1 /*
2  *  intel_mid_dma.c - Intel Langwell DMA Drivers
3  *
4  *  Copyright (C) 2008-10 Intel Corp
5  *  Author: Vinod Koul <vinod.koul@intel.com>
6  *  The driver design is based on dw_dmac driver
7  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License as published by
11  *  the Free Software Foundation; version 2 of the License.
12  *
13  *  This program is distributed in the hope that it will be useful, but
14  *  WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  *  General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License along
19  *  with this program; if not, write to the Free Software Foundation, Inc.,
20  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
21  *
22  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23  *
24  *
25  */
26 #include <linux/pci.h>
27 #include <linux/interrupt.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/intel_mid_dma.h>
30 #include <linux/module.h>
31 
32 #define MAX_CHAN	4 /*max ch across controllers*/
33 #include "intel_mid_dma_regs.h"
34 
35 #define INTEL_MID_DMAC1_ID		0x0814
36 #define INTEL_MID_DMAC2_ID		0x0813
37 #define INTEL_MID_GP_DMAC2_ID		0x0827
38 #define INTEL_MFLD_DMAC1_ID		0x0830
39 #define LNW_PERIPHRAL_MASK_BASE		0xFFAE8008
40 #define LNW_PERIPHRAL_MASK_SIZE		0x10
41 #define LNW_PERIPHRAL_STATUS		0x0
42 #define LNW_PERIPHRAL_MASK		0x8
43 
44 struct intel_mid_dma_probe_info {
45 	u8 max_chan;
46 	u8 ch_base;
47 	u16 block_size;
48 	u32 pimr_mask;
49 };
50 
51 #define INFO(_max_chan, _ch_base, _block_size, _pimr_mask) \
52 	((kernel_ulong_t)&(struct intel_mid_dma_probe_info) {	\
53 		.max_chan = (_max_chan),			\
54 		.ch_base = (_ch_base),				\
55 		.block_size = (_block_size),			\
56 		.pimr_mask = (_pimr_mask),			\
57 	})
58 
59 /*****************************************************************************
60 Utility Functions*/
61 /**
62  * get_ch_index	-	convert status to channel
63  * @status: status mask
64  * @base: dma ch base value
65  *
66  * Modify the status mask and return the channel index needing
67  * attention (or -1 if neither)
68  */
get_ch_index(int * status,unsigned int base)69 static int get_ch_index(int *status, unsigned int base)
70 {
71 	int i;
72 	for (i = 0; i < MAX_CHAN; i++) {
73 		if (*status & (1 << (i + base))) {
74 			*status = *status & ~(1 << (i + base));
75 			pr_debug("MDMA: index %d New status %x\n", i, *status);
76 			return i;
77 		}
78 	}
79 	return -1;
80 }
81 
82 /**
83  * get_block_ts	-	calculates dma transaction length
84  * @len: dma transfer length
85  * @tx_width: dma transfer src width
86  * @block_size: dma controller max block size
87  *
88  * Based on src width calculate the DMA trsaction length in data items
89  * return data items or FFFF if exceeds max length for block
90  */
get_block_ts(int len,int tx_width,int block_size)91 static int get_block_ts(int len, int tx_width, int block_size)
92 {
93 	int byte_width = 0, block_ts = 0;
94 
95 	switch (tx_width) {
96 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
97 		byte_width = 1;
98 		break;
99 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
100 		byte_width = 2;
101 		break;
102 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
103 	default:
104 		byte_width = 4;
105 		break;
106 	}
107 
108 	block_ts = len/byte_width;
109 	if (block_ts > block_size)
110 		block_ts = 0xFFFF;
111 	return block_ts;
112 }
113 
114 /*****************************************************************************
115 DMAC1 interrupt Functions*/
116 
117 /**
118  * dmac1_mask_periphral_intr -	mask the periphral interrupt
119  * @mid: dma device for which masking is required
120  *
121  * Masks the DMA periphral interrupt
122  * this is valid for DMAC1 family controllers only
123  * This controller should have periphral mask registers already mapped
124  */
dmac1_mask_periphral_intr(struct middma_device * mid)125 static void dmac1_mask_periphral_intr(struct middma_device *mid)
126 {
127 	u32 pimr;
128 
129 	if (mid->pimr_mask) {
130 		pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
131 		pimr |= mid->pimr_mask;
132 		writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
133 	}
134 	return;
135 }
136 
137 /**
138  * dmac1_unmask_periphral_intr -	unmask the periphral interrupt
139  * @midc: dma channel for which masking is required
140  *
141  * UnMasks the DMA periphral interrupt,
142  * this is valid for DMAC1 family controllers only
143  * This controller should have periphral mask registers already mapped
144  */
dmac1_unmask_periphral_intr(struct intel_mid_dma_chan * midc)145 static void dmac1_unmask_periphral_intr(struct intel_mid_dma_chan *midc)
146 {
147 	u32 pimr;
148 	struct middma_device *mid = to_middma_device(midc->chan.device);
149 
150 	if (mid->pimr_mask) {
151 		pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
152 		pimr &= ~mid->pimr_mask;
153 		writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
154 	}
155 	return;
156 }
157 
158 /**
159  * enable_dma_interrupt -	enable the periphral interrupt
160  * @midc: dma channel for which enable interrupt is required
161  *
162  * Enable the DMA periphral interrupt,
163  * this is valid for DMAC1 family controllers only
164  * This controller should have periphral mask registers already mapped
165  */
enable_dma_interrupt(struct intel_mid_dma_chan * midc)166 static void enable_dma_interrupt(struct intel_mid_dma_chan *midc)
167 {
168 	dmac1_unmask_periphral_intr(midc);
169 
170 	/*en ch interrupts*/
171 	iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
172 	iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
173 	return;
174 }
175 
176 /**
177  * disable_dma_interrupt -	disable the periphral interrupt
178  * @midc: dma channel for which disable interrupt is required
179  *
180  * Disable the DMA periphral interrupt,
181  * this is valid for DMAC1 family controllers only
182  * This controller should have periphral mask registers already mapped
183  */
disable_dma_interrupt(struct intel_mid_dma_chan * midc)184 static void disable_dma_interrupt(struct intel_mid_dma_chan *midc)
185 {
186 	/*Check LPE PISR, make sure fwd is disabled*/
187 	iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_BLOCK);
188 	iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
189 	iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
190 	return;
191 }
192 
193 /*****************************************************************************
194 DMA channel helper Functions*/
195 /**
196  * mid_desc_get		-	get a descriptor
197  * @midc: dma channel for which descriptor is required
198  *
199  * Obtain a descriptor for the channel. Returns NULL if none are free.
200  * Once the descriptor is returned it is private until put on another
201  * list or freed
202  */
midc_desc_get(struct intel_mid_dma_chan * midc)203 static struct intel_mid_dma_desc *midc_desc_get(struct intel_mid_dma_chan *midc)
204 {
205 	struct intel_mid_dma_desc *desc, *_desc;
206 	struct intel_mid_dma_desc *ret = NULL;
207 
208 	spin_lock_bh(&midc->lock);
209 	list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
210 		if (async_tx_test_ack(&desc->txd)) {
211 			list_del(&desc->desc_node);
212 			ret = desc;
213 			break;
214 		}
215 	}
216 	spin_unlock_bh(&midc->lock);
217 	return ret;
218 }
219 
220 /**
221  * mid_desc_put		-	put a descriptor
222  * @midc: dma channel for which descriptor is required
223  * @desc: descriptor to put
224  *
225  * Return a descriptor from lwn_desc_get back to the free pool
226  */
midc_desc_put(struct intel_mid_dma_chan * midc,struct intel_mid_dma_desc * desc)227 static void midc_desc_put(struct intel_mid_dma_chan *midc,
228 			struct intel_mid_dma_desc *desc)
229 {
230 	if (desc) {
231 		spin_lock_bh(&midc->lock);
232 		list_add_tail(&desc->desc_node, &midc->free_list);
233 		spin_unlock_bh(&midc->lock);
234 	}
235 }
236 /**
237  * midc_dostart		-		begin a DMA transaction
238  * @midc: channel for which txn is to be started
239  * @first: first descriptor of series
240  *
241  * Load a transaction into the engine. This must be called with midc->lock
242  * held and bh disabled.
