1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20 
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38 
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43 
44 /*
45  * When setting this variable to true it enables Two-Dimensional-Paging
46  * where the hardware walks 2 page tables:
47  * 1. the guest-virtual to guest-physical
48  * 2. while doing 1. it walks guest-physical to host-physical
49  * If the hardware supports that we don't need to do shadow paging.
50  */
51 bool tdp_enabled = false;
52 
53 enum {
54 	AUDIT_PRE_PAGE_FAULT,
55 	AUDIT_POST_PAGE_FAULT,
56 	AUDIT_PRE_PTE_WRITE,
57 	AUDIT_POST_PTE_WRITE,
58 	AUDIT_PRE_SYNC,
59 	AUDIT_POST_SYNC
60 };
61 
62 #undef MMU_DEBUG
63 
64 #ifdef MMU_DEBUG
65 
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68 
69 #else
70 
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73 
74 #endif
75 
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80 
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x)							\
85 	if (!(x)) {							\
86 		printk(KERN_WARNING "assertion failed %s:%d: %s\n",	\
87 		       __FILE__, __LINE__, #x);				\
88 	}
89 #endif
90 
91 #define PTE_PREFETCH_NUM		8
92 
93 #define PT_FIRST_AVAIL_BITS_SHIFT 9
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95 
96 #define PT64_LEVEL_BITS 9
97 
98 #define PT64_LEVEL_SHIFT(level) \
99 		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100 
101 #define PT64_INDEX(address, level)\
102 	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103 
104 
105 #define PT32_LEVEL_BITS 10
106 
107 #define PT32_LEVEL_SHIFT(level) \
108 		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109 
110 #define PT32_LVL_OFFSET_MASK(level) \
111 	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 						* PT32_LEVEL_BITS))) - 1))
113 
114 #define PT32_INDEX(address, level)\
115 	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116 
117 
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120 	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122 	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 						* PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125 	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 						* PT64_LEVEL_BITS))) - 1))
127 
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 					    * PT32_LEVEL_BITS))) - 1))
134 
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 			| PT64_NX_MASK)
137 
138 #define PTE_LIST_EXT 4
139 
140 #define ACC_EXEC_MASK    1
141 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
142 #define ACC_USER_MASK    PT_USER_MASK
143 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
144 
145 #include <trace/events/kvm.h>
146 
147 #define CREATE_TRACE_POINTS
148 #include "mmutrace.h"
149 
150 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
151 
152 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
153 
154 struct pte_list_desc {
155 	u64 *sptes[PTE_LIST_EXT];
156 	struct pte_list_desc *more;
157 };
158 
159 struct kvm_shadow_walk_iterator {
160 	u64 addr;
161 	hpa_t shadow_addr;
162 	u64 *sptep;
163 	int level;
164 	unsigned index;
165 };
166 
167 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
168 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
169 	     shadow_walk_okay(&(_walker));			\
170 	     shadow_walk_next(&(_walker)))
171 
172 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
173 	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
174 	     shadow_walk_okay(&(_walker)) &&				\
175 		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
176 	     __shadow_walk_next(&(_walker), spte))
177 
178 static struct kmem_cache *pte_list_desc_cache;
179 static struct kmem_cache *mmu_page_header_cache;
180 static struct percpu_counter kvm_total_used_mmu_pages;
181 
182 static u64 __read_mostly shadow_nx_mask;
183 static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
184 static u64 __read_mostly shadow_user_mask;
185 static u64 __read_mostly shadow_accessed_mask;
186 static u64 __read_mostly shadow_dirty_mask;
187 static u64 __read_mostly shadow_mmio_mask;
188 
189 static void mmu_spte_set(u64 *sptep, u64 spte);
190 
kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)191 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
192 {
193 	shadow_mmio_mask = mmio_mask;
194 }
195 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
196 
mark_mmio_spte(u64 * sptep,u64 gfn,unsigned access)197 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
198 {
199 	access &= ACC_WRITE_MASK | ACC_USER_MASK;
200 
201 	trace_mark_mmio_spte(sptep, gfn, access);
202 	mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
203 }
204 
is_mmio_spte(u64 spte)205 static bool is_mmio_spte(u64 spte)
206 {
207 	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
208 }
209 
get_mmio_spte_gfn(u64 spte)210 static gfn_t get_mmio_spte_gfn(u64 spte)
211 {
212 	return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
213 }
214 
get_mmio_spte_access(u64 spte)215 static unsigned get_mmio_spte_access(u64 spte)
216 {
217 	return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
218 }
219 
set_mmio_spte(u64 * sptep,gfn_t gfn,pfn_t pfn,unsigned access)220 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
221 {
222 	if (unlikely(is_noslot_pfn(pfn))) {
223 		mark_mmio_spte(sptep, gfn, access);
224 		return true;
225 	}
226 
227 	return false;
228 }
229 
rsvd_bits(int s,int e)230 static inline u64 rsvd_bits(int s, int e)
231 {
232 	return ((1ULL << (e - s + 1)) - 1) << s;
233 }
234 
kvm_mmu_set_mask_ptes(u64 user_mask,u64 accessed_mask,u64 dirty_mask,u64 nx_mask,u64 x_mask)235 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
236 		u64 dirty_mask, u64 nx_mask, u64 x_mask)
237 {
238 	shadow_user_mask = user_mask;
239 	shadow_accessed_mask = accessed_mask;
240 	shadow_dirty_mask = dirty_mask;
241 	shadow_nx_mask = nx_mask;
242 	shadow_x_mask = x_mask;
243 }
244 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
245 
is_cpuid_PSE36(void)246 static int is_cpuid_PSE36(void)
247 {
248 	return 1;
249 }
250 
is_nx(struct kvm_vcpu * vcpu)251 static int is_nx(struct kvm_vcpu *vcpu)
252 {
253 	return vcpu->arch.efer & EFER_NX;
254 }
255 
is_shadow_present_pte(u64 pte)256 static int is_shadow_present_pte(u64 pte)
257 {
258 	return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
259 }
260 
is_large_pte(u64 pte)261 static int is_large_pte(u64 pte)
262 {
263 	return pte & PT_PAGE_SIZE_MASK;
264 }
265 
is_dirty_gpte(unsigned long pte)266 static int is_dirty_gpte(unsigned long pte)
267 {
268 	return pte & PT_DIRTY_MASK;
269 }
270 
is_rmap_spte(u64 pte)271 static int is_rmap_spte(u64 pte)
272 {
273 	return is_shadow_present_pte(pte);
274 }
275 
is_last_spte(u64 pte,int level)276 static int is_last_spte(u64 pte, int level)
277 {
278 	if (level == PT_PAGE_TABLE_LEVEL)
279 		return 1;
280 	if (is_large_pte(pte))
281 		return 1;
282 	return 0;
283 }
284 
spte_to_pfn(u64 pte)285 static pfn_t spte_to_pfn(u64 pte)
286 {
287 	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
288 }
289 
pse36_gfn_delta(u32 gpte)290 static gfn_t pse36_gfn_delta(u32 gpte)
291 {
292 	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
293 
294 	return (gpte & PT32_DIR_PSE36_MASK) << shift;
295 }
296 
297 #ifdef CONFIG_X86_64
__set_spte(u64 * sptep,u64 spte)298 static void __set_spte(u64 *sptep, u64 spte)
299 {
300 	*sptep = spte;
301 }
302 
__update_clear_spte_fast(u64 * sptep,u64 spte)303 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
304 {
305 	*sptep = spte;
306 }
307 
__update_clear_spte_slow(u64 * sptep,u64 spte)308 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
309 {
310 	return xchg(sptep, spte);
311 }
312 
__get_spte_lockless(u64 * sptep)313 static u64 __get_spte_lockless(u64 *sptep)
314 {
315 	return ACCESS_ONCE(*sptep);
316 }
317 
__check_direct_spte_mmio_pf(u64 spte)318 static bool __check_direct_spte_mmio_pf(u64 spte)
319 {
320 	/* It is valid if the spte is zapped. */
321 	return spte == 0ull;
322 }
323 #else
324 union split_spte {
325 	struct {
326 		u32 spte_low;
327 		u32 spte_high;
328 	};
329 	u64 spte;
330 };
331 
count_spte_clear(u64 * sptep,u64 spte)332 static void count_spte_clear(u64 *sptep, u64 spte)
333 {
334 	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
335 
336 	if (is_shadow_present_pte(spte))
337 		return;
338 
339 	/* Ensure the spte is completely set before we increase the count */
340 	smp_wmb();
341 	sp->clear_spte_count++;
342 }
343 
__set_spte(u64 * sptep,u64 spte)344 static void __set_spte(u64 *sptep, u64 spte)
345 {
346 	union split_spte *ssptep, sspte;
347 
348 	ssptep = (union split_spte *)sptep;
349 	sspte = (union split_spte)spte;
350 
351 	ssptep->spte_high = sspte.spte_high;
352 
353 	/*
354 	 * If we map the spte from nonpresent to present, We should store
355 	 * the high bits firstly, then set present bit, so cpu can not
356 	 * fetch this spte while we are setting the spte.
357 	 */
358 	smp_wmb();
359 
360 	ssptep->spte_low = sspte.spte_low;
361 }
362 
__update_clear_spte_fast(u64 * sptep,u64 spte)363 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
364 {
365 	union split_spte *ssptep, sspte;
366 
367 	ssptep = (union split_spte *)sptep;
368 	sspte = (union split_spte)spte;
369 
370 	ssptep->spte_low = sspte.spte_low;
371 
372 	/*
373 	 * If we map the spte from present to nonpresent, we should clear
374 	 * present bit firstly to avoid vcpu fetch the old high bits.
375 	 */
376 	smp_wmb();
377 
378 	ssptep->spte_high = sspte.spte_high;
379 	count_spte_clear(sptep, spte);
380 }
381 
__update_clear_spte_slow(u64 * sptep,u64 spte)382 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
383 {
384 	union split_spte *ssptep, sspte, orig;
385 
386 	ssptep = (union split_spte *)sptep;
387 	sspte = (union split_spte)spte;
388 
389 	/* xchg acts as a barrier before the setting of the high bits */
390 	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
391 	orig.spte_high = ssptep->spte_high;
392 	ssptep->spte_high = sspte.spte_high;
393 	count_spte_clear(sptep, spte);
394 
395 	return orig.spte;
396 }
397 
398 /*
399  * The idea using the light way get the spte on x86_32 guest is from
400  * gup_get_pte(arch/x86/mm/gup.c).
401  * The difference is we can not catch the spte tlb flush if we leave
402  * guest mode, so we emulate it by increase clear_spte_count when spte
403  * is cleared.
404  */
__get_spte_lockless(u64 * sptep)405 static u64 __get_spte_lockless(u64 *sptep)
406 {
407 	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
408 	union split_spte spte, *orig = (union split_spte *)sptep;
409 	int count;
410 
411 retry:
412 	count = sp->clear_spte_count;
413 	smp_rmb();
414 
415 	spte.spte_low = orig->spte_low;
416 	smp_rmb();
417 
418 	spte.spte_high = orig->spte_high;
419 	smp_rmb();
420 
421 	if (unlikely(spte.spte_low != orig->spte_low ||
422 	      count != sp->clear_spte_count))
423 		goto retry;
424 
425 	return spte.spte;
426 }
427 
__check_direct_spte_mmio_pf(u64 spte)428 static bool __check_direct_spte_mmio_pf(u64 spte)
429 {
430 	union split_spte sspte = (union split_spte)spte;
431 	u32 high_mmio_mask = shadow_mmio_mask >> 32;
432 
433 	/* It is valid if the spte is zapped. */
434 	if (spte == 0ull)
435 		return true;
436 
437 	/* It is valid if the spte is being zapped. */
438 	if (sspte.spte_low == 0ull &&
439 	    (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
440 		return true;
441 
442 	return false;
443 }
444 #endif
445 
spte_has_volatile_bits(u64 spte)446 static bool spte_has_volatile_bits(u64 spte)
447 {
448 	if (!shadow_accessed_mask)
449 		return false;
450 
451 	if (!is_shadow_present_pte(spte))
452 		return false;
453 
454 	if ((spte & shadow_accessed_mask) &&
455 	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
456 		return false;
457 
458 	return true;
459 }
460 
spte_is_bit_cleared(u64 old_spte,u64 new_spte,u64 bit_mask)461 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
462 {
463 	return (old_spte & bit_mask) && !(new_spte & bit_mask);
464 }
465 
466 /* Rules for using mmu_spte_set:
467  * Set the sptep from nonpresent to present.
468  * Note: the sptep being assigned *must* be either not present
469  * or in a state where the hardware will not attempt to update
470  * the spte.
471  */
mmu_spte_set(u64 * sptep,u64 new_spte)472 static void mmu_spte_set(u64 *sptep, u64 new_spte)
473 {
474 	WARN_ON(is_shadow_present_pte(*sptep));
475 	__set_spte(sptep, new_spte);
476 }
477 
478 /* Rules for using mmu_spte_update:
479  * Update the state bits, it means the mapped pfn is not changged.
480  */
mmu_spte_update(u64 * sptep,u64 new_spte)481 static void mmu_spte_update(u64 *sptep, u64 new_spte)
482 {
483 	u64 mask, old_spte = *sptep;
484 
485 	WARN_ON(!is_rmap_spte(new_spte));
486 
487 	if (!is_shadow_present_pte(old_spte))
488 		return mmu_spte_set(sptep, new_spte);
489 
490 	new_spte |= old_spte & shadow_dirty_mask;
491 
492 	mask = shadow_accessed_mask;
493 	if (is_writable_pte(old_spte))
494 		mask |= shadow_dirty_mask;
495 
496 	if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
497 		__update_clear_spte_fast(sptep, new_spte);
498 	else
499 		old_spte = __update_clear_spte_slow(sptep, new_spte);
500 
501 	if (!shadow_accessed_mask)
502 		return;
503 
504 	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
505 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
506 	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
507 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
508 }
509 
510 /*
511  * Rules for using mmu_spte_clear_track_bits:
512  * It sets the sptep from present to nonpresent, and track the
513  * state bits, it is used to clear the last level sptep.
514  */
mmu_spte_clear_track_bits(u64 * sptep)515 static int mmu_spte_clear_track_bits(u64 *sptep)
516 {
517 	pfn_t pfn;
518 	u64 old_spte = *sptep;
519 
520 	if (!spte_has_volatile_bits(old_spte))
521 		__update_clear_spte_fast(sptep, 0ull);
522 	else
523 		old_spte = __update_clear_spte_slow(sptep, 0ull);
524 
525 	if (!is_rmap_spte(old_spte))
526 		return 0;
527 
528 	pfn = spte_to_pfn(old_spte);
529 	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
530 		kvm_set_pfn_accessed(pfn);
531 	if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
532 		kvm_set_pfn_dirty(pfn);
533 	return 1;
534 }
535 
536 /*
537  * Rules for using mmu_spte_clear_no_track:
538  * Directly clear spte without caring the state bits of sptep,
539  * it is used to set the upper level spte.
