1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22 
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/ftrace_event.h>
31 #include <linux/slab.h>
32 #include <linux/tboot.h>
33 #include "kvm_cache_regs.h"
34 #include "x86.h"
35 
36 #include <asm/io.h>
37 #include <asm/desc.h>
38 #include <asm/vmx.h>
39 #include <asm/virtext.h>
40 #include <asm/mce.h>
41 #include <asm/i387.h>
42 #include <asm/xcr.h>
43 #include <asm/perf_event.h>
44 
45 #include "trace.h"
46 
47 #define __ex(x) __kvm_handle_fault_on_reboot(x)
48 #define __ex_clear(x, reg) \
49 	____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
50 
51 MODULE_AUTHOR("Qumranet");
52 MODULE_LICENSE("GPL");
53 
54 static bool __read_mostly enable_vpid = 1;
55 module_param_named(vpid, enable_vpid, bool, 0444);
56 
57 static bool __read_mostly flexpriority_enabled = 1;
58 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
59 
60 static bool __read_mostly enable_ept = 1;
61 module_param_named(ept, enable_ept, bool, S_IRUGO);
62 
63 static bool __read_mostly enable_unrestricted_guest = 1;
64 module_param_named(unrestricted_guest,
65 			enable_unrestricted_guest, bool, S_IRUGO);
66 
67 static bool __read_mostly emulate_invalid_guest_state = 0;
68 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
69 
70 static bool __read_mostly vmm_exclusive = 1;
71 module_param(vmm_exclusive, bool, S_IRUGO);
72 
73 static bool __read_mostly yield_on_hlt = 1;
74 module_param(yield_on_hlt, bool, S_IRUGO);
75 
76 static bool __read_mostly fasteoi = 1;
77 module_param(fasteoi, bool, S_IRUGO);
78 
79 /*
80  * If nested=1, nested virtualization is supported, i.e., guests may use
81  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
82  * use VMX instructions.
83  */
84 static bool __read_mostly nested = 0;
85 module_param(nested, bool, S_IRUGO);
86 
87 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST				\
88 	(X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
89 #define KVM_GUEST_CR0_MASK						\
90 	(KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
91 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST				\
92 	(X86_CR0_WP | X86_CR0_NE)
93 #define KVM_VM_CR0_ALWAYS_ON						\
94 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
95 #define KVM_CR4_GUEST_OWNED_BITS				      \
96 	(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
97 	 | X86_CR4_OSXMMEXCPT)
98 
99 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
100 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
101 
102 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
103 
104 /*
105  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
106  * ple_gap:    upper bound on the amount of time between two successive
107  *             executions of PAUSE in a loop. Also indicate if ple enabled.
108  *             According to test, this time is usually smaller than 128 cycles.
109  * ple_window: upper bound on the amount of time a guest is allowed to execute
110  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
111  *             less than 2^12 cycles
112  * Time is measured based on a counter that runs at the same rate as the TSC,
113  * refer SDM volume 3b section 21.6.13 & 22.1.3.
114  */
115 #define KVM_VMX_DEFAULT_PLE_GAP    128
116 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
117 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
118 module_param(ple_gap, int, S_IRUGO);
119 
120 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
121 module_param(ple_window, int, S_IRUGO);
122 
123 #define NR_AUTOLOAD_MSRS 8
124 #define VMCS02_POOL_SIZE 1
125 
126 struct vmcs {
127 	u32 revision_id;
128 	u32 abort;
129 	char data[0];
130 };
131 
132 /*
133  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
134  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
135  * loaded on this CPU (so we can clear them if the CPU goes down).
136  */
137 struct loaded_vmcs {
138 	struct vmcs *vmcs;
139 	int cpu;
140 	int launched;
141 	struct list_head loaded_vmcss_on_cpu_link;
142 };
143 
144 struct shared_msr_entry {
145 	unsigned index;
146 	u64 data;
147 	u64 mask;
148 };
149 
150 /*
151  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
152  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
153  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
154  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
155  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
156  * More than one of these structures may exist, if L1 runs multiple L2 guests.
157  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
158  * underlying hardware which will be used to run L2.
159  * This structure is packed to ensure that its layout is identical across
160  * machines (necessary for live migration).
161  * If there are changes in this struct, VMCS12_REVISION must be changed.
162  */
163 typedef u64 natural_width;
164 struct __packed vmcs12 {
165 	/* According to the Intel spec, a VMCS region must start with the
166 	 * following two fields. Then follow implementation-specific data.
167 	 */
168 	u32 revision_id;
169 	u32 abort;
170 
171 	u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
172 	u32 padding[7]; /* room for future expansion */
173 
174 	u64 io_bitmap_a;
175 	u64 io_bitmap_b;
176 	u64 msr_bitmap;
177 	u64 vm_exit_msr_store_addr;
178 	u64 vm_exit_msr_load_addr;
179 	u64 vm_entry_msr_load_addr;
180 	u64 tsc_offset;
181 	u64 virtual_apic_page_addr;
182 	u64 apic_access_addr;
183 	u64 ept_pointer;
184 	u64 guest_physical_address;
185 	u64 vmcs_link_pointer;
186 	u64 guest_ia32_debugctl;
187 	u64 guest_ia32_pat;
188 	u64 guest_ia32_efer;
189 	u64 guest_ia32_perf_global_ctrl;
190 	u64 guest_pdptr0;
191 	u64 guest_pdptr1;
192 	u64 guest_pdptr2;
193 	u64 guest_pdptr3;
194 	u64 host_ia32_pat;
195 	u64 host_ia32_efer;
196 	u64 host_ia32_perf_global_ctrl;
197 	u64 padding64[8]; /* room for future expansion */
198 	/*
199 	 * To allow migration of L1 (complete with its L2 guests) between
200 	 * machines of different natural widths (32 or 64 bit), we cannot have
201 	 * unsigned long fields with no explict size. We use u64 (aliased
202 	 * natural_width) instead. Luckily, x86 is little-endian.
203 	 */
204 	natural_width cr0_guest_host_mask;
205 	natural_width cr4_guest_host_mask;
206 	natural_width cr0_read_shadow;
207 	natural_width cr4_read_shadow;
208 	natural_width cr3_target_value0;
209 	natural_width cr3_target_value1;
210 	natural_width cr3_target_value2;
211 	natural_width cr3_target_value3;
212 	natural_width exit_qualification;
213 	natural_width guest_linear_address;
214 	natural_width guest_cr0;
215 	natural_width guest_cr3;
216 	natural_width guest_cr4;
217 	natural_width guest_es_base;
218 	natural_width guest_cs_base;
219 	natural_width guest_ss_base;
220 	natural_width guest_ds_base;
221 	natural_width guest_fs_base;
222 	natural_width guest_gs_base;
223 	natural_width guest_ldtr_base;
224 	natural_width guest_tr_base;
225 	natural_width guest_gdtr_base;
226 	natural_width guest_idtr_base;
227 	natural_width guest_dr7;
228 	natural_width guest_rsp;
229 	natural_width guest_rip;
230 	natural_width guest_rflags;
231 	natural_width guest_pending_dbg_exceptions;
232 	natural_width guest_sysenter_esp;
233 	natural_width guest_sysenter_eip;
234 	natural_width host_cr0;
235 	natural_width host_cr3;
236 	natural_width host_cr4;
237 	natural_width host_fs_base;
238 	natural_width host_gs_base;
239 	natural_width host_tr_base;
240 	natural_width host_gdtr_base;
241 	natural_width host_idtr_base;
242 	natural_width host_ia32_sysenter_esp;
243 	natural_width host_ia32_sysenter_eip;
244 	natural_width host_rsp;
245 	natural_width host_rip;
246 	natural_width paddingl[8]; /* room for future expansion */
247 	u32 pin_based_vm_exec_control;
248 	u32 cpu_based_vm_exec_control;
249 	u32 exception_bitmap;
250 	u32 page_fault_error_code_mask;
251 	u32 page_fault_error_code_match;
252 	u32 cr3_target_count;
253 	u32 vm_exit_controls;
254 	u32 vm_exit_msr_store_count;
255 	u32 vm_exit_msr_load_count;
256 	u32 vm_entry_controls;
257 	u32 vm_entry_msr_load_count;
258 	u32 vm_entry_intr_info_field;
259 	u32 vm_entry_exception_error_code;
260 	u32 vm_entry_instruction_len;
261 	u32 tpr_threshold;
262 	u32 secondary_vm_exec_control;
263 	u32 vm_instruction_error;
264 	u32 vm_exit_reason;
265 	u32 vm_exit_intr_info;
266 	u32 vm_exit_intr_error_code;
267 	u32 idt_vectoring_info_field;
268 	u32 idt_vectoring_error_code;
269 	u32 vm_exit_instruction_len;
270 	u32 vmx_instruction_info;
271 	u32 guest_es_limit;
272 	u32 guest_cs_limit;
273 	u32 guest_ss_limit;
274 	u32 guest_ds_limit;
275 	u32 guest_fs_limit;
276 	u32 guest_gs_limit;
277 	u32 guest_ldtr_limit;
278 	u32 guest_tr_limit;
279 	u32 guest_gdtr_limit;
280 	u32 guest_idtr_limit;
281 	u32 guest_es_ar_bytes;
282 	u32 guest_cs_ar_bytes;
283 	u32 guest_ss_ar_bytes;
284 	u32 guest_ds_ar_bytes;
285 	u32 guest_fs_ar_bytes;
286 	u32 guest_gs_ar_bytes;
287 	u32 guest_ldtr_ar_bytes;
288 	u32 guest_tr_ar_bytes;
289 	u32 guest_interruptibility_info;
290 	u32 guest_activity_state;
291 	u32 guest_sysenter_cs;
292 	u32 host_ia32_sysenter_cs;
293 	u32 padding32[8]; /* room for future expansion */
294 	u16 virtual_processor_id;
295 	u16 guest_es_selector;
296 	u16 guest_cs_selector;
297 	u16 guest_ss_selector;
298 	u16 guest_ds_selector;
299 	u16 guest_fs_selector;
300 	u16 guest_gs_selector;
301 	u16 guest_ldtr_selector;
302 	u16 guest_tr_selector;
303 	u16 host_es_selector;
304 	u16 host_cs_selector;
305 	u16 host_ss_selector;
306 	u16 host_ds_selector;
307 	u16 host_fs_selector;
308 	u16 host_gs_selector;
309 	u16 host_tr_selector;
310 };
311 
312 /*
313  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
314  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
315  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
316  */
317 #define VMCS12_REVISION 0x11e57ed0
318 
319 /*
320  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
321  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
322  * current implementation, 4K are reserved to avoid future complications.
323  */
324 #define VMCS12_SIZE 0x1000
325 
326 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
327 struct vmcs02_list {
328 	struct list_head list;
329 	gpa_t vmptr;
330 	struct loaded_vmcs vmcs02;
331 };
332 
333 /*
334  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
335  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
336  */
337 struct nested_vmx {
338 	/* Has the level1 guest done vmxon? */
339 	bool vmxon;
340 
341 	/* The guest-physical address of the current VMCS L1 keeps for L2 */
342 	gpa_t current_vmptr;
343 	/* The host-usable pointer to the above */
344 	struct page *current_vmcs12_page;
345 	struct vmcs12 *current_vmcs12;
346 
347 	/* vmcs02_list cache of VMCSs recently used to run L2 guests */
348 	struct list_head vmcs02_pool;
349 	int vmcs02_num;
350 	u64 vmcs01_tsc_offset;
351 	/* L2 must run next, and mustn't decide to exit to L1. */
352 	bool nested_run_pending;
353 	/*
354 	 * Guest pages referred to in vmcs02 with host-physical pointers, so
355 	 * we must keep them pinned while L2 runs.
356 	 */
357 	struct page *apic_access_page;
358 };
359 
360 struct vcpu_vmx {
361 	struct kvm_vcpu       vcpu;
362 	unsigned long         host_rsp;
363 	u8                    fail;
364 	u8                    cpl;
365 	bool                  nmi_known_unmasked;
366 	u32                   exit_intr_info;
367 	u32                   idt_vectoring_info;
368 	ulong                 rflags;
369 	struct shared_msr_entry *guest_msrs;
370 	int                   nmsrs;
371 	int                   save_nmsrs;
372 #ifdef CONFIG_X86_64
373 	u64 		      msr_host_kernel_gs_base;
374 	u64 		      msr_guest_kernel_gs_base;
375 #endif
376 	/*
377 	 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
378 	 * non-nested (L1) guest, it always points to vmcs01. For a nested
379 	 * guest (L2), it points to a different VMCS.
380 	 */
381 	struct loaded_vmcs    vmcs01;
382 	struct loaded_vmcs   *loaded_vmcs;
383 	bool                  __launched; /* temporary, used in vmx_vcpu_run */
384 	struct msr_autoload {
385 		unsigned nr;
386 		struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
387 		struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
388 	} msr_autoload;
389 	struct {
390 		int           loaded;
391 		u16           fs_sel, gs_sel, ldt_sel;
392 		int           gs_ldt_reload_needed;
393 		int           fs_reload_needed;
394 	} host_state;
395 	struct {
396 		int vm86_active;
397 		ulong save_rflags;
398 		struct kvm_save_segment {
399 			u16 selector;
400 			unsigned long base;
401 			u32 limit;
402 			u32 ar;
403 		} tr, es, ds, fs, gs;
404 	} rmode;
405 	struct {
406 		u32 bitmask; /* 4 bits per segment (1 bit per field) */
407 		struct kvm_save_segment seg[8];
408 	} segment_cache;
409 	int vpid;
410 	bool emulation_required;
411 
412 	/* Support for vnmi-less CPUs */
413 	int soft_vnmi_blocked;
414 	ktime_t entry_time;
415 	s64 vnmi_blocked_time;
416 	u32 exit_reason;
417 
418 	bool rdtscp_enabled;
419 
420 	/* Support for a guest hypervisor (nested VMX) */
421 	struct nested_vmx nested;
422 };
423 
424 enum segment_cache_field {
425 	SEG_FIELD_SEL = 0,
426 	SEG_FIELD_BASE = 1,
427 	SEG_FIELD_LIMIT = 2,
428 	SEG_FIELD_AR = 3,
429 
430 	SEG_FIELD_NR = 4
431 };
432 
to_vmx(struct kvm_vcpu * vcpu)433 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
434 {
435 	return container_of(vcpu, struct vcpu_vmx, vcpu);
436 }
437 
438 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
439 #define FIELD(number, name)	[number] = VMCS12_OFFSET(name)
440 #define FIELD64(number, name)	[number] = VMCS12_OFFSET(name), \
441 				[number##_HIGH] = VMCS12_OFFSET(name)+4
442 
443 static unsigned short vmcs_field_to_offset_table[] = {
444 	FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
445 	FIELD(GUEST_ES_SELECTOR, guest_es_selector),
446 	FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
447 	FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
448 	FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
449 	FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
450 	FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
451 	FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
452 	FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
453 	FIELD(HOST_ES_SELECTOR, host_es_selector),
454 	FIELD(HOST_CS_SELECTOR, host_cs_selector),
455 	FIELD(HOST_SS_SELECTOR, host_ss_selector),
456 	FIELD(HOST_DS_SELECTOR, host_ds_selector),
457 	FIELD(HOST_FS_SELECTOR, host_fs_selector),
458 	FIELD(HOST_GS_SELECTOR, host_gs_selector),
459 	FIELD(HOST_TR_SELECTOR, host_tr_selector),
460 	FIELD64(IO_BITMAP_A, io_bitmap_a),
461 	FIELD64(IO_BITMAP_B, io_bitmap_b),
462 	FIELD64(MSR_BITMAP, msr_bitmap),
463 	FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
464 	FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
465 	FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
466 	FIELD64(TSC_OFFSET, tsc_offset),
467 	FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
468 	FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
469 	FIELD64(EPT_POINTER, ept_pointer),
470 	FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
471 	FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
472 	FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
473 	FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
474 	FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
475 	FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
476 	FIELD64(GUEST_PDPTR0, guest_pdptr0),
477 	FIELD64(GUEST_PDPTR1, guest_pdptr1),
478 	FIELD64(GUEST_PDPTR2, guest_pdptr2),
479 	FIELD64(GUEST_PDPTR3, guest_pdptr3),
480 	FIELD64(HOST_IA32_PAT, host_ia32_pat),
481 	FIELD64(HOST_IA32_EFER, host_ia32_efer),
482 	FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
483 	FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
484 	FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
485 	FIELD(EXCEPTION_BITMAP, exception_bitmap),
486 	FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
487 	FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
488 	FIELD(CR3_TARGET_COUNT, cr3_target_count),
489 	FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
490 	FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
491 	FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
492 	FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
493 	FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
494 	FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
495 	FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
496 	FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
497 	FIELD(TPR_THRESHOLD, tpr_threshold),
498 	FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
499 	FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
500 	FIELD(VM_EXIT_REASON, vm_exit_reason),
501 	FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
502 	FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
503 	FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
504 	FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
505 	FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
506 	FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
507 	FIELD(GUEST_ES_LIMIT, guest_es_limit),
508 	FIELD(GUEST_CS_LIMIT, guest_cs_limit),
509 	FIELD(GUEST_SS_LIMIT, guest_ss_limit),
510 	FIELD(GUEST_DS_LIMIT, guest_ds_limit),
511 	FIELD(GUEST_FS_LIMIT, guest_fs_limit),
512 	FIELD(GUEST_GS_LIMIT, guest_gs_limit),
513 	FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
514 	FIELD(GUEST_TR_LIMIT, guest_tr_limit),
515 	FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
516 	FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
517 	FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
518 	FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
519 	FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
520 	FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
521 	FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
522 	FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
523 	FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
524 	FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
525 	FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
526 	FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
527 	FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
528 	FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
529 	FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
530 	FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
531 	FIELD(CR0_READ_SHADOW, cr0_read_shadow),
532 	FIELD(CR4_READ_SHADOW, cr4_read_shadow),
533 	FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
534 	FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
535 	FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
536 	FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
537 	FIELD(EXIT_QUALIFICATION, exit_qualification),
538 	FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
539 	FIELD(GUEST_CR0, guest_cr0),
540 	FIELD(GUEST_CR3, guest_cr3),
541 	FIELD(GUEST_CR4, guest_cr4),
542 	FIELD(GUEST_ES_BASE, guest_es_base),
543 	FIELD(GUEST_CS_BASE, guest_cs_base),
544 	FIELD(GUEST_SS_BASE, guest_ss_base),
545 	FIELD(GUEST_DS_BASE, guest_ds_base),
546 	FIELD(GUEST_FS_BASE, guest_fs_base),
547 	FIELD(GUEST_GS_BASE, guest_gs_base),
548 	FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
549 	FIELD(GUEST_TR_BASE, guest_tr_base),
550 	FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
551 	FIELD(GUEST_IDTR_BASE, guest_idtr_base),
552 	FIELD(GUEST_DR7, guest_dr7),
553 	FIELD(GUEST_RSP, guest_rsp),
554 	FIELD(GUEST_RIP, guest_rip),
555 	FIELD(GUEST_RFLAGS, guest_rflags),
556 	FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
557 	FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
558 	FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
559 	FIELD(HOST_CR0, host_cr0),
560 	FIELD(HOST_CR3, host_cr3),
561 	FIELD(HOST_CR4, host_cr4),
562 	FIELD(HOST_FS_BASE, host_fs_base),
563 	FIELD(HOST_GS_BASE, host_gs_base),
564 	FIELD(HOST_TR_BASE, host_tr_base),
565 	FIELD(HOST_GDTR_BASE, host_gdtr_base),
566 	FIELD(HOST_IDTR_BASE, host_idtr_base),
567 	FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
568 	FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
569 	FIELD(HOST_RSP, host_rsp),
570 	FIELD(HOST_RIP, host_rip),
571 };
572 static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
573 
vmcs_field_to_offset(unsigned long field)574 static inline short vmcs_field_to_offset(unsigned long field)
575 {
576 	if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
577 		return -1;
578 	return vmcs_field_to_offset_table[field];
579 }
580 
get_vmcs12(struct kvm_vcpu * vcpu)581 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
582 {
583 	return to_vmx(vcpu)->nested.current_vmcs12;
584 }
585 
nested_get_page(struct kvm_vcpu * vcpu,gpa_t addr)586 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
587 {
588 	struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
589 	if (is_error_page(page)) {
590 		kvm_release_page_clean(page);
591 		return NULL;
592 	}
593 	return page;
594 }
595 
nested_release_page(struct page * page)596 static void nested_release_page(struct page *page)
597 {
598 	kvm_release_page_dirty(page);
599 }
600 
nested_release_page_clean(struct page * page)601 static void nested_release_page_clean(struct page *page)
602 {
603 	kvm_release_page_clean(page);
604 }
605 
606 static u64 construct_eptp(unsigned long root_hpa);
607 static void kvm_cpu_vmxon(u64 addr);
608 static void kvm_cpu_vmxoff(void);
609 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
610 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
611 
612 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
613 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
614 /*
615  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
616  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
617  */
618 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
619 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
620 
621 static unsigned long *vmx_io_bitmap_a;
622 static unsigned long *vmx_io_bitmap_b;
623 static unsigned long *vmx_msr_bitmap_legacy;
624 static unsigned long *vmx_msr_bitmap_longmode;
625 
626 static bool cpu_has_load_ia32_efer;
627 static bool cpu_has_load_perf_global_ctrl;
628 
629 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
630 static DEFINE_SPINLOCK(vmx_vpid_lock);
631 
632 static struct vmcs_config {
633 	int size;
634 	int order;
635 	u32 revision_id;
636 	u32 pin_based_exec_ctrl;
637 	u32 cpu_based_exec_ctrl;
638 	u32 cpu_based_2nd_exec_ctrl;
639 	u32 vmexit_ctrl;
640 	u32 vmentry_ctrl;
641 } vmcs_config;
642 
643 static struct vmx_capability {
644 	u32 ept;
645 	u32 vpid;
646 } vmx_capability;
647 
648 #define VMX_SEGMENT_FIELD(seg)					\
649 	[VCPU_SREG_##seg] = {                                   \
650 		.selector = GUEST_##seg##_SELECTOR,		\
651 		.base = GUEST_##seg##_BASE,		   	\
652 		.limit = GUEST_##seg##_LIMIT,		   	\
653 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
654 	}
655 
656 static struct kvm_vmx_segment_field {
657 	unsigned selector;
658 	unsigned base;
659 	unsigned limit;
660 	unsigned ar_bytes;
661 } kvm_vmx_segment_fields[] = {
662 	VMX_SEGMENT_FIELD(CS),
663 	VMX_SEGMENT_FIELD(DS),
664 	VMX_SEGMENT_FIELD(ES),
665 	VMX_SEGMENT_FIELD(FS),
666 	VMX_SEGMENT_FIELD(GS),
667 	VMX_SEGMENT_FIELD(SS),
668 	VMX_SEGMENT_FIELD(TR),
669 	VMX_SEGMENT_FIELD(LDTR),
670 };
671 
672 static u64 host_efer;
673 
674 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
675 
676 /*
677  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
678  * away by decrementing the array size.