243  */
midc_dostart(struct intel_mid_dma_chan * midc,struct intel_mid_dma_desc * first)244 static void midc_dostart(struct intel_mid_dma_chan *midc,
245 			struct intel_mid_dma_desc *first)
246 {
247 	struct middma_device *mid = to_middma_device(midc->chan.device);
248 
249 	/*  channel is idle */
250 	if (midc->busy && test_ch_en(midc->dma_base, midc->ch_id)) {
251 		/*error*/
252 		pr_err("ERR_MDMA: channel is busy in start\n");
253 		/* The tasklet will hopefully advance the queue... */
254 		return;
255 	}
256 	midc->busy = true;
257 	/*write registers and en*/
258 	iowrite32(first->sar, midc->ch_regs + SAR);
259 	iowrite32(first->dar, midc->ch_regs + DAR);
260 	iowrite32(first->lli_phys, midc->ch_regs + LLP);
261 	iowrite32(first->cfg_hi, midc->ch_regs + CFG_HIGH);
262 	iowrite32(first->cfg_lo, midc->ch_regs + CFG_LOW);
263 	iowrite32(first->ctl_lo, midc->ch_regs + CTL_LOW);
264 	iowrite32(first->ctl_hi, midc->ch_regs + CTL_HIGH);
265 	pr_debug("MDMA:TX SAR %x,DAR %x,CFGL %x,CFGH %x,CTLH %x, CTLL %x\n",
266 		(int)first->sar, (int)first->dar, first->cfg_hi,
267 		first->cfg_lo, first->ctl_hi, first->ctl_lo);
268 	first->status = DMA_IN_PROGRESS;
269 
270 	iowrite32(ENABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
271 }
272 
273 /**
274  * midc_descriptor_complete	-	process completed descriptor
275  * @midc: channel owning the descriptor
276  * @desc: the descriptor itself
277  *
278  * Process a completed descriptor and perform any callbacks upon
279  * the completion. The completion handling drops the lock during the
280  * callbacks but must be called with the lock held.
281  */
midc_descriptor_complete(struct intel_mid_dma_chan * midc,struct intel_mid_dma_desc * desc)282 static void midc_descriptor_complete(struct intel_mid_dma_chan *midc,
283 		struct intel_mid_dma_desc *desc)
284 		__releases(&midc->lock) __acquires(&midc->lock)
285 {
286 	struct dma_async_tx_descriptor	*txd = &desc->txd;
287 	dma_async_tx_callback callback_txd = NULL;
288 	struct intel_mid_dma_lli	*llitem;
289 	void *param_txd = NULL;
290 
291 	midc->completed = txd->cookie;
292 	callback_txd = txd->callback;
293 	param_txd = txd->callback_param;
294 
295 	if (desc->lli != NULL) {
296 		/*clear the DONE bit of completed LLI in memory*/
297 		llitem = desc->lli + desc->current_lli;
298 		llitem->ctl_hi &= CLEAR_DONE;
299 		if (desc->current_lli < desc->lli_length-1)
300 			(desc->current_lli)++;
301 		else
302 			desc->current_lli = 0;
303 	}
304 	spin_unlock_bh(&midc->lock);
305 	if (callback_txd) {
306 		pr_debug("MDMA: TXD callback set ... calling\n");
307 		callback_txd(param_txd);
308 	}
309 	if (midc->raw_tfr) {
310 		desc->status = DMA_SUCCESS;
311 		if (desc->lli != NULL) {
312 			pci_pool_free(desc->lli_pool, desc->lli,
313 						desc->lli_phys);
314 			pci_pool_destroy(desc->lli_pool);
315 			desc->lli = NULL;
316 		}
317 		list_move(&desc->desc_node, &midc->free_list);
318 		midc->busy = false;
319 	}
320 	spin_lock_bh(&midc->lock);
321 
322 }
323 /**
324  * midc_scan_descriptors -		check the descriptors in channel
325  *					mark completed when tx is completete
326  * @mid: device
327  * @midc: channel to scan
328  *
329  * Walk the descriptor chain for the device and process any entries
330  * that are complete.
331  */
midc_scan_descriptors(struct middma_device * mid,struct intel_mid_dma_chan * midc)332 static void midc_scan_descriptors(struct middma_device *mid,
333 				struct intel_mid_dma_chan *midc)
334 {
335 	struct intel_mid_dma_desc *desc = NULL, *_desc = NULL;
336 
337 	/*tx is complete*/
338 	list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
339 		if (desc->status == DMA_IN_PROGRESS)
340 			midc_descriptor_complete(midc, desc);
341 	}
342 	return;
343 	}
344 /**
345  * midc_lli_fill_sg -		Helper function to convert
346  *				SG list to Linked List Items.
347  *@midc: Channel
348  *@desc: DMA descriptor
349  *@sglist: Pointer to SG list
350  *@sglen: SG list length
351  *@flags: DMA transaction flags
352  *
353  * Walk through the SG list and convert the SG list into Linked
354  * List Items (LLI).