540  */
mmu_spte_clear_no_track(u64 * sptep)541 static void mmu_spte_clear_no_track(u64 *sptep)
542 {
543 	__update_clear_spte_fast(sptep, 0ull);
544 }
545 
mmu_spte_get_lockless(u64 * sptep)546 static u64 mmu_spte_get_lockless(u64 *sptep)
547 {
548 	return __get_spte_lockless(sptep);
549 }
550 
walk_shadow_page_lockless_begin(struct kvm_vcpu * vcpu)551 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
552 {
553 	rcu_read_lock();
554 	atomic_inc(&vcpu->kvm->arch.reader_counter);
555 
556 	/* Increase the counter before walking shadow page table */
557 	smp_mb__after_atomic_inc();
558 }
559 
walk_shadow_page_lockless_end(struct kvm_vcpu * vcpu)560 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
561 {
562 	/* Decrease the counter after walking shadow page table finished */
563 	smp_mb__before_atomic_dec();
564 	atomic_dec(&vcpu->kvm->arch.reader_counter);
565 	rcu_read_unlock();
566 }
567 
mmu_topup_memory_cache(struct kvm_mmu_memory_cache * cache,struct kmem_cache * base_cache,int min)568 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
569 				  struct kmem_cache *base_cache, int min)
570 {
571 	void *obj;
572 
573 	if (cache->nobjs >= min)
574 		return 0;
575 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
576 		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
577 		if (!obj)
578 			return -ENOMEM;
579 		cache->objects[cache->nobjs++] = obj;
580 	}
581 	return 0;
582 }
583 
mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache * cache)584 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
585 {
586 	return cache->nobjs;
587 }
588 
mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc,struct kmem_cache * cache)589 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
590 				  struct kmem_cache *cache)
591 {
592 	while (mc->nobjs)
593 		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
594 }
595 
mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache * cache,int min)596 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
597 				       int min)
598 {
599 	void *page;
600 
601 	if (cache->nobjs >= min)
602 		return 0;
603 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
604 		page = (void *)__get_free_page(GFP_KERNEL);
605 		if (!page)
606 			return -ENOMEM;
607 		cache->objects[cache->nobjs++] = page;
608 	}
609 	return 0;
610 }
611 
mmu_free_memory_cache_page(struct kvm_mmu_memory_cache * mc)612 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
613 {
614 	while (mc->nobjs)
615 		free_page((unsigned long)mc->objects[--mc->nobjs]);
616 }
617 
mmu_topup_memory_caches(struct kvm_vcpu * vcpu)618 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
619 {
620 	int r;
621 
622 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
623 				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
624 	if (r)
625 		goto out;
626 	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
627 	if (r)
628 		goto out;
629 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
630 				   mmu_page_header_cache, 4);
631 out:
632 	return r;
633 }
634 
mmu_free_memory_caches(struct kvm_vcpu * vcpu)635 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
636 {
637 	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
638 				pte_list_desc_cache);
639 	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
640 	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
641 				mmu_page_header_cache);
642 }
643 
mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc,size_t size)644 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
645 				    size_t size)
646 {
647 	void *p;
648 
649 	BUG_ON(!mc->nobjs);
650 	p = mc->objects[--mc->nobjs];
651 	return p;
652 }
653 
mmu_alloc_pte_list_desc(struct kvm_vcpu * vcpu)654 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
655 {
656 	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
657 				      sizeof(struct pte_list_desc));
658 }
659 
mmu_free_pte_list_desc(struct pte_list_desc * pte_list_desc)660 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
661 {
662 	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
663 }
664 
kvm_mmu_page_get_gfn(struct kvm_mmu_page * sp,int index)665 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
666 {
667 	if (!sp->role.direct)
668 		return sp->gfns[index];
669 
670 	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
671 }
672 
kvm_mmu_page_set_gfn(struct kvm_mmu_page * sp,int index,gfn_t gfn)673 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
674 {
675 	if (sp->role.direct)
676 		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
677 	else
678 		sp->gfns[index] = gfn;
679 }
680 
681 /*
682  * Return the pointer to the large page information for a given gfn,
683  * handling slots that are not large page aligned.
684  */
lpage_info_slot(gfn_t gfn,struct kvm_memory_slot * slot,int level)685 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
686 					      struct kvm_memory_slot *slot,
687 					      int level)
688 {
689 	unsigned long idx;
690 
691 	idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
692 	      (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
693 	return &slot->lpage_info[level - 2][idx];
694 }
695 
account_shadowed(struct kvm * kvm,gfn_t gfn)696 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
697 {
698 	struct kvm_memory_slot *slot;
699 	struct kvm_lpage_info *linfo;
700 	int i;
701 
702 	slot = gfn_to_memslot(kvm, gfn);
703 	for (i = PT_DIRECTORY_LEVEL;
704 	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
705 		linfo = lpage_info_slot(gfn, slot, i);
706 		linfo->write_count += 1;
707 	}
708 	kvm->arch.indirect_shadow_pages++;
709 }
710 
unaccount_shadowed(struct kvm * kvm,gfn_t gfn)711 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
712 {
713 	struct kvm_memory_slot *slot;
714 	struct kvm_lpage_info *linfo;
715 	int i;
716 
717 	slot = gfn_to_memslot(kvm, gfn);
718 	for (i = PT_DIRECTORY_LEVEL;
719 	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
720 		linfo = lpage_info_slot(gfn, slot, i);
721 		linfo->write_count -= 1;
722 		WARN_ON(linfo->write_count < 0);
723 	}
724 	kvm->arch.indirect_shadow_pages--;
725 }
726 
has_wrprotected_page(struct kvm * kvm,gfn_t gfn,int level)727 static int has_wrprotected_page(struct kvm *kvm,
728 				gfn_t gfn,
729 				int level)
730 {
731 	struct kvm_memory_slot *slot;
732 	struct kvm_lpage_info *linfo;
733 
734 	slot = gfn_to_memslot(kvm, gfn);
735 	if (slot) {
736 		linfo = lpage_info_slot(gfn, slot, level);
737 		return linfo->write_count;
738 	}
739 
740 	return 1;
741 }
742 
host_mapping_level(struct kvm * kvm,gfn_t gfn)743 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
744 {
745 	unsigned long page_size;
746 	int i, ret = 0;
747 
748 	page_size = kvm_host_page_size(kvm, gfn);
749 
750 	for (i = PT_PAGE_TABLE_LEVEL;
751 	     i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
752 		if (page_size >= KVM_HPAGE_SIZE(i))
753 			ret = i;
754 		else
755 			break;
756 	}
757 
758 	return ret;
759 }
760 
761 static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)762 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
763 			    bool no_dirty_log)
764 {
765 	struct kvm_memory_slot *slot;
766 
767 	slot = gfn_to_memslot(vcpu->kvm, gfn);
768 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
769 	      (no_dirty_log && slot->dirty_bitmap))
770 		slot = NULL;
771 
772 	return slot;
773 }
774 
mapping_level_dirty_bitmap(struct kvm_vcpu * vcpu,gfn_t large_gfn)775 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
776 {
777 	return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
778 }
779 
mapping_level(struct kvm_vcpu * vcpu,gfn_t large_gfn)780 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
781 {
782 	int host_level, level, max_level;
783 
784 	host_level = host_mapping_level(vcpu->kvm, large_gfn);
785 
786 	if (host_level == PT_PAGE_TABLE_LEVEL)
787 		return host_level;
788 
789 	max_level = kvm_x86_ops->get_lpage_level() < host_level ?
790 		kvm_x86_ops->get_lpage_level() : host_level;
791 
792 	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
793 		if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
794 			break;
795 
796 	return level - 1;
797 }
798 
799 /*
800  * Pte mapping structures:
801  *
802  * If pte_list bit zero is zero, then pte_list point to the spte.
803  *
804  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
805  * pte_list_desc containing more mappings.
806  *
807  * Returns the number of pte entries before the spte was added or zero if
808  * the spte was not added.
809  *
810  */
pte_list_add(struct kvm_vcpu * vcpu,u64 * spte,unsigned long * pte_list)811 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
812 			unsigned long *pte_list)
813 {
814 	struct pte_list_desc *desc;
815 	int i, count = 0;
816 
817 	if (!*pte_list) {
818 		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
819 		*pte_list = (unsigned long)spte;
820 	} else if (!(*pte_list & 1)) {
821 		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
822 		desc = mmu_alloc_pte_list_desc(vcpu);
823 		desc->sptes[0] = (u64 *)*pte_list;
824 		desc->sptes[1] = spte;
825 		*pte_list = (unsigned long)desc | 1;
826 		++count;
827 	} else {
828 		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
829 		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
830 		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
831 			desc = desc->more;
832 			count += PTE_LIST_EXT;
833 		}
834 		if (desc->sptes[PTE_LIST_EXT-1]) {
835 			desc->more = mmu_alloc_pte_list_desc(vcpu);
836 			desc = desc->more;
837 		}
838 		for (i = 0; desc->sptes[i]; ++i)
839 			++count;
840 		desc->sptes[i] = spte;
841 	}
842 	return count;
843 }
844 
pte_list_next(unsigned long * pte_list,u64 * spte)845 static u64 *pte_list_next(unsigned long *pte_list, u64 *spte)
846 {
847 	struct pte_list_desc *desc;
848 	u64 *prev_spte;
849 	int i;
850 
851 	if (!*pte_list)
852 		return NULL;
853 	else if (!(*pte_list & 1)) {
854 		if (!spte)
855 			return (u64 *)*pte_list;
856 		return NULL;
857 	}
858 	desc = (struct pte_list_desc *)(*pte_list & ~1ul);
859 	prev_spte = NULL;
860 	while (desc) {
861 		for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
862 			if (prev_spte == spte)
863 				return desc->sptes[i];
864 			prev_spte = desc->sptes[i];
865 		}
866 		desc = desc->more;
867 	}
868 	return NULL;
869 }
870 
871 static void
pte_list_desc_remove_entry(unsigned long * pte_list,struct pte_list_desc * desc,int i,struct pte_list_desc * prev_desc)872 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
873 			   int i, struct pte_list_desc *prev_desc)
874 {
875 	int j;
876 
877 	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
878 		;
879 	desc->sptes[i] = desc->sptes[j];
880 	desc->sptes[j] = NULL;
881 	if (j != 0)
882 		return;
883 	if (!prev_desc && !desc->more)
884 		*pte_list = (unsigned long)desc->sptes[0];
885 	else
886 		if (prev_desc)
887 			prev_desc->more = desc->more;
888 		else
889 			*pte_list = (unsigned long)desc->more | 1;
890 	mmu_free_pte_list_desc(desc);
891 }
892 
pte_list_remove(u64 * spte,unsigned long * pte_list)893 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
894 {
895 	struct pte_list_desc *desc;
896 	struct pte_list_desc *prev_desc;
897 	int i;
898 
899 	if (!*pte_list) {
900 		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
901 		BUG();
902 	} else if (!(*pte_list & 1)) {
903 		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
904 		if ((u64 *)*pte_list != spte) {
905 			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
906 			BUG();
907 		}
908 		*pte_list = 0;
909 	} else {
910 		rmap_printk("pte_list_remove:  %p many->many\n", spte);
911 		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
912 		prev_desc = NULL;
913 		while (desc) {
914 			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
915 				if (desc->sptes[i] == spte) {
916 					pte_list_desc_remove_entry(pte_list,
917 							       desc, i,
918 							       prev_desc);
919 					return;
920 				}
921 			prev_desc = desc;
922 			desc = desc->more;
923 		}
924 		pr_err("pte_list_remove: %p many->many\n", spte);
925 		BUG();
926 	}
927 }
928 
929 typedef void (*pte_list_walk_fn) (u64 *spte);
pte_list_walk(unsigned long * pte_list,pte_list_walk_fn fn)930 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
931 {
932 	struct pte_list_desc *desc;
933 	int i;
934 
935 	if (!*pte_list)
936 		return;
937 
938 	if (!(*pte_list & 1))
939 		return fn((u64 *)*pte_list);
940 
941 	desc = (struct pte_list_desc *)(*pte_list & ~1ul);
942 	while (desc) {
943 		for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
944 			fn(desc->sptes[i]);
945 		desc = desc->more;
946 	}
947 }
948 
__gfn_to_rmap(struct kvm * kvm,gfn_t gfn,int level,struct kvm_memory_slot * slot)949 static unsigned long *__gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level,
950 				    struct kvm_memory_slot *slot)
951 {
952 	struct kvm_lpage_info *linfo;
953 
954 	if (likely(level == PT_PAGE_TABLE_LEVEL))
955 		return &slot->rmap[gfn - slot->base_gfn];
956 
957 	linfo = lpage_info_slot(gfn, slot, level);
958 	return &linfo->rmap_pde;
959 }
960 
961 /*
962  * Take gfn and return the reverse mapping to it.
963  */
gfn_to_rmap(struct kvm * kvm,gfn_t gfn,int level)964 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
965 {
966 	struct kvm_memory_slot *slot;
967 
968 	slot = gfn_to_memslot(kvm, gfn);
969 	return __gfn_to_rmap(kvm, gfn, level, slot);
970 }
971 
rmap_can_add(struct kvm_vcpu * vcpu)972 static bool rmap_can_add(struct kvm_vcpu *vcpu)
973 {
974 	struct kvm_mmu_memory_cache *cache;
975 
976 	cache = &vcpu->arch.mmu_pte_list_desc_cache;
977 	return mmu_memory_cache_free_objects(cache);
978 }
979 
rmap_add(struct kvm_vcpu * vcpu,u64 * spte,gfn_t gfn)980 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
981 {
982 	struct kvm_mmu_page *sp;
983 	unsigned long *rmapp;
984 
985 	sp = page_header(__pa(spte));
986 	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
987 	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
988 	return pte_list_add(vcpu, spte, rmapp);
989 }
990 
rmap_next(struct kvm * kvm,unsigned long * rmapp,u64 * spte)991 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
992 {
993 	return pte_list_next(rmapp, spte);
994 }
995 
rmap_remove(struct kvm * kvm,u64 * spte)996 static void rmap_remove(struct kvm *kvm, u64 *spte)
997 {
998 	struct kvm_mmu_page *sp;
999 	gfn_t gfn;
1000 	unsigned long *rmapp;
1001 
1002 	sp = page_header(__pa(spte));
1003 	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1004 	rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1005 	pte_list_remove(spte, rmapp);
1006 }
1007 
drop_spte(struct kvm * kvm,u64 * sptep)1008 static void drop_spte(struct kvm *kvm, u64 *sptep)
1009 {
1010 	if (mmu_spte_clear_track_bits(sptep))
1011 		rmap_remove(kvm, sptep);
1012 }
1013 
kvm_mmu_rmap_write_protect(struct kvm * kvm,u64 gfn,struct kvm_memory_slot * slot)1014 int kvm_mmu_rmap_write_protect(struct kvm *kvm, u64 gfn,
1015 			       struct kvm_memory_slot *slot)
1016 {
1017 	unsigned long *rmapp;
1018 	u64 *spte;
1019 	int i, write_protected = 0;
1020 
1021 	rmapp = __gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL, slot);
1022 	spte = rmap_next(kvm, rmapp, NULL);
1023 	while (spte) {
1024 		BUG_ON(!(*spte & PT_PRESENT_MASK));
1025 		rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
1026 		if (is_writable_pte(*spte)) {
1027 			mmu_spte_update(spte, *spte & ~PT_WRITABLE_MASK);
1028 			write_protected = 1;
1029 		}
1030 		spte = rmap_next(kvm, rmapp, spte);
1031 	}
1032 
1033 	/* check for huge page mappings */
1034 	for (i = PT_DIRECTORY_LEVEL;
1035 	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1036 		rmapp = __gfn_to_rmap(kvm, gfn, i, slot);
1037 		spte = rmap_next(kvm, rmapp, NULL);
1038 		while (spte) {
1039 			BUG_ON(!(*spte & PT_PRESENT_MASK));
1040 			BUG_ON(!is_large_pte(*spte));
1041 			pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
1042 			if (is_writable_pte(*spte)) {
1043 				drop_spte(kvm, spte);
1044 				--kvm->stat.lpages;
1045 				spte = NULL;
1046 				write_protected = 1;
1047 			}
1048 			spte = rmap_next(kvm, rmapp, spte);
1049 		}
1050 	}
1051 
1052 	return write_protected;
1053 }
1054 
rmap_write_protect(struct kvm * kvm,u64 gfn)1055 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
1056 {
1057 	struct kvm_memory_slot *slot;
1058 
1059 	slot = gfn_to_memslot(kvm, gfn);
1060 	return kvm_mmu_rmap_write_protect(kvm, gfn, slot);
1061 }
1062 
kvm_unmap_rmapp(struct kvm * kvm,unsigned long * rmapp,unsigned long data)1063 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1064 			   unsigned long data)
1065 {
1066 	u64 *spte;
1067 	int need_tlb_flush = 0;
1068 
1069 	while ((spte = rmap_next(kvm, rmapp, NULL))) {
1070 		BUG_ON(!(*spte & PT_PRESENT_MASK));
1071 		rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
1072 		drop_spte(kvm, spte);
1073 		need_tlb_flush = 1;
1074 	}
1075 	return need_tlb_flush;
1076 }
1077 
kvm_set_pte_rmapp(struct kvm * kvm,unsigned long * rmapp,unsigned long data)1078 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1079 			     unsigned long data)
1080 {
1081 	int need_flush = 0;
1082 	u64 *spte, new_spte;
1083 	pte_t *ptep = (pte_t *)data;
1084 	pfn_t new_pfn;
1085 
1086 	WARN_ON(pte_huge(*ptep));
1087 	new_pfn = pte_pfn(*ptep);
1088 	spte = rmap_next(kvm, rmapp, NULL);
1089 	while (spte) {
1090 		BUG_ON(!is_shadow_present_pte(*spte));
1091 		rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
1092 		need_flush = 1;
1093 		if (pte_write(*ptep)) {
1094 			drop_spte(kvm, spte);
1095 			spte = rmap_next(kvm, rmapp, NULL);
1096 		} else {
1097 			new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
1098 			new_spte |= (u64)new_pfn << PAGE_SHIFT;
1099 
1100 			new_spte &= ~PT_WRITABLE_MASK;
1101 			new_spte &= ~SPTE_HOST_WRITEABLE;
1102 			new_spte &= ~shadow_accessed_mask;
1103 			mmu_spte_clear_track_bits(spte);
1104 			mmu_spte_set(spte, new_spte);
1105 			spte = rmap_next(kvm, rmapp, spte);
1106 		}
1107 	}
1108 	if (need_flush)
1109 		kvm_flush_remote_tlbs(kvm);
1110 
1111 	return 0;
1112 }
1113 
kvm_handle_hva(struct kvm * kvm,unsigned long hva,unsigned long data,int (* handler)(struct kvm * kvm,unsigned long * rmapp,unsigned long data))1114 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1115 			  unsigned long data,
1116 			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1117 					 unsigned long data))
1118 {
1119 	int j;
1120 	int ret;
1121 	int retval = 0;
1122 	struct kvm_memslots *slots;
1123 	struct kvm_memory_slot *memslot;
1124 
1125 	slots = kvm_memslots(kvm);
1126 
1127 	kvm_for_each_memslot(memslot, slots) {
1128 		unsigned long start = memslot->userspace_addr;
1129 		unsigned long end;
1130 
1131 		end = start + (memslot->npages << PAGE_SHIFT);
1132 		if (hva >= start && hva < end) {
1133 			gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
1134 			gfn_t gfn = memslot->base_gfn + gfn_offset;
1135 
1136 			ret = handler(kvm, &memslot->rmap[gfn_offset], data);
1137 
1138 			for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
1139 				struct kvm_lpage_info *linfo;
1140 
1141 				linfo = lpage_info_slot(gfn, memslot,
1142 							PT_DIRECTORY_LEVEL + j);
1143 				ret |= handler(kvm, &linfo->rmap_pde, data);
1144 			}
1145 			trace_kvm_age_page(hva, memslot, ret);
1146 			retval |= ret;
1147 		}
1148 	}
1149 
1150 	return retval;
1151 }
1152 
kvm_unmap_hva(struct kvm * kvm,unsigned long hva)1153 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1154 {
1155 	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1156 }
1157 
kvm_set_spte_hva(struct kvm * kvm,unsigned long hva,pte_t pte)1158 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1159 {
1160 	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1161 }
1162 
kvm_age_rmapp(struct kvm * kvm,unsigned long * rmapp,unsigned long data)1163 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1164 			 unsigned long data)
1165 {
1166 	u64 *spte;
1167 	int young = 0;
1168 
1169 	/*
1170 	 * Emulate the accessed bit for EPT, by checking if this page has
1171 	 * an EPT mapping, and clearing it if it does. On the next access,
1172 	 * a new EPT mapping will be established.