679  */
680 static const u32 vmx_msr_index[] = {
681 #ifdef CONFIG_X86_64
682 	MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
683 #endif
684 	MSR_EFER, MSR_TSC_AUX, MSR_STAR,
685 };
686 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
687 
is_page_fault(u32 intr_info)688 static inline bool is_page_fault(u32 intr_info)
689 {
690 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
691 			     INTR_INFO_VALID_MASK)) ==
692 		(INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
693 }
694 
is_no_device(u32 intr_info)695 static inline bool is_no_device(u32 intr_info)
696 {
697 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
698 			     INTR_INFO_VALID_MASK)) ==
699 		(INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
700 }
701 
is_invalid_opcode(u32 intr_info)702 static inline bool is_invalid_opcode(u32 intr_info)
703 {
704 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
705 			     INTR_INFO_VALID_MASK)) ==
706 		(INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
707 }
708 
is_external_interrupt(u32 intr_info)709 static inline bool is_external_interrupt(u32 intr_info)
710 {
711 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
712 		== (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
713 }
714 
is_machine_check(u32 intr_info)715 static inline bool is_machine_check(u32 intr_info)
716 {
717 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
718 			     INTR_INFO_VALID_MASK)) ==
719 		(INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
720 }
721 
cpu_has_vmx_msr_bitmap(void)722 static inline bool cpu_has_vmx_msr_bitmap(void)
723 {
724 	return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
725 }
726 
cpu_has_vmx_tpr_shadow(void)727 static inline bool cpu_has_vmx_tpr_shadow(void)
728 {
729 	return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
730 }
731 
vm_need_tpr_shadow(struct kvm * kvm)732 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
733 {
734 	return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
735 }
736 
cpu_has_secondary_exec_ctrls(void)737 static inline bool cpu_has_secondary_exec_ctrls(void)
738 {
739 	return vmcs_config.cpu_based_exec_ctrl &
740 		CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
741 }
742 
cpu_has_vmx_virtualize_apic_accesses(void)743 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
744 {
745 	return vmcs_config.cpu_based_2nd_exec_ctrl &
746 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
747 }
748 
cpu_has_vmx_flexpriority(void)749 static inline bool cpu_has_vmx_flexpriority(void)
750 {
751 	return cpu_has_vmx_tpr_shadow() &&
752 		cpu_has_vmx_virtualize_apic_accesses();
753 }
754 
cpu_has_vmx_ept_execute_only(void)755 static inline bool cpu_has_vmx_ept_execute_only(void)
756 {
757 	return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
758 }
759 
cpu_has_vmx_eptp_uncacheable(void)760 static inline bool cpu_has_vmx_eptp_uncacheable(void)
761 {
762 	return vmx_capability.ept & VMX_EPTP_UC_BIT;
763 }
764 
cpu_has_vmx_eptp_writeback(void)765 static inline bool cpu_has_vmx_eptp_writeback(void)
766 {
767 	return vmx_capability.ept & VMX_EPTP_WB_BIT;
768 }
769 
cpu_has_vmx_ept_2m_page(void)770 static inline bool cpu_has_vmx_ept_2m_page(void)
771 {
772 	return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
773 }
774 
cpu_has_vmx_ept_1g_page(void)775 static inline bool cpu_has_vmx_ept_1g_page(void)
776 {
777 	return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
778 }
779 
cpu_has_vmx_ept_4levels(void)780 static inline bool cpu_has_vmx_ept_4levels(void)
781 {
782 	return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
783 }
784 
cpu_has_vmx_invept_individual_addr(void)785 static inline bool cpu_has_vmx_invept_individual_addr(void)
786 {
787 	return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
788 }
789 
cpu_has_vmx_invept_context(void)790 static inline bool cpu_has_vmx_invept_context(void)
791 {
792 	return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
793 }
794 
cpu_has_vmx_invept_global(void)795 static inline bool cpu_has_vmx_invept_global(void)
796 {
797 	return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
798 }
799 
cpu_has_vmx_invvpid_single(void)800 static inline bool cpu_has_vmx_invvpid_single(void)
801 {
802 	return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
803 }
804 
cpu_has_vmx_invvpid_global(void)805 static inline bool cpu_has_vmx_invvpid_global(void)
806 {
807 	return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
808 }
809 
cpu_has_vmx_ept(void)810 static inline bool cpu_has_vmx_ept(void)
811 {
812 	return vmcs_config.cpu_based_2nd_exec_ctrl &
813 		SECONDARY_EXEC_ENABLE_EPT;
814 }
815 
cpu_has_vmx_unrestricted_guest(void)816 static inline bool cpu_has_vmx_unrestricted_guest(void)
817 {
818 	return vmcs_config.cpu_based_2nd_exec_ctrl &
819 		SECONDARY_EXEC_UNRESTRICTED_GUEST;
820 }
821 
cpu_has_vmx_ple(void)822 static inline bool cpu_has_vmx_ple(void)
823 {
824 	return vmcs_config.cpu_based_2nd_exec_ctrl &
825 		SECONDARY_EXEC_PAUSE_LOOP_EXITING;
826 }
827 
vm_need_virtualize_apic_accesses(struct kvm * kvm)828 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
829 {
830 	return flexpriority_enabled && irqchip_in_kernel(kvm);
831 }
832 
cpu_has_vmx_vpid(void)833 static inline bool cpu_has_vmx_vpid(void)
834 {
835 	return vmcs_config.cpu_based_2nd_exec_ctrl &
836 		SECONDARY_EXEC_ENABLE_VPID;
837 }
838 
cpu_has_vmx_rdtscp(void)839 static inline bool cpu_has_vmx_rdtscp(void)
840 {
841 	return vmcs_config.cpu_based_2nd_exec_ctrl &
842 		SECONDARY_EXEC_RDTSCP;
843 }
844 
cpu_has_virtual_nmis(void)845 static inline bool cpu_has_virtual_nmis(void)
846 {
847 	return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
848 }
849 
cpu_has_vmx_wbinvd_exit(void)850 static inline bool cpu_has_vmx_wbinvd_exit(void)
851 {
852 	return vmcs_config.cpu_based_2nd_exec_ctrl &
853 		SECONDARY_EXEC_WBINVD_EXITING;
854 }
855 
report_flexpriority(void)856 static inline bool report_flexpriority(void)
857 {
858 	return flexpriority_enabled;
859 }
860 
nested_cpu_has(struct vmcs12 * vmcs12,u32 bit)861 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
862 {
863 	return vmcs12->cpu_based_vm_exec_control & bit;
864 }
865 
nested_cpu_has2(struct vmcs12 * vmcs12,u32 bit)866 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
867 {
868 	return (vmcs12->cpu_based_vm_exec_control &
869 			CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
870 		(vmcs12->secondary_vm_exec_control & bit);
871 }
872 
nested_cpu_has_virtual_nmis(struct vmcs12 * vmcs12,struct kvm_vcpu * vcpu)873 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
874 	struct kvm_vcpu *vcpu)
875 {
876 	return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
877 }
878 
is_exception(u32 intr_info)879 static inline bool is_exception(u32 intr_info)
880 {
881 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
882 		== (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
883 }
884 
885 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
886 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
887 			struct vmcs12 *vmcs12,
888 			u32 reason, unsigned long qualification);
889 
__find_msr_index(struct vcpu_vmx * vmx,u32 msr)890 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
891 {
892 	int i;
893 
894 	for (i = 0; i < vmx->nmsrs; ++i)
895 		if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
896 			return i;
897 	return -1;
898 }
899 
__invvpid(int ext,u16 vpid,gva_t gva)900 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
901 {
902     struct {
903 	u64 vpid : 16;
904 	u64 rsvd : 48;
905 	u64 gva;
906     } operand = { vpid, 0, gva };
907 
908     asm volatile (__ex(ASM_VMX_INVVPID)
909 		  /* CF==1 or ZF==1 --> rc = -1 */
910 		  "; ja 1f ; ud2 ; 1:"
911 		  : : "a"(&operand), "c"(ext) : "cc", "memory");
912 }
913 
__invept(int ext,u64 eptp,gpa_t gpa)914 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
915 {
916 	struct {
917 		u64 eptp, gpa;
918 	} operand = {eptp, gpa};
919 
920 	asm volatile (__ex(ASM_VMX_INVEPT)
921 			/* CF==1 or ZF==1 --> rc = -1 */
922 			"; ja 1f ; ud2 ; 1:\n"
923 			: : "a" (&operand), "c" (ext) : "cc", "memory");
924 }
925 
find_msr_entry(struct vcpu_vmx * vmx,u32 msr)926 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
927 {
928 	int i;
929 
930 	i = __find_msr_index(vmx, msr);
931 	if (i >= 0)
932 		return &vmx->guest_msrs[i];
933 	return NULL;
934 }
935 
vmcs_clear(struct vmcs * vmcs)936 static void vmcs_clear(struct vmcs *vmcs)
937 {
938 	u64 phys_addr = __pa(vmcs);
939 	u8 error;
940 
941 	asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
942 		      : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
943 		      : "cc", "memory");
944 	if (error)
945 		printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
946 		       vmcs, phys_addr);
947 }
948 
loaded_vmcs_init(struct loaded_vmcs * loaded_vmcs)949 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
950 {
951 	vmcs_clear(loaded_vmcs->vmcs);
952 	loaded_vmcs->cpu = -1;
953 	loaded_vmcs->launched = 0;
954 }
955 
vmcs_load(struct vmcs * vmcs)956 static void vmcs_load(struct vmcs *vmcs)
957 {
958 	u64 phys_addr = __pa(vmcs);
959 	u8 error;
960 
961 	asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
962 			: "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
963 			: "cc", "memory");
964 	if (error)
965 		printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
966 		       vmcs, phys_addr);
967 }
968 
__loaded_vmcs_clear(void * arg)969 static void __loaded_vmcs_clear(void *arg)
970 {
971 	struct loaded_vmcs *loaded_vmcs = arg;
972 	int cpu = raw_smp_processor_id();
973 
974 	if (loaded_vmcs->cpu != cpu)
975 		return; /* vcpu migration can race with cpu offline */
976 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
977 		per_cpu(current_vmcs, cpu) = NULL;
978 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
979 	loaded_vmcs_init(loaded_vmcs);
980 }
981 
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)982 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
983 {
984 	if (loaded_vmcs->cpu != -1)
985 		smp_call_function_single(
986 			loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
987 }
988 
vpid_sync_vcpu_single(struct vcpu_vmx * vmx)989 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
990 {
991 	if (vmx->vpid == 0)
992 		return;
993 
994 	if (cpu_has_vmx_invvpid_single())
995 		__invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
996 }
997 
vpid_sync_vcpu_global(void)998 static inline void vpid_sync_vcpu_global(void)
999 {
1000 	if (cpu_has_vmx_invvpid_global())
1001 		__invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1002 }
1003 
vpid_sync_context(struct vcpu_vmx * vmx)1004 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1005 {
1006 	if (cpu_has_vmx_invvpid_single())
1007 		vpid_sync_vcpu_single(vmx);
1008 	else
1009 		vpid_sync_vcpu_global();
1010 }
1011 
ept_sync_global(void)1012 static inline void ept_sync_global(void)
1013 {
1014 	if (cpu_has_vmx_invept_global())
1015 		__invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1016 }
1017 
ept_sync_context(u64 eptp)1018 static inline void ept_sync_context(u64 eptp)
1019 {
1020 	if (enable_ept) {
1021 		if (cpu_has_vmx_invept_context())
1022 			__invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1023 		else
1024 			ept_sync_global();
1025 	}
1026 }
1027 
ept_sync_individual_addr(u64 eptp,gpa_t gpa)1028 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
1029 {
1030 	if (enable_ept) {
1031 		if (cpu_has_vmx_invept_individual_addr())
1032 			__invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
1033 					eptp, gpa);
1034 		else
1035 			ept_sync_context(eptp);
1036 	}
1037 }
1038 
vmcs_readl(unsigned long field)1039 static __always_inline unsigned long vmcs_readl(unsigned long field)
1040 {
1041 	unsigned long value;
1042 
1043 	asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1044 		      : "=a"(value) : "d"(field) : "cc");
1045 	return value;
1046 }
1047 
vmcs_read16(unsigned long field)1048 static __always_inline u16 vmcs_read16(unsigned long field)
1049 {
1050 	return vmcs_readl(field);
1051 }
1052 
vmcs_read32(unsigned long field)1053 static __always_inline u32 vmcs_read32(unsigned long field)
1054 {
1055 	return vmcs_readl(field);
1056 }
1057 
vmcs_read64(unsigned long field)1058 static __always_inline u64 vmcs_read64(unsigned long field)
1059 {
1060 #ifdef CONFIG_X86_64
1061 	return vmcs_readl(field);
1062 #else
1063 	return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1064 #endif
1065 }
1066 
vmwrite_error(unsigned long field,unsigned long value)1067 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1068 {
1069 	printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1070 	       field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1071 	dump_stack();
1072 }
1073 
vmcs_writel(unsigned long field,unsigned long value)1074 static void vmcs_writel(unsigned long field, unsigned long value)
1075 {
1076 	u8 error;
1077 
1078 	asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1079 		       : "=q"(error) : "a"(value), "d"(field) : "cc");
1080 	if (unlikely(error))
1081 		vmwrite_error(field, value);
1082 }
1083 
vmcs_write16(unsigned long field,u16 value)1084 static void vmcs_write16(unsigned long field, u16 value)
1085 {
1086 	vmcs_writel(field, value);
1087 }
1088 
vmcs_write32(unsigned long field,u32 value)1089 static void vmcs_write32(unsigned long field, u32 value)
1090 {
1091 	vmcs_writel(field, value);
1092 }
1093 
vmcs_write64(unsigned long field,u64 value)1094 static void vmcs_write64(unsigned long field, u64 value)
1095 {
1096 	vmcs_writel(field, value);
1097 #ifndef CONFIG_X86_64
1098 	asm volatile ("");
1099 	vmcs_writel(field+1, value >> 32);
1100 #endif
1101 }
1102 
vmcs_clear_bits(unsigned long field,u32 mask)1103 static void vmcs_clear_bits(unsigned long field, u32 mask)
1104 {
1105 	vmcs_writel(field, vmcs_readl(field) & ~mask);
1106 }
1107 
vmcs_set_bits(unsigned long field,u32 mask)1108 static void vmcs_set_bits(unsigned long field, u32 mask)
1109 {
1110 	vmcs_writel(field, vmcs_readl(field) | mask);
1111 }
1112 
vmx_segment_cache_clear(struct vcpu_vmx * vmx)1113 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1114 {
1115 	vmx->segment_cache.bitmask = 0;
1116 }
1117 
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)1118 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1119 				       unsigned field)
1120 {
1121 	bool ret;
1122 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1123 
1124 	if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1125 		vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1126 		vmx->segment_cache.bitmask = 0;
1127 	}
1128 	ret = vmx->segment_cache.bitmask & mask;
1129 	vmx->segment_cache.bitmask |= mask;
1130 	return ret;
1131 }
1132 
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)1133 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1134 {
1135 	u16 *p = &vmx->segment_cache.seg[seg].selector;
1136 
1137 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1138 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1139 	return *p;
1140 }
1141 
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)1142 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1143 {
1144 	ulong *p = &vmx->segment_cache.seg[seg].base;
1145 
1146 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1147 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1148 	return *p;
1149 }
1150 
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)1151 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1152 {
1153 	u32 *p = &vmx->segment_cache.seg[seg].limit;
1154 
1155 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1156 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1157 	return *p;
1158 }
1159 
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)1160 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1161 {
1162 	u32 *p = &vmx->segment_cache.seg[seg].ar;
1163 
1164 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1165 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1166 	return *p;
1167 }
1168 
update_exception_bitmap(struct kvm_vcpu * vcpu)1169 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1170 {
1171 	u32 eb;
1172 
1173 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1174 	     (1u << NM_VECTOR) | (1u << DB_VECTOR);
1175 	if ((vcpu->guest_debug &
1176 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1177 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1178 		eb |= 1u << BP_VECTOR;
1179 	if (to_vmx(vcpu)->rmode.vm86_active)
1180 		eb = ~0;
1181 	if (enable_ept)
1182 		eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1183 	if (vcpu->fpu_active)
1184 		eb &= ~(1u << NM_VECTOR);
1185 
1186 	/* When we are running a nested L2 guest and L1 specified for it a
1187 	 * certain exception bitmap, we must trap the same exceptions and pass
1188 	 * them to L1. When running L2, we will only handle the exceptions
1189 	 * specified above if L1 did not want them.
1190 	 */
1191 	if (is_guest_mode(vcpu))
1192 		eb |= get_vmcs12(vcpu)->exception_bitmap;
1193 
1194 	vmcs_write32(EXCEPTION_BITMAP, eb);
1195 }
1196 
clear_atomic_switch_msr_special(unsigned long entry,unsigned long exit)1197 static void clear_atomic_switch_msr_special(unsigned long entry,
1198 		unsigned long exit)
1199 {
1200 	vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
1201 	vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
1202 }
1203 
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)1204 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1205 {
1206 	unsigned i;
1207 	struct msr_autoload *m = &vmx->msr_autoload;
1208 
1209 	switch (msr) {
1210 	case MSR_EFER:
1211 		if (cpu_has_load_ia32_efer) {
1212 			clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1213 					VM_EXIT_LOAD_IA32_EFER);
1214 			return;
1215 		}
1216 		break;
1217 	case MSR_CORE_PERF_GLOBAL_CTRL:
1218 		if (cpu_has_load_perf_global_ctrl) {
1219 			clear_atomic_switch_msr_special(
1220 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1221 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1222 			return;
1223 		}
1224 		break;
1225 	}
1226 
1227 	for (i = 0; i < m->nr; ++i)
1228 		if (m->guest[i].index == msr)
1229 			break;
1230 
1231 	if (i == m->nr)
1232 		return;
1233 	--m->nr;
1234 	m->guest[i] = m->guest[m->nr];
1235 	m->host[i] = m->host[m->nr];
1236 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1237 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1238 }
1239 
add_atomic_switch_msr_special(unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)1240 static void add_atomic_switch_msr_special(unsigned long entry,
1241 		unsigned long exit, unsigned long guest_val_vmcs,
1242 		unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
1243 {
1244 	vmcs_write64(guest_val_vmcs, guest_val);
1245 	vmcs_write64(host_val_vmcs, host_val);
1246 	vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
1247 	vmcs_set_bits(VM_EXIT_CONTROLS, exit);
1248 }
1249 
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val)1250 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1251 				  u64 guest_val, u64 host_val)
1252 {
1253 	unsigned i;
1254 	struct msr_autoload *m = &vmx->msr_autoload;
1255 
1256 	switch (msr) {
1257 	case MSR_EFER:
1258 		if (cpu_has_load_ia32_efer) {
1259 			add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1260 					VM_EXIT_LOAD_IA32_EFER,
1261 					GUEST_IA32_EFER,
1262 					HOST_IA32_EFER,
1263 					guest_val, host_val);
1264 			return;
1265 		}
1266 		break;
1267 	case MSR_CORE_PERF_GLOBAL_CTRL:
1268 		if (cpu_has_load_perf_global_ctrl) {
1269 			add_atomic_switch_msr_special(
1270 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1271 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1272 					GUEST_IA32_PERF_GLOBAL_CTRL,
1273 					HOST_IA32_PERF_GLOBAL_CTRL,
1274 					guest_val, host_val);
1275 			return;
1276 		}
1277 		break;
1278 	}
1279 
1280 	for (i = 0; i < m->nr; ++i)
1281 		if (m->guest[i].index == msr)
1282 			break;
1283 
1284 	if (i == NR_AUTOLOAD_MSRS) {
1285 		printk_once(KERN_WARNING"Not enough mst switch entries. "
1286 				"Can't add msr %x\n", msr);
1287 		return;
1288 	} else if (i == m->nr) {
1289 		++m->nr;
1290 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1291 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1292 	}
1293 
1294 	m->guest[i].index = msr;
1295 	m->guest[i].value = guest_val;
1296 	m->host[i].index = msr;
1297 	m->host[i].value = host_val;
1298 }
1299 
reload_tss(void)1300 static void reload_tss(void)
1301 {
1302 	/*
1303 	 * VT restores TR but not its size.  Useless.
1304 	 */
1305 	struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1306 	struct desc_struct *descs;
1307 
1308 	descs = (void *)gdt->address;
1309 	descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1310 	load_TR_desc();
1311 }
1312 
update_transition_efer(struct vcpu_vmx * vmx,int efer_offset)1313 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1314 {
1315 	u64 guest_efer;
1316 	u64 ignore_bits;
1317 
1318 	guest_efer = vmx->vcpu.arch.efer;
1319 
1320 	/*
1321 	 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
1322 	 * outside long mode
1323 	 */
1324 	ignore_bits = EFER_NX | EFER_SCE;
1325 #ifdef CONFIG_X86_64
1326 	ignore_bits |= EFER_LMA | EFER_LME;
1327 	/* SCE is meaningful only in long mode on Intel */
1328 	if (guest_efer & EFER_LMA)
1329 		ignore_bits &= ~(u64)EFER_SCE;
1330 #endif
1331 	guest_efer &= ~ignore_bits;
1332 	guest_efer |= host_efer & ignore_bits;
1333 	vmx->guest_msrs[efer_offset].data = guest_efer;
1334 	vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1335 
1336 	clear_atomic_switch_msr(vmx, MSR_EFER);
1337 	/* On ept, can't emulate nx, and must switch nx atomically */
1338 	if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1339 		guest_efer = vmx->vcpu.arch.efer;
1340 		if (!(guest_efer & EFER_LMA))
1341 			guest_efer &= ~EFER_LME;
1342 		add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1343 		return false;
1344 	}
1345 
1346 	return true;
1347 }
1348 
segment_base(u16 selector)1349 static unsigned long segment_base(u16 selector)
1350 {
1351 	struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1352 	struct desc_struct *d;
1353 	unsigned long table_base;
1354 	unsigned long v;
1355 
1356 	if (!(selector & ~3))
1357 		return 0;
1358 
1359 	table_base = gdt->address;
1360 
1361 	if (selector & 4) {           /* from ldt */
1362 		u16 ldt_selector = kvm_read_ldt();
1363 
1364 		if (!(ldt_selector & ~3))
1365 			return 0;
1366 
1367 		table_base = segment_base(ldt_selector);
1368 	}
1369 	d = (struct desc_struct *)(table_base + (selector & ~7));
1370 	v = get_desc_base(d);
1371 #ifdef CONFIG_X86_64
1372        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1373                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1374 #endif
1375 	return v;
1376 }
1377 
kvm_read_tr_base(void)1378 static inline unsigned long kvm_read_tr_base(void)
1379 {
1380 	u16 tr;
1381 	asm("str %0" : "=g"(tr));
1382 	return segment_base(tr);
1383 }
1384 
vmx_save_host_state(struct kvm_vcpu * vcpu)1385 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1386 {
1387 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1388 	int i;
1389 
1390 	if (vmx->host_state.loaded)
1391 		return;
1392 
1393 	vmx->host_state.loaded = 1;
1394 	/*
1395 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1396 	 * allow segment selectors with cpl > 0 or ti == 1.
1397 	 */
1398 	vmx->host_state.ldt_sel = kvm_read_ldt();
1399 	vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1400 	savesegment(fs, vmx->host_state.fs_sel);
1401 	if (!(vmx->host_state.fs_sel & 7)) {
1402 		vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1403 		vmx->host_state.fs_reload_needed = 0;
1404 	} else {
1405 		vmcs_write16(HOST_FS_SELECTOR, 0);
1406 		vmx->host_state.fs_reload_needed = 1;
1407 	}
1408 	savesegment(gs, vmx->host_state.gs_sel);
1409 	if (!(vmx->host_state.gs_sel & 7))
1410 		vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1411 	else {
1412 		vmcs_write16(HOST_GS_SELECTOR, 0);
1413 		vmx->host_state.gs_ldt_reload_needed = 1;
1414 	}
1415 
1416 #ifdef CONFIG_X86_64
1417 	vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1418 	vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1419 #else
1420 	vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1421 	vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1422 #endif
1423 
1424 #ifdef CONFIG_X86_64
1425 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1426 	if (is_long_mode(&vmx->vcpu))
1427 		wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1428 #endif
1429 	for (i = 0; i < vmx->save_nmsrs; ++i)
1430 		kvm_set_shared_msr(vmx->guest_msrs[i].index,
1431 				   vmx->guest_msrs[i].data,
1432 				   vmx->guest_msrs[i].mask);
1433 }
1434 
__vmx_load_host_state(struct vcpu_vmx * vmx)1435 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1436 {
1437 	if (!vmx->host_state.loaded)
1438 		return;
1439 
1440 	++vmx->vcpu.stat.host_state_reload;
1441 	vmx->host_state.loaded = 0;
1442 #ifdef CONFIG_X86_64
1443 	if (is_long_mode(&vmx->vcpu))
1444 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1445 #endif
1446 	if (vmx->host_state.gs_ldt_reload_needed) {
1447 		kvm_load_ldt(vmx->host_state.ldt_sel);
1448 #ifdef CONFIG_X86_64
1449 		load_gs_index(vmx->host_state.gs_sel);
1450 #else
1451 		loadsegment(gs, vmx->host_state.gs_sel);
1452 #endif
1453 	}
1454 	if (vmx->host_state.fs_reload_needed)
1455 		loadsegment(fs, vmx->host_state.fs_sel);
1456 	reload_tss();
1457 #ifdef CONFIG_X86_64
1458 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1459 #endif
1460 	if (__thread_has_fpu(current))
1461 		clts();
1462 	load_gdt(&__get_cpu_var(host_gdt));
1463 }
1464 
vmx_load_host_state(struct vcpu_vmx * vmx)1465 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1466 {
1467 	preempt_disable();
1468 	__vmx_load_host_state(vmx);
1469 	preempt_enable();
1470 }
1471 
1472 /*
1473  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1474  * vcpu mutex is already taken.
1475  */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1476 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1477 {
1478 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1479 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1480 
1481 	if (!vmm_exclusive)
1482 		kvm_cpu_vmxon(phys_addr);
1483 	else if (vmx->loaded_vmcs->cpu != cpu)
1484 		loaded_vmcs_clear(vmx->loaded_vmcs);
1485 
1486 	if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1487 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1488 		vmcs_load(vmx->loaded_vmcs->vmcs);
1489 	}
1490 
1491 	if (vmx->loaded_vmcs->cpu != cpu) {
1492 		struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1493 		unsigned long sysenter_esp;
1494 
1495 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1496 		local_irq_disable();
1497 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1498 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1499 		local_irq_enable();
1500 
1501 		/*
1502 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1503 		 * processors.
1504 		 */
1505 		vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1506 		vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
1507 
1508 		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1509 		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1510 		vmx->loaded_vmcs->cpu = cpu;
1511 	}
1512 }
1513 
vmx_vcpu_put(struct kvm_vcpu * vcpu)1514 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1515 {
1516 	__vmx_load_host_state(to_vmx(vcpu));
1517 	if (!vmm_exclusive) {
1518 		__loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1519 		vcpu->cpu = -1;
1520 		kvm_cpu_vmxoff();
1521 	}
1522 }
1523 
vmx_fpu_activate(struct kvm_vcpu * vcpu)1524 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1525 {
1526 	ulong cr0;
1527 
1528 	if (vcpu->fpu_active)
1529 		return;
1530 	vcpu->fpu_active = 1;
1531 	cr0 = vmcs_readl(GUEST_CR0);
1532 	cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1533 	cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1534 	vmcs_writel(GUEST_CR0, cr0);
1535 	update_exception_bitmap(vcpu);
1536 	vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1537 	if (is_guest_mode(vcpu))
1538 		vcpu->arch.cr0_guest_owned_bits &=
1539 			~get_vmcs12(vcpu)->cr0_guest_host_mask;
1540 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1541 }
1542 
1543 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1544 
1545 /*
1546  * Return the cr0 value that a nested guest would read. This is a combination
1547  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1548  * its hypervisor (cr0_read_shadow).
1549  */
nested_read_cr0(struct vmcs12 * fields)1550 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1551 {
1552 	return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1553 		(fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1554 }
nested_read_cr4(struct vmcs12 * fields)1555 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1556 {
1557 	return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1558 		(fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1559 }
1560 
vmx_fpu_deactivate(struct kvm_vcpu * vcpu)1561 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1562 {
1563 	/* Note that there is no vcpu->fpu_active = 0 here. The caller must
1564 	 * set this *before* calling this function.
1565 	 */
1566 	vmx_decache_cr0_guest_bits(vcpu);
1567 	vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1568 	update_exception_bitmap(vcpu);
1569 	vcpu->arch.cr0_guest_owned_bits = 0;
1570 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1571 	if (is_guest_mode(vcpu)) {
1572 		/*
1573 		 * L1's specified read shadow might not contain the TS bit,
1574 		 * so now that we turned on shadowing of this bit, we need to
1575 		 * set this bit of the shadow. Like in nested_vmx_run we need
1576 		 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1577 		 * up-to-date here because we just decached cr0.TS (and we'll
1578 		 * only update vmcs12->guest_cr0 on nested exit).
1579 		 */
1580 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1581 		vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1582 			(vcpu->arch.cr0 & X86_CR0_TS);
1583 		vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1584 	} else
1585 		vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1586 }
1587 
vmx_get_rflags(struct kvm_vcpu * vcpu)1588 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1589 {
1590 	unsigned long rflags, save_rflags;
1591 
1592 	if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1593 		__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1594 		rflags = vmcs_readl(GUEST_RFLAGS);
1595 		if (to_vmx(vcpu)->rmode.vm86_active) {
1596 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1597 			save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1598 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1599 		}
1600 		to_vmx(vcpu)->rflags = rflags;
1601 	}
1602 	return to_vmx(vcpu)->rflags;
1603 }
1604 
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1605 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1606 {
1607 	__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1608 	__clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
1609 	to_vmx(vcpu)->rflags = rflags;
1610 	if (to_vmx(vcpu)->rmode.vm86_active) {
1611 		to_vmx(vcpu)->rmode.save_rflags = rflags;
1612 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1613 	}
1614 	vmcs_writel(GUEST_RFLAGS, rflags);
1615 }
1616 
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)1617 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1618 {
1619 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1620 	int ret = 0;
1621 
1622 	if (interruptibility & GUEST_INTR_STATE_STI)
1623 		ret |= KVM_X86_SHADOW_INT_STI;
1624 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1625 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1626 
1627 	return ret & mask;
1628 }
1629 
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)1630 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1631 {
1632 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1633 	u32 interruptibility = interruptibility_old;
1634 
1635 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1636 
1637 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1638 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1639 	else if (mask & KVM_X86_SHADOW_INT_STI)
1640 		interruptibility |= GUEST_INTR_STATE_STI;
1641 
1642 	if ((interruptibility != interruptibility_old))
1643 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1644 }
1645 
skip_emulated_instruction(struct kvm_vcpu * vcpu)1646 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1647 {
1648 	unsigned long rip;
1649 
1650 	rip = kvm_rip_read(vcpu);
1651 	rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1652 	kvm_rip_write(vcpu, rip);
1653 
1654 	/* skipping an emulated instruction also counts */
1655 	vmx_set_interrupt_shadow(vcpu, 0);
1656 }
1657 
vmx_clear_hlt(struct kvm_vcpu * vcpu)1658 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1659 {
1660 	/* Ensure that we clear the HLT state in the VMCS.  We don't need to
1661 	 * explicitly skip the instruction because if the HLT state is set, then
1662 	 * the instruction is already executing and RIP has already been
1663 	 * advanced. */
1664 	if (!yield_on_hlt &&
1665 	    vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1666 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1667 }
1668 
1669 /*
1670  * KVM wants to inject page-faults which it got to the guest. This function
1671  * checks whether in a nested guest, we need to inject them to L1 or L2.
1672  * This function assumes it is called with the exit reason in vmcs02 being
1673  * a #PF exception (this is the only case in which KVM injects a #PF when L2
1674  * is running).
1675  */
nested_pf_handled(struct kvm_vcpu * vcpu)1676 static int nested_pf_handled(struct kvm_vcpu *vcpu)
1677 {
1678 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1679 
1680 	/* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
1681 	if (!(vmcs12->exception_bitmap & PF_VECTOR))
1682 		return 0;
1683 
1684 	nested_vmx_vmexit(vcpu);
1685 	return 1;
1686 }
1687 
vmx_queue_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error_code,u32 error_code,bool reinject)1688 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1689 				bool has_error_code, u32 error_code,
1690 				bool reinject)
1691 {
1692 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1693 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
1694 
1695 	if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
1696 		nested_pf_handled(vcpu))
1697 		return;
1698 
1699 	if (has_error_code) {
1700 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1701 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1702 	}
1703 
1704 	if (vmx->rmode.vm86_active) {
1705 		int inc_eip = 0;
1706 		if (kvm_exception_is_soft(nr))
1707 			inc_eip = vcpu->arch.event_exit_inst_len;
1708 		if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1709 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1710 		return;
1711 	}
1712 
1713 	if (kvm_exception_is_soft(nr)) {
1714 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1715 			     vmx->vcpu.arch.event_exit_inst_len);
1716 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1717 	} else
1718 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1719 
1720 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1721 	vmx_clear_hlt(vcpu);
1722 }
1723 
vmx_rdtscp_supported(void)1724 static bool vmx_rdtscp_supported(void)
1725 {
1726 	return cpu_has_vmx_rdtscp();
1727 }
1728 
1729 /*
1730  * Swap MSR entry in host/guest MSR entry array.
1731  */
move_msr_up(struct vcpu_vmx * vmx,int from,int to)1732 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1733 {
1734 	struct shared_msr_entry tmp;
1735 
1736 	tmp = vmx->guest_msrs[to];
1737 	vmx->guest_msrs[to] = vmx->guest_msrs[from];
1738 	vmx->guest_msrs[from] = tmp;
1739 }
1740 
1741 /*
1742  * Set up the vmcs to automatically save and restore system
1743  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1744  * mode, as fiddling with msrs is very expensive.
1745  */
setup_msrs(struct vcpu_vmx * vmx)1746 static void setup_msrs(struct vcpu_vmx *vmx)
1747 {
1748 	int save_nmsrs, index;
1749 	unsigned long *msr_bitmap;
1750 
1751 	save_nmsrs = 0;
1752 #ifdef CONFIG_X86_64
1753 	if (is_long_mode(&vmx->vcpu)) {
1754 		index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1755 		if (index >= 0)
1756 			move_msr_up(vmx, index, save_nmsrs++);
1757 		index = __find_msr_index(vmx, MSR_LSTAR);
1758 		if (index >= 0)
1759 			move_msr_up(vmx, index, save_nmsrs++);
1760 		index = __find_msr_index(vmx, MSR_CSTAR);
1761 		if (index >= 0)
1762 			move_msr_up(vmx, index, save_nmsrs++);
1763 		index = __find_msr_index(vmx, MSR_TSC_AUX);
1764 		if (index >= 0 && vmx->rdtscp_enabled)
1765 			move_msr_up(vmx, index, save_nmsrs++);
1766 		/*
1767 		 * MSR_STAR is only needed on long mode guests, and only
1768 		 * if efer.sce is enabled.
1769 		 */
1770 		index = __find_msr_index(vmx, MSR_STAR);
1771 		if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1772 			move_msr_up(vmx, index, save_nmsrs++);
1773 	}
1774 #endif
1775 	index = __find_msr_index(vmx, MSR_EFER);
1776 	if (index >= 0 && update_transition_efer(vmx, index))
1777 		move_msr_up(vmx, index, save_nmsrs++);
1778 
1779 	vmx->save_nmsrs = save_nmsrs;
1780 
1781 	if (cpu_has_vmx_msr_bitmap()) {
1782 		if (is_long_mode(&vmx->vcpu))
1783 			msr_bitmap = vmx_msr_bitmap_longmode;
1784 		else
1785 			msr_bitmap = vmx_msr_bitmap_legacy;
1786 
1787 		vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1788 	}
1789 }
1790 
1791 /*
1792  * reads and returns guest's timestamp counter "register"
1793  * guest_tsc = host_tsc + tsc_offset    -- 21.3
1794  */
guest_read_tsc(void)1795 static u64 guest_read_tsc(void)
1796 {
1797 	u64 host_tsc, tsc_offset;
1798 
1799 	rdtscll(host_tsc);
1800 	tsc_offset = vmcs_read64(TSC_OFFSET);
1801 	return host_tsc + tsc_offset;
1802 }
1803 
1804 /*
1805  * Like guest_read_tsc, but always returns L1's notion of the timestamp
1806  * counter, even if a nested guest (L2) is currently running.