355  */
midc_lli_fill_sg(struct intel_mid_dma_chan * midc,struct intel_mid_dma_desc * desc,struct scatterlist * sglist,unsigned int sglen,unsigned int flags)356 static int midc_lli_fill_sg(struct intel_mid_dma_chan *midc,
357 				struct intel_mid_dma_desc *desc,
358 				struct scatterlist *sglist,
359 				unsigned int sglen,
360 				unsigned int flags)
361 {
362 	struct intel_mid_dma_slave *mids;
363 	struct scatterlist  *sg;
364 	dma_addr_t lli_next, sg_phy_addr;
365 	struct intel_mid_dma_lli *lli_bloc_desc;
366 	union intel_mid_dma_ctl_lo ctl_lo;
367 	union intel_mid_dma_ctl_hi ctl_hi;
368 	int i;
369 
370 	pr_debug("MDMA: Entered midc_lli_fill_sg\n");
371 	mids = midc->mid_slave;
372 
373 	lli_bloc_desc = desc->lli;
374 	lli_next = desc->lli_phys;
375 
376 	ctl_lo.ctl_lo = desc->ctl_lo;
377 	ctl_hi.ctl_hi = desc->ctl_hi;
378 	for_each_sg(sglist, sg, sglen, i) {
379 		/*Populate CTL_LOW and LLI values*/
380 		if (i != sglen - 1) {
381 			lli_next = lli_next +
382 				sizeof(struct intel_mid_dma_lli);
383 		} else {
384 		/*Check for circular list, otherwise terminate LLI to ZERO*/
385 			if (flags & DMA_PREP_CIRCULAR_LIST) {
386 				pr_debug("MDMA: LLI is configured in circular mode\n");
387 				lli_next = desc->lli_phys;
388 			} else {
389 				lli_next = 0;
390 				ctl_lo.ctlx.llp_dst_en = 0;
391 				ctl_lo.ctlx.llp_src_en = 0;
392 			}
393 		}
394 		/*Populate CTL_HI values*/
395 		ctl_hi.ctlx.block_ts = get_block_ts(sg->length,
396 							desc->width,
397 							midc->dma->block_size);
398 		/*Populate SAR and DAR values*/
399 		sg_phy_addr = sg_phys(sg);
400 		if (desc->dirn ==  DMA_MEM_TO_DEV) {
401 			lli_bloc_desc->sar  = sg_phy_addr;
402 			lli_bloc_desc->dar  = mids->dma_slave.dst_addr;
403 		} else if (desc->dirn ==  DMA_DEV_TO_MEM) {
404 			lli_bloc_desc->sar  = mids->dma_slave.src_addr;
405 			lli_bloc_desc->dar  = sg_phy_addr;
406 		}
407 		/*Copy values into block descriptor in system memroy*/
408 		lli_bloc_desc->llp = lli_next;
409 		lli_bloc_desc->ctl_lo = ctl_lo.ctl_lo;
410 		lli_bloc_desc->ctl_hi = ctl_hi.ctl_hi;
411 
412 		lli_bloc_desc++;
413 	}
414 	/*Copy very first LLI values to descriptor*/
415 	desc->ctl_lo = desc->lli->ctl_lo;
416 	desc->ctl_hi = desc->lli->ctl_hi;
417 	desc->sar = desc->lli->sar;
418 	desc->dar = desc->lli->dar;
419 
420 	return 0;
421 }
422 /*****************************************************************************
423 DMA engine callback Functions*/
424 /**
425  * intel_mid_dma_tx_submit -	callback to submit DMA transaction
426  * @tx: dma engine descriptor
427  *
428  * Submit the DMA trasaction for this descriptor, start if ch idle
429  */
intel_mid_dma_tx_submit(struct dma_async_tx_descriptor * tx)430 static dma_cookie_t intel_mid_dma_tx_submit(struct dma_async_tx_descriptor *tx)
431 {
432 	struct intel_mid_dma_desc	*desc = to_intel_mid_dma_desc(tx);
433 	struct intel_mid_dma_chan	*midc = to_intel_mid_dma_chan(tx->chan);
434 	dma_cookie_t		cookie;
435 
436 	spin_lock_bh(&midc->lock);
437 	cookie = midc->chan.cookie;
438 
439 	if (++cookie < 0)
440 		cookie = 1;
441 
442 	midc->chan.cookie = cookie;
443 	desc->txd.cookie = cookie;
444 
445 
446 	if (list_empty(&midc->active_list))
447 		list_add_tail(&desc->desc_node, &midc->active_list);
448 	else
449 		list_add_tail(&desc->desc_node, &midc->queue);
450 
451 	midc_dostart(midc, desc);
452 	spin_unlock_bh(&midc->lock);
453 
454 	return cookie;
455 }
456 
457 /**
458  * intel_mid_dma_issue_pending -	callback to issue pending txn
459  * @chan: chan where pending trascation needs to be checked and submitted
460  *
461  * Call for scan to issue pending descriptors
462  */
intel_mid_dma_issue_pending(struct dma_chan * chan)463 static void intel_mid_dma_issue_pending(struct dma_chan *chan)
464 {
465 	struct intel_mid_dma_chan	*midc = to_intel_mid_dma_chan(chan);
466 
467 	spin_lock_bh(&midc->lock);
468 	if (!list_empty(&midc->queue))
469 		midc_scan_descriptors(to_middma_device(chan->device), midc);
470 	spin_unlock_bh(&midc->lock);
471 }
472 
473 /**
474  * intel_mid_dma_tx_status -	Return status of txn
475  * @chan: chan for where status needs to be checked
476  * @cookie: cookie for txn
477  * @txstate: DMA txn state
478  *
479  * Return status of DMA txn
480  */
intel_mid_dma_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)481 static enum dma_status intel_mid_dma_tx_status(struct dma_chan *chan,
482 						dma_cookie_t cookie,
483 						struct dma_tx_state *txstate)
484 {
485 	struct intel_mid_dma_chan	*midc = to_intel_mid_dma_chan(chan);
486 	dma_cookie_t		last_used;
487 	dma_cookie_t		last_complete;
488 	int				ret;
489 
490 	last_complete = midc->completed;
491 	last_used = chan->cookie;
492 
493 	ret = dma_async_is_complete(cookie, last_complete, last_used);
494 	if (ret != DMA_SUCCESS) {
495 		spin_lock_bh(&midc->lock);
496 		midc_scan_descriptors(to_middma_device(chan->device), midc);
497 		spin_unlock_bh(&midc->lock);
498 
499 		last_complete = midc->completed;
500 		last_used = chan->cookie;
501 
502 		ret = dma_async_is_complete(cookie, last_complete, last_used);
503 	}
504 
505 	if (txstate) {
506 		txstate->last = last_complete;
507 		txstate->used = last_used;
508 		txstate->residue = 0;
509 	}
510 	return ret;
511 }
512 
dma_slave_control(struct dma_chan * chan,unsigned long arg)513 static int dma_slave_control(struct dma_chan *chan, unsigned long arg)
514 {
515 	struct intel_mid_dma_chan	*midc = to_intel_mid_dma_chan(chan);
516 	struct dma_slave_config  *slave = (struct dma_slave_config *)arg;
517 	struct intel_mid_dma_slave *mid_slave;
518 
519 	BUG_ON(!midc);
520 	BUG_ON(!slave);
521 	pr_debug("MDMA: slave control called\n");
522 
523 	mid_slave = to_intel_mid_dma_slave(slave);
524 
525 	BUG_ON(!mid_slave);
526 
527 	midc->mid_slave = mid_slave;
528 	return 0;
529 }
530 /**
531  * intel_mid_dma_device_control -	DMA device control
532  * @chan: chan for DMA control
533  * @cmd: control cmd
534  * @arg: cmd arg value
535  *
536  * Perform DMA control command
537  */
