1 /*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34
35 #include <xen/xen.h>
36 #include <xen/interface/xen.h>
37 #include <xen/interface/version.h>
38 #include <xen/interface/physdev.h>
39 #include <xen/interface/vcpu.h>
40 #include <xen/interface/memory.h>
41 #include <xen/features.h>
42 #include <xen/page.h>
43 #include <xen/hvm.h>
44 #include <xen/hvc-console.h>
45
46 #include <asm/paravirt.h>
47 #include <asm/apic.h>
48 #include <asm/page.h>
49 #include <asm/xen/pci.h>
50 #include <asm/xen/hypercall.h>
51 #include <asm/xen/hypervisor.h>
52 #include <asm/fixmap.h>
53 #include <asm/processor.h>
54 #include <asm/proto.h>
55 #include <asm/msr-index.h>
56 #include <asm/traps.h>
57 #include <asm/setup.h>
58 #include <asm/desc.h>
59 #include <asm/pgalloc.h>
60 #include <asm/pgtable.h>
61 #include <asm/tlbflush.h>
62 #include <asm/reboot.h>
63 #include <asm/stackprotector.h>
64 #include <asm/hypervisor.h>
65
66 #include "xen-ops.h"
67 #include "mmu.h"
68 #include "multicalls.h"
69
70 EXPORT_SYMBOL_GPL(hypercall_page);
71
72 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
73 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
74
75 enum xen_domain_type xen_domain_type = XEN_NATIVE;
76 EXPORT_SYMBOL_GPL(xen_domain_type);
77
78 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
79 EXPORT_SYMBOL(machine_to_phys_mapping);
80 unsigned long machine_to_phys_nr;
81 EXPORT_SYMBOL(machine_to_phys_nr);
82
83 struct start_info *xen_start_info;
84 EXPORT_SYMBOL_GPL(xen_start_info);
85
86 struct shared_info xen_dummy_shared_info;
87
88 void *xen_initial_gdt;
89
90 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
91 __read_mostly int xen_have_vector_callback;
92 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
93
94 /*
95 * Point at some empty memory to start with. We map the real shared_info
96 * page as soon as fixmap is up and running.
97 */
98 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
99
100 /*
101 * Flag to determine whether vcpu info placement is available on all
102 * VCPUs. We assume it is to start with, and then set it to zero on
103 * the first failure. This is because it can succeed on some VCPUs
104 * and not others, since it can involve hypervisor memory allocation,
105 * or because the guest failed to guarantee all the appropriate
106 * constraints on all VCPUs (ie buffer can't cross a page boundary).
107 *
108 * Note that any particular CPU may be using a placed vcpu structure,
109 * but we can only optimise if the all are.
110 *
111 * 0: not available, 1: available
112 */
113 static int have_vcpu_info_placement = 1;
114
clamp_max_cpus(void)115 static void clamp_max_cpus(void)
116 {
117 #ifdef CONFIG_SMP
118 if (setup_max_cpus > MAX_VIRT_CPUS)
119 setup_max_cpus = MAX_VIRT_CPUS;
120 #endif
121 }
122
xen_vcpu_setup(int cpu)123 static void xen_vcpu_setup(int cpu)
124 {
125 struct vcpu_register_vcpu_info info;
126 int err;
127 struct vcpu_info *vcpup;
128
129 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
130
131 if (cpu < MAX_VIRT_CPUS)
132 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
133
134 if (!have_vcpu_info_placement) {
135 if (cpu >= MAX_VIRT_CPUS)
136 clamp_max_cpus();
137 return;
138 }
139
140 vcpup = &per_cpu(xen_vcpu_info, cpu);
141 info.mfn = arbitrary_virt_to_mfn(vcpup);
142 info.offset = offset_in_page(vcpup);
143
144 /* Check to see if the hypervisor will put the vcpu_info
145 structure where we want it, which allows direct access via
146 a percpu-variable. */
147 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
148
149 if (err) {
150 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
151 have_vcpu_info_placement = 0;
152 clamp_max_cpus();
153 } else {
154 /* This cpu is using the registered vcpu info, even if
155 later ones fail to. */
156 per_cpu(xen_vcpu, cpu) = vcpup;
157 }
158 }
159
160 /*
161 * On restore, set the vcpu placement up again.
162 * If it fails, then we're in a bad state, since
163 * we can't back out from using it...
164 */
xen_vcpu_restore(void)165 void xen_vcpu_restore(void)
166 {
167 int cpu;
168
169 for_each_online_cpu(cpu) {
170 bool other_cpu = (cpu != smp_processor_id());
171
172 if (other_cpu &&
173 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
174 BUG();
175
176 xen_setup_runstate_info(cpu);
177
178 if (have_vcpu_info_placement)
179 xen_vcpu_setup(cpu);
180
181 if (other_cpu &&
182 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
183 BUG();
184 }
185 }
186
xen_banner(void)187 static void __init xen_banner(void)
188 {
189 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
190 struct xen_extraversion extra;
191 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
192
193 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
194 pv_info.name);
195 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
196 version >> 16, version & 0xffff, extra.extraversion,
197 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
198 }
199
200 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
201 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
202
xen_cpuid(unsigned int * ax,unsigned int * bx,unsigned int * cx,unsigned int * dx)203 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
204 unsigned int *cx, unsigned int *dx)
205 {
206 unsigned maskebx = ~0;
207 unsigned maskecx = ~0;
208 unsigned maskedx = ~0;
209
210 /*
211 * Mask out inconvenient features, to try and disable as many
212 * unsupported kernel subsystems as possible.