1807  */
vmx_read_l1_tsc(struct kvm_vcpu * vcpu)1808 u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu)
1809 {
1810 	u64 host_tsc, tsc_offset;
1811 
1812 	rdtscll(host_tsc);
1813 	tsc_offset = is_guest_mode(vcpu) ?
1814 		to_vmx(vcpu)->nested.vmcs01_tsc_offset :
1815 		vmcs_read64(TSC_OFFSET);
1816 	return host_tsc + tsc_offset;
1817 }
1818 
1819 /*
1820  * Empty call-back. Needs to be implemented when VMX enables the SET_TSC_KHZ
1821  * ioctl. In this case the call-back should update internal vmx state to make
1822  * the changes effective.
1823  */
vmx_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)1824 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1825 {
1826 	/* Nothing to do here */
1827 }
1828 
1829 /*
1830  * writes 'offset' into guest's timestamp counter offset register
1831  */
vmx_write_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)1832 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1833 {
1834 	if (is_guest_mode(vcpu)) {
1835 		/*
1836 		 * We're here if L1 chose not to trap WRMSR to TSC. According
1837 		 * to the spec, this should set L1's TSC; The offset that L1
1838 		 * set for L2 remains unchanged, and still needs to be added
1839 		 * to the newly set TSC to get L2's TSC.
1840 		 */
1841 		struct vmcs12 *vmcs12;
1842 		to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
1843 		/* recalculate vmcs02.TSC_OFFSET: */
1844 		vmcs12 = get_vmcs12(vcpu);
1845 		vmcs_write64(TSC_OFFSET, offset +
1846 			(nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
1847 			 vmcs12->tsc_offset : 0));
1848 	} else {
1849 		vmcs_write64(TSC_OFFSET, offset);
1850 	}
1851 }
1852 
vmx_adjust_tsc_offset(struct kvm_vcpu * vcpu,s64 adjustment)1853 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
1854 {
1855 	u64 offset = vmcs_read64(TSC_OFFSET);
1856 	vmcs_write64(TSC_OFFSET, offset + adjustment);
1857 	if (is_guest_mode(vcpu)) {
1858 		/* Even when running L2, the adjustment needs to apply to L1 */
1859 		to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
1860 	}
1861 }
1862 
vmx_compute_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)1863 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1864 {
1865 	return target_tsc - native_read_tsc();
1866 }
1867 
guest_cpuid_has_vmx(struct kvm_vcpu * vcpu)1868 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
1869 {
1870 	struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
1871 	return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
1872 }
1873 
1874 /*
1875  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1876  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1877  * all guests if the "nested" module option is off, and can also be disabled
1878  * for a single guest by disabling its VMX cpuid bit.
1879  */
nested_vmx_allowed(struct kvm_vcpu * vcpu)1880 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1881 {
1882 	return nested && guest_cpuid_has_vmx(vcpu);
1883 }
1884 
1885 /*
1886  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
1887  * returned for the various VMX controls MSRs when nested VMX is enabled.
1888  * The same values should also be used to verify that vmcs12 control fields are
1889  * valid during nested entry from L1 to L2.
1890  * Each of these control msrs has a low and high 32-bit half: A low bit is on
1891  * if the corresponding bit in the (32-bit) control field *must* be on, and a
1892  * bit in the high half is on if the corresponding bit in the control field
1893  * may be on. See also vmx_control_verify().
1894  * TODO: allow these variables to be modified (downgraded) by module options
1895  * or other means.
1896  */
1897 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
1898 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
1899 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
1900 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
1901 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
nested_vmx_setup_ctls_msrs(void)1902 static __init void nested_vmx_setup_ctls_msrs(void)
1903 {
1904 	/*
1905 	 * Note that as a general rule, the high half of the MSRs (bits in
1906 	 * the control fields which may be 1) should be initialized by the
1907 	 * intersection of the underlying hardware's MSR (i.e., features which
1908 	 * can be supported) and the list of features we want to expose -
1909 	 * because they are known to be properly supported in our code.
1910 	 * Also, usually, the low half of the MSRs (bits which must be 1) can
1911 	 * be set to 0, meaning that L1 may turn off any of these bits. The
1912 	 * reason is that if one of these bits is necessary, it will appear
1913 	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
1914 	 * fields of vmcs01 and vmcs02, will turn these bits off - and
1915 	 * nested_vmx_exit_handled() will not pass related exits to L1.
1916 	 * These rules have exceptions below.
1917 	 */
1918 
1919 	/* pin-based controls */
1920 	/*
1921 	 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
1922 	 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
1923 	 */
1924 	nested_vmx_pinbased_ctls_low = 0x16 ;
1925 	nested_vmx_pinbased_ctls_high = 0x16 |
1926 		PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
1927 		PIN_BASED_VIRTUAL_NMIS;
1928 
1929 	/* exit controls */
1930 	nested_vmx_exit_ctls_low = 0;
1931 	/* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
1932 #ifdef CONFIG_X86_64
1933 	nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
1934 #else
1935 	nested_vmx_exit_ctls_high = 0;
1936 #endif
1937 
1938 	/* entry controls */
1939 	rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
1940 		nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
1941 	nested_vmx_entry_ctls_low = 0;
1942 	nested_vmx_entry_ctls_high &=
1943 		VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
1944 
1945 	/* cpu-based controls */
1946 	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
1947 		nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
1948 	nested_vmx_procbased_ctls_low = 0;
1949 	nested_vmx_procbased_ctls_high &=
1950 		CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
1951 		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
1952 		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
1953 		CPU_BASED_CR3_STORE_EXITING |
1954 #ifdef CONFIG_X86_64
1955 		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
1956 #endif
1957 		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
1958 		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
1959 		CPU_BASED_RDPMC_EXITING |
1960 		CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1961 	/*
1962 	 * We can allow some features even when not supported by the
1963 	 * hardware. For example, L1 can specify an MSR bitmap - and we
1964 	 * can use it to avoid exits to L1 - even when L0 runs L2
1965 	 * without MSR bitmaps.
1966 	 */
1967 	nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
1968 
1969 	/* secondary cpu-based controls */
1970 	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
1971 		nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
1972 	nested_vmx_secondary_ctls_low = 0;
1973 	nested_vmx_secondary_ctls_high &=
1974 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1975 }
1976 
vmx_control_verify(u32 control,u32 low,u32 high)1977 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
1978 {
1979 	/*
1980 	 * Bits 0 in high must be 0, and bits 1 in low must be 1.
1981 	 */
1982 	return ((control & high) | low) == control;
1983 }
1984 
vmx_control_msr(u32 low,u32 high)1985 static inline u64 vmx_control_msr(u32 low, u32 high)
1986 {
1987 	return low | ((u64)high << 32);
1988 }
1989 
1990 /*
1991  * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
1992  * also let it use VMX-specific MSRs.
1993  * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
1994  * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
1995  * like all other MSRs).
1996  */
vmx_get_vmx_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 * pdata)1997 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1998 {
1999 	if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
2000 		     msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
2001 		/*
2002 		 * According to the spec, processors which do not support VMX
2003 		 * should throw a #GP(0) when VMX capability MSRs are read.
2004 		 */
2005 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
2006 		return 1;
2007 	}
2008 
2009 	switch (msr_index) {
2010 	case MSR_IA32_FEATURE_CONTROL:
2011 		*pdata = 0;
2012 		break;
2013 	case MSR_IA32_VMX_BASIC:
2014 		/*
2015 		 * This MSR reports some information about VMX support. We
2016 		 * should return information about the VMX we emulate for the
2017 		 * guest, and the VMCS structure we give it - not about the
2018 		 * VMX support of the underlying hardware.
2019 		 */
2020 		*pdata = VMCS12_REVISION |
2021 			   ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2022 			   (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2023 		break;
2024 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2025 	case MSR_IA32_VMX_PINBASED_CTLS:
2026 		*pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2027 					nested_vmx_pinbased_ctls_high);
2028 		break;
2029 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2030 	case MSR_IA32_VMX_PROCBASED_CTLS:
2031 		*pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2032 					nested_vmx_procbased_ctls_high);
2033 		break;
2034 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2035 	case MSR_IA32_VMX_EXIT_CTLS:
2036 		*pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2037 					nested_vmx_exit_ctls_high);
2038 		break;
2039 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2040 	case MSR_IA32_VMX_ENTRY_CTLS:
2041 		*pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2042 					nested_vmx_entry_ctls_high);
2043 		break;
2044 	case MSR_IA32_VMX_MISC:
2045 		*pdata = 0;
2046 		break;
2047 	/*
2048 	 * These MSRs specify bits which the guest must keep fixed (on or off)
2049 	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2050 	 * We picked the standard core2 setting.
2051 	 */
2052 #define VMXON_CR0_ALWAYSON	(X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2053 #define VMXON_CR4_ALWAYSON	X86_CR4_VMXE
2054 	case MSR_IA32_VMX_CR0_FIXED0:
2055 		*pdata = VMXON_CR0_ALWAYSON;
2056 		break;
2057 	case MSR_IA32_VMX_CR0_FIXED1:
2058 		*pdata = -1ULL;
2059 		break;
2060 	case MSR_IA32_VMX_CR4_FIXED0:
2061 		*pdata = VMXON_CR4_ALWAYSON;
2062 		break;
2063 	case MSR_IA32_VMX_CR4_FIXED1:
2064 		*pdata = -1ULL;
2065 		break;
2066 	case MSR_IA32_VMX_VMCS_ENUM:
2067 		*pdata = 0x1f;
2068 		break;
2069 	case MSR_IA32_VMX_PROCBASED_CTLS2:
2070 		*pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2071 					nested_vmx_secondary_ctls_high);
2072 		break;
2073 	case MSR_IA32_VMX_EPT_VPID_CAP:
2074 		/* Currently, no nested ept or nested vpid */
2075 		*pdata = 0;
2076 		break;
2077 	default:
2078 		return 0;
2079 	}
2080 
2081 	return 1;
2082 }
2083 
vmx_set_vmx_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 data)2084 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2085 {
2086 	if (!nested_vmx_allowed(vcpu))
2087 		return 0;
2088 
2089 	if (msr_index == MSR_IA32_FEATURE_CONTROL)
2090 		/* TODO: the right thing. */
2091 		return 1;
2092 	/*
2093 	 * No need to treat VMX capability MSRs specially: If we don't handle
2094 	 * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2095 	 */
2096 	return 0;
2097 }
2098 
2099 /*
2100  * Reads an msr value (of 'msr_index') into 'pdata'.
2101  * Returns 0 on success, non-0 otherwise.
2102  * Assumes vcpu_load() was already called.
2103  */
vmx_get_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 * pdata)2104 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2105 {
2106 	u64 data;
2107 	struct shared_msr_entry *msr;
2108 
2109 	if (!pdata) {
2110 		printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2111 		return -EINVAL;
2112 	}
2113 
2114 	switch (msr_index) {
2115 #ifdef CONFIG_X86_64
2116 	case MSR_FS_BASE:
2117 		data = vmcs_readl(GUEST_FS_BASE);
2118 		break;
2119 	case MSR_GS_BASE:
2120 		data = vmcs_readl(GUEST_GS_BASE);
2121 		break;
2122 	case MSR_KERNEL_GS_BASE:
2123 		vmx_load_host_state(to_vmx(vcpu));
2124 		data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2125 		break;
2126 #endif
2127 	case MSR_EFER:
2128 		return kvm_get_msr_common(vcpu, msr_index, pdata);
2129 	case MSR_IA32_TSC:
2130 		data = guest_read_tsc();
2131 		break;
2132 	case MSR_IA32_SYSENTER_CS:
2133 		data = vmcs_read32(GUEST_SYSENTER_CS);
2134 		break;
2135 	case MSR_IA32_SYSENTER_EIP:
2136 		data = vmcs_readl(GUEST_SYSENTER_EIP);
2137 		break;
2138 	case MSR_IA32_SYSENTER_ESP:
2139 		data = vmcs_readl(GUEST_SYSENTER_ESP);
2140 		break;
2141 	case MSR_TSC_AUX:
2142 		if (!to_vmx(vcpu)->rdtscp_enabled)
2143 			return 1;
2144 		/* Otherwise falls through */
2145 	default:
2146 		if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2147 			return 0;
2148 		msr = find_msr_entry(to_vmx(vcpu), msr_index);
2149 		if (msr) {
2150 			data = msr->data;
2151 			break;
2152 		}
2153 		return kvm_get_msr_common(vcpu, msr_index, pdata);
2154 	}
2155 
2156 	*pdata = data;
2157 	return 0;
2158 }
2159 
2160 /*
2161  * Writes msr value into into the appropriate "register".
2162  * Returns 0 on success, non-0 otherwise.
2163  * Assumes vcpu_load() was already called.
2164  */
vmx_set_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 data)2165 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2166 {
2167 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2168 	struct shared_msr_entry *msr;
2169 	int ret = 0;
2170 
2171 	switch (msr_index) {
2172 	case MSR_EFER:
2173 		ret = kvm_set_msr_common(vcpu, msr_index, data);
2174 		break;
2175 #ifdef CONFIG_X86_64
2176 	case MSR_FS_BASE:
2177 		vmx_segment_cache_clear(vmx);
2178 		vmcs_writel(GUEST_FS_BASE, data);
2179 		break;
2180 	case MSR_GS_BASE:
2181 		vmx_segment_cache_clear(vmx);
2182 		vmcs_writel(GUEST_GS_BASE, data);
2183 		break;
2184 	case MSR_KERNEL_GS_BASE:
2185 		vmx_load_host_state(vmx);
2186 		vmx->msr_guest_kernel_gs_base = data;
2187 		break;
2188 #endif
2189 	case MSR_IA32_SYSENTER_CS:
2190 		vmcs_write32(GUEST_SYSENTER_CS, data);
2191 		break;
2192 	case MSR_IA32_SYSENTER_EIP:
2193 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2194 		break;
2195 	case MSR_IA32_SYSENTER_ESP:
2196 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2197 		break;
2198 	case MSR_IA32_TSC:
2199 		kvm_write_tsc(vcpu, data);
2200 		break;
2201 	case MSR_IA32_CR_PAT:
2202 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2203 			vmcs_write64(GUEST_IA32_PAT, data);
2204 			vcpu->arch.pat = data;
2205 			break;
2206 		}
2207 		ret = kvm_set_msr_common(vcpu, msr_index, data);
2208 		break;
2209 	case MSR_TSC_AUX:
2210 		if (!vmx->rdtscp_enabled)
2211 			return 1;
2212 		/* Check reserved bit, higher 32 bits should be zero */
2213 		if ((data >> 32) != 0)
2214 			return 1;
2215 		/* Otherwise falls through */
2216 	default:
2217 		if (vmx_set_vmx_msr(vcpu, msr_index, data))
2218 			break;
2219 		msr = find_msr_entry(vmx, msr_index);
2220 		if (msr) {
2221 			msr->data = data;
2222 			break;
2223 		}
2224 		ret = kvm_set_msr_common(vcpu, msr_index, data);
2225 	}
2226 
2227 	return ret;
2228 }
2229 
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2230 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2231 {
2232 	__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2233 	switch (reg) {
2234 	case VCPU_REGS_RSP:
2235 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2236 		break;
2237 	case VCPU_REGS_RIP:
2238 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2239 		break;
2240 	case VCPU_EXREG_PDPTR:
2241 		if (enable_ept)
2242 			ept_save_pdptrs(vcpu);
2243 		break;
2244 	default:
2245 		break;
2246 	}
2247 }
2248 
set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)2249 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
2250 {
2251 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
2252 		vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
2253 	else
2254 		vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2255 
2256 	update_exception_bitmap(vcpu);
2257 }
2258 
cpu_has_kvm_support(void)2259 static __init int cpu_has_kvm_support(void)
2260 {
2261 	return cpu_has_vmx();
2262 }
2263 
vmx_disabled_by_bios(void)2264 static __init int vmx_disabled_by_bios(void)
2265 {
2266 	u64 msr;
2267 
2268 	rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2269 	if (msr & FEATURE_CONTROL_LOCKED) {
2270 		/* launched w/ TXT and VMX disabled */
2271 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2272 			&& tboot_enabled())
2273 			return 1;
2274 		/* launched w/o TXT and VMX only enabled w/ TXT */
2275 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2276 			&& (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2277 			&& !tboot_enabled()) {
2278 			printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2279 				"activate TXT before enabling KVM\n");
2280 			return 1;
2281 		}
2282 		/* launched w/o TXT and VMX disabled */
2283 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2284 			&& !tboot_enabled())
2285 			return 1;
2286 	}
2287 
2288 	return 0;
2289 }
2290 
kvm_cpu_vmxon(u64 addr)2291 static void kvm_cpu_vmxon(u64 addr)
2292 {
2293 	asm volatile (ASM_VMX_VMXON_RAX
2294 			: : "a"(&addr), "m"(addr)
2295 			: "memory", "cc");
2296 }
2297 
hardware_enable(void * garbage)2298 static int hardware_enable(void *garbage)
2299 {
2300 	int cpu = raw_smp_processor_id();
2301 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2302 	u64 old, test_bits;
2303 
2304 	if (read_cr4() & X86_CR4_VMXE)
2305 		return -EBUSY;
2306 
2307 	INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2308 	rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2309 
2310 	test_bits = FEATURE_CONTROL_LOCKED;
2311 	test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2312 	if (tboot_enabled())
2313 		test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2314 
2315 	if ((old & test_bits) != test_bits) {
2316 		/* enable and lock */
2317 		wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2318 	}
2319 	write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2320 
2321 	if (vmm_exclusive) {
2322 		kvm_cpu_vmxon(phys_addr);
2323 		ept_sync_global();
2324 	}
2325 
2326 	store_gdt(&__get_cpu_var(host_gdt));
2327 
2328 	return 0;
2329 }
2330 
vmclear_local_loaded_vmcss(void)2331 static void vmclear_local_loaded_vmcss(void)
2332 {
2333 	int cpu = raw_smp_processor_id();
2334 	struct loaded_vmcs *v, *n;
2335 
2336 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2337 				 loaded_vmcss_on_cpu_link)
2338 		__loaded_vmcs_clear(v);
2339 }
2340 
2341 
2342 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2343  * tricks.
2344  */
kvm_cpu_vmxoff(void)2345 static void kvm_cpu_vmxoff(void)
2346 {
2347 	asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2348 }
2349 
hardware_disable(void * garbage)2350 static void hardware_disable(void *garbage)
2351 {
2352 	if (vmm_exclusive) {
2353 		vmclear_local_loaded_vmcss();
2354 		kvm_cpu_vmxoff();
2355 	}
2356 	write_cr4(read_cr4() & ~X86_CR4_VMXE);
2357 }
2358 
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)2359 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2360 				      u32 msr, u32 *result)
2361 {
2362 	u32 vmx_msr_low, vmx_msr_high;
2363 	u32 ctl = ctl_min | ctl_opt;
2364 
2365 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2366 
2367 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2368 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2369 
2370 	/* Ensure minimum (required) set of control bits are supported. */
2371 	if (ctl_min & ~ctl)
2372 		return -EIO;
2373 
2374 	*result = ctl;
2375 	return 0;
2376 }
2377 
allow_1_setting(u32 msr,u32 ctl)2378 static __init bool allow_1_setting(u32 msr, u32 ctl)
2379 {
2380 	u32 vmx_msr_low, vmx_msr_high;
2381 
2382 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2383 	return vmx_msr_high & ctl;
2384 }
2385 
setup_vmcs_config(struct vmcs_config * vmcs_conf)2386 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2387 {
2388 	u32 vmx_msr_low, vmx_msr_high;
2389 	u32 min, opt, min2, opt2;
2390 	u32 _pin_based_exec_control = 0;
2391 	u32 _cpu_based_exec_control = 0;
2392 	u32 _cpu_based_2nd_exec_control = 0;
2393 	u32 _vmexit_control = 0;
2394 	u32 _vmentry_control = 0;
2395 
2396 	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2397 	opt = PIN_BASED_VIRTUAL_NMIS;
2398 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2399 				&_pin_based_exec_control) < 0)
2400 		return -EIO;
2401 
2402 	min =
2403 #ifdef CONFIG_X86_64
2404 	      CPU_BASED_CR8_LOAD_EXITING |
2405 	      CPU_BASED_CR8_STORE_EXITING |
2406 #endif
2407 	      CPU_BASED_CR3_LOAD_EXITING |
2408 	      CPU_BASED_CR3_STORE_EXITING |
2409 	      CPU_BASED_USE_IO_BITMAPS |
2410 	      CPU_BASED_MOV_DR_EXITING |
2411 	      CPU_BASED_USE_TSC_OFFSETING |
2412 	      CPU_BASED_MWAIT_EXITING |
2413 	      CPU_BASED_MONITOR_EXITING |
2414 	      CPU_BASED_INVLPG_EXITING |
2415 	      CPU_BASED_RDPMC_EXITING;
2416 
2417 	if (yield_on_hlt)
2418 		min |= CPU_BASED_HLT_EXITING;
2419 
2420 	opt = CPU_BASED_TPR_SHADOW |
2421 	      CPU_BASED_USE_MSR_BITMAPS |
2422 	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2423 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2424 				&_cpu_based_exec_control) < 0)
2425 		return -EIO;
2426 #ifdef CONFIG_X86_64
2427 	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2428 		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2429 					   ~CPU_BASED_CR8_STORE_EXITING;
2430 #endif
2431 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2432 		min2 = 0;
2433 		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2434 			SECONDARY_EXEC_WBINVD_EXITING |
2435 			SECONDARY_EXEC_ENABLE_VPID |
2436 			SECONDARY_EXEC_ENABLE_EPT |
2437 			SECONDARY_EXEC_UNRESTRICTED_GUEST |
2438 			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2439 			SECONDARY_EXEC_RDTSCP;
2440 		if (adjust_vmx_controls(min2, opt2,
2441 					MSR_IA32_VMX_PROCBASED_CTLS2,
2442 					&_cpu_based_2nd_exec_control) < 0)
2443 			return -EIO;
2444 	}
2445 #ifndef CONFIG_X86_64
2446 	if (!(_cpu_based_2nd_exec_control &
2447 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2448 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2449 #endif
2450 	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2451 		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2452 		   enabled */
2453 		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2454 					     CPU_BASED_CR3_STORE_EXITING |
2455 					     CPU_BASED_INVLPG_EXITING);
2456 		rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2457 		      vmx_capability.ept, vmx_capability.vpid);
2458 	}
2459 
2460 	min = 0;
2461 #ifdef CONFIG_X86_64
2462 	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2463 #endif
2464 	opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
2465 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2466 				&_vmexit_control) < 0)
2467 		return -EIO;
2468 
2469 	min = 0;
2470 	opt = VM_ENTRY_LOAD_IA32_PAT;
2471 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2472 				&_vmentry_control) < 0)
2473 		return -EIO;
2474 
2475 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2476 
2477 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2478 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2479 		return -EIO;
2480 
2481 #ifdef CONFIG_X86_64
2482 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2483 	if (vmx_msr_high & (1u<<16))
2484 		return -EIO;
2485 #endif
2486 
2487 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2488 	if (((vmx_msr_high >> 18) & 15) != 6)
2489 		return -EIO;
2490 
2491 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2492 	vmcs_conf->order = get_order(vmcs_config.size);
2493 	vmcs_conf->revision_id = vmx_msr_low;
2494 
2495 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2496 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2497 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2498 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2499 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2500 
2501 	cpu_has_load_ia32_efer =
2502 		allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2503 				VM_ENTRY_LOAD_IA32_EFER)
2504 		&& allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2505 				   VM_EXIT_LOAD_IA32_EFER);
2506 
2507 	cpu_has_load_perf_global_ctrl =
2508 		allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2509 				VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2510 		&& allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2511 				   VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2512 
2513 	/*
2514 	 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2515 	 * but due to arrata below it can't be used. Workaround is to use
2516 	 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2517 	 *
2518 	 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2519 	 *
2520 	 * AAK155             (model 26)
2521 	 * AAP115             (model 30)
2522 	 * AAT100             (model 37)
2523 	 * BC86,AAY89,BD102   (model 44)
2524 	 * BA97               (model 46)
2525 	 *
2526 	 */
2527 	if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2528 		switch (boot_cpu_data.x86_model) {
2529 		case 26:
2530 		case 30:
2531 		case 37:
2532 		case 44:
2533 		case 46:
2534 			cpu_has_load_perf_global_ctrl = false;
2535 			printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2536 					"does not work properly. Using workaround\n");
2537 			break;
2538 		default:
2539 			break;
2540 		}
2541 	}
2542 
2543 	return 0;
2544 }
2545 
alloc_vmcs_cpu(int cpu)2546 static struct vmcs *alloc_vmcs_cpu(int cpu)
2547 {
2548 	int node = cpu_to_node(cpu);
2549 	struct page *pages;
2550 	struct vmcs *vmcs;
2551 
2552 	pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2553 	if (!pages)
2554 		return NULL;
2555 	vmcs = page_address(pages);
2556 	memset(vmcs, 0, vmcs_config.size);
2557 	vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2558 	return vmcs;
2559 }
2560 
alloc_vmcs(void)2561 static struct vmcs *alloc_vmcs(void)
2562 {
2563 	return alloc_vmcs_cpu(raw_smp_processor_id());
2564 }
2565 
free_vmcs(struct vmcs * vmcs)2566 static void free_vmcs(struct vmcs *vmcs)
2567 {
2568 	free_pages((unsigned long)vmcs, vmcs_config.order);
2569 }
2570 
2571 /*
2572  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2573  */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2574 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2575 {
2576 	if (!loaded_vmcs->vmcs)
2577 		return;
2578 	loaded_vmcs_clear(loaded_vmcs);
2579 	free_vmcs(loaded_vmcs->vmcs);
2580 	loaded_vmcs->vmcs = NULL;
2581 }
2582 
free_kvm_area(void)2583 static void free_kvm_area(void)
2584 {
2585 	int cpu;
2586 
2587 	for_each_possible_cpu(cpu) {
2588 		free_vmcs(per_cpu(vmxarea, cpu));
2589 		per_cpu(vmxarea, cpu) = NULL;
2590 	}
2591 }
2592 
alloc_kvm_area(void)2593 static __init int alloc_kvm_area(void)
2594 {
2595 	int cpu;
2596 
2597 	for_each_possible_cpu(cpu) {
2598 		struct vmcs *vmcs;
2599 
2600 		vmcs = alloc_vmcs_cpu(cpu);
2601 		if (!vmcs) {
2602 			free_kvm_area();
2603 			return -ENOMEM;
2604 		}
2605 
2606 		per_cpu(vmxarea, cpu) = vmcs;
2607 	}
2608 	return 0;
2609 }
2610 
hardware_setup(void)2611 static __init int hardware_setup(void)
2612 {
2613 	if (setup_vmcs_config(&vmcs_config) < 0)
2614 		return -EIO;
2615 
2616 	if (boot_cpu_has(X86_FEATURE_NX))
2617 		kvm_enable_efer_bits(EFER_NX);
2618 
2619 	if (!cpu_has_vmx_vpid())
2620 		enable_vpid = 0;
2621 
2622 	if (!cpu_has_vmx_ept() ||
2623 	    !cpu_has_vmx_ept_4levels()) {
2624 		enable_ept = 0;
2625 		enable_unrestricted_guest = 0;
2626 	}
2627 
2628 	if (!cpu_has_vmx_unrestricted_guest())
2629 		enable_unrestricted_guest = 0;
2630 
2631 	if (!cpu_has_vmx_flexpriority())
2632 		flexpriority_enabled = 0;
2633 
2634 	if (!cpu_has_vmx_tpr_shadow())
2635 		kvm_x86_ops->update_cr8_intercept = NULL;
2636 
2637 	if (enable_ept && !cpu_has_vmx_ept_2m_page())
2638 		kvm_disable_largepages();
2639 
2640 	if (!cpu_has_vmx_ple())
2641 		ple_gap = 0;
2642 
2643 	if (nested)
2644 		nested_vmx_setup_ctls_msrs();
2645 
2646 	return alloc_kvm_area();
2647 }
2648 
hardware_unsetup(void)2649 static __exit void hardware_unsetup(void)
2650 {
2651 	free_kvm_area();
2652 }
2653 
fix_pmode_dataseg(int seg,struct kvm_save_segment * save)2654 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
2655 {
2656 	struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2657 
2658 	if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
2659 		vmcs_write16(sf->selector, save->selector);
2660 		vmcs_writel(sf->base, save->base);
2661 		vmcs_write32(sf->limit, save->limit);
2662 		vmcs_write32(sf->ar_bytes, save->ar);
2663 	} else {
2664 		u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
2665 			<< AR_DPL_SHIFT;
2666 		vmcs_write32(sf->ar_bytes, 0x93 | dpl);
2667 	}
2668 }
2669 
enter_pmode(struct kvm_vcpu * vcpu)2670 static void enter_pmode(struct kvm_vcpu *vcpu)
2671 {
2672 	unsigned long flags;
2673 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2674 
2675 	vmx->emulation_required = 1;
2676 	vmx->rmode.vm86_active = 0;
2677 
2678 	vmx_segment_cache_clear(vmx);
2679 
2680 	vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
2681 	vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
2682 	vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
2683 	vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
2684 
2685 	flags = vmcs_readl(GUEST_RFLAGS);
2686 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2687 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2688 	vmcs_writel(GUEST_RFLAGS, flags);
2689 
2690 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2691 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2692 
2693 	update_exception_bitmap(vcpu);
2694 
2695 	if (emulate_invalid_guest_state)
2696 		return;
2697 
2698 	fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
2699 	fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
2700 	fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
2701 	fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
2702 
2703 	vmx_segment_cache_clear(vmx);
2704 
2705 	vmcs_write16(GUEST_SS_SELECTOR, 0);
2706 	vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
2707 
2708 	vmcs_write16(GUEST_CS_SELECTOR,
2709 		     vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
2710 	vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2711 }
2712 
rmode_tss_base(struct kvm * kvm)2713 static gva_t rmode_tss_base(struct kvm *kvm)
2714 {
2715 	if (!kvm->arch.tss_addr) {
2716 		struct kvm_memslots *slots;
2717 		struct kvm_memory_slot *slot;
2718 		gfn_t base_gfn;
2719 
2720 		slots = kvm_memslots(kvm);
2721 		slot = id_to_memslot(slots, 0);
2722 		base_gfn = slot->base_gfn + slot->npages - 3;
2723 
2724 		return base_gfn << PAGE_SHIFT;
2725 	}
2726 	return kvm->arch.tss_addr;
2727 }
2728 
fix_rmode_seg(int seg,struct kvm_save_segment * save)2729 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
2730 {
2731 	struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2732 
2733 	save->selector = vmcs_read16(sf->selector);
2734 	save->base = vmcs_readl(sf->base);
2735 	save->limit = vmcs_read32(sf->limit);
2736 	save->ar = vmcs_read32(sf->ar_bytes);
2737 	vmcs_write16(sf->selector, save->base >> 4);
2738 	vmcs_write32(sf->base, save->base & 0xffff0);
2739 	vmcs_write32(sf->limit, 0xffff);
2740 	vmcs_write32(sf->ar_bytes, 0xf3);
2741 	if (save->base & 0xf)
2742 		printk_once(KERN_WARNING "kvm: segment base is not paragraph"
2743 			    " aligned when entering protected mode (seg=%d)",
2744 			    seg);
2745 }
2746 
enter_rmode(struct kvm_vcpu * vcpu)2747 static void enter_rmode(struct kvm_vcpu *vcpu)
2748 {
2749 	unsigned long flags;
2750 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2751 
2752 	if (enable_unrestricted_guest)
2753 		return;
2754 
2755 	vmx->emulation_required = 1;
2756 	vmx->rmode.vm86_active = 1;
2757 
2758 	/*
2759 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2760 	 * vcpu. Call it here with phys address pointing 16M below 4G.
