1 /*
2  * Copyright (c) 2010-2011 Picochip Ltd., Jamie Iles
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
17  */
18 #include <crypto/aead.h>
19 #include <crypto/aes.h>
20 #include <crypto/algapi.h>
21 #include <crypto/authenc.h>
22 #include <crypto/des.h>
23 #include <crypto/md5.h>
24 #include <crypto/sha.h>
25 #include <crypto/internal/skcipher.h>
26 #include <linux/clk.h>
27 #include <linux/crypto.h>
28 #include <linux/delay.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/dmapool.h>
31 #include <linux/err.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/io.h>
35 #include <linux/list.h>
36 #include <linux/module.h>
37 #include <linux/of.h>
38 #include <linux/platform_device.h>
39 #include <linux/pm.h>
40 #include <linux/rtnetlink.h>
41 #include <linux/scatterlist.h>
42 #include <linux/sched.h>
43 #include <linux/slab.h>
44 #include <linux/timer.h>
45 
46 #include "picoxcell_crypto_regs.h"
47 
48 /*
49  * The threshold for the number of entries in the CMD FIFO available before
50  * the CMD0_CNT interrupt is raised. Increasing this value will reduce the
51  * number of interrupts raised to the CPU.
52  */
53 #define CMD0_IRQ_THRESHOLD   1
54 
55 /*
56  * The timeout period (in jiffies) for a PDU. When the the number of PDUs in
57  * flight is greater than the STAT_IRQ_THRESHOLD or 0 the timer is disabled.
58  * When there are packets in flight but lower than the threshold, we enable
59  * the timer and at expiry, attempt to remove any processed packets from the
60  * queue and if there are still packets left, schedule the timer again.
61  */
62 #define PACKET_TIMEOUT	    1
63 
64 /* The priority to register each algorithm with. */
65 #define SPACC_CRYPTO_ALG_PRIORITY	10000
66 
67 #define SPACC_CRYPTO_KASUMI_F8_KEY_LEN	16
68 #define SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ 64
69 #define SPACC_CRYPTO_IPSEC_HASH_PG_SZ	64
70 #define SPACC_CRYPTO_IPSEC_MAX_CTXS	32
71 #define SPACC_CRYPTO_IPSEC_FIFO_SZ	32
72 #define SPACC_CRYPTO_L2_CIPHER_PG_SZ	64
73 #define SPACC_CRYPTO_L2_HASH_PG_SZ	64
74 #define SPACC_CRYPTO_L2_MAX_CTXS	128
75 #define SPACC_CRYPTO_L2_FIFO_SZ		128
76 
77 #define MAX_DDT_LEN			16
78 
79 /* DDT format. This must match the hardware DDT format exactly. */
80 struct spacc_ddt {
81 	dma_addr_t	p;
82 	u32		len;
83 };
84 
85 /*
86  * Asynchronous crypto request structure.
87  *
88  * This structure defines a request that is either queued for processing or
89  * being processed.
90  */
91 struct spacc_req {
92 	struct list_head		list;
93 	struct spacc_engine		*engine;
94 	struct crypto_async_request	*req;
95 	int				result;
96 	bool				is_encrypt;
97 	unsigned			ctx_id;
98 	dma_addr_t			src_addr, dst_addr;
99 	struct spacc_ddt		*src_ddt, *dst_ddt;
100 	void				(*complete)(struct spacc_req *req);
101 
102 	/* AEAD specific bits. */
103 	u8				*giv;
104 	size_t				giv_len;
105 	dma_addr_t			giv_pa;
106 };
107 
108 struct spacc_engine {
109 	void __iomem			*regs;
110 	struct list_head		pending;
111 	int				next_ctx;
112 	spinlock_t			hw_lock;
113 	int				in_flight;
114 	struct list_head		completed;
115 	struct list_head		in_progress;
116 	struct tasklet_struct		complete;
117 	unsigned long			fifo_sz;
118 	void __iomem			*cipher_ctx_base;
119 	void __iomem			*hash_key_base;
120 	struct spacc_alg		*algs;
121 	unsigned			num_algs;
122 	struct list_head		registered_algs;
123 	size_t				cipher_pg_sz;
124 	size_t				hash_pg_sz;
125 	const char			*name;
126 	struct clk			*clk;
127 	struct device			*dev;
128 	unsigned			max_ctxs;
129 	struct timer_list		packet_timeout;
130 	unsigned			stat_irq_thresh;
131 	struct dma_pool			*req_pool;
132 };
133 
134 /* Algorithm type mask. */
135 #define SPACC_CRYPTO_ALG_MASK		0x7
136 
137 /* SPACC definition of a crypto algorithm. */
138 struct spacc_alg {
139 	unsigned long			ctrl_default;
140 	unsigned long			type;
141 	struct crypto_alg		alg;
142 	struct spacc_engine		*engine;
143 	struct list_head		entry;
144 	int				key_offs;
145 	int				iv_offs;
146 };
147 
148 /* Generic context structure for any algorithm type. */
149 struct spacc_generic_ctx {
150 	struct spacc_engine		*engine;
151 	int				flags;
152 	int				key_offs;
153 	int				iv_offs;
154 };
155 
156 /* Block cipher context. */
157 struct spacc_ablk_ctx {
158 	struct spacc_generic_ctx	generic;
159 	u8				key[AES_MAX_KEY_SIZE];
160 	u8				key_len;
161 	/*
162 	 * The fallback cipher. If the operation can't be done in hardware,
163 	 * fallback to a software version.
164 	 */
165 	struct crypto_ablkcipher	*sw_cipher;
166 };
167 
168 /* AEAD cipher context. */
169 struct spacc_aead_ctx {
170 	struct spacc_generic_ctx	generic;
171 	u8				cipher_key[AES_MAX_KEY_SIZE];
172 	u8				hash_ctx[SPACC_CRYPTO_IPSEC_HASH_PG_SZ];
173 	u8				cipher_key_len;
174 	u8				hash_key_len;
175 	struct crypto_aead		*sw_cipher;
176 	size_t				auth_size;
177 	u8				salt[AES_BLOCK_SIZE];
178 };
179 
180 static int spacc_ablk_submit(struct spacc_req *req);
181 
to_spacc_alg(struct crypto_alg * alg)182 static inline struct spacc_alg *to_spacc_alg(struct crypto_alg *alg)
183 {
184 	return alg ? container_of(alg, struct spacc_alg, alg) : NULL;
185 }
186 
spacc_fifo_cmd_full(struct spacc_engine * engine)187 static inline int spacc_fifo_cmd_full(struct spacc_engine *engine)
188 {
189 	u32 fifo_stat = readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET);
190 
191 	return fifo_stat & SPA_FIFO_CMD_FULL;
192 }
193 
194 /*
195  * Given a cipher context, and a context number, get the base address of the
196  * context page.
197  *
198  * Returns the address of the context page where the key/context may
199  * be written.
200  */
spacc_ctx_page_addr(struct spacc_generic_ctx * ctx,unsigned indx,bool is_cipher_ctx)201 static inline void __iomem *spacc_ctx_page_addr(struct spacc_generic_ctx *ctx,
202 						unsigned indx,
203 						bool is_cipher_ctx)
204 {
205 	return is_cipher_ctx ? ctx->engine->cipher_ctx_base +
206 			(indx * ctx->engine->cipher_pg_sz) :
207 		ctx->engine->hash_key_base + (indx * ctx->engine->hash_pg_sz);
208 }
209 
210 /* The context pages can only be written with 32-bit accesses. */
memcpy_toio32(u32 __iomem * dst,const void * src,unsigned count)211 static inline void memcpy_toio32(u32 __iomem *dst, const void *src,
212 				 unsigned count)
213 {
214 	const u32 *src32 = (const u32 *) src;
215 
216 	while (count--)
217 		writel(*src32++, dst++);
218 }
219 
spacc_cipher_write_ctx(struct spacc_generic_ctx * ctx,void __iomem * page_addr,const u8 * key,size_t key_len,const u8 * iv,size_t iv_len)220 static void spacc_cipher_write_ctx(struct spacc_generic_ctx *ctx,
221 				   void __iomem *page_addr, const u8 *key,
222 				   size_t key_len, const u8 *iv, size_t iv_len)
223 {
224 	void __iomem *key_ptr = page_addr + ctx->key_offs;
225 	void __iomem *iv_ptr = page_addr + ctx->iv_offs;
226 
227 	memcpy_toio32(key_ptr, key, key_len / 4);
228 	memcpy_toio32(iv_ptr, iv, iv_len / 4);
229 }
230 
231 /*
232  * Load a context into the engines context memory.
233  *
234  * Returns the index of the context page where the context was loaded.