213 */
214 switch (*ax) {
215 case 1:
216 maskecx = cpuid_leaf1_ecx_mask;
217 maskedx = cpuid_leaf1_edx_mask;
218 break;
219
220 case 0xb:
221 /* Suppress extended topology stuff */
222 maskebx = 0;
223 break;
224 }
225
226 asm(XEN_EMULATE_PREFIX "cpuid"
227 : "=a" (*ax),
228 "=b" (*bx),
229 "=c" (*cx),
230 "=d" (*dx)
231 : "0" (*ax), "2" (*cx));
232
233 *bx &= maskebx;
234 *cx &= maskecx;
235 *dx &= maskedx;
236 }
237
xen_init_cpuid_mask(void)238 static void __init xen_init_cpuid_mask(void)
239 {
240 unsigned int ax, bx, cx, dx;
241 unsigned int xsave_mask;
242
243 cpuid_leaf1_edx_mask =
244 ~((1 << X86_FEATURE_MCE) | /* disable MCE */
245 (1 << X86_FEATURE_MCA) | /* disable MCA */
246 (1 << X86_FEATURE_MTRR) | /* disable MTRR */
247 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
248
249 if (!xen_initial_domain())
250 cpuid_leaf1_edx_mask &=
251 ~((1 << X86_FEATURE_APIC) | /* disable local APIC */
252 (1 << X86_FEATURE_ACPI)); /* disable ACPI */
253 ax = 1;
254 cx = 0;
255 xen_cpuid(&ax, &bx, &cx, &dx);
256
257 xsave_mask =
258 (1 << (X86_FEATURE_XSAVE % 32)) |
259 (1 << (X86_FEATURE_OSXSAVE % 32));
260
261 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
262 if ((cx & xsave_mask) != xsave_mask)
263 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
264 }
265
xen_set_debugreg(int reg,unsigned long val)266 static void xen_set_debugreg(int reg, unsigned long val)
267 {
268 HYPERVISOR_set_debugreg(reg, val);
269 }
270
xen_get_debugreg(int reg)271 static unsigned long xen_get_debugreg(int reg)
272 {
273 return HYPERVISOR_get_debugreg(reg);
274 }
275
xen_end_context_switch(struct task_struct * next)276 static void xen_end_context_switch(struct task_struct *next)
277 {
278 xen_mc_flush();
279 paravirt_end_context_switch(next);
280 }
281
xen_store_tr(void)282 static unsigned long xen_store_tr(void)
283 {
284 return 0;
285 }
286
287 /*
288 * Set the page permissions for a particular virtual address. If the
289 * address is a vmalloc mapping (or other non-linear mapping), then
290 * find the linear mapping of the page and also set its protections to
291 * match.
292 */
set_aliased_prot(void * v,pgprot_t prot)293 static void set_aliased_prot(void *v, pgprot_t prot)
294 {
295 int level;
296 pte_t *ptep;
297 pte_t pte;
298 unsigned long pfn;
299 struct page *page;
300
301 ptep = lookup_address((unsigned long)v, &level);
302 BUG_ON(ptep == NULL);
303
304 pfn = pte_pfn(*ptep);
305 page = pfn_to_page(pfn);
306
307 pte = pfn_pte(pfn, prot);
308
309 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
310 BUG();
311
312 if (!PageHighMem(page)) {
313 void *av = __va(PFN_PHYS(pfn));
314
315 if (av != v)
316 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
317 BUG();
318 } else
319 kmap_flush_unused();
320 }
321
xen_alloc_ldt(struct desc_struct * ldt,unsigned entries)322 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
323 {
324 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
325 int i;
326
327 for(i = 0; i < entries; i += entries_per_page)
328 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
329 }
330
xen_free_ldt(struct desc_struct * ldt,unsigned entries)331 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
332 {
333 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
334 int i;
335
336 for(i = 0; i < entries; i += entries_per_page)
337 set_aliased_prot(ldt + i, PAGE_KERNEL);
338 }
339
xen_set_ldt(const void * addr,unsigned entries)340 static void xen_set_ldt(const void *addr, unsigned entries)
341 {
342 struct mmuext_op *op;
343 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
344
345 trace_xen_cpu_set_ldt(addr, entries);
346
347 op = mcs.args;
348 op->cmd = MMUEXT_SET_LDT;
349 op->arg1.linear_addr = (unsigned long)addr;
350 op->arg2.nr_ents = entries;
351
352 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
353
354 xen_mc_issue(PARAVIRT_LAZY_CPU);
355 }
356
xen_load_gdt(const struct desc_ptr * dtr)357 static void xen_load_gdt(const struct desc_ptr *dtr)
358 {
359 unsigned long va = dtr->address;
360 unsigned int size = dtr->size + 1;
361 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
362 unsigned long frames[pages];
363 int f;
364
365 /*
366 * A GDT can be up to 64k in size, which corresponds to 8192
367 * 8-byte entries, or 16 4k pages..
368 */
369
370 BUG_ON(size > 65536);
371 BUG_ON(va & ~PAGE_MASK);
372
373 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
374 int level;
375 pte_t *ptep;
376 unsigned long pfn, mfn;
377 void *virt;
378
379 /*
380 * The GDT is per-cpu and is in the percpu data area.