1173 	 * This has some overhead, but not as much as the cost of swapping
1174 	 * out actively used pages or breaking up actively used hugepages.
1175 	 */
1176 	if (!shadow_accessed_mask)
1177 		return kvm_unmap_rmapp(kvm, rmapp, data);
1178 
1179 	spte = rmap_next(kvm, rmapp, NULL);
1180 	while (spte) {
1181 		int _young;
1182 		u64 _spte = *spte;
1183 		BUG_ON(!(_spte & PT_PRESENT_MASK));
1184 		_young = _spte & PT_ACCESSED_MASK;
1185 		if (_young) {
1186 			young = 1;
1187 			clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
1188 		}
1189 		spte = rmap_next(kvm, rmapp, spte);
1190 	}
1191 	return young;
1192 }
1193 
kvm_test_age_rmapp(struct kvm * kvm,unsigned long * rmapp,unsigned long data)1194 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1195 			      unsigned long data)
1196 {
1197 	u64 *spte;
1198 	int young = 0;
1199 
1200 	/*
1201 	 * If there's no access bit in the secondary pte set by the
1202 	 * hardware it's up to gup-fast/gup to set the access bit in
1203 	 * the primary pte or in the page structure.
1204 	 */
1205 	if (!shadow_accessed_mask)
1206 		goto out;
1207 
1208 	spte = rmap_next(kvm, rmapp, NULL);
1209 	while (spte) {
1210 		u64 _spte = *spte;
1211 		BUG_ON(!(_spte & PT_PRESENT_MASK));
1212 		young = _spte & PT_ACCESSED_MASK;
1213 		if (young) {
1214 			young = 1;
1215 			break;
1216 		}
1217 		spte = rmap_next(kvm, rmapp, spte);
1218 	}
1219 out:
1220 	return young;
1221 }
1222 
1223 #define RMAP_RECYCLE_THRESHOLD 1000
1224 
rmap_recycle(struct kvm_vcpu * vcpu,u64 * spte,gfn_t gfn)1225 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1226 {
1227 	unsigned long *rmapp;
1228 	struct kvm_mmu_page *sp;
1229 
1230 	sp = page_header(__pa(spte));
1231 
1232 	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1233 
1234 	kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
1235 	kvm_flush_remote_tlbs(vcpu->kvm);
1236 }
1237 
kvm_age_hva(struct kvm * kvm,unsigned long hva)1238 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1239 {
1240 	return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
1241 }
1242 
kvm_test_age_hva(struct kvm * kvm,unsigned long hva)1243 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1244 {
1245 	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1246 }
1247 
1248 #ifdef MMU_DEBUG
is_empty_shadow_page(u64 * spt)1249 static int is_empty_shadow_page(u64 *spt)
1250 {
1251 	u64 *pos;
1252 	u64 *end;
1253 
1254 	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1255 		if (is_shadow_present_pte(*pos)) {
1256 			printk(KERN_ERR "%s: %p %llx\n", __func__,
1257 			       pos, *pos);
1258 			return 0;
1259 		}
1260 	return 1;
1261 }
1262 #endif
1263 
1264 /*
1265  * This value is the sum of all of the kvm instances's
1266  * kvm->arch.n_used_mmu_pages values.  We need a global,
1267  * aggregate version in order to make the slab shrinker
1268  * faster
1269  */
kvm_mod_used_mmu_pages(struct kvm * kvm,int nr)1270 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1271 {
1272 	kvm->arch.n_used_mmu_pages += nr;
1273 	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1274 }
1275 
1276 /*
1277  * Remove the sp from shadow page cache, after call it,
1278  * we can not find this sp from the cache, and the shadow
1279  * page table is still valid.
1280  * It should be under the protection of mmu lock.
1281  */
kvm_mmu_isolate_page(struct kvm_mmu_page * sp)1282 static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
1283 {
1284 	ASSERT(is_empty_shadow_page(sp->spt));
1285 	hlist_del(&sp->hash_link);
1286 	if (!sp->role.direct)
1287 		free_page((unsigned long)sp->gfns);
1288 }
1289 
1290 /*
1291  * Free the shadow page table and the sp, we can do it
1292  * out of the protection of mmu lock.
1293  */
kvm_mmu_free_page(struct kvm_mmu_page * sp)1294 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1295 {
1296 	list_del(&sp->link);
1297 	free_page((unsigned long)sp->spt);
1298 	kmem_cache_free(mmu_page_header_cache, sp);
1299 }
1300 
kvm_page_table_hashfn(gfn_t gfn)1301 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1302 {
1303 	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1304 }
1305 
mmu_page_add_parent_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * parent_pte)1306 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1307 				    struct kvm_mmu_page *sp, u64 *parent_pte)
1308 {
1309 	if (!parent_pte)
1310 		return;
1311 
1312 	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1313 }
1314 
mmu_page_remove_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)1315 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1316 				       u64 *parent_pte)
1317 {
1318 	pte_list_remove(parent_pte, &sp->parent_ptes);
1319 }
1320 
drop_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)1321 static void drop_parent_pte(struct kvm_mmu_page *sp,
1322 			    u64 *parent_pte)
1323 {
1324 	mmu_page_remove_parent_pte(sp, parent_pte);
1325 	mmu_spte_clear_no_track(parent_pte);
1326 }
1327 
kvm_mmu_alloc_page(struct kvm_vcpu * vcpu,u64 * parent_pte,int direct)1328 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1329 					       u64 *parent_pte, int direct)
1330 {
1331 	struct kvm_mmu_page *sp;
1332 	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
1333 					sizeof *sp);
1334 	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1335 	if (!direct)
1336 		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1337 						  PAGE_SIZE);
1338 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1339 	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1340 	bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
1341 	sp->parent_ptes = 0;
1342 	mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1343 	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1344 	return sp;
1345 }
1346 
1347 static void mark_unsync(u64 *spte);
kvm_mmu_mark_parents_unsync(struct kvm_mmu_page * sp)1348 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1349 {
1350 	pte_list_walk(&sp->parent_ptes, mark_unsync);
1351 }
1352 
mark_unsync(u64 * spte)1353 static void mark_unsync(u64 *spte)
1354 {
1355 	struct kvm_mmu_page *sp;
1356 	unsigned int index;
1357 
1358 	sp = page_header(__pa(spte));
1359 	index = spte - sp->spt;
1360 	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1361 		return;
1362 	if (sp->unsync_children++)
1363 		return;
1364 	kvm_mmu_mark_parents_unsync(sp);
1365 }
1366 
nonpaging_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)1367 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1368 			       struct kvm_mmu_page *sp)
1369 {
1370 	return 1;
1371 }
1372 
nonpaging_invlpg(struct kvm_vcpu * vcpu,gva_t gva)1373 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1374 {
1375 }
1376 
nonpaging_update_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * spte,const void * pte)1377 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1378 				 struct kvm_mmu_page *sp, u64 *spte,
1379 				 const void *pte)
1380 {
1381 	WARN_ON(1);
1382 }
1383 
1384 #define KVM_PAGE_ARRAY_NR 16
1385 
1386 struct kvm_mmu_pages {
1387 	struct mmu_page_and_offset {
1388 		struct kvm_mmu_page *sp;
1389 		unsigned int idx;
1390 	} page[KVM_PAGE_ARRAY_NR];
1391 	unsigned int nr;
1392 };
1393 
1394 #define for_each_unsync_children(bitmap, idx)		\
1395 	for (idx = find_first_bit(bitmap, 512);		\
1396 	     idx < 512;					\
1397 	     idx = find_next_bit(bitmap, 512, idx+1))
1398 
mmu_pages_add(struct kvm_mmu_pages * pvec,struct kvm_mmu_page * sp,int idx)1399 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1400 			 int idx)
1401 {
1402 	int i;
1403 
1404 	if (sp->unsync)
1405 		for (i=0; i < pvec->nr; i++)
1406 			if (pvec->page[i].sp == sp)
1407 				return 0;
1408 
1409 	pvec->page[pvec->nr].sp = sp;
1410 	pvec->page[pvec->nr].idx = idx;
1411 	pvec->nr++;
1412 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
1413 }
1414 
__mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1415 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1416 			   struct kvm_mmu_pages *pvec)
1417 {
1418 	int i, ret, nr_unsync_leaf = 0;
1419 
1420 	for_each_unsync_children(sp->unsync_child_bitmap, i) {
1421 		struct kvm_mmu_page *child;
1422 		u64 ent = sp->spt[i];
1423 
1424 		if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1425 			goto clear_child_bitmap;
1426 
1427 		child = page_header(ent & PT64_BASE_ADDR_MASK);
1428 
1429 		if (child->unsync_children) {
1430 			if (mmu_pages_add(pvec, child, i))
1431 				return -ENOSPC;
1432 
1433 			ret = __mmu_unsync_walk(child, pvec);
1434 			if (!ret)
1435 				goto clear_child_bitmap;
1436 			else if (ret > 0)
1437 				nr_unsync_leaf += ret;
1438 			else
1439 				return ret;
1440 		} else if (child->unsync) {
1441 			nr_unsync_leaf++;
1442 			if (mmu_pages_add(pvec, child, i))
1443 				return -ENOSPC;
1444 		} else
1445 			 goto clear_child_bitmap;
1446 
1447 		continue;
1448 
1449 clear_child_bitmap:
1450 		__clear_bit(i, sp->unsync_child_bitmap);
1451 		sp->unsync_children--;
1452 		WARN_ON((int)sp->unsync_children < 0);
1453 	}
1454 
1455 
1456 	return nr_unsync_leaf;
1457 }
1458 
mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1459 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1460 			   struct kvm_mmu_pages *pvec)
1461 {
1462 	if (!sp->unsync_children)
1463 		return 0;
1464 
1465 	mmu_pages_add(pvec, sp, 0);
1466 	return __mmu_unsync_walk(sp, pvec);
1467 }
1468 
kvm_unlink_unsync_page(struct kvm * kvm,struct kvm_mmu_page * sp)1469 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1470 {
1471 	WARN_ON(!sp->unsync);
1472 	trace_kvm_mmu_sync_page(sp);
1473 	sp->unsync = 0;
1474 	--kvm->stat.mmu_unsync;
1475 }
1476 
1477 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1478 				    struct list_head *invalid_list);
1479 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1480 				    struct list_head *invalid_list);
1481 
1482 #define for_each_gfn_sp(kvm, sp, gfn, pos)				\
1483   hlist_for_each_entry(sp, pos,						\
1484    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)	\
1485 	if ((sp)->gfn != (gfn)) {} else
1486 
1487 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos)		\
1488   hlist_for_each_entry(sp, pos,						\
1489    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)	\
1490 		if ((sp)->gfn != (gfn) || (sp)->role.direct ||		\
1491 			(sp)->role.invalid) {} else
1492 
1493 /* @sp->gfn should be write-protected at the call site */
__kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list,bool clear_unsync)1494 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1495 			   struct list_head *invalid_list, bool clear_unsync)
1496 {
1497 	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1498 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1499 		return 1;
1500 	}
1501 
1502 	if (clear_unsync)
1503 		kvm_unlink_unsync_page(vcpu->kvm, sp);
1504 
1505 	if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1506 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1507 		return 1;
1508 	}
1509 
1510 	kvm_mmu_flush_tlb(vcpu);
1511 	return 0;
1512 }
1513 
kvm_sync_page_transient(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)1514 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1515 				   struct kvm_mmu_page *sp)
1516 {
1517 	LIST_HEAD(invalid_list);
1518 	int ret;
1519 
1520 	ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1521 	if (ret)
1522 		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1523 
1524 	return ret;
1525 }
1526 
1527 #ifdef CONFIG_KVM_MMU_AUDIT
1528 #include "mmu_audit.c"
1529 #else
kvm_mmu_audit(struct kvm_vcpu * vcpu,int point)1530 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
mmu_audit_disable(void)1531 static void mmu_audit_disable(void) { }
1532 #endif
1533 
kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list)1534 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1535 			 struct list_head *invalid_list)
1536 {
1537 	return __kvm_sync_page(vcpu, sp, invalid_list, true);
1538 }
1539 
1540 /* @gfn should be write-protected at the call site */
kvm_sync_pages(struct kvm_vcpu * vcpu,gfn_t gfn)1541 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1542 {
1543 	struct kvm_mmu_page *s;
1544 	struct hlist_node *node;
1545 	LIST_HEAD(invalid_list);
1546 	bool flush = false;
1547 
1548 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1549 		if (!s->unsync)
1550 			continue;
1551 
1552 		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1553 		kvm_unlink_unsync_page(vcpu->kvm, s);
1554 		if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1555 			(vcpu->arch.mmu.sync_page(vcpu, s))) {
1556 			kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1557 			continue;
1558 		}
1559 		flush = true;
1560 	}
1561 
1562 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1563 	if (flush)
1564 		kvm_mmu_flush_tlb(vcpu);
1565 }
1566 
1567 struct mmu_page_path {
1568 	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1569 	unsigned int idx[PT64_ROOT_LEVEL-1];
1570 };
1571 
1572 #define for_each_sp(pvec, sp, parents, i)			\
1573 		for (i = mmu_pages_next(&pvec, &parents, -1),	\
1574 			sp = pvec.page[i].sp;			\
1575 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
1576 			i = mmu_pages_next(&pvec, &parents, i))
1577 
mmu_pages_next(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents,int i)1578 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1579 			  struct mmu_page_path *parents,
1580 			  int i)
1581 {
1582 	int n;
1583 
1584 	for (n = i+1; n < pvec->nr; n++) {
1585 		struct kvm_mmu_page *sp = pvec->page[n].sp;
1586 
1587 		if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1588 			parents->idx[0] = pvec->page[n].idx;
1589 			return n;
1590 		}
1591 
1592 		parents->parent[sp->role.level-2] = sp;
1593 		parents->idx[sp->role.level-1] = pvec->page[n].idx;
1594 	}
1595 
1596 	return n;
1597 }
1598 
mmu_pages_clear_parents(struct mmu_page_path * parents)1599 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1600 {
1601 	struct kvm_mmu_page *sp;
1602 	unsigned int level = 0;
1603 
1604 	do {
1605 		unsigned int idx = parents->idx[level];
1606 
1607 		sp = parents->parent[level];
1608 		if (!sp)
1609 			return;
1610 
1611 		--sp->unsync_children;
1612 		WARN_ON((int)sp->unsync_children < 0);
1613 		__clear_bit(idx, sp->unsync_child_bitmap);
1614 		level++;
1615 	} while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1616 }
1617 
kvm_mmu_pages_init(struct kvm_mmu_page * parent,struct mmu_page_path * parents,struct kvm_mmu_pages * pvec)1618 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1619 			       struct mmu_page_path *parents,
1620 			       struct kvm_mmu_pages *pvec)
1621 {
1622 	parents->parent[parent->role.level-1] = NULL;
1623 	pvec->nr = 0;
1624 }
1625 
mmu_sync_children(struct kvm_vcpu * vcpu,struct kvm_mmu_page * parent)1626 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1627 			      struct kvm_mmu_page *parent)
1628 {
1629 	int i;
1630 	struct kvm_mmu_page *sp;
1631 	struct mmu_page_path parents;
1632 	struct kvm_mmu_pages pages;