235  */
spacc_load_ctx(struct spacc_generic_ctx * ctx,const u8 * ciph_key,size_t ciph_len,const u8 * iv,size_t ivlen,const u8 * hash_key,size_t hash_len)236 static unsigned spacc_load_ctx(struct spacc_generic_ctx *ctx,
237 			       const u8 *ciph_key, size_t ciph_len,
238 			       const u8 *iv, size_t ivlen, const u8 *hash_key,
239 			       size_t hash_len)
240 {
241 	unsigned indx = ctx->engine->next_ctx++;
242 	void __iomem *ciph_page_addr, *hash_page_addr;
243 
244 	ciph_page_addr = spacc_ctx_page_addr(ctx, indx, 1);
245 	hash_page_addr = spacc_ctx_page_addr(ctx, indx, 0);
246 
247 	ctx->engine->next_ctx &= ctx->engine->fifo_sz - 1;
248 	spacc_cipher_write_ctx(ctx, ciph_page_addr, ciph_key, ciph_len, iv,
249 			       ivlen);
250 	writel(ciph_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET) |
251 	       (1 << SPA_KEY_SZ_CIPHER_OFFSET),
252 	       ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
253 
254 	if (hash_key) {
255 		memcpy_toio32(hash_page_addr, hash_key, hash_len / 4);
256 		writel(hash_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET),
257 		       ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
258 	}
259 
260 	return indx;
261 }
262 
263 /* Count the number of scatterlist entries in a scatterlist. */
sg_count(struct scatterlist * sg_list,int nbytes)264 static int sg_count(struct scatterlist *sg_list, int nbytes)
265 {
266 	struct scatterlist *sg = sg_list;
267 	int sg_nents = 0;
268 
269 	while (nbytes > 0) {
270 		++sg_nents;
271 		nbytes -= sg->length;
272 		sg = sg_next(sg);
273 	}
274 
275 	return sg_nents;
276 }
277 
ddt_set(struct spacc_ddt * ddt,dma_addr_t phys,size_t len)278 static inline void ddt_set(struct spacc_ddt *ddt, dma_addr_t phys, size_t len)
279 {
280 	ddt->p = phys;
281 	ddt->len = len;
282 }
283 
284 /*
285  * Take a crypto request and scatterlists for the data and turn them into DDTs
286  * for passing to the crypto engines. This also DMA maps the data so that the
287  * crypto engines can DMA to/from them.
288  */
spacc_sg_to_ddt(struct spacc_engine * engine,struct scatterlist * payload,unsigned nbytes,enum dma_data_direction dir,dma_addr_t * ddt_phys)289 static struct spacc_ddt *spacc_sg_to_ddt(struct spacc_engine *engine,
290 					 struct scatterlist *payload,
291 					 unsigned nbytes,
292 					 enum dma_data_direction dir,
293 					 dma_addr_t *ddt_phys)
294 {
295 	unsigned nents, mapped_ents;
296 	struct scatterlist *cur;
297 	struct spacc_ddt *ddt;
298 	int i;
299 
300 	nents = sg_count(payload, nbytes);
301 	mapped_ents = dma_map_sg(engine->dev, payload, nents, dir);
302 
303 	if (mapped_ents + 1 > MAX_DDT_LEN)
304 		goto out;
305 
306 	ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, ddt_phys);
307 	if (!ddt)
308 		goto out;
309 
310 	for_each_sg(payload, cur, mapped_ents, i)
311 		ddt_set(&ddt[i], sg_dma_address(cur), sg_dma_len(cur));
312 	ddt_set(&ddt[mapped_ents], 0, 0);
313 
314 	return ddt;
315 
316 out:
317 	dma_unmap_sg(engine->dev, payload, nents, dir);
318 	return NULL;
319 }
320 
spacc_aead_make_ddts(struct spacc_req * req,u8 * giv)321 static int spacc_aead_make_ddts(struct spacc_req *req, u8 *giv)
322 {
323 	struct aead_request *areq = container_of(req->req, struct aead_request,
324 						 base);
325 	struct spacc_engine *engine = req->engine;
326 	struct spacc_ddt *src_ddt, *dst_ddt;
327 	unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(areq));
328 	unsigned nents = sg_count(areq->src, areq->cryptlen);
329 	dma_addr_t iv_addr;
330 	struct scatterlist *cur;
331 	int i, dst_ents, src_ents, assoc_ents;
332 	u8 *iv = giv ? giv : areq->iv;
333 
334 	src_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->src_addr);
335 	if (!src_ddt)
336 		return -ENOMEM;
337 
338 	dst_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->dst_addr);
339 	if (!dst_ddt) {
340 		dma_pool_free(engine->req_pool, src_ddt, req->src_addr);
341 		return -ENOMEM;
342 	}
343 
344 	req->src_ddt = src_ddt;
345 	req->dst_ddt = dst_ddt;
346 
347 	assoc_ents = dma_map_sg(engine->dev, areq->assoc,
348 		sg_count(areq->assoc, areq->assoclen), DMA_TO_DEVICE);
349 	if (areq->src != areq->dst) {
350 		src_ents = dma_map_sg(engine->dev, areq->src, nents,
351 				      DMA_TO_DEVICE);
352 		dst_ents = dma_map_sg(engine->dev, areq->dst, nents,
353 				      DMA_FROM_DEVICE);
354 	} else {
355 		src_ents = dma_map_sg(engine->dev, areq->src, nents,
356 				      DMA_BIDIRECTIONAL);
357 		dst_ents = 0;
358 	}
359 
360 	/*
361 	 * Map the IV/GIV. For the GIV it needs to be bidirectional as it is
362 	 * formed by the crypto block and sent as the ESP IV for IPSEC.
363 	 */
364 	iv_addr = dma_map_single(engine->dev, iv, ivsize,
365 				 giv ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
366 	req->giv_pa = iv_addr;
367 
368 	/*
369 	 * Map the associated data. For decryption we don't copy the
370 	 * associated data.
371 	 */
372 	for_each_sg(areq->assoc, cur, assoc_ents, i) {
373 		ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur));
374 		if (req->is_encrypt)
375 			ddt_set(dst_ddt++, sg_dma_address(cur),
376 				sg_dma_len(cur));
377 	}
378 	ddt_set(src_ddt++, iv_addr, ivsize);
379 
380 	if (giv || req->is_encrypt)
381 		ddt_set(dst_ddt++, iv_addr, ivsize);
382 
383 	/*
384 	 * Now map in the payload for the source and destination and terminate
385 	 * with the NULL pointers.
386 	 */
387 	for_each_sg(areq->src, cur, src_ents, i) {
388 		ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur));
389 		if (areq->src == areq->dst)
390 			ddt_set(dst_ddt++, sg_dma_address(cur),
391 				sg_dma_len(cur));
392 	}
393 
394 	for_each_sg(areq->dst, cur, dst_ents, i)
395 		ddt_set(dst_ddt++, sg_dma_address(cur),
396 			sg_dma_len(cur));
397 
398 	ddt_set(src_ddt, 0, 0);
399 	ddt_set(dst_ddt, 0, 0);
400 
401 	return 0;
402 }
403 
spacc_aead_free_ddts(struct spacc_req * req)404 static void spacc_aead_free_ddts(struct spacc_req *req)
405 {
406 	struct aead_request *areq = container_of(req->req, struct aead_request,
407 						 base);
408 	struct spacc_alg *alg = to_spacc_alg(req->req->tfm->__crt_alg);
409 	struct spacc_ablk_ctx *aead_ctx = crypto_tfm_ctx(req->req->tfm);
410 	struct spacc_engine *engine = aead_ctx->generic.engine;
411 	unsigned ivsize = alg->alg.cra_aead.ivsize;
412 	unsigned nents = sg_count(areq->src, areq->cryptlen);
413 
414 	if (areq->src != areq->dst) {
415 		dma_unmap_sg(engine->dev, areq->src, nents, DMA_TO_DEVICE);
416 		dma_unmap_sg(engine->dev, areq->dst,
417 			     sg_count(areq->dst, areq->cryptlen),
418 			     DMA_FROM_DEVICE);
419 	} else
420 		dma_unmap_sg(engine->dev, areq->src, nents, DMA_BIDIRECTIONAL);
421 
422 	dma_unmap_sg(engine->dev, areq->assoc,
423 		     sg_count(areq->assoc, areq->assoclen), DMA_TO_DEVICE);
424 
425 	dma_unmap_single(engine->dev, req->giv_pa, ivsize, DMA_BIDIRECTIONAL);
426 
427 	dma_pool_free(engine->req_pool, req->src_ddt, req->src_addr);
428 	dma_pool_free(engine->req_pool, req->dst_ddt, req->dst_addr);
429 }
430 
spacc_free_ddt(struct spacc_req * req,struct spacc_ddt * ddt,dma_addr_t ddt_addr,struct scatterlist * payload,unsigned nbytes,enum dma_data_direction dir)431 static void spacc_free_ddt(struct spacc_req *req, struct spacc_ddt *ddt,
432 			   dma_addr_t ddt_addr, struct scatterlist *payload,
433 			   unsigned nbytes, enum dma_data_direction dir)
434 {
435 	unsigned nents = sg_count(payload, nbytes);
436 
437 	dma_unmap_sg(req->engine->dev, payload, nents, dir);
438 	dma_pool_free(req->engine->req_pool, ddt, ddt_addr);
439 }
440 
441 /*
442  * Set key for a DES operation in an AEAD cipher. This also performs weak key
443  * checking if required.
444  */
spacc_aead_des_setkey(struct crypto_aead * aead,const u8 * key,unsigned int len)445 static int spacc_aead_des_setkey(struct crypto_aead *aead, const u8 *key,
446 				 unsigned int len)
447 {
448 	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
449 	struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
450 	u32 tmp[DES_EXPKEY_WORDS];
451 
452 	if (unlikely(!des_ekey(tmp, key)) &&
453 	    (crypto_aead_get_flags(aead)) & CRYPTO_TFM_REQ_WEAK_KEY) {
454 		tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
455 		return -EINVAL;
456 	}
457 
458 	memcpy(ctx->cipher_key, key, len);
459 	ctx->cipher_key_len = len;
460 
461 	return 0;
462 }
463 
464 /* Set the key for the AES block cipher component of the AEAD transform. */
spacc_aead_aes_setkey(struct crypto_aead * aead,const u8 * key,unsigned int len)465 static int spacc_aead_aes_setkey(struct crypto_aead *aead, const u8 *key,
466 				 unsigned int len)
467 {
468 	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
469 	struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
470 
471 	/*
472 	 * IPSec engine only supports 128 and 256 bit AES keys. If we get a
473 	 * request for any other size (192 bits) then we need to do a software
474 	 * fallback.