2761 	 */
2762 	if (!vcpu->kvm->arch.tss_addr) {
2763 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2764 			     "called before entering vcpu\n");
2765 		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2766 		vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
2767 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2768 	}
2769 
2770 	vmx_segment_cache_clear(vmx);
2771 
2772 	vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
2773 	vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
2774 	vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
2775 
2776 	vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
2777 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2778 
2779 	vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
2780 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2781 
2782 	flags = vmcs_readl(GUEST_RFLAGS);
2783 	vmx->rmode.save_rflags = flags;
2784 
2785 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2786 
2787 	vmcs_writel(GUEST_RFLAGS, flags);
2788 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2789 	update_exception_bitmap(vcpu);
2790 
2791 	if (emulate_invalid_guest_state)
2792 		goto continue_rmode;
2793 
2794 	vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
2795 	vmcs_write32(GUEST_SS_LIMIT, 0xffff);
2796 	vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
2797 
2798 	vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
2799 	vmcs_write32(GUEST_CS_LIMIT, 0xffff);
2800 	if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
2801 		vmcs_writel(GUEST_CS_BASE, 0xf0000);
2802 	vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
2803 
2804 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
2805 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
2806 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
2807 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
2808 
2809 continue_rmode:
2810 	kvm_mmu_reset_context(vcpu);
2811 }
2812 
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)2813 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2814 {
2815 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2816 	struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2817 
2818 	if (!msr)
2819 		return;
2820 
2821 	/*
2822 	 * Force kernel_gs_base reloading before EFER changes, as control
2823 	 * of this msr depends on is_long_mode().
2824 	 */
2825 	vmx_load_host_state(to_vmx(vcpu));
2826 	vcpu->arch.efer = efer;
2827 	if (efer & EFER_LMA) {
2828 		vmcs_write32(VM_ENTRY_CONTROLS,
2829 			     vmcs_read32(VM_ENTRY_CONTROLS) |
2830 			     VM_ENTRY_IA32E_MODE);
2831 		msr->data = efer;
2832 	} else {
2833 		vmcs_write32(VM_ENTRY_CONTROLS,
2834 			     vmcs_read32(VM_ENTRY_CONTROLS) &
2835 			     ~VM_ENTRY_IA32E_MODE);
2836 
2837 		msr->data = efer & ~EFER_LME;
2838 	}
2839 	setup_msrs(vmx);
2840 }
2841 
2842 #ifdef CONFIG_X86_64
2843 
enter_lmode(struct kvm_vcpu * vcpu)2844 static void enter_lmode(struct kvm_vcpu *vcpu)
2845 {
2846 	u32 guest_tr_ar;
2847 
2848 	vmx_segment_cache_clear(to_vmx(vcpu));
2849 
2850 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2851 	if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
2852 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2853 				     __func__);
2854 		vmcs_write32(GUEST_TR_AR_BYTES,
2855 			     (guest_tr_ar & ~AR_TYPE_MASK)
2856 			     | AR_TYPE_BUSY_64_TSS);
2857 	}
2858 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2859 }
2860 
exit_lmode(struct kvm_vcpu * vcpu)2861 static void exit_lmode(struct kvm_vcpu *vcpu)
2862 {
2863 	vmcs_write32(VM_ENTRY_CONTROLS,
2864 		     vmcs_read32(VM_ENTRY_CONTROLS)
2865 		     & ~VM_ENTRY_IA32E_MODE);
2866 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2867 }
2868 
2869 #endif
2870 
vmx_flush_tlb(struct kvm_vcpu * vcpu)2871 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2872 {
2873 	vpid_sync_context(to_vmx(vcpu));
2874 	if (enable_ept) {
2875 		if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2876 			return;
2877 		ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
2878 	}
2879 }
2880 
vmx_decache_cr0_guest_bits(struct kvm_vcpu * vcpu)2881 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2882 {
2883 	ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2884 
2885 	vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2886 	vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2887 }
2888 
vmx_decache_cr3(struct kvm_vcpu * vcpu)2889 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2890 {
2891 	if (enable_ept && is_paging(vcpu))
2892 		vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2893 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2894 }
2895 
vmx_decache_cr4_guest_bits(struct kvm_vcpu * vcpu)2896 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2897 {
2898 	ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2899 
2900 	vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2901 	vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2902 }
2903 
ept_load_pdptrs(struct kvm_vcpu * vcpu)2904 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2905 {
2906 	if (!test_bit(VCPU_EXREG_PDPTR,
2907 		      (unsigned long *)&vcpu->arch.regs_dirty))
2908 		return;
2909 
2910 	if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2911 		vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
2912 		vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
2913 		vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
2914 		vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
2915 	}
2916 }
2917 
ept_save_pdptrs(struct kvm_vcpu * vcpu)2918 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2919 {
2920 	if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2921 		vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2922 		vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2923 		vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2924 		vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2925 	}
2926 
2927 	__set_bit(VCPU_EXREG_PDPTR,
2928 		  (unsigned long *)&vcpu->arch.regs_avail);
2929 	__set_bit(VCPU_EXREG_PDPTR,
2930 		  (unsigned long *)&vcpu->arch.regs_dirty);
2931 }
2932 
2933 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2934 
ept_update_paging_mode_cr0(unsigned long * hw_cr0,unsigned long cr0,struct kvm_vcpu * vcpu)2935 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2936 					unsigned long cr0,
2937 					struct kvm_vcpu *vcpu)
2938 {
2939 	if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2940 		vmx_decache_cr3(vcpu);
2941 	if (!(cr0 & X86_CR0_PG)) {
2942 		/* From paging/starting to nonpaging */
2943 		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2944 			     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
2945 			     (CPU_BASED_CR3_LOAD_EXITING |
2946 			      CPU_BASED_CR3_STORE_EXITING));
2947 		vcpu->arch.cr0 = cr0;
2948 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2949 	} else if (!is_paging(vcpu)) {
2950 		/* From nonpaging to paging */
2951 		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2952 			     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2953 			     ~(CPU_BASED_CR3_LOAD_EXITING |
2954 			       CPU_BASED_CR3_STORE_EXITING));
2955 		vcpu->arch.cr0 = cr0;
2956 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2957 	}
2958 
2959 	if (!(cr0 & X86_CR0_WP))
2960 		*hw_cr0 &= ~X86_CR0_WP;
2961 }
2962 
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)2963 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2964 {
2965 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2966 	unsigned long hw_cr0;
2967 
2968 	if (enable_unrestricted_guest)
2969 		hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
2970 			| KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2971 	else
2972 		hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
2973 
2974 	if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2975 		enter_pmode(vcpu);
2976 
2977 	if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2978 		enter_rmode(vcpu);
2979 
2980 #ifdef CONFIG_X86_64
2981 	if (vcpu->arch.efer & EFER_LME) {
2982 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2983 			enter_lmode(vcpu);
2984 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2985 			exit_lmode(vcpu);
2986 	}
2987 #endif
2988 
2989 	if (enable_ept)
2990 		ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2991 
2992 	if (!vcpu->fpu_active)
2993 		hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
2994 
2995 	vmcs_writel(CR0_READ_SHADOW, cr0);
2996 	vmcs_writel(GUEST_CR0, hw_cr0);
2997 	vcpu->arch.cr0 = cr0;
2998 	__clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2999 }
3000 
construct_eptp(unsigned long root_hpa)3001 static u64 construct_eptp(unsigned long root_hpa)
3002 {
3003 	u64 eptp;
3004 
3005 	/* TODO write the value reading from MSR */
3006 	eptp = VMX_EPT_DEFAULT_MT |
3007 		VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3008 	eptp |= (root_hpa & PAGE_MASK);
3009 
3010 	return eptp;
3011 }
3012 
vmx_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)3013 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3014 {
3015 	unsigned long guest_cr3;
3016 	u64 eptp;
3017 
3018 	guest_cr3 = cr3;
3019 	if (enable_ept) {
3020 		eptp = construct_eptp(cr3);
3021 		vmcs_write64(EPT_POINTER, eptp);
3022 		guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
3023 			vcpu->kvm->arch.ept_identity_map_addr;
3024 		ept_load_pdptrs(vcpu);
3025 	}
3026 
3027 	vmx_flush_tlb(vcpu);
3028 	vmcs_writel(GUEST_CR3, guest_cr3);
3029 }
3030 
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3031 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3032 {
3033 	unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3034 		    KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3035 
3036 	if (cr4 & X86_CR4_VMXE) {
3037 		/*
3038 		 * To use VMXON (and later other VMX instructions), a guest
3039 		 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3040 		 * So basically the check on whether to allow nested VMX
3041 		 * is here.
3042 		 */
3043 		if (!nested_vmx_allowed(vcpu))
3044 			return 1;
3045 	} else if (to_vmx(vcpu)->nested.vmxon)
3046 		return 1;
3047 
3048 	vcpu->arch.cr4 = cr4;
3049 	if (enable_ept) {
3050 		if (!is_paging(vcpu)) {
3051 			hw_cr4 &= ~X86_CR4_PAE;
3052 			hw_cr4 |= X86_CR4_PSE;
3053 		} else if (!(cr4 & X86_CR4_PAE)) {
3054 			hw_cr4 &= ~X86_CR4_PAE;
3055 		}
3056 	}
3057 
3058 	vmcs_writel(CR4_READ_SHADOW, cr4);
3059 	vmcs_writel(GUEST_CR4, hw_cr4);
3060 	return 0;
3061 }
3062 
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3063 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3064 			    struct kvm_segment *var, int seg)
3065 {
3066 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3067 	struct kvm_save_segment *save;
3068 	u32 ar;
3069 
3070 	if (vmx->rmode.vm86_active
3071 	    && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
3072 		|| seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
3073 		|| seg == VCPU_SREG_GS)
3074 	    && !emulate_invalid_guest_state) {
3075 		switch (seg) {
3076 		case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
3077 		case VCPU_SREG_ES: save = &vmx->rmode.es; break;
3078 		case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
3079 		case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
3080 		case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
3081 		default: BUG();
3082 		}
3083 		var->selector = save->selector;
3084 		var->base = save->base;
3085 		var->limit = save->limit;
3086 		ar = save->ar;
3087 		if (seg == VCPU_SREG_TR
3088 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3089 			goto use_saved_rmode_seg;
3090 	}
3091 	var->base = vmx_read_guest_seg_base(vmx, seg);
3092 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3093 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3094 	ar = vmx_read_guest_seg_ar(vmx, seg);
3095 use_saved_rmode_seg:
3096 	if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
3097 		ar = 0;
3098 	var->type = ar & 15;
3099 	var->s = (ar >> 4) & 1;
3100 	var->dpl = (ar >> 5) & 3;
3101 	var->present = (ar >> 7) & 1;
3102 	var->avl = (ar >> 12) & 1;
3103 	var->l = (ar >> 13) & 1;
3104 	var->db = (ar >> 14) & 1;
3105 	var->g = (ar >> 15) & 1;
3106 	var->unusable = (ar >> 16) & 1;
3107 }
3108 
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)3109 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3110 {
3111 	struct kvm_segment s;
3112 
3113 	if (to_vmx(vcpu)->rmode.vm86_active) {
3114 		vmx_get_segment(vcpu, &s, seg);
3115 		return s.base;
3116 	}
3117 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3118 }
3119 
__vmx_get_cpl(struct kvm_vcpu * vcpu)3120 static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
3121 {
3122 	if (!is_protmode(vcpu))
3123 		return 0;
3124 
3125 	if (!is_long_mode(vcpu)
3126 	    && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
3127 		return 3;
3128 
3129 	return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
3130 }
3131 
vmx_get_cpl(struct kvm_vcpu * vcpu)3132 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3133 {
3134 	if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3135 		__set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3136 		to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
3137 	}
3138 	return to_vmx(vcpu)->cpl;
3139 }
3140 
3141 
vmx_segment_access_rights(struct kvm_segment * var)3142 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3143 {
3144 	u32 ar;
3145 
3146 	if (var->unusable)
3147 		ar = 1 << 16;
3148 	else {
3149 		ar = var->type & 15;
3150 		ar |= (var->s & 1) << 4;
3151 		ar |= (var->dpl & 3) << 5;
3152 		ar |= (var->present & 1) << 7;
3153 		ar |= (var->avl & 1) << 12;
3154 		ar |= (var->l & 1) << 13;
3155 		ar |= (var->db & 1) << 14;
3156 		ar |= (var->g & 1) << 15;
3157 	}
3158 	if (ar == 0) /* a 0 value means unusable */
3159 		ar = AR_UNUSABLE_MASK;
3160 
3161 	return ar;
3162 }
3163 
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3164 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3165 			    struct kvm_segment *var, int seg)
3166 {
3167 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3168 	struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3169 	u32 ar;
3170 
3171 	vmx_segment_cache_clear(vmx);
3172 
3173 	if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
3174 		vmcs_write16(sf->selector, var->selector);
3175 		vmx->rmode.tr.selector = var->selector;
3176 		vmx->rmode.tr.base = var->base;
3177 		vmx->rmode.tr.limit = var->limit;
3178 		vmx->rmode.tr.ar = vmx_segment_access_rights(var);
3179 		return;
3180 	}
3181 	vmcs_writel(sf->base, var->base);
3182 	vmcs_write32(sf->limit, var->limit);
3183 	vmcs_write16(sf->selector, var->selector);
3184 	if (vmx->rmode.vm86_active && var->s) {
3185 		/*
3186 		 * Hack real-mode segments into vm86 compatibility.
3187 		 */
3188 		if (var->base == 0xffff0000 && var->selector == 0xf000)
3189 			vmcs_writel(sf->base, 0xf0000);
3190 		ar = 0xf3;
3191 	} else
3192 		ar = vmx_segment_access_rights(var);
3193 
3194 	/*
3195 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3196 	 * qemu binaries.
3197 	 *   IA32 arch specifies that at the time of processor reset the
3198 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3199 	 * is setting it to 0 in the usedland code. This causes invalid guest
3200 	 * state vmexit when "unrestricted guest" mode is turned on.
3201 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3202 	 * tree. Newer qemu binaries with that qemu fix would not need this
3203 	 * kvm hack.
3204 	 */
3205 	if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3206 		ar |= 0x1; /* Accessed */
3207 
3208 	vmcs_write32(sf->ar_bytes, ar);
3209 	__clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3210 }
3211 
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)3212 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3213 {
3214 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3215 
3216 	*db = (ar >> 14) & 1;
3217 	*l = (ar >> 13) & 1;
3218 }
3219 
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3220 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3221 {
3222 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3223 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3224 }
3225 
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3226 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3227 {
3228 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3229 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3230 }
3231 
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3232 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3233 {
3234 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3235 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3236 }
3237 
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3238 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3239 {
3240 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3241 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3242 }
3243 
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)3244 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3245 {
3246 	struct kvm_segment var;
3247 	u32 ar;
3248 
3249 	vmx_get_segment(vcpu, &var, seg);
3250 	ar = vmx_segment_access_rights(&var);
3251 
3252 	if (var.base != (var.selector << 4))
3253 		return false;
3254 	if (var.limit != 0xffff)
3255 		return false;
3256 	if (ar != 0xf3)
3257 		return false;
3258 
3259 	return true;
3260 }
3261 
code_segment_valid(struct kvm_vcpu * vcpu)3262 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3263 {
3264 	struct kvm_segment cs;
3265 	unsigned int cs_rpl;
3266 
3267 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3268 	cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3269 
3270 	if (cs.unusable)
3271 		return false;
3272 	if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3273 		return false;
3274 	if (!cs.s)
3275 		return false;
3276 	if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3277 		if (cs.dpl > cs_rpl)
3278 			return false;
3279 	} else {
3280 		if (cs.dpl != cs_rpl)
3281 			return false;
3282 	}
3283 	if (!cs.present)
3284 		return false;
3285 
3286 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3287 	return true;
3288 }
3289 
stack_segment_valid(struct kvm_vcpu * vcpu)3290 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3291 {
3292 	struct kvm_segment ss;
3293 	unsigned int ss_rpl;
3294 
3295 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3296 	ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3297 
3298 	if (ss.unusable)
3299 		return true;
3300 	if (ss.type != 3 && ss.type != 7)
3301 		return false;
3302 	if (!ss.s)
3303 		return false;
3304 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3305 		return false;
3306 	if (!ss.present)
3307 		return false;
3308 
3309 	return true;
3310 }
3311 
data_segment_valid(struct kvm_vcpu * vcpu,int seg)3312 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3313 {
3314 	struct kvm_segment var;
3315 	unsigned int rpl;
3316 
3317 	vmx_get_segment(vcpu, &var, seg);
3318 	rpl = var.selector & SELECTOR_RPL_MASK;
3319 
3320 	if (var.unusable)
3321 		return true;
3322 	if (!var.s)
3323 		return false;
3324 	if (!var.present)
3325 		return false;
3326 	if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3327 		if (var.dpl < rpl) /* DPL < RPL */
3328 			return false;
3329 	}
3330 
3331 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3332 	 * rights flags
3333 	 */
3334 	return true;
3335 }
3336 
tr_valid(struct kvm_vcpu * vcpu)3337 static bool tr_valid(struct kvm_vcpu *vcpu)
3338 {
3339 	struct kvm_segment tr;
3340 
3341 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3342 
3343 	if (tr.unusable)
3344 		return false;
3345 	if (tr.selector & SELECTOR_TI_MASK)	/* TI = 1 */
3346 		return false;
3347 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3348 		return false;
3349 	if (!tr.present)
3350 		return false;
3351 
3352 	return true;
3353 }
3354 
ldtr_valid(struct kvm_vcpu * vcpu)3355 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3356 {
3357 	struct kvm_segment ldtr;
3358 
3359 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3360 
3361 	if (ldtr.unusable)
3362 		return true;
3363 	if (ldtr.selector & SELECTOR_TI_MASK)	/* TI = 1 */
3364 		return false;
3365 	if (ldtr.type != 2)
3366 		return false;
3367 	if (!ldtr.present)
3368 		return false;
3369 
3370 	return true;
3371 }
3372 
cs_ss_rpl_check(struct kvm_vcpu * vcpu)3373 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3374 {
3375 	struct kvm_segment cs, ss;
3376 
3377 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3378 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3379 
3380 	return ((cs.selector & SELECTOR_RPL_MASK) ==
3381 		 (ss.selector & SELECTOR_RPL_MASK));
3382 }
3383 
3384 /*
3385  * Check if guest state is valid. Returns true if valid, false if
3386  * not.
3387  * We assume that registers are always usable
3388  */
guest_state_valid(struct kvm_vcpu * vcpu)3389 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3390 {
3391 	/* real mode guest state checks */
3392 	if (!is_protmode(vcpu)) {
3393 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3394 			return false;
3395 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3396 			return false;
3397 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3398 			return false;
3399 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3400 			return false;
3401 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3402 			return false;
3403 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3404 			return false;
3405 	} else {
3406 	/* protected mode guest state checks */
3407 		if (!cs_ss_rpl_check(vcpu))
3408 			return false;
3409 		if (!code_segment_valid(vcpu))
3410 			return false;
3411 		if (!stack_segment_valid(vcpu))
3412 			return false;
3413 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3414 			return false;
3415 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3416 			return false;
3417 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3418 			return false;
3419 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3420 			return false;
3421 		if (!tr_valid(vcpu))
3422 			return false;
3423 		if (!ldtr_valid(vcpu))
3424 			return false;
3425 	}
3426 	/* TODO:
3427 	 * - Add checks on RIP
3428 	 * - Add checks on RFLAGS
3429 	 */
3430 
3431 	return true;
3432 }
3433 
init_rmode_tss(struct kvm * kvm)3434 static int init_rmode_tss(struct kvm *kvm)
3435 {
3436 	gfn_t fn;
3437 	u16 data = 0;
3438 	int r, idx, ret = 0;
3439 
3440 	idx = srcu_read_lock(&kvm->srcu);
3441 	fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
3442 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3443 	if (r < 0)
3444 		goto out;
3445 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3446 	r = kvm_write_guest_page(kvm, fn++, &data,
3447 			TSS_IOPB_BASE_OFFSET, sizeof(u16));
3448 	if (r < 0)
3449 		goto out;
3450 	r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3451 	if (r < 0)
3452 		goto out;
3453 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3454 	if (r < 0)
3455 		goto out;
3456 	data = ~0;
3457 	r = kvm_write_guest_page(kvm, fn, &data,
3458 				 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3459 				 sizeof(u8));
3460 	if (r < 0)
3461 		goto out;
3462 
3463 	ret = 1;
3464 out:
3465 	srcu_read_unlock(&kvm->srcu, idx);
3466 	return ret;
3467 }
3468 
init_rmode_identity_map(struct kvm * kvm)3469 static int init_rmode_identity_map(struct kvm *kvm)
3470 {
3471 	int i, idx, r, ret;
3472 	pfn_t identity_map_pfn;
3473 	u32 tmp;
3474 
3475 	if (!enable_ept)
3476 		return 1;
3477 	if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3478 		printk(KERN_ERR "EPT: identity-mapping pagetable "
3479 			"haven't been allocated!\n");
3480 		return 0;
3481 	}
3482 	if (likely(kvm->arch.ept_identity_pagetable_done))
3483 		return 1;
3484 	ret = 0;
3485 	identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3486 	idx = srcu_read_lock(&kvm->srcu);
3487 	r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3488 	if (r < 0)
3489 		goto out;
3490 	/* Set up identity-mapping pagetable for EPT in real mode */
3491 	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3492 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3493 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3494 		r = kvm_write_guest_page(kvm, identity_map_pfn,
3495 				&tmp, i * sizeof(tmp), sizeof(tmp));
3496 		if (r < 0)
3497 			goto out;
3498 	}
3499 	kvm->arch.ept_identity_pagetable_done = true;
3500 	ret = 1;
3501 out:
3502 	srcu_read_unlock(&kvm->srcu, idx);
3503 	return ret;
3504 }
3505 
seg_setup(int seg)3506 static void seg_setup(int seg)
3507 {
3508 	struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3509 	unsigned int ar;
3510 
3511 	vmcs_write16(sf->selector, 0);
3512 	vmcs_writel(sf->base, 0);
3513 	vmcs_write32(sf->limit, 0xffff);
3514 	if (enable_unrestricted_guest) {
3515 		ar = 0x93;
3516 		if (seg == VCPU_SREG_CS)
3517 			ar |= 0x08; /* code segment */
3518 	} else
3519 		ar = 0xf3;
3520 
3521 	vmcs_write32(sf->ar_bytes, ar);
3522 }
3523 
alloc_apic_access_page(struct kvm * kvm)3524 static int alloc_apic_access_page(struct kvm *kvm)
3525 {
3526 	struct kvm_userspace_memory_region kvm_userspace_mem;
3527 	int r = 0;
3528 
3529 	mutex_lock(&kvm->slots_lock);
3530 	if (kvm->arch.apic_access_page)
3531 		goto out;
3532 	kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3533 	kvm_userspace_mem.flags = 0;
3534 	kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3535 	kvm_userspace_mem.memory_size = PAGE_SIZE;
3536 	r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3537 	if (r)
3538 		goto out;
3539 
3540 	kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
3541 out:
3542 	mutex_unlock(&kvm->slots_lock);
3543 	return r;
3544 }
3545 
alloc_identity_pagetable(struct kvm * kvm)3546 static int alloc_identity_pagetable(struct kvm *kvm)
3547 {
3548 	struct kvm_userspace_memory_region kvm_userspace_mem;
3549 	int r = 0;
3550 
3551 	mutex_lock(&kvm->slots_lock);
3552 	if (kvm->arch.ept_identity_pagetable)
3553 		goto out;
3554 	kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3555 	kvm_userspace_mem.flags = 0;
3556 	kvm_userspace_mem.guest_phys_addr =
3557 		kvm->arch.ept_identity_map_addr;
3558 	kvm_userspace_mem.memory_size = PAGE_SIZE;
3559 	r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3560 	if (r)
3561 		goto out;
3562 
3563 	kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
3564 			kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3565 out:
3566 	mutex_unlock(&kvm->slots_lock);
3567 	return r;
3568 }
3569 
allocate_vpid(struct vcpu_vmx * vmx)3570 static void allocate_vpid(struct vcpu_vmx *vmx)
3571 {
3572 	int vpid;
3573 
3574 	vmx->vpid = 0;
3575 	if (!enable_vpid)
3576 		return;
3577 	spin_lock(&vmx_vpid_lock);
3578 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3579 	if (vpid < VMX_NR_VPIDS) {
3580 		vmx->vpid = vpid;
3581 		__set_bit(vpid, vmx_vpid_bitmap);
3582 	}
3583 	spin_unlock(&vmx_vpid_lock);
3584 }
3585 
free_vpid(struct vcpu_vmx * vmx)3586 static void free_vpid(struct vcpu_vmx *vmx)
3587 {
3588 	if (!enable_vpid)
3589 		return;
3590 	spin_lock(&vmx_vpid_lock);
3591 	if (vmx->vpid != 0)
3592 		__clear_bit(vmx->vpid, vmx_vpid_bitmap);
3593 	spin_unlock(&vmx_vpid_lock);
3594 }
3595 
__vmx_disable_intercept_for_msr(unsigned long * msr_bitmap,u32 msr)3596 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
3597 {
3598 	int f = sizeof(unsigned long);
3599 
3600 	if (!cpu_has_vmx_msr_bitmap())
3601 		return;
3602 
3603 	/*
3604 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3605 	 * have the write-low and read-high bitmap offsets the wrong way round.
3606 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3607 	 */
3608 	if (msr <= 0x1fff) {
3609 		__clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
3610 		__clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
3611 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3612 		msr &= 0x1fff;
3613 		__clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
3614 		__clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
3615 	}
3616 }
3617 
vmx_disable_intercept_for_msr(u32 msr,bool longmode_only)3618 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
3619 {
3620 	if (!longmode_only)
3621 		__vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
3622 	__vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
3623 }
3624 
3625 /*
3626  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3627  * will not change in the lifetime of the guest.
3628  * Note that host-state that does change is set elsewhere. E.g., host-state
3629  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3630  */
vmx_set_constant_host_state(void)3631 static void vmx_set_constant_host_state(void)
3632 {
3633 	u32 low32, high32;
3634 	unsigned long tmpl;
3635 	struct desc_ptr dt;
3636 
3637 	vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS);  /* 22.2.3 */
3638 	vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
3639 	vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
3640 
3641 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
3642 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3643 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3644 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3645 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
3646 
3647 	native_store_idt(&dt);
3648 	vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
3649 
3650 	asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
3651 	vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
3652 
3653 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3654 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3655 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3656 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
3657 
3658 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3659 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
3660 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3661 	}
3662 }
3663 
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)3664 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3665 {
3666 	vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3667 	if (enable_ept)
3668 		vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3669 	if (is_guest_mode(&vmx->vcpu))
3670 		vmx->vcpu.arch.cr4_guest_owned_bits &=
3671 			~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3672 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3673 }
3674 
vmx_exec_control(struct vcpu_vmx * vmx)3675 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
3676 {
3677 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3678 	if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
3679 		exec_control &= ~CPU_BASED_TPR_SHADOW;
3680 #ifdef CONFIG_X86_64
3681 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
3682 				CPU_BASED_CR8_LOAD_EXITING;
3683 #endif
3684 	}
3685 	if (!enable_ept)
3686 		exec_control |= CPU_BASED_CR3_STORE_EXITING |
3687 				CPU_BASED_CR3_LOAD_EXITING  |
3688 				CPU_BASED_INVLPG_EXITING;
3689 	return exec_control;
3690 }
3691 
vmx_secondary_exec_control(struct vcpu_vmx * vmx)3692 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
3693 {
3694 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3695 	if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3696 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3697 	if (vmx->vpid == 0)
3698 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3699 	if (!enable_ept) {
3700 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3701 		enable_unrestricted_guest = 0;
3702 	}
3703 	if (!enable_unrestricted_guest)
3704 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3705 	if (!ple_gap)
3706 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3707 	return exec_control;
3708 }
3709 
ept_set_mmio_spte_mask(void)3710 static void ept_set_mmio_spte_mask(void)
3711 {
3712 	/*
3713 	 * EPT Misconfigurations can be generated if the value of bits 2:0
3714 	 * of an EPT paging-structure entry is 110b (write/execute).