intel_mid_dma_device_control(struct dma_chan * chan,enum dma_ctrl_cmd cmd,unsigned long arg)538 static int intel_mid_dma_device_control(struct dma_chan *chan,
539 			enum dma_ctrl_cmd cmd, unsigned long arg)
540 {
541 	struct intel_mid_dma_chan	*midc = to_intel_mid_dma_chan(chan);
542 	struct middma_device	*mid = to_middma_device(chan->device);
543 	struct intel_mid_dma_desc	*desc, *_desc;
544 	union intel_mid_dma_cfg_lo cfg_lo;
545 
546 	if (cmd == DMA_SLAVE_CONFIG)
547 		return dma_slave_control(chan, arg);
548 
549 	if (cmd != DMA_TERMINATE_ALL)
550 		return -ENXIO;
551 
552 	spin_lock_bh(&midc->lock);
553 	if (midc->busy == false) {
554 		spin_unlock_bh(&midc->lock);
555 		return 0;
556 	}
557 	/*Suspend and disable the channel*/
558 	cfg_lo.cfg_lo = ioread32(midc->ch_regs + CFG_LOW);
559 	cfg_lo.cfgx.ch_susp = 1;
560 	iowrite32(cfg_lo.cfg_lo, midc->ch_regs + CFG_LOW);
561 	iowrite32(DISABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
562 	midc->busy = false;
563 	/* Disable interrupts */
564 	disable_dma_interrupt(midc);
565 	midc->descs_allocated = 0;
566 
567 	spin_unlock_bh(&midc->lock);
568 	list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
569 		if (desc->lli != NULL) {
570 			pci_pool_free(desc->lli_pool, desc->lli,
571 						desc->lli_phys);
572 			pci_pool_destroy(desc->lli_pool);
573 			desc->lli = NULL;
574 		}
575 		list_move(&desc->desc_node, &midc->free_list);
576 	}
577 	return 0;
578 }
579 
580 
581 /**
582  * intel_mid_dma_prep_memcpy -	Prep memcpy txn
583  * @chan: chan for DMA transfer
584  * @dest: destn address
585  * @src: src address
586  * @len: DMA transfer len
587  * @flags: DMA flags
588  *
589  * Perform a DMA memcpy. Note we support slave periphral DMA transfers only
590  * The periphral txn details should be filled in slave structure properly
591  * Returns the descriptor for this txn
592  */
intel_mid_dma_prep_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)593 static struct dma_async_tx_descriptor *intel_mid_dma_prep_memcpy(
594 			struct dma_chan *chan, dma_addr_t dest,
595 			dma_addr_t src, size_t len, unsigned long flags)
596 {
597 	struct intel_mid_dma_chan *midc;
598 	struct intel_mid_dma_desc *desc = NULL;
599 	struct intel_mid_dma_slave *mids;
600 	union intel_mid_dma_ctl_lo ctl_lo;
601 	union intel_mid_dma_ctl_hi ctl_hi;
602 	union intel_mid_dma_cfg_lo cfg_lo;
603 	union intel_mid_dma_cfg_hi cfg_hi;
604 	enum dma_slave_buswidth width;
605 
606 	pr_debug("MDMA: Prep for memcpy\n");
607 	BUG_ON(!chan);
608 	if (!len)
609 		return NULL;
610 
611 	midc = to_intel_mid_dma_chan(chan);
612 	BUG_ON(!midc);
613 
614 	mids = midc->mid_slave;
615 	BUG_ON(!mids);
616 
617 	pr_debug("MDMA:called for DMA %x CH %d Length %zu\n",
618 				midc->dma->pci_id, midc->ch_id, len);
619 	pr_debug("MDMA:Cfg passed Mode %x, Dirn %x, HS %x, Width %x\n",
620 			mids->cfg_mode, mids->dma_slave.direction,
621 			mids->hs_mode, mids->dma_slave.src_addr_width);
622 
623 	/*calculate CFG_LO*/
624 	if (mids->hs_mode == LNW_DMA_SW_HS) {
625 		cfg_lo.cfg_lo = 0;
626 		cfg_lo.cfgx.hs_sel_dst = 1;
627 		cfg_lo.cfgx.hs_sel_src = 1;
628 	} else if (mids->hs_mode == LNW_DMA_HW_HS)
629 		cfg_lo.cfg_lo = 0x00000;
630 
631 	/*calculate CFG_HI*/
632 	if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
633 		/*SW HS only*/
634 		cfg_hi.cfg_hi = 0;
635 	} else {
636 		cfg_hi.cfg_hi = 0;
637 		if (midc->dma->pimr_mask) {
638 			cfg_hi.cfgx.protctl = 0x0; /*default value*/
639 			cfg_hi.cfgx.fifo_mode = 1;
640 			if (mids->dma_slave.direction == DMA_MEM_TO_DEV) {
641 				cfg_hi.cfgx.src_per = 0;
642 				if (mids->device_instance == 0)
643 					cfg_hi.cfgx.dst_per = 3;
644 				if (mids->device_instance == 1)
645 					cfg_hi.cfgx.dst_per = 1;
646 			} else if (mids->dma_slave.direction == DMA_DEV_TO_MEM) {
647 				if (mids->device_instance == 0)
648 					cfg_hi.cfgx.src_per = 2;
649 				if (mids->device_instance == 1)
650 					cfg_hi.cfgx.src_per = 0;
651 				cfg_hi.cfgx.dst_per = 0;
652 			}
653 		} else {
654 			cfg_hi.cfgx.protctl = 0x1; /*default value*/
655 			cfg_hi.cfgx.src_per = cfg_hi.cfgx.dst_per =
656 					midc->ch_id - midc->dma->chan_base;
657 		}
658 	}
659 
660 	/*calculate CTL_HI*/
661 	ctl_hi.ctlx.reser = 0;
662 	ctl_hi.ctlx.done  = 0;
663 	width = mids->dma_slave.src_addr_width;
664 
665 	ctl_hi.ctlx.block_ts = get_block_ts(len, width, midc->dma->block_size);
666 	pr_debug("MDMA:calc len %d for block size %d\n",
667 				ctl_hi.ctlx.block_ts, midc->dma->block_size);
668 	/*calculate CTL_LO*/
669 	ctl_lo.ctl_lo = 0;
670 	ctl_lo.ctlx.int_en = 1;
671 	ctl_lo.ctlx.dst_msize = mids->dma_slave.src_maxburst;
672 	ctl_lo.ctlx.src_msize = mids->dma_slave.dst_maxburst;
673 
674 	/*
675 	 * Here we need some translation from "enum dma_slave_buswidth"
676 	 * to the format for our dma controller
677 	 *		standard	intel_mid_dmac's format
678 	 *		 1 Byte			0b000
679 	 *		 2 Bytes		0b001
680 	 *		 4 Bytes		0b010
681 	 */
682 	ctl_lo.ctlx.dst_tr_width = mids->dma_slave.dst_addr_width / 2;
683 	ctl_lo.ctlx.src_tr_width = mids->dma_slave.src_addr_width / 2;
684 
685 	if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
686 		ctl_lo.ctlx.tt_fc = 0;
687 		ctl_lo.ctlx.sinc = 0;
688 		ctl_lo.ctlx.dinc = 0;
689 	} else {
690 		if (mids->dma_slave.direction == DMA_MEM_TO_DEV) {
691 			ctl_lo.ctlx.sinc = 0;
692 			ctl_lo.ctlx.dinc = 2;
693 			ctl_lo.ctlx.tt_fc = 1;
694 		} else if (mids->dma_slave.direction == DMA_DEV_TO_MEM) {
695 			ctl_lo.ctlx.sinc = 2;
696 			ctl_lo.ctlx.dinc = 0;
697 			ctl_lo.ctlx.tt_fc = 2;
698 		}
699 	}
700 
701 	pr_debug("MDMA:Calc CTL LO %x, CTL HI %x, CFG LO %x, CFG HI %x\n",
702 		ctl_lo.ctl_lo, ctl_hi.ctl_hi, cfg_lo.cfg_lo, cfg_hi.cfg_hi);
703 
704 	enable_dma_interrupt(midc);
705 
706 	desc = midc_desc_get(midc);
707 	if (desc == NULL)
708 		goto err_desc_get;
709 	desc->sar = src;
710 	desc->dar = dest ;
711 	desc->len = len;
712 	desc->cfg_hi = cfg_hi.cfg_hi;
713 	desc->cfg_lo = cfg_lo.cfg_lo;
714 	desc->ctl_lo = ctl_lo.ctl_lo;
715 	desc->ctl_hi = ctl_hi.ctl_hi;