475 	 */
476 	if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256) {
477 		/*
478 		 * Set the fallback transform to use the same request flags as
479 		 * the hardware transform.
480 		 */
481 		ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
482 		ctx->sw_cipher->base.crt_flags |=
483 			tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
484 		return crypto_aead_setkey(ctx->sw_cipher, key, len);
485 	}
486 
487 	memcpy(ctx->cipher_key, key, len);
488 	ctx->cipher_key_len = len;
489 
490 	return 0;
491 }
492 
spacc_aead_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)493 static int spacc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
494 			     unsigned int keylen)
495 {
496 	struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
497 	struct spacc_alg *alg = to_spacc_alg(tfm->base.__crt_alg);
498 	struct rtattr *rta = (void *)key;
499 	struct crypto_authenc_key_param *param;
500 	unsigned int authkeylen, enckeylen;
501 	int err = -EINVAL;
502 
503 	if (!RTA_OK(rta, keylen))
504 		goto badkey;
505 
506 	if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
507 		goto badkey;
508 
509 	if (RTA_PAYLOAD(rta) < sizeof(*param))
510 		goto badkey;
511 
512 	param = RTA_DATA(rta);
513 	enckeylen = be32_to_cpu(param->enckeylen);
514 
515 	key += RTA_ALIGN(rta->rta_len);
516 	keylen -= RTA_ALIGN(rta->rta_len);
517 
518 	if (keylen < enckeylen)
519 		goto badkey;
520 
521 	authkeylen = keylen - enckeylen;
522 
523 	if (enckeylen > AES_MAX_KEY_SIZE)
524 		goto badkey;
525 
526 	if ((alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
527 	    SPA_CTRL_CIPH_ALG_AES)
528 		err = spacc_aead_aes_setkey(tfm, key + authkeylen, enckeylen);
529 	else
530 		err = spacc_aead_des_setkey(tfm, key + authkeylen, enckeylen);
531 
532 	if (err)
533 		goto badkey;
534 
535 	memcpy(ctx->hash_ctx, key, authkeylen);
536 	ctx->hash_key_len = authkeylen;
537 
538 	return 0;
539 
540 badkey:
541 	crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
542 	return -EINVAL;
543 }
544 
spacc_aead_setauthsize(struct crypto_aead * tfm,unsigned int authsize)545 static int spacc_aead_setauthsize(struct crypto_aead *tfm,
546 				  unsigned int authsize)
547 {
548 	struct spacc_aead_ctx *ctx = crypto_tfm_ctx(crypto_aead_tfm(tfm));
549 
550 	ctx->auth_size = authsize;
551 
552 	return 0;
553 }
554 
555 /*
556  * Check if an AEAD request requires a fallback operation. Some requests can't
557  * be completed in hardware because the hardware may not support certain key
558  * sizes. In these cases we need to complete the request in software.
559  */
spacc_aead_need_fallback(struct spacc_req * req)560 static int spacc_aead_need_fallback(struct spacc_req *req)
561 {
562 	struct aead_request *aead_req;
563 	struct crypto_tfm *tfm = req->req->tfm;
564 	struct crypto_alg *alg = req->req->tfm->__crt_alg;
565 	struct spacc_alg *spacc_alg = to_spacc_alg(alg);
566 	struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
567 
568 	aead_req = container_of(req->req, struct aead_request, base);
569 	/*
570 	 * If we have a non-supported key-length, then we need to do a
571 	 * software fallback.
572 	 */
573 	if ((spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
574 	    SPA_CTRL_CIPH_ALG_AES &&
575 	    ctx->cipher_key_len != AES_KEYSIZE_128 &&
576 	    ctx->cipher_key_len != AES_KEYSIZE_256)
577 		return 1;
578 
579 	return 0;
580 }
581 
spacc_aead_do_fallback(struct aead_request * req,unsigned alg_type,bool is_encrypt)582 static int spacc_aead_do_fallback(struct aead_request *req, unsigned alg_type,
583 				  bool is_encrypt)
584 {
585 	struct crypto_tfm *old_tfm = crypto_aead_tfm(crypto_aead_reqtfm(req));
586 	struct spacc_aead_ctx *ctx = crypto_tfm_ctx(old_tfm);
587 	int err;
588 
589 	if (ctx->sw_cipher) {
590 		/*
591 		 * Change the request to use the software fallback transform,
592 		 * and once the ciphering has completed, put the old transform
593 		 * back into the request.
594 		 */
595 		aead_request_set_tfm(req, ctx->sw_cipher);
596 		err = is_encrypt ? crypto_aead_encrypt(req) :
597 		    crypto_aead_decrypt(req);
598 		aead_request_set_tfm(req, __crypto_aead_cast(old_tfm));
599 	} else
600 		err = -EINVAL;
601 
602 	return err;
603 }
604 
spacc_aead_complete(struct spacc_req * req)605 static void spacc_aead_complete(struct spacc_req *req)
606 {
607 	spacc_aead_free_ddts(req);
608 	req->req->complete(req->req, req->result);
609 }
610 
spacc_aead_submit(struct spacc_req * req)611 static int spacc_aead_submit(struct spacc_req *req)
612 {
613 	struct crypto_tfm *tfm = req->req->tfm;
614 	struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
615 	struct crypto_alg *alg = req->req->tfm->__crt_alg;
616 	struct spacc_alg *spacc_alg = to_spacc_alg(alg);
617 	struct spacc_engine *engine = ctx->generic.engine;
618 	u32 ctrl, proc_len, assoc_len;
619 	struct aead_request *aead_req =
620 		container_of(req->req, struct aead_request, base);
621 
622 	req->result = -EINPROGRESS;
623 	req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->cipher_key,
624 		ctx->cipher_key_len, aead_req->iv, alg->cra_aead.ivsize,
625 		ctx->hash_ctx, ctx->hash_key_len);
626 
627 	/* Set the source and destination DDT pointers. */
628 	writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
629 	writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
630 	writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
631 
632 	assoc_len = aead_req->assoclen;
633 	proc_len = aead_req->cryptlen + assoc_len;
634 
635 	/*
636 	 * If we aren't generating an IV, then we need to include the IV in the
637 	 * associated data so that it is included in the hash.
638 	 */
639 	if (!req->giv) {
640 		assoc_len += crypto_aead_ivsize(crypto_aead_reqtfm(aead_req));
641 		proc_len += crypto_aead_ivsize(crypto_aead_reqtfm(aead_req));
642 	} else
643 		proc_len += req->giv_len;
644 
645 	/*
646 	 * If we are decrypting, we need to take the length of the ICV out of
647 	 * the processing length.
648 	 */
649 	if (!req->is_encrypt)
650 		proc_len -= ctx->auth_size;
651 
652 	writel(proc_len, engine->regs + SPA_PROC_LEN_REG_OFFSET);
653 	writel(assoc_len, engine->regs + SPA_AAD_LEN_REG_OFFSET);
654 	writel(ctx->auth_size, engine->regs + SPA_ICV_LEN_REG_OFFSET);
655 	writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
656 	writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
657 
658 	ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
659 		(1 << SPA_CTRL_ICV_APPEND);
660 	if (req->is_encrypt)
661 		ctrl |= (1 << SPA_CTRL_ENCRYPT_IDX) | (1 << SPA_CTRL_AAD_COPY);
662 	else
663 		ctrl |= (1 << SPA_CTRL_KEY_EXP);
664 
665 	mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
666 
667 	writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
668 
669 	return -EINPROGRESS;
670 }
671 
672 static int spacc_req_submit(struct spacc_req *req);
673 
spacc_push(struct spacc_engine * engine)674 static void spacc_push(struct spacc_engine *engine)
675 {
676 	struct spacc_req *req;
677 
678 	while (!list_empty(&engine->pending) &&
679 	       engine->in_flight + 1 <= engine->fifo_sz) {
680 
681 		++engine->in_flight;
682 		req = list_first_entry(&engine->pending, struct spacc_req,
683 				       list);
684 		list_move_tail(&req->list, &engine->in_progress);
685 
686 		req->result = spacc_req_submit(req);
687 	}
688 }
689 
690 /*
691  * Setup an AEAD request for processing. This will configure the engine, load
692  * the context and then start the packet processing.
693  *
694  * @giv Pointer to destination address for a generated IV. If the
695  *	request does not need to generate an IV then this should be set to NULL.