1633 	LIST_HEAD(invalid_list);
1634 
1635 	kvm_mmu_pages_init(parent, &parents, &pages);
1636 	while (mmu_unsync_walk(parent, &pages)) {
1637 		int protected = 0;
1638 
1639 		for_each_sp(pages, sp, parents, i)
1640 			protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1641 
1642 		if (protected)
1643 			kvm_flush_remote_tlbs(vcpu->kvm);
1644 
1645 		for_each_sp(pages, sp, parents, i) {
1646 			kvm_sync_page(vcpu, sp, &invalid_list);
1647 			mmu_pages_clear_parents(&parents);
1648 		}
1649 		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1650 		cond_resched_lock(&vcpu->kvm->mmu_lock);
1651 		kvm_mmu_pages_init(parent, &parents, &pages);
1652 	}
1653 }
1654 
init_shadow_page_table(struct kvm_mmu_page * sp)1655 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1656 {
1657 	int i;
1658 
1659 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1660 		sp->spt[i] = 0ull;
1661 }
1662 
__clear_sp_write_flooding_count(struct kvm_mmu_page * sp)1663 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1664 {
1665 	sp->write_flooding_count = 0;
1666 }
1667 
clear_sp_write_flooding_count(u64 * spte)1668 static void clear_sp_write_flooding_count(u64 *spte)
1669 {
1670 	struct kvm_mmu_page *sp =  page_header(__pa(spte));
1671 
1672 	__clear_sp_write_flooding_count(sp);
1673 }
1674 
kvm_mmu_get_page(struct kvm_vcpu * vcpu,gfn_t gfn,gva_t gaddr,unsigned level,int direct,unsigned access,u64 * parent_pte)1675 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1676 					     gfn_t gfn,
1677 					     gva_t gaddr,
1678 					     unsigned level,
1679 					     int direct,
1680 					     unsigned access,
1681 					     u64 *parent_pte)
1682 {
1683 	union kvm_mmu_page_role role;
1684 	unsigned quadrant;
1685 	struct kvm_mmu_page *sp;
1686 	struct hlist_node *node;
1687 	bool need_sync = false;
1688 
1689 	role = vcpu->arch.mmu.base_role;
1690 	role.level = level;
1691 	role.direct = direct;
1692 	if (role.direct)
1693 		role.cr4_pae = 0;
1694 	role.access = access;
1695 	if (!vcpu->arch.mmu.direct_map
1696 	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1697 		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1698 		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1699 		role.quadrant = quadrant;
1700 	}
1701 	for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1702 		if (!need_sync && sp->unsync)
1703 			need_sync = true;
1704 
1705 		if (sp->role.word != role.word)
1706 			continue;
1707 
1708 		if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1709 			break;
1710 
1711 		mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1712 		if (sp->unsync_children) {
1713 			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1714 			kvm_mmu_mark_parents_unsync(sp);
1715 		} else if (sp->unsync)
1716 			kvm_mmu_mark_parents_unsync(sp);
1717 
1718 		__clear_sp_write_flooding_count(sp);
1719 		trace_kvm_mmu_get_page(sp, false);
1720 		return sp;
1721 	}
1722 	++vcpu->kvm->stat.mmu_cache_miss;
1723 	sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1724 	if (!sp)
1725 		return sp;
1726 	sp->gfn = gfn;
1727 	sp->role = role;
1728 	hlist_add_head(&sp->hash_link,
1729 		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1730 	if (!direct) {
1731 		if (rmap_write_protect(vcpu->kvm, gfn))
1732 			kvm_flush_remote_tlbs(vcpu->kvm);
1733 		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1734 			kvm_sync_pages(vcpu, gfn);
1735 
1736 		account_shadowed(vcpu->kvm, gfn);
1737 	}
1738 	init_shadow_page_table(sp);
1739 	trace_kvm_mmu_get_page(sp, true);
1740 	return sp;
1741 }
1742 
shadow_walk_init(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,u64 addr)1743 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1744 			     struct kvm_vcpu *vcpu, u64 addr)
1745 {
1746 	iterator->addr = addr;
1747 	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1748 	iterator->level = vcpu->arch.mmu.shadow_root_level;
1749 
1750 	if (iterator->level == PT64_ROOT_LEVEL &&
1751 	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1752 	    !vcpu->arch.mmu.direct_map)
1753 		--iterator->level;
1754 
1755 	if (iterator->level == PT32E_ROOT_LEVEL) {
1756 		iterator->shadow_addr
1757 			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1758 		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1759 		--iterator->level;
1760 		if (!iterator->shadow_addr)
1761 			iterator->level = 0;
1762 	}
1763 }
1764 
shadow_walk_okay(struct kvm_shadow_walk_iterator * iterator)1765 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1766 {
1767 	if (iterator->level < PT_PAGE_TABLE_LEVEL)
1768 		return false;
1769 
1770 	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1771 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1772 	return true;
1773 }
1774 
__shadow_walk_next(struct kvm_shadow_walk_iterator * iterator,u64 spte)1775 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1776 			       u64 spte)
1777 {
1778 	if (is_last_spte(spte, iterator->level)) {
1779 		iterator->level = 0;
1780 		return;
1781 	}
1782 
1783 	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1784 	--iterator->level;
1785 }
1786 
shadow_walk_next(struct kvm_shadow_walk_iterator * iterator)1787 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1788 {
1789 	return __shadow_walk_next(iterator, *iterator->sptep);
1790 }
1791 
link_shadow_page(u64 * sptep,struct kvm_mmu_page * sp)1792 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1793 {
1794 	u64 spte;
1795 
1796 	spte = __pa(sp->spt)
1797 		| PT_PRESENT_MASK | PT_ACCESSED_MASK
1798 		| PT_WRITABLE_MASK | PT_USER_MASK;
1799 	mmu_spte_set(sptep, spte);
1800 }
1801 
drop_large_spte(struct kvm_vcpu * vcpu,u64 * sptep)1802 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1803 {
1804 	if (is_large_pte(*sptep)) {
1805 		drop_spte(vcpu->kvm, sptep);
1806 		kvm_flush_remote_tlbs(vcpu->kvm);
1807 	}
1808 }
1809 
validate_direct_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned direct_access)1810 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1811 				   unsigned direct_access)
1812 {
1813 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1814 		struct kvm_mmu_page *child;
1815 
1816 		/*
1817 		 * For the direct sp, if the guest pte's dirty bit
1818 		 * changed form clean to dirty, it will corrupt the
1819 		 * sp's access: allow writable in the read-only sp,
1820 		 * so we should update the spte at this point to get
1821 		 * a new sp with the correct access.
1822 		 */
1823 		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1824 		if (child->role.access == direct_access)
1825 			return;
1826 
1827 		drop_parent_pte(child, sptep);
1828 		kvm_flush_remote_tlbs(vcpu->kvm);
1829 	}
1830 }
1831 
mmu_page_zap_pte(struct kvm * kvm,struct kvm_mmu_page * sp,u64 * spte)1832 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1833 			     u64 *spte)
1834 {
1835 	u64 pte;
1836 	struct kvm_mmu_page *child;
1837 
1838 	pte = *spte;
1839 	if (is_shadow_present_pte(pte)) {
1840 		if (is_last_spte(pte, sp->role.level)) {
1841 			drop_spte(kvm, spte);
1842 			if (is_large_pte(pte))
1843 				--kvm->stat.lpages;
1844 		} else {
1845 			child = page_header(pte & PT64_BASE_ADDR_MASK);
1846 			drop_parent_pte(child, spte);
1847 		}
1848 		return true;
1849 	}
1850 
1851 	if (is_mmio_spte(pte))
1852 		mmu_spte_clear_no_track(spte);
1853 
1854 	return false;
1855 }
1856 
kvm_mmu_page_unlink_children(struct kvm * kvm,struct kvm_mmu_page * sp)1857 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1858 					 struct kvm_mmu_page *sp)
1859 {
1860 	unsigned i;
1861 
1862 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1863 		mmu_page_zap_pte(kvm, sp, sp->spt + i);
1864 }
1865 
kvm_mmu_put_page(struct kvm_mmu_page * sp,u64 * parent_pte)1866 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1867 {
1868 	mmu_page_remove_parent_pte(sp, parent_pte);
1869 }
1870 
kvm_mmu_unlink_parents(struct kvm * kvm,struct kvm_mmu_page * sp)1871 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1872 {
1873 	u64 *parent_pte;
1874 
1875 	while ((parent_pte = pte_list_next(&sp->parent_ptes, NULL)))
1876 		drop_parent_pte(sp, parent_pte);
1877 }
1878 
mmu_zap_unsync_children(struct kvm * kvm,struct kvm_mmu_page * parent,struct list_head * invalid_list)1879 static int mmu_zap_unsync_children(struct kvm *kvm,
1880 				   struct kvm_mmu_page *parent,
1881 				   struct list_head *invalid_list)
1882 {
1883 	int i, zapped = 0;
1884 	struct mmu_page_path parents;
1885 	struct kvm_mmu_pages pages;
1886 
1887 	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1888 		return 0;
1889 
1890 	kvm_mmu_pages_init(parent, &parents, &pages);
1891 	while (mmu_unsync_walk(parent, &pages)) {
1892 		struct kvm_mmu_page *sp;
1893 
1894 		for_each_sp(pages, sp, parents, i) {
1895 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1896 			mmu_pages_clear_parents(&parents);
1897 			zapped++;
1898 		}
1899 		kvm_mmu_pages_init(parent, &parents, &pages);
1900 	}
1901 
1902 	return zapped;
1903 }
1904 
kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list)1905 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1906 				    struct list_head *invalid_list)
1907 {
1908 	int ret;
1909 
1910 	trace_kvm_mmu_prepare_zap_page(sp);
1911 	++kvm->stat.mmu_shadow_zapped;
1912 	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1913 	kvm_mmu_page_unlink_children(kvm, sp);
1914 	kvm_mmu_unlink_parents(kvm, sp);
1915 	if (!sp->role.invalid && !sp->role.direct)
1916 		unaccount_shadowed(kvm, sp->gfn);
1917 	if (sp->unsync)
1918 		kvm_unlink_unsync_page(kvm, sp);
1919 	if (!sp->root_count) {
1920 		/* Count self */
1921 		ret++;
1922 		list_move(&sp->link, invalid_list);
1923 		kvm_mod_used_mmu_pages(kvm, -1);
1924 	} else {
1925 		list_move(&sp->link, &kvm->arch.active_mmu_pages);
1926 		kvm_reload_remote_mmus(kvm);
1927 	}
1928 
1929 	sp->role.invalid = 1;
1930 	return ret;
1931 }
1932 
kvm_mmu_isolate_pages(struct list_head * invalid_list)1933 static void kvm_mmu_isolate_pages(struct list_head *invalid_list)
1934 {
1935 	struct kvm_mmu_page *sp;
1936 
1937 	list_for_each_entry(sp, invalid_list, link)
1938 		kvm_mmu_isolate_page(sp);
1939 }
1940 
free_pages_rcu(struct rcu_head * head)1941 static void free_pages_rcu(struct rcu_head *head)
1942 {
1943 	struct kvm_mmu_page *next, *sp;
1944 
1945 	sp = container_of(head, struct kvm_mmu_page, rcu);
1946 	while (sp) {
1947 		if (!list_empty(&sp->link))
1948 			next = list_first_entry(&sp->link,
1949 				      struct kvm_mmu_page, link);
1950 		else
1951 			next = NULL;
1952 		kvm_mmu_free_page(sp);
1953 		sp = next;
1954 	}
1955 }
1956 
kvm_mmu_commit_zap_page(struct kvm * kvm,struct list_head * invalid_list)1957 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1958 				    struct list_head *invalid_list)
1959 {
1960 	struct kvm_mmu_page *sp;
1961 
1962 	if (list_empty(invalid_list))
1963 		return;
1964 
1965 	kvm_flush_remote_tlbs(kvm);
1966 
1967 	if (atomic_read(&kvm->arch.reader_counter)) {
1968 		kvm_mmu_isolate_pages(invalid_list);
1969 		sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1970 		list_del_init(invalid_list);
1971 
1972 		trace_kvm_mmu_delay_free_pages(sp);
1973 		call_rcu(&sp->rcu, free_pages_rcu);
1974 		return;
1975 	}
1976 
1977 	do {
1978 		sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1979 		WARN_ON(!sp->role.invalid || sp->root_count);
1980 		kvm_mmu_isolate_page(sp);
1981 		kvm_mmu_free_page(sp);
1982 	} while (!list_empty(invalid_list));
1983 
1984 }
1985 
1986 /*
1987  * Changing the number of mmu pages allocated to the vm
1988  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
1989  */
kvm_mmu_change_mmu_pages(struct kvm * kvm,unsigned int goal_nr_mmu_pages)1990 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
1991 {
1992 	LIST_HEAD(invalid_list);
1993 	/*
1994 	 * If we set the number of mmu pages to be smaller be than the
1995 	 * number of actived pages , we must to free some mmu pages before we
1996 	 * change the value
1997 	 */
1998 
1999 	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2000 		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
2001 			!list_empty(&kvm->arch.active_mmu_pages)) {
2002 			struct kvm_mmu_page *page;
2003 
2004 			page = container_of(kvm->arch.active_mmu_pages.prev,
2005 					    struct kvm_mmu_page, link);
2006 			kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
2007 		}
2008 		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2009 		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2010 	}
2011 
2012 	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2013 }
2014 
kvm_mmu_unprotect_page(struct kvm * kvm,gfn_t gfn)2015 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2016 {
2017 	struct kvm_mmu_page *sp;
2018 	struct hlist_node *node;
2019 	LIST_HEAD(invalid_list);
2020 	int r;
2021 
2022 	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2023 	r = 0;
2024 	spin_lock(&kvm->mmu_lock);
2025 	for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
2026 		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2027 			 sp->role.word);
2028 		r = 1;
2029 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2030 	}
2031 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2032 	spin_unlock(&kvm->mmu_lock);
2033 
2034 	return r;
2035 }
2036 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2037 
page_header_update_slot(struct kvm * kvm,void * pte,gfn_t gfn)2038 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
2039 {
2040 	int slot = memslot_id(kvm, gfn);
2041 	struct kvm_mmu_page *sp = page_header(__pa(pte));
2042 
2043 	__set_bit(slot, sp->slot_bitmap);
2044 }
2045 
2046 /*
2047  * The function is based on mtrr_type_lookup() in
2048  * arch/x86/kernel/cpu/mtrr/generic.c
2049  */
get_mtrr_type(struct mtrr_state_type * mtrr_state,u64 start,u64 end)2050 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2051 			 u64 start, u64 end)
2052 {
2053 	int i;
2054 	u64 base, mask;
2055 	u8 prev_match, curr_match;
2056 	int num_var_ranges = KVM_NR_VAR_MTRR;
2057 
2058 	if (!mtrr_state->enabled)
2059 		return 0xFF;
2060 
2061 	/* Make end inclusive end, instead of exclusive */
2062 	end--;
2063 
2064 	/* Look in fixed ranges. Just return the type as per start */
2065 	if (mtrr_state->have_fixed && (start < 0x100000)) {
2066 		int idx;
2067 
2068 		if (start < 0x80000) {
2069 			idx = 0;
2070 			idx += (start >> 16);
2071 			return mtrr_state->fixed_ranges[idx];
2072 		} else if (start < 0xC0000) {
2073 			idx = 1 * 8;
2074 			idx += ((start - 0x80000) >> 14);
2075 			return mtrr_state->fixed_ranges[idx];
2076 		} else if (start < 0x1000000) {
2077 			idx = 3 * 8;
2078 			idx += ((start - 0xC0000) >> 12);
2079 			return mtrr_state->fixed_ranges[idx];
2080 		}
2081 	}
2082 
2083 	/*
2084 	 * Look in variable ranges
2085 	 * Look of multiple ranges matching this address and pick type
2086 	 * as per MTRR precedence
2087 	 */
2088 	if (!(mtrr_state->enabled & 2))
2089 		return mtrr_state->def_type;
2090 
2091 	prev_match = 0xFF;
2092 	for (i = 0; i < num_var_ranges; ++i) {
