc->lli_phy.src),
1983 				chan->src_def_cfg,
1984 				src_info, dst_info, flags);
1985 
1986 	ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
1987 				desc->lli_phy.dst,
1988 				virt_to_phys(desc->lli_phy.dst),
1989 				chan->dst_def_cfg,
1990 				dst_info, src_info, flags);
1991 
1992 	dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
1993 				   desc->lli_pool.size, DMA_TO_DEVICE);
1994 
1995 	return ret < 0 ? ret : 0;
1996 }
1997 
1998 
1999 static struct d40_desc *
d40_prep_desc(struct d40_chan * chan,struct scatterlist * sg,unsigned int sg_len,unsigned long dma_flags)2000 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2001 	      unsigned int sg_len, unsigned long dma_flags)
2002 {
2003 	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2004 	struct d40_desc *desc;
2005 	int ret;
2006 
2007 	desc = d40_desc_get(chan);
2008 	if (!desc)
2009 		return NULL;
2010 
2011 	desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2012 					cfg->dst_info.data_width);
2013 	if (desc->lli_len < 0) {
2014 		chan_err(chan, "Unaligned size\n");
2015 		goto err;
2016 	}
2017 
2018 	ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2019 	if (ret < 0) {
2020 		chan_err(chan, "Could not allocate lli\n");
2021 		goto err;
2022 	}
2023 
2024 
2025 	desc->lli_current = 0;
2026 	desc->txd.flags = dma_flags;
2027 	desc->txd.tx_submit = d40_tx_submit;
2028 
2029 	dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2030 
2031 	return desc;
2032 
2033 err:
2034 	d40_desc_free(chan, desc);
2035 	return NULL;
2036 }
2037 
2038 static dma_addr_t
d40_get_dev_addr(struct d40_chan * chan,enum dma_transfer_direction direction)2039 d40_get_dev_addr(struct d40_chan *chan, enum dma_transfer_direction direction)
2040 {
2041 	struct stedma40_platform_data *plat = chan->base->plat_data;
2042 	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2043 	dma_addr_t addr = 0;
2044 
2045 	if (chan->runtime_addr)
2046 		return chan->runtime_addr;
2047 
2048 	if (direction == DMA_DEV_TO_MEM)
2049 		addr = plat->dev_rx[cfg->src_dev_type];
2050 	else if (direction == DMA_MEM_TO_DEV)
2051 		addr = plat->dev_tx[cfg->dst_dev_type];
2052 
2053 	return addr;
2054 }
2055 
2056 static struct dma_async_tx_descriptor *
d40_prep_sg(struct dma_chan * dchan,struct scatterlist * sg_src,struct scatterlist * sg_dst,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long dma_flags)2057 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2058 	    struct scatterlist *sg_dst, unsigned int sg_len,
2059 	    enum dma_transfer_direction direction, unsigned long dma_flags)
2060 {
2061 	struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2062 	dma_addr_t src_dev_addr = 0;
2063 	dma_addr_t dst_dev_addr = 0;
2064 	struct d40_desc *desc;
2065 	unsigned long flags;
2066 	int ret;
2067 
2068 	if (!chan->phy_chan) {
2069 		chan_err(chan, "Cannot prepare unallocated channel\n");
2070 		return NULL;
2071 	}
2072 
2073 
2074 	spin_lock_irqsave(&chan->lock, flags);
2075 
2076 	desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2077 	if (desc == NULL)
2078 		goto err;
2079 
2080 	if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2081 		desc->cyclic = true;
2082 
2083 	if (direction != DMA_NONE) {
2084 		dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
2085 
2086 		if (direction == DMA_DEV_TO_MEM)
2087 			src_dev_addr = dev_addr;
2088 		else if (direction == DMA_MEM_TO_DEV)
2089 			dst_dev_addr = dev_addr;
2090 	}
2091 
2092 	if (chan_is_logical(chan))
2093 		ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2094 				      sg_len, src_dev_addr, dst_dev_addr);
2095 	else
2096 		ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2097 				      sg_len, src_dev_addr, dst_dev_addr);
2098 
2099 	if (ret) {
2100 		chan_err(chan, "Failed to prepare %s sg job: %d\n",
2101 			 chan_is_logical(chan) ? "log" : "phy", ret);
2102 		goto err;
2103 	}
2104 
2105 	/*
2106 	 * add descriptor to the prepare queue in order to be able
2107 	 * to free them later in terminate_all
2108 	 */
2109 	list_add_tail(&desc->node, &chan->prepare_queue);
2110 
2111 	spin_unlock_irqrestore(&chan->lock, flags);
2112 
2113 	return &desc->txd;
2114 
2115 err:
2116 	if (desc)
2117 		d40_desc_free(chan, desc);
2118 	spin_unlock_irqrestore(&chan->lock, flags);
2119 	return NULL;
2120 }
2121 
stedma40_filter(struct dma_chan * chan,void * data)2122 bool stedma40_filter(struct dma_chan *chan, void *data)
2123 {
2124 	struct stedma40_chan_cfg *info = data;
2125 	struct d40_chan *d40c =
2126 		container_of(chan, struct d40_chan, chan);
2127 	int err;
2128 
2129 	if (data) {
2130 		err = d40_validate_conf(d40c, info);
2131 		if (!err)
2132 			d40c->dma_cfg = *info;
2133 	} else
2134 		err = d40_config_memcpy(d40c);
2135 
2136 	if (!err)
2137 		d40c->configured = true;
2138 
2139 	return err == 0;
2140 }
2141 EXPORT_SYMBOL(stedma40_filter);
2142 
__d40_set_prio_rt(struct d40_chan * d40c,int dev_type,bool src)2143 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2144 {
2145 	bool realtime = d40c->dma_cfg.realtime;
2146 	bool highprio = d40c->dma_cfg.high_priority;
2147 	u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
2148 	u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
2149 	u32 event = D40_TYPE_TO_EVENT(dev_type);
2150 	u32 group = D40_TYPE_TO_GROUP(dev_type);
2151 	u32 bit = 1 << event;
2152 
2153 	/* Destination event lines are stored in the upper halfword */
2154 	if (!src)
2155 		bit <<= 16;
2156 
2157 	writel(bit, d40c->base->virtbase + prioreg + group * 4);
2158 	writel(bit, d40c->base->virtbase + rtreg + group * 4);
2159 }
2160 
d40_set_prio_realtime(struct d40_chan * d40c)2161 static void d40_set_prio_realtime(struct d40_chan *d40c)
2162 {