696  */
spacc_aead_setup(struct aead_request * req,u8 * giv,unsigned alg_type,bool is_encrypt)697 static int spacc_aead_setup(struct aead_request *req, u8 *giv,
698 			    unsigned alg_type, bool is_encrypt)
699 {
700 	struct crypto_alg *alg = req->base.tfm->__crt_alg;
701 	struct spacc_engine *engine = to_spacc_alg(alg)->engine;
702 	struct spacc_req *dev_req = aead_request_ctx(req);
703 	int err = -EINPROGRESS;
704 	unsigned long flags;
705 	unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
706 
707 	dev_req->giv		= giv;
708 	dev_req->giv_len	= ivsize;
709 	dev_req->req		= &req->base;
710 	dev_req->is_encrypt	= is_encrypt;
711 	dev_req->result		= -EBUSY;
712 	dev_req->engine		= engine;
713 	dev_req->complete	= spacc_aead_complete;
714 
715 	if (unlikely(spacc_aead_need_fallback(dev_req)))
716 		return spacc_aead_do_fallback(req, alg_type, is_encrypt);
717 
718 	spacc_aead_make_ddts(dev_req, dev_req->giv);
719 
720 	err = -EINPROGRESS;
721 	spin_lock_irqsave(&engine->hw_lock, flags);
722 	if (unlikely(spacc_fifo_cmd_full(engine)) ||
723 	    engine->in_flight + 1 > engine->fifo_sz) {
724 		if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
725 			err = -EBUSY;
726 			spin_unlock_irqrestore(&engine->hw_lock, flags);
727 			goto out_free_ddts;
728 		}
729 		list_add_tail(&dev_req->list, &engine->pending);
730 	} else {
731 		list_add_tail(&dev_req->list, &engine->pending);
732 		spacc_push(engine);
733 	}
734 	spin_unlock_irqrestore(&engine->hw_lock, flags);
735 
736 	goto out;
737 
738 out_free_ddts:
739 	spacc_aead_free_ddts(dev_req);
740 out:
741 	return err;
742 }
743 
spacc_aead_encrypt(struct aead_request * req)744 static int spacc_aead_encrypt(struct aead_request *req)
745 {
746 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
747 	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
748 	struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
749 
750 	return spacc_aead_setup(req, NULL, alg->type, 1);
751 }
752 
spacc_aead_givencrypt(struct aead_givcrypt_request * req)753 static int spacc_aead_givencrypt(struct aead_givcrypt_request *req)
754 {
755 	struct crypto_aead *tfm = aead_givcrypt_reqtfm(req);
756 	struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
757 	size_t ivsize = crypto_aead_ivsize(tfm);
758 	struct spacc_alg *alg = to_spacc_alg(tfm->base.__crt_alg);
759 	unsigned len;
760 	__be64 seq;
761 
762 	memcpy(req->areq.iv, ctx->salt, ivsize);
763 	len = ivsize;
764 	if (ivsize > sizeof(u64)) {
765 		memset(req->giv, 0, ivsize - sizeof(u64));
766 		len = sizeof(u64);
767 	}
768 	seq = cpu_to_be64(req->seq);
769 	memcpy(req->giv + ivsize - len, &seq, len);
770 
771 	return spacc_aead_setup(&req->areq, req->giv, alg->type, 1);
772 }
773 
spacc_aead_decrypt(struct aead_request * req)774 static int spacc_aead_decrypt(struct aead_request *req)
775 {
776 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
777 	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
778 	struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
779 
780 	return spacc_aead_setup(req, NULL, alg->type, 0);
781 }
782 
783 /*
784  * Initialise a new AEAD context. This is responsible for allocating the
785  * fallback cipher and initialising the context.
786  */
spacc_aead_cra_init(struct crypto_tfm * tfm)787 static int spacc_aead_cra_init(struct crypto_tfm *tfm)
788 {
789 	struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
790 	struct crypto_alg *alg = tfm->__crt_alg;
791 	struct spacc_alg *spacc_alg = to_spacc_alg(alg);
792 	struct spacc_engine *engine = spacc_alg->engine;
793 
794 	ctx->generic.flags = spacc_alg->type;
795 	ctx->generic.engine = engine;
796 	ctx->sw_cipher = crypto_alloc_aead(alg->cra_name, 0,
797 					   CRYPTO_ALG_ASYNC |
798 					   CRYPTO_ALG_NEED_FALLBACK);
799 	if (IS_ERR(ctx->sw_cipher)) {
800 		dev_warn(engine->dev, "failed to allocate fallback for %s\n",
801 			 alg->cra_name);
802 		ctx->sw_cipher = NULL;
803 	}
804 	ctx->generic.key_offs = spacc_alg->key_offs;
805 	ctx->generic.iv_offs = spacc_alg->iv_offs;
806 
807 	get_random_bytes(ctx->salt, sizeof(ctx->salt));
808 
809 	tfm->crt_aead.reqsize = sizeof(struct spacc_req);
810 
811 	return 0;
812 }
813 
814 /*
815  * Destructor for an AEAD context. This is called when the transform is freed
816  * and must free the fallback cipher.
817  */
spacc_aead_cra_exit(struct crypto_tfm * tfm)818 static void spacc_aead_cra_exit(struct crypto_tfm *tfm)
819 {
820 	struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
821 
822 	if (ctx->sw_cipher)
823 		crypto_free_aead(ctx->sw_cipher);
824 	ctx->sw_cipher = NULL;
825 }
826 
827 /*
828  * Set the DES key for a block cipher transform. This also performs weak key
829  * checking if the transform has requested it.
830  */
spacc_des_setkey(struct crypto_ablkcipher * cipher,const u8 * key,unsigned int len)831 static int spacc_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
832 			    unsigned int len)
833 {
834 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
835 	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
836 	u32 tmp[DES_EXPKEY_WORDS];
837 
838 	if (len > DES3_EDE_KEY_SIZE) {
839 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
840 		return -EINVAL;
841 	}
842 
843 	if (unlikely(!des_ekey(tmp, key)) &&
844 	    (crypto_ablkcipher_get_flags(cipher) & CRYPTO_TFM_REQ_WEAK_KEY)) {
845 		tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
846 		return -EINVAL;
847 	}
848 
849 	memcpy(ctx->key, key, len);
850 	ctx->key_len = len;
851 
852 	return 0;
853 }
854 
855 /*
856  * Set the key for an AES block cipher. Some key lengths are not supported in
857  * hardware so this must also check whether a fallback is needed.
858  */
spacc_aes_setkey(struct crypto_ablkcipher * cipher,const u8 * key,unsigned int len)859 static int spacc_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
860 			    unsigned int len)
861 {
862 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
863 	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
864 	int err = 0;
865 
866 	if (len > AES_MAX_KEY_SIZE) {
867 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
868 		return -EINVAL;
869 	}
870 
871 	/*
872 	 * IPSec engine only supports 128 and 256 bit AES keys. If we get a
873 	 * request for any other size (192 bits) then we need to do a software
874 	 * fallback.
875 	 */
876 	if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256 &&
877 	    ctx->sw_cipher) {
878 		/*
879 		 * Set the fallback transform to use the same request flags as
880 		 * the hardware transform.
881 		 */
882 		ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
883 		ctx->sw_cipher->base.crt_flags |=
884 			cipher->base.crt_flags & CRYPTO_TFM_REQ_MASK;
885 
886 		err = crypto_ablkcipher_setkey(ctx->sw_cipher, key, len);
887 		if (err)
888 			goto sw_setkey_failed;
889 	} else if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256 &&
890 		   !ctx->sw_cipher)
891 		err = -EINVAL;
892 
893 	memcpy(ctx->key, key, len);
894 	ctx->key_len = len;
895 
896 sw_setkey_failed:
897 	if (err && ctx->sw_cipher) {
898 		tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
899 		tfm->crt_flags |=
900 			ctx->sw_cipher->base.crt_flags & CRYPTO_TFM_RES_MASK;
901 	}
902 
903 	return err;
904 }
905 
spacc_kasumi_f8_setkey(struct crypto_ablkcipher * cipher,const u8 * key,unsigned int len)906 static int spacc_kasumi_f8_setkey(struct crypto_ablkcipher *cipher,
907 				  const u8 *key, unsigned int len)
908 {
909 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
910 	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
911 	int err = 0;
912 
913 	if (len > AES_MAX_KEY_SIZE) {
914 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
915 		err = -EINVAL;
916 		goto out;
917 	}
918 
919 	memcpy(ctx->key, key, len);
920 	ctx->key_len = len;
921 
922 out:
923 	return err;
924 }
925 
spacc_ablk_need_fallback(struct spacc_req * req)926 static int spacc_ablk_need_fallback(struct spacc_req *req)
927 {
928 	struct spacc_ablk_ctx *ctx;
929 	struct crypto_tfm *tfm = req->req->tfm;
930 	struct crypto_alg *alg = req->req->tfm->__crt_alg;
931 	struct spacc_alg *spacc_alg = to_spacc_alg(alg);
932 
933 	ctx = crypto_tfm_ctx(tfm);
934 
935 	return (spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
936 			SPA_CTRL_CIPH_ALG_AES &&
937 			ctx->key_len != AES_KEYSIZE_128 &&
938 			ctx->key_len != AES_KEYSIZE_256;
939 }
940 
spacc_ablk_complete(struct spacc_req * req)941 static void spacc_ablk_complete(struct spacc_req *req)
942 {
943 	struct ablkcipher_request *ablk_req =
944 		container_of(req->req, struct ablkcipher_request, base);
945 
946 	if (ablk_req->src != ablk_req->dst) {
947 		spacc_free_ddt(req, req->src_ddt, req->src_addr, ablk_req->src,
948 			       ablk_req->nbytes, DMA_TO_DEVICE);
949 		spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
950 			       ablk_req->nbytes, DMA_FROM_DEVICE);
951 	} else
952 		spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
953 			       ablk_req->nbytes, DMA_BIDIRECTIONAL);
954 
955 	req->req->complete(req->req, req->result);
956 }
957 
spacc_ablk_submit(struct spacc_req * req)958 static int spacc_ablk_submit(struct spacc_req *req)
959 {
960 	struct crypto_tfm *tfm = req->req->tfm;
961 	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
962 	struct ablkcipher_request *ablk_req = ablkcipher_request_cast(req->req);
963 	struct crypto_alg *alg = req->req->tfm->__crt_alg;
964 	struct spacc_alg *spacc_alg = to_spacc_alg(alg);
965 	struct spacc_engine *engine = ctx->generic.engine;
966 	u32 ctrl;
967 
968 	req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->key,
969 		ctx->key_len, ablk_req->info, alg->cra_ablkcipher.ivsize,
970 		NULL, 0);
971 
972 	writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
973 	writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
974 	writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
975 
976 	writel(ablk_req->nbytes, engine->regs + SPA_PROC_LEN_REG_OFFSET);
977 	writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
978 	writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
979 	writel(0, engine->regs + SPA_AAD_LEN_REG_OFFSET);
980 
981 	ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
982 		(req->is_encrypt ? (1 << SPA_CTRL_ENCRYPT_IDX) :
983 		 (1 << SPA_CTRL_KEY_EXP));
984 
985 	mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
986 
987 	writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
988 
989 	return -EINPROGRESS;
990 }
991 
spacc_ablk_do_fallback(struct ablkcipher_request * req,unsigned alg_type,bool is_encrypt)992 static int spacc_ablk_do_fallback(struct ablkcipher_request *req,
993 				  unsigned alg_type, bool is_encrypt)
994 {
995 	struct crypto_tfm *old_tfm =
996 	    crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req));
997 	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(old_tfm);
998 	int err;
999 
1000 	if (!ctx->sw_cipher)
1001 		return -EINVAL;
1002 
1003 	/*
1004 	 * Change the request to use the software fallback transform, and once
1005 	 * the ciphering has completed, put the old transform back into the
1006 	 * request.