3715 	 * Also, magic bits (0xffull << 49) is set to quickly identify mmio
3716 	 * spte.
3717 	 */
3718 	kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
3719 }
3720 
3721 /*
3722  * Sets up the vmcs for emulated real mode.
3723  */
vmx_vcpu_setup(struct vcpu_vmx * vmx)3724 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
3725 {
3726 #ifdef CONFIG_X86_64
3727 	unsigned long a;
3728 #endif
3729 	int i;
3730 
3731 	/* I/O */
3732 	vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
3733 	vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
3734 
3735 	if (cpu_has_vmx_msr_bitmap())
3736 		vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
3737 
3738 	vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
3739 
3740 	/* Control */
3741 	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
3742 		vmcs_config.pin_based_exec_ctrl);
3743 
3744 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
3745 
3746 	if (cpu_has_secondary_exec_ctrls()) {
3747 		vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
3748 				vmx_secondary_exec_control(vmx));
3749 	}
3750 
3751 	if (ple_gap) {
3752 		vmcs_write32(PLE_GAP, ple_gap);
3753 		vmcs_write32(PLE_WINDOW, ple_window);
3754 	}
3755 
3756 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
3757 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
3758 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
3759 
3760 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
3761 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
3762 	vmx_set_constant_host_state();
3763 #ifdef CONFIG_X86_64
3764 	rdmsrl(MSR_FS_BASE, a);
3765 	vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
3766 	rdmsrl(MSR_GS_BASE, a);
3767 	vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
3768 #else
3769 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
3770 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
3771 #endif
3772 
3773 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
3774 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3775 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
3776 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3777 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
3778 
3779 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3780 		u32 msr_low, msr_high;
3781 		u64 host_pat;
3782 		rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
3783 		host_pat = msr_low | ((u64) msr_high << 32);
3784 		/* Write the default value follow host pat */
3785 		vmcs_write64(GUEST_IA32_PAT, host_pat);
3786 		/* Keep arch.pat sync with GUEST_IA32_PAT */
3787 		vmx->vcpu.arch.pat = host_pat;
3788 	}
3789 
3790 	for (i = 0; i < NR_VMX_MSR; ++i) {
3791 		u32 index = vmx_msr_index[i];
3792 		u32 data_low, data_high;
3793 		int j = vmx->nmsrs;
3794 
3795 		if (rdmsr_safe(index, &data_low, &data_high) < 0)
3796 			continue;
3797 		if (wrmsr_safe(index, data_low, data_high) < 0)
3798 			continue;
3799 		vmx->guest_msrs[j].index = i;
3800 		vmx->guest_msrs[j].data = 0;
3801 		vmx->guest_msrs[j].mask = -1ull;
3802 		++vmx->nmsrs;
3803 	}
3804 
3805 	vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
3806 
3807 	/* 22.2.1, 20.8.1 */
3808 	vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
3809 
3810 	vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
3811 	set_cr4_guest_host_mask(vmx);
3812 
3813 	kvm_write_tsc(&vmx->vcpu, 0);
3814 
3815 	return 0;
3816 }
3817 
vmx_vcpu_reset(struct kvm_vcpu * vcpu)3818 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
3819 {
3820 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3821 	u64 msr;
3822 	int ret;
3823 
3824 	vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
3825 
3826 	vmx->rmode.vm86_active = 0;
3827 
3828 	vmx->soft_vnmi_blocked = 0;
3829 
3830 	vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
3831 	kvm_set_cr8(&vmx->vcpu, 0);
3832 	msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
3833 	if (kvm_vcpu_is_bsp(&vmx->vcpu))
3834 		msr |= MSR_IA32_APICBASE_BSP;
3835 	kvm_set_apic_base(&vmx->vcpu, msr);
3836 
3837 	ret = fx_init(&vmx->vcpu);
3838 	if (ret != 0)
3839 		goto out;
3840 
3841 	vmx_segment_cache_clear(vmx);
3842 
3843 	seg_setup(VCPU_SREG_CS);
3844 	/*
3845 	 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
3846 	 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
3847 	 */
3848 	if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
3849 		vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
3850 		vmcs_writel(GUEST_CS_BASE, 0x000f0000);
3851 	} else {
3852 		vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
3853 		vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
3854 	}
3855 
3856 	seg_setup(VCPU_SREG_DS);
3857 	seg_setup(VCPU_SREG_ES);
3858 	seg_setup(VCPU_SREG_FS);
3859 	seg_setup(VCPU_SREG_GS);
3860 	seg_setup(VCPU_SREG_SS);
3861 
3862 	vmcs_write16(GUEST_TR_SELECTOR, 0);
3863 	vmcs_writel(GUEST_TR_BASE, 0);
3864 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
3865 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3866 
3867 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
3868 	vmcs_writel(GUEST_LDTR_BASE, 0);
3869 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
3870 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
3871 
3872 	vmcs_write32(GUEST_SYSENTER_CS, 0);
3873 	vmcs_writel(GUEST_SYSENTER_ESP, 0);
3874 	vmcs_writel(GUEST_SYSENTER_EIP, 0);
3875 
3876 	vmcs_writel(GUEST_RFLAGS, 0x02);
3877 	if (kvm_vcpu_is_bsp(&vmx->vcpu))
3878 		kvm_rip_write(vcpu, 0xfff0);
3879 	else
3880 		kvm_rip_write(vcpu, 0);
3881 	kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
3882 
3883 	vmcs_writel(GUEST_DR7, 0x400);
3884 
3885 	vmcs_writel(GUEST_GDTR_BASE, 0);
3886 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
3887 
3888 	vmcs_writel(GUEST_IDTR_BASE, 0);
3889 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
3890 
3891 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
3892 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
3893 	vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
3894 
3895 	/* Special registers */
3896 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3897 
3898 	setup_msrs(vmx);
3899 
3900 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
3901 
3902 	if (cpu_has_vmx_tpr_shadow()) {
3903 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
3904 		if (vm_need_tpr_shadow(vmx->vcpu.kvm))
3905 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
3906 				     __pa(vmx->vcpu.arch.apic->regs));
3907 		vmcs_write32(TPR_THRESHOLD, 0);
3908 	}
3909 
3910 	if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3911 		vmcs_write64(APIC_ACCESS_ADDR,
3912 			     page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
3913 
3914 	if (vmx->vpid != 0)
3915 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
3916 
3917 	vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
3918 	vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
3919 	vmx_set_cr4(&vmx->vcpu, 0);
3920 	vmx_set_efer(&vmx->vcpu, 0);
3921 	vmx_fpu_activate(&vmx->vcpu);
3922 	update_exception_bitmap(&vmx->vcpu);
3923 
3924 	vpid_sync_context(vmx);
3925 
3926 	ret = 0;
3927 
3928 	/* HACK: Don't enable emulation on guest boot/reset */
3929 	vmx->emulation_required = 0;
3930 
3931 out:
3932 	return ret;
3933 }
3934 
3935 /*
3936  * In nested virtualization, check if L1 asked to exit on external interrupts.
3937  * For most existing hypervisors, this will always return true.
3938  */
nested_exit_on_intr(struct kvm_vcpu * vcpu)3939 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
3940 {
3941 	return get_vmcs12(vcpu)->pin_based_vm_exec_control &
3942 		PIN_BASED_EXT_INTR_MASK;
3943 }
3944 
enable_irq_window(struct kvm_vcpu * vcpu)3945 static void enable_irq_window(struct kvm_vcpu *vcpu)
3946 {
3947 	u32 cpu_based_vm_exec_control;
3948 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
3949 		/*
3950 		 * We get here if vmx_interrupt_allowed() said we can't
3951 		 * inject to L1 now because L2 must run. Ask L2 to exit
3952 		 * right after entry, so we can inject to L1 more promptly.
3953 		 */
3954 		kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
3955 		return;
3956 	}
3957 
3958 	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3959 	cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
3960 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3961 }
3962 
enable_nmi_window(struct kvm_vcpu * vcpu)3963 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3964 {
3965 	u32 cpu_based_vm_exec_control;
3966 
3967 	if (!cpu_has_virtual_nmis()) {
3968 		enable_irq_window(vcpu);
3969 		return;
3970 	}
3971 
3972 	if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
3973 		enable_irq_window(vcpu);
3974 		return;
3975 	}
3976 	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3977 	cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
3978 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3979 }
3980 
vmx_inject_irq(struct kvm_vcpu * vcpu)3981 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
3982 {
3983 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3984 	uint32_t intr;
3985 	int irq = vcpu->arch.interrupt.nr;
3986 
3987 	trace_kvm_inj_virq(irq);
3988 
3989 	++vcpu->stat.irq_injections;
3990 	if (vmx->rmode.vm86_active) {
3991 		int inc_eip = 0;
3992 		if (vcpu->arch.interrupt.soft)
3993 			inc_eip = vcpu->arch.event_exit_inst_len;
3994 		if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
3995 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3996 		return;
3997 	}
3998 	intr = irq | INTR_INFO_VALID_MASK;
3999 	if (vcpu->arch.interrupt.soft) {
4000 		intr |= INTR_TYPE_SOFT_INTR;
4001 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4002 			     vmx->vcpu.arch.event_exit_inst_len);
4003 	} else
4004 		intr |= INTR_TYPE_EXT_INTR;
4005 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4006 	vmx_clear_hlt(vcpu);
4007 }
4008 
vmx_inject_nmi(struct kvm_vcpu * vcpu)4009 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4010 {
4011 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4012 
4013 	if (is_guest_mode(vcpu))
4014 		return;
4015 
4016 	if (!cpu_has_virtual_nmis()) {
4017 		/*
4018 		 * Tracking the NMI-blocked state in software is built upon
4019 		 * finding the next open IRQ window. This, in turn, depends on
4020 		 * well-behaving guests: They have to keep IRQs disabled at
4021 		 * least as long as the NMI handler runs. Otherwise we may
4022 		 * cause NMI nesting, maybe breaking the guest. But as this is
4023 		 * highly unlikely, we can live with the residual risk.
4024 		 */
4025 		vmx->soft_vnmi_blocked = 1;
4026 		vmx->vnmi_blocked_time = 0;
4027 	}
4028 
4029 	++vcpu->stat.nmi_injections;
4030 	vmx->nmi_known_unmasked = false;
4031 	if (vmx->rmode.vm86_active) {
4032 		if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4033 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4034 		return;
4035 	}
4036 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4037 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4038 	vmx_clear_hlt(vcpu);
4039 }
4040 
vmx_nmi_allowed(struct kvm_vcpu * vcpu)4041 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4042 {
4043 	if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4044 		return 0;
4045 
4046 	return	!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4047 		  (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4048 		   | GUEST_INTR_STATE_NMI));
4049 }
4050 
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)4051 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4052 {
4053 	if (!cpu_has_virtual_nmis())
4054 		return to_vmx(vcpu)->soft_vnmi_blocked;
4055 	if (to_vmx(vcpu)->nmi_known_unmasked)
4056 		return false;
4057 	return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)	& GUEST_INTR_STATE_NMI;
4058 }
4059 
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)4060 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4061 {
4062 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4063 
4064 	if (!cpu_has_virtual_nmis()) {
4065 		if (vmx->soft_vnmi_blocked != masked) {
4066 			vmx->soft_vnmi_blocked = masked;
4067 			vmx->vnmi_blocked_time = 0;
4068 		}
4069 	} else {
4070 		vmx->nmi_known_unmasked = !masked;
4071 		if (masked)
4072 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4073 				      GUEST_INTR_STATE_NMI);
4074 		else
4075 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4076 					GUEST_INTR_STATE_NMI);
4077 	}
4078 }
4079 
vmx_interrupt_allowed(struct kvm_vcpu * vcpu)4080 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4081 {
4082 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
4083 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4084 		if (to_vmx(vcpu)->nested.nested_run_pending ||
4085 		    (vmcs12->idt_vectoring_info_field &
4086 		     VECTORING_INFO_VALID_MASK))
4087 			return 0;
4088 		nested_vmx_vmexit(vcpu);
4089 		vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
4090 		vmcs12->vm_exit_intr_info = 0;
4091 		/* fall through to normal code, but now in L1, not L2 */
4092 	}
4093 
4094 	return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4095 		!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4096 			(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4097 }
4098 
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)4099 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4100 {
4101 	int ret;
4102 	struct kvm_userspace_memory_region tss_mem = {
4103 		.slot = TSS_PRIVATE_MEMSLOT,
4104 		.guest_phys_addr = addr,
4105 		.memory_size = PAGE_SIZE * 3,
4106 		.flags = 0,
4107 	};
4108 
4109 	ret = kvm_set_memory_region(kvm, &tss_mem, 0);
4110 	if (ret)
4111 		return ret;
4112 	kvm->arch.tss_addr = addr;
4113 	if (!init_rmode_tss(kvm))
4114 		return  -ENOMEM;
4115 
4116 	return 0;
4117 }
4118 
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)4119 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4120 				  int vec, u32 err_code)
4121 {
4122 	/*
4123 	 * Instruction with address size override prefix opcode 0x67
4124 	 * Cause the #SS fault with 0 error code in VM86 mode.
4125 	 */
4126 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
4127 		if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
4128 			return 1;
4129 	/*
4130 	 * Forward all other exceptions that are valid in real mode.
4131 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4132 	 *        the required debugging infrastructure rework.
4133 	 */
4134 	switch (vec) {
4135 	case DB_VECTOR:
4136 		if (vcpu->guest_debug &
4137 		    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4138 			return 0;
4139 		kvm_queue_exception(vcpu, vec);
4140 		return 1;
4141 	case BP_VECTOR:
4142 		/*
4143 		 * Update instruction length as we may reinject the exception
4144 		 * from user space while in guest debugging mode.
4145 		 */
4146 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4147 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4148 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4149 			return 0;
4150 		/* fall through */
4151 	case DE_VECTOR:
4152 	case OF_VECTOR:
4153 	case BR_VECTOR:
4154 	case UD_VECTOR:
4155 	case DF_VECTOR:
4156 	case SS_VECTOR:
4157 	case GP_VECTOR:
4158 	case MF_VECTOR:
4159 		kvm_queue_exception(vcpu, vec);
4160 		return 1;
4161 	}
4162 	return 0;
4163 }
4164 
4165 /*
4166  * Trigger machine check on the host. We assume all the MSRs are already set up
4167  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4168  * We pass a fake environment to the machine check handler because we want
4169  * the guest to be always treated like user space, no matter what context
4170  * it used internally.
4171  */
kvm_machine_check(void)4172 static void kvm_machine_check(void)
4173 {
4174 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4175 	struct pt_regs regs = {
4176 		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
4177 		.flags = X86_EFLAGS_IF,
4178 	};
4179 
4180 	do_machine_check(&regs, 0);
4181 #endif
4182 }
4183 
handle_machine_check(struct kvm_vcpu * vcpu)4184 static int handle_machine_check(struct kvm_vcpu *vcpu)
4185 {
4186 	/* already handled by vcpu_run */
4187 	return 1;
4188 }
4189 
handle_exception(struct kvm_vcpu * vcpu)4190 static int handle_exception(struct kvm_vcpu *vcpu)
4191 {
4192 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4193 	struct kvm_run *kvm_run = vcpu->run;
4194 	u32 intr_info, ex_no, error_code;
4195 	unsigned long cr2, rip, dr6;
4196 	u32 vect_info;
4197 	enum emulation_result er;
4198 
4199 	vect_info = vmx->idt_vectoring_info;
4200 	intr_info = vmx->exit_intr_info;
4201 
4202 	if (is_machine_check(intr_info))
4203 		return handle_machine_check(vcpu);
4204 
4205 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4206 	    !is_page_fault(intr_info)) {
4207 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4208 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4209 		vcpu->run->internal.ndata = 2;
4210 		vcpu->run->internal.data[0] = vect_info;
4211 		vcpu->run->internal.data[1] = intr_info;
4212 		return 0;
4213 	}
4214 
4215 	if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4216 		return 1;  /* already handled by vmx_vcpu_run() */
4217 
4218 	if (is_no_device(intr_info)) {
4219 		vmx_fpu_activate(vcpu);
4220 		return 1;
4221 	}
4222 
4223 	if (is_invalid_opcode(intr_info)) {
4224 		er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4225 		if (er != EMULATE_DONE)
4226 			kvm_queue_exception(vcpu, UD_VECTOR);
4227 		return 1;
4228 	}
4229 
4230 	error_code = 0;
4231 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4232 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4233 	if (is_page_fault(intr_info)) {
4234 		/* EPT won't cause page fault directly */
4235 		BUG_ON(enable_ept);
4236 		cr2 = vmcs_readl(EXIT_QUALIFICATION);
4237 		trace_kvm_page_fault(cr2, error_code);
4238 
4239 		if (kvm_event_needs_reinjection(vcpu))
4240 			kvm_mmu_unprotect_page_virt(vcpu, cr2);
4241 		return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4242 	}
4243 
4244 	if (vmx->rmode.vm86_active &&
4245 	    handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
4246 								error_code)) {
4247 		if (vcpu->arch.halt_request) {
4248 			vcpu->arch.halt_request = 0;
4249 			return kvm_emulate_halt(vcpu);
4250 		}
4251 		return 1;
4252 	}
4253 
4254 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4255 	switch (ex_no) {
4256 	case DB_VECTOR:
4257 		dr6 = vmcs_readl(EXIT_QUALIFICATION);
4258 		if (!(vcpu->guest_debug &
4259 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4260 			vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4261 			kvm_queue_exception(vcpu, DB_VECTOR);
4262 			return 1;
4263 		}
4264 		kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4265 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4266 		/* fall through */
4267 	case BP_VECTOR:
4268 		/*
4269 		 * Update instruction length as we may reinject #BP from
4270 		 * user space while in guest debugging mode. Reading it for
4271 		 * #DB as well causes no harm, it is not used in that case.
4272 		 */
4273 		vmx->vcpu.arch.event_exit_inst_len =
4274 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4275 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
4276 		rip = kvm_rip_read(vcpu);
4277 		kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4278 		kvm_run->debug.arch.exception = ex_no;
4279 		break;
4280 	default:
4281 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4282 		kvm_run->ex.exception = ex_no;
4283 		kvm_run->ex.error_code = error_code;
4284 		break;
4285 	}
4286 	return 0;
4287 }
4288 
handle_external_interrupt(struct kvm_vcpu * vcpu)4289 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4290 {
4291 	++vcpu->stat.irq_exits;
4292 	return 1;
4293 }
4294 
handle_triple_fault(struct kvm_vcpu * vcpu)4295 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4296 {
4297 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4298 	return 0;
4299 }
4300 
handle_io(struct kvm_vcpu * vcpu)4301 static int handle_io(struct kvm_vcpu *vcpu)
4302 {
4303 	unsigned long exit_qualification;
4304 	int size, in, string;
4305 	unsigned port;
4306 
4307 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4308 	string = (exit_qualification & 16) != 0;
4309 	in = (exit_qualification & 8) != 0;
4310 
4311 	++vcpu->stat.io_exits;
4312 
4313 	if (string || in)
4314 		return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4315 
4316 	port = exit_qualification >> 16;
4317 	size = (exit_qualification & 7) + 1;
4318 	skip_emulated_instruction(vcpu);
4319 
4320 	return kvm_fast_pio_out(vcpu, size, port);
4321 }
4322 
4323 static void
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)4324 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4325 {
4326 	/*
4327 	 * Patch in the VMCALL instruction:
4328 	 */
4329 	hypercall[0] = 0x0f;
4330 	hypercall[1] = 0x01;
4331 	hypercall[2] = 0xc1;
4332 }
4333 
4334 /* called to set cr0 as approriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)4335 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4336 {
4337 	if (to_vmx(vcpu)->nested.vmxon &&
4338 	    ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4339 		return 1;
4340 
4341 	if (is_guest_mode(vcpu)) {
4342 		/*
4343 		 * We get here when L2 changed cr0 in a way that did not change
4344 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4345 		 * but did change L0 shadowed bits. This can currently happen
4346 		 * with the TS bit: L0 may want to leave TS on (for lazy fpu
4347 		 * loading) while pretending to allow the guest to change it.
4348 		 */
4349 		if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
4350 			 (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
4351 			return 1;
4352 		vmcs_writel(CR0_READ_SHADOW, val);
4353 		return 0;
4354 	} else
4355 		return kvm_set_cr0(vcpu, val);
4356 }
4357 
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)4358 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4359 {
4360 	if (is_guest_mode(vcpu)) {
4361 		if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
4362 			 (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
4363 			return 1;
4364 		vmcs_writel(CR4_READ_SHADOW, val);
4365 		return 0;
4366 	} else
4367 		return kvm_set_cr4(vcpu, val);
4368 }
4369 
4370 /* called to set cr0 as approriate for clts instruction exit. */
handle_clts(struct kvm_vcpu * vcpu)4371 static void handle_clts(struct kvm_vcpu *vcpu)
4372 {
4373 	if (is_guest_mode(vcpu)) {
4374 		/*
4375 		 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4376 		 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4377 		 * just pretend it's off (also in arch.cr0 for fpu_activate).
4378 		 */
4379 		vmcs_writel(CR0_READ_SHADOW,
4380 			vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4381 		vcpu->arch.cr0 &= ~X86_CR0_TS;
4382 	} else
4383 		vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4384 }
4385 
handle_cr(struct kvm_vcpu * vcpu)4386 static int handle_cr(struct kvm_vcpu *vcpu)
4387 {
4388 	unsigned long exit_qualification, val;
4389 	int cr;
4390 	int reg;
4391 	int err;
4392 
4393 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4394 	cr = exit_qualification & 15;
4395 	reg = (exit_qualification >> 8) & 15;
4396 	switch ((exit_qualification >> 4) & 3) {
4397 	case 0: /* mov to cr */
4398 		val = kvm_register_read(vcpu, reg);
4399 		trace_kvm_cr_write(cr, val);
4400 		switch (cr) {
4401 		case 0:
4402 			err = handle_set_cr0(vcpu, val);
4403 			kvm_complete_insn_gp(vcpu, err);
4404 			return 1;
4405 		case 3:
4406 			err = kvm_set_cr3(vcpu, val);
4407 			kvm_complete_insn_gp(vcpu, err);
4408 			return 1;
4409 		case 4:
4410 			err = handle_set_cr4(vcpu, val);
4411 			kvm_complete_insn_gp(vcpu, err);
4412 			return 1;
4413 		case 8: {
4414 				u8 cr8_prev = kvm_get_cr8(vcpu);
4415 				u8 cr8 = kvm_register_read(vcpu, reg);
4416 				err = kvm_set_cr8(vcpu, cr8);
4417 				kvm_complete_insn_gp(vcpu, err);
4418 				if (irqchip_in_kernel(vcpu->kvm))
4419 					return 1;
4420 				if (cr8_prev <= cr8)
4421 					return 1;
4422 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4423 				return 0;
4424 			}
4425 		};
4426 		break;
4427 	case 2: /* clts */
4428 		handle_clts(vcpu);
4429 		trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4430 		skip_emulated_instruction(vcpu);
4431 		vmx_fpu_activate(vcpu);
4432 		return 1;
4433 	case 1: /*mov from cr*/
4434 		switch (cr) {
4435 		case 3:
4436 			val = kvm_read_cr3(vcpu);
4437 			kvm_register_write(vcpu, reg, val);
4438 			trace_kvm_cr_read(cr, val);
4439 			skip_emulated_instruction(vcpu);
4440 			return 1;
4441 		case 8:
4442 			val = kvm_get_cr8(vcpu);
4443 			kvm_register_write(vcpu, reg, val);
4444 			trace_kvm_cr_read(cr, val);
4445 			skip_emulated_instruction(vcpu);
4446 			return 1;
4447 		}
4448 		break;
4449 	case 3: /* lmsw */
4450 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4451 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4452 		kvm_lmsw(vcpu, val);
4453 
4454 		skip_emulated_instruction(vcpu);
4455 		return 1;
4456 	default:
4457 		break;
4458 	}
4459 	vcpu->run->exit_reason = 0;
4460 	pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4461 	       (int)(exit_qualification >> 4) & 3, cr);
4462 	return 0;
4463 }
4464 
handle_dr(struct kvm_vcpu * vcpu)4465 static int handle_dr(struct kvm_vcpu *vcpu)
4466 {
4467 	unsigned long exit_qualification;
4468 	int dr, reg;
4469 
4470 	/* Do not handle if the CPL > 0, will trigger GP on re-entry */
4471 	if (!kvm_require_cpl(vcpu, 0))
4472 		return 1;
4473 	dr = vmcs_readl(GUEST_DR7);
4474 	if (dr & DR7_GD) {
4475 		/*
4476 		 * As the vm-exit takes precedence over the debug trap, we
4477 		 * need to emulate the latter, either for the host or the
4478 		 * guest debugging itself.
4479 		 */
4480 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4481 			vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4482 			vcpu->run->debug.arch.dr7 = dr;
4483 			vcpu->run->debug.arch.pc =
4484 				vmcs_readl(GUEST_CS_BASE) +
4485 				vmcs_readl(GUEST_RIP);
4486 			vcpu->run->debug.arch.exception = DB_VECTOR;
4487 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4488 			return 0;
4489 		} else {
4490 			vcpu->arch.dr7 &= ~DR7_GD;
4491 			vcpu->arch.dr6 |= DR6_BD;
4492 			vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
4493 			kvm_queue_exception(vcpu, DB_VECTOR);
4494 			return 1;
4495 		}
4496 	}
4497 
4498 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4499 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4500 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4501 	if (exit_qualification & TYPE_MOV_FROM_DR) {
4502 		unsigned long val;
4503 		if (!kvm_get_dr(vcpu, dr, &val))
4504 			kvm_register_write(vcpu, reg, val);
4505 	} else
4506 		kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
4507 	skip_emulated_instruction(vcpu);
4508 	return 1;
4509 }
4510 
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)4511 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4512 {
4513 	vmcs_writel(GUEST_DR7, val);
4514 }
4515 
handle_cpuid(struct kvm_vcpu * vcpu)4516 static int handle_cpuid(struct kvm_vcpu *vcpu)
4517 {
4518 	kvm_emulate_cpuid(vcpu);
4519 	return 1;
4520 }
4521 
handle_rdmsr(struct kvm_vcpu * vcpu)4522 static int handle_rdmsr(struct kvm_vcpu *vcpu)
4523 {
4524 	u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4525 	u64 data;
4526 
4527 	if (vmx_get_msr(vcpu, ecx, &data)) {
4528 		trace_kvm_msr_read_ex(ecx);
4529 		kvm_inject_gp(vcpu, 0);
4530 		return 1;
4531 	}
4532 
4533 	trace_kvm_msr_read(ecx, data);
4534 
4535 	/* FIXME: handling of bits 32:63 of rax, rdx */
4536 	vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
4537 	vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
4538 	skip_emulated_instruction(vcpu);
4539 	return 1;
4540 }
4541 
handle_wrmsr(struct kvm_vcpu * vcpu)4542 static int handle_wrmsr(struct kvm_vcpu *vcpu)
4543 {
4544 	u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4545 	u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
4546 		| ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
4547 
4548 	if (vmx_set_msr(vcpu, ecx, data) != 0) {
4549 		trace_kvm_msr_write_ex(ecx, data);
4550 		kvm_inject_gp(vcpu, 0);
4551 		return 1;
4552 	}
4553 
4554 	trace_kvm_msr_write(ecx, data);
4555 	skip_emulated_instruction(vcpu);
4556 	return 1;
4557 }
4558 
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)4559 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4560 {
4561 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4562 	return 1;
4563 }
4564 
handle_interrupt_window(struct kvm_vcpu * vcpu)4565 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4566 {
4567 	u32 cpu_based_vm_exec_control;
4568 
4569 	/* clear pending irq */
4570 	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4571 	cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
4572 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4573 
4574 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4575 
4576 	++vcpu->stat.irq_window_exits;
4577 
4578 	/*
4579 	 * If the user space waits to inject interrupts, exit as soon as
4580 	 * possible
4581 	 */
4582 	if (!irqchip_in_kernel(vcpu->kvm) &&
4583 	    vcpu->run->request_interrupt_window &&
4584 	    !kvm_cpu_has_interrupt(vcpu)) {
4585 		vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
4586 		return 0;
4587 	}
4588 	return 1;
4589 }
4590 
handle_halt(struct kvm_vcpu * vcpu)4591 static int handle_halt(struct kvm_vcpu *vcpu)
4592 {
4593 	skip_emulated_instruction(vcpu);
4594 	return kvm_emulate_halt(vcpu);
4595 }
4596 
handle_vmcall(struct kvm_vcpu * vcpu)4597 static int handle_vmcall(struct kvm_vcpu *vcpu)
4598 {
4599 	skip_emulated_instruction(vcpu);
4600 	kvm_emulate_hypercall(vcpu);
4601 	return 1;
4602 }
4603 
handle_invd(struct kvm_vcpu * vcpu)4604 static int handle_invd(struct kvm_vcpu *vcpu)
4605 {
4606 	return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4607 }
4608 
handle_invlpg(struct kvm_vcpu * vcpu)4609 static int handle_invlpg(struct kvm_vcpu *vcpu)
4610 {
4611 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4612 
4613 	kvm_mmu_invlpg(vcpu, exit_qualification);
4614 	skip_emulated_instruction(vcpu);
4615 	return 1;
4616 }
4617 
handle_rdpmc(struct kvm_vcpu * vcpu)4618 static int handle_rdpmc(struct kvm_vcpu *vcpu)
4619 {
4620 	int err;
4621 
4622 	err = kvm_rdpmc(vcpu);
4623 	kvm_complete_insn_gp(vcpu, err);
4624 
4625 	return 1;
4626 }
4627 
handle_wbinvd(struct kvm_vcpu * vcpu)4628 static int handle_wbinvd(struct kvm_vcpu *vcpu)
4629 {
4630 	skip_emulated_instruction(vcpu);
4631 	kvm_emulate_wbinvd(vcpu);
4632 	return 1;
4633 }
4634 
handle_xsetbv(struct kvm_vcpu * vcpu)4635 static int handle_xsetbv(struct kvm_vcpu *vcpu)
4636 {
4637 	u64 new_bv = kvm_read_edx_eax(vcpu);
4638 	u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4639 
4640 	if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4641 		skip_emulated_instruction(vcpu);
4642 	return 1;
4643 }
4644 
handle_apic_access(struct kvm_vcpu * vcpu)4645 static int handle_apic_access(struct kvm_vcpu *vcpu)
4646 {
4647 	if (likely(fasteoi)) {
4648 		unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4649 		int access_type, offset;
4650 
4651 		access_type = exit_qualification & APIC_ACCESS_TYPE;
4652 		offset = exit_qualification & APIC_ACCESS_OFFSET;
4653 		/*
4654 		 * Sane guest uses MOV to write EOI, with written value
4655 		 * not cared. So make a short-circuit here by avoiding
4656 		 * heavy instruction emulation.