2093 		unsigned short start_state, end_state;
2094 
2095 		if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2096 			continue;
2097 
2098 		base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2099 		       (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2100 		mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2101 		       (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2102 
2103 		start_state = ((start & mask) == (base & mask));
2104 		end_state = ((end & mask) == (base & mask));
2105 		if (start_state != end_state)
2106 			return 0xFE;
2107 
2108 		if ((start & mask) != (base & mask))
2109 			continue;
2110 
2111 		curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2112 		if (prev_match == 0xFF) {
2113 			prev_match = curr_match;
2114 			continue;
2115 		}
2116 
2117 		if (prev_match == MTRR_TYPE_UNCACHABLE ||
2118 		    curr_match == MTRR_TYPE_UNCACHABLE)
2119 			return MTRR_TYPE_UNCACHABLE;
2120 
2121 		if ((prev_match == MTRR_TYPE_WRBACK &&
2122 		     curr_match == MTRR_TYPE_WRTHROUGH) ||
2123 		    (prev_match == MTRR_TYPE_WRTHROUGH &&
2124 		     curr_match == MTRR_TYPE_WRBACK)) {
2125 			prev_match = MTRR_TYPE_WRTHROUGH;
2126 			curr_match = MTRR_TYPE_WRTHROUGH;
2127 		}
2128 
2129 		if (prev_match != curr_match)
2130 			return MTRR_TYPE_UNCACHABLE;
2131 	}
2132 
2133 	if (prev_match != 0xFF)
2134 		return prev_match;
2135 
2136 	return mtrr_state->def_type;
2137 }
2138 
kvm_get_guest_memory_type(struct kvm_vcpu * vcpu,gfn_t gfn)2139 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2140 {
2141 	u8 mtrr;
2142 
2143 	mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2144 			     (gfn << PAGE_SHIFT) + PAGE_SIZE);
2145 	if (mtrr == 0xfe || mtrr == 0xff)
2146 		mtrr = MTRR_TYPE_WRBACK;
2147 	return mtrr;
2148 }
2149 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2150 
__kvm_unsync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)2151 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2152 {
2153 	trace_kvm_mmu_unsync_page(sp);
2154 	++vcpu->kvm->stat.mmu_unsync;
2155 	sp->unsync = 1;
2156 
2157 	kvm_mmu_mark_parents_unsync(sp);
2158 }
2159 
kvm_unsync_pages(struct kvm_vcpu * vcpu,gfn_t gfn)2160 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2161 {
2162 	struct kvm_mmu_page *s;
2163 	struct hlist_node *node;
2164 
2165 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2166 		if (s->unsync)
2167 			continue;
2168 		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2169 		__kvm_unsync_page(vcpu, s);
2170 	}
2171 }
2172 
mmu_need_write_protect(struct kvm_vcpu * vcpu,gfn_t gfn,bool can_unsync)2173 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2174 				  bool can_unsync)
2175 {
2176 	struct kvm_mmu_page *s;
2177 	struct hlist_node *node;
2178 	bool need_unsync = false;
2179 
2180 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2181 		if (!can_unsync)
2182 			return 1;
2183 
2184 		if (s->role.level != PT_PAGE_TABLE_LEVEL)
2185 			return 1;
2186 
2187 		if (!need_unsync && !s->unsync) {
2188 			need_unsync = true;
2189 		}
2190 	}
2191 	if (need_unsync)
2192 		kvm_unsync_pages(vcpu, gfn);
2193 	return 0;
2194 }
2195 
set_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned pte_access,int user_fault,int write_fault,int level,gfn_t gfn,pfn_t pfn,bool speculative,bool can_unsync,bool host_writable)2196 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2197 		    unsigned pte_access, int user_fault,
2198 		    int write_fault, int level,
2199 		    gfn_t gfn, pfn_t pfn, bool speculative,
2200 		    bool can_unsync, bool host_writable)
2201 {
2202 	u64 spte, entry = *sptep;
2203 	int ret = 0;
2204 
2205 	if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2206 		return 0;
2207 
2208 	spte = PT_PRESENT_MASK;
2209 	if (!speculative)
2210 		spte |= shadow_accessed_mask;
2211 
2212 	if (pte_access & ACC_EXEC_MASK)
2213 		spte |= shadow_x_mask;
2214 	else
2215 		spte |= shadow_nx_mask;
2216 	if (pte_access & ACC_USER_MASK)
2217 		spte |= shadow_user_mask;
2218 	if (level > PT_PAGE_TABLE_LEVEL)
2219 		spte |= PT_PAGE_SIZE_MASK;
2220 	if (tdp_enabled)
2221 		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2222 			kvm_is_mmio_pfn(pfn));
2223 
2224 	if (host_writable)
2225 		spte |= SPTE_HOST_WRITEABLE;
2226 	else
2227 		pte_access &= ~ACC_WRITE_MASK;
2228 
2229 	spte |= (u64)pfn << PAGE_SHIFT;
2230 
2231 	if ((pte_access & ACC_WRITE_MASK)
2232 	    || (!vcpu->arch.mmu.direct_map && write_fault
2233 		&& !is_write_protection(vcpu) && !user_fault)) {
2234 
2235 		if (level > PT_PAGE_TABLE_LEVEL &&
2236 		    has_wrprotected_page(vcpu->kvm, gfn, level)) {
2237 			ret = 1;
2238 			drop_spte(vcpu->kvm, sptep);
2239 			goto done;
2240 		}
2241 
2242 		spte |= PT_WRITABLE_MASK;
2243 
2244 		if (!vcpu->arch.mmu.direct_map
2245 		    && !(pte_access & ACC_WRITE_MASK)) {
2246 			spte &= ~PT_USER_MASK;
2247 			/*
2248 			 * If we converted a user page to a kernel page,
2249 			 * so that the kernel can write to it when cr0.wp=0,
2250 			 * then we should prevent the kernel from executing it
2251 			 * if SMEP is enabled.
2252 			 */
2253 			if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2254 				spte |= PT64_NX_MASK;
2255 		}
2256 
2257 		/*
2258 		 * Optimization: for pte sync, if spte was writable the hash
2259 		 * lookup is unnecessary (and expensive). Write protection
2260 		 * is responsibility of mmu_get_page / kvm_sync_page.
2261 		 * Same reasoning can be applied to dirty page accounting.
2262 		 */
2263 		if (!can_unsync && is_writable_pte(*sptep))
2264 			goto set_pte;
2265 
2266 		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2267 			pgprintk("%s: found shadow page for %llx, marking ro\n",
2268 				 __func__, gfn);
2269 			ret = 1;
2270 			pte_access &= ~ACC_WRITE_MASK;
2271 			if (is_writable_pte(spte))
2272 				spte &= ~PT_WRITABLE_MASK;
2273 		}
2274 	}
2275 
2276 	if (pte_access & ACC_WRITE_MASK)
2277 		mark_page_dirty(vcpu->kvm, gfn);
2278 
2279 set_pte:
2280 	mmu_spte_update(sptep, spte);
2281 	/*
2282 	 * If we overwrite a writable spte with a read-only one we
2283 	 * should flush remote TLBs. Otherwise rmap_write_protect
2284 	 * will find a read-only spte, even though the writable spte
2285 	 * might be cached on a CPU's TLB.
2286 	 */
2287 	if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2288 		kvm_flush_remote_tlbs(vcpu->kvm);
2289 done:
2290 	return ret;
2291 }
2292 
mmu_set_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned pt_access,unsigned pte_access,int user_fault,int write_fault,int * emulate,int level,gfn_t gfn,pfn_t pfn,bool speculative,bool host_writable)2293 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2294 			 unsigned pt_access, unsigned pte_access,
2295 			 int user_fault, int write_fault,
2296 			 int *emulate, int level, gfn_t gfn,
2297 			 pfn_t pfn, bool speculative,
2298 			 bool host_writable)
2299 {
2300 	int was_rmapped = 0;
2301 	int rmap_count;
2302 
2303 	pgprintk("%s: spte %llx access %x write_fault %d"
2304 		 " user_fault %d gfn %llx\n",
2305 		 __func__, *sptep, pt_access,
2306 		 write_fault, user_fault, gfn);
2307 
2308 	if (is_rmap_spte(*sptep)) {
2309 		/*
2310 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2311 		 * the parent of the now unreachable PTE.
2312 		 */
2313 		if (level > PT_PAGE_TABLE_LEVEL &&
2314 		    !is_large_pte(*sptep)) {
2315 			struct kvm_mmu_page *child;
2316 			u64 pte = *sptep;
2317 
2318 			child = page_header(pte & PT64_BASE_ADDR_MASK);
2319 			drop_parent_pte(child, sptep);
2320 			kvm_flush_remote_tlbs(vcpu->kvm);
2321 		} else if (pfn != spte_to_pfn(*sptep)) {
2322 			pgprintk("hfn old %llx new %llx\n",
2323 				 spte_to_pfn(*sptep), pfn);
2324 			drop_spte(vcpu->kvm, sptep);
2325 			kvm_flush_remote_tlbs(vcpu->kvm);
2326 		} else
2327 			was_rmapped = 1;
2328 	}
2329 
2330 	if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2331 		      level, gfn, pfn, speculative, true,
2332 		      host_writable)) {
2333 		if (write_fault)
2334 			*emulate = 1;
2335 		kvm_mmu_flush_tlb(vcpu);
2336 	}
2337 
2338 	if (unlikely(is_mmio_spte(*sptep) && emulate))
2339 		*emulate = 1;
2340 
2341 	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2342 	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2343 		 is_large_pte(*sptep)? "2MB" : "4kB",
2344 		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2345 		 *sptep, sptep);
2346 	if (!was_rmapped && is_large_pte(*sptep))
2347 		++vcpu->kvm->stat.lpages;
2348 
2349 	if (is_shadow_present_pte(*sptep)) {
2350 		page_header_update_slot(vcpu->kvm, sptep, gfn);
2351 		if (!was_rmapped) {
2352 			rmap_count = rmap_add(vcpu, sptep, gfn);
2353 			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2354 				rmap_recycle(vcpu, sptep, gfn);
2355 		}
2356 	}
2357 	kvm_release_pfn_clean(pfn);
2358 }
2359 
nonpaging_new_cr3(struct kvm_vcpu * vcpu)2360 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2361 {
2362 }
2363 
pte_prefetch_gfn_to_pfn(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)2364 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2365 				     bool no_dirty_log)
2366 {
2367 	struct kvm_memory_slot *slot;
2368 	unsigned long hva;
2369 
2370 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2371 	if (!slot) {
2372 		get_page(fault_page);
2373 		return page_to_pfn(fault_page);
2374 	}
2375 
2376 	hva = gfn_to_hva_memslot(slot, gfn);
2377 
2378 	return hva_to_pfn_atomic(vcpu->kvm, hva);
2379 }
2380 
direct_pte_prefetch_many(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * start,u64 * end)2381 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2382 				    struct kvm_mmu_page *sp,
2383 				    u64 *start, u64 *end)
2384 {
2385 	struct page *pages[PTE_PREFETCH_NUM];
2386 	unsigned access = sp->role.access;
2387 	int i, ret;
2388 	gfn_t gfn;
2389 
2390 	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2391 	if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2392 		return -1;
2393 
2394 	ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2395 	if (ret <= 0)
2396 		return -1;
2397 
2398 	for (i = 0; i < ret; i++, gfn++, start++)
2399 		mmu_set_spte(vcpu, start, ACC_ALL,
2400 			     access, 0, 0, NULL,
2401 			     sp->role.level, gfn,
2402 			     page_to_pfn(pages[i]), true, true);
2403 
2404 	return 0;
2405 }
2406 
__direct_pte_prefetch(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep)2407 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2408 				  struct kvm_mmu_page *sp, u64 *sptep)
2409 {
2410 	u64 *spte, *start = NULL;
2411 	int i;
2412 
2413 	WARN_ON(!sp->role.direct);
2414 
2415 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2416 	spte = sp->spt + i;
2417 
2418 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2419 		if (is_shadow_present_pte(*spte) || spte == sptep) {
2420 			if (!start)
2421 				continue;
2422 			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2423 				break;
2424 			start = NULL;
2425 		} else if (!start)
2426 			start = spte;
2427 	}
2428 }
2429 
direct_pte_prefetch(struct kvm_vcpu * vcpu,u64 * sptep)2430 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2431 {
2432 	struct kvm_mmu_page *sp;
2433 
2434 	/*
2435 	 * Since it's no accessed bit on EPT, it's no way to
2436 	 * distinguish between actually accessed translations
2437 	 * and prefetched, so disable pte prefetch if EPT is
2438 	 * enabled.
2439 	 */
2440 	if (!shadow_accessed_mask)
2441 		return;
2442 
2443 	sp = page_header(__pa(sptep));
2444 	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2445 		return;
2446 
2447 	__direct_pte_prefetch(vcpu, sp, sptep);
2448 }
2449 
__direct_map(struct kvm_vcpu * vcpu,gpa_t v,int write,int map_writable,int level,gfn_t gfn,pfn_t pfn,bool prefault)2450 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2451 			int map_writable, int level, gfn_t gfn, pfn_t pfn,
2452 			bool prefault)
2453 {
2454 	struct kvm_shadow_walk_iterator iterator;
2455 	struct kvm_mmu_page *sp;
2456 	int emulate = 0;
2457 	gfn_t pseudo_gfn;
2458 
2459 	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2460 		if (iterator.level == level) {
2461 			unsigned pte_access = ACC_ALL;
2462 
2463 			mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2464 				     0, write, &emulate,
2465 				     level, gfn, pfn, prefault, map_writable);
2466 			direct_pte_prefetch(vcpu, iterator.sptep);
2467 			++vcpu->stat.pf_fixed;
2468 			break;
2469 		}
2470 
2471 		if (!is_shadow_present_pte(*iterator.sptep)) {
2472 			u64 base_addr = iterator.addr;
2473 
2474 			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2475 			pseudo_gfn = base_addr >> PAGE_SHIFT;
2476 			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2477 					      iterator.level - 1,
2478 					      1, ACC_ALL, iterator.sptep);
2479 			if (!sp) {
2480 				pgprintk("nonpaging_map: ENOMEM\n");
2481 				kvm_release_pfn_clean(pfn);
2482 				return -ENOMEM;
2483 			}
2484 
2485 			mmu_spte_set(iterator.sptep,
2486 				     __pa(sp->spt)
2487 				     | PT_PRESENT_MASK | PT_WRITABLE_MASK
2488 				     | shadow_user_mask | shadow_x_mask
2489 				     | shadow_accessed_mask);
2490 		}
2491 	}
2492 	return emulate;
2493 }
2494 
kvm_send_hwpoison_signal(unsigned long address,struct task_struct * tsk)2495 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2496 {
2497 	siginfo_t info;
2498 
2499 	info.si_signo	= SIGBUS;
2500 	info.si_errno	= 0;
2501 	info.si_code	= BUS_MCEERR_AR;
2502 	info.si_addr	= (void __user *)address;
2503 	info.si_addr_lsb = PAGE_SHIFT;
2504 
2505 	send_sig_info(SIGBUS, &info, tsk);
2506 }
2507 
kvm_handle_bad_page(struct kvm_vcpu * vcpu,gfn_t gfn,pfn_t pfn)2508 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2509 {
2510 	kvm_release_pfn_clean(pfn);
2511 	if (is_hwpoison_pfn(pfn)) {
2512 		kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2513 		return 0;
2514 	}
2515 
2516 	return -EFAULT;
2517 }
2518 
transparent_hugepage_adjust(struct kvm_vcpu * vcpu,gfn_t * gfnp,pfn_t * pfnp,int * levelp)2519 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2520 					gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2521 {
2522 	pfn_t pfn = *pfnp;
2523 	gfn_t gfn = *gfnp;
2524 	int level = *levelp;
2525 
2526 	/*
2527 	 * Check if it's a transparent hugepage. If this would be an
2528 	 * hugetlbfs page, level wouldn't be set to
2529 	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2530 	 * here.
2531 	 */
2532 	if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2533 	    level == PT_PAGE_TABLE_LEVEL &&
2534 	    PageTransCompound(pfn_to_page(pfn)) &&
2535 	    !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2536 		unsigned long mask;
2537 		/*
2538 		 * mmu_notifier_retry was successful and we hold the
2539 		 * mmu_lock here, so the pmd can't become splitting
2540 		 * from under us, and in turn
2541 		 * __split_huge_page_refcount() can't run from under
2542 		 * us and we can safely transfer the refcount from
2543 		 * PG_tail to PG_head as we switch the pfn to tail to
2544 		 * head.