1007 	 */
1008 	ablkcipher_request_set_tfm(req, ctx->sw_cipher);
1009 	err = is_encrypt ? crypto_ablkcipher_encrypt(req) :
1010 		crypto_ablkcipher_decrypt(req);
1011 	ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(old_tfm));
1012 
1013 	return err;
1014 }
1015 
spacc_ablk_setup(struct ablkcipher_request * req,unsigned alg_type,bool is_encrypt)1016 static int spacc_ablk_setup(struct ablkcipher_request *req, unsigned alg_type,
1017 			    bool is_encrypt)
1018 {
1019 	struct crypto_alg *alg = req->base.tfm->__crt_alg;
1020 	struct spacc_engine *engine = to_spacc_alg(alg)->engine;
1021 	struct spacc_req *dev_req = ablkcipher_request_ctx(req);
1022 	unsigned long flags;
1023 	int err = -ENOMEM;
1024 
1025 	dev_req->req		= &req->base;
1026 	dev_req->is_encrypt	= is_encrypt;
1027 	dev_req->engine		= engine;
1028 	dev_req->complete	= spacc_ablk_complete;
1029 	dev_req->result		= -EINPROGRESS;
1030 
1031 	if (unlikely(spacc_ablk_need_fallback(dev_req)))
1032 		return spacc_ablk_do_fallback(req, alg_type, is_encrypt);
1033 
1034 	/*
1035 	 * Create the DDT's for the engine. If we share the same source and
1036 	 * destination then we can optimize by reusing the DDT's.
1037 	 */
1038 	if (req->src != req->dst) {
1039 		dev_req->src_ddt = spacc_sg_to_ddt(engine, req->src,
1040 			req->nbytes, DMA_TO_DEVICE, &dev_req->src_addr);
1041 		if (!dev_req->src_ddt)
1042 			goto out;
1043 
1044 		dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
1045 			req->nbytes, DMA_FROM_DEVICE, &dev_req->dst_addr);
1046 		if (!dev_req->dst_ddt)
1047 			goto out_free_src;
1048 	} else {
1049 		dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
1050 			req->nbytes, DMA_BIDIRECTIONAL, &dev_req->dst_addr);
1051 		if (!dev_req->dst_ddt)
1052 			goto out;
1053 
1054 		dev_req->src_ddt = NULL;
1055 		dev_req->src_addr = dev_req->dst_addr;
1056 	}
1057 
1058 	err = -EINPROGRESS;
1059 	spin_lock_irqsave(&engine->hw_lock, flags);
1060 	/*
1061 	 * Check if the engine will accept the operation now. If it won't then
1062 	 * we either stick it on the end of a pending list if we can backlog,
1063 	 * or bailout with an error if not.
1064 	 */
1065 	if (unlikely(spacc_fifo_cmd_full(engine)) ||
1066 	    engine->in_flight + 1 > engine->fifo_sz) {
1067 		if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
1068 			err = -EBUSY;
1069 			spin_unlock_irqrestore(&engine->hw_lock, flags);
1070 			goto out_free_ddts;
1071 		}
1072 		list_add_tail(&dev_req->list, &engine->pending);
1073 	} else {
1074 		list_add_tail(&dev_req->list, &engine->pending);
1075 		spacc_push(engine);
1076 	}
1077 	spin_unlock_irqrestore(&engine->hw_lock, flags);
1078 
1079 	goto out;
1080 
1081 out_free_ddts:
1082 	spacc_free_ddt(dev_req, dev_req->dst_ddt, dev_req->dst_addr, req->dst,
1083 		       req->nbytes, req->src == req->dst ?
1084 		       DMA_BIDIRECTIONAL : DMA_FROM_DEVICE);
1085 out_free_src:
1086 	if (req->src != req->dst)
1087 		spacc_free_ddt(dev_req, dev_req->src_ddt, dev_req->src_addr,
1088 			       req->src, req->nbytes, DMA_TO_DEVICE);
1089 out:
1090 	return err;
1091 }
1092 
spacc_ablk_cra_init(struct crypto_tfm * tfm)1093 static int spacc_ablk_cra_init(struct crypto_tfm *tfm)
1094 {
1095 	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
1096 	struct crypto_alg *alg = tfm->__crt_alg;
1097 	struct spacc_alg *spacc_alg = to_spacc_alg(alg);
1098 	struct spacc_engine *engine = spacc_alg->engine;
1099 
1100 	ctx->generic.flags = spacc_alg->type;
1101 	ctx->generic.engine = engine;
1102 	if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
1103 		ctx->sw_cipher = crypto_alloc_ablkcipher(alg->cra_name, 0,
1104 				CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
1105 		if (IS_ERR(ctx->sw_cipher)) {
1106 			dev_warn(engine->dev, "failed to allocate fallback for %s\n",
1107 				 alg->cra_name);
1108 			ctx->sw_cipher = NULL;
1109 		}
1110 	}
1111 	ctx->generic.key_offs = spacc_alg->key_offs;
1112 	ctx->generic.iv_offs = spacc_alg->iv_offs;
1113 
1114 	tfm->crt_ablkcipher.reqsize = sizeof(struct spacc_req);
1115 
1116 	return 0;
1117 }
1118 
spacc_ablk_cra_exit(struct crypto_tfm * tfm)1119 static void spacc_ablk_cra_exit(struct crypto_tfm *tfm)
1120 {
1121 	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
1122 
1123 	if (ctx->sw_cipher)
1124 		crypto_free_ablkcipher(ctx->sw_cipher);
1125 	ctx->sw_cipher = NULL;
1126 }
1127 
spacc_ablk_encrypt(struct ablkcipher_request * req)1128 static int spacc_ablk_encrypt(struct ablkcipher_request *req)
1129 {
1130 	struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
1131 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1132 	struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
1133 
1134 	return spacc_ablk_setup(req, alg->type, 1);
1135 }
1136 
spacc_ablk_decrypt(struct ablkcipher_request * req)1137 static int spacc_ablk_decrypt(struct ablkcipher_request *req)
1138 {
1139 	struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
1140 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1141 	struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
1142 
1143 	return spacc_ablk_setup(req, alg->type, 0);
1144 }
1145 
spacc_fifo_stat_empty(struct spacc_engine * engine)1146 static inline int spacc_fifo_stat_empty(struct spacc_engine *engine)
1147 {
1148 	return readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET) &
1149 		SPA_FIFO_STAT_EMPTY;
1150 }
1151 
spacc_process_done(struct spacc_engine * engine)1152 static void spacc_process_done(struct spacc_engine *engine)
1153 {
1154 	struct spacc_req *req;
1155 	unsigned long flags;
1156 
1157 	spin_lock_irqsave(&engine->hw_lock, flags);
1158 
1159 	while (!spacc_fifo_stat_empty(engine)) {
1160 		req = list_first_entry(&engine->in_progress, struct spacc_req,
1161 				       list);
1162 		list_move_tail(&req->list, &engine->completed);
1163 		--engine->in_flight;
1164 
1165 		/* POP the status register. */
1166 		writel(~0, engine->regs + SPA_STAT_POP_REG_OFFSET);
1167 		req->result = (readl(engine->regs + SPA_STATUS_REG_OFFSET) &
1168 		     SPA_STATUS_RES_CODE_MASK) >> SPA_STATUS_RES_CODE_OFFSET;
1169 
1170 		/*
1171 		 * Convert the SPAcc error status into the standard POSIX error
1172 		 * codes.