4657 		 */
4658 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
4659 		    (offset == APIC_EOI)) {
4660 			kvm_lapic_set_eoi(vcpu);
4661 			skip_emulated_instruction(vcpu);
4662 			return 1;
4663 		}
4664 	}
4665 	return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4666 }
4667 
handle_task_switch(struct kvm_vcpu * vcpu)4668 static int handle_task_switch(struct kvm_vcpu *vcpu)
4669 {
4670 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4671 	unsigned long exit_qualification;
4672 	bool has_error_code = false;
4673 	u32 error_code = 0;
4674 	u16 tss_selector;
4675 	int reason, type, idt_v;
4676 
4677 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
4678 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
4679 
4680 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4681 
4682 	reason = (u32)exit_qualification >> 30;
4683 	if (reason == TASK_SWITCH_GATE && idt_v) {
4684 		switch (type) {
4685 		case INTR_TYPE_NMI_INTR:
4686 			vcpu->arch.nmi_injected = false;
4687 			vmx_set_nmi_mask(vcpu, true);
4688 			break;
4689 		case INTR_TYPE_EXT_INTR:
4690 		case INTR_TYPE_SOFT_INTR:
4691 			kvm_clear_interrupt_queue(vcpu);
4692 			break;
4693 		case INTR_TYPE_HARD_EXCEPTION:
4694 			if (vmx->idt_vectoring_info &
4695 			    VECTORING_INFO_DELIVER_CODE_MASK) {
4696 				has_error_code = true;
4697 				error_code =
4698 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
4699 			}
4700 			/* fall through */
4701 		case INTR_TYPE_SOFT_EXCEPTION:
4702 			kvm_clear_exception_queue(vcpu);
4703 			break;
4704 		default:
4705 			break;
4706 		}
4707 	}
4708 	tss_selector = exit_qualification;
4709 
4710 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
4711 		       type != INTR_TYPE_EXT_INTR &&
4712 		       type != INTR_TYPE_NMI_INTR))
4713 		skip_emulated_instruction(vcpu);
4714 
4715 	if (kvm_task_switch(vcpu, tss_selector, reason,
4716 				has_error_code, error_code) == EMULATE_FAIL) {
4717 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4718 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4719 		vcpu->run->internal.ndata = 0;
4720 		return 0;
4721 	}
4722 
4723 	/* clear all local breakpoint enable flags */
4724 	vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
4725 
4726 	/*
4727 	 * TODO: What about debug traps on tss switch?
4728 	 *       Are we supposed to inject them and update dr6?
4729 	 */
4730 
4731 	return 1;
4732 }
4733 
handle_ept_violation(struct kvm_vcpu * vcpu)4734 static int handle_ept_violation(struct kvm_vcpu *vcpu)
4735 {
4736 	unsigned long exit_qualification;
4737 	gpa_t gpa;
4738 	int gla_validity;
4739 
4740 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4741 
4742 	if (exit_qualification & (1 << 6)) {
4743 		printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
4744 		return -EINVAL;
4745 	}
4746 
4747 	gla_validity = (exit_qualification >> 7) & 0x3;
4748 	if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
4749 		printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
4750 		printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
4751 			(long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
4752 			vmcs_readl(GUEST_LINEAR_ADDRESS));
4753 		printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
4754 			(long unsigned int)exit_qualification);
4755 		vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4756 		vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
4757 		return 0;
4758 	}
4759 
4760 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4761 	trace_kvm_page_fault(gpa, exit_qualification);
4762 	return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
4763 }
4764 
ept_rsvd_mask(u64 spte,int level)4765 static u64 ept_rsvd_mask(u64 spte, int level)
4766 {
4767 	int i;
4768 	u64 mask = 0;
4769 
4770 	for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
4771 		mask |= (1ULL << i);
4772 
4773 	if (level > 2)
4774 		/* bits 7:3 reserved */
4775 		mask |= 0xf8;
4776 	else if (level == 2) {
4777 		if (spte & (1ULL << 7))
4778 			/* 2MB ref, bits 20:12 reserved */
4779 			mask |= 0x1ff000;
4780 		else
4781 			/* bits 6:3 reserved */
4782 			mask |= 0x78;
4783 	}
4784 
4785 	return mask;
4786 }
4787 
ept_misconfig_inspect_spte(struct kvm_vcpu * vcpu,u64 spte,int level)4788 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
4789 				       int level)
4790 {
4791 	printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
4792 
4793 	/* 010b (write-only) */
4794 	WARN_ON((spte & 0x7) == 0x2);
4795 
4796 	/* 110b (write/execute) */
4797 	WARN_ON((spte & 0x7) == 0x6);
4798 
4799 	/* 100b (execute-only) and value not supported by logical processor */
4800 	if (!cpu_has_vmx_ept_execute_only())
4801 		WARN_ON((spte & 0x7) == 0x4);
4802 
4803 	/* not 000b */
4804 	if ((spte & 0x7)) {
4805 		u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
4806 
4807 		if (rsvd_bits != 0) {
4808 			printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
4809 					 __func__, rsvd_bits);
4810 			WARN_ON(1);
4811 		}
4812 
4813 		if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
4814 			u64 ept_mem_type = (spte & 0x38) >> 3;
4815 
4816 			if (ept_mem_type == 2 || ept_mem_type == 3 ||
4817 			    ept_mem_type == 7) {
4818 				printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
4819 						__func__, ept_mem_type);
4820 				WARN_ON(1);
4821 			}
4822 		}
4823 	}
4824 }
4825 
handle_ept_misconfig(struct kvm_vcpu * vcpu)4826 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
4827 {
4828 	u64 sptes[4];
4829 	int nr_sptes, i, ret;
4830 	gpa_t gpa;
4831 
4832 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4833 
4834 	ret = handle_mmio_page_fault_common(vcpu, gpa, true);
4835 	if (likely(ret == 1))
4836 		return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
4837 					      EMULATE_DONE;
4838 	if (unlikely(!ret))
4839 		return 1;
4840 
4841 	/* It is the real ept misconfig */
4842 	printk(KERN_ERR "EPT: Misconfiguration.\n");
4843 	printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
4844 
4845 	nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
4846 
4847 	for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
4848 		ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
4849 
4850 	vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4851 	vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
4852 
4853 	return 0;
4854 }
4855 
handle_nmi_window(struct kvm_vcpu * vcpu)4856 static int handle_nmi_window(struct kvm_vcpu *vcpu)
4857 {
4858 	u32 cpu_based_vm_exec_control;
4859 
4860 	/* clear pending NMI */
4861 	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4862 	cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
4863 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4864 	++vcpu->stat.nmi_window_exits;
4865 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4866 
4867 	return 1;
4868 }
4869 
handle_invalid_guest_state(struct kvm_vcpu * vcpu)4870 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
4871 {
4872 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4873 	enum emulation_result err = EMULATE_DONE;
4874 	int ret = 1;
4875 	u32 cpu_exec_ctrl;
4876 	bool intr_window_requested;
4877 
4878 	cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4879 	intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
4880 
4881 	while (!guest_state_valid(vcpu)) {
4882 		if (intr_window_requested
4883 		    && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
4884 			return handle_interrupt_window(&vmx->vcpu);
4885 
4886 		err = emulate_instruction(vcpu, 0);
4887 
4888 		if (err == EMULATE_DO_MMIO) {
4889 			ret = 0;
4890 			goto out;
4891 		}
4892 
4893 		if (err != EMULATE_DONE)
4894 			return 0;
4895 
4896 		if (signal_pending(current))
4897 			goto out;
4898 		if (need_resched())
4899 			schedule();
4900 	}
4901 
4902 	vmx->emulation_required = 0;
4903 out:
4904 	return ret;
4905 }
4906 
4907 /*
4908  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
4909  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
4910  */
handle_pause(struct kvm_vcpu * vcpu)4911 static int handle_pause(struct kvm_vcpu *vcpu)
4912 {
4913 	skip_emulated_instruction(vcpu);
4914 	kvm_vcpu_on_spin(vcpu);
4915 
4916 	return 1;
4917 }
4918 
handle_invalid_op(struct kvm_vcpu * vcpu)4919 static int handle_invalid_op(struct kvm_vcpu *vcpu)
4920 {
4921 	kvm_queue_exception(vcpu, UD_VECTOR);
4922 	return 1;
4923 }
4924 
4925 /*
4926  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
4927  * We could reuse a single VMCS for all the L2 guests, but we also want the
4928  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
4929  * allows keeping them loaded on the processor, and in the future will allow
4930  * optimizations where prepare_vmcs02 doesn't need to set all the fields on
4931  * every entry if they never change.
4932  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
4933  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
4934  *
4935  * The following functions allocate and free a vmcs02 in this pool.
4936  */
4937 
4938 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
nested_get_current_vmcs02(struct vcpu_vmx * vmx)4939 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
4940 {
4941 	struct vmcs02_list *item;
4942 	list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
4943 		if (item->vmptr == vmx->nested.current_vmptr) {
4944 			list_move(&item->list, &vmx->nested.vmcs02_pool);
4945 			return &item->vmcs02;
4946 		}
4947 
4948 	if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
4949 		/* Recycle the least recently used VMCS. */
4950 		item = list_entry(vmx->nested.vmcs02_pool.prev,
4951 			struct vmcs02_list, list);
4952 		item->vmptr = vmx->nested.current_vmptr;
4953 		list_move(&item->list, &vmx->nested.vmcs02_pool);
4954 		return &item->vmcs02;
4955 	}
4956 
4957 	/* Create a new VMCS */
4958 	item = (struct vmcs02_list *)
4959 		kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
4960 	if (!item)
4961 		return NULL;
4962 	item->vmcs02.vmcs = alloc_vmcs();
4963 	if (!item->vmcs02.vmcs) {
4964 		kfree(item);
4965 		return NULL;
4966 	}
4967 	loaded_vmcs_init(&item->vmcs02);
4968 	item->vmptr = vmx->nested.current_vmptr;
4969 	list_add(&(item->list), &(vmx->nested.vmcs02_pool));
4970 	vmx->nested.vmcs02_num++;
4971 	return &item->vmcs02;
4972 }
4973 
4974 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
nested_free_vmcs02(struct vcpu_vmx * vmx,gpa_t vmptr)4975 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
4976 {
4977 	struct vmcs02_list *item;
4978 	list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
4979 		if (item->vmptr == vmptr) {
4980 			free_loaded_vmcs(&item->vmcs02);
4981 			list_del(&item->list);
4982 			kfree(item);
4983 			vmx->nested.vmcs02_num--;
4984 			return;
4985 		}
4986 }
4987 
4988 /*
4989  * Free all VMCSs saved for this vcpu, except the one pointed by
4990  * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
4991  * currently used, if running L2), and vmcs01 when running L2.
4992  */
nested_free_all_saved_vmcss(struct vcpu_vmx * vmx)4993 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
4994 {
4995 	struct vmcs02_list *item, *n;
4996 	list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4997 		if (vmx->loaded_vmcs != &item->vmcs02)
4998 			free_loaded_vmcs(&item->vmcs02);
4999 		list_del(&item->list);
5000 		kfree(item);
5001 	}
5002 	vmx->nested.vmcs02_num = 0;
5003 
5004 	if (vmx->loaded_vmcs != &vmx->vmcs01)
5005 		free_loaded_vmcs(&vmx->vmcs01);
5006 }
5007 
5008 /*
5009  * Emulate the VMXON instruction.
5010  * Currently, we just remember that VMX is active, and do not save or even
5011  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5012  * do not currently need to store anything in that guest-allocated memory
5013  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5014  * argument is different from the VMXON pointer (which the spec says they do).
5015  */
handle_vmon(struct kvm_vcpu * vcpu)5016 static int handle_vmon(struct kvm_vcpu *vcpu)
5017 {
5018 	struct kvm_segment cs;
5019 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5020 
5021 	/* The Intel VMX Instruction Reference lists a bunch of bits that
5022 	 * are prerequisite to running VMXON, most notably cr4.VMXE must be
5023 	 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5024 	 * Otherwise, we should fail with #UD. We test these now:
5025 	 */
5026 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5027 	    !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5028 	    (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5029 		kvm_queue_exception(vcpu, UD_VECTOR);
5030 		return 1;
5031 	}
5032 
5033 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5034 	if (is_long_mode(vcpu) && !cs.l) {
5035 		kvm_queue_exception(vcpu, UD_VECTOR);
5036 		return 1;
5037 	}
5038 
5039 	if (vmx_get_cpl(vcpu)) {
5040 		kvm_inject_gp(vcpu, 0);
5041 		return 1;
5042 	}
5043 
5044 	INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5045 	vmx->nested.vmcs02_num = 0;
5046 
5047 	vmx->nested.vmxon = true;
5048 
5049 	skip_emulated_instruction(vcpu);
5050 	return 1;
5051 }
5052 
5053 /*
5054  * Intel's VMX Instruction Reference specifies a common set of prerequisites
5055  * for running VMX instructions (except VMXON, whose prerequisites are
5056  * slightly different). It also specifies what exception to inject otherwise.
5057  */
nested_vmx_check_permission(struct kvm_vcpu * vcpu)5058 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5059 {
5060 	struct kvm_segment cs;
5061 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5062 
5063 	if (!vmx->nested.vmxon) {
5064 		kvm_queue_exception(vcpu, UD_VECTOR);
5065 		return 0;
5066 	}
5067 
5068 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5069 	if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5070 	    (is_long_mode(vcpu) && !cs.l)) {
5071 		kvm_queue_exception(vcpu, UD_VECTOR);
5072 		return 0;
5073 	}
5074 
5075 	if (vmx_get_cpl(vcpu)) {
5076 		kvm_inject_gp(vcpu, 0);
5077 		return 0;
5078 	}
5079 
5080 	return 1;
5081 }
5082 
5083 /*
5084  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5085  * just stops using VMX.
5086  */
free_nested(struct vcpu_vmx * vmx)5087 static void free_nested(struct vcpu_vmx *vmx)
5088 {
5089 	if (!vmx->nested.vmxon)
5090 		return;
5091 	vmx->nested.vmxon = false;
5092 	if (vmx->nested.current_vmptr != -1ull) {
5093 		kunmap(vmx->nested.current_vmcs12_page);
5094 		nested_release_page(vmx->nested.current_vmcs12_page);
5095 		vmx->nested.current_vmptr = -1ull;
5096 		vmx->nested.current_vmcs12 = NULL;
5097 	}
5098 	/* Unpin physical memory we referred to in current vmcs02 */
5099 	if (vmx->nested.apic_access_page) {
5100 		nested_release_page(vmx->nested.apic_access_page);
5101 		vmx->nested.apic_access_page = 0;
5102 	}
5103 
5104 	nested_free_all_saved_vmcss(vmx);
5105 }
5106 
5107 /* Emulate the VMXOFF instruction */
handle_vmoff(struct kvm_vcpu * vcpu)5108 static int handle_vmoff(struct kvm_vcpu *vcpu)
5109 {
5110 	if (!nested_vmx_check_permission(vcpu))
5111 		return 1;
5112 	free_nested(to_vmx(vcpu));
5113 	skip_emulated_instruction(vcpu);
5114 	return 1;
5115 }
5116 
5117 /*
5118  * Decode the memory-address operand of a vmx instruction, as recorded on an
5119  * exit caused by such an instruction (run by a guest hypervisor).
5120  * On success, returns 0. When the operand is invalid, returns 1 and throws
5121  * #UD or #GP.
5122  */
get_vmx_mem_address(struct kvm_vcpu * vcpu,unsigned long exit_qualification,u32 vmx_instruction_info,gva_t * ret)5123 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5124 				 unsigned long exit_qualification,
5125 				 u32 vmx_instruction_info, gva_t *ret)
5126 {
5127 	/*
5128 	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5129 	 * Execution", on an exit, vmx_instruction_info holds most of the
5130 	 * addressing components of the operand. Only the displacement part
5131 	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5132 	 * For how an actual address is calculated from all these components,
5133 	 * refer to Vol. 1, "Operand Addressing".
5134 	 */
5135 	int  scaling = vmx_instruction_info & 3;
5136 	int  addr_size = (vmx_instruction_info >> 7) & 7;
5137 	bool is_reg = vmx_instruction_info & (1u << 10);
5138 	int  seg_reg = (vmx_instruction_info >> 15) & 7;
5139 	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
5140 	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5141 	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
5142 	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
5143 
5144 	if (is_reg) {
5145 		kvm_queue_exception(vcpu, UD_VECTOR);
5146 		return 1;
5147 	}
5148 
5149 	/* Addr = segment_base + offset */
5150 	/* offset = base + [index * scale] + displacement */
5151 	*ret = vmx_get_segment_base(vcpu, seg_reg);
5152 	if (base_is_valid)
5153 		*ret += kvm_register_read(vcpu, base_reg);
5154 	if (index_is_valid)
5155 		*ret += kvm_register_read(vcpu, index_reg)<<scaling;
5156 	*ret += exit_qualification; /* holds the displacement */
5157 
5158 	if (addr_size == 1) /* 32 bit */
5159 		*ret &= 0xffffffff;
5160 
5161 	/*
5162 	 * TODO: throw #GP (and return 1) in various cases that the VM*
5163 	 * instructions require it - e.g., offset beyond segment limit,
5164 	 * unusable or unreadable/unwritable segment, non-canonical 64-bit
5165 	 * address, and so on. Currently these are not checked.
5166 	 */
5167 	return 0;
5168 }
5169 
5170 /*
5171  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5172  * set the success or error code of an emulated VMX instruction, as specified
5173  * by Vol 2B, VMX Instruction Reference, "Conventions".
5174  */
nested_vmx_succeed(struct kvm_vcpu * vcpu)5175 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5176 {
5177 	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5178 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5179 			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5180 }
5181 
nested_vmx_failInvalid(struct kvm_vcpu * vcpu)5182 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5183 {
5184 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5185 			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5186 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
5187 			| X86_EFLAGS_CF);
5188 }
5189 
nested_vmx_failValid(struct kvm_vcpu * vcpu,u32 vm_instruction_error)5190 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5191 					u32 vm_instruction_error)
5192 {
5193 	if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5194 		/*
5195 		 * failValid writes the error number to the current VMCS, which
5196 		 * can't be done there isn't a current VMCS.
5197 		 */
5198 		nested_vmx_failInvalid(vcpu);
5199 		return;
5200 	}
5201 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5202 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5203 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
5204 			| X86_EFLAGS_ZF);
5205 	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5206 }
5207 
5208 /* Emulate the VMCLEAR instruction */
handle_vmclear(struct kvm_vcpu * vcpu)5209 static int handle_vmclear(struct kvm_vcpu *vcpu)
5210 {
5211 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5212 	gva_t gva;
5213 	gpa_t vmptr;
5214 	struct vmcs12 *vmcs12;
5215 	struct page *page;
5216 	struct x86_exception e;
5217 
5218 	if (!nested_vmx_check_permission(vcpu))
5219 		return 1;
5220 
5221 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5222 			vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5223 		return 1;
5224 
5225 	if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5226 				sizeof(vmptr), &e)) {
5227 		kvm_inject_page_fault(vcpu, &e);
5228 		return 1;
5229 	}
5230 
5231 	if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5232 		nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5233 		skip_emulated_instruction(vcpu);
5234 		return 1;
5235 	}
5236 
5237 	if (vmptr == vmx->nested.current_vmptr) {
5238 		kunmap(vmx->nested.current_vmcs12_page);
5239 		nested_release_page(vmx->nested.current_vmcs12_page);
5240 		vmx->nested.current_vmptr = -1ull;
5241 		vmx->nested.current_vmcs12 = NULL;
5242 	}
5243 
5244 	page = nested_get_page(vcpu, vmptr);
5245 	if (page == NULL) {
5246 		/*
5247 		 * For accurate processor emulation, VMCLEAR beyond available
5248 		 * physical memory should do nothing at all. However, it is
5249 		 * possible that a nested vmx bug, not a guest hypervisor bug,
5250 		 * resulted in this case, so let's shut down before doing any
5251 		 * more damage:
5252 		 */
5253 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5254 		return 1;
5255 	}
5256 	vmcs12 = kmap(page);
5257 	vmcs12->launch_state = 0;
5258 	kunmap(page);
5259 	nested_release_page(page);
5260 
5261 	nested_free_vmcs02(vmx, vmptr);
5262 
5263 	skip_emulated_instruction(vcpu);
5264 	nested_vmx_succeed(vcpu);
5265 	return 1;
5266 }
5267 
5268 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5269 
5270 /* Emulate the VMLAUNCH instruction */
handle_vmlaunch(struct kvm_vcpu * vcpu)5271 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5272 {
5273 	return nested_vmx_run(vcpu, true);
5274 }
5275 
5276 /* Emulate the VMRESUME instruction */
handle_vmresume(struct kvm_vcpu * vcpu)5277 static int handle_vmresume(struct kvm_vcpu *vcpu)
5278 {
5279 
5280 	return nested_vmx_run(vcpu, false);
5281 }
5282 
5283 enum vmcs_field_type {
5284 	VMCS_FIELD_TYPE_U16 = 0,
5285 	VMCS_FIELD_TYPE_U64 = 1,
5286 	VMCS_FIELD_TYPE_U32 = 2,
5287 	VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5288 };
5289 
vmcs_field_type(unsigned long field)5290 static inline int vmcs_field_type(unsigned long field)
5291 {
5292 	if (0x1 & field)	/* the *_HIGH fields are all 32 bit */
5293 		return VMCS_FIELD_TYPE_U32;
5294 	return (field >> 13) & 0x3 ;
5295 }
5296 
vmcs_field_readonly(unsigned long field)5297 static inline int vmcs_field_readonly(unsigned long field)
5298 {
5299 	return (((field >> 10) & 0x3) == 1);
5300 }
5301 
5302 /*
5303  * Read a vmcs12 field. Since these can have varying lengths and we return
5304  * one type, we chose the biggest type (u64) and zero-extend the return value
5305  * to that size. Note that the caller, handle_vmread, might need to use only
5306  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5307  * 64-bit fields are to be returned).
5308  */
vmcs12_read_any(struct kvm_vcpu * vcpu,unsigned long field,u64 * ret)5309 static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
5310 					unsigned long field, u64 *ret)
5311 {
5312 	short offset = vmcs_field_to_offset(field);
5313 	char *p;
5314 
5315 	if (offset < 0)
5316 		return 0;
5317 
5318 	p = ((char *)(get_vmcs12(vcpu))) + offset;
5319 
5320 	switch (vmcs_field_type(field)) {
5321 	case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5322 		*ret = *((natural_width *)p);
5323 		return 1;
5324 	case VMCS_FIELD_TYPE_U16:
5325 		*ret = *((u16 *)p);
5326 		return 1;
5327 	case VMCS_FIELD_TYPE_U32:
5328 		*ret = *((u32 *)p);
5329 		return 1;
5330 	case VMCS_FIELD_TYPE_U64:
5331 		*ret = *((u64 *)p);
5332 		return 1;
5333 	default:
5334 		return 0; /* can never happen. */
5335 	}
5336 }
5337 
5338 /*
5339  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
5340  * used before) all generate the same failure when it is missing.
5341  */
nested_vmx_check_vmcs12(struct kvm_vcpu * vcpu)5342 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
5343 {
5344 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5345 	if (vmx->nested.current_vmptr == -1ull) {
5346 		nested_vmx_failInvalid(vcpu);
5347 		skip_emulated_instruction(vcpu);
5348 		return 0;
5349 	}
5350 	return 1;
5351 }
5352 
handle_vmread(struct kvm_vcpu * vcpu)5353 static int handle_vmread(struct kvm_vcpu *vcpu)
5354 {
5355 	unsigned long field;
5356 	u64 field_value;
5357 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5358 	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5359 	gva_t gva = 0;
5360 
5361 	if (!nested_vmx_check_permission(vcpu) ||
5362 	    !nested_vmx_check_vmcs12(vcpu))
5363 		return 1;
5364 
5365 	/* Decode instruction info and find the field to read */
5366 	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5367 	/* Read the field, zero-extended to a u64 field_value */
5368 	if (!vmcs12_read_any(vcpu, field, &field_value)) {
5369 		nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5370 		skip_emulated_instruction(vcpu);
5371 		return 1;
5372 	}
5373 	/*
5374 	 * Now copy part of this value to register or memory, as requested.
5375 	 * Note that the number of bits actually copied is 32 or 64 depending
5376 	 * on the guest's mode (32 or 64 bit), not on the given field's length.
5377 	 */
5378 	if (vmx_instruction_info & (1u << 10)) {
5379 		kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
5380 			field_value);
5381 	} else {
5382 		if (get_vmx_mem_address(vcpu, exit_qualification,
5383 				vmx_instruction_info, &gva))
5384 			return 1;
5385 		/* _system ok, as nested_vmx_check_permission verified cpl=0 */
5386 		kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
5387 			     &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
5388 	}
5389 
5390 	nested_vmx_succeed(vcpu);
5391 	skip_emulated_instruction(vcpu);
5392 	return 1;
5393 }
5394 
5395 
handle_vmwrite(struct kvm_vcpu * vcpu)5396 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5397 {
5398 	unsigned long field;
5399 	gva_t gva;
5400 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5401 	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5402 	char *p;
5403 	short offset;
5404 	/* The value to write might be 32 or 64 bits, depending on L1's long
5405 	 * mode, and eventually we need to write that into a field of several
5406 	 * possible lengths. The code below first zero-extends the value to 64
5407 	 * bit (field_value), and then copies only the approriate number of
5408 	 * bits into the vmcs12 field.
5409 	 */
5410 	u64 field_value = 0;
5411 	struct x86_exception e;
5412 
5413 	if (!nested_vmx_check_permission(vcpu) ||
5414 	    !nested_vmx_check_vmcs12(vcpu))
5415 		return 1;
5416 
5417 	if (vmx_instruction_info & (1u << 10))
5418 		field_value = kvm_register_read(vcpu,
5419 			(((vmx_instruction_info) >> 3) & 0xf));
5420 	else {
5421 		if (get_vmx_mem_address(vcpu, exit_qualification,
5422 				vmx_instruction_info, &gva))
5423 			return 1;
5424 		if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
5425 			   &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
5426 			kvm_inject_page_fault(vcpu, &e);
5427 			return 1;
5428 		}
5429 	}
5430 
5431 
5432 	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5433 	if (vmcs_field_readonly(field)) {
5434 		nested_vmx_failValid(vcpu,
5435 			VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5436 		skip_emulated_instruction(vcpu);
5437 		return 1;
5438 	}
5439 
5440 	offset = vmcs_field_to_offset(field);
5441 	if (offset < 0) {
5442 		nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5443 		skip_emulated_instruction(vcpu);
5444 		return 1;
5445 	}
5446 	p = ((char *) get_vmcs12(vcpu)) + offset;
5447 
5448 	switch (vmcs_field_type(field)) {
5449 	case VMCS_FIELD_TYPE_U16:
5450 		*(u16 *)p = field_value;
5451 		break;
5452 	case VMCS_FIELD_TYPE_U32:
5453 		*(u32 *)p = field_value;
5454 		break;
5455 	case VMCS_FIELD_TYPE_U64:
5456 		*(u64 *)p = field_value;
5457 		break;
5458 	case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5459 		*(natural_width *)p = field_value;
5460 		break;
5461 	default:
5462 		nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5463 		skip_emulated_instruction(vcpu);
5464 		return 1;
5465 	}
5466 
5467 	nested_vmx_succeed(vcpu);
5468 	skip_emulated_instruction(vcpu);
5469 	return 1;
5470 }
5471 
5472 /* Emulate the VMPTRLD instruction */
handle_vmptrld(struct kvm_vcpu * vcpu)5473 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5474 {
5475 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5476 	gva_t gva;
5477 	gpa_t vmptr;
5478 	struct x86_exception e;
5479 
5480 	if (!nested_vmx_check_permission(vcpu))
5481 		return 1;
5482 
5483 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5484 			vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5485 		return 1;
5486 
5487 	if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5488 				sizeof(vmptr), &e)) {
5489 		kvm_inject_page_fault(vcpu, &e);
5490 		return 1;
5491 	}
5492 
5493 	if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5494 		nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5495 		skip_emulated_instruction(vcpu);
5496 		return 1;
5497 	}
5498 
5499 	if (vmx->nested.current_vmptr != vmptr) {
5500 		struct vmcs12 *new_vmcs12;
5501 		struct page *page;
5502 		page = nested_get_page(vcpu, vmptr);
5503 		if (page == NULL) {
5504 			nested_vmx_failInvalid(vcpu);
5505 			skip_emulated_instruction(vcpu);
5506 			return 1;
5507 		}
5508 		new_vmcs12 = kmap(page);
5509 		if (new_vmcs12->revision_id != VMCS12_REVISION) {
5510 			kunmap(page);
5511 			nested_release_page_clean(page);
5512 			nested_vmx_failValid(vcpu,
5513 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5514 			skip_emulated_instruction(vcpu);
5515 			return 1;
5516 		}
5517 		if (vmx->nested.current_vmptr != -1ull) {
5518 			kunmap(vmx->nested.current_vmcs12_page);
5519 			nested_release_page(vmx->nested.current_vmcs12_page);
5520 		}
5521 
5522 		vmx->nested.current_vmptr = vmptr;
5523 		vmx->nested.current_vmcs12 = new_vmcs12;
5524 		vmx->nested.current_vmcs12_page = page;
5525 	}
5526 
5527 	nested_vmx_succeed(vcpu);
5528 	skip_emulated_instruction(vcpu);
5529 	return 1;
5530 }
5531 
5532 /* Emulate the VMPTRST instruction */
handle_vmptrst(struct kvm_vcpu * vcpu)5533 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5534 {
5535 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5536 	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5537 	gva_t vmcs_gva;
5538 	struct x86_exception e;
5539 
5540 	if (!nested_vmx_check_permission(vcpu))
5541 		return 1;
5542 
5543 	if (get_vmx_mem_address(vcpu, exit_qualification,
5544 			vmx_instruction_info, &vmcs_gva))
5545 		return 1;
5546 	/* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
5547 	if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
5548 				 (void *)&to_vmx(vcpu)->nested.current_vmptr,
5549 				 sizeof(u64), &e)) {
5550 		kvm_inject_page_fault(vcpu, &e);
5551 		return 1;
5552 	}
5553 	nested_vmx_succeed(vcpu);
5554 	skip_emulated_instruction(vcpu);
5555 	return 1;
5556 }
5557 
5558 /*
5559  * The exit handlers return 1 if the exit was handled fully and guest execution
5560  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5561  * to be done to userspace and return 0.