381 * That can be virtually mapped, so we need to do a
382 * page-walk to get the underlying MFN for the
383 * hypercall. The page can also be in the kernel's
384 * linear range, so we need to RO that mapping too.
385 */
386 ptep = lookup_address(va, &level);
387 BUG_ON(ptep == NULL);
388
389 pfn = pte_pfn(*ptep);
390 mfn = pfn_to_mfn(pfn);
391 virt = __va(PFN_PHYS(pfn));
392
393 frames[f] = mfn;
394
395 make_lowmem_page_readonly((void *)va);
396 make_lowmem_page_readonly(virt);
397 }
398
399 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
400 BUG();
401 }
402
403 /*
404 * load_gdt for early boot, when the gdt is only mapped once
405 */
xen_load_gdt_boot(const struct desc_ptr * dtr)406 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
407 {
408 unsigned long va = dtr->address;
409 unsigned int size = dtr->size + 1;
410 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
411 unsigned long frames[pages];
412 int f;
413
414 /*
415 * A GDT can be up to 64k in size, which corresponds to 8192
416 * 8-byte entries, or 16 4k pages..
417 */
418
419 BUG_ON(size > 65536);
420 BUG_ON(va & ~PAGE_MASK);
421
422 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
423 pte_t pte;
424 unsigned long pfn, mfn;
425
426 pfn = virt_to_pfn(va);
427 mfn = pfn_to_mfn(pfn);
428
429 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
430
431 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
432 BUG();
433
434 frames[f] = mfn;
435 }
436
437 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
438 BUG();
439 }
440
load_TLS_descriptor(struct thread_struct * t,unsigned int cpu,unsigned int i)441 static void load_TLS_descriptor(struct thread_struct *t,
442 unsigned int cpu, unsigned int i)
443 {
444 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
445 xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
446 struct multicall_space mc = __xen_mc_entry(0);
447
448 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
449 }
450
xen_load_tls(struct thread_struct * t,unsigned int cpu)451 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
452 {
453 /*
454 * XXX sleazy hack: If we're being called in a lazy-cpu zone
455 * and lazy gs handling is enabled, it means we're in a
456 * context switch, and %gs has just been saved. This means we
457 * can zero it out to prevent faults on exit from the
458 * hypervisor if the next process has no %gs. Either way, it
459 * has been saved, and the new value will get loaded properly.
460 * This will go away as soon as Xen has been modified to not
461 * save/restore %gs for normal hypercalls.
462 *
463 * On x86_64, this hack is not used for %gs, because gs points
464 * to KERNEL_GS_BASE (and uses it for PDA references), so we
465 * must not zero %gs on x86_64
466 *
467 * For x86_64, we need to zero %fs, otherwise we may get an
468 * exception between the new %fs descriptor being loaded and
469 * %fs being effectively cleared at __switch_to().
470 */
471 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
472 #ifdef CONFIG_X86_32
473 lazy_load_gs(0);
474 #else
475 loadsegment(fs, 0);
476 #endif
477 }
478
479 xen_mc_batch();
480
481 load_TLS_descriptor(t, cpu, 0);
482 load_TLS_descriptor(t, cpu, 1);
483 load_TLS_descriptor(t, cpu, 2);
484
485 xen_mc_issue(PARAVIRT_LAZY_CPU);
486 }
487
488 #ifdef CONFIG_X86_64
xen_load_gs_index(unsigned int idx)489 static void xen_load_gs_index(unsigned int idx)
490 {
491 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
492 BUG();
493 }
494 #endif
495
xen_write_ldt_entry(struct desc_struct * dt,int entrynum,const void * ptr)496 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
497 const void *ptr)
498 {
499 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
500 u64 entry = *(u64 *)ptr;
501
502 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
503
504 preempt_disable();
505
506 xen_mc_flush();
507 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
508 BUG();
509
510 preempt_enable();
511 }
512
cvt_gate_to_trap(int vector,const gate_desc * val,struct trap_info * info)513 static int cvt_gate_to_trap(int vector, const gate_desc *val,
514 struct trap_info *info)
515 {
516 unsigned long addr;
517
518 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
519 return 0;
520
521 info->vector = vector;
522
523 addr = gate_offset(*val);
524 #ifdef CONFIG_X86_64
525 /*
526 * Look for known traps using IST, and substitute them
527 * appropriately. The debugger ones are the only ones we care
528 * about. Xen will handle faults like double_fault and
529 * machine_check, so we should never see them. Warn if
530 * there's an unexpected IST-using fault handler.