1173 		 */
1174 		if (unlikely(req->result)) {
1175 			switch (req->result) {
1176 			case SPA_STATUS_ICV_FAIL:
1177 				req->result = -EBADMSG;
1178 				break;
1179 
1180 			case SPA_STATUS_MEMORY_ERROR:
1181 				dev_warn(engine->dev,
1182 					 "memory error triggered\n");
1183 				req->result = -EFAULT;
1184 				break;
1185 
1186 			case SPA_STATUS_BLOCK_ERROR:
1187 				dev_warn(engine->dev,
1188 					 "block error triggered\n");
1189 				req->result = -EIO;
1190 				break;
1191 			}
1192 		}
1193 	}
1194 
1195 	tasklet_schedule(&engine->complete);
1196 
1197 	spin_unlock_irqrestore(&engine->hw_lock, flags);
1198 }
1199 
spacc_spacc_irq(int irq,void * dev)1200 static irqreturn_t spacc_spacc_irq(int irq, void *dev)
1201 {
1202 	struct spacc_engine *engine = (struct spacc_engine *)dev;
1203 	u32 spacc_irq_stat = readl(engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1204 
1205 	writel(spacc_irq_stat, engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1206 	spacc_process_done(engine);
1207 
1208 	return IRQ_HANDLED;
1209 }
1210 
spacc_packet_timeout(unsigned long data)1211 static void spacc_packet_timeout(unsigned long data)
1212 {
1213 	struct spacc_engine *engine = (struct spacc_engine *)data;
1214 
1215 	spacc_process_done(engine);
1216 }
1217 
spacc_req_submit(struct spacc_req * req)1218 static int spacc_req_submit(struct spacc_req *req)
1219 {
1220 	struct crypto_alg *alg = req->req->tfm->__crt_alg;
1221 
1222 	if (CRYPTO_ALG_TYPE_AEAD == (CRYPTO_ALG_TYPE_MASK & alg->cra_flags))
1223 		return spacc_aead_submit(req);
1224 	else
1225 		return spacc_ablk_submit(req);
1226 }
1227 
spacc_spacc_complete(unsigned long data)1228 static void spacc_spacc_complete(unsigned long data)
1229 {
1230 	struct spacc_engine *engine = (struct spacc_engine *)data;
1231 	struct spacc_req *req, *tmp;
1232 	unsigned long flags;
1233 	LIST_HEAD(completed);
1234 
1235 	spin_lock_irqsave(&engine->hw_lock, flags);
1236 
1237 	list_splice_init(&engine->completed, &completed);
1238 	spacc_push(engine);
1239 	if (engine->in_flight)
1240 		mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
1241 
1242 	spin_unlock_irqrestore(&engine->hw_lock, flags);
1243 
1244 	list_for_each_entry_safe(req, tmp, &completed, list) {
1245 		list_del(&req->list);
1246 		req->complete(req);
1247 	}
1248 }
1249 
1250 #ifdef CONFIG_PM
spacc_suspend(struct device * dev)1251 static int spacc_suspend(struct device *dev)
1252 {
1253 	struct platform_device *pdev = to_platform_device(dev);
1254 	struct spacc_engine *engine = platform_get_drvdata(pdev);
1255 
1256 	/*
1257 	 * We only support standby mode. All we have to do is gate the clock to
1258 	 * the spacc. The hardware will preserve state until we turn it back
1259 	 * on again.
1260 	 */
1261 	clk_disable(engine->clk);
1262 
1263 	return 0;
1264 }
1265 
spacc_resume(struct device * dev)1266 static int spacc_resume(struct device *dev)
1267 {
1268 	struct platform_device *pdev = to_platform_device(dev);
1269 	struct spacc_engine *engine = platform_get_drvdata(pdev);
1270 
1271 	return clk_enable(engine->clk);
1272 }
1273 
1274 static const struct dev_pm_ops spacc_pm_ops = {
1275 	.suspend	= spacc_suspend,
1276 	.resume		= spacc_resume,
1277 };
1278 #endif /* CONFIG_PM */
1279 
spacc_dev_to_engine(struct device * dev)1280 static inline struct spacc_engine *spacc_dev_to_engine(struct device *dev)
1281 {
1282 	return dev ? platform_get_drvdata(to_platform_device(dev)) : NULL;
1283 }
1284 
spacc_stat_irq_thresh_show(struct device * dev,struct device_attribute * attr,char * buf)1285 static ssize_t spacc_stat_irq_thresh_show(struct device *dev,
1286 					  struct device_attribute *attr,
1287 					  char *buf)
1288 {
1289 	struct spacc_engine *engine = spacc_dev_to_engine(dev);
1290 
1291 	return snprintf(buf, PAGE_SIZE, "%u\n", engine->stat_irq_thresh);
1292 }
1293 
spacc_stat_irq_thresh_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1294 static ssize_t spacc_stat_irq_thresh_store(struct device *dev,
1295 					   struct device_attribute *attr,
1296 					   const char *buf, size_t len)
1297 {
1298 	struct spacc_engine *engine = spacc_dev_to_engine(dev);
1299 	unsigned long thresh;
1300 
1301 	if (strict_strtoul(buf, 0, &thresh))
1302 		return -EINVAL;
1303 
1304 	thresh = clamp(thresh, 1UL, engine->fifo_sz - 1);
1305 
1306 	engine->stat_irq_thresh = thresh;
1307 	writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1308 	       engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1309 
1310 	return len;
1311 }
1312 static DEVICE_ATTR(stat_irq_thresh, 0644, spacc_stat_irq_thresh_show,
1313 		   spacc_stat_irq_thresh_store);
1314 
1315 static struct spacc_alg ipsec_engine_algs[] = {
1316 	{
1317 		.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC,
1318 		.key_offs = 0,
1319 		.iv_offs = AES_MAX_KEY_SIZE,
1320 		.alg = {
1321 			.cra_name = "cbc(aes)",
1322 			.cra_driver_name = "cbc-aes-picoxcell",
1323 			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1324 			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1325 				     CRYPTO_ALG_ASYNC |
1326 				     CRYPTO_ALG_NEED_FALLBACK,
1327 			.cra_blocksize = AES_BLOCK_SIZE,
1328 			.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1329 			.cra_type = &crypto_ablkcipher_type,
1330 			.cra_module = THIS_MODULE,
1331 			.cra_ablkcipher = {
1332 				.setkey = spacc_aes_setkey,
1333 				.encrypt = spacc_ablk_encrypt,
1334 				.decrypt = spacc_ablk_decrypt,
1335 				.min_keysize = AES_MIN_KEY_SIZE,
1336 				.max_keysize = AES_MAX_KEY_SIZE,
1337 				.ivsize = AES_BLOCK_SIZE,
1338 			},
1339 			.cra_init = spacc_ablk_cra_init,
1340 			.cra_exit = spacc_ablk_cra_exit,
1341 		},
1342 	},
1343 	{
1344 		.key_offs = 0,
1345 		.iv_offs = AES_MAX_KEY_SIZE,
1346 		.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_ECB,
1347 		.alg = {
1348 			.cra_name = "ecb(aes)",
1349 			.cra_driver_name = "ecb-aes-picoxcell",
1350 			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1351 			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1352 				CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
1353 			.cra_blocksize = AES_BLOCK_SIZE,
1354 			.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1355 			.cra_type = &crypto_ablkcipher_type,
1356 			.cra_module = THIS_MODULE,
1357 			.cra_ablkcipher = {
1358 				.setkey = spacc_aes_setkey,
1359 				.encrypt = spacc_ablk_encrypt,
1360 				.decrypt = spacc_ablk_decrypt,
1361 				.min_keysize = AES_MIN_KEY_SIZE,
1362 				.max_keysize = AES_MAX_KEY_SIZE,
1363 			},
1364 			.cra_init = spacc_ablk_cra_init,
1365 			.cra_exit = spacc_ablk_cra_exit,
1366 		},
1367 	},
1368 	{
1369 		.key_offs = DES_BLOCK_SIZE,
1370 		.iv_offs = 0,
1371 		.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1372 		.alg = {
1373 			.cra_name = "cbc(des)",
1374 			.cra_driver_name = "cbc-des-picoxcell",
1375 			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1376 			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1377 			.cra_blocksize = DES_BLOCK_SIZE,
1378 			.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1379 			.cra_type = &crypto_ablkcipher_type,
1380 			.cra_module = THIS_MODULE,
1381 			.cra_ablkcipher = {
1382 				.setkey = spacc_des_setkey,
1383 				.encrypt = spacc_ablk_encrypt,
1384 				.decrypt = spacc_ablk_decrypt,
1385 				.min_keysize = DES_KEY_SIZE,
1386 				.max_keysize = DES_KEY_SIZE,
1387 				.ivsize = DES_BLOCK_SIZE,
1388 			},
1389 			.cra_init = spacc_ablk_cra_init,
1390 			.cra_exit = spacc_ablk_cra_exit,
1391 		},
1392 	},
1393 	{
1394 		.key_offs = DES_BLOCK_SIZE,
1395 		.iv_offs = 0,
1396 		.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1397 		.alg = {
1398 			.cra_name = "ecb(des)",
1399 			.cra_driver_name = "ecb-des-picoxcell",
1400 			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1401 			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1402 			.cra_blocksize = DES_BLOCK_SIZE,
1403 			.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1404 			.cra_type = &crypto_ablkcipher_type,
1405 			.cra_module = THIS_MODULE,
1406 			.cra_ablkcipher = {
1407 				.setkey = spacc_des_setkey,
1408 				.encrypt = spacc_ablk_encrypt,