716 	desc->width = width;
717 	desc->dirn = mids->dma_slave.direction;
718 	desc->lli_phys = 0;
719 	desc->lli = NULL;
720 	desc->lli_pool = NULL;
721 	return &desc->txd;
722 
723 err_desc_get:
724 	pr_err("ERR_MDMA: Failed to get desc\n");
725 	midc_desc_put(midc, desc);
726 	return NULL;
727 }
728 /**
729  * intel_mid_dma_prep_slave_sg -	Prep slave sg txn
730  * @chan: chan for DMA transfer
731  * @sgl: scatter gather list
732  * @sg_len: length of sg txn
733  * @direction: DMA transfer dirtn
734  * @flags: DMA flags
735  *
736  * Prepares LLI based periphral transfer
737  */
intel_mid_dma_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags)738 static struct dma_async_tx_descriptor *intel_mid_dma_prep_slave_sg(
739 			struct dma_chan *chan, struct scatterlist *sgl,
740 			unsigned int sg_len, enum dma_transfer_direction direction,
741 			unsigned long flags)
742 {
743 	struct intel_mid_dma_chan *midc = NULL;
744 	struct intel_mid_dma_slave *mids = NULL;
745 	struct intel_mid_dma_desc *desc = NULL;
746 	struct dma_async_tx_descriptor *txd = NULL;
747 	union intel_mid_dma_ctl_lo ctl_lo;
748 
749 	pr_debug("MDMA: Prep for slave SG\n");
750 
751 	if (!sg_len) {
752 		pr_err("MDMA: Invalid SG length\n");
753 		return NULL;
754 	}
755 	midc = to_intel_mid_dma_chan(chan);
756 	BUG_ON(!midc);
757 
758 	mids = midc->mid_slave;
759 	BUG_ON(!mids);
760 
761 	if (!midc->dma->pimr_mask) {
762 		/* We can still handle sg list with only one item */
763 		if (sg_len == 1) {
764 			txd = intel_mid_dma_prep_memcpy(chan,
765 						mids->dma_slave.dst_addr,
766 						mids->dma_slave.src_addr,
767 						sgl->length,
768 						flags);
769 			return txd;
770 		} else {
771 			pr_warn("MDMA: SG list is not supported by this controller\n");
772 			return  NULL;
773 		}
774 	}
775 
776 	pr_debug("MDMA: SG Length = %d, direction = %d, Flags = %#lx\n",
777 			sg_len, direction, flags);
778 
779 	txd = intel_mid_dma_prep_memcpy(chan, 0, 0, sgl->length, flags);
780 	if (NULL == txd) {
781 		pr_err("MDMA: Prep memcpy failed\n");
782 		return NULL;
783 	}
784 
785 	desc = to_intel_mid_dma_desc(txd);
786 	desc->dirn = direction;
787 	ctl_lo.ctl_lo = desc->ctl_lo;
788 	ctl_lo.ctlx.llp_dst_en = 1;
789 	ctl_lo.ctlx.llp_src_en = 1;
790 	desc->ctl_lo = ctl_lo.ctl_lo;
791 	desc->lli_length = sg_len;
792 	desc->current_lli = 0;
793 	/* DMA coherent memory pool for LLI descriptors*/
794 	desc->lli_pool = pci_pool_create("intel_mid_dma_lli_pool",
795 				midc->dma->pdev,
796 				(sizeof(struct intel_mid_dma_lli)*sg_len),
797 				32, 0);
798 	if (NULL == desc->lli_pool) {
799 		pr_err("MID_DMA:LLI pool create failed\n");
800 		return NULL;
801 	}
802 
803 	desc->lli = pci_pool_alloc(desc->lli_pool, GFP_KERNEL, &desc->lli_phys);
804 	if (!desc->lli) {
805 		pr_err("MID_DMA: LLI alloc failed\n");
806 		pci_pool_destroy(desc->lli_pool);
807 		return NULL;
808 	}
809 
810 	midc_lli_fill_sg(midc, desc, sgl, sg_len, flags);
811 	if (flags & DMA_PREP_INTERRUPT) {
812 		iowrite32(UNMASK_INTR_REG(midc->ch_id),
813 				midc->dma_base + MASK_BLOCK);
814 		pr_debug("MDMA:Enabled Block interrupt\n");
815 	}
816 	return &desc->txd;
817 }
818 
819 /**
820  * intel_mid_dma_free_chan_resources -	Frees dma resources
821  * @chan: chan requiring attention
822  *
823  * Frees the allocated resources on this DMA chan
824  */
intel_mid_dma_free_chan_resources(struct dma_chan * chan)825 static void intel_mid_dma_free_chan_resources(struct dma_chan *chan)
826 {
827 	struct intel_mid_dma_chan	*midc = to_intel_mid_dma_chan(chan);
828 	struct middma_device	*mid = to_middma_device(chan->device);
829 	struct intel_mid_dma_desc	*desc, *_desc;
830 
831 	if (true == midc->busy) {
832 		/*trying to free ch in use!!!!!*/
833 		pr_err("ERR_MDMA: trying to free ch in use\n");
834 	}
835 	pm_runtime_put(&mid->pdev->dev);
836 	spin_lock_bh(&midc->lock);
837 	midc->descs_allocated = 0;
838 	list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
839 		list_del(&desc->desc_node);
840 		pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
841 	}
842 	list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
843 		list_del(&desc->desc_node);
844 		pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
845 	}
846 	list_for_each_entry_safe(desc, _desc, &midc->queue, desc_node) {
847 		list_del(&desc->desc_node);
848 		pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
849 	}
850 	spin_unlock_bh(&midc->lock);
851 	midc->in_use = false;
852 	midc->busy = false;
853 	/* Disable CH interrupts */
854 	iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_BLOCK);
855 	iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_ERR);
856 }
857 
858 /**
859  * intel_mid_dma_alloc_chan_resources -	Allocate dma resources
860  * @chan: chan requiring attention
861  *
862  * Allocates DMA resources on this chan
863  * Return the descriptors allocated
864  */
intel_mid_dma_alloc_chan_resources(struct dma_chan * chan)865 static int intel_mid_dma_alloc_chan_resources(struct dma_chan *chan)
866 {
867 	struct intel_mid_dma_chan	*midc = to_intel_mid_dma_chan(chan);
868 	struct middma_device	*mid = to_middma_device(chan->device);
869 	struct intel_mid_dma_desc	*desc;
870 	dma_addr_t		phys;
871 	int	i = 0;
872 
873 	pm_runtime_get_sync(&mid->pdev->dev);
874 
875 	if (mid->state == SUSPENDED) {
876 		if (dma_resume(&mid->pdev->dev)) {
877 			pr_err("ERR_MDMA: resume failed");
878 			return -EFAULT;
879 		}
880 	}
881 
882 	/* ASSERT:  channel is idle */
883 	if (test_ch_en(mid->dma_base, midc->ch_id)) {
884 		/*ch is not idle*/
885 		pr_err("ERR_MDMA: ch not idle\n");
886 		pm_runtime_put(&mid->pdev->dev);
887 		return -EIO;
888 	}
889 	midc->completed = chan->cookie = 1;
890 
891 	spin_lock_bh(&midc->lock);
892 	while (midc->descs_allocated < DESCS_PER_CHANNEL) {
893 		spin_unlock_bh(&midc->lock);
894 		desc = pci_pool_alloc(mid->dma_pool, GFP_KERNEL, &phys);
895 		if (!desc) {
896 			pr_err("ERR_MDMA: desc failed\n");
897 			pm_runtime_put(&mid->pdev->dev);
898 			return -ENOMEM;
899 			/*check*/