531 */
532 if (addr == (unsigned long)debug)
533 addr = (unsigned long)xen_debug;
534 else if (addr == (unsigned long)int3)
535 addr = (unsigned long)xen_int3;
536 else if (addr == (unsigned long)stack_segment)
537 addr = (unsigned long)xen_stack_segment;
538 else if (addr == (unsigned long)double_fault ||
539 addr == (unsigned long)nmi) {
540 /* Don't need to handle these */
541 return 0;
542 #ifdef CONFIG_X86_MCE
543 } else if (addr == (unsigned long)machine_check) {
544 return 0;
545 #endif
546 } else {
547 /* Some other trap using IST? */
548 if (WARN_ON(val->ist != 0))
549 return 0;
550 }
551 #endif /* CONFIG_X86_64 */
552 info->address = addr;
553
554 info->cs = gate_segment(*val);
555 info->flags = val->dpl;
556 /* interrupt gates clear IF */
557 if (val->type == GATE_INTERRUPT)
558 info->flags |= 1 << 2;
559
560 return 1;
561 }
562
563 /* Locations of each CPU's IDT */
564 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
565
566 /* Set an IDT entry. If the entry is part of the current IDT, then
567 also update Xen. */
xen_write_idt_entry(gate_desc * dt,int entrynum,const gate_desc * g)568 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
569 {
570 unsigned long p = (unsigned long)&dt[entrynum];
571 unsigned long start, end;
572
573 trace_xen_cpu_write_idt_entry(dt, entrynum, g);
574
575 preempt_disable();
576
577 start = __this_cpu_read(idt_desc.address);
578 end = start + __this_cpu_read(idt_desc.size) + 1;
579
580 xen_mc_flush();
581
582 native_write_idt_entry(dt, entrynum, g);
583
584 if (p >= start && (p + 8) <= end) {
585 struct trap_info info[2];
586
587 info[1].address = 0;
588
589 if (cvt_gate_to_trap(entrynum, g, &info[0]))
590 if (HYPERVISOR_set_trap_table(info))
591 BUG();
592 }
593
594 preempt_enable();
595 }
596
xen_convert_trap_info(const struct desc_ptr * desc,struct trap_info * traps)597 static void xen_convert_trap_info(const struct desc_ptr *desc,
598 struct trap_info *traps)
599 {
600 unsigned in, out, count;
601
602 count = (desc->size+1) / sizeof(gate_desc);
603 BUG_ON(count > 256);
604
605 for (in = out = 0; in < count; in++) {
606 gate_desc *entry = (gate_desc*)(desc->address) + in;
607
608 if (cvt_gate_to_trap(in, entry, &traps[out]))
609 out++;
610 }
611 traps[out].address = 0;
612 }
613
xen_copy_trap_info(struct trap_info * traps)614 void xen_copy_trap_info(struct trap_info *traps)
615 {
616 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
617
618 xen_convert_trap_info(desc, traps);
619 }
620
621 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
622 hold a spinlock to protect the static traps[] array (static because
623 it avoids allocation, and saves stack space). */
xen_load_idt(const struct desc_ptr * desc)624 static void xen_load_idt(const struct desc_ptr *desc)
625 {
626 static DEFINE_SPINLOCK(lock);
627 static struct trap_info traps[257];
628
629 trace_xen_cpu_load_idt(desc);
630
631 spin_lock(&lock);
632
633 __get_cpu_var(idt_desc) = *desc;
634
635 xen_convert_trap_info(desc, traps);
636
637 xen_mc_flush();
638 if (HYPERVISOR_set_trap_table(traps))
639 BUG();
640
641 spin_unlock(&lock);
642 }
643
644 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
645 they're handled differently. */
xen_write_gdt_entry(struct desc_struct * dt,int entry,const void * desc,int type)646 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
647 const void *desc, int type)
648 {
649 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
650
651 preempt_disable();
652
653 switch (type) {
654 case DESC_LDT:
655 case DESC_TSS:
656 /* ignore */
657 break;
658
659 default: {
660 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
661
662 xen_mc_flush();
663 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
664 BUG();
665 }
666
667 }
668
669 preempt_enable();
670 }
671
672 /*
673 * Version of write_gdt_entry for use at early boot-time needed to
674 * update an entry as simply as possible.
675 */
xen_write_gdt_entry_boot(struct desc_struct * dt,int entry,const void * desc,int type)676 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
677 const void *desc, int type)
678 {
679 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
680
681 switch (type) {
682 case DESC_LDT:
683 case DESC_TSS:
684 /* ignore */
685 break;
686
687 default: {
688 xmaddr_t maddr = virt_to_machine(&dt[entry]);
689
690 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
691 dt[entry] = *(struct desc_struct *)desc;
692 }
693
694 }
695 }
696
xen_load_sp0(struct tss_struct * tss,struct thread_struct * thread)697 static void xen_load_sp0(struct tss_struct *tss,
698 struct thread_struct *thread)
699 {
700 struct multicall_space mcs;
701
702 mcs = xen_mc_entry(0);
703 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
704 xen_mc_issue(PARAVIRT_LAZY_CPU);
705 }
706
xen_set_iopl_mask(unsigned mask)707 static void xen_set_iopl_mask(unsigned mask)
708 {
709 struct physdev_set_iopl set_iopl;
710
711 /* Force the change at ring 0. */
712 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
713 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