1409 				.decrypt = spacc_ablk_decrypt,
1410 				.min_keysize = DES_KEY_SIZE,
1411 				.max_keysize = DES_KEY_SIZE,
1412 			},
1413 			.cra_init = spacc_ablk_cra_init,
1414 			.cra_exit = spacc_ablk_cra_exit,
1415 		},
1416 	},
1417 	{
1418 		.key_offs = DES_BLOCK_SIZE,
1419 		.iv_offs = 0,
1420 		.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1421 		.alg = {
1422 			.cra_name = "cbc(des3_ede)",
1423 			.cra_driver_name = "cbc-des3-ede-picoxcell",
1424 			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1425 			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1426 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1427 			.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1428 			.cra_type = &crypto_ablkcipher_type,
1429 			.cra_module = THIS_MODULE,
1430 			.cra_ablkcipher = {
1431 				.setkey = spacc_des_setkey,
1432 				.encrypt = spacc_ablk_encrypt,
1433 				.decrypt = spacc_ablk_decrypt,
1434 				.min_keysize = DES3_EDE_KEY_SIZE,
1435 				.max_keysize = DES3_EDE_KEY_SIZE,
1436 				.ivsize = DES3_EDE_BLOCK_SIZE,
1437 			},
1438 			.cra_init = spacc_ablk_cra_init,
1439 			.cra_exit = spacc_ablk_cra_exit,
1440 		},
1441 	},
1442 	{
1443 		.key_offs = DES_BLOCK_SIZE,
1444 		.iv_offs = 0,
1445 		.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1446 		.alg = {
1447 			.cra_name = "ecb(des3_ede)",
1448 			.cra_driver_name = "ecb-des3-ede-picoxcell",
1449 			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1450 			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1451 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1452 			.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1453 			.cra_type = &crypto_ablkcipher_type,
1454 			.cra_module = THIS_MODULE,
1455 			.cra_ablkcipher = {
1456 				.setkey = spacc_des_setkey,
1457 				.encrypt = spacc_ablk_encrypt,
1458 				.decrypt = spacc_ablk_decrypt,
1459 				.min_keysize = DES3_EDE_KEY_SIZE,
1460 				.max_keysize = DES3_EDE_KEY_SIZE,
1461 			},
1462 			.cra_init = spacc_ablk_cra_init,
1463 			.cra_exit = spacc_ablk_cra_exit,
1464 		},
1465 	},
1466 	{
1467 		.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1468 				SPA_CTRL_HASH_ALG_SHA | SPA_CTRL_HASH_MODE_HMAC,
1469 		.key_offs = 0,
1470 		.iv_offs = AES_MAX_KEY_SIZE,
1471 		.alg = {
1472 			.cra_name = "authenc(hmac(sha1),cbc(aes))",
1473 			.cra_driver_name = "authenc-hmac-sha1-cbc-aes-picoxcell",
1474 			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1475 			.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1476 			.cra_blocksize = AES_BLOCK_SIZE,
1477 			.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1478 			.cra_type = &crypto_aead_type,
1479 			.cra_module = THIS_MODULE,
1480 			.cra_aead = {
1481 				.setkey = spacc_aead_setkey,
1482 				.setauthsize = spacc_aead_setauthsize,
1483 				.encrypt = spacc_aead_encrypt,
1484 				.decrypt = spacc_aead_decrypt,
1485 				.givencrypt = spacc_aead_givencrypt,
1486 				.ivsize = AES_BLOCK_SIZE,
1487 				.maxauthsize = SHA1_DIGEST_SIZE,
1488 			},
1489 			.cra_init = spacc_aead_cra_init,
1490 			.cra_exit = spacc_aead_cra_exit,
1491 		},
1492 	},
1493 	{
1494 		.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1495 				SPA_CTRL_HASH_ALG_SHA256 |
1496 				SPA_CTRL_HASH_MODE_HMAC,
1497 		.key_offs = 0,
1498 		.iv_offs = AES_MAX_KEY_SIZE,
1499 		.alg = {
1500 			.cra_name = "authenc(hmac(sha256),cbc(aes))",
1501 			.cra_driver_name = "authenc-hmac-sha256-cbc-aes-picoxcell",
1502 			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1503 			.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1504 			.cra_blocksize = AES_BLOCK_SIZE,
1505 			.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1506 			.cra_type = &crypto_aead_type,
1507 			.cra_module = THIS_MODULE,
1508 			.cra_aead = {
1509 				.setkey = spacc_aead_setkey,
1510 				.setauthsize = spacc_aead_setauthsize,
1511 				.encrypt = spacc_aead_encrypt,
1512 				.decrypt = spacc_aead_decrypt,
1513 				.givencrypt = spacc_aead_givencrypt,
1514 				.ivsize = AES_BLOCK_SIZE,
1515 				.maxauthsize = SHA256_DIGEST_SIZE,
1516 			},
1517 			.cra_init = spacc_aead_cra_init,
1518 			.cra_exit = spacc_aead_cra_exit,
1519 		},
1520 	},
1521 	{
1522 		.key_offs = 0,
1523 		.iv_offs = AES_MAX_KEY_SIZE,
1524 		.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1525 				SPA_CTRL_HASH_ALG_MD5 | SPA_CTRL_HASH_MODE_HMAC,
1526 		.alg = {
1527 			.cra_name = "authenc(hmac(md5),cbc(aes))",
1528 			.cra_driver_name = "authenc-hmac-md5-cbc-aes-picoxcell",
1529 			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1530 			.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1531 			.cra_blocksize = AES_BLOCK_SIZE,
1532 			.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1533 			.cra_type = &crypto_aead_type,
1534 			.cra_module = THIS_MODULE,
1535 			.cra_aead = {
1536 				.setkey = spacc_aead_setkey,
1537 				.setauthsize = spacc_aead_setauthsize,
1538 				.encrypt = spacc_aead_encrypt,
1539 				.decrypt = spacc_aead_decrypt,
1540 				.givencrypt = spacc_aead_givencrypt,
1541 				.ivsize = AES_BLOCK_SIZE,
1542 				.maxauthsize = MD5_DIGEST_SIZE,
1543 			},
1544 			.cra_init = spacc_aead_cra_init,
1545 			.cra_exit = spacc_aead_cra_exit,
1546 		},
1547 	},
1548 	{
1549 		.key_offs = DES_BLOCK_SIZE,
1550 		.iv_offs = 0,
1551 		.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC |
1552 				SPA_CTRL_HASH_ALG_SHA | SPA_CTRL_HASH_MODE_HMAC,
1553 		.alg = {
1554 			.cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
1555 			.cra_driver_name = "authenc-hmac-sha1-cbc-3des-picoxcell",
1556 			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1557 			.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1558 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1559 			.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1560 			.cra_type = &crypto_aead_type,
1561 			.cra_module = THIS_MODULE,
1562 			.cra_aead = {
1563 				.setkey = spacc_aead_setkey,
1564 				.setauthsize = spacc_aead_setauthsize,
1565 				.encrypt = spacc_aead_encrypt,
1566 				.decrypt = spacc_aead_decrypt,
1567 				.givencrypt = spacc_aead_givencrypt,
1568 				.ivsize = DES3_EDE_BLOCK_SIZE,
1569 				.maxauthsize = SHA1_DIGEST_SIZE,
1570 			},
1571 			.cra_init = spacc_aead_cra_init,
1572 			.cra_exit = spacc_aead_cra_exit,
1573 		},
1574 	},
1575 	{
1576 		.key_offs = DES_BLOCK_SIZE,
1577 		.iv_offs = 0,
1578 		.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1579 				SPA_CTRL_HASH_ALG_SHA256 |
1580 				SPA_CTRL_HASH_MODE_HMAC,
1581 		.alg = {
1582 			.cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
1583 			.cra_driver_name = "authenc-hmac-sha256-cbc-3des-picoxcell",
1584 			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1585 			.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1586 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1587 			.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1588 			.cra_type = &crypto_aead_type,
1589 			.cra_module = THIS_MODULE,
1590 			.cra_aead = {
1591 				.setkey = spacc_aead_setkey,
1592 				.setauthsize = spacc_aead_setauthsize,
1593 				.encrypt = spacc_aead_encrypt,
1594 				.decrypt = spacc_aead_decrypt,
1595 				.givencrypt = spacc_aead_givencrypt,
1596 				.ivsize = DES3_EDE_BLOCK_SIZE,
1597 				.maxauthsize = SHA256_DIGEST_SIZE,
1598 			},
1599 			.cra_init = spacc_aead_cra_init,
1600 			.cra_exit = spacc_aead_cra_exit,
1601 		},
1602 	},
1603 	{
1604 		.key_offs = DES_BLOCK_SIZE,
1605 		.iv_offs = 0,
1606 		.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC |
1607 				SPA_CTRL_HASH_ALG_MD5 | SPA_CTRL_HASH_MODE_HMAC,
1608 		.alg = {
1609 			.cra_name = "authenc(hmac(md5),cbc(des3_ede))",
1610 			.cra_driver_name = "authenc-hmac-md5-cbc-3des-picoxcell",
1611 			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1612 			.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1613 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1614 			.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1615 			.cra_type = &crypto_aead_type,
1616 			.cra_module = THIS_MODULE,
1617 			.cra_aead = {
1618 				.setkey = spacc_aead_setkey,
1619 				.setauthsize = spacc_aead_setauthsize,