5562  */
5563 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5564 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
5565 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5566 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5567 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
5568 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5569 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
5570 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
5571 	[EXIT_REASON_CPUID]                   = handle_cpuid,
5572 	[EXIT_REASON_MSR_READ]                = handle_rdmsr,
5573 	[EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
5574 	[EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
5575 	[EXIT_REASON_HLT]                     = handle_halt,
5576 	[EXIT_REASON_INVD]		      = handle_invd,
5577 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
5578 	[EXIT_REASON_RDPMC]                   = handle_rdpmc,
5579 	[EXIT_REASON_VMCALL]                  = handle_vmcall,
5580 	[EXIT_REASON_VMCLEAR]	              = handle_vmclear,
5581 	[EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
5582 	[EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
5583 	[EXIT_REASON_VMPTRST]                 = handle_vmptrst,
5584 	[EXIT_REASON_VMREAD]                  = handle_vmread,
5585 	[EXIT_REASON_VMRESUME]                = handle_vmresume,
5586 	[EXIT_REASON_VMWRITE]                 = handle_vmwrite,
5587 	[EXIT_REASON_VMOFF]                   = handle_vmoff,
5588 	[EXIT_REASON_VMON]                    = handle_vmon,
5589 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5590 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5591 	[EXIT_REASON_WBINVD]                  = handle_wbinvd,
5592 	[EXIT_REASON_XSETBV]                  = handle_xsetbv,
5593 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5594 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5595 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
5596 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5597 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5598 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = handle_invalid_op,
5599 	[EXIT_REASON_MONITOR_INSTRUCTION]     = handle_invalid_op,
5600 };
5601 
5602 static const int kvm_vmx_max_exit_handlers =
5603 	ARRAY_SIZE(kvm_vmx_exit_handlers);
5604 
5605 /*
5606  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5607  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5608  * disinterest in the current event (read or write a specific MSR) by using an
5609  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5610  */
nested_vmx_exit_handled_msr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 exit_reason)5611 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5612 	struct vmcs12 *vmcs12, u32 exit_reason)
5613 {
5614 	u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
5615 	gpa_t bitmap;
5616 
5617 	if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
5618 		return 1;
5619 
5620 	/*
5621 	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5622 	 * for the four combinations of read/write and low/high MSR numbers.
5623 	 * First we need to figure out which of the four to use:
5624 	 */
5625 	bitmap = vmcs12->msr_bitmap;
5626 	if (exit_reason == EXIT_REASON_MSR_WRITE)
5627 		bitmap += 2048;
5628 	if (msr_index >= 0xc0000000) {
5629 		msr_index -= 0xc0000000;
5630 		bitmap += 1024;
5631 	}
5632 
5633 	/* Then read the msr_index'th bit from this bitmap: */
5634 	if (msr_index < 1024*8) {
5635 		unsigned char b;
5636 		kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
5637 		return 1 & (b >> (msr_index & 7));
5638 	} else
5639 		return 1; /* let L1 handle the wrong parameter */
5640 }
5641 
5642 /*
5643  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5644  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5645  * intercept (via guest_host_mask etc.) the current event.
5646  */
nested_vmx_exit_handled_cr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5647 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5648 	struct vmcs12 *vmcs12)
5649 {
5650 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5651 	int cr = exit_qualification & 15;
5652 	int reg = (exit_qualification >> 8) & 15;
5653 	unsigned long val = kvm_register_read(vcpu, reg);
5654 
5655 	switch ((exit_qualification >> 4) & 3) {
5656 	case 0: /* mov to cr */
5657 		switch (cr) {
5658 		case 0:
5659 			if (vmcs12->cr0_guest_host_mask &
5660 			    (val ^ vmcs12->cr0_read_shadow))
5661 				return 1;
5662 			break;
5663 		case 3:
5664 			if ((vmcs12->cr3_target_count >= 1 &&
5665 					vmcs12->cr3_target_value0 == val) ||
5666 				(vmcs12->cr3_target_count >= 2 &&
5667 					vmcs12->cr3_target_value1 == val) ||
5668 				(vmcs12->cr3_target_count >= 3 &&
5669 					vmcs12->cr3_target_value2 == val) ||
5670 				(vmcs12->cr3_target_count >= 4 &&
5671 					vmcs12->cr3_target_value3 == val))
5672 				return 0;
5673 			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5674 				return 1;
5675 			break;
5676 		case 4:
5677 			if (vmcs12->cr4_guest_host_mask &
5678 			    (vmcs12->cr4_read_shadow ^ val))
5679 				return 1;
5680 			break;
5681 		case 8:
5682 			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5683 				return 1;
5684 			break;
5685 		}
5686 		break;
5687 	case 2: /* clts */
5688 		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5689 		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
5690 			return 1;
5691 		break;
5692 	case 1: /* mov from cr */
5693 		switch (cr) {
5694 		case 3:
5695 			if (vmcs12->cpu_based_vm_exec_control &
5696 			    CPU_BASED_CR3_STORE_EXITING)
5697 				return 1;
5698 			break;
5699 		case 8:
5700 			if (vmcs12->cpu_based_vm_exec_control &
5701 			    CPU_BASED_CR8_STORE_EXITING)
5702 				return 1;
5703 			break;
5704 		}
5705 		break;
5706 	case 3: /* lmsw */
5707 		/*
5708 		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5709 		 * cr0. Other attempted changes are ignored, with no exit.
5710 		 */
5711 		if (vmcs12->cr0_guest_host_mask & 0xe &
5712 		    (val ^ vmcs12->cr0_read_shadow))
5713 			return 1;
5714 		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5715 		    !(vmcs12->cr0_read_shadow & 0x1) &&
5716 		    (val & 0x1))
5717 			return 1;
5718 		break;
5719 	}
5720 	return 0;
5721 }
5722 
5723 /*
5724  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5725  * should handle it ourselves in L0 (and then continue L2). Only call this
5726  * when in is_guest_mode (L2).
5727  */
nested_vmx_exit_handled(struct kvm_vcpu * vcpu)5728 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
5729 {
5730 	u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
5731 	u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5732 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5733 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5734 
5735 	if (vmx->nested.nested_run_pending)
5736 		return 0;
5737 
5738 	if (unlikely(vmx->fail)) {
5739 		pr_info_ratelimited("%s failed vm entry %x\n", __func__,
5740 				    vmcs_read32(VM_INSTRUCTION_ERROR));
5741 		return 1;
5742 	}
5743 
5744 	switch (exit_reason) {
5745 	case EXIT_REASON_EXCEPTION_NMI:
5746 		if (!is_exception(intr_info))
5747 			return 0;
5748 		else if (is_page_fault(intr_info))
5749 			return enable_ept;
5750 		return vmcs12->exception_bitmap &
5751 				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
5752 	case EXIT_REASON_EXTERNAL_INTERRUPT:
5753 		return 0;
5754 	case EXIT_REASON_TRIPLE_FAULT:
5755 		return 1;
5756 	case EXIT_REASON_PENDING_INTERRUPT:
5757 	case EXIT_REASON_NMI_WINDOW:
5758 		/*
5759 		 * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
5760 		 * (aka Interrupt Window Exiting) only when L1 turned it on,
5761 		 * so if we got a PENDING_INTERRUPT exit, this must be for L1.
5762 		 * Same for NMI Window Exiting.
5763 		 */
5764 		return 1;
5765 	case EXIT_REASON_TASK_SWITCH:
5766 		return 1;
5767 	case EXIT_REASON_CPUID:
5768 		return 1;
5769 	case EXIT_REASON_HLT:
5770 		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5771 	case EXIT_REASON_INVD:
5772 		return 1;
5773 	case EXIT_REASON_INVLPG:
5774 		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5775 	case EXIT_REASON_RDPMC:
5776 		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5777 	case EXIT_REASON_RDTSC:
5778 		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5779 	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5780 	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5781 	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
5782 	case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
5783 	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5784 		/*
5785 		 * VMX instructions trap unconditionally. This allows L1 to
5786 		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5787 		 */
5788 		return 1;
5789 	case EXIT_REASON_CR_ACCESS:
5790 		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5791 	case EXIT_REASON_DR_ACCESS:
5792 		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5793 	case EXIT_REASON_IO_INSTRUCTION:
5794 		/* TODO: support IO bitmaps */
5795 		return 1;
5796 	case EXIT_REASON_MSR_READ:
5797 	case EXIT_REASON_MSR_WRITE:
5798 		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5799 	case EXIT_REASON_INVALID_STATE:
5800 		return 1;
5801 	case EXIT_REASON_MWAIT_INSTRUCTION:
5802 		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5803 	case EXIT_REASON_MONITOR_INSTRUCTION:
5804 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5805 	case EXIT_REASON_PAUSE_INSTRUCTION:
5806 		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5807 			nested_cpu_has2(vmcs12,
5808 				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5809 	case EXIT_REASON_MCE_DURING_VMENTRY:
5810 		return 0;
5811 	case EXIT_REASON_TPR_BELOW_THRESHOLD:
5812 		return 1;
5813 	case EXIT_REASON_APIC_ACCESS:
5814 		return nested_cpu_has2(vmcs12,
5815 			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
5816 	case EXIT_REASON_EPT_VIOLATION:
5817 	case EXIT_REASON_EPT_MISCONFIG:
5818 		return 0;
5819 	case EXIT_REASON_WBINVD:
5820 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5821 	case EXIT_REASON_XSETBV:
5822 		return 1;
5823 	default:
5824 		return 1;
5825 	}
5826 }
5827 
vmx_get_exit_info(struct kvm_vcpu * vcpu,u64 * info1,u64 * info2)5828 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5829 {
5830 	*info1 = vmcs_readl(EXIT_QUALIFICATION);
5831 	*info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5832 }
5833 
5834 /*
5835  * The guest has exited.  See if we can fix it or if we need userspace
5836  * assistance.
5837  */
vmx_handle_exit(struct kvm_vcpu * vcpu)5838 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5839 {
5840 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5841 	u32 exit_reason = vmx->exit_reason;
5842 	u32 vectoring_info = vmx->idt_vectoring_info;
5843 
5844 	/* If guest state is invalid, start emulating */
5845 	if (vmx->emulation_required && emulate_invalid_guest_state)
5846 		return handle_invalid_guest_state(vcpu);
5847 
5848 	/*
5849 	 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
5850 	 * we did not inject a still-pending event to L1 now because of
5851 	 * nested_run_pending, we need to re-enable this bit.
5852 	 */
5853 	if (vmx->nested.nested_run_pending)
5854 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5855 
5856 	if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
5857 	    exit_reason == EXIT_REASON_VMRESUME))
5858 		vmx->nested.nested_run_pending = 1;
5859 	else
5860 		vmx->nested.nested_run_pending = 0;
5861 
5862 	if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
5863 		nested_vmx_vmexit(vcpu);
5864 		return 1;
5865 	}
5866 
5867 	if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5868 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5869 		vcpu->run->fail_entry.hardware_entry_failure_reason
5870 			= exit_reason;
5871 		return 0;
5872 	}
5873 
5874 	if (unlikely(vmx->fail)) {
5875 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5876 		vcpu->run->fail_entry.hardware_entry_failure_reason
5877 			= vmcs_read32(VM_INSTRUCTION_ERROR);
5878 		return 0;
5879 	}
5880 
5881 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5882 			(exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5883 			exit_reason != EXIT_REASON_EPT_VIOLATION &&
5884 			exit_reason != EXIT_REASON_TASK_SWITCH))
5885 		printk(KERN_WARNING "%s: unexpected, valid vectoring info "
5886 		       "(0x%x) and exit reason is 0x%x\n",
5887 		       __func__, vectoring_info, exit_reason);
5888 
5889 	if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
5890 	    !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
5891 	                                get_vmcs12(vcpu), vcpu)))) {
5892 		if (vmx_interrupt_allowed(vcpu)) {
5893 			vmx->soft_vnmi_blocked = 0;
5894 		} else if (vmx->vnmi_blocked_time > 1000000000LL &&
5895 			   vcpu->arch.nmi_pending) {
5896 			/*
5897 			 * This CPU don't support us in finding the end of an
5898 			 * NMI-blocked window if the guest runs with IRQs
5899 			 * disabled. So we pull the trigger after 1 s of
5900 			 * futile waiting, but inform the user about this.
5901 			 */
5902 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5903 			       "state on VCPU %d after 1 s timeout\n",
5904 			       __func__, vcpu->vcpu_id);
5905 			vmx->soft_vnmi_blocked = 0;
5906 		}
5907 	}
5908 
5909 	if (exit_reason < kvm_vmx_max_exit_handlers
5910 	    && kvm_vmx_exit_handlers[exit_reason])
5911 		return kvm_vmx_exit_handlers[exit_reason](vcpu);
5912 	else {
5913 		vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5914 		vcpu->run->hw.hardware_exit_reason = exit_reason;
5915 	}
5916 	return 0;
5917 }
5918 
update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)5919 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5920 {
5921 	if (irr == -1 || tpr < irr) {
5922 		vmcs_write32(TPR_THRESHOLD, 0);
5923 		return;
5924 	}
5925 
5926 	vmcs_write32(TPR_THRESHOLD, irr);
5927 }
5928 
vmx_complete_atomic_exit(struct vcpu_vmx * vmx)5929 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
5930 {
5931 	u32 exit_intr_info;
5932 
5933 	if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
5934 	      || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
5935 		return;
5936 
5937 	vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5938 	exit_intr_info = vmx->exit_intr_info;
5939 
5940 	/* Handle machine checks before interrupts are enabled */
5941 	if (is_machine_check(exit_intr_info))
5942 		kvm_machine_check();
5943 
5944 	/* We need to handle NMIs before interrupts are enabled */
5945 	if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
5946 	    (exit_intr_info & INTR_INFO_VALID_MASK)) {
5947 		kvm_before_handle_nmi(&vmx->vcpu);
5948 		asm("int $2");
5949 		kvm_after_handle_nmi(&vmx->vcpu);
5950 	}
5951 }
5952 
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)5953 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
5954 {
5955 	u32 exit_intr_info;
5956 	bool unblock_nmi;
5957 	u8 vector;
5958 	bool idtv_info_valid;
5959 
5960 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
5961 
5962 	if (cpu_has_virtual_nmis()) {
5963 		if (vmx->nmi_known_unmasked)
5964 			return;
5965 		/*
5966 		 * Can't use vmx->exit_intr_info since we're not sure what
5967 		 * the exit reason is.
5968 		 */
5969 		exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5970 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
5971 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
5972 		/*
5973 		 * SDM 3: 27.7.1.2 (September 2008)
5974 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
5975 		 * a guest IRET fault.
5976 		 * SDM 3: 23.2.2 (September 2008)
5977 		 * Bit 12 is undefined in any of the following cases:
5978 		 *  If the VM exit sets the valid bit in the IDT-vectoring
5979 		 *   information field.
5980 		 *  If the VM exit is due to a double fault.
5981 		 */
5982 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
5983 		    vector != DF_VECTOR && !idtv_info_valid)
5984 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5985 				      GUEST_INTR_STATE_NMI);
5986 		else
5987 			vmx->nmi_known_unmasked =
5988 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
5989 				  & GUEST_INTR_STATE_NMI);
5990 	} else if (unlikely(vmx->soft_vnmi_blocked))
5991 		vmx->vnmi_blocked_time +=
5992 			ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
5993 }
5994 
__vmx_complete_interrupts(struct vcpu_vmx * vmx,u32 idt_vectoring_info,int instr_len_field,int error_code_field)5995 static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
5996 				      u32 idt_vectoring_info,
5997 				      int instr_len_field,
5998 				      int error_code_field)
5999 {
6000 	u8 vector;
6001 	int type;
6002 	bool idtv_info_valid;
6003 
6004 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6005 
6006 	vmx->vcpu.arch.nmi_injected = false;
6007 	kvm_clear_exception_queue(&vmx->vcpu);
6008 	kvm_clear_interrupt_queue(&vmx->vcpu);
6009 
6010 	if (!idtv_info_valid)
6011 		return;
6012 
6013 	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6014 
6015 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6016 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6017 
6018 	switch (type) {
6019 	case INTR_TYPE_NMI_INTR:
6020 		vmx->vcpu.arch.nmi_injected = true;
6021 		/*
6022 		 * SDM 3: 27.7.1.2 (September 2008)
6023 		 * Clear bit "block by NMI" before VM entry if a NMI
6024 		 * delivery faulted.
6025 		 */
6026 		vmx_set_nmi_mask(&vmx->vcpu, false);
6027 		break;
6028 	case INTR_TYPE_SOFT_EXCEPTION:
6029 		vmx->vcpu.arch.event_exit_inst_len =
6030 			vmcs_read32(instr_len_field);
6031 		/* fall through */
6032 	case INTR_TYPE_HARD_EXCEPTION:
6033 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6034 			u32 err = vmcs_read32(error_code_field);
6035 			kvm_queue_exception_e(&vmx->vcpu, vector, err);
6036 		} else
6037 			kvm_queue_exception(&vmx->vcpu, vector);
6038 		break;
6039 	case INTR_TYPE_SOFT_INTR:
6040 		vmx->vcpu.arch.event_exit_inst_len =
6041 			vmcs_read32(instr_len_field);
6042 		/* fall through */
6043 	case INTR_TYPE_EXT_INTR:
6044 		kvm_queue_interrupt(&vmx->vcpu, vector,
6045 			type == INTR_TYPE_SOFT_INTR);
6046 		break;
6047 	default:
6048 		break;
6049 	}
6050 }
6051 
vmx_complete_interrupts(struct vcpu_vmx * vmx)6052 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6053 {
6054 	if (is_guest_mode(&vmx->vcpu))
6055 		return;
6056 	__vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
6057 				  VM_EXIT_INSTRUCTION_LEN,
6058 				  IDT_VECTORING_ERROR_CODE);
6059 }
6060 
vmx_cancel_injection(struct kvm_vcpu * vcpu)6061 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6062 {
6063 	if (is_guest_mode(vcpu))
6064 		return;
6065 	__vmx_complete_interrupts(to_vmx(vcpu),
6066 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6067 				  VM_ENTRY_INSTRUCTION_LEN,
6068 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
6069 
6070 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6071 }
6072 
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)6073 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6074 {
6075 	int i, nr_msrs;
6076 	struct perf_guest_switch_msr *msrs;
6077 
6078 	msrs = perf_guest_get_msrs(&nr_msrs);
6079 
6080 	if (!msrs)
6081 		return;
6082 
6083 	for (i = 0; i < nr_msrs; i++)
6084 		if (msrs[i].host == msrs[i].guest)
6085 			clear_atomic_switch_msr(vmx, msrs[i].msr);
6086 		else
6087 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6088 					msrs[i].host);
6089 }
6090 
6091 #ifdef CONFIG_X86_64
6092 #define R "r"
6093 #define Q "q"
6094 #else
6095 #define R "e"
6096 #define Q "l"
6097 #endif
6098 
vmx_vcpu_run(struct kvm_vcpu * vcpu)6099 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6100 {
6101 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6102 
6103 	if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
6104 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6105 		if (vmcs12->idt_vectoring_info_field &
6106 				VECTORING_INFO_VALID_MASK) {
6107 			vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6108 				vmcs12->idt_vectoring_info_field);
6109 			vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6110 				vmcs12->vm_exit_instruction_len);
6111 			if (vmcs12->idt_vectoring_info_field &
6112 					VECTORING_INFO_DELIVER_CODE_MASK)
6113 				vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6114 					vmcs12->idt_vectoring_error_code);
6115 		}
6116 	}
6117 
6118 	/* Record the guest's net vcpu time for enforced NMI injections. */
6119 	if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
6120 		vmx->entry_time = ktime_get();
6121 
6122 	/* Don't enter VMX if guest state is invalid, let the exit handler
6123 	   start emulation until we arrive back to a valid state */
6124 	if (vmx->emulation_required && emulate_invalid_guest_state)
6125 		return;
6126 
6127 	if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6128 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6129 	if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6130 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6131 
6132 	/* When single-stepping over STI and MOV SS, we must clear the
6133 	 * corresponding interruptibility bits in the guest state. Otherwise
6134 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
6135 	 * exceptions being set, but that's not correct for the guest debugging
6136 	 * case. */
6137 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6138 		vmx_set_interrupt_shadow(vcpu, 0);
6139 
6140 	atomic_switch_perf_msrs(vmx);
6141 
6142 	vmx->__launched = vmx->loaded_vmcs->launched;
6143 	asm(
6144 		/* Store host registers */
6145 		"push %%"R"dx; push %%"R"bp;"
6146 		"push %%"R"cx \n\t" /* placeholder for guest rcx */
6147 		"push %%"R"cx \n\t"
6148 		"cmp %%"R"sp, %c[host_rsp](%0) \n\t"
6149 		"je 1f \n\t"
6150 		"mov %%"R"sp, %c[host_rsp](%0) \n\t"
6151 		__ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
6152 		"1: \n\t"
6153 		/* Reload cr2 if changed */
6154 		"mov %c[cr2](%0), %%"R"ax \n\t"
6155 		"mov %%cr2, %%"R"dx \n\t"
6156 		"cmp %%"R"ax, %%"R"dx \n\t"
6157 		"je 2f \n\t"
6158 		"mov %%"R"ax, %%cr2 \n\t"
6159 		"2: \n\t"
6160 		/* Check if vmlaunch of vmresume is needed */
6161 		"cmpl $0, %c[launched](%0) \n\t"
6162 		/* Load guest registers.  Don't clobber flags. */
6163 		"mov %c[rax](%0), %%"R"ax \n\t"
6164 		"mov %c[rbx](%0), %%"R"bx \n\t"
6165 		"mov %c[rdx](%0), %%"R"dx \n\t"
6166 		"mov %c[rsi](%0), %%"R"si \n\t"
6167 		"mov %c[rdi](%0), %%"R"di \n\t"
6168 		"mov %c[rbp](%0), %%"R"bp \n\t"
6169 #ifdef CONFIG_X86_64
6170 		"mov %c[r8](%0),  %%r8  \n\t"
6171 		"mov %c[r9](%0),  %%r9  \n\t"
6172 		"mov %c[r10](%0), %%r10 \n\t"
6173 		"mov %c[r11](%0), %%r11 \n\t"
6174 		"mov %c[r12](%0), %%r12 \n\t"
6175 		"mov %c[r13](%0), %%r13 \n\t"
6176 		"mov %c[r14](%0), %%r14 \n\t"
6177 		"mov %c[r15](%0), %%r15 \n\t"
6178 #endif
6179 		"mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
6180 
6181 		/* Enter guest mode */
6182 		"jne .Llaunched \n\t"
6183 		__ex(ASM_VMX_VMLAUNCH) "\n\t"
6184 		"jmp .Lkvm_vmx_return \n\t"
6185 		".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
6186 		".Lkvm_vmx_return: "
6187 		/* Save guest registers, load host registers, keep flags */
6188 		"mov %0, %c[wordsize](%%"R"sp) \n\t"
6189 		"pop %0 \n\t"
6190 		"mov %%"R"ax, %c[rax](%0) \n\t"
6191 		"mov %%"R"bx, %c[rbx](%0) \n\t"
6192 		"pop"Q" %c[rcx](%0) \n\t"
6193 		"mov %%"R"dx, %c[rdx](%0) \n\t"
6194 		"mov %%"R"si, %c[rsi](%0) \n\t"
6195 		"mov %%"R"di, %c[rdi](%0) \n\t"
6196 		"mov %%"R"bp, %c[rbp](%0) \n\t"
6197 #ifdef CONFIG_X86_64
6198 		"mov %%r8,  %c[r8](%0) \n\t"
6199 		"mov %%r9,  %c[r9](%0) \n\t"
6200 		"mov %%r10, %c[r10](%0) \n\t"
6201 		"mov %%r11, %c[r11](%0) \n\t"
6202 		"mov %%r12, %c[r12](%0) \n\t"
6203 		"mov %%r13, %c[r13](%0) \n\t"
6204 		"mov %%r14, %c[r14](%0) \n\t"
6205 		"mov %%r15, %c[r15](%0) \n\t"
6206 #endif
6207 		"mov %%cr2, %%"R"ax   \n\t"
6208 		"mov %%"R"ax, %c[cr2](%0) \n\t"
6209 
6210 		"pop  %%"R"bp; pop  %%"R"dx \n\t"
6211 		"setbe %c[fail](%0) \n\t"
6212 	      : : "c"(vmx), "d"((unsigned long)HOST_RSP),
6213 		[launched]"i"(offsetof(struct vcpu_vmx, __launched)),
6214 		[fail]"i"(offsetof(struct vcpu_vmx, fail)),
6215 		[host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
6216 		[rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
6217 		[rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
6218 		[rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
6219 		[rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
6220 		[rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
6221 		[rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
6222 		[rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
6223 #ifdef CONFIG_X86_64
6224 		[r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
6225 		[r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
6226 		[r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
6227 		[r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
6228 		[r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
6229 		[r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
6230 		[r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
6231 		[r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6232 #endif
6233 		[cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
6234 		[wordsize]"i"(sizeof(ulong))
6235 	      : "cc", "memory"
6236 		, R"ax", R"bx", R"di", R"si"
6237 #ifdef CONFIG_X86_64
6238 		, "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
6239 #endif
6240 	      );
6241 
6242 	vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6243 				  | (1 << VCPU_EXREG_RFLAGS)
6244 				  | (1 << VCPU_EXREG_CPL)
6245 				  | (1 << VCPU_EXREG_PDPTR)
6246 				  | (1 << VCPU_EXREG_SEGMENTS)
6247 				  | (1 << VCPU_EXREG_CR3));
6248 	vcpu->arch.regs_dirty = 0;
6249 
6250 	vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6251 
6252 	if (is_guest_mode(vcpu)) {
6253 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6254 		vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
6255 		if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
6256 			vmcs12->idt_vectoring_error_code =
6257 				vmcs_read32(IDT_VECTORING_ERROR_CODE);
6258 			vmcs12->vm_exit_instruction_len =
6259 				vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6260 		}
6261 	}
6262 
6263 	asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
6264 	vmx->loaded_vmcs->launched = 1;
6265 
6266 	vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
6267 	trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
6268 
6269 	vmx_complete_atomic_exit(vmx);
6270 	vmx_recover_nmi_blocking(vmx);
6271 	vmx_complete_interrupts(vmx);
6272 }
6273 
6274 #undef R
6275 #undef Q
6276 
6277 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6278 {
6279 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6280 
6281 	free_vpid(vmx);
6282 	free_nested(vmx);
6283 	free_loaded_vmcs(vmx->loaded_vmcs);
6284 	kfree(vmx->guest_msrs);
6285 	kvm_vcpu_uninit(vcpu);
6286 	kmem_cache_free(kvm_vcpu_cache, vmx);
6287 }
6288 
6289 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6290 {
6291 	int err;
6292 	struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
6293 	int cpu;
6294 
6295 	if (!vmx)
6296 		return ERR_PTR(-ENOMEM);
6297 
6298 	allocate_vpid(vmx);
6299 
6300 	err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6301 	if (err)
6302 		goto free_vcpu;
6303 
6304 	vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
6305 	err = -ENOMEM;
6306 	if (!vmx->guest_msrs) {
6307 		goto uninit_vcpu;
6308 	}
6309 
6310 	vmx->loaded_vmcs = &vmx->vmcs01;
6311 	vmx->loaded_vmcs->vmcs = alloc_vmcs();
6312 	if (!vmx->loaded_vmcs->vmcs)
6313 		goto free_msrs;
6314 	if (!vmm_exclusive)
6315 		kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
6316 	loaded_vmcs_init(vmx->loaded_vmcs);
6317 	if (!vmm_exclusive)
6318 		kvm_cpu_vmxoff();
6319 
6320 	cpu = get_cpu();
6321 	vmx_vcpu_load(&vmx->vcpu, cpu);
6322 	vmx->vcpu.cpu = cpu;
6323 	err = vmx_vcpu_setup(vmx);
6324 	vmx_vcpu_put(&vmx->vcpu);
6325 	put_cpu();
6326 	if (err)
6327 		goto free_vmcs;
6328 	if (vm_need_virtualize_apic_accesses(kvm))
6329 		err = alloc_apic_access_page(kvm);
6330 		if (err)
6331 			goto free_vmcs;
6332 
6333 	if (enable_ept) {
6334 		if (!kvm->arch.ept_identity_map_addr)
6335 			kvm->arch.ept_identity_map_addr =
6336 				VMX_EPT_IDENTITY_PAGETABLE_ADDR;
6337 		err = -ENOMEM;
6338 		if (alloc_identity_pagetable(kvm) != 0)
6339 			goto free_vmcs;
6340 		if (!init_rmode_identity_map(kvm))
6341 			goto free_vmcs;
6342 	}
6343 
6344 	vmx->nested.current_vmptr = -1ull;
6345 	vmx->nested.current_vmcs12 = NULL;
6346 
6347 	return &vmx->vcpu;
6348 
6349 free_vmcs:
6350 	free_vmcs(vmx->loaded_vmcs->vmcs);
6351 free_msrs:
6352 	kfree(vmx->guest_msrs);
6353 uninit_vcpu:
6354 	kvm_vcpu_uninit(&vmx->vcpu);
6355 free_vcpu:
6356 	free_vpid(vmx);
6357 	kmem_cache_free(kvm_vcpu_cache, vmx);
6358 	return ERR_PTR(err);
6359 }
6360 
6361 static void __init vmx_check_processor_compat(void *rtn)
6362 {
6363 	struct vmcs_config vmcs_conf;
6364 
6365 	*(int *)rtn = 0;
6366 	if (setup_vmcs_config(&vmcs_conf) < 0)
6367 		*(int *)rtn = -EIO;
6368 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6369 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6370 				smp_processor_id());
6371 		*(int *)rtn = -EIO;
6372 	}
6373 }
6374 
6375 static int get_ept_level(void)
6376 {
6377 	return VMX_EPT_DEFAULT_GAW + 1;
6378 }
6379 
6380 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6381 {
6382 	u64 ret;
6383 
6384 	/* For VT-d and EPT combination
6385 	 * 1. MMIO: always map as UC
6386 	 * 2. EPT with VT-d:
6387 	 *   a. VT-d without snooping control feature: can't guarantee the
6388 	 *	result, try to trust guest.