900 		}
901 		dma_async_tx_descriptor_init(&desc->txd, chan);
902 		desc->txd.tx_submit = intel_mid_dma_tx_submit;
903 		desc->txd.flags = DMA_CTRL_ACK;
904 		desc->txd.phys = phys;
905 		spin_lock_bh(&midc->lock);
906 		i = ++midc->descs_allocated;
907 		list_add_tail(&desc->desc_node, &midc->free_list);
908 	}
909 	spin_unlock_bh(&midc->lock);
910 	midc->in_use = true;
911 	midc->busy = false;
912 	pr_debug("MID_DMA: Desc alloc done ret: %d desc\n", i);
913 	return i;
914 }
915 
916 /**
917  * midc_handle_error -	Handle DMA txn error
918  * @mid: controller where error occurred
919  * @midc: chan where error occurred
920  *
921  * Scan the descriptor for error
922  */
midc_handle_error(struct middma_device * mid,struct intel_mid_dma_chan * midc)923 static void midc_handle_error(struct middma_device *mid,
924 		struct intel_mid_dma_chan *midc)
925 {
926 	midc_scan_descriptors(mid, midc);
927 }
928 
929 /**
930  * dma_tasklet -	DMA interrupt tasklet
931  * @data: tasklet arg (the controller structure)
932  *
933  * Scan the controller for interrupts for completion/error
934  * Clear the interrupt and call for handling completion/error
935  */
dma_tasklet(unsigned long data)936 static void dma_tasklet(unsigned long data)
937 {
938 	struct middma_device *mid = NULL;
939 	struct intel_mid_dma_chan *midc = NULL;
940 	u32 status, raw_tfr, raw_block;
941 	int i;
942 
943 	mid = (struct middma_device *)data;
944 	if (mid == NULL) {
945 		pr_err("ERR_MDMA: tasklet Null param\n");
946 		return;
947 	}
948 	pr_debug("MDMA: in tasklet for device %x\n", mid->pci_id);
949 	raw_tfr = ioread32(mid->dma_base + RAW_TFR);
950 	raw_block = ioread32(mid->dma_base + RAW_BLOCK);
951 	status = raw_tfr | raw_block;
952 	status &= mid->intr_mask;
953 	while (status) {
954 		/*txn interrupt*/
955 		i = get_ch_index(&status, mid->chan_base);
956 		if (i < 0) {
957 			pr_err("ERR_MDMA:Invalid ch index %x\n", i);
958 			return;
959 		}
960 		midc = &mid->ch[i];
961 		if (midc == NULL) {
962 			pr_err("ERR_MDMA:Null param midc\n");
963 			return;
964 		}
965 		pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
966 				status, midc->ch_id, i);
967 		midc->raw_tfr = raw_tfr;
968 		midc->raw_block = raw_block;
969 		spin_lock_bh(&midc->lock);
970 		/*clearing this interrupts first*/
971 		iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_TFR);
972 		if (raw_block) {
973 			iowrite32((1 << midc->ch_id),
974 				mid->dma_base + CLEAR_BLOCK);
975 		}
976 		midc_scan_descriptors(mid, midc);
977 		pr_debug("MDMA:Scan of desc... complete, unmasking\n");
978 		iowrite32(UNMASK_INTR_REG(midc->ch_id),
979 				mid->dma_base + MASK_TFR);
980 		if (raw_block) {
981 			iowrite32(UNMASK_INTR_REG(midc->ch_id),
982 				mid->dma_base + MASK_BLOCK);
983 		}
984 		spin_unlock_bh(&midc->lock);
985 	}
986 
987 	status = ioread32(mid->dma_base + RAW_ERR);
988 	status &= mid->intr_mask;
989 	while (status) {
990 		/*err interrupt*/
991 		i = get_ch_index(&status, mid->chan_base);
992 		if (i < 0) {
993 			pr_err("ERR_MDMA:Invalid ch index %x\n", i);
994 			return;
995 		}
996 		midc = &mid->ch[i];
997 		if (midc == NULL) {
998 			pr_err("ERR_MDMA:Null param midc\n");
999 			return;
1000 		}
1001 		pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
1002 				status, midc->ch_id, i);
1003 
1004 		iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_ERR);
1005 		spin_lock_bh(&midc->lock);
1006 		midc_handle_error(mid, midc);
1007 		iowrite32(UNMASK_INTR_REG(midc->ch_id),
1008 				mid->dma_base + MASK_ERR);
1009 		spin_unlock_bh(&midc->lock);
1010 	}
1011 	pr_debug("MDMA:Exiting takslet...\n");
1012 	return;
1013 }
1014 
dma_tasklet1(unsigned long data)1015 static void dma_tasklet1(unsigned long data)
1016 {
1017 	pr_debug("MDMA:in takslet1...\n");
1018 	return dma_tasklet(data);
1019 }
1020 
dma_tasklet2(unsigned long data)1021 static void dma_tasklet2(unsigned long data)
1022 {
1023 	pr_debug("MDMA:in takslet2...\n");
1024 	return dma_tasklet(data);
1025 }
1026 
1027 /**
1028  * intel_mid_dma_interrupt -	DMA ISR
1029  * @irq: IRQ where interrupt occurred
1030  * @data: ISR cllback data (the controller structure)
1031  *
1032  * See if this is our interrupt if so then schedule the tasklet
1033  * otherwise ignore
1034  */
intel_mid_dma_interrupt(int irq,void * data)1035 static irqreturn_t intel_mid_dma_interrupt(int irq, void *data)
1036 {
1037 	struct middma_device *mid = data;
1038 	u32 tfr_status, err_status;
1039 	int call_tasklet = 0;
1040 
1041 	tfr_status = ioread32(mid->dma_base + RAW_TFR);
1042 	err_status = ioread32(mid->dma_base + RAW_ERR);
1043 	if (!tfr_status && !err_status)
1044 		return IRQ_NONE;
1045 
1046 	/*DMA Interrupt*/
1047 	pr_debug("MDMA:Got an interrupt on irq %d\n", irq);
1048 	pr_debug("MDMA: Status %x, Mask %x\n", tfr_status, mid->intr_mask);
1049 	tfr_status &= mid->intr_mask;
1050 	if (tfr_status) {
1051 		/*need to disable intr*/
1052 		iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_TFR);
1053 		iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_BLOCK);
1054 		pr_debug("MDMA: Calling tasklet %x\n", tfr_status);
1055 		call_tasklet = 1;
1056 	}
1057 	err_status &= mid->intr_mask;
1058 	if (err_status) {
1059 		iowrite32(MASK_INTR_REG(err_status), mid->dma_base + MASK_ERR);
1060 		call_tasklet = 1;
1061 	}
1062 	if (call_tasklet)
1063 		tasklet_schedule(&mid->tasklet);
1064 
1065 	return IRQ_HANDLED;
1066 }
1067 
intel_mid_dma_interrupt1(int irq,void * data)1068 static irqreturn_t intel_mid_dma_interrupt1(int irq, void *data)
1069 {
1070 	return intel_mid_dma_interrupt(irq, data);
1071 }
1072 
intel_mid_dma_interrupt2(int irq,void * data)1073 static irqreturn_t intel_mid_dma_interrupt2(int irq, void *data)
1074 {
1075 	return intel_mid_dma_interrupt(irq, data);
1076 }
1077 
1078 /**
1079  * mid_setup_dma -	Setup the DMA controller
1080  * @pdev: Controller PCI device structure
1081  *
1082  * Initialize the DMA controller, channels, registers with DMA engine,
1083  * ISR. Initialize DMA controller channels.