714 }
715
xen_io_delay(void)716 static void xen_io_delay(void)
717 {
718 }
719
720 #ifdef CONFIG_X86_LOCAL_APIC
xen_apic_read(u32 reg)721 static u32 xen_apic_read(u32 reg)
722 {
723 return 0;
724 }
725
xen_apic_write(u32 reg,u32 val)726 static void xen_apic_write(u32 reg, u32 val)
727 {
728 /* Warn to see if there's any stray references */
729 WARN_ON(1);
730 }
731
xen_apic_icr_read(void)732 static u64 xen_apic_icr_read(void)
733 {
734 return 0;
735 }
736
xen_apic_icr_write(u32 low,u32 id)737 static void xen_apic_icr_write(u32 low, u32 id)
738 {
739 /* Warn to see if there's any stray references */
740 WARN_ON(1);
741 }
742
xen_apic_wait_icr_idle(void)743 static void xen_apic_wait_icr_idle(void)
744 {
745 return;
746 }
747
xen_safe_apic_wait_icr_idle(void)748 static u32 xen_safe_apic_wait_icr_idle(void)
749 {
750 return 0;
751 }
752
set_xen_basic_apic_ops(void)753 static void set_xen_basic_apic_ops(void)
754 {
755 apic->read = xen_apic_read;
756 apic->write = xen_apic_write;
757 apic->icr_read = xen_apic_icr_read;
758 apic->icr_write = xen_apic_icr_write;
759 apic->wait_icr_idle = xen_apic_wait_icr_idle;
760 apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
761 }
762
763 #endif
764
xen_clts(void)765 static void xen_clts(void)
766 {
767 struct multicall_space mcs;
768
769 mcs = xen_mc_entry(0);
770
771 MULTI_fpu_taskswitch(mcs.mc, 0);
772
773 xen_mc_issue(PARAVIRT_LAZY_CPU);
774 }
775
776 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
777
xen_read_cr0(void)778 static unsigned long xen_read_cr0(void)
779 {
780 unsigned long cr0 = percpu_read(xen_cr0_value);
781
782 if (unlikely(cr0 == 0)) {
783 cr0 = native_read_cr0();
784 percpu_write(xen_cr0_value, cr0);
785 }
786
787 return cr0;
788 }
789
xen_write_cr0(unsigned long cr0)790 static void xen_write_cr0(unsigned long cr0)
791 {
792 struct multicall_space mcs;
793
794 percpu_write(xen_cr0_value, cr0);
795
796 /* Only pay attention to cr0.TS; everything else is
797 ignored. */
798 mcs = xen_mc_entry(0);
799
800 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
801
802 xen_mc_issue(PARAVIRT_LAZY_CPU);
803 }
804
xen_write_cr4(unsigned long cr4)805 static void xen_write_cr4(unsigned long cr4)
806 {
807 cr4 &= ~X86_CR4_PGE;
808 cr4 &= ~X86_CR4_PSE;
809
810 native_write_cr4(cr4);
811 }
812
xen_write_msr_safe(unsigned int msr,unsigned low,unsigned high)813 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
814 {
815 int ret;
816
817 ret = 0;
818
819 switch (msr) {
820 #ifdef CONFIG_X86_64
821 unsigned which;
822 u64 base;
823
824 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
825 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
826 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
827
828 set:
829 base = ((u64)high << 32) | low;
830 if (HYPERVISOR_set_segment_base(which, base) != 0)
831 ret = -EIO;
832 break;
833 #endif
834
835 case MSR_STAR:
836 case MSR_CSTAR:
837 case MSR_LSTAR:
838 case MSR_SYSCALL_MASK:
839 case MSR_IA32_SYSENTER_CS:
840 case MSR_IA32_SYSENTER_ESP:
841 case MSR_IA32_SYSENTER_EIP:
842 /* Fast syscall setup is all done in hypercalls, so
843 these are all ignored. Stub them out here to stop
844 Xen console noise. */
845 break;
846
847 case MSR_IA32_CR_PAT:
848 if (smp_processor_id() == 0)
849 xen_set_pat(((u64)high << 32) | low);
850 break;
851
852 default:
853 ret = native_write_msr_safe(msr, low, high);
854 }
855
856 return ret;
857 }
858
xen_setup_shared_info(void)859 void xen_setup_shared_info(void)
860 {
861 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
862 set_fixmap(FIX_PARAVIRT_BOOTMAP,
863 xen_start_info->shared_info);
864
865 HYPERVISOR_shared_info =
866 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
867 } else
868 HYPERVISOR_shared_info =
869 (struct shared_info *)__va(xen_start_info->shared_info);
870
871 #ifndef CONFIG_SMP
872 /* In UP this is as good a place as any to set up shared info */
873 xen_setup_vcpu_info_placement();
874 #endif
875
876 xen_setup_mfn_list_list();
877 }
878
879 /* This is called once we have the cpu_possible_map */
xen_setup_vcpu_info_placement(void)880 void xen_setup_vcpu_info_placement(void)
881 {
882 int cpu;
883
884 for_each_possible_cpu(cpu)
885 xen_vcpu_setup(cpu);
886
887 /* xen_vcpu_setup managed to place the vcpu_info within the
888 percpu area for all cpus, so make use of it */
889 if (have_vcpu_info_placement) {
890 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
891 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
892 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
893 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
894 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
895 }
896 }
897
xen_patch(u8 type,u16 clobbers,void * insnbuf,unsigned long addr,unsigned len)898 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
899 unsigned long addr, unsigned len)
900 {
901 char *start, *end, *reloc;
902 unsigned ret;
903
904 start = end = reloc = NULL;
905
906 #define SITE(op, x) \
907 case PARAVIRT_PATCH(op.x): \