2163 	if (d40c->base->rev < 3)
2164 		return;
2165 
2166 	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
2167 	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
2168 		__d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
2169 
2170 	if ((d40c->dma_cfg.dir ==  STEDMA40_MEM_TO_PERIPH) ||
2171 	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
2172 		__d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
2173 }
2174 
2175 /* DMA ENGINE functions */
d40_alloc_chan_resources(struct dma_chan * chan)2176 static int d40_alloc_chan_resources(struct dma_chan *chan)
2177 {
2178 	int err;
2179 	unsigned long flags;
2180 	struct d40_chan *d40c =
2181 		container_of(chan, struct d40_chan, chan);
2182 	bool is_free_phy;
2183 	spin_lock_irqsave(&d40c->lock, flags);
2184 
2185 	d40c->completed = chan->cookie = 1;
2186 
2187 	/* If no dma configuration is set use default configuration (memcpy) */
2188 	if (!d40c->configured) {
2189 		err = d40_config_memcpy(d40c);
2190 		if (err) {
2191 			chan_err(d40c, "Failed to configure memcpy channel\n");
2192 			goto fail;
2193 		}
2194 	}
2195 
2196 	err = d40_allocate_channel(d40c, &is_free_phy);
2197 	if (err) {
2198 		chan_err(d40c, "Failed to allocate channel\n");
2199 		d40c->configured = false;
2200 		goto fail;
2201 	}
2202 
2203 	pm_runtime_get_sync(d40c->base->dev);
2204 	/* Fill in basic CFG register values */
2205 	d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
2206 		    &d40c->dst_def_cfg, chan_is_logical(d40c));
2207 
2208 	d40_set_prio_realtime(d40c);
2209 
2210 	if (chan_is_logical(d40c)) {
2211 		d40_log_cfg(&d40c->dma_cfg,
2212 			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2213 
2214 		if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
2215 			d40c->lcpa = d40c->base->lcpa_base +
2216 			  d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
2217 		else
2218 			d40c->lcpa = d40c->base->lcpa_base +
2219 			  d40c->dma_cfg.dst_dev_type *
2220 			  D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2221 	}
2222 
2223 	dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2224 		 chan_is_logical(d40c) ? "logical" : "physical",
2225 		 d40c->phy_chan->num,
2226 		 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2227 
2228 
2229 	/*
2230 	 * Only write channel configuration to the DMA if the physical
2231 	 * resource is free. In case of multiple logical channels
2232 	 * on the same physical resource, only the first write is necessary.
2233 	 */
2234 	if (is_free_phy)
2235 		d40_config_write(d40c);
2236 fail:
2237 	pm_runtime_mark_last_busy(d40c->base->dev);
2238 	pm_runtime_put_autosuspend(d40c->base->dev);
2239 	spin_unlock_irqrestore(&d40c->lock, flags);
2240 	return err;
2241 }
2242 
d40_free_chan_resources(struct dma_chan * chan)2243 static void d40_free_chan_resources(struct dma_chan *chan)
2244 {
2245 	struct d40_chan *d40c =
2246 		container_of(chan, struct d40_chan, chan);
2247 	int err;
2248 	unsigned long flags;
2249 
2250 	if (d40c->phy_chan == NULL) {
2251 		chan_err(d40c, "Cannot free unallocated channel\n");
2252 		return;
2253 	}
2254 
2255 
2256 	spin_lock_irqsave(&d40c->lock, flags);
2257 
2258 	err = d40_free_dma(d40c);
2259 
2260 	if (err)
2261 		chan_err(d40c, "Failed to free channel\n");
2262 	spin_unlock_irqrestore(&d40c->lock, flags);
2263 }
2264 
d40_prep_memcpy(struct dma_chan * chan,dma_addr_t dst,dma_addr_t src,size_t size,unsigned long dma_flags)2265 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2266 						       dma_addr_t dst,
2267 						       dma_addr_t src,
2268 						       size_t size,
2269 						       unsigned long dma_flags)
2270 {
2271 	struct scatterlist dst_sg;
2272 	struct scatterlist src_sg;
2273 
2274 	sg_init_table(&dst_sg, 1);
2275 	sg_init_table(&src_sg, 1);
2276 
2277 	sg_dma_address(&dst_sg) = dst;
2278 	sg_dma_address(&src_sg) = src;
2279 
2280 	sg_dma_len(&dst_sg) = size;
2281 	sg_dma_len(&src_sg) = size;
2282 
2283 	return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2284 }
2285 
2286 static struct dma_async_tx_descriptor *
d40_prep_memcpy_sg(struct dma_chan * chan,struct scatterlist * dst_sg,unsigned int dst_nents,struct scatterlist * src_sg,unsigned int src_nents,unsigned long dma_flags)2287 d40_prep_memcpy_sg(struct dma_chan *chan,
2288 		   struct scatterlist *dst_sg, unsigned int dst_nents,
2289 		   struct scatterlist *src_sg, unsigned int src_nents,
2290 		   unsigned long dma_flags)
2291 {
2292 	if (dst_nents != src_nents)
2293 		return NULL;
2294 
2295 	return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2296 }
2297 
d40_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long dma_flags)2298 static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
2299 							 struct scatterlist *sgl,
2300 							 unsigned int sg_len,
2301 							 enum dma_transfer_direction direction,
2302 							 unsigned long dma_flags)
2303 {
2304 	if (direction != DMA_DEV_TO_MEM && direction != DMA_MEM_TO_DEV)
2305 		return NULL;
2306 
2307 	return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2308 }
2309 
2310 static struct dma_async_tx_descriptor *
dma40_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t dma_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction)2311 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2312 		     size_t buf_len, size_t period_len,
2313 		     enum dma_transfer_direction direction)
2314 {
2315 	unsigned int periods = buf_len / period_len;
2316 	struct dma_async_tx_descriptor *txd;
2317 	struct scatterlist *sg;
2318 	int i;
2319 
2320 	sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2321 	for (i = 0; i < periods; i++) {
2322 		sg_dma_address(&sg[i]) = dma_addr;
2323 		sg_dma_len(&sg[i]) = period_len;