1084  */
mid_setup_dma(struct pci_dev * pdev)1085 static int mid_setup_dma(struct pci_dev *pdev)
1086 {
1087 	struct middma_device *dma = pci_get_drvdata(pdev);
1088 	int err, i;
1089 
1090 	/* DMA coherent memory pool for DMA descriptor allocations */
1091 	dma->dma_pool = pci_pool_create("intel_mid_dma_desc_pool", pdev,
1092 					sizeof(struct intel_mid_dma_desc),
1093 					32, 0);
1094 	if (NULL == dma->dma_pool) {
1095 		pr_err("ERR_MDMA:pci_pool_create failed\n");
1096 		err = -ENOMEM;
1097 		goto err_dma_pool;
1098 	}
1099 
1100 	INIT_LIST_HEAD(&dma->common.channels);
1101 	dma->pci_id = pdev->device;
1102 	if (dma->pimr_mask) {
1103 		dma->mask_reg = ioremap(LNW_PERIPHRAL_MASK_BASE,
1104 					LNW_PERIPHRAL_MASK_SIZE);
1105 		if (dma->mask_reg == NULL) {
1106 			pr_err("ERR_MDMA:Can't map periphral intr space !!\n");
1107 			err = -ENOMEM;
1108 			goto err_ioremap;
1109 		}
1110 	} else
1111 		dma->mask_reg = NULL;
1112 
1113 	pr_debug("MDMA:Adding %d channel for this controller\n", dma->max_chan);
1114 	/*init CH structures*/
1115 	dma->intr_mask = 0;
1116 	dma->state = RUNNING;
1117 	for (i = 0; i < dma->max_chan; i++) {
1118 		struct intel_mid_dma_chan *midch = &dma->ch[i];
1119 
1120 		midch->chan.device = &dma->common;
1121 		midch->chan.cookie =  1;
1122 		midch->ch_id = dma->chan_base + i;
1123 		pr_debug("MDMA:Init CH %d, ID %d\n", i, midch->ch_id);
1124 
1125 		midch->dma_base = dma->dma_base;
1126 		midch->ch_regs = dma->dma_base + DMA_CH_SIZE * midch->ch_id;
1127 		midch->dma = dma;
1128 		dma->intr_mask |= 1 << (dma->chan_base + i);
1129 		spin_lock_init(&midch->lock);
1130 
1131 		INIT_LIST_HEAD(&midch->active_list);
1132 		INIT_LIST_HEAD(&midch->queue);
1133 		INIT_LIST_HEAD(&midch->free_list);
1134 		/*mask interrupts*/
1135 		iowrite32(MASK_INTR_REG(midch->ch_id),
1136 			dma->dma_base + MASK_BLOCK);
1137 		iowrite32(MASK_INTR_REG(midch->ch_id),
1138 			dma->dma_base + MASK_SRC_TRAN);
1139 		iowrite32(MASK_INTR_REG(midch->ch_id),
1140 			dma->dma_base + MASK_DST_TRAN);
1141 		iowrite32(MASK_INTR_REG(midch->ch_id),
1142 			dma->dma_base + MASK_ERR);
1143 		iowrite32(MASK_INTR_REG(midch->ch_id),
1144 			dma->dma_base + MASK_TFR);
1145 
1146 		disable_dma_interrupt(midch);
1147 		list_add_tail(&midch->chan.device_node, &dma->common.channels);
1148 	}
1149 	pr_debug("MDMA: Calc Mask as %x for this controller\n", dma->intr_mask);
1150 
1151 	/*init dma structure*/
1152 	dma_cap_zero(dma->common.cap_mask);
1153 	dma_cap_set(DMA_MEMCPY, dma->common.cap_mask);
1154 	dma_cap_set(DMA_SLAVE, dma->common.cap_mask);
1155 	dma_cap_set(DMA_PRIVATE, dma->common.cap_mask);
1156 	dma->common.dev = &pdev->dev;
1157 
1158 	dma->common.device_alloc_chan_resources =
1159 					intel_mid_dma_alloc_chan_resources;
1160 	dma->common.device_free_chan_resources =
1161 					intel_mid_dma_free_chan_resources;
1162 
1163 	dma->common.device_tx_status = intel_mid_dma_tx_status;
1164 	dma->common.device_prep_dma_memcpy = intel_mid_dma_prep_memcpy;
1165 	dma->common.device_issue_pending = intel_mid_dma_issue_pending;
1166 	dma->common.device_prep_slave_sg = intel_mid_dma_prep_slave_sg;
1167 	dma->common.device_control = intel_mid_dma_device_control;
1168 
1169 	/*enable dma cntrl*/
1170 	iowrite32(REG_BIT0, dma->dma_base + DMA_CFG);
1171 
1172 	/*register irq */
1173 	if (dma->pimr_mask) {
1174 		pr_debug("MDMA:Requesting irq shared for DMAC1\n");
1175 		err = request_irq(pdev->irq, intel_mid_dma_interrupt1,
1176 			IRQF_SHARED, "INTEL_MID_DMAC1", dma);
1177 		if (0 != err)
1178 			goto err_irq;
1179 	} else {
1180 		dma->intr_mask = 0x03;
1181 		pr_debug("MDMA:Requesting irq for DMAC2\n");
1182 		err = request_irq(pdev->irq, intel_mid_dma_interrupt2,
1183 			IRQF_SHARED, "INTEL_MID_DMAC2", dma);
1184 		if (0 != err)
1185 			goto err_irq;
1186 	}
1187 	/*register device w/ engine*/
1188 	err = dma_async_device_register(&dma->common);
1189 	if (0 != err) {
1190 		pr_err("ERR_MDMA:device_register failed: %d\n", err);
1191 		goto err_engine;
1192 	}
1193 	if (dma->pimr_mask) {
1194 		pr_debug("setting up tasklet1 for DMAC1\n");
1195 		tasklet_init(&dma->tasklet, dma_tasklet1, (unsigned long)dma);
1196 	} else {
1197 		pr_debug("setting up tasklet2 for DMAC2\n");
1198 		tasklet_init(&dma->tasklet, dma_tasklet2, (unsigned long)dma);
1199 	}
1200 	return 0;
1201 
1202 err_engine:
1203 	free_irq(pdev->irq, dma);
1204 err_irq:
1205 	if (dma->mask_reg)
1206 		iounmap(dma->mask_reg);
1207 err_ioremap:
1208 	pci_pool_destroy(dma->dma_pool);
1209 err_dma_pool:
1210 	pr_err("ERR_MDMA:setup_dma failed: %d\n", err);
1211 	return err;
1212 
1213 }
1214 
1215 /**
1216  * middma_shutdown -	Shutdown the DMA controller
1217  * @pdev: Controller PCI device structure
1218  *
1219  * Called by remove
1220  * Unregister DMa controller, clear all structures and free interrupt
1221  */
middma_shutdown(struct pci_dev * pdev)1222 static void middma_shutdown(struct pci_dev *pdev)
1223 {
1224 	struct middma_device *device = pci_get_drvdata(pdev);
1225 
1226 	dma_async_device_unregister(&device->common);
1227 	pci_pool_destroy(device->dma_pool);
1228 	if (device->mask_reg)
1229 		iounmap(device->mask_reg);
1230 	if (device->dma_base)
1231 		iounmap(device->dma_base);
1232 	free_irq(pdev->irq, device);
1233 	return;
1234 }
1235 
1236 /**
1237  * intel_mid_dma_probe -	PCI Probe
1238  * @pdev: Controller PCI device structure
1239  * @id: pci device id structure
1240  *
1241  * Initialize the PCI device, map BARs, query driver data.