2545 		 */
2546 		*levelp = level = PT_DIRECTORY_LEVEL;
2547 		mask = KVM_PAGES_PER_HPAGE(level) - 1;
2548 		VM_BUG_ON((gfn & mask) != (pfn & mask));
2549 		if (pfn & mask) {
2550 			gfn &= ~mask;
2551 			*gfnp = gfn;
2552 			kvm_release_pfn_clean(pfn);
2553 			pfn &= ~mask;
2554 			if (!get_page_unless_zero(pfn_to_page(pfn)))
2555 				BUG();
2556 			*pfnp = pfn;
2557 		}
2558 	}
2559 }
2560 
mmu_invalid_pfn(pfn_t pfn)2561 static bool mmu_invalid_pfn(pfn_t pfn)
2562 {
2563 	return unlikely(is_invalid_pfn(pfn));
2564 }
2565 
handle_abnormal_pfn(struct kvm_vcpu * vcpu,gva_t gva,gfn_t gfn,pfn_t pfn,unsigned access,int * ret_val)2566 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2567 				pfn_t pfn, unsigned access, int *ret_val)
2568 {
2569 	bool ret = true;
2570 
2571 	/* The pfn is invalid, report the error! */
2572 	if (unlikely(is_invalid_pfn(pfn))) {
2573 		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2574 		goto exit;
2575 	}
2576 
2577 	if (unlikely(is_noslot_pfn(pfn)))
2578 		vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2579 
2580 	ret = false;
2581 exit:
2582 	return ret;
2583 }
2584 
2585 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2586 			 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2587 
nonpaging_map(struct kvm_vcpu * vcpu,gva_t v,int write,gfn_t gfn,bool prefault)2588 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
2589 			 bool prefault)
2590 {
2591 	int r;
2592 	int level;
2593 	int force_pt_level;
2594 	pfn_t pfn;
2595 	unsigned long mmu_seq;
2596 	bool map_writable;
2597 
2598 	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2599 	if (likely(!force_pt_level)) {
2600 		level = mapping_level(vcpu, gfn);
2601 		/*
2602 		 * This path builds a PAE pagetable - so we can map
2603 		 * 2mb pages at maximum. Therefore check if the level
2604 		 * is larger than that.
2605 		 */
2606 		if (level > PT_DIRECTORY_LEVEL)
2607 			level = PT_DIRECTORY_LEVEL;
2608 
2609 		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2610 	} else
2611 		level = PT_PAGE_TABLE_LEVEL;
2612 
2613 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
2614 	smp_rmb();
2615 
2616 	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2617 		return 0;
2618 
2619 	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2620 		return r;
2621 
2622 	spin_lock(&vcpu->kvm->mmu_lock);
2623 	if (mmu_notifier_retry(vcpu, mmu_seq))
2624 		goto out_unlock;
2625 	kvm_mmu_free_some_pages(vcpu);
2626 	if (likely(!force_pt_level))
2627 		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2628 	r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2629 			 prefault);
2630 	spin_unlock(&vcpu->kvm->mmu_lock);
2631 
2632 
2633 	return r;
2634 
2635 out_unlock:
2636 	spin_unlock(&vcpu->kvm->mmu_lock);
2637 	kvm_release_pfn_clean(pfn);
2638 	return 0;
2639 }
2640 
2641 
mmu_free_roots(struct kvm_vcpu * vcpu)2642 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2643 {
2644 	int i;
2645 	struct kvm_mmu_page *sp;
2646 	LIST_HEAD(invalid_list);
2647 
2648 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2649 		return;
2650 	spin_lock(&vcpu->kvm->mmu_lock);
2651 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2652 	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2653 	     vcpu->arch.mmu.direct_map)) {
2654 		hpa_t root = vcpu->arch.mmu.root_hpa;
2655 
2656 		sp = page_header(root);
2657 		--sp->root_count;
2658 		if (!sp->root_count && sp->role.invalid) {
2659 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2660 			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2661 		}
2662 		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2663 		spin_unlock(&vcpu->kvm->mmu_lock);
2664 		return;
2665 	}
2666 	for (i = 0; i < 4; ++i) {
2667 		hpa_t root = vcpu->arch.mmu.pae_root[i];
2668 
2669 		if (root) {
2670 			root &= PT64_BASE_ADDR_MASK;
2671 			sp = page_header(root);
2672 			--sp->root_count;
2673 			if (!sp->root_count && sp->role.invalid)
2674 				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2675 							 &invalid_list);
2676 		}
2677 		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2678 	}
2679 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2680 	spin_unlock(&vcpu->kvm->mmu_lock);
2681 	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2682 }
2683 
mmu_check_root(struct kvm_vcpu * vcpu,gfn_t root_gfn)2684 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2685 {
2686 	int ret = 0;
2687 
2688 	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2689 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2690 		ret = 1;
2691 	}
2692 
2693 	return ret;
2694 }
2695 
mmu_alloc_direct_roots(struct kvm_vcpu * vcpu)2696 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2697 {
2698 	struct kvm_mmu_page *sp;
2699 	unsigned i;
2700 
2701 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2702 		spin_lock(&vcpu->kvm->mmu_lock);
2703 		kvm_mmu_free_some_pages(vcpu);
2704 		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2705 				      1, ACC_ALL, NULL);
2706 		++sp->root_count;
2707 		spin_unlock(&vcpu->kvm->mmu_lock);
2708 		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2709 	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2710 		for (i = 0; i < 4; ++i) {
2711 			hpa_t root = vcpu->arch.mmu.pae_root[i];
2712 
2713 			ASSERT(!VALID_PAGE(root));
2714 			spin_lock(&vcpu->kvm->mmu_lock);
2715 			kvm_mmu_free_some_pages(vcpu);
2716 			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2717 					      i << 30,
2718 					      PT32_ROOT_LEVEL, 1, ACC_ALL,
2719 					      NULL);
2720 			root = __pa(sp->spt);
2721 			++sp->root_count;
2722 			spin_unlock(&vcpu->kvm->mmu_lock);
2723 			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2724 		}
2725 		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2726 	} else
2727 		BUG();
2728 
2729 	return 0;
2730 }
2731 
mmu_alloc_shadow_roots(struct kvm_vcpu * vcpu)2732 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2733 {
2734 	struct kvm_mmu_page *sp;
2735 	u64 pdptr, pm_mask;
2736 	gfn_t root_gfn;
2737 	int i;
2738 
2739 	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2740 
2741 	if (mmu_check_root(vcpu, root_gfn))
2742 		return 1;
2743 
2744 	/*
2745 	 * Do we shadow a long mode page table? If so we need to
2746 	 * write-protect the guests page table root.
2747 	 */
2748 	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2749 		hpa_t root = vcpu->arch.mmu.root_hpa;
2750 
2751 		ASSERT(!VALID_PAGE(root));
2752 
2753 		spin_lock(&vcpu->kvm->mmu_lock);
2754 		kvm_mmu_free_some_pages(vcpu);
2755 		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2756 				      0, ACC_ALL, NULL);
2757 		root = __pa(sp->spt);
2758 		++sp->root_count;
2759 		spin_unlock(&vcpu->kvm->mmu_lock);
2760 		vcpu->arch.mmu.root_hpa = root;
2761 		return 0;
2762 	}
2763 
2764 	/*
2765 	 * We shadow a 32 bit page table. This may be a legacy 2-level
2766 	 * or a PAE 3-level page table. In either case we need to be aware that
2767 	 * the shadow page table may be a PAE or a long mode page table.
2768 	 */
2769 	pm_mask = PT_PRESENT_MASK;
2770 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2771 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2772 
2773 	for (i = 0; i < 4; ++i) {
2774 		hpa_t root = vcpu->arch.mmu.pae_root[i];
2775 
2776 		ASSERT(!VALID_PAGE(root));
2777 		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2778 			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
2779 			if (!is_present_gpte(pdptr)) {
2780 				vcpu->arch.mmu.pae_root[i] = 0;
2781 				continue;
2782 			}
2783 			root_gfn = pdptr >> PAGE_SHIFT;
2784 			if (mmu_check_root(vcpu, root_gfn))
2785 				return 1;
2786 		}
2787 		spin_lock(&vcpu->kvm->mmu_lock);
2788 		kvm_mmu_free_some_pages(vcpu);
2789 		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2790 				      PT32_ROOT_LEVEL, 0,
2791 				      ACC_ALL, NULL);
2792 		root = __pa(sp->spt);
2793 		++sp->root_count;
2794 		spin_unlock(&vcpu->kvm->mmu_lock);
2795 
2796 		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
2797 	}
2798 	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2799 
2800 	/*
2801 	 * If we shadow a 32 bit page table with a long mode page
2802 	 * table we enter this path.
2803 	 */
2804 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2805 		if (vcpu->arch.mmu.lm_root == NULL) {
2806 			/*
2807 			 * The additional page necessary for this is only
2808 			 * allocated on demand.
2809 			 */
2810 
2811 			u64 *lm_root;
2812 
2813 			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2814 			if (lm_root == NULL)
2815 				return 1;
2816 
2817 			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2818 
2819 			vcpu->arch.mmu.lm_root = lm_root;
2820 		}
2821 
2822 		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2823 	}
2824 
2825 	return 0;
2826 }
2827 
mmu_alloc_roots(struct kvm_vcpu * vcpu)2828 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2829 {
2830 	if (vcpu->arch.mmu.direct_map)
2831 		return mmu_alloc_direct_roots(vcpu);
2832 	else
2833 		return mmu_alloc_shadow_roots(vcpu);
2834 }
2835 
mmu_sync_roots(struct kvm_vcpu * vcpu)2836 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2837 {
2838 	int i;
2839 	struct kvm_mmu_page *sp;
2840 
2841 	if (vcpu->arch.mmu.direct_map)
2842 		return;
2843 
2844 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2845 		return;
2846 
2847 	vcpu_clear_mmio_info(vcpu, ~0ul);
2848 	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
2849 	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2850 		hpa_t root = vcpu->arch.mmu.root_hpa;
2851 		sp = page_header(root);
2852 		mmu_sync_children(vcpu, sp);
2853 		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2854 		return;
2855 	}
2856 	for (i = 0; i < 4; ++i) {
2857 		hpa_t root = vcpu->arch.mmu.pae_root[i];
2858 
2859 		if (root && VALID_PAGE(root)) {
2860 			root &= PT64_BASE_ADDR_MASK;
2861 			sp = page_header(root);
2862 			mmu_sync_children(vcpu, sp);
2863 		}
2864 	}
2865 	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2866 }
2867 
kvm_mmu_sync_roots(struct kvm_vcpu * vcpu)2868 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2869 {
2870 	spin_lock(&vcpu->kvm->mmu_lock);
2871 	mmu_sync_roots(vcpu);
2872 	spin_unlock(&vcpu->kvm->mmu_lock);
2873 }
2874 
nonpaging_gva_to_gpa(struct kvm_vcpu * vcpu,gva_t vaddr,u32 access,struct x86_exception * exception)2875 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2876 				  u32 access, struct x86_exception *exception)
2877 {
2878 	if (exception)
2879 		exception->error_code = 0;
2880 	return vaddr;
2881 }
2882 
nonpaging_gva_to_gpa_nested(struct kvm_vcpu * vcpu,gva_t vaddr,u32 access,struct x86_exception * exception)2883 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
2884 					 u32 access,
2885 					 struct x86_exception *exception)
2886 {
2887 	if (exception)
2888 		exception->error_code = 0;
2889 	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2890 }
2891 
quickly_check_mmio_pf(struct kvm_vcpu * vcpu,u64 addr,bool direct)2892 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2893 {
2894 	if (direct)
2895 		return vcpu_match_mmio_gpa(vcpu, addr);
2896 
2897 	return vcpu_match_mmio_gva(vcpu, addr);
2898 }
2899 
2900 
2901 /*
2902  * On direct hosts, the last spte is only allows two states
2903  * for mmio page fault:
2904  *   - It is the mmio spte
2905  *   - It is zapped or it is being zapped.
2906  *
2907  * This function completely checks the spte when the last spte
2908  * is not the mmio spte.
2909  */
check_direct_spte_mmio_pf(u64 spte)2910 static bool check_direct_spte_mmio_pf(u64 spte)
2911 {
2912 	return __check_direct_spte_mmio_pf(spte);
2913 }
2914 
walk_shadow_page_get_mmio_spte(struct kvm_vcpu * vcpu,u64 addr)2915 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
2916 {
2917 	struct kvm_shadow_walk_iterator iterator;
2918 	u64 spte = 0ull;
2919 
2920 	walk_shadow_page_lockless_begin(vcpu);
2921 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
2922 		if (!is_shadow_present_pte(spte))
2923 			break;
2924 	walk_shadow_page_lockless_end(vcpu);
2925 
2926 	return spte;
2927 }
2928 
2929 /*
2930  * If it is a real mmio page fault, return 1 and emulat the instruction
2931  * directly, return 0 to let CPU fault again on the address, -1 is
2932  * returned if bug is detected.
2933  */
handle_mmio_page_fault_common(struct kvm_vcpu * vcpu,u64 addr,bool direct)2934 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2935 {
2936 	u64 spte;
2937 
2938 	if (quickly_check_mmio_pf(vcpu, addr, direct))
2939 		return 1;
2940 
2941 	spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
2942 
2943 	if (is_mmio_spte(spte)) {
2944 		gfn_t gfn = get_mmio_spte_gfn(spte);
2945 		unsigned access = get_mmio_spte_access(spte);
2946 
2947 		if (direct)
2948 			addr = 0;
2949 
2950 		trace_handle_mmio_page_fault(addr, gfn, access);
2951 		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
2952 		return 1;
2953 	}
2954 
2955 	/*
2956 	 * It's ok if the gva is remapped by other cpus on shadow guest,
2957 	 * it's a BUG if the gfn is not a mmio page.
2958 	 */
2959 	if (direct && !check_direct_spte_mmio_pf(spte))
2960 		return -1;
2961 
2962 	/*
2963 	 * If the page table is zapped by other cpus, let CPU fault again on
2964 	 * the address.