2324 		dma_addr += period_len;
2325 	}
2326 
2327 	sg[periods].offset = 0;
2328 	sg[periods].length = 0;
2329 	sg[periods].page_link =
2330 		((unsigned long)sg | 0x01) & ~0x02;
2331 
2332 	txd = d40_prep_sg(chan, sg, sg, periods, direction,
2333 			  DMA_PREP_INTERRUPT);
2334 
2335 	kfree(sg);
2336 
2337 	return txd;
2338 }
2339 
d40_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)2340 static enum dma_status d40_tx_status(struct dma_chan *chan,
2341 				     dma_cookie_t cookie,
2342 				     struct dma_tx_state *txstate)
2343 {
2344 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2345 	dma_cookie_t last_used;
2346 	dma_cookie_t last_complete;
2347 	int ret;
2348 
2349 	if (d40c->phy_chan == NULL) {
2350 		chan_err(d40c, "Cannot read status of unallocated channel\n");
2351 		return -EINVAL;
2352 	}
2353 
2354 	last_complete = d40c->completed;
2355 	last_used = chan->cookie;
2356 
2357 	if (d40_is_paused(d40c))
2358 		ret = DMA_PAUSED;
2359 	else
2360 		ret = dma_async_is_complete(cookie, last_complete, last_used);
2361 
2362 	dma_set_tx_state(txstate, last_complete, last_used,
2363 			 stedma40_residue(chan));
2364 
2365 	return ret;
2366 }
2367 
d40_issue_pending(struct dma_chan * chan)2368 static void d40_issue_pending(struct dma_chan *chan)
2369 {
2370 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2371 	unsigned long flags;
2372 
2373 	if (d40c->phy_chan == NULL) {
2374 		chan_err(d40c, "Channel is not allocated!\n");
2375 		return;
2376 	}
2377 
2378 	spin_lock_irqsave(&d40c->lock, flags);
2379 
2380 	list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2381 
2382 	/* Busy means that queued jobs are already being processed */
2383 	if (!d40c->busy)
2384 		(void) d40_queue_start(d40c);
2385 
2386 	spin_unlock_irqrestore(&d40c->lock, flags);
2387 }
2388 
2389 static int
dma40_config_to_halfchannel(struct d40_chan * d40c,struct stedma40_half_channel_info * info,enum dma_slave_buswidth width,u32 maxburst)2390 dma40_config_to_halfchannel(struct d40_chan *d40c,
2391 			    struct stedma40_half_channel_info *info,
2392 			    enum dma_slave_buswidth width,
2393 			    u32 maxburst)
2394 {
2395 	enum stedma40_periph_data_width addr_width;
2396 	int psize;
2397 
2398 	switch (width) {
2399 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
2400 		addr_width = STEDMA40_BYTE_WIDTH;
2401 		break;
2402 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
2403 		addr_width = STEDMA40_HALFWORD_WIDTH;
2404 		break;
2405 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
2406 		addr_width = STEDMA40_WORD_WIDTH;
2407 		break;
2408 	case DMA_SLAVE_BUSWIDTH_8_BYTES:
2409 		addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2410 		break;
2411 	default:
2412 		dev_err(d40c->base->dev,
2413 			"illegal peripheral address width "
2414 			"requested (%d)\n",
2415 			width);
2416 		return -EINVAL;
2417 	}
2418 
2419 	if (chan_is_logical(d40c)) {
2420 		if (maxburst >= 16)
2421 			psize = STEDMA40_PSIZE_LOG_16;
2422 		else if (maxburst >= 8)
2423 			psize = STEDMA40_PSIZE_LOG_8;
2424 		else if (maxburst >= 4)
2425 			psize = STEDMA40_PSIZE_LOG_4;
2426 		else
2427 			psize = STEDMA40_PSIZE_LOG_1;
2428 	} else {
2429 		if (maxburst >= 16)
2430 			psize = STEDMA40_PSIZE_PHY_16;
2431 		else if (maxburst >= 8)
2432 			psize = STEDMA40_PSIZE_PHY_8;
2433 		else if (maxburst >= 4)
2434 			psize = STEDMA40_PSIZE_PHY_4;
2435 		else
2436 			psize = STEDMA40_PSIZE_PHY_1;
2437 	}
2438 
2439 	info->data_width = addr_width;
2440 	info->psize = psize;
2441 	info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2442 
2443 	return 0;
2444 }
2445 
2446 /* Runtime reconfiguration extension */
d40_set_runtime_config(struct dma_chan * chan,struct dma_slave_config * config)2447 static int d40_set_runtime_config(struct dma_chan *chan,
2448 				  struct dma_slave_config *config)
2449 {
2450 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2451 	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2452 	enum dma_slave_buswidth src_addr_width, dst_addr_width;
2453 	dma_addr_t config_addr;
2454 	u32 src_maxburst, dst_maxburst;
2455 	int ret;
2456 
2457 	src_addr_width = config->src_addr_width;
2458 	src_maxburst = config->src_maxburst;
2459 	dst_addr_width = config->dst_addr_width;
2460 	dst_maxburst = config->dst_maxburst;
2461 
2462 	if (config->direction == DMA_DEV_TO_MEM) {
2463 		dma_addr_t dev_addr_rx =
2464 			d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2465 
2466 		config_addr = config->src_addr;
2467 		if (dev_addr_rx)
2468 			dev_dbg(d40c->base->dev,
2469 				"channel has a pre-wired RX address %08x "
2470 				"overriding with %08x\n",
2471 				dev_addr_rx, config_addr);
2472 		if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2473 			dev_dbg(d40c->base->dev,
2474 				"channel was not configured for peripheral "
2475 				"to memory transfer (%d) overriding\n",
2476 				cfg->dir);
2477 		cfg->dir = STEDMA40_PERIPH_TO_MEM;
2478 
2479 		/* Configure the memory side */
2480 		if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2481 			dst_addr_width = src_addr_width;
2482 		if (dst_maxburst == 0)
2483 			dst_maxburst = src_maxburst;
2484 
2485 	} else if (config->direction == DMA_MEM_TO_DEV) {
2486 		dma_addr_t dev_addr_tx =
2487 			d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2488 
2489 		config_addr = config->dst_addr;
2490 		if (dev_addr_tx)
2491 			dev_dbg(d40c->base->dev,
2492 				"channel has a pre-wired TX address %08x "
2493 				"overriding with %08x\n",
2494 				dev_addr_tx, config_addr);
2495 		if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2496 			dev_dbg(d40c->base->dev,
2497 				"channel was not configured for memory "