908 if (have_vcpu_info_placement) { \
909 start = (char *)xen_##x##_direct; \
910 end = xen_##x##_direct_end; \
911 reloc = xen_##x##_direct_reloc; \
912 } \
913 goto patch_site
914
915 switch (type) {
916 SITE(pv_irq_ops, irq_enable);
917 SITE(pv_irq_ops, irq_disable);
918 SITE(pv_irq_ops, save_fl);
919 SITE(pv_irq_ops, restore_fl);
920 #undef SITE
921
922 patch_site:
923 if (start == NULL || (end-start) > len)
924 goto default_patch;
925
926 ret = paravirt_patch_insns(insnbuf, len, start, end);
927
928 /* Note: because reloc is assigned from something that
929 appears to be an array, gcc assumes it's non-null,
930 but doesn't know its relationship with start and
931 end. */
932 if (reloc > start && reloc < end) {
933 int reloc_off = reloc - start;
934 long *relocp = (long *)(insnbuf + reloc_off);
935 long delta = start - (char *)addr;
936
937 *relocp += delta;
938 }
939 break;
940
941 default_patch:
942 default:
943 ret = paravirt_patch_default(type, clobbers, insnbuf,
944 addr, len);
945 break;
946 }
947
948 return ret;
949 }
950
951 static const struct pv_info xen_info __initconst = {
952 .paravirt_enabled = 1,
953 .shared_kernel_pmd = 0,
954
955 #ifdef CONFIG_X86_64
956 .extra_user_64bit_cs = FLAT_USER_CS64,
957 #endif
958
959 .name = "Xen",
960 };
961
962 static const struct pv_init_ops xen_init_ops __initconst = {
963 .patch = xen_patch,
964 };
965
966 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
967 .cpuid = xen_cpuid,
968
969 .set_debugreg = xen_set_debugreg,
970 .get_debugreg = xen_get_debugreg,
971
972 .clts = xen_clts,
973
974 .read_cr0 = xen_read_cr0,
975 .write_cr0 = xen_write_cr0,
976
977 .read_cr4 = native_read_cr4,
978 .read_cr4_safe = native_read_cr4_safe,
979 .write_cr4 = xen_write_cr4,
980
981 .wbinvd = native_wbinvd,
982
983 .read_msr = native_read_msr_safe,
984 .write_msr = xen_write_msr_safe,
985 .read_tsc = native_read_tsc,
986 .read_pmc = native_read_pmc,
987
988 .iret = xen_iret,
989 .irq_enable_sysexit = xen_sysexit,
990 #ifdef CONFIG_X86_64
991 .usergs_sysret32 = xen_sysret32,
992 .usergs_sysret64 = xen_sysret64,
993 #endif
994
995 .load_tr_desc = paravirt_nop,
996 .set_ldt = xen_set_ldt,
997 .load_gdt = xen_load_gdt,
998 .load_idt = xen_load_idt,
999 .load_tls = xen_load_tls,
1000 #ifdef CONFIG_X86_64
1001 .load_gs_index = xen_load_gs_index,
1002 #endif
1003
1004 .alloc_ldt = xen_alloc_ldt,
1005 .free_ldt = xen_free_ldt,
1006
1007 .store_gdt = native_store_gdt,
1008 .store_idt = native_store_idt,
1009 .store_tr = xen_store_tr,
1010
1011 .write_ldt_entry = xen_write_ldt_entry,
1012 .write_gdt_entry = xen_write_gdt_entry,
1013 .write_idt_entry = xen_write_idt_entry,
1014 .load_sp0 = xen_load_sp0,
1015
1016 .set_iopl_mask = xen_set_iopl_mask,
1017 .io_delay = xen_io_delay,
1018
1019 /* Xen takes care of %gs when switching to usermode for us */
1020 .swapgs = paravirt_nop,
1021
1022 .start_context_switch = paravirt_start_context_switch,
1023 .end_context_switch = xen_end_context_switch,
1024 };
1025
1026 static const struct pv_apic_ops xen_apic_ops __initconst = {
1027 #ifdef CONFIG_X86_LOCAL_APIC
1028 .startup_ipi_hook = paravirt_nop,
1029 #endif
1030 };
1031
xen_reboot(int reason)1032 static void xen_reboot(int reason)
1033 {
1034 struct sched_shutdown r = { .reason = reason };
1035
1036 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1037 BUG();
1038 }
1039
xen_restart(char * msg)1040 static void xen_restart(char *msg)
1041 {
1042 xen_reboot(SHUTDOWN_reboot);
1043 }
1044
xen_emergency_restart(void)1045 static void xen_emergency_restart(void)
1046 {
1047 xen_reboot(SHUTDOWN_reboot);
1048 }
1049
xen_machine_halt(void)1050 static void xen_machine_halt(void)
1051 {
1052 xen_reboot(SHUTDOWN_poweroff);
1053 }
1054
xen_machine_power_off(void)1055 static void xen_machine_power_off(void)
1056 {
1057 if (pm_power_off)
1058 pm_power_off();
1059 xen_reboot(SHUTDOWN_poweroff);
1060 }
1061
xen_crash_shutdown(struct pt_regs * regs)1062 static void xen_crash_shutdown(struct pt_regs *regs)
1063 {
1064 xen_reboot(SHUTDOWN_crash);
1065 }
1066
1067 static int
xen_panic_event(struct notifier_block * this,unsigned long event,void * ptr)1068 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1069 {
1070 xen_reboot(SHUTDOWN_crash);
1071 return NOTIFY_DONE;
1072 }
1073
1074 static struct notifier_block xen_panic_block = {
1075 .notifier_call= xen_panic_event,
1076 };
1077
xen_panic_handler_init(void)1078 int xen_panic_handler_init(void)
1079 {
1080 atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1081 return 0;
1082 }
1083
1084 static const struct machine_ops xen_machine_ops __initconst = {
1085 .restart = xen_restart,
1086 .halt = xen_machine_halt,
1087 .power_off = xen_machine_power_off,
1088 .shutdown = xen_machine_halt,
1089 .crash_shutdown = xen_crash_shutdown,
1090 .emergency_restart = xen_emergency_restart,
1091 };
1092
1093 /*
1094 * Set up the GDT and segment registers for -fstack-protector. Until
1095 * we do this, we have to be careful not to call any stack-protected
1096 * function, which is most of the kernel.