1620 				.encrypt = spacc_aead_encrypt,
1621 				.decrypt = spacc_aead_decrypt,
1622 				.givencrypt = spacc_aead_givencrypt,
1623 				.ivsize = DES3_EDE_BLOCK_SIZE,
1624 				.maxauthsize = MD5_DIGEST_SIZE,
1625 			},
1626 			.cra_init = spacc_aead_cra_init,
1627 			.cra_exit = spacc_aead_cra_exit,
1628 		},
1629 	},
1630 };
1631 
1632 static struct spacc_alg l2_engine_algs[] = {
1633 	{
1634 		.key_offs = 0,
1635 		.iv_offs = SPACC_CRYPTO_KASUMI_F8_KEY_LEN,
1636 		.ctrl_default = SPA_CTRL_CIPH_ALG_KASUMI |
1637 				SPA_CTRL_CIPH_MODE_F8,
1638 		.alg = {
1639 			.cra_name = "f8(kasumi)",
1640 			.cra_driver_name = "f8-kasumi-picoxcell",
1641 			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1642 			.cra_flags = CRYPTO_ALG_TYPE_GIVCIPHER | CRYPTO_ALG_ASYNC,
1643 			.cra_blocksize = 8,
1644 			.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1645 			.cra_type = &crypto_ablkcipher_type,
1646 			.cra_module = THIS_MODULE,
1647 			.cra_ablkcipher = {
1648 				.setkey = spacc_kasumi_f8_setkey,
1649 				.encrypt = spacc_ablk_encrypt,
1650 				.decrypt = spacc_ablk_decrypt,
1651 				.min_keysize = 16,
1652 				.max_keysize = 16,
1653 				.ivsize = 8,
1654 			},
1655 			.cra_init = spacc_ablk_cra_init,
1656 			.cra_exit = spacc_ablk_cra_exit,
1657 		},
1658 	},
1659 };
1660 
1661 #ifdef CONFIG_OF
1662 static const struct of_device_id spacc_of_id_table[] = {
1663 	{ .compatible = "picochip,spacc-ipsec" },
1664 	{ .compatible = "picochip,spacc-l2" },
1665 	{}
1666 };
1667 #else /* CONFIG_OF */
1668 #define spacc_of_id_table NULL
1669 #endif /* CONFIG_OF */
1670 
spacc_is_compatible(struct platform_device * pdev,const char * spacc_type)1671 static bool spacc_is_compatible(struct platform_device *pdev,
1672 				const char *spacc_type)
1673 {
1674 	const struct platform_device_id *platid = platform_get_device_id(pdev);
1675 
1676 	if (platid && !strcmp(platid->name, spacc_type))
1677 		return true;
1678 
1679 #ifdef CONFIG_OF
1680 	if (of_device_is_compatible(pdev->dev.of_node, spacc_type))
1681 		return true;
1682 #endif /* CONFIG_OF */
1683 
1684 	return false;
1685 }
1686 
spacc_probe(struct platform_device * pdev)1687 static int __devinit spacc_probe(struct platform_device *pdev)
1688 {
1689 	int i, err, ret = -EINVAL;
1690 	struct resource *mem, *irq;
1691 	struct spacc_engine *engine = devm_kzalloc(&pdev->dev, sizeof(*engine),
1692 						   GFP_KERNEL);
1693 	if (!engine)
1694 		return -ENOMEM;
1695 
1696 	if (spacc_is_compatible(pdev, "picochip,spacc-ipsec")) {
1697 		engine->max_ctxs	= SPACC_CRYPTO_IPSEC_MAX_CTXS;
1698 		engine->cipher_pg_sz	= SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ;
1699 		engine->hash_pg_sz	= SPACC_CRYPTO_IPSEC_HASH_PG_SZ;
1700 		engine->fifo_sz		= SPACC_CRYPTO_IPSEC_FIFO_SZ;
1701 		engine->algs		= ipsec_engine_algs;
1702 		engine->num_algs	= ARRAY_SIZE(ipsec_engine_algs);
1703 	} else if (spacc_is_compatible(pdev, "picochip,spacc-l2")) {
1704 		engine->max_ctxs	= SPACC_CRYPTO_L2_MAX_CTXS;
1705 		engine->cipher_pg_sz	= SPACC_CRYPTO_L2_CIPHER_PG_SZ;
1706 		engine->hash_pg_sz	= SPACC_CRYPTO_L2_HASH_PG_SZ;
1707 		engine->fifo_sz		= SPACC_CRYPTO_L2_FIFO_SZ;
1708 		engine->algs		= l2_engine_algs;
1709 		engine->num_algs	= ARRAY_SIZE(l2_engine_algs);
1710 	} else {
1711 		return -EINVAL;
1712 	}
1713 
1714 	engine->name = dev_name(&pdev->dev);
1715 
1716 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1717 	irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1718 	if (!mem || !irq) {
1719 		dev_err(&pdev->dev, "no memory/irq resource for engine\n");
1720 		return -ENXIO;
1721 	}
1722 
1723 	if (!devm_request_mem_region(&pdev->dev, mem->start, resource_size(mem),
1724 				     engine->name))
1725 		return -ENOMEM;
1726 
1727 	engine->regs = devm_ioremap(&pdev->dev, mem->start, resource_size(mem));
1728 	if (!engine->regs) {
1729 		dev_err(&pdev->dev, "memory map failed\n");
1730 		return -ENOMEM;
1731 	}
1732 
1733 	if (devm_request_irq(&pdev->dev, irq->start, spacc_spacc_irq, 0,
1734 			     engine->name, engine)) {
1735 		dev_err(engine->dev, "failed to request IRQ\n");
1736 		return -EBUSY;
1737 	}
1738 
1739 	engine->dev		= &pdev->dev;
1740 	engine->cipher_ctx_base = engine->regs + SPA_CIPH_KEY_BASE_REG_OFFSET;
1741 	engine->hash_key_base	= engine->regs + SPA_HASH_KEY_BASE_REG_OFFSET;
1742 
1743 	engine->req_pool = dmam_pool_create(engine->name, engine->dev,
1744 		MAX_DDT_LEN * sizeof(struct spacc_ddt), 8, SZ_64K);
1745 	if (!engine->req_pool)
1746 		return -ENOMEM;
1747 
1748 	spin_lock_init(&engine->hw_lock);
1749 
1750 	engine->clk = clk_get(&pdev->dev, "ref");
1751 	if (IS_ERR(engine->clk)) {
1752 		dev_info(&pdev->dev, "clk unavailable\n");
1753 		device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1754 		return PTR_ERR(engine->clk);
1755 	}
1756 
1757 	if (clk_enable(engine->clk)) {
1758 		dev_info(&pdev->dev, "unable to enable clk\n");
1759 		clk_put(engine->clk);
1760 		return -EIO;
1761 	}
1762 
1763 	err = device_create_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1764 	if (err) {
1765 		clk_disable(engine->clk);
1766 		clk_put(engine->clk);
1767 		return err;
1768 	}
1769 
1770 
1771 	/*
1772 	 * Use an IRQ threshold of 50% as a default. This seems to be a
1773 	 * reasonable trade off of latency against throughput but can be
1774 	 * changed at runtime.
1775 	 */
1776 	engine->stat_irq_thresh = (engine->fifo_sz / 2);
1777 
1778 	/*
1779 	 * Configure the interrupts. We only use the STAT_CNT interrupt as we
1780 	 * only submit a new packet for processing when we complete another in
1781 	 * the queue. This minimizes time spent in the interrupt handler.
1782 	 */
1783 	writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1784 	       engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1785 	writel(SPA_IRQ_EN_STAT_EN | SPA_IRQ_EN_GLBL_EN,
1786 	       engine->regs + SPA_IRQ_EN_REG_OFFSET);
1787 
1788 	setup_timer(&engine->packet_timeout, spacc_packet_timeout,
1789 		    (unsigned long)engine);
1790 
1791 	INIT_LIST_HEAD(&engine->pending);
1792 	INIT_LIST_HEAD(&engine->completed);
1793 	INIT_LIST_HEAD(&engine->in_progress);
1794 	engine->in_flight = 0;
1795 	tasklet_init(&engine->complete, spacc_spacc_complete,
1796 		     (unsigned long)engine);
1797 
1798 	platform_set_drvdata(pdev, engine);
1799 
1800 	INIT_LIST_HEAD(&engine->registered_algs);
1801 	for (i = 0; i < engine->num_algs; ++i) {
1802 		engine->algs[i].engine = engine;
1803 		err = crypto_register_alg(&engine->algs[i].alg);
1804 		if (!err) {
1805 			list_add_tail(&engine->algs[i].entry,
1806 				      &engine->registered_algs);
1807 			ret = 0;
1808 		}
1809 		if (err)
1810 			dev_err(engine->dev, "failed to register alg \"%s\"\n",
1811 				engine->algs[i].alg.cra_name);
1812 		else
1813 			dev_dbg(engine->dev, "registered alg \"%s\"\n",
1814 				engine->algs[i].alg.cra_name);
1815 	}
1816 
1817 	return ret;
1818 }
1819 
spacc_remove(struct platform_device * pdev)1820 static int __devexit spacc_remove(struct platform_device *pdev)
1821 {
1822 	struct spacc_alg *alg, *next;
1823 	struct spacc_engine *engine = platform_get_drvdata(pdev);
1824 
1825 	del_timer_sync(&engine->packet_timeout);
1826 	device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1827 
1828 	list_for_each_entry_safe(alg, next, &engine->registered_algs, entry) {
1829 		list_del(&alg->entry);
1830 		crypto_unregister_alg(&alg->alg);
1831 	}
1832 
1833 	clk_disable(engine->clk);
1834 	clk_put(engine->clk);
1835 
1836 	return 0;
1837 }
1838 
1839 static const struct platform_device_id spacc_id_table[] = {
1840 	{ "picochip,spacc-ipsec", },
1841 	{ "picochip,spacc-l2", },
1842 };
1843 
1844 static struct platform_driver spacc_driver = {
1845 	.probe		= spacc_probe,
1846 	.remove		= __devexit_p(spacc_remove),
1847 	.driver		= {
1848 		.name	= "picochip,spacc",
1849 #ifdef CONFIG_PM
1850 		.pm	= &spacc_pm_ops,
1851 #endif /* CONFIG_PM */
1852 		.of_match_table	= spacc_of_id_table,
1853 	},
1854 	.id_table	= spacc_id_table,
1855 };
1856 
1857 module_platform_driver(spacc_driver);
1858 
1859 MODULE_LICENSE("GPL");
1860 MODULE_AUTHOR("Jamie Iles");
1861