2498 				"to peripheral transfer (%d) overriding\n",
2499 				cfg->dir);
2500 		cfg->dir = STEDMA40_MEM_TO_PERIPH;
2501 
2502 		/* Configure the memory side */
2503 		if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2504 			src_addr_width = dst_addr_width;
2505 		if (src_maxburst == 0)
2506 			src_maxburst = dst_maxburst;
2507 	} else {
2508 		dev_err(d40c->base->dev,
2509 			"unrecognized channel direction %d\n",
2510 			config->direction);
2511 		return -EINVAL;
2512 	}
2513 
2514 	if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2515 		dev_err(d40c->base->dev,
2516 			"src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2517 			src_maxburst,
2518 			src_addr_width,
2519 			dst_maxburst,
2520 			dst_addr_width);
2521 		return -EINVAL;
2522 	}
2523 
2524 	ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2525 					  src_addr_width,
2526 					  src_maxburst);
2527 	if (ret)
2528 		return ret;
2529 
2530 	ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2531 					  dst_addr_width,
2532 					  dst_maxburst);
2533 	if (ret)
2534 		return ret;
2535 
2536 	/* Fill in register values */
2537 	if (chan_is_logical(d40c))
2538 		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2539 	else
2540 		d40_phy_cfg(cfg, &d40c->src_def_cfg,
2541 			    &d40c->dst_def_cfg, false);
2542 
2543 	/* These settings will take precedence later */
2544 	d40c->runtime_addr = config_addr;
2545 	d40c->runtime_direction = config->direction;
2546 	dev_dbg(d40c->base->dev,
2547 		"configured channel %s for %s, data width %d/%d, "
2548 		"maxburst %d/%d elements, LE, no flow control\n",
2549 		dma_chan_name(chan),
2550 		(config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2551 		src_addr_width, dst_addr_width,
2552 		src_maxburst, dst_maxburst);
2553 
2554 	return 0;
2555 }
2556 
d40_control(struct dma_chan * chan,enum dma_ctrl_cmd cmd,unsigned long arg)2557 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2558 		       unsigned long arg)
2559 {
2560 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2561 
2562 	if (d40c->phy_chan == NULL) {
2563 		chan_err(d40c, "Channel is not allocated!\n");
2564 		return -EINVAL;
2565 	}
2566 
2567 	switch (cmd) {
2568 	case DMA_TERMINATE_ALL:
2569 		return d40_terminate_all(d40c);
2570 	case DMA_PAUSE:
2571 		return d40_pause(d40c);
2572 	case DMA_RESUME:
2573 		return d40_resume(d40c);
2574 	case DMA_SLAVE_CONFIG:
2575 		return d40_set_runtime_config(chan,
2576 			(struct dma_slave_config *) arg);
2577 	default:
2578 		break;
2579 	}
2580 
2581 	/* Other commands are unimplemented */
2582 	return -ENXIO;
2583 }
2584 
2585 /* Initialization functions */
2586 
d40_chan_init(struct d40_base * base,struct dma_device * dma,struct d40_chan * chans,int offset,int num_chans)2587 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2588 				 struct d40_chan *chans, int offset,
2589 				 int num_chans)
2590 {
2591 	int i = 0;
2592 	struct d40_chan *d40c;
2593 
2594 	INIT_LIST_HEAD(&dma->channels);
2595 
2596 	for (i = offset; i < offset + num_chans; i++) {
2597 		d40c = &chans[i];
2598 		d40c->base = base;
2599 		d40c->chan.device = dma;
2600 
2601 		spin_lock_init(&d40c->lock);
2602 
2603 		d40c->log_num = D40_PHY_CHAN;
2604 
2605 		INIT_LIST_HEAD(&d40c->active);
2606 		INIT_LIST_HEAD(&d40c->queue);
2607 		INIT_LIST_HEAD(&d40c->pending_queue);
2608 		INIT_LIST_HEAD(&d40c->client);
2609 		INIT_LIST_HEAD(&d40c->prepare_queue);
2610 
2611 		tasklet_init(&d40c->tasklet, dma_tasklet,
2612 			     (unsigned long) d40c);
2613 
2614 		list_add_tail(&d40c->chan.device_node,
2615 			      &dma->channels);
2616 	}
2617 }
2618 
d40_ops_init(struct d40_base * base,struct dma_device * dev)2619 static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2620 {
2621 	if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2622 		dev->device_prep_slave_sg = d40_prep_slave_sg;
2623 
2624 	if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2625 		dev->device_prep_dma_memcpy = d40_prep_memcpy;
2626 
2627 		/*
2628 		 * This controller can only access address at even
2629 		 * 32bit boundaries, i.e. 2^2
2630 		 */
2631 		dev->copy_align = 2;
2632 	}
2633 
2634 	if (dma_has_cap(DMA_SG, dev->cap_mask))
2635 		dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2636 
2637 	if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2638 		dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2639 
2640 	dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2641 	dev->device_free_chan_resources = d40_free_chan_resources;
2642 	dev->device_issue_pending = d40_issue_pending;
2643 	dev->device_tx_status = d40_tx_status;
2644 	dev->device_control = d40_control;
2645 	dev->dev = base->dev;
2646 }
2647 
d40_dmaengine_init(struct d40_base * base,int num_reserved_chans)2648 static int __init d40_dmaengine_init(struct d40_base *base,
2649 				     int num_reserved_chans)
2650 {
2651 	int err ;
2652 
2653 	d40_chan_init(base, &base->dma_slave, base->log_chans,
2654 		      0, base->num_log_chans);
2655 
2656 	dma_cap_zero(base->dma_slave.cap_mask);
2657 	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2658 	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2659 
2660 	d40_ops_init(base, &base->dma_slave);
2661 
2662 	err = dma_async_device_register(&base->dma_slave);
2663 
2664 	if (err) {
2665 		d40_err(base->dev, "Failed to register slave channels\n");
2666 		goto failure1;
2667 	}
2668 
2669 	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2670 		      base->num_log_chans, base->plat_data->memcpy_len);
2671 
2672 	dma_cap_zero(base->dma_memcpy.cap_mask);
2673 	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2674 	dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2675 