1097 */
xen_setup_stackprotector(void)1098 static void __init xen_setup_stackprotector(void)
1099 {
1100 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1101 pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1102
1103 setup_stack_canary_segment(0);
1104 switch_to_new_gdt(0);
1105
1106 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1107 pv_cpu_ops.load_gdt = xen_load_gdt;
1108 }
1109
1110 /* First C function to be called on Xen boot */
xen_start_kernel(void)1111 asmlinkage void __init xen_start_kernel(void)
1112 {
1113 struct physdev_set_iopl set_iopl;
1114 int rc;
1115 pgd_t *pgd;
1116
1117 if (!xen_start_info)
1118 return;
1119
1120 xen_domain_type = XEN_PV_DOMAIN;
1121
1122 xen_setup_machphys_mapping();
1123
1124 /* Install Xen paravirt ops */
1125 pv_info = xen_info;
1126 pv_init_ops = xen_init_ops;
1127 pv_cpu_ops = xen_cpu_ops;
1128 pv_apic_ops = xen_apic_ops;
1129
1130 x86_init.resources.memory_setup = xen_memory_setup;
1131 x86_init.oem.arch_setup = xen_arch_setup;
1132 x86_init.oem.banner = xen_banner;
1133
1134 xen_init_time_ops();
1135
1136 /*
1137 * Set up some pagetable state before starting to set any ptes.
1138 */
1139
1140 xen_init_mmu_ops();
1141
1142 /* Prevent unwanted bits from being set in PTEs. */
1143 __supported_pte_mask &= ~_PAGE_GLOBAL;
1144 #if 0
1145 if (!xen_initial_domain())
1146 #endif
1147 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1148
1149 __supported_pte_mask |= _PAGE_IOMAP;
1150
1151 /*
1152 * Prevent page tables from being allocated in highmem, even
1153 * if CONFIG_HIGHPTE is enabled.
1154 */
1155 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1156
1157 /* Work out if we support NX */
1158 x86_configure_nx();
1159
1160 xen_setup_features();
1161
1162 /* Get mfn list */
1163 if (!xen_feature(XENFEAT_auto_translated_physmap))
1164 xen_build_dynamic_phys_to_machine();
1165
1166 /*
1167 * Set up kernel GDT and segment registers, mainly so that
1168 * -fstack-protector code can be executed.
1169 */
1170 xen_setup_stackprotector();
1171
1172 xen_init_irq_ops();
1173 xen_init_cpuid_mask();
1174
1175 #ifdef CONFIG_X86_LOCAL_APIC
1176 /*
1177 * set up the basic apic ops.
1178 */
1179 set_xen_basic_apic_ops();
1180 #endif
1181
1182 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1183 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1184 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1185 }
1186
1187 machine_ops = xen_machine_ops;
1188
1189 /*
1190 * The only reliable way to retain the initial address of the
1191 * percpu gdt_page is to remember it here, so we can go and
1192 * mark it RW later, when the initial percpu area is freed.
1193 */
1194 xen_initial_gdt = &per_cpu(gdt_page, 0);
1195
1196 xen_smp_init();
1197
1198 #ifdef CONFIG_ACPI_NUMA
1199 /*
1200 * The pages we from Xen are not related to machine pages, so
1201 * any NUMA information the kernel tries to get from ACPI will
1202 * be meaningless. Prevent it from trying.
1203 */
1204 acpi_numa = -1;
1205 #endif
1206
1207 pgd = (pgd_t *)xen_start_info->pt_base;
1208
1209 /* Don't do the full vcpu_info placement stuff until we have a
1210 possible map and a non-dummy shared_info. */
1211 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1212
1213 local_irq_disable();
1214 early_boot_irqs_disabled = true;
1215
1216 xen_raw_console_write("mapping kernel into physical memory\n");
1217 pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1218 xen_ident_map_ISA();
1219
1220 /* Allocate and initialize top and mid mfn levels for p2m structure */
1221 xen_build_mfn_list_list();
1222
1223 /* keep using Xen gdt for now; no urgent need to change it */
1224
1225 #ifdef CONFIG_X86_32
1226 pv_info.kernel_rpl = 1;
1227 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1228 pv_info.kernel_rpl = 0;
1229 #else
1230 pv_info.kernel_rpl = 0;
1231 #endif
1232 /* set the limit of our address space */
1233 xen_reserve_top();
1234
1235 /* We used to do this in xen_arch_setup, but that is too late on AMD
1236 * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1237 * which pokes 0xcf8 port.