1242  * Call setup_dma to complete contoller and chan initilzation
1243  */
intel_mid_dma_probe(struct pci_dev * pdev,const struct pci_device_id * id)1244 static int __devinit intel_mid_dma_probe(struct pci_dev *pdev,
1245 					const struct pci_device_id *id)
1246 {
1247 	struct middma_device *device;
1248 	u32 base_addr, bar_size;
1249 	struct intel_mid_dma_probe_info *info;
1250 	int err;
1251 
1252 	pr_debug("MDMA: probe for %x\n", pdev->device);
1253 	info = (void *)id->driver_data;
1254 	pr_debug("MDMA: CH %d, base %d, block len %d, Periphral mask %x\n",
1255 				info->max_chan, info->ch_base,
1256 				info->block_size, info->pimr_mask);
1257 
1258 	err = pci_enable_device(pdev);
1259 	if (err)
1260 		goto err_enable_device;
1261 
1262 	err = pci_request_regions(pdev, "intel_mid_dmac");
1263 	if (err)
1264 		goto err_request_regions;
1265 
1266 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1267 	if (err)
1268 		goto err_set_dma_mask;
1269 
1270 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1271 	if (err)
1272 		goto err_set_dma_mask;
1273 
1274 	device = kzalloc(sizeof(*device), GFP_KERNEL);
1275 	if (!device) {
1276 		pr_err("ERR_MDMA:kzalloc failed probe\n");
1277 		err = -ENOMEM;
1278 		goto err_kzalloc;
1279 	}
1280 	device->pdev = pci_dev_get(pdev);
1281 
1282 	base_addr = pci_resource_start(pdev, 0);
1283 	bar_size  = pci_resource_len(pdev, 0);
1284 	device->dma_base = ioremap_nocache(base_addr, DMA_REG_SIZE);
1285 	if (!device->dma_base) {
1286 		pr_err("ERR_MDMA:ioremap failed\n");
1287 		err = -ENOMEM;
1288 		goto err_ioremap;
1289 	}
1290 	pci_set_drvdata(pdev, device);
1291 	pci_set_master(pdev);
1292 	device->max_chan = info->max_chan;
1293 	device->chan_base = info->ch_base;
1294 	device->block_size = info->block_size;
1295 	device->pimr_mask = info->pimr_mask;
1296 
1297 	err = mid_setup_dma(pdev);
1298 	if (err)
1299 		goto err_dma;
1300 
1301 	pm_runtime_put_noidle(&pdev->dev);
1302 	pm_runtime_allow(&pdev->dev);
1303 	return 0;
1304 
1305 err_dma:
1306 	iounmap(device->dma_base);
1307 err_ioremap:
1308 	pci_dev_put(pdev);
1309 	kfree(device);
1310 err_kzalloc:
1311 err_set_dma_mask:
1312 	pci_release_regions(pdev);
1313 	pci_disable_device(pdev);
1314 err_request_regions:
1315 err_enable_device:
1316 	pr_err("ERR_MDMA:Probe failed %d\n", err);
1317 	return err;
1318 }
1319 
1320 /**
1321  * intel_mid_dma_remove -	PCI remove
1322  * @pdev: Controller PCI device structure
1323  *
1324  * Free up all resources and data
1325  * Call shutdown_dma to complete contoller and chan cleanup
1326  */
intel_mid_dma_remove(struct pci_dev * pdev)1327 static void __devexit intel_mid_dma_remove(struct pci_dev *pdev)
1328 {
1329 	struct middma_device *device = pci_get_drvdata(pdev);
1330 
1331 	pm_runtime_get_noresume(&pdev->dev);
1332 	pm_runtime_forbid(&pdev->dev);
1333 	middma_shutdown(pdev);
1334 	pci_dev_put(pdev);
1335 	kfree(device);
1336 	pci_release_regions(pdev);
1337 	pci_disable_device(pdev);
1338 }
1339 
1340 /* Power Management */
1341 /*
1342 * dma_suspend - PCI suspend function
1343 *
1344 * @pci: PCI device structure
1345 * @state: PM message
1346 *
1347 * This function is called by OS when a power event occurs
1348 */
dma_suspend(struct device * dev)1349 static int dma_suspend(struct device *dev)
1350 {
1351 	struct pci_dev *pci = to_pci_dev(dev);
1352 	int i;
1353 	struct middma_device *device = pci_get_drvdata(pci);
1354 	pr_debug("MDMA: dma_suspend called\n");
1355 
1356 	for (i = 0; i < device->max_chan; i++) {
1357 		if (device->ch[i].in_use)
1358 			return -EAGAIN;
1359 	}
1360 	dmac1_mask_periphral_intr(device);
1361 	device->state = SUSPENDED;
1362 	pci_save_state(pci);
1363 	pci_disable_device(pci);
1364 	pci_set_power_state(pci, PCI_D3hot);
1365 	return 0;
1366 }
1367 
1368 /**
1369 * dma_resume - PCI resume function
1370 *
1371 * @pci:	PCI device structure
1372 *
1373 * This function is called by OS when a power event occurs
1374 */
dma_resume(struct device * dev)1375 int dma_resume(struct device *dev)
1376 {
1377 	struct pci_dev *pci = to_pci_dev(dev);
1378 	int ret;
1379 	struct middma_device *device = pci_get_drvdata(pci);
1380 
1381 	pr_debug("MDMA: dma_resume called\n");
1382 	pci_set_power_state(pci, PCI_D0);
1383 	pci_restore_state(pci);
1384 	ret = pci_enable_device(pci);
1385 	if (ret) {
1386 		pr_err("MDMA: device can't be enabled for %x\n", pci->device);
1387 		return ret;
1388 	}
1389 	device->state = RUNNING;
1390 	iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
1391 	return 0;
1392 }
1393 
dma_runtime_suspend(struct device * dev)1394 static int dma_runtime_suspend(struct device *dev)
1395 {
1396 	struct pci_dev *pci_dev = to_pci_dev(dev);
1397 	struct middma_device *device = pci_get_drvdata(pci_dev);
1398 
1399 	device->state = SUSPENDED;
1400 	return 0;
1401 }
1402 
dma_runtime_resume(struct device * dev)1403 static int dma_runtime_resume(struct device *dev)
1404 {
1405 	struct pci_dev *pci_dev = to_pci_dev(dev);
1406 	struct middma_device *device = pci_get_drvdata(pci_dev);
1407 
1408 	device->state = RUNNING;
1409 	iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
1410 	return 0;
1411 }
1412 
dma_runtime_idle(struct device * dev)1413 static int dma_runtime_idle(struct device *dev)
1414 {
1415 	struct pci_dev *pdev = to_pci_dev(dev);
1416 	struct middma_device *device = pci_get_drvdata(pdev);
1417 	int i;
1418 
1419 	for (i = 0; i < device->max_chan; i++) {
1420 		if (device->ch[i].in_use)
1421 			return -EAGAIN;
1422 	}
1423 
1424 	return pm_schedule_suspend(dev, 0);
1425 }
1426 
1427 /******************************************************************************
1428 * PCI stuff
1429 */
1430 static struct pci_device_id intel_mid_dma_ids[] = {
1431 	{ PCI_VDEVICE(INTEL, INTEL_MID_DMAC1_ID),	INFO(2, 6, 4095, 0x200020)},
1432 	{ PCI_VDEVICE(INTEL, INTEL_MID_DMAC2_ID),	INFO(2, 0, 2047, 0)},
1433 	{ PCI_VDEVICE(INTEL, INTEL_MID_GP_DMAC2_ID),	INFO(2, 0, 2047, 0)},
1434 	{ PCI_VDEVICE(INTEL, INTEL_MFLD_DMAC1_ID),	INFO(4, 0, 4095, 0x400040)},
1435 	{ 0, }
1436 };
1437 MODULE_DEVICE_TABLE(pci, intel_mid_dma_ids);
1438 
1439 static const struct dev_pm_ops intel_mid_dma_pm = {
1440 	.runtime_suspend = dma_runtime_suspend,
1441 	.runtime_resume = dma_runtime_resume,
1442 	.runtime_idle = dma_runtime_idle,
1443 	.suspend = dma_suspend,
1444 	.resume = dma_resume,
1445 };
1446 
1447 static struct pci_driver intel_mid_dma_pci_driver = {
1448 	.name		=	"Intel MID DMA",
1449 	.id_table	=	intel_mid_dma_ids,
1450 	.probe		=	intel_mid_dma_probe,
1451 	.remove		=	__devexit_p(intel_mid_dma_remove),
1452 #ifdef CONFIG_PM
1453 	.driver = {
1454 		.pm = &intel_mid_dma_pm,
1455 	},
1456 #endif
1457 };
1458 
intel_mid_dma_init(void)1459 static int __init intel_mid_dma_init(void)
1460 {
1461 	pr_debug("INFO_MDMA: LNW DMA Driver Version %s\n",
1462 			INTEL_MID_DMA_DRIVER_VERSION);
1463 	return pci_register_driver(&intel_mid_dma_pci_driver);
1464 }
1465 fs_initcall(intel_mid_dma_init);
1466 
intel_mid_dma_exit(void)1467 static void __exit intel_mid_dma_exit(void)
1468 {
1469 	pci_unregister_driver(&intel_mid_dma_pci_driver);
1470 }
1471 module_exit(intel_mid_dma_exit);
1472 
1473 MODULE_AUTHOR("Vinod Koul <vinod.koul@intel.com>");
1474 MODULE_DESCRIPTION("Intel (R) MID DMAC Driver");
1475 MODULE_LICENSE("GPL v2");
1476 MODULE_VERSION(INTEL_MID_DMA_DRIVER_VERSION);
1477