2676 	d40_ops_init(base, &base->dma_memcpy);
2677 
2678 	err = dma_async_device_register(&base->dma_memcpy);
2679 
2680 	if (err) {
2681 		d40_err(base->dev,
2682 			"Failed to regsiter memcpy only channels\n");
2683 		goto failure2;
2684 	}
2685 
2686 	d40_chan_init(base, &base->dma_both, base->phy_chans,
2687 		      0, num_reserved_chans);
2688 
2689 	dma_cap_zero(base->dma_both.cap_mask);
2690 	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2691 	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2692 	dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2693 	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2694 
2695 	d40_ops_init(base, &base->dma_both);
2696 	err = dma_async_device_register(&base->dma_both);
2697 
2698 	if (err) {
2699 		d40_err(base->dev,
2700 			"Failed to register logical and physical capable channels\n");
2701 		goto failure3;
2702 	}
2703 	return 0;
2704 failure3:
2705 	dma_async_device_unregister(&base->dma_memcpy);
2706 failure2:
2707 	dma_async_device_unregister(&base->dma_slave);
2708 failure1:
2709 	return err;
2710 }
2711 
2712 /* Suspend resume functionality */
2713 #ifdef CONFIG_PM
dma40_pm_suspend(struct device * dev)2714 static int dma40_pm_suspend(struct device *dev)
2715 {
2716 	struct platform_device *pdev = to_platform_device(dev);
2717 	struct d40_base *base = platform_get_drvdata(pdev);
2718 	int ret = 0;
2719 	if (!pm_runtime_suspended(dev))
2720 		return -EBUSY;
2721 
2722 	if (base->lcpa_regulator)
2723 		ret = regulator_disable(base->lcpa_regulator);
2724 	return ret;
2725 }
2726 
dma40_runtime_suspend(struct device * dev)2727 static int dma40_runtime_suspend(struct device *dev)
2728 {
2729 	struct platform_device *pdev = to_platform_device(dev);
2730 	struct d40_base *base = platform_get_drvdata(pdev);
2731 
2732 	d40_save_restore_registers(base, true);
2733 
2734 	/* Don't disable/enable clocks for v1 due to HW bugs */
2735 	if (base->rev != 1)
2736 		writel_relaxed(base->gcc_pwr_off_mask,
2737 			       base->virtbase + D40_DREG_GCC);
2738 
2739 	return 0;
2740 }
2741 
dma40_runtime_resume(struct device * dev)2742 static int dma40_runtime_resume(struct device *dev)
2743 {
2744 	struct platform_device *pdev = to_platform_device(dev);
2745 	struct d40_base *base = platform_get_drvdata(pdev);
2746 
2747 	if (base->initialized)
2748 		d40_save_restore_registers(base, false);
2749 
2750 	writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
2751 		       base->virtbase + D40_DREG_GCC);
2752 	return 0;
2753 }
2754 
dma40_resume(struct device * dev)2755 static int dma40_resume(struct device *dev)
2756 {
2757 	struct platform_device *pdev = to_platform_device(dev);
2758 	struct d40_base *base = platform_get_drvdata(pdev);
2759 	int ret = 0;
2760 
2761 	if (base->lcpa_regulator)
2762 		ret = regulator_enable(base->lcpa_regulator);
2763 
2764 	return ret;
2765 }
2766 
2767 static const struct dev_pm_ops dma40_pm_ops = {
2768 	.suspend		= dma40_pm_suspend,
2769 	.runtime_suspend	= dma40_runtime_suspend,
2770 	.runtime_resume		= dma40_runtime_resume,
2771 	.resume			= dma40_resume,
2772 };
2773 #define DMA40_PM_OPS	(&dma40_pm_ops)
2774 #else
2775 #define DMA40_PM_OPS	NULL
2776 #endif
2777 
2778 /* Initialization functions. */
2779 
d40_phy_res_init(struct d40_base * base)2780 static int __init d40_phy_res_init(struct d40_base *base)
2781 {
2782 	int i;
2783 	int num_phy_chans_avail = 0;
2784 	u32 val[2];
2785 	int odd_even_bit = -2;
2786 	int gcc = D40_DREG_GCC_ENA;
2787 
2788 	val[0] = readl(base->virtbase + D40_DREG_PRSME);
2789 	val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2790 
2791 	for (i = 0; i < base->num_phy_chans; i++) {
2792 		base->phy_res[i].num = i;
2793 		odd_even_bit += 2 * ((i % 2) == 0);
2794 		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2795 			/* Mark security only channels as occupied */
2796 			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2797 			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2798 			base->phy_res[i].reserved = true;
2799 			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
2800 						       D40_DREG_GCC_SRC);
2801 			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
2802 						       D40_DREG_GCC_DST);
2803 
2804 
2805 		} else {
2806 			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2807 			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2808 			base->phy_res[i].reserved = false;
2809 			num_phy_chans_avail++;
2810 		}
2811 		spin_lock_init(&base->phy_res[i].lock);
2812 	}
2813 
2814 	/* Mark disabled channels as occupied */
2815 	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2816 		int chan = base->plat_data->disabled_channels[i];
2817 
2818 		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
2819 		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
2820 		base->phy_res[chan].reserved = true;
2821 		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
2822 					       D40_DREG_GCC_SRC);
2823 		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
2824 					       D40_DREG_GCC_DST);
2825 		num_phy_chans_avail--;
2826 	}
2827 
2828 	dev_info(base->dev, "%d of %d physical DMA channels available\n",
2829 		 num_phy_chans_avail, base->num_phy_chans);
2830 
2831 	/* Verify settings extended vs standard */
2832 	val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2833 
2834 	for (i = 0; i < base->num_phy_chans; i++) {
2835 
2836 		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2837 		    (val[0] & 0x3) != 1)
2838 			dev_info(base->dev,
2839 				 "[%s] INFO: channel %d is misconfigured (%d)\n",
2840 				 __func__, i, val[0] & 0x3);
2841 
2842 		val[0] = val[0] >> 2;
2843 	}
2844 
2845 	/*
2846 	 * To keep things simple, Enable all clocks initially.