2965 	 */
2966 	return 0;
2967 }
2968 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
2969 
handle_mmio_page_fault(struct kvm_vcpu * vcpu,u64 addr,u32 error_code,bool direct)2970 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
2971 				  u32 error_code, bool direct)
2972 {
2973 	int ret;
2974 
2975 	ret = handle_mmio_page_fault_common(vcpu, addr, direct);
2976 	WARN_ON(ret < 0);
2977 	return ret;
2978 }
2979 
nonpaging_page_fault(struct kvm_vcpu * vcpu,gva_t gva,u32 error_code,bool prefault)2980 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2981 				u32 error_code, bool prefault)
2982 {
2983 	gfn_t gfn;
2984 	int r;
2985 
2986 	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2987 
2988 	if (unlikely(error_code & PFERR_RSVD_MASK))
2989 		return handle_mmio_page_fault(vcpu, gva, error_code, true);
2990 
2991 	r = mmu_topup_memory_caches(vcpu);
2992 	if (r)
2993 		return r;
2994 
2995 	ASSERT(vcpu);
2996 	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2997 
2998 	gfn = gva >> PAGE_SHIFT;
2999 
3000 	return nonpaging_map(vcpu, gva & PAGE_MASK,
3001 			     error_code & PFERR_WRITE_MASK, gfn, prefault);
3002 }
3003 
kvm_arch_setup_async_pf(struct kvm_vcpu * vcpu,gva_t gva,gfn_t gfn)3004 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3005 {
3006 	struct kvm_arch_async_pf arch;
3007 
3008 	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3009 	arch.gfn = gfn;
3010 	arch.direct_map = vcpu->arch.mmu.direct_map;
3011 	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3012 
3013 	return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3014 }
3015 
can_do_async_pf(struct kvm_vcpu * vcpu)3016 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3017 {
3018 	if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3019 		     kvm_event_needs_reinjection(vcpu)))
3020 		return false;
3021 
3022 	return kvm_x86_ops->interrupt_allowed(vcpu);
3023 }
3024 
try_async_pf(struct kvm_vcpu * vcpu,bool prefault,gfn_t gfn,gva_t gva,pfn_t * pfn,bool write,bool * writable)3025 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3026 			 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3027 {
3028 	bool async;
3029 
3030 	*pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3031 
3032 	if (!async)
3033 		return false; /* *pfn has correct page already */
3034 
3035 	put_page(pfn_to_page(*pfn));
3036 
3037 	if (!prefault && can_do_async_pf(vcpu)) {
3038 		trace_kvm_try_async_get_page(gva, gfn);
3039 		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3040 			trace_kvm_async_pf_doublefault(gva, gfn);
3041 			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3042 			return true;
3043 		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3044 			return true;
3045 	}
3046 
3047 	*pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3048 
3049 	return false;
3050 }
3051 
tdp_page_fault(struct kvm_vcpu * vcpu,gva_t gpa,u32 error_code,bool prefault)3052 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3053 			  bool prefault)
3054 {
3055 	pfn_t pfn;
3056 	int r;
3057 	int level;
3058 	int force_pt_level;
3059 	gfn_t gfn = gpa >> PAGE_SHIFT;
3060 	unsigned long mmu_seq;
3061 	int write = error_code & PFERR_WRITE_MASK;
3062 	bool map_writable;
3063 
3064 	ASSERT(vcpu);
3065 	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3066 
3067 	if (unlikely(error_code & PFERR_RSVD_MASK))
3068 		return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3069 
3070 	r = mmu_topup_memory_caches(vcpu);
3071 	if (r)
3072 		return r;
3073 
3074 	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3075 	if (likely(!force_pt_level)) {
3076 		level = mapping_level(vcpu, gfn);
3077 		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3078 	} else
3079 		level = PT_PAGE_TABLE_LEVEL;
3080 
3081 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3082 	smp_rmb();
3083 
3084 	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3085 		return 0;
3086 
3087 	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3088 		return r;
3089 
3090 	spin_lock(&vcpu->kvm->mmu_lock);
3091 	if (mmu_notifier_retry(vcpu, mmu_seq))
3092 		goto out_unlock;
3093 	kvm_mmu_free_some_pages(vcpu);
3094 	if (likely(!force_pt_level))
3095 		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3096 	r = __direct_map(vcpu, gpa, write, map_writable,
3097 			 level, gfn, pfn, prefault);
3098 	spin_unlock(&vcpu->kvm->mmu_lock);
3099 
3100 	return r;
3101 
3102 out_unlock:
3103 	spin_unlock(&vcpu->kvm->mmu_lock);
3104 	kvm_release_pfn_clean(pfn);
3105 	return 0;
3106 }
3107 
nonpaging_free(struct kvm_vcpu * vcpu)3108 static void nonpaging_free(struct kvm_vcpu *vcpu)
3109 {
3110 	mmu_free_roots(vcpu);
3111 }
3112 
nonpaging_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3113 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3114 				  struct kvm_mmu *context)
3115 {
3116 	context->new_cr3 = nonpaging_new_cr3;
3117 	context->page_fault = nonpaging_page_fault;
3118 	context->gva_to_gpa = nonpaging_gva_to_gpa;
3119 	context->free = nonpaging_free;
3120 	context->sync_page = nonpaging_sync_page;
3121 	context->invlpg = nonpaging_invlpg;
3122 	context->update_pte = nonpaging_update_pte;
3123 	context->root_level = 0;
3124 	context->shadow_root_level = PT32E_ROOT_LEVEL;
3125 	context->root_hpa = INVALID_PAGE;
3126 	context->direct_map = true;
3127 	context->nx = false;
3128 	return 0;
3129 }
3130 
kvm_mmu_flush_tlb(struct kvm_vcpu * vcpu)3131 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3132 {
3133 	++vcpu->stat.tlb_flush;
3134 	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3135 }
3136 
paging_new_cr3(struct kvm_vcpu * vcpu)3137 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3138 {
3139 	pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3140 	mmu_free_roots(vcpu);
3141 }
3142 
get_cr3(struct kvm_vcpu * vcpu)3143 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3144 {
3145 	return kvm_read_cr3(vcpu);
3146 }
3147 
inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)3148 static void inject_page_fault(struct kvm_vcpu *vcpu,
3149 			      struct x86_exception *fault)
3150 {
3151 	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3152 }
3153 
paging_free(struct kvm_vcpu * vcpu)3154 static void paging_free(struct kvm_vcpu *vcpu)
3155 {
3156 	nonpaging_free(vcpu);
3157 }
3158 
is_rsvd_bits_set(struct kvm_mmu * mmu,u64 gpte,int level)3159 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3160 {
3161 	int bit7;
3162 
3163 	bit7 = (gpte >> 7) & 1;
3164 	return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
3165 }
3166 
sync_mmio_spte(u64 * sptep,gfn_t gfn,unsigned access,int * nr_present)3167 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3168 			   int *nr_present)
3169 {
3170 	if (unlikely(is_mmio_spte(*sptep))) {
3171 		if (gfn != get_mmio_spte_gfn(*sptep)) {
3172 			mmu_spte_clear_no_track(sptep);
3173 			return true;
3174 		}
3175 
3176 		(*nr_present)++;
3177 		mark_mmio_spte(sptep, gfn, access);
3178 		return true;
3179 	}
3180 
3181 	return false;
3182 }
3183 
3184 #define PTTYPE 64
3185 #include "paging_tmpl.h"
3186 #undef PTTYPE
3187 
3188 #define PTTYPE 32
3189 #include "paging_tmpl.h"
3190 #undef PTTYPE
3191 
reset_rsvds_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context,int level)3192 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3193 				  struct kvm_mmu *context,
3194 				  int level)
3195 {
3196 	int maxphyaddr = cpuid_maxphyaddr(vcpu);
3197 	u64 exb_bit_rsvd = 0;
3198 
3199 	if (!context->nx)
3200 		exb_bit_rsvd = rsvd_bits(63, 63);
3201 	switch (level) {
3202 	case PT32_ROOT_LEVEL:
3203 		/* no rsvd bits for 2 level 4K page table entries */
3204 		context->rsvd_bits_mask[0][1] = 0;
3205 		context->rsvd_bits_mask[0][0] = 0;
3206 		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3207 
3208 		if (!is_pse(vcpu)) {
3209 			context->rsvd_bits_mask[1][1] = 0;
3210 			break;
3211 		}
3212 
3213 		if (is_cpuid_PSE36())
3214 			/* 36bits PSE 4MB page */
3215 			context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3216 		else
3217 			/* 32 bits PSE 4MB page */
3218 			context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3219 		break;
3220 	case PT32E_ROOT_LEVEL:
3221 		context->rsvd_bits_mask[0][2] =
3222 			rsvd_bits(maxphyaddr, 63) |
3223 			rsvd_bits(7, 8) | rsvd_bits(1, 2);	/* PDPTE */
3224 		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3225 			rsvd_bits(maxphyaddr, 62);	/* PDE */
3226 		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3227 			rsvd_bits(maxphyaddr, 62); 	/* PTE */
3228 		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3229 			rsvd_bits(maxphyaddr, 62) |
3230 			rsvd_bits(13, 20);		/* large page */
3231 		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3232 		break;
3233 	case PT64_ROOT_LEVEL:
3234 		context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3235 			rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3236 		context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3237 			rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3238 		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3239 			rsvd_bits(maxphyaddr, 51);
3240 		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3241 			rsvd_bits(maxphyaddr, 51);
3242 		context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3243 		context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3244 			rsvd_bits(maxphyaddr, 51) |
3245 			rsvd_bits(13, 29);
3246 		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3247 			rsvd_bits(maxphyaddr, 51) |
3248 			rsvd_bits(13, 20);		/* large page */
3249 		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3250 		break;
3251 	}
3252 }
3253 
paging64_init_context_common(struct kvm_vcpu * vcpu,struct kvm_mmu * context,int level)3254 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3255 					struct kvm_mmu *context,
3256 					int level)
3257 {
3258 	context->nx = is_nx(vcpu);
3259 
3260 	reset_rsvds_bits_mask(vcpu, context, level);
3261 
3262 	ASSERT(is_pae(vcpu));
3263 	context->new_cr3 = paging_new_cr3;
3264 	context->page_fault = paging64_page_fault;
3265 	context->gva_to_gpa = paging64_gva_to_gpa;
3266 	context->sync_page = paging64_sync_page;
3267 	context->invlpg = paging64_invlpg;
3268 	context->update_pte = paging64_update_pte;
3269 	context->free = paging_free;
3270 	context->root_level = level;
3271 	context->shadow_root_level = level;
3272 	context->root_hpa = INVALID_PAGE;
3273 	context->direct_map = false;
3274 	return 0;
3275 }
3276 
paging64_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3277 static int paging64_init_context(struct kvm_vcpu *vcpu,
3278 				 struct kvm_mmu *context)
3279 {
3280 	return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3281 }
3282 
paging32_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3283 static int paging32_init_context(struct kvm_vcpu *vcpu,
3284 				 struct kvm_mmu *context)
3285 {
3286 	context->nx = false;
3287 
3288 	reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
3289 
3290 	context->new_cr3 = paging_new_cr3;
3291 	context->page_fault = paging32_page_fault;
3292 	context->gva_to_gpa = paging32_gva_to_gpa;
3293 	context->free = paging_free;
3294 	context->sync_page = paging32_sync_page;
3295 	context->invlpg = paging32_invlpg;
3296 	context->update_pte = paging32_update_pte;
3297 	context->root_level = PT32_ROOT_LEVEL;
3298 	context->shadow_root_level = PT32E_ROOT_LEVEL;
3299 	context->root_hpa = INVALID_PAGE;
3300 	context->direct_map = false;
3301 	return 0;
3302 }
3303 
paging32E_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3304 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3305 				  struct kvm_mmu *context)
3306 {
3307 	return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3308 }
3309 
init_kvm_tdp_mmu(struct kvm_vcpu * vcpu)3310 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3311 {
3312 	struct kvm_mmu *context = vcpu->arch.walk_mmu;
3313 
3314 	context->base_role.word = 0;
3315 	context->new_cr3 = nonpaging_new_cr3;
3316 	context->page_fault = tdp_page_fault;
3317 	context->free = nonpaging_free;
3318 	context->sync_page = nonpaging_sync_page;
3319 	context->invlpg = nonpaging_invlpg;
3320 	context->update_pte = nonpaging_update_pte;
3321 	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3322 	context->root_hpa = INVALID_PAGE;
3323 	context->direct_map = true;
3324 	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3325 	context->get_cr3 = get_cr3;
3326 	context->get_pdptr = kvm_pdptr_read;
3327 	context->inject_page_fault = kvm_inject_page_fault;
3328 	context->nx = is_nx(vcpu);
3329 
3330 	if (!is_paging(vcpu)) {
3331 		context->nx = false;
3332 		context->gva_to_gpa = nonpaging_gva_to_gpa;
3333 		context->root_level = 0;
3334 	} else if (is_long_mode(vcpu)) {
3335 		context->nx = is_nx(vcpu);
3336 		reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
3337 		context->gva_to_gpa = paging64_gva_to_gpa;
3338 		context->root_level = PT64_ROOT_LEVEL;
3339 	} else if (is_pae(vcpu)) {
3340 		context->nx = is_nx(vcpu);
3341 		reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
3342 		context->gva_to_gpa = paging64_gva_to_gpa;
3343 		context->root_level = PT32E_ROOT_LEVEL;
3344 	} else {
3345 		context->nx = false;
3346 		reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
3347 		context->gva_to_gpa = paging32_gva_to_gpa;
3348 		context->root_level = PT32_ROOT_LEVEL;
3349 	}
3350 
3351 	return 0;
3352 }
3353 
kvm_init_shadow_mmu(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3354 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3355 {
3356 	int r;
3357 	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3358 	ASSERT(vcpu);
3359 	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3360 
3361 	if (!is_paging(vcpu))
3362 		r = nonpaging_init_context(vcpu, context);
3363 	else if (is_long_mode(vcpu))
3364 		r = paging64_init_context(vcpu, context);
3365 	else if (is_pae(vcpu))
3366 		r = paging32E_init_context(vcpu, context);
3367 	else
3368 		r = paging32_init_context(vcpu, context);
3369 
3370 	vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3371 	vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3372 	vcpu->arch.mmu.base_role.smep_andnot_wp
3373 		= smep && !is_write_protection(vcpu);
3374 
3375 	return r;
3376 }
3377 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3378 
init_kvm_softmmu(struct kvm_vcpu * vcpu)3379 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3380 {
3381 	int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3382 
3383 	vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
3384 	vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3385 	vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3386 	vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3387 
3388 	return r;
3389 }
3390 
init_kvm_nested_mmu(struct kvm_vcpu * vcpu)3391 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3392 {
3393 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3394 
3395 	g_context->get_cr3           = get_cr3;
3396 	g_context->get_pdptr         = kvm_pdptr_read;
3397 	g_context->inject_page_fault = kvm_inject_page_fault;
3398 
3399 	/*
3400 	 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3401 	 * translation of l2_gpa to l1_gpa addresses is done using the
3402 	 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3403 	 * functions between mmu and nested_mmu are swapped.
3404 	 */
3405 	if (!is_paging(vcpu)) {
3406 		g_context->nx = false;
3407 		g_context->root_level = 0;
3408 		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3409 	} else if (is_long_mode(vcpu)) {
3410 		g_context->nx = is_nx(vcpu);
3411 		reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
3412 		g_context->root_level = PT64_ROOT_LEVEL;
3413 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3414 	} else if (is_pae(vcpu)) {
3415 		g_context->nx = is_nx(vcpu);
3416 		reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
3417 		g_context->root_level = PT32E_ROOT_LEVEL;
3418 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3419 	} else {
3420 		g_context->nx = false;
3421 		reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
3422 		g_context->root_level = PT32_ROOT_LEVEL;
3423 		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3424 	}
3425 
3426 	return 0;
3427 }
3428 
init_kvm_mmu(struct kvm_vcpu * vcpu)3429 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3430 {
3431 	if (mmu_is_nested(vcpu))
3432 		return init_kvm_nested_mmu(vcpu);
3433 	else if (tdp_enabled)
3434 		return init_kvm_tdp_mmu(vcpu);
3435 	else
3436 		return init_kvm_softmmu(vcpu);
3437 }
3438 
destroy_kvm_mmu(struct kvm_vcpu * vcpu)3439 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3440 {
3441 	ASSERT(vcpu);
3442 	if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3443 		/* mmu.free() should set root_hpa = INVALID_PAGE */
3444 		vcpu->arch.mmu.free(vcpu);
3445 }
3446 
kvm_mmu_reset_context(struct kvm_vcpu * vcpu)3447 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3448 {
3449 	destroy_kvm_mmu(vcpu);
3450 	return init_kvm_mmu(vcpu);
3451 }
3452 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3453 
kvm_mmu_load(struct kvm_vcpu * vcpu)3454 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3455 {
3456 	int r;
3457 
3458 	r = mmu_topup_memory_caches(vcpu);
3459 	if (r)
3460 		goto out;
3461 	r = mmu_alloc_roots(vcpu);
3462 	spin_lock(&vcpu->kvm->mmu_lock);
3463 	mmu_sync_roots(vcpu);
3464 	spin_unlock(&vcpu->kvm->mmu_lock);
3465 	if (r)
3466 		goto out;
3467 	/* set_cr3() should ensure TLB has been flushed */
3468 	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3469 out:
3470 	return r;
3471 }
3472 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3473 
kvm_mmu_unload(struct kvm_vcpu * vcpu)3474 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3475 {
3476 	mmu_free_roots(vcpu);
3477 }
3478 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3479 
mmu_pte_write_new_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * spte,const void * new)3480 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3481 				  struct kvm_mmu_page *sp, u64 *spte,
3482 				  const void *new)
3483 {
3484 	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3485 		++vcpu->kvm->stat.mmu_pde_zapped;
3486 		return;
3487         }
3488 
3489 	++vcpu->kvm->stat.mmu_pte_updated;
3490 	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3491 }
3492 
need_remote_flush(u64 old,u64 new)3493 static bool need_remote_flush(u64 old, u64 new)
3494 {
3495 	if (!is_shadow_present_pte(old))
3496 		return false;
3497 	if (!is_shadow_present_pte(new))
3498 		return true;
3499 	if ((old ^ new) & PT64_BASE_ADDR_MASK)
3500 		return true;
3501 	old ^= PT64_NX_MASK;
3502 	new ^= PT64_NX_MASK;
3503 	return (old & ~new & PT64_PERM_MASK) != 0;
3504 }
3505 
mmu_pte_write_flush_tlb(struct kvm_vcpu * vcpu,bool zap_page,bool remote_flush,bool local_flush)3506 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3507 				    bool remote_flush, bool local_flush)
3508 {
3509 	if (zap_page)
3510 		return;
3511 
3512 	if (remote_flush)
3513 		kvm_flush_remote_tlbs(vcpu->kvm);
3514 	else if (local_flush)
3515 		kvm_mmu_flush_tlb(vcpu);
3516 }
3517 
mmu_pte_write_fetch_gpte(struct kvm_vcpu * vcpu,gpa_t * gpa,const u8 * new,int * bytes)3518 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3519 				    const u8 *new, int *bytes)
3520 {
3521 	u64 gentry;
3522 	int r;
3523 
3524 	/*
3525 	 * Assume that the pte write on a page table of the same type
3526 	 * as the current vcpu paging mode since we update the sptes only
3527 	 * when they have the same mode.