1238 */
1239 set_iopl.iopl = 1;
1240 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1241 if (rc != 0)
1242 xen_raw_printk("physdev_op failed %d\n", rc);
1243
1244 #ifdef CONFIG_X86_32
1245 /* set up basic CPUID stuff */
1246 cpu_detect(&new_cpu_data);
1247 new_cpu_data.hard_math = 1;
1248 new_cpu_data.wp_works_ok = 1;
1249 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1250 #endif
1251
1252 /* Poke various useful things into boot_params */
1253 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1254 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1255 ? __pa(xen_start_info->mod_start) : 0;
1256 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1257 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1258
1259 if (!xen_initial_domain()) {
1260 add_preferred_console("xenboot", 0, NULL);
1261 add_preferred_console("tty", 0, NULL);
1262 add_preferred_console("hvc", 0, NULL);
1263 if (pci_xen)
1264 x86_init.pci.arch_init = pci_xen_init;
1265 } else {
1266 const struct dom0_vga_console_info *info =
1267 (void *)((char *)xen_start_info +
1268 xen_start_info->console.dom0.info_off);
1269
1270 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1271 xen_start_info->console.domU.mfn = 0;
1272 xen_start_info->console.domU.evtchn = 0;
1273
1274 /* Make sure ACS will be enabled */
1275 pci_request_acs();
1276 }
1277
1278
1279 xen_raw_console_write("about to get started...\n");
1280
1281 xen_setup_runstate_info(0);
1282
1283 /* Start the world */
1284 #ifdef CONFIG_X86_32
1285 i386_start_kernel();
1286 #else
1287 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1288 #endif
1289 }
1290
init_hvm_pv_info(int * major,int * minor)1291 static int init_hvm_pv_info(int *major, int *minor)
1292 {
1293 uint32_t eax, ebx, ecx, edx, pages, msr, base;
1294 u64 pfn;
1295
1296 base = xen_cpuid_base();
1297 cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1298
1299 *major = eax >> 16;
1300 *minor = eax & 0xffff;
1301 printk(KERN_INFO "Xen version %d.%d.\n", *major, *minor);
1302
1303 cpuid(base + 2, &pages, &msr, &ecx, &edx);
1304
1305 pfn = __pa(hypercall_page);
1306 wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1307
1308 xen_setup_features();
1309
1310 pv_info.name = "Xen HVM";
1311
1312 xen_domain_type = XEN_HVM_DOMAIN;
1313
1314 return 0;
1315 }
1316
xen_hvm_init_shared_info(void)1317 void __ref xen_hvm_init_shared_info(void)
1318 {
1319 int cpu;
1320 struct xen_add_to_physmap xatp;
1321 static struct shared_info *shared_info_page = 0;
1322
1323 if (!shared_info_page)
1324 shared_info_page = (struct shared_info *)
1325 extend_brk(PAGE_SIZE, PAGE_SIZE);
1326 xatp.domid = DOMID_SELF;
1327 xatp.idx = 0;
1328 xatp.space = XENMAPSPACE_shared_info;
1329 xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1330 if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1331 BUG();
1332
1333 HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1334
1335 /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1336 * page, we use it in the event channel upcall and in some pvclock
1337 * related functions. We don't need the vcpu_info placement
1338 * optimizations because we don't use any pv_mmu or pv_irq op on
1339 * HVM.
1340 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1341 * online but xen_hvm_init_shared_info is run at resume time too and
1342 * in that case multiple vcpus might be online. */
1343 for_each_online_cpu(cpu) {
1344 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1345 }
1346 }
1347
1348 #ifdef CONFIG_XEN_PVHVM
xen_hvm_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)1349 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1350 unsigned long action, void *hcpu)
1351 {
1352 int cpu = (long)hcpu;
1353 switch (action) {
1354 case CPU_UP_PREPARE:
1355 xen_vcpu_setup(cpu);
1356 if (xen_have_vector_callback)
1357 xen_init_lock_cpu(cpu);
1358 break;
1359 default:
1360 break;
1361 }
1362 return NOTIFY_OK;
1363 }
1364
1365 static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = {
1366 .notifier_call = xen_hvm_cpu_notify,
1367 };
1368
xen_hvm_guest_init(void)1369 static void __init xen_hvm_guest_init(void)
1370 {
1371 int r;
1372 int major, minor;
1373
1374 r = init_hvm_pv_info(&major, &minor);
1375 if (r < 0)
1376 return;
1377
1378 xen_hvm_init_shared_info();
1379
1380 if (xen_feature(XENFEAT_hvm_callback_vector))
1381 xen_have_vector_callback = 1;
1382 xen_hvm_smp_init();
1383 register_cpu_notifier(&xen_hvm_cpu_notifier);
1384 xen_unplug_emulated_devices();
1385 x86_init.irqs.intr_init = xen_init_IRQ;
1386 xen_hvm_init_time_ops();
1387 xen_hvm_init_mmu_ops();
1388 }
1389
xen_hvm_platform(void)1390 static bool __init xen_hvm_platform(void)
1391 {
1392 if (xen_pv_domain())
1393 return false;
1394
1395 if (!xen_cpuid_base())
1396 return false;
1397
1398 return true;
1399 }
1400
xen_hvm_need_lapic(void)1401 bool xen_hvm_need_lapic(void)
1402 {
1403 if (xen_pv_domain())
1404 return false;
1405 if (!xen_hvm_domain())
1406 return false;
1407 if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1408 return false;
1409 return true;
1410 }
1411 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1412
1413 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1414 .name = "Xen HVM",
1415 .detect = xen_hvm_platform,
1416 .init_platform = xen_hvm_guest_init,
1417 };
1418 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1419 #endif
1420