2847 	 * The clocks will get managed later post channel allocation.
2848 	 * The clocks for the event lines on which reserved channels exists
2849 	 * are not managed here.
2850 	 */
2851 	writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
2852 	base->gcc_pwr_off_mask = gcc;
2853 
2854 	return num_phy_chans_avail;
2855 }
2856 
d40_hw_detect_init(struct platform_device * pdev)2857 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2858 {
2859 	struct stedma40_platform_data *plat_data;
2860 	struct clk *clk = NULL;
2861 	void __iomem *virtbase = NULL;
2862 	struct resource *res = NULL;
2863 	struct d40_base *base = NULL;
2864 	int num_log_chans = 0;
2865 	int num_phy_chans;
2866 	int i;
2867 	u32 pid;
2868 	u32 cid;
2869 	u8 rev;
2870 
2871 	clk = clk_get(&pdev->dev, NULL);
2872 
2873 	if (IS_ERR(clk)) {
2874 		d40_err(&pdev->dev, "No matching clock found\n");
2875 		goto failure;
2876 	}
2877 
2878 	clk_enable(clk);
2879 
2880 	/* Get IO for DMAC base address */
2881 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2882 	if (!res)
2883 		goto failure;
2884 
2885 	if (request_mem_region(res->start, resource_size(res),
2886 			       D40_NAME " I/O base") == NULL)
2887 		goto failure;
2888 
2889 	virtbase = ioremap(res->start, resource_size(res));
2890 	if (!virtbase)
2891 		goto failure;
2892 
2893 	/* This is just a regular AMBA PrimeCell ID actually */
2894 	for (pid = 0, i = 0; i < 4; i++)
2895 		pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
2896 			& 255) << (i * 8);
2897 	for (cid = 0, i = 0; i < 4; i++)
2898 		cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
2899 			& 255) << (i * 8);
2900 
2901 	if (cid != AMBA_CID) {
2902 		d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
2903 		goto failure;
2904 	}
2905 	if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
2906 		d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
2907 			AMBA_MANF_BITS(pid),
2908 			AMBA_VENDOR_ST);
2909 		goto failure;
2910 	}
2911 	/*
2912 	 * HW revision:
2913 	 * DB8500ed has revision 0
2914 	 * ? has revision 1
2915 	 * DB8500v1 has revision 2
2916 	 * DB8500v2 has revision 3
2917 	 */
2918 	rev = AMBA_REV_BITS(pid);
2919 
2920 	/* The number of physical channels on this HW */
2921 	num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2922 
2923 	dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2924 		 rev, res->start);
2925 
2926 	plat_data = pdev->dev.platform_data;
2927 
2928 	/* Count the number of logical channels in use */
2929 	for (i = 0; i < plat_data->dev_len; i++)
2930 		if (plat_data->dev_rx[i] != 0)
2931 			num_log_chans++;
2932 
2933 	for (i = 0; i < plat_data->dev_len; i++)
2934 		if (plat_data->dev_tx[i] != 0)
2935 			num_log_chans++;
2936 
2937 	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
2938 		       (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
2939 		       sizeof(struct d40_chan), GFP_KERNEL);
2940 
2941 	if (base == NULL) {
2942 		d40_err(&pdev->dev, "Out of memory\n");
2943 		goto failure;
2944 	}
2945 
2946 	base->rev = rev;
2947 	base->clk = clk;
2948 	base->num_phy_chans = num_phy_chans;
2949 	base->num_log_chans = num_log_chans;
2950 	base->phy_start = res->start;
2951 	base->phy_size = resource_size(res);
2952 	base->virtbase = virtbase;
2953 	base->plat_data = plat_data;
2954 	base->dev = &pdev->dev;
2955 	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
2956 	base->log_chans = &base->phy_chans[num_phy_chans];
2957 
2958 	base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
2959 				GFP_KERNEL);
2960 	if (!base->phy_res)
2961 		goto failure;
2962 
2963 	base->lookup_phy_chans = kzalloc(num_phy_chans *
2964 					 sizeof(struct d40_chan *),
2965 					 GFP_KERNEL);
2966 	if (!base->lookup_phy_chans)
2967 		goto failure;
2968 
2969 	if (num_log_chans + plat_data->memcpy_len) {
2970 		/*
2971 		 * The max number of logical channels are event lines for all
2972 		 * src devices and dst devices
2973 		 */
2974 		base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
2975 						 sizeof(struct d40_chan *),
2976 						 GFP_KERNEL);
2977 		if (!base->lookup_log_chans)
2978 			goto failure;
2979 	}
2980 
2981 	base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
2982 					    sizeof(d40_backup_regs_chan),
2983 					    GFP_KERNEL);
2984 	if (!base->reg_val_backup_chan)
2985 		goto failure;
2986 
2987 	base->lcla_pool.alloc_map =
2988 		kzalloc(num_phy_chans * sizeof(struct d40_desc *)
2989 			* D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
2990 	if (!base->lcla_pool.alloc_map)
2991 		goto failure;
2992 
2993 	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
2994 					    0, SLAB_HWCACHE_ALIGN,