3528 	 */
3529 	if (is_pae(vcpu) && *bytes == 4) {
3530 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3531 		*gpa &= ~(gpa_t)7;
3532 		*bytes = 8;
3533 		r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
3534 		if (r)
3535 			gentry = 0;
3536 		new = (const u8 *)&gentry;
3537 	}
3538 
3539 	switch (*bytes) {
3540 	case 4:
3541 		gentry = *(const u32 *)new;
3542 		break;
3543 	case 8:
3544 		gentry = *(const u64 *)new;
3545 		break;
3546 	default:
3547 		gentry = 0;
3548 		break;
3549 	}
3550 
3551 	return gentry;
3552 }
3553 
3554 /*
3555  * If we're seeing too many writes to a page, it may no longer be a page table,
3556  * or we may be forking, in which case it is better to unmap the page.
3557  */
detect_write_flooding(struct kvm_mmu_page * sp,u64 * spte)3558 static bool detect_write_flooding(struct kvm_mmu_page *sp, u64 *spte)
3559 {
3560 	/*
3561 	 * Skip write-flooding detected for the sp whose level is 1, because
3562 	 * it can become unsync, then the guest page is not write-protected.
3563 	 */
3564 	if (sp->role.level == 1)
3565 		return false;
3566 
3567 	return ++sp->write_flooding_count >= 3;
3568 }
3569 
3570 /*
3571  * Misaligned accesses are too much trouble to fix up; also, they usually
3572  * indicate a page is not used as a page table.
3573  */
detect_write_misaligned(struct kvm_mmu_page * sp,gpa_t gpa,int bytes)3574 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3575 				    int bytes)
3576 {
3577 	unsigned offset, pte_size, misaligned;
3578 
3579 	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3580 		 gpa, bytes, sp->role.word);
3581 
3582 	offset = offset_in_page(gpa);
3583 	pte_size = sp->role.cr4_pae ? 8 : 4;
3584 
3585 	/*
3586 	 * Sometimes, the OS only writes the last one bytes to update status
3587 	 * bits, for example, in linux, andb instruction is used in clear_bit().
3588 	 */
3589 	if (!(offset & (pte_size - 1)) && bytes == 1)
3590 		return false;
3591 
3592 	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3593 	misaligned |= bytes < 4;
3594 
3595 	return misaligned;
3596 }
3597 
get_written_sptes(struct kvm_mmu_page * sp,gpa_t gpa,int * nspte)3598 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3599 {
3600 	unsigned page_offset, quadrant;
3601 	u64 *spte;
3602 	int level;
3603 
3604 	page_offset = offset_in_page(gpa);
3605 	level = sp->role.level;
3606 	*nspte = 1;
3607 	if (!sp->role.cr4_pae) {
3608 		page_offset <<= 1;	/* 32->64 */
3609 		/*
3610 		 * A 32-bit pde maps 4MB while the shadow pdes map
3611 		 * only 2MB.  So we need to double the offset again
3612 		 * and zap two pdes instead of one.
3613 		 */
3614 		if (level == PT32_ROOT_LEVEL) {
3615 			page_offset &= ~7; /* kill rounding error */
3616 			page_offset <<= 1;
3617 			*nspte = 2;
3618 		}
3619 		quadrant = page_offset >> PAGE_SHIFT;
3620 		page_offset &= ~PAGE_MASK;
3621 		if (quadrant != sp->role.quadrant)
3622 			return NULL;
3623 	}
3624 
3625 	spte = &sp->spt[page_offset / sizeof(*spte)];
3626 	return spte;
3627 }
3628 
kvm_mmu_pte_write(struct kvm_vcpu * vcpu,gpa_t gpa,const u8 * new,int bytes)3629 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3630 		       const u8 *new, int bytes)
3631 {
3632 	gfn_t gfn = gpa >> PAGE_SHIFT;
3633 	union kvm_mmu_page_role mask = { .word = 0 };
3634 	struct kvm_mmu_page *sp;
3635 	struct hlist_node *node;
3636 	LIST_HEAD(invalid_list);
3637 	u64 entry, gentry, *spte;
3638 	int npte;
3639 	bool remote_flush, local_flush, zap_page;
3640 
3641 	/*
3642 	 * If we don't have indirect shadow pages, it means no page is
3643 	 * write-protected, so we can exit simply.
3644 	 */
3645 	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3646 		return;
3647 
3648 	zap_page = remote_flush = local_flush = false;
3649 
3650 	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3651 
3652 	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3653 
3654 	/*
3655 	 * No need to care whether allocation memory is successful
3656 	 * or not since pte prefetch is skiped if it does not have
3657 	 * enough objects in the cache.
3658 	 */
3659 	mmu_topup_memory_caches(vcpu);
3660 
3661 	spin_lock(&vcpu->kvm->mmu_lock);
3662 	++vcpu->kvm->stat.mmu_pte_write;
3663 	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3664 
3665 	mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3666 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3667 		spte = get_written_sptes(sp, gpa, &npte);
3668 
3669 		if (detect_write_misaligned(sp, gpa, bytes) ||
3670 		      detect_write_flooding(sp, spte)) {
3671 			zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3672 						     &invalid_list);
3673 			++vcpu->kvm->stat.mmu_flooded;
3674 			continue;
3675 		}
3676 
3677 		spte = get_written_sptes(sp, gpa, &npte);
3678 		if (!spte)
3679 			continue;
3680 
3681 		local_flush = true;
3682 		while (npte--) {
3683 			entry = *spte;
3684 			mmu_page_zap_pte(vcpu->kvm, sp, spte);
3685 			if (gentry &&
3686 			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3687 			      & mask.word) && rmap_can_add(vcpu))
3688 				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3689 			if (!remote_flush && need_remote_flush(entry, *spte))
3690 				remote_flush = true;
3691 			++spte;
3692 		}
3693 	}
3694 	mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3695 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3696 	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3697 	spin_unlock(&vcpu->kvm->mmu_lock);
3698 }
3699 
kvm_mmu_unprotect_page_virt(struct kvm_vcpu * vcpu,gva_t gva)3700 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3701 {
3702 	gpa_t gpa;
3703 	int r;
3704 
3705 	if (vcpu->arch.mmu.direct_map)
3706 		return 0;
3707 
3708 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3709 
3710 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3711 
3712 	return r;
3713 }
3714 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3715 
__kvm_mmu_free_some_pages(struct kvm_vcpu * vcpu)3716 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3717 {
3718 	LIST_HEAD(invalid_list);
3719 
3720 	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3721 	       !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3722 		struct kvm_mmu_page *sp;
3723 
3724 		sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3725 				  struct kvm_mmu_page, link);
3726 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3727 		++vcpu->kvm->stat.mmu_recycled;
3728 	}
3729 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3730 }
3731 
is_mmio_page_fault(struct kvm_vcpu * vcpu,gva_t addr)3732 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3733 {
3734 	if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3735 		return vcpu_match_mmio_gpa(vcpu, addr);
3736 
3737 	return vcpu_match_mmio_gva(vcpu, addr);
3738 }
3739 
kvm_mmu_page_fault(struct kvm_vcpu * vcpu,gva_t cr2,u32 error_code,void * insn,int insn_len)3740 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3741 		       void *insn, int insn_len)
3742 {
3743 	int r, emulation_type = EMULTYPE_RETRY;
3744 	enum emulation_result er;
3745 
3746 	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3747 	if (r < 0)
3748 		goto out;
3749 
3750 	if (!r) {
3751 		r = 1;
3752 		goto out;
3753 	}
3754 
3755 	if (is_mmio_page_fault(vcpu, cr2))
3756 		emulation_type = 0;
3757 
3758 	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3759 
3760 	switch (er) {
3761 	case EMULATE_DONE:
3762 		return 1;
3763 	case EMULATE_DO_MMIO:
3764 		++vcpu->stat.mmio_exits;
3765 		/* fall through */
3766 	case EMULATE_FAIL:
3767 		return 0;
3768 	default:
3769 		BUG();
3770 	}
3771 out:
3772 	return r;
3773 }
3774 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3775 
kvm_mmu_invlpg(struct kvm_vcpu * vcpu,gva_t gva)3776 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3777 {
3778 	vcpu->arch.mmu.invlpg(vcpu, gva);
3779 	kvm_mmu_flush_tlb(vcpu);
3780 	++vcpu->stat.invlpg;
3781 }
3782 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3783 
kvm_enable_tdp(void)3784 void kvm_enable_tdp(void)
3785 {
3786 	tdp_enabled = true;
3787 }
3788 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3789 
kvm_disable_tdp(void)3790 void kvm_disable_tdp(void)
3791 {
3792 	tdp_enabled = false;
3793 }
3794 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3795 
free_mmu_pages(struct kvm_vcpu * vcpu)3796 static void free_mmu_pages(struct kvm_vcpu *vcpu)
3797 {
3798 	free_page((unsigned long)vcpu->arch.mmu.pae_root);
3799 	if (vcpu->arch.mmu.lm_root != NULL)
3800 		free_page((unsigned long)vcpu->arch.mmu.lm_root);
3801 }
3802 
alloc_mmu_pages(struct kvm_vcpu * vcpu)3803 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3804 {
3805 	struct page *page;
3806 	int i;
3807 
3808 	ASSERT(vcpu);
3809 
3810 	/*
3811 	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3812 	 * Therefore we need to allocate shadow page tables in the first
3813 	 * 4GB of memory, which happens to fit the DMA32 zone.
3814 	 */
3815 	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3816 	if (!page)
3817 		return -ENOMEM;
3818 
3819 	vcpu->arch.mmu.pae_root = page_address(page);
3820 	for (i = 0; i < 4; ++i)
3821 		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3822 
3823 	return 0;
3824 }
3825 
kvm_mmu_create(struct kvm_vcpu * vcpu)3826 int kvm_mmu_create(struct kvm_vcpu *vcpu)
3827 {
3828 	ASSERT(vcpu);
3829 
3830 	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
3831 	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3832 	vcpu->arch.mmu.translate_gpa = translate_gpa;
3833 	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
3834 
3835 	return alloc_mmu_pages(vcpu);
3836 }
3837 
kvm_mmu_setup(struct kvm_vcpu * vcpu)3838 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3839 {
3840 	ASSERT(vcpu);
3841 	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3842 
3843 	return init_kvm_mmu(vcpu);
3844 }
3845 
kvm_mmu_slot_remove_write_access(struct kvm * kvm,int slot)3846 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3847 {
3848 	struct kvm_mmu_page *sp;
3849 
3850 	list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3851 		int i;
3852 		u64 *pt;
3853 
3854 		if (!test_bit(slot, sp->slot_bitmap))
3855 			continue;
3856 
3857 		pt = sp->spt;
3858 		for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3859 			if (!is_shadow_present_pte(pt[i]) ||
3860 			      !is_last_spte(pt[i], sp->role.level))
3861 				continue;
3862 
3863 			if (is_large_pte(pt[i])) {
3864 				drop_spte(kvm, &pt[i]);
3865 				--kvm->stat.lpages;
3866 				continue;
3867 			}
3868 
3869 			/* avoid RMW */
3870 			if (is_writable_pte(pt[i]))
3871 				mmu_spte_update(&pt[i],
3872 						pt[i] & ~PT_WRITABLE_MASK);
3873 		}
3874 	}
3875 	kvm_flush_remote_tlbs(kvm);
3876 }
3877 
kvm_mmu_zap_all(struct kvm * kvm)3878 void kvm_mmu_zap_all(struct kvm *kvm)
3879 {
3880 	struct kvm_mmu_page *sp, *node;
3881 	LIST_HEAD(invalid_list);
3882 
3883 	spin_lock(&kvm->mmu_lock);
3884 restart:
3885 	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3886 		if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3887 			goto restart;
3888 
3889 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3890 	spin_unlock(&kvm->mmu_lock);
3891 }
3892 
kvm_mmu_remove_some_alloc_mmu_pages(struct kvm * kvm,struct list_head * invalid_list)3893 static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3894 						struct list_head *invalid_list)
3895 {
3896 	struct kvm_mmu_page *page;
3897 
3898 	page = container_of(kvm->arch.active_mmu_pages.prev,
3899 			    struct kvm_mmu_page, link);
3900 	kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3901 }
3902 
mmu_shrink(struct shrinker * shrink,struct shrink_control * sc)3903 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3904 {
3905 	struct kvm *kvm;
3906 	struct kvm *kvm_freed = NULL;
3907 	int nr_to_scan = sc->nr_to_scan;
3908 
3909 	if (nr_to_scan == 0)
3910 		goto out;
3911 
3912 	raw_spin_lock(&kvm_lock);
3913 
3914 	list_for_each_entry(kvm, &vm_list, vm_list) {
3915 		int idx;
3916 		LIST_HEAD(invalid_list);
3917 
3918 		idx = srcu_read_lock(&kvm->srcu);
3919 		spin_lock(&kvm->mmu_lock);
3920 		if (!kvm_freed && nr_to_scan > 0 &&
3921 		    kvm->arch.n_used_mmu_pages > 0) {
3922 			kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3923 							    &invalid_list);
3924 			kvm_freed = kvm;
3925 		}
3926 		nr_to_scan--;
3927 
3928 		kvm_mmu_commit_zap_page(kvm, &invalid_list);
3929 		spin_unlock(&kvm->mmu_lock);
3930 		srcu_read_unlock(&kvm->srcu, idx);
3931 	}
3932 	if (kvm_freed)
3933 		list_move_tail(&kvm_freed->vm_list, &vm_list);
3934 
3935 	raw_spin_unlock(&kvm_lock);
3936 
3937 out:
3938 	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3939 }
3940 
3941 static struct shrinker mmu_shrinker = {
3942 	.shrink = mmu_shrink,
3943 	.seeks = DEFAULT_SEEKS * 10,
3944 };
3945 
mmu_destroy_caches(void)3946 static void mmu_destroy_caches(void)
3947 {
3948 	if (pte_list_desc_cache)
3949 		kmem_cache_destroy(pte_list_desc_cache);
3950 	if (mmu_page_header_cache)
3951 		kmem_cache_destroy(mmu_page_header_cache);
3952 }
3953 
kvm_mmu_module_init(void)3954 int kvm_mmu_module_init(void)
3955 {
3956 	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
3957 					    sizeof(struct pte_list_desc),
3958 					    0, 0, NULL);
3959 	if (!pte_list_desc_cache)
3960 		goto nomem;
3961 
3962 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3963 						  sizeof(struct kvm_mmu_page),
3964 						  0, 0, NULL);
3965 	if (!mmu_page_header_cache)
3966 		goto nomem;
3967 
3968 	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3969 		goto nomem;
3970 
3971 	register_shrinker(&mmu_shrinker);
3972 
3973 	return 0;
3974 
3975 nomem:
3976 	mmu_destroy_caches();
3977 	return -ENOMEM;
3978 }
3979 
3980 /*
3981  * Caculate mmu pages needed for kvm.
3982  */
kvm_mmu_calculate_mmu_pages(struct kvm * kvm)3983 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3984 {
3985 	unsigned int nr_mmu_pages;
3986 	unsigned int  nr_pages = 0;
3987 	struct kvm_memslots *slots;
3988 	struct kvm_memory_slot *memslot;
3989 
3990 	slots = kvm_memslots(kvm);
3991 
3992 	kvm_for_each_memslot(memslot, slots)
3993 		nr_pages += memslot->npages;
3994 
3995 	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3996 	nr_mmu_pages = max(nr_mmu_pages,
3997 			(unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3998 
3999 	return nr_mmu_pages;
4000 }
4001 
kvm_mmu_get_spte_hierarchy(struct kvm_vcpu * vcpu,u64 addr,u64 sptes[4])4002 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4003 {
4004 	struct kvm_shadow_walk_iterator iterator;
4005 	u64 spte;
4006 	int nr_sptes = 0;
4007 
4008 	walk_shadow_page_lockless_begin(vcpu);
4009 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4010 		sptes[iterator.level-1] = spte;
4011 		nr_sptes++;
4012 		if (!is_shadow_present_pte(spte))
4013 			break;
4014 	}
4015 	walk_shadow_page_lockless_end(vcpu);
4016 
4017 	return nr_sptes;
4018 }
4019 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4020 
kvm_mmu_destroy(struct kvm_vcpu * vcpu)4021 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4022 {
4023 	ASSERT(vcpu);
4024 
4025 	destroy_kvm_mmu(vcpu);
4026 	free_mmu_pages(vcpu);
4027 	mmu_free_memory_caches(vcpu);
4028 }
4029 
kvm_mmu_module_exit(void)4030 void kvm_mmu_module_exit(void)
4031 {
4032 	mmu_destroy_caches();
4033 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
4034 	unregister_shrinker(&mmu_shrinker);
4035 	mmu_audit_disable();
4036 }
4037