6389 	 *   b. VT-d with snooping control feature: snooping control feature of
6390 	 *	VT-d engine can guarantee the cache correctness. Just set it
6391 	 *	to WB to keep consistent with host. So the same as item 3.
6392 	 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6393 	 *    consistent with host MTRR
6394 	 */
6395 	if (is_mmio)
6396 		ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
6397 	else if (vcpu->kvm->arch.iommu_domain &&
6398 		!(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
6399 		ret = kvm_get_guest_memory_type(vcpu, gfn) <<
6400 		      VMX_EPT_MT_EPTE_SHIFT;
6401 	else
6402 		ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
6403 			| VMX_EPT_IPAT_BIT;
6404 
6405 	return ret;
6406 }
6407 
6408 static int vmx_get_lpage_level(void)
6409 {
6410 	if (enable_ept && !cpu_has_vmx_ept_1g_page())
6411 		return PT_DIRECTORY_LEVEL;
6412 	else
6413 		/* For shadow and EPT supported 1GB page */
6414 		return PT_PDPE_LEVEL;
6415 }
6416 
6417 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
6418 {
6419 	struct kvm_cpuid_entry2 *best;
6420 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6421 	u32 exec_control;
6422 
6423 	vmx->rdtscp_enabled = false;
6424 	if (vmx_rdtscp_supported()) {
6425 		exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6426 		if (exec_control & SECONDARY_EXEC_RDTSCP) {
6427 			best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
6428 			if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
6429 				vmx->rdtscp_enabled = true;
6430 			else {
6431 				exec_control &= ~SECONDARY_EXEC_RDTSCP;
6432 				vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6433 						exec_control);
6434 			}
6435 		}
6436 	}
6437 }
6438 
6439 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
6440 {
6441 	if (func == 1 && nested)
6442 		entry->ecx |= bit(X86_FEATURE_VMX);
6443 }
6444 
6445 /*
6446  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
6447  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
6448  * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
6449  * guest in a way that will both be appropriate to L1's requests, and our
6450  * needs. In addition to modifying the active vmcs (which is vmcs02), this
6451  * function also has additional necessary side-effects, like setting various
6452  * vcpu->arch fields.
6453  */
6454 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6455 {
6456 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6457 	u32 exec_control;
6458 
6459 	vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
6460 	vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
6461 	vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
6462 	vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
6463 	vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
6464 	vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
6465 	vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
6466 	vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
6467 	vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
6468 	vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
6469 	vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
6470 	vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
6471 	vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
6472 	vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
6473 	vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
6474 	vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
6475 	vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
6476 	vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
6477 	vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
6478 	vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
6479 	vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
6480 	vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
6481 	vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
6482 	vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
6483 	vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
6484 	vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
6485 	vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
6486 	vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
6487 	vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
6488 	vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
6489 	vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
6490 	vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
6491 	vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
6492 	vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
6493 	vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
6494 	vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
6495 
6496 	vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
6497 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6498 		vmcs12->vm_entry_intr_info_field);
6499 	vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6500 		vmcs12->vm_entry_exception_error_code);
6501 	vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6502 		vmcs12->vm_entry_instruction_len);
6503 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
6504 		vmcs12->guest_interruptibility_info);
6505 	vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
6506 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
6507 	vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
6508 	vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
6509 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
6510 		vmcs12->guest_pending_dbg_exceptions);
6511 	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
6512 	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
6513 
6514 	vmcs_write64(VMCS_LINK_POINTER, -1ull);
6515 
6516 	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
6517 		(vmcs_config.pin_based_exec_ctrl |
6518 		 vmcs12->pin_based_vm_exec_control));
6519 
6520 	/*
6521 	 * Whether page-faults are trapped is determined by a combination of
6522 	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
6523 	 * If enable_ept, L0 doesn't care about page faults and we should
6524 	 * set all of these to L1's desires. However, if !enable_ept, L0 does
6525 	 * care about (at least some) page faults, and because it is not easy
6526 	 * (if at all possible?) to merge L0 and L1's desires, we simply ask
6527 	 * to exit on each and every L2 page fault. This is done by setting
6528 	 * MASK=MATCH=0 and (see below) EB.PF=1.
6529 	 * Note that below we don't need special code to set EB.PF beyond the
6530 	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
6531 	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
6532 	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
6533 	 *
6534 	 * A problem with this approach (when !enable_ept) is that L1 may be
6535 	 * injected with more page faults than it asked for. This could have
6536 	 * caused problems, but in practice existing hypervisors don't care.
6537 	 * To fix this, we will need to emulate the PFEC checking (on the L1
6538 	 * page tables), using walk_addr(), when injecting PFs to L1.
6539 	 */
6540 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
6541 		enable_ept ? vmcs12->page_fault_error_code_mask : 0);
6542 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
6543 		enable_ept ? vmcs12->page_fault_error_code_match : 0);
6544 
6545 	if (cpu_has_secondary_exec_ctrls()) {
6546 		u32 exec_control = vmx_secondary_exec_control(vmx);
6547 		if (!vmx->rdtscp_enabled)
6548 			exec_control &= ~SECONDARY_EXEC_RDTSCP;
6549 		/* Take the following fields only from vmcs12 */
6550 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6551 		if (nested_cpu_has(vmcs12,
6552 				CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
6553 			exec_control |= vmcs12->secondary_vm_exec_control;
6554 
6555 		if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
6556 			/*
6557 			 * Translate L1 physical address to host physical
6558 			 * address for vmcs02. Keep the page pinned, so this
6559 			 * physical address remains valid. We keep a reference
6560 			 * to it so we can release it later.
6561 			 */
6562 			if (vmx->nested.apic_access_page) /* shouldn't happen */
6563 				nested_release_page(vmx->nested.apic_access_page);
6564 			vmx->nested.apic_access_page =
6565 				nested_get_page(vcpu, vmcs12->apic_access_addr);
6566 			/*
6567 			 * If translation failed, no matter: This feature asks
6568 			 * to exit when accessing the given address, and if it
6569 			 * can never be accessed, this feature won't do
6570 			 * anything anyway.
6571 			 */
6572 			if (!vmx->nested.apic_access_page)
6573 				exec_control &=
6574 				  ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6575 			else
6576 				vmcs_write64(APIC_ACCESS_ADDR,
6577 				  page_to_phys(vmx->nested.apic_access_page));
6578 		}
6579 
6580 		vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6581 	}
6582 
6583 
6584 	/*
6585 	 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
6586 	 * Some constant fields are set here by vmx_set_constant_host_state().
6587 	 * Other fields are different per CPU, and will be set later when
6588 	 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
6589 	 */
6590 	vmx_set_constant_host_state();
6591 
6592 	/*
6593 	 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
6594 	 * entry, but only if the current (host) sp changed from the value
6595 	 * we wrote last (vmx->host_rsp). This cache is no longer relevant
6596 	 * if we switch vmcs, and rather than hold a separate cache per vmcs,
6597 	 * here we just force the write to happen on entry.
6598 	 */
6599 	vmx->host_rsp = 0;
6600 
6601 	exec_control = vmx_exec_control(vmx); /* L0's desires */
6602 	exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
6603 	exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6604 	exec_control &= ~CPU_BASED_TPR_SHADOW;
6605 	exec_control |= vmcs12->cpu_based_vm_exec_control;
6606 	/*
6607 	 * Merging of IO and MSR bitmaps not currently supported.
6608 	 * Rather, exit every time.
6609 	 */
6610 	exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
6611 	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
6612 	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
6613 
6614 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
6615 
6616 	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
6617 	 * bitwise-or of what L1 wants to trap for L2, and what we want to
6618 	 * trap. Note that CR0.TS also needs updating - we do this later.
6619 	 */
6620 	update_exception_bitmap(vcpu);
6621 	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
6622 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6623 
6624 	/* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
6625 	vmcs_write32(VM_EXIT_CONTROLS,
6626 		vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
6627 	vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
6628 		(vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
6629 
6630 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
6631 		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
6632 	else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
6633 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
6634 
6635 
6636 	set_cr4_guest_host_mask(vmx);
6637 
6638 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
6639 		vmcs_write64(TSC_OFFSET,
6640 			vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
6641 	else
6642 		vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
6643 
6644 	if (enable_vpid) {
6645 		/*
6646 		 * Trivially support vpid by letting L2s share their parent
6647 		 * L1's vpid. TODO: move to a more elaborate solution, giving
6648 		 * each L2 its own vpid and exposing the vpid feature to L1.
6649 		 */
6650 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
6651 		vmx_flush_tlb(vcpu);
6652 	}
6653 
6654 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
6655 		vcpu->arch.efer = vmcs12->guest_ia32_efer;
6656 	if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
6657 		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6658 	else
6659 		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6660 	/* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
6661 	vmx_set_efer(vcpu, vcpu->arch.efer);
6662 
6663 	/*
6664 	 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
6665 	 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
6666 	 * The CR0_READ_SHADOW is what L2 should have expected to read given
6667 	 * the specifications by L1; It's not enough to take
6668 	 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
6669 	 * have more bits than L1 expected.
6670 	 */
6671 	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
6672 	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
6673 
6674 	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
6675 	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
6676 
6677 	/* shadow page tables on either EPT or shadow page tables */
6678 	kvm_set_cr3(vcpu, vmcs12->guest_cr3);
6679 	kvm_mmu_reset_context(vcpu);
6680 
6681 	kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
6682 	kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
6683 }
6684 
6685 /*
6686  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
6687  * for running an L2 nested guest.
6688  */
6689 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
6690 {
6691 	struct vmcs12 *vmcs12;
6692 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6693 	int cpu;
6694 	struct loaded_vmcs *vmcs02;
6695 
6696 	if (!nested_vmx_check_permission(vcpu) ||
6697 	    !nested_vmx_check_vmcs12(vcpu))
6698 		return 1;
6699 
6700 	skip_emulated_instruction(vcpu);
6701 	vmcs12 = get_vmcs12(vcpu);
6702 
6703 	/*
6704 	 * The nested entry process starts with enforcing various prerequisites
6705 	 * on vmcs12 as required by the Intel SDM, and act appropriately when
6706 	 * they fail: As the SDM explains, some conditions should cause the
6707 	 * instruction to fail, while others will cause the instruction to seem
6708 	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
6709 	 * To speed up the normal (success) code path, we should avoid checking
6710 	 * for misconfigurations which will anyway be caught by the processor
6711 	 * when using the merged vmcs02.
6712 	 */
6713 	if (vmcs12->launch_state == launch) {
6714 		nested_vmx_failValid(vcpu,
6715 			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
6716 			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
6717 		return 1;
6718 	}
6719 
6720 	if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
6721 			!IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
6722 		/*TODO: Also verify bits beyond physical address width are 0*/
6723 		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6724 		return 1;
6725 	}
6726 
6727 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
6728 			!IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
6729 		/*TODO: Also verify bits beyond physical address width are 0*/
6730 		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6731 		return 1;
6732 	}
6733 
6734 	if (vmcs12->vm_entry_msr_load_count > 0 ||
6735 	    vmcs12->vm_exit_msr_load_count > 0 ||
6736 	    vmcs12->vm_exit_msr_store_count > 0) {
6737 		pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
6738 				    __func__);
6739 		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6740 		return 1;
6741 	}
6742 
6743 	if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
6744 	      nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
6745 	    !vmx_control_verify(vmcs12->secondary_vm_exec_control,
6746 	      nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
6747 	    !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
6748 	      nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
6749 	    !vmx_control_verify(vmcs12->vm_exit_controls,
6750 	      nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
6751 	    !vmx_control_verify(vmcs12->vm_entry_controls,
6752 	      nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
6753 	{
6754 		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6755 		return 1;
6756 	}
6757 
6758 	if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6759 	    ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6760 		nested_vmx_failValid(vcpu,
6761 			VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
6762 		return 1;
6763 	}
6764 
6765 	if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6766 	    ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6767 		nested_vmx_entry_failure(vcpu, vmcs12,
6768 			EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
6769 		return 1;
6770 	}
6771 	if (vmcs12->vmcs_link_pointer != -1ull) {
6772 		nested_vmx_entry_failure(vcpu, vmcs12,
6773 			EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
6774 		return 1;
6775 	}
6776 
6777 	/*
6778 	 * We're finally done with prerequisite checking, and can start with
6779 	 * the nested entry.
6780 	 */
6781 
6782 	vmcs02 = nested_get_current_vmcs02(vmx);
6783 	if (!vmcs02)
6784 		return -ENOMEM;
6785 
6786 	enter_guest_mode(vcpu);
6787 
6788 	vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
6789 
6790 	cpu = get_cpu();
6791 	vmx->loaded_vmcs = vmcs02;
6792 	vmx_vcpu_put(vcpu);
6793 	vmx_vcpu_load(vcpu, cpu);
6794 	vcpu->cpu = cpu;
6795 	put_cpu();
6796 
6797 	vmcs12->launch_state = 1;
6798 
6799 	prepare_vmcs02(vcpu, vmcs12);
6800 
6801 	/*
6802 	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
6803 	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
6804 	 * returned as far as L1 is concerned. It will only return (and set
6805 	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
6806 	 */
6807 	return 1;
6808 }
6809 
6810 /*
6811  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
6812  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
6813  * This function returns the new value we should put in vmcs12.guest_cr0.
6814  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
6815  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
6816  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
6817  *     didn't trap the bit, because if L1 did, so would L0).
6818  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
6819  *     been modified by L2, and L1 knows it. So just leave the old value of
6820  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
6821  *     isn't relevant, because if L0 traps this bit it can set it to anything.
6822  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
6823  *     changed these bits, and therefore they need to be updated, but L0
6824  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
6825  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
6826  */
6827 static inline unsigned long
6828 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6829 {
6830 	return
6831 	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
6832 	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
6833 	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
6834 			vcpu->arch.cr0_guest_owned_bits));
6835 }
6836 
6837 static inline unsigned long
6838 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6839 {
6840 	return
6841 	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
6842 	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
6843 	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
6844 			vcpu->arch.cr4_guest_owned_bits));
6845 }
6846 
6847 /*
6848  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
6849  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
6850  * and this function updates it to reflect the changes to the guest state while
6851  * L2 was running (and perhaps made some exits which were handled directly by L0
6852  * without going back to L1), and to reflect the exit reason.
6853  * Note that we do not have to copy here all VMCS fields, just those that
6854  * could have changed by the L2 guest or the exit - i.e., the guest-state and
6855  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
6856  * which already writes to vmcs12 directly.
6857  */
6858 void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6859 {
6860 	/* update guest state fields: */
6861 	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
6862 	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
6863 
6864 	kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
6865 	vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6866 	vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
6867 	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
6868 
6869 	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
6870 	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
6871 	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
6872 	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
6873 	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
6874 	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
6875 	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
6876 	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
6877 	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
6878 	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
6879 	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
6880 	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
6881 	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
6882 	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
6883 	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
6884 	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
6885 	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
6886 	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
6887 	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
6888 	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
6889 	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
6890 	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
6891 	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
6892 	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
6893 	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
6894 	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
6895 	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
6896 	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
6897 	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
6898 	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
6899 	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
6900 	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
6901 	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
6902 	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
6903 	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
6904 	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
6905 
6906 	vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
6907 	vmcs12->guest_interruptibility_info =
6908 		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
6909 	vmcs12->guest_pending_dbg_exceptions =
6910 		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
6911 
6912 	/* TODO: These cannot have changed unless we have MSR bitmaps and
6913 	 * the relevant bit asks not to trap the change */
6914 	vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
6915 	if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
6916 		vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
6917 	vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
6918 	vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
6919 	vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
6920 
6921 	/* update exit information fields: */
6922 
6923 	vmcs12->vm_exit_reason  = vmcs_read32(VM_EXIT_REASON);
6924 	vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6925 
6926 	vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6927 	vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6928 	vmcs12->idt_vectoring_info_field =
6929 		vmcs_read32(IDT_VECTORING_INFO_FIELD);
6930 	vmcs12->idt_vectoring_error_code =
6931 		vmcs_read32(IDT_VECTORING_ERROR_CODE);
6932 	vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6933 	vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6934 
6935 	/* clear vm-entry fields which are to be cleared on exit */
6936 	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6937 		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
6938 }
6939 
6940 /*
6941  * A part of what we need to when the nested L2 guest exits and we want to
6942  * run its L1 parent, is to reset L1's guest state to the host state specified
6943  * in vmcs12.
6944  * This function is to be called not only on normal nested exit, but also on
6945  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
6946  * Failures During or After Loading Guest State").
6947  * This function should be called when the active VMCS is L1's (vmcs01).
6948  */
6949 void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6950 {
6951 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
6952 		vcpu->arch.efer = vmcs12->host_ia32_efer;
6953 	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
6954 		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6955 	else
6956 		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6957 	vmx_set_efer(vcpu, vcpu->arch.efer);
6958 
6959 	kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
6960 	kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
6961 	/*
6962 	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
6963 	 * actually changed, because it depends on the current state of
6964 	 * fpu_active (which may have changed).
6965 	 * Note that vmx_set_cr0 refers to efer set above.
6966 	 */
6967 	kvm_set_cr0(vcpu, vmcs12->host_cr0);
6968 	/*
6969 	 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
6970 	 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
6971 	 * but we also need to update cr0_guest_host_mask and exception_bitmap.
6972 	 */
6973 	update_exception_bitmap(vcpu);
6974 	vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
6975 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6976 
6977 	/*
6978 	 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
6979 	 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
6980 	 */
6981 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
6982 	kvm_set_cr4(vcpu, vmcs12->host_cr4);
6983 
6984 	/* shadow page tables on either EPT or shadow page tables */
6985 	kvm_set_cr3(vcpu, vmcs12->host_cr3);
6986 	kvm_mmu_reset_context(vcpu);
6987 
6988 	if (enable_vpid) {
6989 		/*
6990 		 * Trivially support vpid by letting L2s share their parent
6991 		 * L1's vpid. TODO: move to a more elaborate solution, giving
6992 		 * each L2 its own vpid and exposing the vpid feature to L1.
6993 		 */
6994 		vmx_flush_tlb(vcpu);
6995 	}
6996 
6997 
6998 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
6999 	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
7000 	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
7001 	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
7002 	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
7003 	vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
7004 	vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
7005 	vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
7006 	vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
7007 	vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
7008 	vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
7009 	vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
7010 	vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
7011 	vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
7012 	vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
7013 
7014 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
7015 		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
7016 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
7017 		vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
7018 			vmcs12->host_ia32_perf_global_ctrl);
7019 }
7020 
7021 /*
7022  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
7023  * and modify vmcs12 to make it see what it would expect to see there if
7024  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
7025  */
7026 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
7027 {
7028 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7029 	int cpu;
7030 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7031 
7032 	leave_guest_mode(vcpu);
7033 	prepare_vmcs12(vcpu, vmcs12);
7034 
7035 	cpu = get_cpu();
7036 	vmx->loaded_vmcs = &vmx->vmcs01;
7037 	vmx_vcpu_put(vcpu);
7038 	vmx_vcpu_load(vcpu, cpu);
7039 	vcpu->cpu = cpu;
7040 	put_cpu();
7041 
7042 	/* if no vmcs02 cache requested, remove the one we used */
7043 	if (VMCS02_POOL_SIZE == 0)
7044 		nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
7045 
7046 	load_vmcs12_host_state(vcpu, vmcs12);
7047 
7048 	/* Update TSC_OFFSET if TSC was changed while L2 ran */
7049 	vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7050 
7051 	/* This is needed for same reason as it was needed in prepare_vmcs02 */
7052 	vmx->host_rsp = 0;
7053 
7054 	/* Unpin physical memory we referred to in vmcs02 */
7055 	if (vmx->nested.apic_access_page) {
7056 		nested_release_page(vmx->nested.apic_access_page);
7057 		vmx->nested.apic_access_page = 0;
7058 	}
7059 
7060 	/*
7061 	 * Exiting from L2 to L1, we're now back to L1 which thinks it just
7062 	 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
7063 	 * success or failure flag accordingly.
7064 	 */
7065 	if (unlikely(vmx->fail)) {
7066 		vmx->fail = 0;
7067 		nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
7068 	} else
7069 		nested_vmx_succeed(vcpu);
7070 }
7071 
7072 /*
7073  * L1's failure to enter L2 is a subset of a normal exit, as explained in
7074  * 23.7 "VM-entry failures during or after loading guest state" (this also
7075  * lists the acceptable exit-reason and exit-qualification parameters).
7076  * It should only be called before L2 actually succeeded to run, and when
7077  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
7078  */
7079 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
7080 			struct vmcs12 *vmcs12,
7081 			u32 reason, unsigned long qualification)
7082 {
7083 	load_vmcs12_host_state(vcpu, vmcs12);
7084 	vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
7085 	vmcs12->exit_qualification = qualification;
7086 	nested_vmx_succeed(vcpu);
7087 }
7088 
7089 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7090 			       struct x86_instruction_info *info,
7091 			       enum x86_intercept_stage stage)
7092 {
7093 	return X86EMUL_CONTINUE;
7094 }
7095 
7096 static struct kvm_x86_ops vmx_x86_ops = {
7097 	.cpu_has_kvm_support = cpu_has_kvm_support,
7098 	.disabled_by_bios = vmx_disabled_by_bios,
7099 	.hardware_setup = hardware_setup,
7100 	.hardware_unsetup = hardware_unsetup,
7101 	.check_processor_compatibility = vmx_check_processor_compat,
7102 	.hardware_enable = hardware_enable,
7103 	.hardware_disable = hardware_disable,
7104 	.cpu_has_accelerated_tpr = report_flexpriority,
7105 
7106 	.vcpu_create = vmx_create_vcpu,
7107 	.vcpu_free = vmx_free_vcpu,
7108 	.vcpu_reset = vmx_vcpu_reset,
7109 
7110 	.prepare_guest_switch = vmx_save_host_state,
7111 	.vcpu_load = vmx_vcpu_load,
7112 	.vcpu_put = vmx_vcpu_put,
7113 
7114 	.set_guest_debug = set_guest_debug,
7115 	.get_msr = vmx_get_msr,
7116 	.set_msr = vmx_set_msr,
7117 	.get_segment_base = vmx_get_segment_base,
7118 	.get_segment = vmx_get_segment,
7119 	.set_segment = vmx_set_segment,
7120 	.get_cpl = vmx_get_cpl,
7121 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7122 	.decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7123 	.decache_cr3 = vmx_decache_cr3,
7124 	.decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7125 	.set_cr0 = vmx_set_cr0,
7126 	.set_cr3 = vmx_set_cr3,
7127 	.set_cr4 = vmx_set_cr4,
7128 	.set_efer = vmx_set_efer,
7129 	.get_idt = vmx_get_idt,
7130 	.set_idt = vmx_set_idt,
7131 	.get_gdt = vmx_get_gdt,
7132 	.set_gdt = vmx_set_gdt,
7133 	.set_dr7 = vmx_set_dr7,
7134 	.cache_reg = vmx_cache_reg,
7135 	.get_rflags = vmx_get_rflags,
7136 	.set_rflags = vmx_set_rflags,
7137 	.fpu_activate = vmx_fpu_activate,
7138 	.fpu_deactivate = vmx_fpu_deactivate,
7139 
7140 	.tlb_flush = vmx_flush_tlb,
7141 
7142 	.run = vmx_vcpu_run,
7143 	.handle_exit = vmx_handle_exit,
7144 	.skip_emulated_instruction = skip_emulated_instruction,
7145 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
7146 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
7147 	.patch_hypercall = vmx_patch_hypercall,
7148 	.set_irq = vmx_inject_irq,
7149 	.set_nmi = vmx_inject_nmi,
7150 	.queue_exception = vmx_queue_exception,
7151 	.cancel_injection = vmx_cancel_injection,
7152 	.interrupt_allowed = vmx_interrupt_allowed,
7153 	.nmi_allowed = vmx_nmi_allowed,
7154 	.get_nmi_mask = vmx_get_nmi_mask,
7155 	.set_nmi_mask = vmx_set_nmi_mask,
7156 	.enable_nmi_window = enable_nmi_window,
7157 	.enable_irq_window = enable_irq_window,
7158 	.update_cr8_intercept = update_cr8_intercept,
7159 
7160 	.set_tss_addr = vmx_set_tss_addr,
7161 	.get_tdp_level = get_ept_level,
7162 	.get_mt_mask = vmx_get_mt_mask,
7163 
7164 	.get_exit_info = vmx_get_exit_info,
7165 
7166 	.get_lpage_level = vmx_get_lpage_level,
7167 
7168 	.cpuid_update = vmx_cpuid_update,
7169 
7170 	.rdtscp_supported = vmx_rdtscp_supported,
7171 
7172 	.set_supported_cpuid = vmx_set_supported_cpuid,
7173 
7174 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7175 
7176 	.set_tsc_khz = vmx_set_tsc_khz,
7177 	.write_tsc_offset = vmx_write_tsc_offset,
7178 	.adjust_tsc_offset = vmx_adjust_tsc_offset,
7179 	.compute_tsc_offset = vmx_compute_tsc_offset,
7180 	.read_l1_tsc = vmx_read_l1_tsc,
7181 
7182 	.set_tdp_cr3 = vmx_set_cr3,
7183 
7184 	.check_intercept = vmx_check_intercept,
7185 };
7186 
7187 static int __init vmx_init(void)
7188 {
7189 	int r, i;
7190 
7191 	rdmsrl_safe(MSR_EFER, &host_efer);
7192 
7193 	for (i = 0; i < NR_VMX_MSR; ++i)
7194 		kvm_define_shared_msr(i, vmx_msr_index[i]);
7195 
7196 	vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
7197 	if (!vmx_io_bitmap_a)
7198 		return -ENOMEM;
7199 
7200 	vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
7201 	if (!vmx_io_bitmap_b) {
7202 		r = -ENOMEM;
7203 		goto out;
7204 	}
7205 
7206 	vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
7207 	if (!vmx_msr_bitmap_legacy) {
7208 		r = -ENOMEM;
7209 		goto out1;
7210 	}
7211 
7212 	vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
7213 	if (!vmx_msr_bitmap_longmode) {
7214 		r = -ENOMEM;
7215 		goto out2;
7216 	}
7217 
7218 	/*
7219 	 * Allow direct access to the PC debug port (it is often used for I/O
7220 	 * delays, but the vmexits simply slow things down).
7221 	 */
7222 	memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
7223 	clear_bit(0x80, vmx_io_bitmap_a);
7224 
7225 	memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
7226 
7227 	memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
7228 	memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
7229 
7230 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7231 
7232 	r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7233 		     __alignof__(struct vcpu_vmx), THIS_MODULE);
7234 	if (r)
7235 		goto out3;
7236 
7237 	vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
7238 	vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
7239 	vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
7240 	vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
7241 	vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
7242 	vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
7243 
7244 	if (enable_ept) {
7245 		kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
7246 				VMX_EPT_EXECUTABLE_MASK);
7247 		ept_set_mmio_spte_mask();
7248 		kvm_enable_tdp();
7249 	} else
7250 		kvm_disable_tdp();
7251 
7252 	return 0;
7253 
7254 out3:
7255 	free_page((unsigned long)vmx_msr_bitmap_longmode);
7256 out2:
7257 	free_page((unsigned long)vmx_msr_bitmap_legacy);
7258 out1:
7259 	free_page((unsigned long)vmx_io_bitmap_b);
7260 out:
7261 	free_page((unsigned long)vmx_io_bitmap_a);
7262 	return r;
7263 }
7264 
7265 static void __exit vmx_exit(void)
7266 {
7267 	free_page((unsigned long)vmx_msr_bitmap_legacy);
7268 	free_page((unsigned long)vmx_msr_bitmap_longmode);
7269 	free_page((unsigned long)vmx_io_bitmap_b);
7270 	free_page((unsigned long)vmx_io_bitmap_a);
7271 
7272 	kvm_exit();
7273 }
7274 
7275 module_init(vmx_init)
7276 module_exit(vmx_exit)
7277