2995 					    NULL);
2996 	if (base->desc_slab == NULL)
2997 		goto failure;
2998 
2999 	return base;
3000 
3001 failure:
3002 	if (!IS_ERR(clk)) {
3003 		clk_disable(clk);
3004 		clk_put(clk);
3005 	}
3006 	if (virtbase)
3007 		iounmap(virtbase);
3008 	if (res)
3009 		release_mem_region(res->start,
3010 				   resource_size(res));
3011 	if (virtbase)
3012 		iounmap(virtbase);
3013 
3014 	if (base) {
3015 		kfree(base->lcla_pool.alloc_map);
3016 		kfree(base->lookup_log_chans);
3017 		kfree(base->lookup_phy_chans);
3018 		kfree(base->phy_res);
3019 		kfree(base);
3020 	}
3021 
3022 	return NULL;
3023 }
3024 
d40_hw_init(struct d40_base * base)3025 static void __init d40_hw_init(struct d40_base *base)
3026 {
3027 
3028 	static struct d40_reg_val dma_init_reg[] = {
3029 		/* Clock every part of the DMA block from start */
3030 		{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
3031 
3032 		/* Interrupts on all logical channels */
3033 		{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
3034 		{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
3035 		{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
3036 		{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
3037 		{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
3038 		{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
3039 		{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
3040 		{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
3041 		{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
3042 		{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
3043 		{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
3044 		{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
3045 	};
3046 	int i;
3047 	u32 prmseo[2] = {0, 0};
3048 	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3049 	u32 pcmis = 0;
3050 	u32 pcicr = 0;
3051 
3052 	for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
3053 		writel(dma_init_reg[i].val,
3054 		       base->virtbase + dma_init_reg[i].reg);
3055 
3056 	/* Configure all our dma channels to default settings */
3057 	for (i = 0; i < base->num_phy_chans; i++) {
3058 
3059 		activeo[i % 2] = activeo[i % 2] << 2;
3060 
3061 		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3062 		    == D40_ALLOC_PHY) {
3063 			activeo[i % 2] |= 3;
3064 			continue;
3065 		}
3066 
3067 		/* Enable interrupt # */
3068 		pcmis = (pcmis << 1) | 1;
3069 
3070 		/* Clear interrupt # */
3071 		pcicr = (pcicr << 1) | 1;
3072 
3073 		/* Set channel to physical mode */
3074 		prmseo[i % 2] = prmseo[i % 2] << 2;
3075 		prmseo[i % 2] |= 1;
3076 
3077 	}
3078 
3079 	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3080 	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3081 	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3082 	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3083 
3084 	/* Write which interrupt to enable */
3085 	writel(pcmis, base->virtbase + D40_DREG_PCMIS);
3086 
3087 	/* Write which interrupt to clear */
3088 	writel(pcicr, base->virtbase + D40_DREG_PCICR);
3089 
3090 }
3091 
d40_lcla_allocate(struct d40_base * base)3092 static int __init d40_lcla_allocate(struct d40_base *base)
3093 {
3094 	struct d40_lcla_pool *pool = &base->lcla_pool;
3095 	unsigned long *page_list;
3096 	int i, j;
3097 	int ret = 0;
3098 
3099 	/*
3100 	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3101 	 * To full fill this hardware requirement without wasting 256 kb
3102 	 * we allocate pages until we get an aligned one.
3103 	 */
3104 	page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
3105 			    GFP_KERNEL);
3106 
3107 	if (!page_list) {
3108 		ret = -ENOMEM;
3109 		goto failure;
3110 	}
3111 
3112 	/* Calculating how many pages that are required */
3113 	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3114 
3115 	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3116 		page_list[i] = __get_free_pages(GFP_KERNEL,
3117 						base->lcla_pool.pages);
3118 		if (!page_list[i]) {
3119 
3120 			d40_err(base->dev, "Failed to allocate %d pages.\n",
3121 				base->lcla_pool.pages);
3122 
3123 			for (j = 0; j < i; j++)
3124 				free_pages(page_list[j], base->lcla_pool.pages);
3125 			goto failure;
3126 		}
3127 
3128 		if ((virt_to_phys((void *)page_list[i]) &
3129 		     (LCLA_ALIGNMENT - 1)) == 0)
3130 			break;
3131 	}
3132 
3133 	for (j = 0; j < i; j++)
3134 		free_pages(page_list[j], base->lcla_pool.pages);
3135 
3136 	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3137 		base->lcla_pool.base = (void *)page_list[i];
3138 	} else {
3139 		/*
3140 		 * After many attempts and no succees with finding the correct
3141 		 * alignment, try with allocating a big buffer.
3142 		 */
3143 		dev_warn(base->dev,
3144 			 "[%s] Failed to get %d pages @ 18 bit align.\n",
3145 			 __func__, base->lcla_pool.pages);
3146 		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3147 							 base->num_phy_chans +
3148 							 LCLA_ALIGNMENT,
3149 							 GFP_KERNEL);
3150 		if (!base->lcla_pool.base_unaligned) {
3151 			ret = -ENOMEM;
3152 			goto failure;
3153 		}
3154 
3155 		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3156 						 LCLA_ALIGNMENT);
3157 	}
3158 
3159 	pool->dma_addr = dma_map_single(base->dev, pool->base,
3160 					SZ_1K * base->num_phy_chans,
3161 					DMA_TO_DEVICE);
3162 	if (dma_mapping_error(base->dev, pool->dma_addr)) {
3163 		pool->dma_addr = 0;
3164 		ret = -ENOMEM;
3165 		goto failure;
3166 	}
3167 
3168 	writel(virt_to_phys(base->lcla_pool.base),
3169 	       base->virtbase + D40_DREG_LCLA);
3170 failure:
3171 	kfree(page_list);
3172 	return ret;
3173 }
3174 
d40_probe(struct platform_device * pdev)3175 static int __init d40_probe(struct platform_device *pdev)
3176 {
3177 	int err;
3178 	int ret = -ENOENT;
3179 	struct d40_base *base;
3180 	struct resource *res = NULL;
3181 	int num_reserved_chans;
3182 	u32 val;
3183 
3184 	base = d40_hw_detect_init(pdev);
3185 
3186 	if (!base)
3187 		goto failure;
3188 
3189 	num_reserved_chans = d40_phy_res_init(base);
3190 
3191 	platform_set_drvdata(pdev, base);
3192 
3193 	spin_lock_init(&base->interrupt_lock);
3194 	spin_lock_init(&base->execmd_lock);
3195 
3196 	/* Get IO for logical channel parameter address */
3197 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3198 	if (!res) {
3199 		ret = -ENOENT;
3200 		d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3201 		goto failure;
3202 	}
3203 	base->lcpa_size = resource_size(res);
3204 	base->phy_lcpa = res->start;
3205 
3206 	if (request_mem_region(res->start, resource_size(res),
3207 			       D40_NAME " I/O lcpa") == NULL) {
3208 		ret = -EBUSY;
3209 		d40_err(&pdev->dev,
3210 			"Failed to request LCPA region 0x%x-0x%x\n",
3211 			res->start, res->end);
3212 		goto failure;
3213 	}
3214 
3215 	/* We make use of ESRAM memory for this. */
3216 	val = readl(base->virtbase + D40_DREG_LCPA);
3217 	if (res->start != val && val != 0) {
3218 		dev_warn(&pdev->dev,
3219 			 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
3220 			 __func__, val, res->start);
3221 	} else
3222 		writel(res->start, base->virtbase + D40_DREG_LCPA);
3223 
3224 	base->lcpa_base = ioremap(res->start, resource_size(res));
3225 	if (!base->lcpa_base) {
3226 		ret = -ENOMEM;
3227 		d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3228 		goto failure;
3229 	}
3230 	/* If lcla has to be located in ESRAM we don't need to allocate */
3231 	if (base->plat_data->use_esram_lcla) {
3232 		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3233 							"lcla_esram");
3234 		if (!res) {
3235 			ret = -ENOENT;
3236 			d40_err(&pdev->dev,
3237 				"No \"lcla_esram\" memory resource\n");
3238 			goto failure;
3239 		}
3240 		base->lcla_pool.base = ioremap(res->start,
3241 						resource_size(res));
3242 		if (!base->lcla_pool.base) {
3243 			ret = -ENOMEM;
3244 			d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3245 			goto failure;
3246 		}
3247 		writel(res->start, base->virtbase + D40_DREG_LCLA);
3248 
3249 	} else {
3250 		ret = d40_lcla_allocate(base);
3251 		if (ret) {
3252 			d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3253 			goto failure;
3254 		}
3255 	}
3256 
3257 	spin_lock_init(&base->lcla_pool.lock);
3258 
3259 	base->irq = platform_get_irq(pdev, 0);
3260 
3261 	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3262 	if (ret) {
3263 		d40_err(&pdev->dev, "No IRQ defined\n");
3264 		goto failure;
3265 	}
3266 
3267 	pm_runtime_irq_safe(base->dev);
3268 	pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3269 	pm_runtime_use_autosuspend(base->dev);
3270 	pm_runtime_enable(base->dev);
3271 	pm_runtime_resume(base->dev);
3272 
3273 	if (base->plat_data->use_esram_lcla) {
3274 
3275 		base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3276 		if (IS_ERR(base->lcpa_regulator)) {
3277 			d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3278 			base->lcpa_regulator = NULL;
3279 			goto failure;
3280 		}
3281 
3282 		ret = regulator_enable(base->lcpa_regulator);
3283 		if (ret) {
3284 			d40_err(&pdev->dev,
3285 				"Failed to enable lcpa_regulator\n");
3286 			regulator_put(base->lcpa_regulator);
3287 			base->lcpa_regulator = NULL;
3288 			goto failure;
3289 		}
3290 	}
3291 
3292 	base->initialized = true;
3293 	err = d40_dmaengine_init(base, num_reserved_chans);
3294 	if (err)
3295 		goto failure;
3296 
3297 	d40_hw_init(base);
3298 
3299 	dev_info(base->dev, "initialized\n");
3300 	return 0;
3301 
3302 failure:
3303 	if (base) {
3304 		if (base->desc_slab)
3305 			kmem_cache_destroy(base->desc_slab);
3306 		if (base->virtbase)
3307 			iounmap(base->virtbase);
3308 
3309 		if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3310 			iounmap(base->lcla_pool.base);
3311 			base->lcla_pool.base = NULL;
3312 		}
3313 
3314 		if (base->lcla_pool.dma_addr)
3315 			dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3316 					 SZ_1K * base->num_phy_chans,
3317 					 DMA_TO_DEVICE);
3318 
3319 		if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3320 			free_pages((unsigned long)base->lcla_pool.base,
3321 				   base->lcla_pool.pages);
3322 
3323 		kfree(base->lcla_pool.base_unaligned);
3324 
3325 		if (base->phy_lcpa)
3326 			release_mem_region(base->phy_lcpa,
3327 					   base->lcpa_size);
3328 		if (base->phy_start)
3329 			release_mem_region(base->phy_start,
3330 					   base->phy_size);
3331 		if (base->clk) {
3332 			clk_disable(base->clk);
3333 			clk_put(base->clk);
3334 		}
3335 
3336 		if (base->lcpa_regulator) {
3337 			regulator_disable(base->lcpa_regulator);
3338 			regulator_put(base->lcpa_regulator);
3339 		}
3340 
3341 		kfree(base->lcla_pool.alloc_map);
3342 		kfree(base->lookup_log_chans);
3343 		kfree(base->lookup_phy_chans);
3344 		kfree(base->phy_res);
3345 		kfree(base);
3346 	}
3347 
3348 	d40_err(&pdev->dev, "probe failed\n");
3349 	return ret;
3350 }
3351 
3352 static struct platform_driver d40_driver = {
3353 	.driver = {
3354 		.owner = THIS_MODULE,
3355 		.name  = D40_NAME,
3356 		.pm = DMA40_PM_OPS,
3357 	},
3358 };
3359 
stedma40_init(void)3360 static int __init stedma40_init(void)
3361 {
3362 	return platform_driver_probe(&d40_driver, d40_probe);
3363 }
3364 subsys_initcall(stedma40_init);
3365